

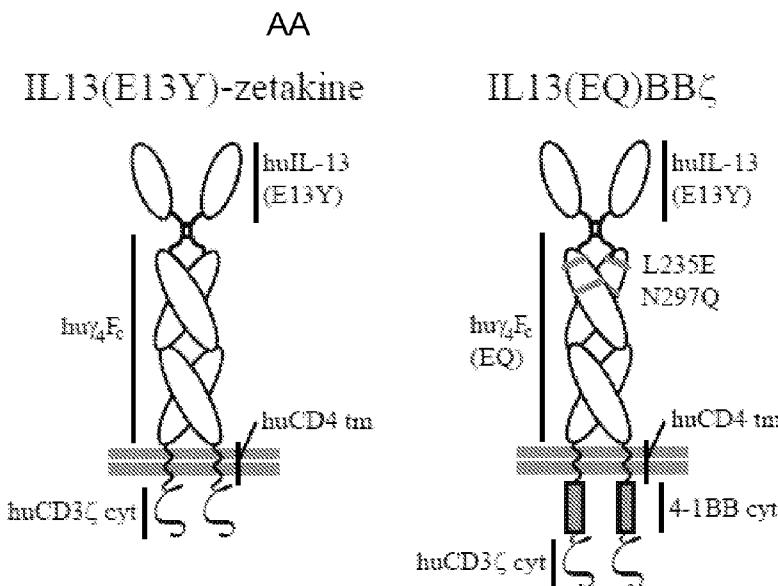
(43) International Publication Date
24 March 2016 (24.03.2016)(51) International Patent Classification:
C07K 14/715 (2006.01) **C12N 15/867** (2006.01)
C07K 14/54 (2006.01) **C12N 5/0783** (2010.01)
C07K 19/00 (2006.01)
(21) International Application Number:
PCT/US2015/051089(22) International Filing Date:
18 September 2015 (18.09.2015)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/053,068 19 September 2014 (19.09.2014) US(71) Applicant: **CITY OF HOPE** [US/US]; 1500 East Duarte Road, Duarte, California 91010 (US).(72) Inventors: **BROWN, Christine E.**; 1500 East Duarte Road, Duarte, California 91010 (US). **FORMAN, Stephen J.**; 1500 Esat Duarte Road, Duarte, California 91010 (US).(74) Agent: **MEIKLEJOHN, Anita L.**; Fish & Richardson P.C., P. O. Box 1022, Minneapolis, Minnesota 55440-1022 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: COSTIMULATORY CHIMERIC ANTIGEN RECEPTOR T CELLS TARGETING IL13Ra2

FIGURE 1(57) **Abstract:** Chimeric transmembrane immunoreceptors (CAR) which include an extracellular domain that includes IL-13 or a variant thereof that binds interleukin-13Ra2 (IL13Ra2), a transmembrane region, a costimulatory domain and an intracellular signaling domain are described.

Published:

— *with international search report (Art. 21(3))*

— *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

Costimulatory Chimeric Antigen Receptor T Cells Targeting IL13R α 2

BACKGROUND

[001] Tumor-specific T cell based immunotherapies, including therapies employing engineered T cells, have been investigated for anti-tumor treatment. In some cases the T cells used in such therapies do not remain active *in vivo* for a long enough period. In some cases, the tumor-specificity of the T cells is relatively low. Therefore, there is a need in the art for tumor-specific cancer therapies with longer term anti-tumor functioning.

[002] Malignant gliomas (MG), which include anaplastic astrocytoma (AA-grade III) and glioblastoma (GBM-grade IV), have an incidence rate of approximately 20,000 new cases diagnosed annually in the United States. According to the American Brain Tumor Association total prevalence of individuals living with a malignant brain tumor, based on United States 2010 census data, is roughly 140,000 persons. Although MG is a rare disease, it is highly aggressive and heterogeneous with respect to its malignant behavior and nearly uniformly lethal. Current standard-of-care therapies for high-grade MG yield only short term benefits, and these brain tumors are virtually incurable. Indeed, even with modern surgical and radiotherapeutic techniques, which often exacerbate the already severe morbidities imposed by location in the central nervous system (CNS), the 5-year survival rates are quite low. Furthermore, for the majority of patients who relapse with disease, there are few therapeutic options. Thus, there is a significant need for more effective therapies, particularly for those patients that have recurred/progressed following frontline therapies, and participation of this patient population in clinical trials is warranted.

[003] Adoptive T cell therapy (ACT) utilizing chimeric antigen receptor (CAR) engineered T cells may provide a safe and effective way to reduce recurrence rates of MG, since CAR T cells can be engineered to specifically recognize antigenically-distinct tumor populations (Cartellieri et al. 2010 *J Biomed Biotechnol* 2010:956304; Ahmed et

al. 2010 *Clin Cancer Res* 16:474; Sampson et al. 2014 *Clin Cancer Res* 20:972; Brown et al. 2013 *Clin Cancer Res* 2012 18:2199; Chow et al. 2013 *Mol Ther* 21:629), and T cells can migrate through the brain parenchyma to target and kill infiltrative malignant cells (Hong et al. 2010 *Clin Cancer Res* 16:4892; Brown et al. 2007 *J Immunol* 179:3332; Hong et al. 2010 *Clin Cancer Res* 16:4892; Yaghoubi 2009 *Nat Clin PRact Oncol* 6:53). Preclinical studies have demonstrated that IL13Ra2-targeting CAR+ T cells exhibit potent major histocompatibility complex (MHC)-independent, IL13Ra2-specific cytolytic activity against both stem-like and differentiated glioma cells, and induce regression of established glioma xenografts *in vivo* (Kahlon et al. 2004 *Cancer Res* 64:9160; Brown et al. 2012 *Clin Cancer Res* 18:2199).

SUMMARY

[004] Described herein are chimeric transmembrane immunoreceptors (chimeric antigen receptors or “CARs”) which comprise an extracellular domain, a transmembrane region and an intracellular signaling domain. The extracellular domain is made up of an IL-13 ligand that binds interleukin-13Ra2 (IL13Ra2) and, optionally, a spacer, comprising, for example a portion human Fc domain. The transmembrane portion includes a CD4 transmembrane domain, a CD8 transmembrane domain, a CD28 transmembrane domain, a CD3 transmembrane domain or a 4IBB transmembrane domain. The intracellular signaling domain includes the signaling domain from the zeta chain of the human CD3 complex (CD3 ζ) and one or more costimulatory domains, e.g., a 4-1BB costimulatory domain. The extracellular domain enables the CAR, when expressed on the surface of a T cell, to direct T cell activity to those cells expressing IL13Ra2, a receptor expressed on the surface of tumor cells, including glioma. Importantly, the IL13Ra2 binding portion of the CAR includes an amino acid modification, such as an E13Y mutation, that increases binding specificity. The inclusion of a costimulatory domain, such as the 4-1BB (CD137) costimulatory domain in series with CD3 ζ in the intracellular region enables the T cell to receive co-stimulatory signals. T cells, for example, patient-specific, autologous T cells can be engineered to express the CARs described herein and the engineered cells can be expanded and used in ACT. Various T cell subsets can be used. In addition, the CAR can be expressed in other immune cells such as NK cells. Where a patient is treated with an

immune cell expressing a CAR described herein the cell can be an autologous or allogenic T cell. In some cases the cells used are CD4+ and CD8+ central memory T cells (T_{CM}), which are CD45RO+CD62L+, and the use of such cells can improve long-term persistence of the cells after adoptive transfer compared to the use of other types of patient-specific T cells.

[005] Described herein is a nucleic acid molecule encoding a chimeric antigen receptor (CAR)r, wherein the chimeric antigen receptor comprises: human IL-13 or a variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications; a transmembrane domain selected from: a CD4 transmembrane domain or variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications, a CD8 transmembrane domain or variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications, a CD28 transmembrane domain or a variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications, and a CD3 ζ transmembrane domain or a variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications; a costimulatory domain; and CD3 ζ signaling domain of a variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications.

[006] In various embodiments the costimulatory domain is selected from the group consisting of: a CD28 costimulatory domain or a variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications, a 4-IBB costimulatory domain or a variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications and an OX40 costimulatory domain or a variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications. In certain embodiments, a 4IBB costimulatory domain or a variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications in present.

[007] Additional embodiment the CAR comprises: a variant of a human IL13 having 1-10 amino acid modification that increase binding specificity for IL13R α 2 versus IL13R α 1; the human IL-13 or variant thereof is an IL-13 variant comprising the amino acid sequence of SEQ ID NO:3 with 1 to 5 amino acid modifications, provided that the amino acid at position 11 of SEQ ID NO:3 other than E; two different costimulatory domains selected from the group consisting of: a CD28 costimulatory domain or a variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications, a 4IBB costimulatory domain

or a variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications and an OX40 costimulatory domain or a variant thereof having 1-10 (e.g., 1 or 2) amino acid modifications; two different costimulatory domains selected from the group consisting of: a CD28 costimulatory domain or a variant thereof having 1-2 amino acid modifications, a 4IBB costimulatory domain or a variant thereof having 1-2 amino acid modifications and an OX40 costimulatory domain or a variant thereof having 1-2 amino acid modifications; human IL-13 or a variant thereof having 1-2 amino acid modifications; a transmembrane domain selected from: a CD4 transmembrane domain or variant thereof having 1-2 amino acid modifications, a CD8 transmembrane domain or variant thereof having 1-2 amino acid modifications, a CD28 transmembrane domain or a variant thereof having 1-2 amino acid modifications, and a CD3 ζ transmembrane domain or a variant thereof having 1-2 amino acid modifications; a costimulatory domain; and CD3 ζ signaling domain of a variant thereof having 1-2 amino acid modifications; a spacer region located between the IL-13 or variant thereof and the transmembrane domain (e.g., the spacer region comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 4, 14-20, 50 and 52); the spacer comprises an IgG hinge region; the spacer region comprises 10-150 amino acids; the 4-1BB signaling domain comprises the amino acid sequence of SEQ ID NO:6; the CD3 ζ signaling domain comprises the amino acid sequence of SEQ ID NO:7; and a linker of 3 to 15 amino acids that is located between the costimulatory domain and the CD3 ζ signaling domain or variant thereof. In certain embodiments where there are two costimulatory domains, one is an 4-IBB costimulatory domain and the other a costimulatory domain selected from: CD28 and CD28gg

[008] In some embodiments: nucleic acid molecule expresses a polypeptide comprising an amino acid sequence selected from SEQ ID NOs: 10, 31-48 and 52; the chimeric antigen receptor comprises a IL-13/IgG4/CD4t/41-BB region comprising the amino acid of SEQ ID NO:11 and a CD3 ζ signaling domain comprising the amino acid sequence of SEQ ID NO:7; and the chimeric antigen receptor comprises the amino acid sequence of SEQ ID NOs: 10, 31-48 and 52.

[009] Also disclosed is a population of human T cells transduced by a vector comprising an expression cassette encoding a chimeric antigen receptor, wherein

chimeric antigen receptor comprises: human IL-13 or a variant thereof having 1-10 amino acid modifications; a transmembrane domain selected from: a CD4 transmembrane domain or variant thereof having 1-10 amino acid modifications, a CD8 transmembrane domain or variant thereof having 1-10 amino acid modifications, a CD28 transmembrane domain or a variant thereof having 1-10 amino acid modifications, and a CD3 ζ transmembrane domain or a variant thereof having 1-10 amino acid modifications; a costimulatory domain; and CD3 ζ signaling domain of a variant thereof having 1-10 amino acid modifications. In various embodiments: the population of human T cells comprise a vector expressing a chimeric antigen receptor comprising an amino acid sequence selected from SEQ ID NOS: 10, 31-48 and 52; the population of human T cells are comprises of central memory T cells (Tcm cells) (e.g., at least 20%, 30%, 40%, 50% 60%, 70%, 80% of the cells are Tcm cells; at least 15%, 20%, 25%, 30%, 35% of the Tcm cells are CD4+ and at least 15%, 20%, 25%, 30%, 35% of the Tcm cells are CD8+ cells).

[0010] Also described is a method of treating cancer in a patient comprising administering a population of autologous or allogeneic human T cells (e.g., autologous or allogenic T cells comprising Tcm cells, e.g., at least 20%, 30%, 40%, 50% 60%, 70%, 80% of the cells are Tcm cells; at least 15%, 20%, 25%, 30%, 35% of the Tcm cells are CD4+ and at least 15%, 20%, 25%, 30%, 35% of the Tcm cells are CD8+ cells) transduced by a vector comprising an expression cassette encoding a chimeric antigen receptor, wherein chimeric antigen receptor comprises an amino acid sequence selected from SEQ ID NOS: 10, 31-48 and 52. In various embodiments: the population of human T cells comprise central memory T cells; the cancer is glioblastoma; and the transduced human T cells where prepared by a method comprising obtaining T cells from the patient, treating the T cells to isolate central memory T cells, and transducing at least a portion of the central memory cells to with a viral vector comprising an expression cassette encoding a chimeric antigen receptor, wherein chimeric antigen receptor comprises an amino acid sequence selected from SEQ ID NOS: 10, 31-48 and 52.

[0011] Also described is: a nucleic acid molecule encoding an polypeptide comprising an amino acid sequence that is at least 95% identical to an amino acid sequence selected

from SEQ ID NO:10 and SEQ ID NOs: 10, 31-48 and 52; a nucleic acid molecule encoding an polypeptide comprising an amino acid sequence that is identical to an amino acid sequence selected from SEQ ID NO: 10, 31-48 and 52 except for the presence of no more than 5 amino acid substitutions, deletions or insertions; a nucleic acid molecule encoding an polypeptide comprising an amino acid sequence that is identical to an amino acid sequence selected from SEQ ID NO:10 and SEQ ID NOs: 10, 31-48 and 52 except for the presence of no more than 5 amino acid substitutions; and a nucleic acid molecule encoding an polypeptide comprising an amino acid sequence that is identical to an amino acid sequence selected from SEQ ID NO:10 and SEQ ID NOs: 10, 31-48 and 52 except for the presence of no more than 2 amino acid substitutions.

[0012] Certain CAR described herein, for example, the IL13(EQ)BB ζ CAR and the IL13(EQ)CD28- BB ζ CAR, have certain beneficial characteristics compared to certain other IL13-targeted CAR. For example, they have improved selectivity for IL13Ra, elicit lower Th2 cytokine production, particularly lower IL13 production.

[0013] T cells expressing a CAR targeting IL13Ra2 can be useful in treatment of cancers such as glioblastoma, as well as other cancer that expresses IL13Ra2 which include but are not limited to medulloblastoma, breast cancer, head and neck cancer, kidney cancer, ovarian cancer and Kaposi's sarcoma. Thus, this disclosure includes methods for treating cancer using T cells expressing a CAR described herein.

[0014] This disclosure also nucleic acid molecules that encode any of the CARs described herein (e.g., vectors that include a nucleic acid sequence encoding one of the CARs) and isolated T lymphocytes that express any of the CARs described herein.

[0015] The CAR described herein can include a spacer region located between the IL13 domain and the transmembrane domain. A variety of different spacers can be used. Some of them include at least portion of a human Fc region, for example a hinge portion of a human Fc region or a CH3 domain or variants thereof. Table 1 below provides various spacers that can be used in the CARs described herein.

Table 1: Examples of Spacers

Name	Length	Sequence
a3	3 aa	AAA
linker	10 aa	GGGSSGGGSG (SEQ ID NO:14)
IgG4 hinge (S→P) (S228P)	12 aa	ESKYGPPCP P CP (SEQ ID NO:15)
IgG4 hinge	12 aa	ESKYGPPCPSCP (SEQ ID NO:52)
IgG4 hinge + linker	22 aa	ESKYGPPCP P CPGGGSSGGGSG (SEQ ID NO:16)
CD28 hinge	39 aa	IEVMYPPPYLDNEKSNGTIIHVKGKHL CPSPLFPGPSKP (SEQ ID NO:17)
CD8 hinge-48aa	48 aa	AKPTTTPAPRPPTPAPTIASQPLSLRPE ACRPAAGGAVHTRGLDFACD (SEQ ID NO:18)
CD8 hinge-45aa	45aa	TTTPAPRPPTPAPTIASQPLSLRPEACR PAAGGAVHTRGLDFACD (SEQ ID NO:19)
IgG4(HL-CH3)	129 aa	ESKYGPPCP P CPGGGSSGGSGGQPR EPQVYTLPPSQEEMTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTPPP VLDSDGSFFLYSRLTVDKSRWQEGNV FSCSVMHEALHNHYTQKSLSLSLGK (SEQ ID NO:20)
IgG4(L235E,N297Q)	229 aa	ESKYGPPCPSCP A PAPEFEGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSQEDPE VQFNWYVDGVEVHQAKTKPREEQFN STYRVVSVLT V LHQDWLNGKEYKCK VSNKGLPSSIEKTISKAKGQPREPQVY TLPPSQEEMTKNQVSLTCLVKGFYPS DIAVEWESNGQPENNYKTPPVLDSD GSFFFLYSRLTVDKSRWQEGNVFSCSV MHEALHNHYTQKSLSLSLGK (SEQ ID NO:4)
IgG4(S228P, L235E,N297Q)	229 aa	ESKYGPPCP P CPSCP A PAPEFEGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSQEDPE VQFNWYVDGVEVHQAKTKPREEQFN STYRVVSVLT V LHQDWLNGKEYKCK

		VSNKGLPSSIEKTISKAKGQPREPVY TLPPSQEEMTKNQVSLTCLVKGFYPS DIAVEWESNGQPENNYKTPPVLDSD GSFFLYSRLTVDKSRWQEGNVFSCSV MHEALHNHYTQKSLSLSLGK (SEQ ID NO:51)
IgG4(CH3)	107 aa	GQPREPVYTLPPSQEEMTKNQVSLT CLVKGFYPSDIAVEWESNGQPENNYK TPPVLDSDGSFFLYSRLTVDKSRWQ EGNVFSCSVMHEALHNHYTQKSLSL LGK (SEQ ID NO:50)

Some spacer regions include all or part of an immunoglobulin (e.g., IgG1, IgG2, IgG3, IgG4) hinge region, i.e., the sequence that falls between the CH1 and CH2 domains of an immunoglobulin, e.g., an IgG4 Fc hinge or a CD8 hinge. Some spacer regions include an immunoglobulin CH3 domain or both a CH3 domain and a CH2 domain. The immunoglobulin derived sequences can include one or more amino acid modifications, for example, 1, 2, 3, 4 or 5 substitutions, e.g., substitutions that reduce off-target binding.

[0016] An "amino acid modification" refers to an amino acid substitution, insertion, and/or deletion in a protein or peptide sequence. An "amino acid substitution" or "substitution" refers to replacement of an amino acid at a particular position in a parent peptide or protein sequence with another amino acid. A substitution can be made to change an amino acid in the resulting protein in a non-conservative manner (i.e., by changing the codon from an amino acid belonging to a grouping of amino acids having a particular size or characteristic to an amino acid belonging to another grouping) or in a conservative manner (i.e., by changing the codon from an amino acid belonging to a grouping of amino acids having a particular size or characteristic to an amino acid belonging to the same grouping). Such a conservative change generally leads to less change in the structure and function of the resulting protein. The following are examples of various groupings of amino acids: 1) Amino acids with nonpolar R groups: Alanine, Valine, Leucine, Isoleucine, Proline, Phenylalanine, Tryptophan, Methionine; 2) Amino acids with uncharged polar R groups: Glycine, Serine, Threonine, Cysteine, Tyrosine, Asparagine, Glutamine; 3) Amino acids with charged polar R groups (negatively charged at pH 6.0): Aspartic acid, Glutamic acid; 4) Basic amino acids (positively charged at pH

6.0): Lysine, Arginine, Histidine (at pH 6.0). Another grouping may be those amino acids with phenyl groups: Phenylalanine, Tryptophan, and Tyrosine.

[0017] In certain embodiments, the spacer is derived from an IgG1, IgG2, IgG3, or IgG4 that includes one or more amino acid residues substituted with an amino acid residue different from that present in an unmodified spacer. The one or more substituted amino acid residues are selected from, but not limited to one or more amino acid residues at positions 220, 226, 228, 229, 230, 233, 234, 235, 234, 237, 238, 239, 243, 247, 267, 268, 280, 290, 292, 297, 298, 299, 300, 305, 309, 218, 326, 330, 331, 332, 333, 334, 336, 339, or a combination thereof. In this numbering scheme, described in greater detail below, the first amino acid in the IgG4(L235E,N297Q) spacer in Table 1 is 219 and the first amino acid in the IgG4(HL-CH3) spacer in Table 1 is 219 as is the first amino acid in the IgG hinge sequence and the IgG4 hinge linker (HL) sequence in Table 1

[0018] In some embodiments, the modified spacer is derived from an IgG1, IgG2, IgG3, or IgG4 that includes, but is not limited to, one or more of the following amino acid residue substitutions: C220S, C226S, S228P, C229S, P230S, E233P, V234A, L234V, L234F, L234A, L235A, L235E, G236A, G237A, P238S, S239D, F243L, P247I, S267E, H268Q, S280H, K290S, K290E, K290N, R292P, N297A, N297Q, S298A, S298G, S298D, S298V, T299A, Y300L, V305I, V309L, E318A, K326A, K326W, K326E, L328F, A330L, A330S, A331S, P331S, I332E, E333A, E333S, E333S, K334A, A339D, A339Q, P396L, or a combination thereof.

[0019] In certain embodiments, the modified spacer is derived from IgG4 region that includes one or more amino acid residues substituted with an amino acid residue different from that present in an unmodified region. The one or more substituted amino acid residues are selected from, but not limited to, one or more amino acid residues at positions 220, 226, 228, 229, 230, 233, 234, 235, 234, 237, 238, 239, 243, 247, 267, 268, 280, 290, 292, 297, 298, 299, 300, 305, 309, 218, 326, 330, 331, 332, 333, 334, 336, 339, or a combination thereof.

[0020] In some embodiments, the modified spacer is derived from an IgG4 region that includes, but is not limited to, one or more of the following amino acid residue

substitutions: 220S, 226S, 228P, 229S, 230S, 233P, 234A, 234V, 234F, 234A, 235A, 235E, 236A, 237A, 238S, 239D, 243L, 247I, 267E, 268Q, 280H, 290S, 290E, 290N, 292P, 297A, 297Q, 298A, 298G, 298D, 298V, 299A, 300L, 305I, 309L, 318A, 326A, 326W, 326E, 328F, 330L, 330S, 331S, 331S, 332E, 333A, 333S, 333S, 334A, 339D, 339Q, 396L, or a combination thereof, wherein the amino acid in the unmodified spacer is substituted with the above identified amino acids at the indicated position.

[0021] For amino acid positions in immunoglobulin discussed herein, numbering is according to the EU index or EU numbering scheme (Kabat et al. 1991 Sequences of Proteins of Immunological Interest, 5th Ed., United States Public Health Service, National Institutes of Health, Bethesda, hereby entirely incorporated by reference). The EU index or EU index as in Kabat or EU numbering scheme refers to the numbering of the EU antibody (Edelman et al. 1969 *Proc Natl Acad Sci USA* 63:78-85).

[0022] A variety of transmembrane domains can be used in CAR directed against IL13Ra2. Table 2 includes examples of suitable transmembrane domains. Where a spacer domain is present, the transmembrane domain is located carboxy terminal to the spacer domain.

Table 2: Examples of Transmembrane Domains

Name	Accession	Length	Sequence
CD3z	J04132.1	21 aa	LCYLLDGILFIYGVILTAFL (SEQ ID NO:21)
CD28	NM_006139	27aa	FWVLVVVGVLACYSLLVTVAIFIIFWV (SEQ ID NO:22)
CD28(M)	NM_006139	28aa	MFWVLVVVGVLACYSLLVTVAIFIIFWV (SEQ ID NO:22)
CD4	M35160	22aa	MALIVLGGVAGLLLFIGLGIFF (SEQ ID NO:5)
CD8tm	NM_001768	21aa	IYIWAPLAGTCGVLLSLVIT (SEQ ID NO:23)

CD8tm2	NM_001768	23aa	IYIWAPLAGTCGVLLSLVITLY (SEQ ID NO:24)
CD8tm3	NM_001768	24aa	IYIWAPLAGTCGVLLSLVITLYC (SEQ ID NO:25)
41BB	NM_001561	27aa	IISFFFLALTSTALLFLLFF LTLRFSVV (SEQ ID NO:26)

Many of the CAR described herein include one or more (e.g., two) costimulatory domains. The costimulatory domain(s) are located between the transmembrane domain and the CD3 ζ signaling domain. Table 3 includes examples of suitable costimulatory domains together with the sequence of the CD3 ζ signaling domain.

Table 3: Examples of Costimulatory Domains

Name	Accession	Length	Sequence
CD3 ζ	J04132.1	113 aa	RVKFSRSADAPAYQQGQNQLYNELNLGR REYDVLDKRRGRDPEMGGKPRRKNPQ EGLYNELQDKMAEAYSEIGMKGERRR GKGDGLYQGLSTATKDTYDALHMQAL PPR
CD28	NM_006139	42aa	RSKRSRLLHSDYMNMTPRPGPTRKHYQ PYAPPRDFAAYRS (SEQ ID NO: 27)
CD28gg*	NM_006139	42aa	RSKRSRGHSDYMNMTPRPGPTRKHY QPYAPPRDFAAYRS (SEQ ID NO:28)
41BB	NM_001561	42 aa	KRGRKKLLYIFKQPFMRPVQTTQEEEDGC SCRFPEEEEGGCEL (SEQ ID NO:29)
OX40		42 aa	ALYLLRRDQRLPPDAHKPPGGGSFRTPIQ EEQADAHSTLAKI (SEQ ID NO:30)

DESCRIPTION OF DRAWINGS

[0023] **Figure 1** is a schematic depiction of IL13(E13Y)-zetakine CAR (Left) composed of the IL13Ra2-specific human IL-13 variant (huIL-13(E13Y)), human IgG4 Fc spacer (hu γ 4Fc), human CD4 transmembrane (huCD4 tm), and human CD3 ζ chain cytoplasmic

(huCD3 ζ cyt) portions as indicated. Also depicted is a IL13(EQ)BB ζ CAR which is the same as the IL13(E13Y)-zetakine with the exception of the two point mutations, L235E and N297Q indicated in red, that are located in the CH2 domain of the IgG4 spacer, and the addition of a costimulatory 4-1BB cytoplasmic domain (4-1BB cyt).

[0024] **Figures 2A-C** depict certain vectors an open reading frames. **A** is a diagram of the cDNA open reading frame of the 2670 nucleotide IL13(EQ)BBZ-T2ACD19t construct, where the IL13R α 2-specific ligand IL13(E13Y), IgG4(EQ) Fc hinge, CD4 transmembrane, 4-1BB cytoplasmic signaling, three-glycine linker, and CD3 ζ cytoplasmic signaling domains of the IL13(EQ)BBZ CAR, as well as the T2A ribosome skip and truncated CD19 sequences are indicated. The human GM-CSF receptor alpha and CD19 signal sequences that drive surface expression of the IL13(EQ)BB ζ CAR and CD19t are also indicated. **B** is a diagram of the sequences flanked by long terminal repeats (indicated by 'R') that will integrate into the host genome. **C** is a map of the IL13(EQ)BBZ-T2A-CD19t_epHIV7 plasmid.

[0025] **Figure 3** depicts the construction of pHIV7.

[0026] **Figure 4** depicts the elements of pHIV7.

[0027] **Figure 5** depicts a production scheme for IL13(EQ)BB ζ /CD19t+ T_{CM}.

[0028] **Figures 6A-C** depicts the results of flow cytometric analysis of surface transgene and T cell marker expression. IL13(EQ)BB ζ /CD19t+ T_{CM} HD006.5 and HD187.1 were co-stained with anti-IL13-PE and anti-CD8-FITC to detect CD8+ CAR+ and CD4+ (i.e., CD8 negative) CAR+ cells (**A**), or anti-CD19-PE and anti-CD4-FITC to detect CD4+ CD19t+ and CD8+ (i.e., CD4 negative) CAR+ cells (**B**). IL13(EQ)BB ζ /CD19t+ T_{CM} HD006.5 and HD187.1 stained with fluorochromeconjugatedanti-CD3, TCR, CD4, CD8, CD62L and CD28 (grey histograms) or isotype controls (black histograms) (**C**). In all cases the percentages based on viable lymphocytes (DAPI negative) stained above isotype.

[0029] **Figures 7A-B** depict the *in vitro* functional characterization of IL13R α 2-specific effector function of IL13(EQ)BBZ+ T_{CM}. IL13(EQ)BBZ/CD19t+ T_{CM} HD006.5 and

HD187.1 were used as effectors in a 6-hour ^{51}Cr release assay using a 10:1 E:T ratio based on CD19t expression. The IL13Ra2-positive tumor targets were K562 engineered to express IL13Ra2 (K562-IL13Ra2) and primary glioma line PBT030-2, and the IL13Ra2-negative tumor target control was K562 parental line (A).

IL13(EQ)BBZ/CD19t+ T_{CM} HD006.5 and HD187.1 were evaluated for antigen-dependent cytokine production following overnight co-culture at a 10:1 E:T ratio with IL13Ra2-positive and negative targets. Cytokine levels were measured using the Bio-Plex Pro Human Cytokine TH1/TH2 Assay kit and INF- γ are reported (B).

[0030] **Figures 8A-C** depict the result of studies demonstrating the regression of established glioma tumor xenografts after adoptive transfer of IL13(EQ)BB ζ /CD19t+ T_{CM}. EGFP-ffLuc+ PBT030-2 tumor cells (1×10^5) were stereotactically implanted into the right forebrain of NSG mice. On day 5, mice received either 2×10^6 IL13(EQ)BB ζ /CD19t+ T_{CM} (1.1×10^6 CAR+; n=6), 2×10^6 mock TCM (no CAR; n=6) or PBS (n=6). Representative mice from each group showing relative tumor burden using Xenogen Living Image (A). Quantification of ffLuc flux (photons/sec) shows that IL13(EQ)BB ζ /CD19t+ T_{CM} induce tumor regression as compared to mock-transduced T_{CM} and PBS (#p<0.02, *p<0.001, repeated measures ANOVA) (B). Kaplan Meier survival curve (n=6 per group) demonstrating significantly improved survival (p=0.0008; log-rank test) for mice treated with IL13(EQ)BB ζ /CD19t+ T_{CM} (C)

[0031] **Figures 9A-C** depict the results of studies comparing ant-tumor efficacy of IL13(EQ)BBZ T_{CM} and IL13-zetakine CTL clones. EGFP-ffLuc+ PBT030-2 TSs (1×10^5) were stereotactically implanted into the right forebrain of NSG mice. On day 8, mice received either 1.6×10^6 mock T_{CM} (no CAR), 1.0×10^6 CAR+ IL13(EQ)BB ζ T_{CM} (1.6×10^6 total T cells; 63% CAR), 1.0×10^6 IL13-zetakine CD8+ CTL cl. 2D7 (clonal CAR+), or no treatment (n=6 per group). Representative mice from each group showing relative tumor burden using Xenogen Living Image (A). Linear regression lines of natural log of ffLuc flux (photons/sec) over time, P-values are for group by time interaction comparisons (B). Kaplan Meier survival analysis (n= 6 per group) demonstrate significantly improved survival (p=0.02; log-rank test) for mice treated with IL13(EQ)BB ζ T_{CM} as compared to IL13-zetakine CD8+ CTL cl. 2D7 (C).

[0032] **Figures 10A-C** depict the results of studies comparing ant-tumor efficacy of IL13(EQ)BB ζ T_{CM} and IL13-zetakine CTL clones. EGFP-ffLuc+ PBT030-2 TSs (1×10^5) were stereotactically implanted into the right forebrain of NSG mice. On day 8, mice received either 1.3×10^6 mock T_{CM} (no CAR; n=6), 1.0, 0.3 or 0.1×10^6 CAR+ IL13(EQ)BB ζ T_{CM} (78% CAR+; n=6-7), 1.0, 0.3 or 0.1×10^6 IL13-zetakine CD8+ CTL cl. 2D7 (clonal CAR+; n=6-7), or no treatment (n=5). Xenogen imaging of representative mice from each group showing relative tumor burden (**A**). Linear regression lines of natural log of ffLuc flux (photons/sec) shows that IL13(EQ)BB ζ T_{CM} achieve superior tumor regression as compared to first-generation IL13-zetakine CTL cl. 2D7, mock T_{CM} and tumor only (**B**). Average flux per group at day 27 post tumor injection demonstrating that the 0.1×10^6 IL13(EQ)BB ζ T_{CM} dose outperforms the ten-fold higher 1.0×10^6 dose of IL13-zetakine CD8+ CTL cl. 2D7 (p = 0.043; Welch two sample t- test) (**C**).

[0033] **Figure 11** depicts the results of studies demonstrating IL13(EQ)BB ζ Tcm display improved persistence compared IL13-zetakine CTL clones. CD3 immunohistochemistry evaluating T cell persistence at the tumor site 7-days post T cell infusion. Significant numbers of T cells are detected for IL13(EQ)BB ζ Tcm (top panel). By contrast, very few viable CD3+ IL13-zetakine T cells are detected (bottom panel).

[0034] **Figures 12A-D** depict the results of experiments comparing route of CAR+ T cell delivery (i.c. versus i.v.) for large established tumors. EGFP-ffLuc+ PBT030-2 TSs (1×10^5) were implanted into the right forebrain of NSG mice. On days 19 and 26, mice were injected i.v. through the tail vein with either 5×10^6 CAR+ IL13(EQ)BB ζ + Tcm (11.8×10^6 total cells; n=4), or mock Tcm (11.8×10^6 cells; n=4). Alternatively, on days 19, 22, 26 and 29 mice were injected i.c. with either 1×10^6 CAR+ IL13(EQ)BB ζ + Tcm (2.4×10^6 total cells; n=4), or mock Tcm (2.4×10^6 cells; n=5). Average ffLuc flux (photons/sec) over time shows that i.c. delivered IL13(EQ)BB ζ Tcm mediates tumor regression of day 19 tumors. By comparison, i.v. delivered T cells do not show reduction in tumor burden as compared to untreated or mock Tcm controls (**A**). Kaplan Meier survival curve demonstrates improved survival for mice treated i.c. IL13(EQ)BBZ Tcm as compared to mice treated with i.v. administered CAR+ Tcm (p = 0.0003 log rank test) (**B**). Representative H&E and CD3 IHC of mice treated i.v. (**C**) versus i.c. (**D**) with

IL13(EQ)BBZ+ Tcm. CD3+ T cells were only detected in the i.c. treated group, with no CD3+ cells detected in the tumor or surrounding brain parenchyma for i.v. treated mice.

[0035] Figures 13A-B depict the results of studies showing that CAR+ T cell injected intracranially, either intratumoral (i.c.t.) or intraventricular (i.c.v.), can traffic to tumors on the opposite hemisphere. EGFP-ffLuc+ PBT030-2 TSs (1×10^5) were stereotactically implanted into the right and left forebrains of NSG mice. On day 6, mice were injected i.c. at the right tumor site with 1.0×10^6 IL13(EQ)BB ζ + Tcm (1.6×10^6 total cells; 63% CAR; n=4). Schematic of multifocal glioma experimental model (A). CD3 IHC showing T cells infiltrating both the right and left tumor sites (B).

[0036] Figures 14A-C depict the results of a series of studies evaluating costimulatory domains of IL13Ra2-specific CAR. Schematic of IL13Ra2-specific CAR constructs comparing various intracellular endo/signaling domains, including the first generation CD3z CAR lacking costimulation, versus second generation CARs incorporating either 4-1BB or CD28, versus a third generation CAR containing both CD28 and 41BB. All CAR cassettes also contain the T2A ribosomal skip and truncated CD19 (CD19t) sequences as a marker for transduced cells (A). CD4 and CD8 TCM were lentivirally transduced and CAR-expressing T cells were immunomagnetically enriched via anti-CD19. CD19 and IL13 (i.e., CAR) expression levels as measured by flow cytometry (B). Stability of each CAR construct was determined by dividing the CAR (IL13) mean fluorescence intensity (MFI) by that of the transduction marker (CD19t) (C). The 4-1BB containing CARs demonstrated the lowest expression levels as compared to the CD19t transduction marker.

[0037] Figures 15A-B depict the results of studies demonstrating that IL13Ra2-specific CAR containing the 4-1BB costimulatory domain produce less Th1 and Th2 cytokines. The ability of the indicated mock-transduced or CAR-expressing T cells to kill IL13Ra2-expressing PBT030-2 tumor cell targets was determined in a 4-hour ^{51}Cr -release assay at the indicated effector:target ratios. Mean % chromium release + S.D. of triplicate wells are depicted (A). As expected, mock-transduced T cells did not efficiently lyse the targets. In contrast, all CAR-expressing T cells lysed the tumor cells in a similar manner.

The indicated mock-transduced or CAR-expressing T cells were co-cultured overnight with IL13R α 2-expressing PBT030-2 tumor cells at a 10:1 ratio and supernatants were analyzed for IL-13 and IFN- γ levels by cytometric bead array (**B**). Means + S.D. of triplicate wells are depicted. Interestingly, T cells expressing the zeta, 41BB-zeta or CD28-41BB-zeta CARs exhibited lower antigen-stimulated cytokine production than T cells expressing the CD28-zeta CAR.

[0038] **Figures 16A-C** depict the results of a series of studies of the in vivo efficacy of IL13R α 2-specific CARs. NSG mice received an intracranial injection of ffLuc+ PBT030-2 tumor cells on day 0, and were randomized into 6 groups (n = 9-10 mice per group) for i.c. treatment with either PBS (Tumor Only), mock-transduced T cells or T cells expressing the indicated IL13R α 2-specific CAR on day 8. Quantitative bioluminescence imaging was then carried out to monitor tumor growth over time. Bioluminescence images for representative mice in each group (**A**). Mean + S.E. of total flux levels of luciferase activity over time in each group (**B**). Flux levels for each mouse at Day 27. All groups treated with IL13R α 2-specific CAR T cells, except those treated with T cells expressing the CD28-CAR, show statistically-significant reduction in tumor volume compared to mice treated with mock-transduced T cells (**C**)

[0039] **Figure 17** depicts the amino acid sequence of IL13(EQ)BB ζ /CD19t+ (SEQ ID NO:10).

[0040] **Figure 18** depicts a sequence comparison of IL13(EQ)41BB ζ [IL13{EQ}41BB ζ T2A-CD19t_epHIV7; pF02630] (SEQ ID NO:12) and CD19Rop_epHIV7 (pJ01683) (SEQ ID NO:13).

[0041] **Figure 19** depicts the amino acid sequence of IL13(EmY)-CD8h3-CD8tm2-41BB Zeta (SEQ ID NO:31 with GMSCFRa signal peptide; SEQ ID NO:39 without GMSCFRa signal peptide).

[0042] **Figure 20** depicts the amino acid sequence of IL13(EmY)-CD8h3-CD28tm-CD28gg-41BB-Zeta (SEQ ID NO:32 with GMSCFRa signal peptide; SEQ ID NO:40 without GMSCFRa signal peptide).

[0043] **Figure 21** depicts the amino acid sequence of IL13(EmY)-IgG4(HL-CH3)-CD4tm-41BB-Zeta (SEQ ID NO:33 with GMSCFRa signal peptide; SEQ ID NO:41 without GMSCFRa signal peptide).

[0044] **Figure 22** depicts the amino acid sequence of IL13(EmY)-IgG4(L235E,N297Q)-CD8tm-41BB-Zeta (SEQ ID NO:34 with GMSCFRa signal peptide; SEQ ID NO:42 without GMSCFRa signal peptide).

[0045] **Figure 23** depicts the amino acid sequence of IL13(EmY)-Linker-CD28tm-CD28gg-41BB-Zeta (SEQ ID NO:35 with GMSCFRa signal peptide; SEQ ID NO:43 without GMSCFRa signal peptide).

[0046] **Figure 24** depicts the amino acid sequence of IL13(EmY)-HL-CD28m-CD28gg-41BB-Zeta (SEQ ID NO:36 with GMSCFRa signal peptide; SEQ ID NO:44 without GMSCFRa signal peptide).

[0047] **Figure 25** depicts the amino acid sequence of IL13(EmY)-IgG4(HL-CH3)-CD28tm-CD28gg-41BB-Zeta (SEQ ID NO:37 with GMSCFRa signal peptide; SEQ ID NO:45 without GMSCFRa signal peptide).

[0048] **Figure 26** depicts the amino acid sequence of IL13(EmY) IgG4(L235E,N297Q)-CD28tm-CD28gg-41BB-Zeta (SEQ ID NO:38 with GMSCFRa signal peptide; SEQ ID NO:46 without GMSCFRa signal peptide).

[0049] **Figure 27** depicts the amino acid sequence of IL13(EmY)-CD8h3-CD8tm-41BB Zeta (SEQ ID NO:47 with GMSCFRa signal peptide; SEQ ID NO:48 without GMSCFRa signal peptide).

[0050]

DETAILED DESCRIPTION

[0051] Described below is the structure, construction and characterization of various IL13R α 2-specific chimeric antigen receptors. A chimeric antigen (CAR) is a recombinant

biomolecule that contains, at a minimum, an extracellular recognition domain, a transmembrane region, and an intracellular signaling domain. The term "antigen," therefore, is not limited to molecules that bind antibodies, but to any molecule that can bind specifically to a target. For example, a CAR can include a ligand that specifically binds a cell surface receptor. The extracellular recognition domain (also referred to as the extracellular domain or simply by the recognition element which it contains) comprises a recognition element that specifically binds to a molecule present on the cell surface of a target cell. The transmembrane region anchors the CAR in the membrane. The intracellular signaling domain comprises the signaling domain from the zeta chain of the human CD3 complex and optionally comprises one or more costimulatory signaling domains. CARs can both bind antigen and transduce T cell activation, independent of MHC restriction. Thus, CARs are "universal" immunoreceptors which can treat a population of patients with antigen-positive tumors irrespective of their HLA genotype. Adoptive immunotherapy using T lymphocytes that express a tumor-specific CAR can be a powerful therapeutic strategy for the treatment of cancer.

[0052] One IL13R α 2-specific CAR described herein is referred to as IL13(EQ)BB ζ . This CAR includes a variety of important features including: a IL13 α 2 ligand having an amino acid change that improves specificity of binding to IL13 α 2; the domain of CD137 (4-1BB) in series with CD3 ζ to provide beneficial costimulation; and an IgG4 Fc region that is mutated at two sites within the CH2 region (L235E; N297Q) in a manner that reduces binding by Fc receptors (FcRs). Other CAR described herein contain a second costimulatory domain.

[0053] In some cases the CAR described herein, including the IL13(EQ)BB ζ CAR can be produced using a vector in which the CAR open reading frame is followed by a T2A ribosome skip sequence and a truncated CD19 (CD19t), which lacks the cytoplasmic signaling tail (truncated at amino acid 323). In this arrangement, co-expression of CD19t provides an inert, non-immunogenic surface marker that allows for accurate measurement of gene modified cells, and enables positive selection of gene-modified cells, as well as efficient cell tracking and/or imaging of the therapeutic T cells *in vivo* following adoptive transfer. Co-expression of CD19t provides a marker for immunological targeting of the

transduced cells *in vivo* using clinically available antibodies and/or immunotoxin reagents to selectively delete the therapeutic cells, and thereby functioning as a suicide switch.

[0054] Gliomas, express IL13 receptors, and in particular, high-affinity IL13 receptors. However, unlike the IL13 receptor, glioma cells overexpress a unique IL13Ra2 chain capable of binding IL13 independently of the requirement for IL4R β or γ c44. Like its homolog IL4, IL13 has pleotropic immunoregulatory activity outside the CNS. Both IL13 and IL4 stimulate IgE production by B lymphocytes and suppress pro-inflammatory cytokine production by macrophages.

[0055] Detailed studies using autoradiography with radiolabeled IL13 have demonstrated abundant IL13 binding on nearly all malignant glioma tissues studied. This binding is highly homogeneous within tumor sections and in single cell analysis. However, molecular probe analysis specific for IL13Ra2 mRNA did not detect expression of the glioma-specific receptor by normal brain elements and autoradiography with radiolabeled IL13 also could not detect specific IL13 binding in the normal CNS. These studies suggest that the shared IL13Ra1/IL4 β / γ c receptor is not expressed detectably in the normal CNS. Therefore, IL13Ra2 is a very specific cell-surface target for glioma and is a suitable target for a CAR designed for treatment of a glioma.

[0056] Binding of IL13-based therapeutic molecules to the broadly expressed IL13Ra1/IL4 β / γ c receptor complex, however, has the potential of mediating undesired toxicities to normal tissues outside the CNS, and thus limits the systemic administration of these agents. An amino acid substitution in the IL13 alpha helix A at amino acid 13 of tyrosine for the native glutamic acid selectively reduces the affinity of IL13 to the IL13Ra1/IL4 β / γ c receptor. Binding of this mutant (termed IL13(E13Y)) to IL13Ra2, however, was increased relative to wild-type IL13. Thus, this minimally altered IL13 analog simultaneously increases IL13's specificity and affinity for glioma cells. Therefore, CAR described herein include an IL13 containing a mutation (E to Y or E to some other amino acid such as K or R or L or V) at amino acid 13 (according to the numbering of Debinski et al. 1999 *Clin Cancer Res* 5:3143s). IL13 having the natural

sequence also may be used, however, and can be useful, particularly in situations where the modified T cells are to be locally administered, such as by injection directly into a tumor mass.

[0057] The CAR described herein can be produced by any means known in the art, though preferably it is produced using recombinant DNA techniques. Nucleic acids encoding the several regions of the chimeric receptor can be prepared and assembled into a complete coding sequence by standard techniques of molecular cloning known in the art (genomic library screening, PCR, primer-assisted ligation, site-directed mutagenesis, etc.) as is convenient. The resulting coding region is preferably inserted into an expression vector and used to transform a suitable expression host cell line, preferably a T lymphocyte cell line, and most preferably an autologous T lymphocyte cell line.

[0058] Various T cell subsets isolated from the patient, including unselected PBMC or enriched CD3 T cells or enriched CD3 or memory T cell subsets, can be transduced with a vector for CAR expression. Central memory T cells are one useful T cell subset. Central memory T cell can be isolated from peripheral blood mononuclear cells (PBMC) by selecting for CD45RO+/CD62L+ cells, using, for example, the CliniMACS® device to immunomagnetically select cells expressing the desired receptors. The cells enriched for central memory T cells can be activated with anti-CD3/CD28, transduced with, for example, a SIN lentiviral vector that directs the expression of an IL13R α 2-specific CAR (e.g., IL13(EQ)BB ζ) as well as a truncated human CD19 (CD19t), a non-immunogenic surface marker for both in vivo detection and potential ex vivo selection. The activated/genetically modified central memory T cells can be expanded in vitro with IL-2/IL-15 and then cryopreserved.

Example 1: Construction and Structure of an IL13R α 2-specific CAR

[0059] The structure of a useful IL13R α 2-specific CAR is described below. The codon optimized CAR sequence contains a membrane-tethered IL-13 ligand mutated at a single site (E13Y) to reduce potential binding to IL13R α 1, an IgG4 Fc spacer containing two mutations (L235E; N297Q) that greatly reduce Fc receptor-mediated recognition models,

a CD4 transmembrane domain, a costimulatory 4-1BB cytoplasmic signaling domain, and a CD3 ζ cytoplasmic signaling domain. A T2A ribosome skip sequence separates this IL13(EQ)BBZ CAR sequence from CD19t, an inert, non-immunogenic cell surface detection/selection marker. This T2A linkage results in the coordinate expression of both IL13(EQ)BBZ and CD19t from a single transcript. **Figure 1A** is a schematic drawing of the 2670 nucleotide open reading frame encoding the IL13(EQ)BBZ-T2ACD19t construct. In this drawing, the IL13R α 2-specific ligand IL13(E13Y), IgG4(EQ) Fc, CD4 transmembrane, 4-1BB cytoplasmic signaling, three-glycine linker, and CD3 ζ cytoplasmic signaling domains of the IL13(EQ)BBZ CAR, as well as the T2A ribosome skip and truncated CD19 sequences are all indicated. The human GM-CSF receptor alpha and CD19 signal sequences that drive surface expression of the IL13(EQ)BBZ CAR and CD19t are also indicated. Thus, the IL13(EQ)BBZ-T2ACD19t construct includes a IL13R α 2-specific, hinge-optimized, costimulatory chimeric immunoreceptor sequence (designated IL13(EQ)BBZ), a ribosome-skip T2A sequence, and a CD19t sequence.

[0060] The IL13(EQ)BBZ sequence was generated by fusion of the human GM-CSF receptor alpha leader peptide with IL13(E13Y) ligand 5 L235E/N297Q-modified IgG4 Fc hinge (where the double mutation interferes with FcR recognition), CD4 transmembrane, 4-1BB cytoplasmic signaling domain, and CD3 ζ cytoplasmic signaling domain sequences. This sequence was synthesized de novo after codon optimization. The T2A sequence was obtained from digestion of a T2A-containing plasmid. The CD19t sequence was obtained from that spanning the leader peptide sequence to the transmembrane components (i.e., basepairs 1-972) of a CD19-containing plasmid. All three fragments, 1) IL13(EQ)BBZ, 2) T2A, and 3) CD19t, were cloned into the multiple cloning site of the epHIV7 lentiviral vector. When transfected into appropriate cells, the vector integrates the sequence depicted schematically in **Figure 1B** into the host cells genome. **Figure 1C** provides a schematic drawing of the 9515 basepair IL13(EQ)BBZ-T2A-CD19t _epHIV7 plasmid itself.

[0061] As shown schematically in **Figure 2**, IL13(EQ)BBZ CAR differs in several important respects from a previously described IL13R α 2-specific CAR referred to as IL13(E13Y)-zetakine (Brown et al. 2012 *Clinical Cancer Research* 18:2199). The

IL13(E13Y)-zetakine is composed of the IL13R α 2-specific human IL-13 mutein (huIL-13(E13Y)), human IgG4 Fc spacer (hu γ 4Fc), human CD4 transmembrane (huCD4 tm), and human CD3 ζ chain cytoplasmic (huCD3 ζ cyt) portions as indicated. In contrast, the IL13(EQ)BB ζ has two point mutations, L235E and N297Q that are located in the CH2 domain of the IgG4 spacer, and a costimulatory 4-1BB cytoplasmic domain (4-1BB cyt).

Example 2: Construction and Structure of epHIV7 used for Expression of an IL13R α 2-specific CAR

[0062] The pHIV7 plasmid is the parent plasmid from which the clinical vector IL13(EQ)BBZ-T2A-CD19t_epHIV7 was derived in the T cell Therapeutics Research Laboratory (TCTRL) at City of Hope (COH). The epHIV7 vector used for expression of the CAR was produced from pHIV7 vector. Importantly, this vector uses the human EF1 promoter to drive expression of the CAR. Both the 5' and 3' sequences of the vector were derived from pv653RSN as previously derived from the HXBc2 provirus. The polypyrimidine tract DNA flap sequences (cPPT) were derived from HIV-1 strain pNL4-3 from the NIH AIDS Reagent Repository. The woodchuck post-transcriptional regulatory element (WPRE) sequence was previously described.

[0063] Construction of pHIV7 is schematically depicted in Figure 3. Briefly, pv653RSN, containing 653 bp from gag-pol plus 5' and 3' long-terminal repeats (LTRs) with an intervening SL3-neomycin phosphotransferase gene (Neo), was subcloned into pBluescript, as follows: In Step 1, the sequences from 5' LTR to rev-responsive element (RRE) made p5'HIV-1 51, and then the 5' LTR was modified by removing sequences upstream of the TATA box, and ligated first to a CMV enhancer and then to the SV40 origin of replication (p5'HIV-2). In Step 2, after cloning the 3' LTR into pBluescript to make p3'HIV-1, a 400-bp deletion in the 3' LTR enhancer/promoter was made to remove cis-regulatory elements in HIV U3 and form p3'HIV-2. In Step 3, fragments isolated from the p5'HIV-3 and p3'HIV-2 were ligated to make pHIV-3. In Step 4, the p3'HIV-2 was further modified by removing extra upstream HIV sequences to generate p3'HIV-3 and a 600-bp BamHI-SalI fragment containing WPRE was added to p3'HIV-3 to make the p3'HIV-4. In Step 5, the pHIV-3 RRE was reduced in size by PCR and ligated to a 5'

fragment from pHIV-3 (not shown) and to the p3'HIV-4, to make pHIV-6. In Step 6, a 190-bp BglII-BamHI fragment containing the cPPT DNA flap sequence from HIV-1 pNL4-3 (55) was amplified from pNL4-3 and placed between the RRE and the WPRE sequences in pHIV6 to make pHIV-7. This parent plasmid pHIV7-GFP (GFP, green fluorescent protein) was used to package the parent vector using a four-plasmid system.

[0064] A packaging signal, psi ψ , is required for efficient packaging of viral genome into the vector. The RRE and WPRE enhance the RNA transcript transport and expression of the transgene. The flap sequence, in combination with WPRE, has been demonstrated to enhance the transduction efficiency of lentiviral vector in mammalian cells.

[0065] The helper functions, required for production of the viral vector), are divided into three separate plasmids to reduce the probability of generation of replication competent lentivirus via recombination: 1) pCgp encodes the gag/pol protein required for viral vector assembly; 2) pCMV-Rev2 encodes the Rev protein, which acts on the RRE sequence to assist in the transportation of the viral genome for efficient packaging; and 3) pCMV-G encodes the glycoprotein of the vesiculo-stomatitis virus (VSV), which is required for infectivity of the viral vector.

[0066] There is minimal DNA sequence homology between the pHIV7 encoded vector genome and the helper plasmids. The regions of homology include a packaging signal region of approximately 600 nucleotides, located in the gag/pol sequence of the pCgp helper plasmid; a CMV promoter sequence in all three helper plasmids; and a RRE sequence in the helper plasmid pCgp. It is highly improbable that replication competent recombinant virus could be generated due to the homology in these regions, as it would require multiple recombination events. Additionally, any resulting recombinants would be missing the functional LTR and tat sequences required for lentiviral replication.

[0067] The CMV promoter was replaced by the EF1 α -HTLV promoter (EF1p), and the new plasmid was named epHIV7 (**Figure 4**). The EF1p has 563 bp and was introduced into epHIV7 using NruI and NheI, after the CMV promoter was excised.

[0068] The lentiviral genome, excluding gag/pol and rev that are necessary for the pathogenicity of the wild-type virus and are required for productive infection of target cells, has been removed from this system. In addition, the IL13(EQ)BBZ-T2ACD19t_epHIV7 vector construct does not contain an intact 3'LTR promoter, so the resulting expressed and reverse transcribed DNA proviral genome in targeted cells will have inactive LTRs. As a result of this design, no HIV-I derived sequences will be transcribed from the provirus and only the therapeutic sequences will be expressed from their respective promoters. The removal of the LTR promoter activity in the SIN vector is expected to significantly reduce the possibility of unintentional activation of host genes (56). Table 4 summarizes the various regulator elements present in IL13(EQ)BBZ-T2ACD19t_epHIV7.

Table 4 Functional elements of IL13(EQ)41BBZ-T2A-CD19t_epHIV7

Regulatory Elements and Genes	Location (Nucleotide Numbers)	Comments
U5	87-171	5' Unique sequence
psi	233-345	Packaging signal
RRE	957-1289	Rev-responsive element
flap	1290-1466	Contains polypyrimidine track sequence and central termination sequence to facilitate nuclear import of pre-integration complex
EF1p Promoter	1524-2067	EF1-alpha Eukaryotic Promoter sequence driving expression of CD19Rop
IL13-IgG4 (EQ)-41BB-Zeta-T2A-CD19t	2084-4753	Therapeutic insert
WPRE	4790-5390	Woodchuck hepatitis virus derived regulatory element to enhance viral RNA transportation
delU3	5405-5509	3' U3 with deletion to generate SIN vector
R	5510-5590	Repeat sequence within LTR
U5	5591-5704	3' U5 sequence in LTR
Amp ^R	6540-7398	Ampicillin-resistance gene
CoE1 ori	7461-8342	Replication origin of plasmid
SV40 ori	8639-8838	Replication origin of SV40
CMV promoter	8852-9451	CMV promoter to generate viral

Table 4 Functional elements of IL13(EQ)41BBZ-T2A-CD19t_epHIV7

Regulatory Elements and Genes	Location (Nucleotide Numbers)	Comments
		genome RNA
R	9507-86	Repeat sequence within LTR

Example 3: Production of Vectors for Transduction of Patient T Cells

[0069] For each plasmid (IL13(EQ)BBZ-T2A-CD19t_epHIV7; pCgp; pCMV-G; and pCMV-Rev2), a seed bank is generated, which is used to inoculate the fermenter to produce sufficient quantities of plasmid DNA. The plasmid DNA is tested for identity, sterility and endotoxin prior to its use in producing lentiviral vector.

[0070] Briefly, cells were expanded from the 293T working cell (WCB), which has been tested to confirm sterility and the absence of viral contamination. A vial of 293T cells from the 293T WCB was thawed. Cells were grown and expanded until sufficient numbers of cells existed to plate an appropriate number of 10 layer cell factories (CFs) for vector production and cell train maintenance. A single train of cells can be used for production.

[0071] The lentiviral vector was produced in sub-batches of up to 10 CFs. Two sub-batches can be produced in the same week leading to the production of approximately 20 L of lentiviral supernatant/week. The material produced from all sub-batches were pooled during the downstream processing phase, in order to produce one lot of product. 293T cells were plated in CFs in 293T medium (DMEM with 10% FBS). Factories were placed in a 37°C incubator and horizontally leveled in order to get an even distribution of the cells on all the layers of the CF. Two days later, cells were transfected with the four lentiviral plasmids described above using the CaPO4 method, which involves a mixture of Tris:EDTA, 2M CaCl2, 2X HBS, and the four DNA plasmids. Day 3 after transfection, the supernatant containing secreted lentiviral vectors was collected, purified and concentrated. After the supernatant was removed from the CFs, End-of-Production Cells were collected from each CF. Cells were trypsinized from each factory and collected by centrifugation. Cells were resuspended in freezing medium and

cryopreserved. These cells were later used for replication-competent lentivirus (RCL) testing.

[0072] To purify and formulate vectors crude supernatant was clarified by membrane filtration to remove the cell debris. The host cell DNA and residual plasmid DNA were degraded by endonuclease digestion (Benzonase®). The viral supernatant was clarified of cellular debris using a 0.45 µm filter. The clarified supernatant was collected into a pre-weighed container into which the Benzonase® is added (final concentration 50 U/mL). The endonuclease digestion for residual plasmid DNA and host genomic DNA was performed at 37°C for 6 h. The initial tangential flow ultrafiltration (TFF) concentration of the endonuclease-treated supernatant was used to remove residual low molecular weight components from the crude supernatant, while concentrating the virus ~20 fold. The clarified endonuclease-treated viral supernatant was circulated through a hollow fiber cartridge with a NMWCO of 500 kD at a flow rate designed to maintain the shear rate at ~4,000 sec-1 or less, while maximizing the flux rate. Diafiltration of the nuclease-treated supernatant was initiated during the concentration process to sustain the cartridge performance. An 80% permeate replacement rate was established, using 4% lactose in PBS as the diafiltration buffer. The viral supernatant was brought to the target volume, representing a 20-fold concentration of the crude supernatant, and the diafiltration was continued for 4 additional exchange volumes, with the permeate replacement rate at 100%.

[0073] Further concentration of the viral product was accomplished by using a high speed centrifugation technique. Each sub-batch of the lentivirus was pelleted using a Sorvall RC-26 plus centrifuge at 6000 RPM (6,088 RCF) at 60°C for 16-20 h. The viral pellet from each sub-batch was then reconstituted in a 50 mL volume with 4% lactose in PBS. The reconstituted pellet in this buffer represents the final formulation for the virus preparation. The entire vector concentration process resulted in a 200-fold volume reduction, approximately. Following the completion of all of the sub-batches, the material was then placed at -80°C, while samples from each sub-batch were tested for sterility. Following confirmation of sample sterility, the sub-batches were rapidly thawed at 37°C with frequent agitation. The material was then pooled and manually aliquoted in the Class

II Type A/B3 biosafety cabinet in the viral vector suite. A fill configuration of 1 mL of the concentrated lentivirus in sterile USP class 6, externally threaded O-ring cryovials was used. Center for Applied Technology Development (CATD)'s Quality Systems (QS) at COH released all materials according to the Policies and Standard Operating Procedures for the CBG and in compliance with current Good Manufacturing Practices (cGMPs).

[0074] To ensure the purity of the lentiviral vector preparation, it was tested for residual host DNA contaminants, and the transfer of residual host and plasmid DNA. Among other tests, vector identity was evaluated by RT-PCR to ensure that the correct vector is present. All release criteria were met for the vector intended for use in this study.

Example 4: Preparation of T cells Suitable for Use in ACT

[0075] T lymphocytes are obtained from a patient by leukapheresis, and the appropriate allogenic or autologous T cell subset, for example, Central Memory T cells (T_{CM}), are genetically altered to express the CAR, then administered back to the patient by any clinically acceptable means, to achieve anti-cancer therapy.

[0076] An outline of the manufacturing strategy for T_{CM} is depicted in **Figure 8** (Manufacturing schema for IL13(EQ)BB ζ /CD19t+ T_{CM}). Specifically, apheresis products obtained from consented research participants are ficolled, washed and incubated overnight. Cells are then depleted of monocyte, regulatory T cell and naïve T cell populations using GMP grade anti-CD14, anti-CD25 and anti-CD45RA reagents (Miltenyi Biotec) and the ClinimacsTM separation device. Following depletion, negative fraction cells are enriched for CD62L+ T_{CM} cells using DREG56-biotin (COH clinical grade) and anti-biotin microbeads (Miltenyi Biotec) on the ClinimacSTM separation device.

[0077] Following enrichment, T_{CM} cells are formulated in complete X-Vivo15 plus 50 IU/mL IL-2 and 0.5 ng/mL IL-15 and transferred to a Teflon cell culture bag, where they are stimulated with Dynal ClinExTM Vivo CD3/CD28 beads. Up to five days after stimulation, cells are transduced with IL13(EQ)BBZ-T2A-CD19t_epHIV7 lentiviral

vector at a multiplicity of infection (MOI) of 1.0 to 0.3. Cultures are maintained for up to 42 days with addition of complete X-Vivo15 and IL-2 and IL-15 cytokine as required for cell expansion (keeping cell density between 3×10^5 and 2×10^6 viable cells/mL, and cytokine supplementation every Monday, Wednesday and Friday of culture). Cells typically expand to approximately 10^9 cells under these conditions within 21 days. At the end of the culture period cells are harvested, washed twice and formulated in clinical grade cryopreservation medium (Cryostore CS5, BioLife Solutions).

[0078] On the day(s) of T cell infusion, the cryopreserved and released product is thawed, washed and formulated for re-infusion. The cryopreserved vials containing the released cell product are removed from liquid nitrogen storage, thawed, cooled and washed with a PBS/2% human serum albumin (HSA) Wash Buffer. After centrifugation, the supernatant is removed and the cells resuspended in a Preservative-Free Normal Saline (PFNS)/ 2% HSA infusion diluent. Samples are removed for quality control testing.

[0079] Two qualification runs on cells procured from healthy donors were performed using the manufacturing platform described above. Each preclinical qualification run product was assigned a human donor (HD) number – HD006.5 and HD187.1. Importantly, as shown in Table 5, these qualification runs expanded >80 fold within 28 days and the expanded cells expressed the IL13(EQ)BB γ /CD19t transgenes.

Table 5: Summary of Expression Data from Pre-clinical Qualification Run Product

Cell Product	CAR	CD19	CD4+	CD8+	Fold Expansion
HD006.5	20%	22%	24%	76%	84-fold (28 days)
Hd187.1	18%	25%	37%	63%	259-fold (28 days)

Example 5: Flow cytometric analysis of surface transgene and T cell marker expression in IL13(EQ)BB γ /CD19t+T_{CM}

[0080] The two preclinical qualification run products described in Example 4 were used in pre-clinical studies to as described below. **Figures 6A-C** depict the results of flow cytometric analysis of surface transgene and T cell marker expression.

IL13(EQ)BB γ /CD19t $+$ T_{CM} HD006.5 and HD187.1 were co-stained with anti-IL13-PE and anti-CD8-FITC to detect CD8 $+$ CAR $+$ and CD4 $+$ (i.e., CD8 negative) CAR $+$ cells (**Figure 6A**), or anti-CD19-PE and anti-CD4-FITC to detect CD4 $+$ CD19t $+$ and CD8 $+$ (i.e., CD4 negative) CAR $+$ cells (**Figure 6B**). IL13(EQ)BB γ /CD19t $+$ T_{CM} HD006.5 and HD187.1 were stained with fluorochrome-conjugated anti-CD3, TCR, CD4, CD8, CD62L and CD28 (grey histograms) or isotype controls (black histograms). (**Figure 6C**). In each of **Figures 6A-C**, the percentages indicated are based on viable lymphocytes (DAPI negative) stained above isotype.

Example 6: Effector Activity of IL13(EQ)BB γ /CD19t $+$ T_{CM}

[0081] The effector activity of IL13(EQ)BB ζ /CD19t $+$ T_{CM} was assessed and the results of this analysis are depicted in **Figures 7A-B**. Briefly, IL13(EQ)BB γ /CD19t $+$ T_{CM} HD006.5 and HD187.1 were used as effectors in a 6-hour ^{51}Cr -release assay using a 10E:1T ratio based on CD19t expression. The IL13Ra2-positive tumor targets were K562 engineered to express IL13Ra2 (K562-IL13Ra2) and primary glioma line PBT030-2, and the IL13Ra2-negative tumor target control was the K562 parental line (**Figure 7A**).

IL13(EQ)BB γ /CD19t $+$ HD006.5 and HD187.1 were evaluated for antigen-dependent cytokine production following overnight co-culture at a 10E:1T ratio with the same IL13Ra2-positive and negative targets as described in above. Cytokine levels were measured using the Bio-Plex Pro Human Cytokine TH1/TH2 Assay kit and INF- γ levels are depicted (**Figure 7B**).

Example 7: In vivo Anti-tumor Activity of IL13(EQ)BB γ /CD19t $+$ T_{CM}

[0082] The studies described below demonstrate that IL13(EQ)BB γ /CD19t $+$ T_{CM} exhibit anti-tumor efficacy in *in vivo* mouse models. Specifically, we have evaluated the anti-tumor potency of IL13(EQ)BB γ /CD19t $+$ T_{CM} against the IL13Ra2 $+$ primary low-passage glioblastoma tumor sphere line PBT030-2, which has been engineered to express both EGFP and firefly luciferase (ffLuc) reporter genes (PBT030-2 EGFP:ffLuc) (**6**). A panel

of primary lines (PBT) from patient glioblastoma specimens grown as tumor spheres (TSs) in serum-free media. These expanded TS lines exhibit stem cell-like characteristics, including expression of stem cell markers, multilineage differentiation and capacity to initiate orthotopic tumors in immunocompromised mice (NSG) at low cell numbers. The PBT030-2 EGFP:ffLuc TS-initiated xenograft model (0.1×10^6 cells; 5 day engraftment) has been previously used to evaluate in vivo anti-tumor activity in NSG mice of IL13R α 2-specific CAR expressing T cells, whereby three injections of 2×10^6 cytolytic T lymphocytes (CTLs) over a course of 2 weeks were shown to reduce tumor growth. However, in those experiments the majority of the PBT030-2 tumors eventually recurred. By comparison, a single injection of IL13(EQ)BB γ /CD19t+ T_{CM} (1.1×10^6 CAR+ T_{CM}; 2×10^6 total T_{CM}) exhibited robust anti-tumor activity against PBT030-2 EGFP:ffLuc TS-initiated tumors (0.1×10^6 cells; 5 day engraftment) as shown in **Figures 8A-C**. As compared to NSG mice treated with either PBS or mock transduced T_{CM} (no CAR), IL13(EQ)BB γ /CD19t+ T_{CM} significantly reduce ffLuc flux ($p < 0.001$ at >18 -days) and significantly improve survival ($p = 0.0008$).

[0083] Briefly, EGFP-ffLuc+ PBT030-2 tumor cells (1×10^5) were stereotactically implanted into the right forebrain of NSG mice. On day 5, mice received either 2×10^6 IL13(EQ)BB γ /CD19t+ T_{CM} (1.1×10^6 CAR+; n=6), 2×10^6 mock T_{CM} (no CAR; n=6) or PBS (n=6). **Figure 8A** depicts representative mice from each group showing relative tumor burden using Xenogen Living Image. Quantification of ffLuc flux (photons/sec) shows that IL13(EQ)BB ζ /CD19t+ T_{CM} induce tumor regression as compared to mock-transduced T_{CM} and PBS (#p<0.02, *p<0.001, repeated measures ANOVA) (**Figure 8B**). As shown in **Figure 8C**, a Kaplan Meier survival curve (n=6 per group) demonstrates significantly improved survival ($p=0.0008$; log-rank test) for mice treated with IL13(EQ)BB γ /CD19t+ T_{CM}.

Example 8: Comparison of IL13(EQ)BB ζ + Tcm and Non-Tcm IL13-zetakine CD8+ CTL Clones in Antitumor Efficacy and T cell Persistence

[0084] The studies described below compare IL13(EQ)BB ζ + Tcm and a previously created IL13R α 2-specific human CD8+ CTLs (IL13-zetakine CD8+ CTL (described in

Brown et al. 2012 *Clin Cancer Res* 18:2199 and Kahlon et al. 2004 *Cancer Res* 64:9160). The IL13-zetakine uses a CD3 ζ stimulatory domain, lacks a co-stimulatory domain and uses the same IL13 variant as IL13(EQ)BB ζ +

[0085] A panel of primary lines (PBT) from patient glioblastoma specimens grown as tumor spheres (TSs) in serum-free media was generated (Brown et al. 2012 *Clin Cancer Res* 18:2199; Brown et al. 2009 *Cancer Res* 69:8886). These expanded TS lines exhibit stem cell-like characteristics, including expression of stem cell markers, multi-lineage differentiation and capacity to initiate orthotopic tumors in immunocompromised mice (NSG) at low cell numbers. The IL13Ra2+ primary low-passage glioblastoma TS line PBT030-2, which has been engineered to express both EGFP and firefly luciferase (ffLuc) reporter genes (PBT030-2 EGFP:ffLuc) (Brown et al. 2012 *Clin Cancer Res* 18:2199) was used for the experiments outlined below.

[0086] First, a single dose (1×10^6 CAR T cells) of IL13(EQ)BB ζ Tcm product was compared to IL13-zetakine CD8+ CTL clones evaluated against day 8 PBT030-2 EGFP:ffuc TS-initiated xenografts (0.1×10^6 cells). While both IL13Ra2-specific CAR T cells (IL13-zetakine CTL and IL13(EQ)BB ζ Tcm) demonstrated antitumor activity against established PBT030-2 tumors as compared to untreated and mock Tcm (CAR-negative) controls (**Figures 9A and 9B**), IL13(EQ)BBZ+ Tcm mediated significantly improved survival and durable tumor remission with mice living >150 days as compared to our first-generation IL13-zetakine CD8+ CTL clones (**Figure 9C**).

[0087] To further compare the therapeutic effectiveness of these two IL13Ra2-CAR T cell products, a dose titration of 1.0, 0.3 and 0.1×10^6 CAR T cells against day 8 PBT030-2 EGFP:ffuc TS-initiated tumors was performed (**Figures 10A-C**). The highest dose (1×10^6) of IL13-zetakine CD8+ CTL cl. 2D7 mediated antitumor responses as measured by Xenogen flux in 3 of 6 animals (**Figure 10C**), but no significant antitumor responses were observed at lower CAR T cell doses. By comparison, injection of IL13(EQ)BB ζ + Tcm product mediated complete tumor regression in the majority of mice at all dose levels, including treatment with as few as 0.1×10^6 CAR T cells. These data demonstrate that IL13(EQ)BB ζ + Tcm is at least 10-fold more potent than IL13-zetakine CD8+ CTL

clones in antitumor efficacy. The improved anti-tumor efficacy of is due to improved T cell persistence in the tumor microenvironment. Evaluation of CD3+ T cells 7-days post i.c. injection revealed significant numbers of IL13(EQ)BB ζ + Tcm in the tumor microenvironment, whereas very few first-generation IL13-zeta CTLs were present (**Figure 11**).

Example 9: Comparison of CAR T cell delivery route for treatment of large TS-initiated PBT tumors

[0088] Described below are studies that compare the route of delivery, intraveneous (i.v.) or intracranial (i.c.), on antitumor activity against invasive primary PBT lines. In pilot studies (data not shown), it was unexpectedly observed that i.v. administered IL13(EQ)BB ζ + Tcm provided no therapeutic benefit as compared to PBS for the treatment of small (day 5) PBT030-2 EGFP:ffLuc tumors. This is in contrast to the robust therapeutic efficacy observed with i.c. administered CAR+ T cells. Reasoning that day 5 PBT030-2 tumors may have been too small to recruit therapeutic T cells from the periphery, a comparison was made of i.v. versus i.c. delivery against larger day 19 PBT030-2 EGFP:ffLuc tumors. For these studies, PBT030-2 engrafted mice were treated with either two i.v. infusions (5×10^6 CAR+ Tcm; days 19 and 26) or four i.c. infusions (1×10^6 CAR+ Tcm; days 19, 22, 26 and 29) of IL13(EQ)BBZ+ Tcm, or mock Tcm (no CAR). Here too no therapeutic benefit as monitored by Xenogen imaging or Kaplan-Meier survival analysis for i.v. administered CAR+ T cells (**Figures 12A and 12B**). In contrast, potent antitumor activity was observed for i.c. administered IL13(EQ)BB ζ + Tcm (**Figures 12A-B**). Next, brains from a cohort of mice 7 days post T cell injection were harvested and evaluated for CD3+ human T cells by IHC. Surprisingly, for mice treated i.v. with either mock Tcm or IL13(EQ)BB ζ Tcm there were no detectable CD3+ human T cells in the tumor or in others mouse brain regions where human T cells typically reside (i.e. the leptomeninges) (**Figure 12C**), suggesting a deficit in tumor tropism. This is in contrast to the significant number of T cells detected in the i.c. treated mice (**Figure 12D**).

[0089] Tumor derived cytokines, particularly MCP-1/CCL2, are important in recruiting T cells to the tumor. Thus, PBT030-2 tumor cells were evaluated and it was found that this line produces high levels of MCP-1/CCL2 comparable to U251T cells (data not shown), a glioma line previously shown to attract i.v. administered effector CD8+ T cells to i.c. engrafted tumors. Malignant gliomas are highly invasive tumors and are often multifocal in presentation. The studies described above establish that IL13BBZ T_{CM} can eliminate infiltrated tumors such as PBT030-2, and mediate long-term durable antitumor activity. The capacity of intracranially delivered CAR T cells to traffic to multifocal disease was also examined. For this study PBT030-2 EGFP:ffLuc TSs were implanted in both the left and right hemispheres (**Figure 13A**) and CAR+ T cells were injected only at the right tumor site. Encouragingly, for all mice evaluated (n=3) we detected T cells by CD3 IHC 7-days post T cell infusion both at the site of injection (i.e. right tumor), as well within the tumor on the left hemisphere (**Figure 13B**). These findings provide evidence that CAR+ T cells are able to traffic to and infiltrate tumor foci at distant sites. Similar findings were also observed in a second tumor model using the U251T glioma cell line (data not shown).

Example 10: Comparison of Costimulatory Domains

[0090] A series of studies were conducted to evaluate various costimulatory domains. The various CAR evaluated are depicted schematically in **Figure 14A** and included a first generation CD3 ζ CAR lacking a costimulatory domain, two second generation CARs incorporating either a 4-1BB costimulatory domain or a CD28 costimulatory domain, and a third generation CAR containing both a CD28 costimulatory domain and 41BB costimulatory domain. All CAR constructs also contain the T2A ribosomal skip sequence and a truncated CD19 (CD19t) sequence as a marker for transduced cells.

[0091] CD4 and CD8 T_{CM} were lentivirally transduced and CAR-expressing T cells were immunomagnetically enriched via anti-CD19. CD19 and IL13 (i.e., CAR) expression levels as measured by flow cytometry. The results are shown in **Figure 14B**. Stability of each CAR construct was determined by dividing the CAR (IL13) mean fluorescence intensity (MFI) by that of the transduction marker (CD19t) (**Figure 14C**).

The two CAR including a 4-1BB costimulatory domain exhibited the lowest expression levels as compared to the CD19t transduction marker.

[0092] The ability of the indicated mock-transduced or CAR-expressing T cells to kill IL13R α 2-expressing PBT030-2 tumor cell targets was determined in a 4-hour ^{51}Cr -release assay at the indicated effector:target ratios. The results of this study are in **Figure 15A** (mean % chromium release \pm S.D. of triplicate wells are depicted). As expected, mock-transduced T cells did not efficiently lyse the targets. In contrast, all CAR-expressing T cells lysed the tumor cells in a similar manner. **Figure 15B** depicts the results of a study in which the indicated mock-transduced or CAR-expressing T cells were co-cultured overnight with IL13R α 2-expressing PBT030-2 tumor cells at a 10:1 ratio and supernatants were analyzed for IL-13 and IFN- γ levels by cytometric bead array. Interestingly, T cells expressing the zeta, 41BB-zeta or CD28-41BB-zeta CARs exhibited lower antigen-stimulated cytokine production than T cells expressing the CD28-zeta CAR.

[0093] The in vivo efficacy of the various CAR was examined as follows. Briefly, NSG mice received an intracranial injection of ffLuc+ PBT030-2 tumor cells on day 0, and were randomized into 6 groups (n = 9-10 mice per group) for i.c. treatment with either PBS (Tumor Only), mock-transduced T cells or T cells expressing the indicated IL13R α 2-specific CAR on day 8. Quantitative bioluminescence imaging was then carried out to monitor tumor growth over time. Bioluminescence images for representative mice in each group (**Figure 16A**). Flux levels for each mouse at Day 27 (**Figure 16B**). All groups treated with IL13R α 2-specific CAR T cells, except those treated with T cells expressing the CD28-CAR, show statistically-significant reduction in tumor volume compared to mice treated with mock-transduced T cells (**Figure 16C**).

Example 11: Amino acid Sequence of IL13(EQ)BB ζ /CD19t

[0094] The complete amino acid sequence of IL13(EQ)BB ζ /CD19t is depicted in **Figure 17**. The entire sequence (SEQ ID NO:1) includes: a 22 amino acid GMCSF signal peptide (SEQ ID NO:2), a 112 amino acid IL-13 sequence (SEQ ID NO:3; amino acid substitution E13Y shown in bold); a 229 amino acid IgG4 sequence (SEQ ID NO:4; with

amino acid substitutions L235E and N297Q shown in bold); a 22 amino acid CD4 transmembrane sequence (SEQ ID NO:5); a 42 amino acid 4-1BB sequence (SEQ ID NO:6); a 3 amino acid Gly linker; a 112 amino acid CD3 ζ sequence (SEQ ID NO:7); a 24 amino acid T2A sequence (SEQ ID NO:8); and a 323 amino acid CD19t sequence (SEQ ID NO:9).

[0095] The mature chimeric antigen receptor sequence (SEQ ID NO:10) includes: a 112 amino acid IL-13 sequence (SEQ ID NO:3; amino acid substitution E13Y shown in bold); a 229 amino acid IgG4 sequence (SEQ ID NO:4; with amino acid substitutions L235E and N297Q shown in bold); a 22 amino acid CD4 sequence (SEQ ID NO:5); a 42 amino acid 4-1BB sequence (SEQ ID NO:6); a 3 amino acid Gly linker; and a 112 amino acid CD3 ζ sequence (SEQ ID NO:7). Within this CAR sequence (SEQ ID NO:10) is the IL-13/IgG4/CD4t/41-BB sequence (SEQ ID NO:11), which includes: a 112 amino acid IL-13 sequence (SEQ ID NO:3; amino acid substitution E13Y shown in bold); a 229 amino acid IgG4 sequence (SEQ ID NO:4; with amino acid substitutions L235E and N297Q shown in bold); a 22 amino acid CD4 sequence (SEQ ID NO:5); and a 42 amino acid 4-1BB sequence (SEQ ID NO:6). The IL13/IgG4/CD4t/4-1BB sequence (SEQ ID NO:11) can be joined to the 112 amino acid CD3 ζ sequence (SEQ ID NO:7) by a linker such as a Gly Gly Gly linker. The CAR sequence (SEQ ID NO:10) can be preceded by a 22 amino acid GMCSF signal peptide (SEQ ID NO:2).

[0096] **Figure 18** depicts a comparison of the sequences of IL13(EQ)41BB ζ [IL13 {EQ}41BB ζ T2A-CD19t_epHIV7; pF02630] (SEQ ID NO:12) and CD19Rop_epHIV7 (pJ01683) (SEQ ID NO:13).

Example 12: Amino acid Sequence of IL13(EQ)BB ζ /CD19t

[0097] **Figures 19-26** depict the amino acid sequences of additional CAR directed against IL13Ra2 in each case the various domains are labelled except for the GlyGlyGly spacer located between certain intracellular domains. Each includes human IL13 with Glu to Tyr (SEQ ID NO:3; amino acid substitution E13Y shown in highlighted). In the expression vector used to express these CAR, the amino acid sequence expressed can include a 24 amino acid T2A sequence (SEQ ID NO:8); and a 323 amino acid CD19t

sequence (SEQ ID NO:9) to permit coordinated expression of a truncated CD19 sequence on the surface of CAR-expressing cells.

[0098] A panel of CAR comprising human IL13(E13Y) domain, a CD28 tm domain, a CD28gg costimulatory domain, a 4-1BB costimulatory domain, and a CD3 ζ domain CAR backbone and including either a HL (22 amino acids) spacer, a CD8 hinge (48 amino acids) spacer, IgG4-HL-CH3 (129 amino acids) spacer or a IgG4(EQ) (229 amino acids) spacer were tested for their ability to mediate IL13Ra2-specific killing as evaluated in a 72-hour co-culture assay. With the exception of HL (22 amino acids) which appeared to have poor CAR expression in this system, all were active.

WHAT IS CLAIMED IS:

1. A nucleic acid molecule encoding a chimeric antigen receptor, wherein the chimeric antigen receptor comprises: human IL-13 or a variant thereof having 1-10 amino acid modifications; a transmembrane domain selected from: a CD4 transmembrane domain or variant thereof having 1-10 amino acid modifications, a CD8 transmembrane domain or variant thereof having 1-10 amino acid modifications, a CD28 transmembrane domain or a variant thereof having 1-10 amino acid modifications, and a CD3 ζ transmembrane domain or a variant thereof having 1-10 amino acid modifications; a costimulatory domain; and CD3 ζ signaling domain of a variant thereof having 1-10 amino acid modifications.
2. The nucleic acid molecule of claim 1 wherein the costimulatory domain is selected from the group consisting of: a CD28 costimulatory domain or a variant thereof having 1-10 amino acid modifications, a 4IBB costimulatory domain or a variant thereof having 1-10 amino acid modifications and an OX40 costimulatory domain or a variant thereof having 1-10 amino acid modifications.
3. The nucleic acid molecule of claim 1 comprising a variant of a human IL13 having 1-10 amino acid modification that increase binding specificity for IL13R α 2 versus IL13R α 1.
4. The nucleic acid molecule of claim 1 wherein the human IL-13 or variant thereof is an IL-13 variant comprising the amino acid sequence of SEQ ID NO:3 with 1 to 5 amino acid modifications, provided that the amino acid at position 11 of SEQ ID NO:3 other than E.
5. The nucleic acid molecule of claim 2 wherein the chimeric antigen receptor comprises two different costimulatory domains selected from the group consisting of: a CD28 costimulatory domain or a variant thereof having 1-10 amino acid modifications, a 4IBB costimulatory domain or a variant thereof having 1-10 amino acid modifications and an OX40 costimulatory domain or a variant thereof having 1-10 amino acid modifications.

6. The nucleic acid molecule of claim 5 wherein the chimeric antigen receptor comprises two different costimulatory domains selected from the group consisting of: a CD28 costimulatory domain or a variant thereof having 1-2 amino acid modifications, a 41BB costimulatory domain or a variant thereof having 1-2 amino acid modifications and an OX40 costimulatory domain or a variant thereof having 1-2 amino acid modifications.

7. The nucleic acid molecule of claim 1 wherein the chimeric antigen receptor comprises: human IL-13 or a variant thereof having 1-2 amino acid modifications; a transmembrane domain selected from: a CD4 transmembrane domain or variant thereof having 1-2 amino acid modifications, a CD8 transmembrane domain or variant thereof having 1-2 amino acid modifications, a CD28 transmembrane domain or a variant thereof having 1-2 amino acid modifications, and a CD3 ζ transmembrane domain or a variant thereof having 1-2 amino acid modifications; a costimulatory domain; and CD3 ζ signaling domain of a variant thereof having 1-2 amino acid modifications.

8. The nucleic acid molecule of claim 1 comprising a spacer region located between the IL-13 or variant thereof and the transmembrane domain.

9. The nucleic acid molecule of claim 6 wherein the spacer region comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 4, 14-20, 50 and 521.

10. The nucleic acid molecule of claim 6 wherein the spacer comprises an IgG hinge region.

11. The nucleic acid molecule of claim 6 wherein the spacer comprises 10-150 amino acids.

12. The nucleic acid molecule of claim 2 wherein the 4-1BB signaling domain comprises the amino acid sequence of SEQ ID NO:6.

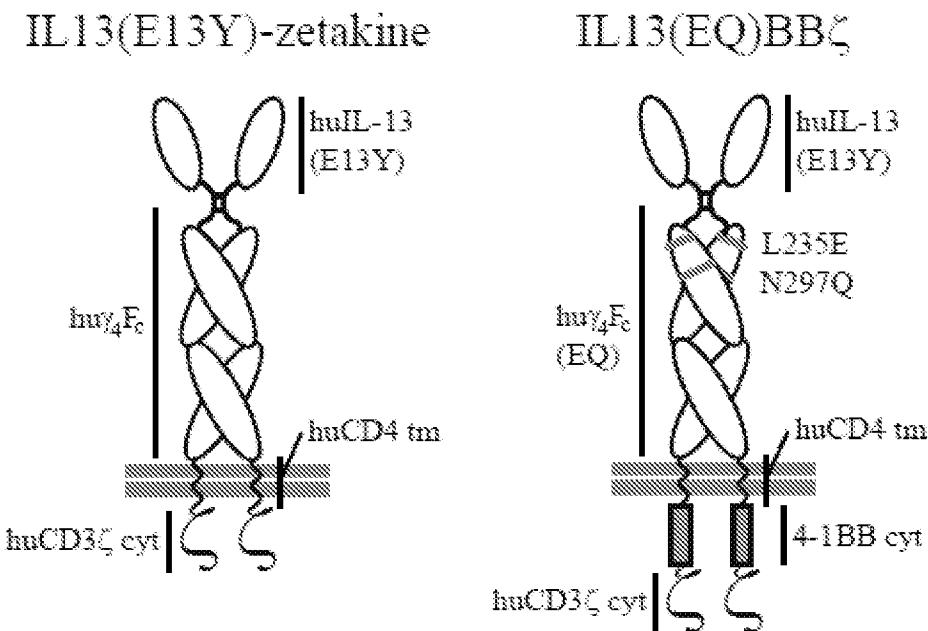
13. The nucleic acid molecule of claim 1 wherein the CD3 ζ signaling domain comprises the amino acid sequence of SEQ ID NO:7.

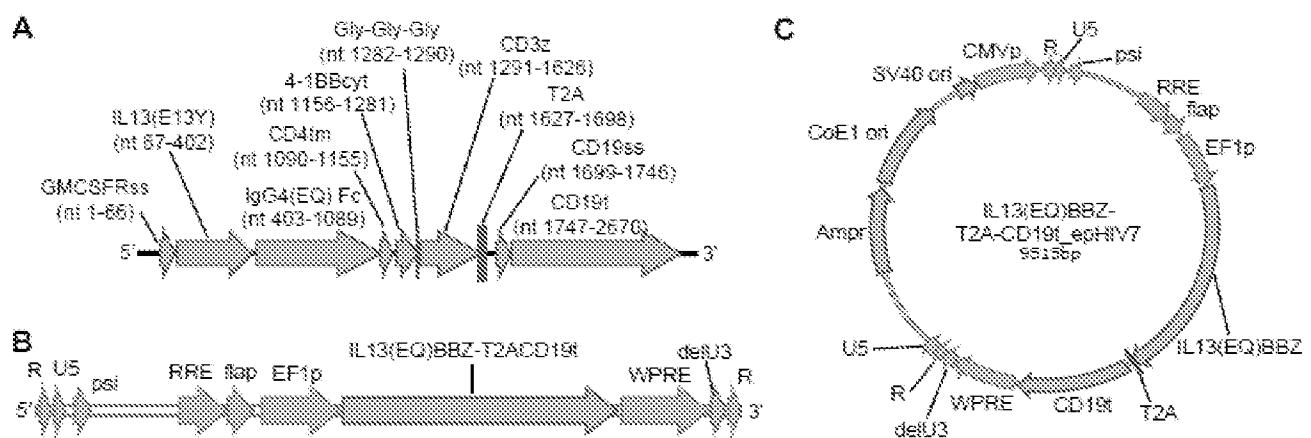
14. The nucleic acid molecule of claim 1 wherein a linker of 3 to 15 amino acids is located between the costimulatory domain and the CD3 ζ signaling domain or variant thereof.

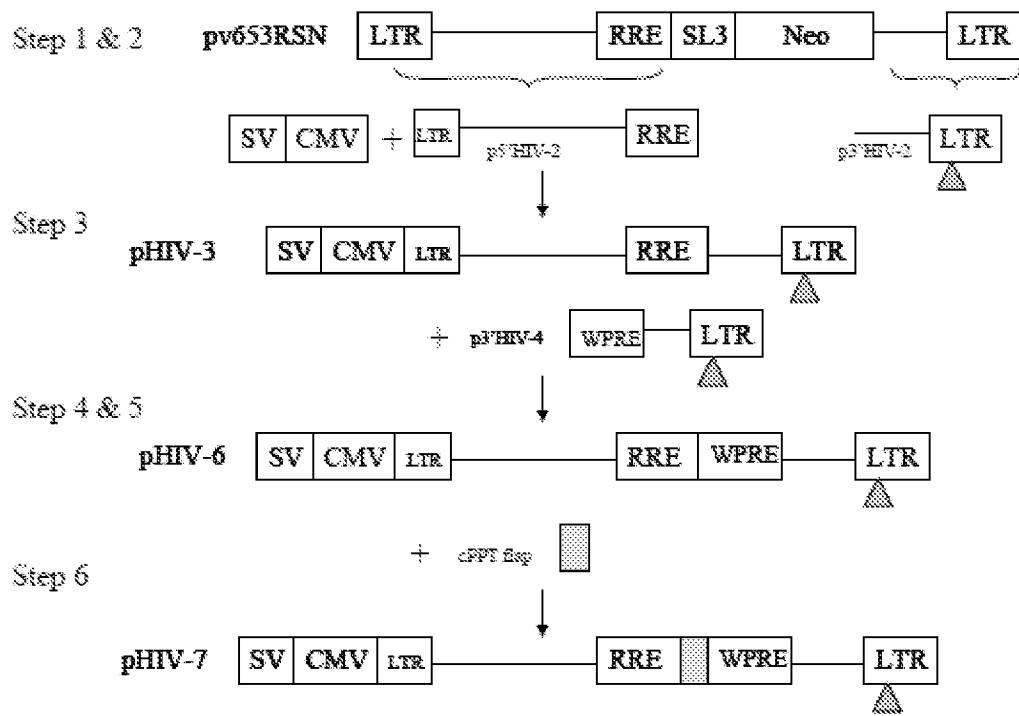
15. The nucleic acid molecule of claim 1 wherein the nucleic acid molecule expresses a polypeptide comprising an amino acid sequence selected from SEQ ID NOs: 10, 31-48 and 52.

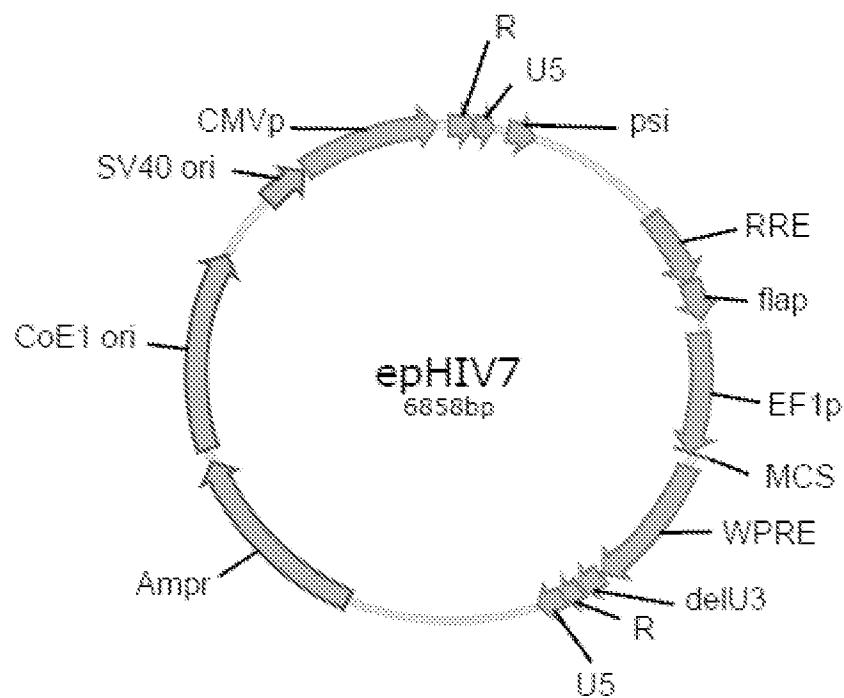
16. The nucleic acid molecule of claim 1 wherein the chimeric antigen receptor comprises a IL-13/IgG4/CD4t/41-BB region comprising the amino acid of SEQ ID NO:11 and a CD3 ζ signaling domain comprising the amino acid sequence of SEQ ID NO:7.

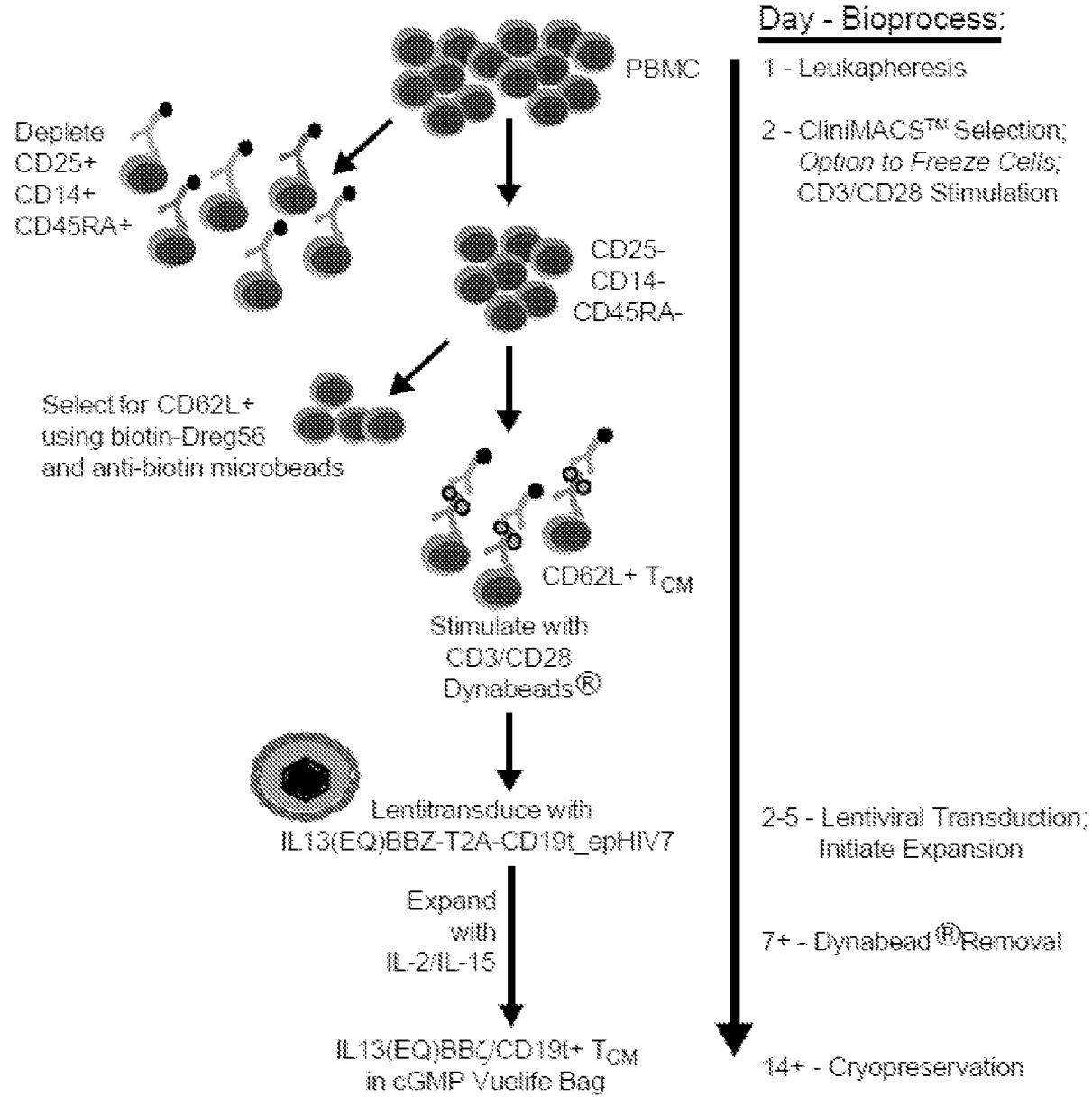
17. The nucleic acid molecule of claim 14 wherein the chimeric antigen receptor comprises the amino acid sequence of SEQ ID NOs: 10, 31-48 and 52.

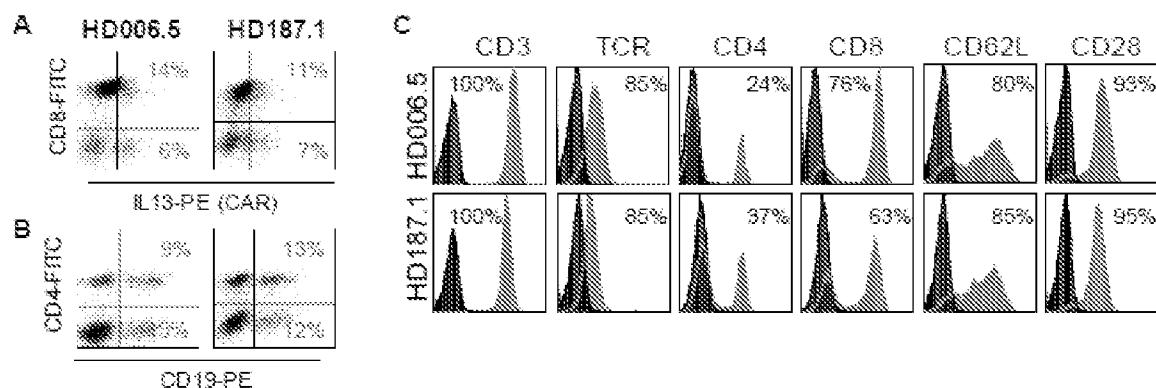

18. A population of human T cells transduced by a vector comprising an expression cassette encoding a chimeric antigen receptor, wherein chimeric antigen receptor comprises: human IL-13 or a variant thereof having 1-10 amino acid modifications; a transmembrane domain selected from: a CD4 transmembrane domain or variant thereof having 1-10 amino acid modifications, a CD8 transmembrane domain or variant thereof having 1-10 amino acid modifications, a CD28 transmembrane domain or a variant thereof having 1-10 amino acid modifications, and a CD3 ζ transmembrane domain or a variant thereof having 1-10 amino acid modifications; a costimulatory domain; and CD3 ζ signaling domain of a variant thereof having 1-10 amino acid modifications.

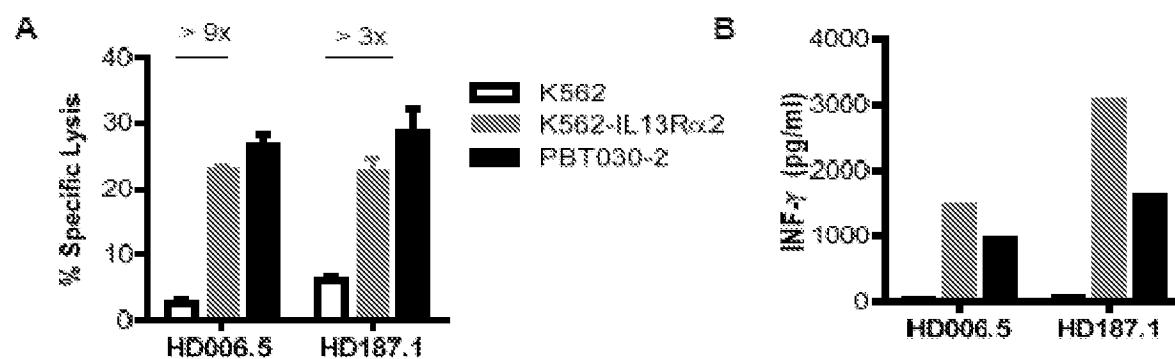

19. A population of human T cells comprising a vector expressing a chimeric antigen receptor comprising an amino acid sequence selected from SEQ ID NOs: 10, 31-48 and 52.


20. The population of human T cells of claim 16 wherein the T cells are comprised of a population of central memory T cells.


21. A method of treating cancer in a patient comprising administering a population of autologous or allogeneic human T cells transduced by a vector comprising an expression cassette encoding a chimeric antigen receptor, wherein chimeric antigen receptor comprises an amino acid sequence selected from SEQ ID NOs: 10, 31-48 and 52.
22. The method of claim 19 wherein the population of human T cells comprise central memory T cells.
23. The method claim 19 wherein the cancer is glioblastoma.
24. The method of claim 20 wherein the transduced human T cells where prepared by a method comprising obtaining T cells from the patient, treating the T cells to isolate central memory T cells, and transducing at least a portion of the central memory cells to with a viral vector comprising an expression cassette encoding a chimeric antigen receptor, wherein chimeric antigen receptor comprises an amino acid sequence selected from SEQ ID NOs: 10, 31-48 and 52.
25. A nucleic acid molecule encoding an polypeptide comprising an amino acid sequence that is at least 95% identical to an amino acid sequence selected from SEQ ID NO:10 and SEQ ID NOs: 10, 31-48 and 52.
26. A nucleic acid molecule encoding an polypeptide comprising an amino acid sequence that is identical to an amino acid sequence selected from SEQ ID NO: 10, 31-48 and 52 except for the presence of no more than 5 amino acid substitutions, deletions or insertions.
27. A nucleic acid molecule encoding an polypeptide comprising an amino acid sequence that is identical to an amino acid sequence selected from SEQ ID NO:10 and SEQ ID NOs: 10, 31-48 and 52 except for the presence of no more than 5 amino acid substitutions.
28. A nucleic acid molecule encoding an polypeptide comprising an amino acid sequence that is identical to an amino acid sequence selected from SEQ ID NO:10 and


SEQ ID NOs: 10, 31-48 and 52 except for the presence of no more than 2 amino acid substitutions.


FIGURE 1


FIGURE 2

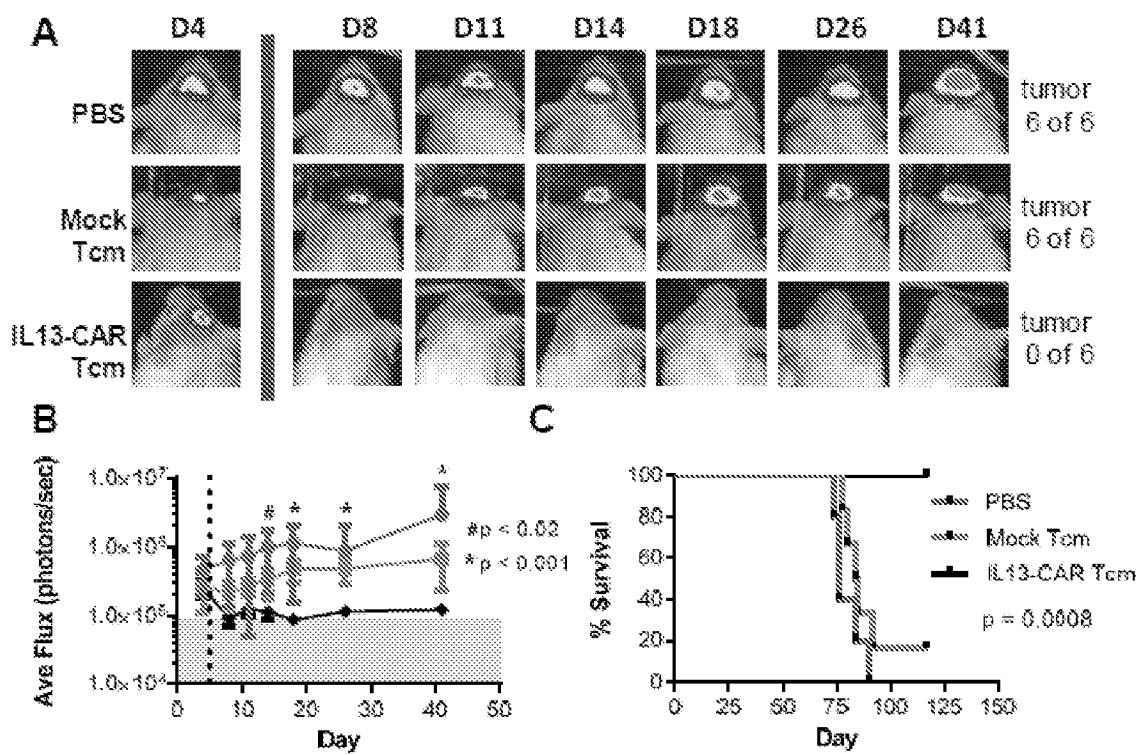

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8



FIGURE 9

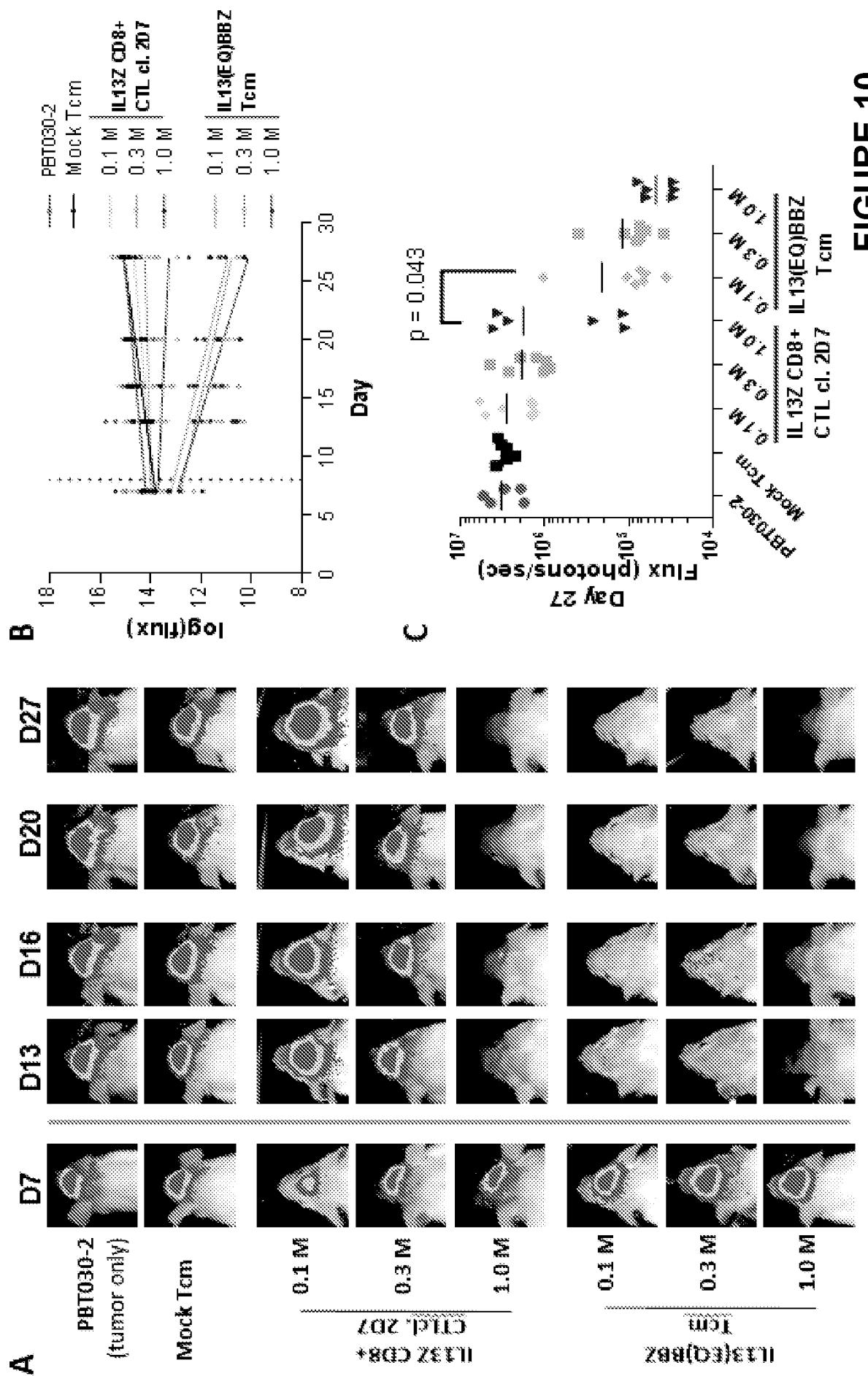
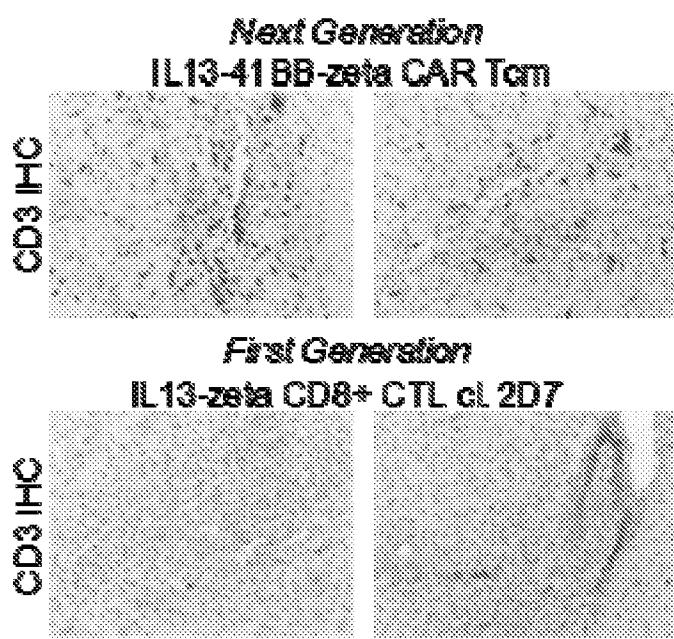
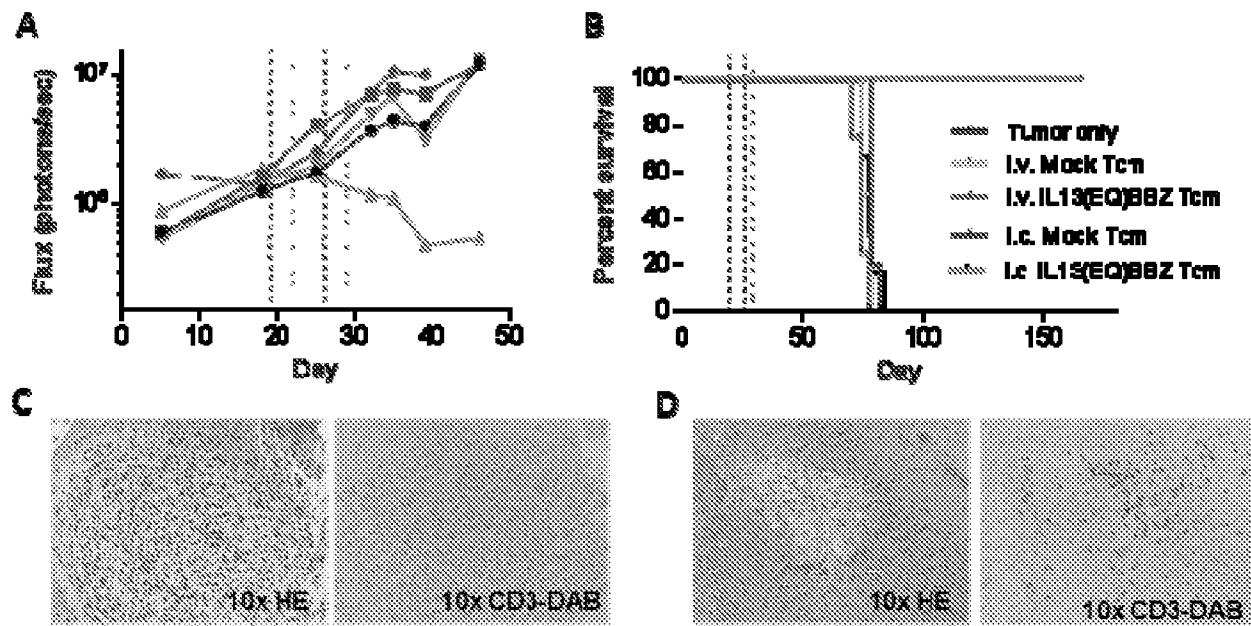




FIGURE 10

FIGURE 11

FIGURE 12

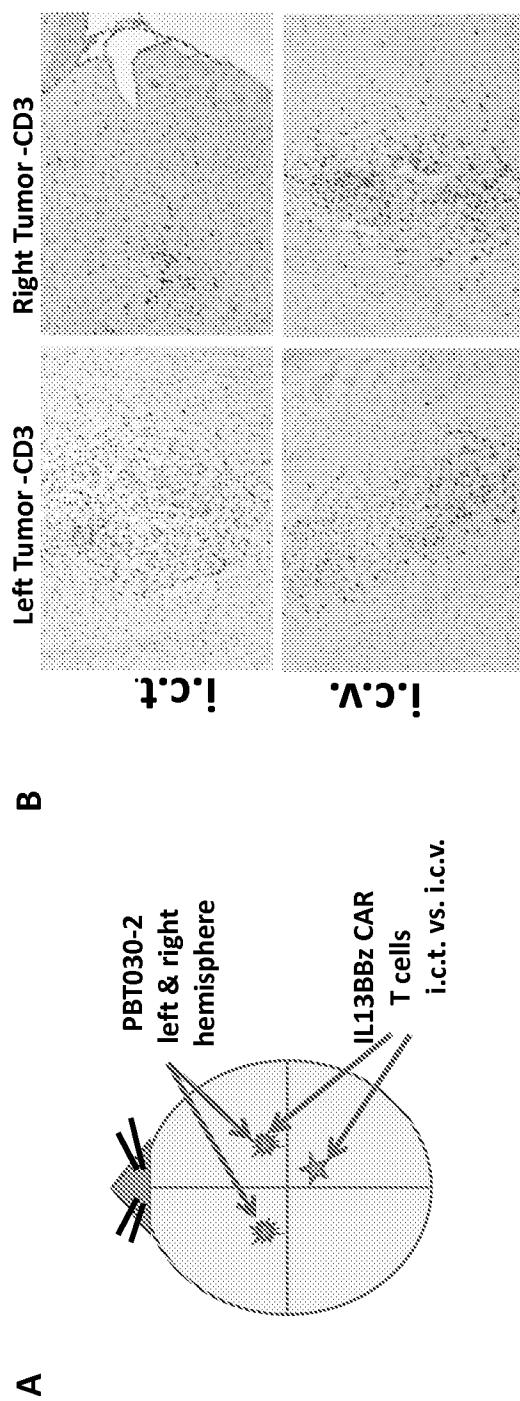


FIGURE 13

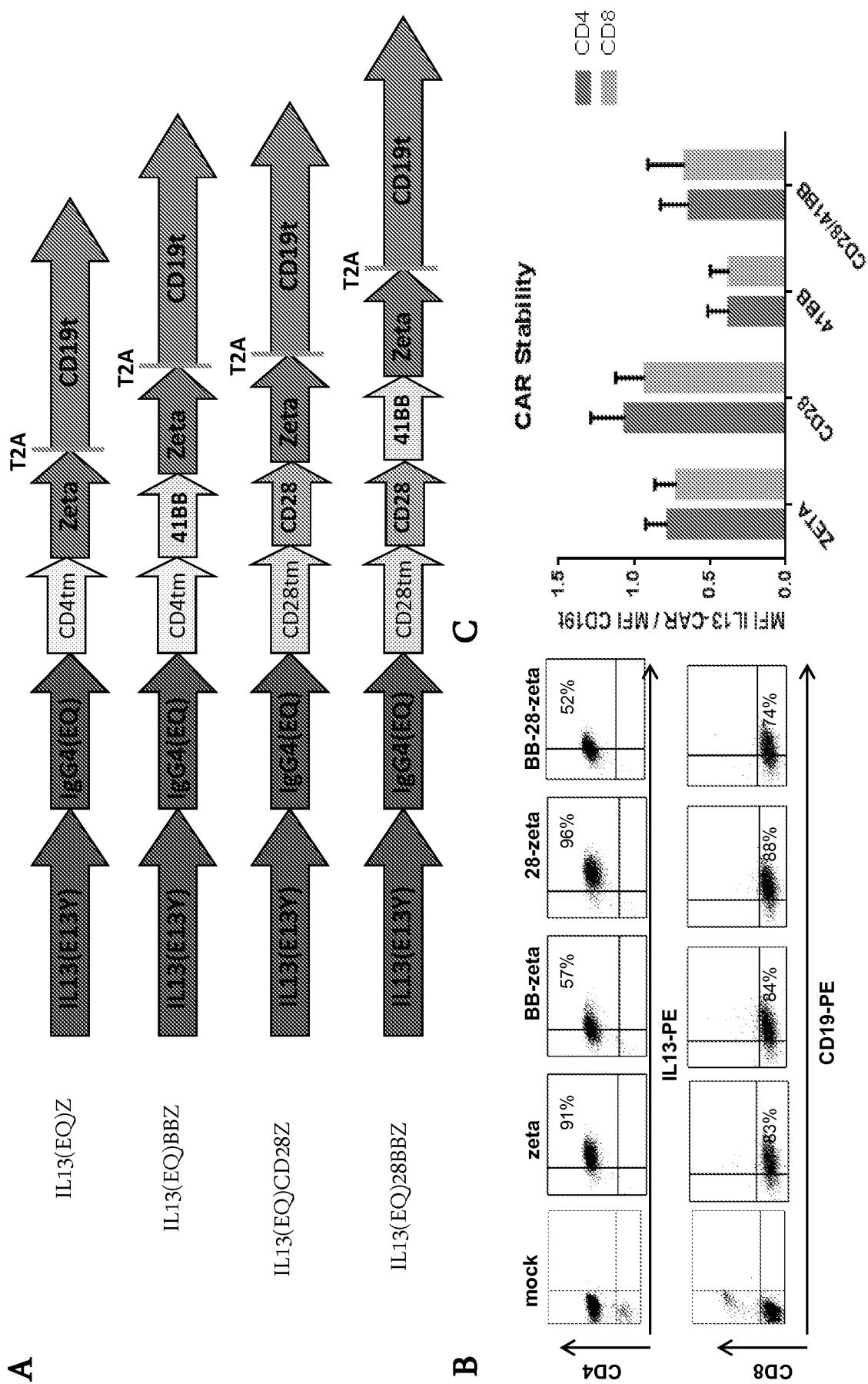


FIGURE 14

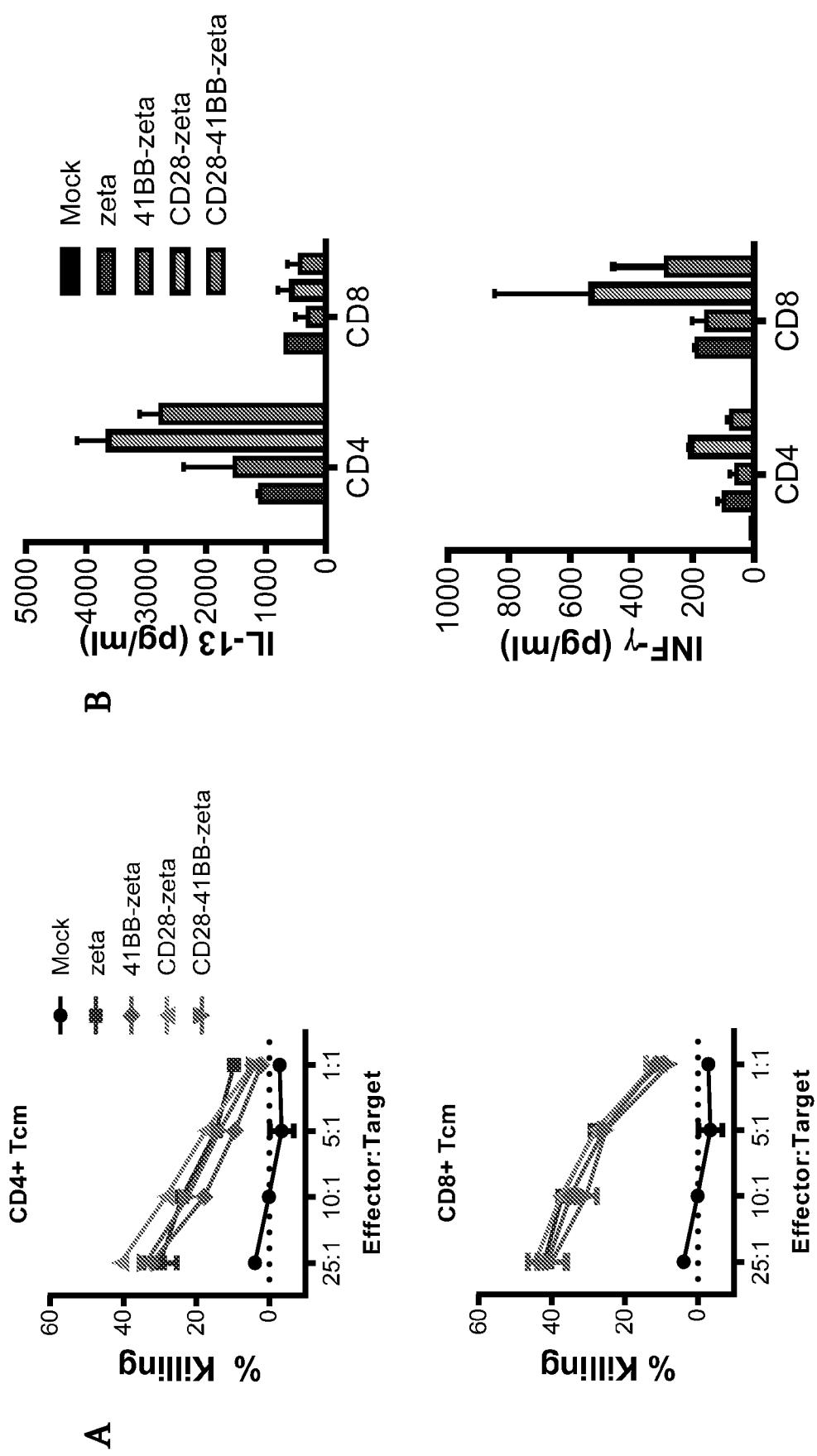


FIGURE 15

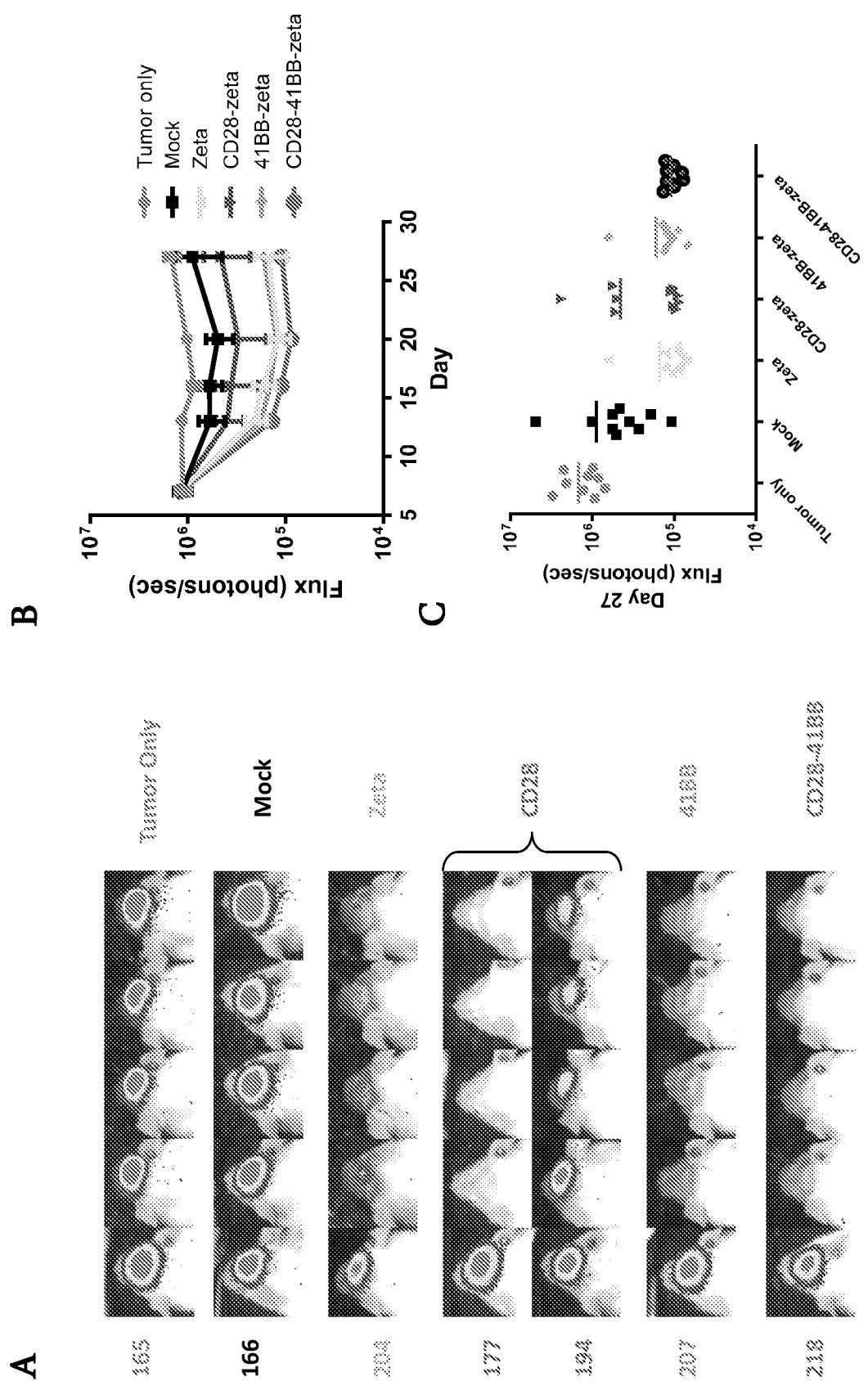


FIGURE 16

FIGURE 17

MLLLVTSLLLCELPHAFLLIPGPVPPSTALRYLIEELVNITQNQKAPLCNGSMVWSINLTAGM

GMCSFRa signal peptide (22 aa) IL13 (112 aa)

YCAALESLINVSGCSAIEKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLLHLKKLF

REGRFNESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF

IgG4(L235E, N297Q in bold) (229 aa)

NWYVDGVEVHNNAKTKPREEQF**Q**STYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTIS

KAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPVVL

DSDGSFFLYSRLTVDKSRWQEGNVFCSVVMHEALHNHYTQKSLSLGK**MALIVLGGVAGLL**

CD4tm (22 aa)

LFIGLGIFFKGRKKLLYIFKQPFMRPVQTTQEEDGCSRFPEEE**EGGCELG**GGGRVKFSRSADA

41BB (42 aa)

Gly3 Zeta (112 aa)

PAYQQGQNQLYNENLGRREYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQDKMAE

AYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRLEG**GG**ERGSLLTCGDV

T2A (24 aa)

EENPGPRMPPRLLFLTPMEVRPEEPLVVKVEEGDNAVLQCLKG**TSDGPTQQLTWSRE**

CD19t (323 aa)

SPLKPFLKLSGLPGLGIHMRPLAIWLFIFNVSQQMGGFYLCQPGPPSEKAWQPGWTVNVE

GSGELFRWNVSDLGGLGCGLKNRSSEGPPSGKLMSPKLYVWAKDRPEIWEGEPPCVPPR

DSLNQSLSQDLTMAPGSTLWLSCGVPPDSVRGPLSWTHVHPKGPKSLLSLELKDDRPARD

MWVMETGLLLPRATAQDAGKYYCHRGNLTMSFHLEITARPVLWHWLLRTGGWKVSAVTL

AYLIFCLCSLVGILHLQRALVLRRKR

FIGURE 18

Yellow highlighting indicates the IL-13 optimized codon region including the GMCSF signal sequence (IL13op).

highlighting indicates the IgG4 optimized codon region (IgG4op[L235E, N297Q]).

highlighting indicates the two anticipated amino acid changes within the IgG4 hinge region(L235E and N297Q).

highlighting indicates the CD4 transmembrane optimized codon region.

highlighting indicates the 41BB cytoplasmic signaling region (41BB cyto).

highlighting indicates the 3 glycine linkers (g3).

Gray Highlighting indicates the CD3 zeta optimized codon region (zeta op).

highlighting indicates the T2A sequence (T2A).

highlighting Indicates the truncated CD19 sequence (CD19t).

		1	50
IL13 (EQ) 41BBZeta	(1)	GTTAGACCAGATCTGAGCCTGGAGCTCTCTGGCTAACTAGGGAAACCCAC	
CD19Rop_epHIV7	(1)	GTTAGACCAGATCTGAGCCTGGAGCTCTCTGGCTAACTAGGGAAACCCAC	
Consensus	(1)	GTTAGACCAGATCTGAGCCTGGAGCTCTCTGGCTAACTAGGGAAACCCAC	
	51		100
IL13 (EQ) 41BBZeta	(51)	TGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAGTAGTGTGTGCCC	
CD19Rop_epHIV7	(51)	TGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAGTAGTGTGTGCCC	
Consensus	(51)	TGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAGTAGTGTGTGCCC	
	101		150
IL13 (EQ) 41BBZeta	(101)	CGTCTGTTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTAGTC	
CD19Rop_epHIV7	(101)	CGTCTGTTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTAGTC	
Consensus	(101)	CGTCTGTTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTAGTC	
	151		200
IL13 (EQ) 41BBZeta	(151)	AGTGTGAAAATCTCTAGCAGTGGCGCCGAACAGGGACTTGAAAGCGAA	
CD19Rop_epHIV7	(151)	AGTGTGAAAATCTCTAGCAGTGGCGCCGAACAGGGACTTGAAAGCGAA	
Consensus	(151)	AGTGTGAAAATCTCTAGCAGTGGCGCCGAACAGGGACTTGAAAGCGAA	
	201		250
IL13 (EQ) 41BBZeta	(201)	AGGGAAACCAGAGGAGCTCTCGACGCAGGACTCGGCTTGCTGAAGCGC	
CD19Rop_epHIV7	(201)	AGGGAAACCAGAGGAGCTCTCGACGCAGGACTCGGCTTGCTGAAGCGC	
Consensus	(201)	AGGGAAACCAGAGGAGCTCTCGACGCAGGACTCGGCTTGCTGAAGCGC	
	251		300
IL13 (EQ) 41BBZeta	(251)	GCACGGCAAGAGGCAGGGGGCGCGACTGGTGAGTACGCCAAAAATTTC	
CD19Rop_epHIV7	(251)	GCACGGCAAGAGGCAGGGGGCGCGACTGGTGAGTACGCCAAAAATTTC	
Consensus	(251)	GCACGGCAAGAGGCAGGGGGCGCGACTGGTGAGTACGCCAAAAATTTC	
	301		350
IL13 (EQ) 41BBZeta	(301)	ACTAGCGGAGGCTAGAAGGAGAGATGGGTGCGAGAGCGTCAGTATTAA	
CD19Rop_epHIV7	(301)	ACTAGCGGAGGCTAGAAGGAGAGATGGGTGCGAGAGCGTCAGTATTAA	
Consensus	(301)	ACTAGCGGAGGCTAGAAGGAGAGATGGGTGCGAGAGCGTCAGTATTAA	
	351		400
IL13 (EQ) 41BBZeta	(351)	GCGGGGGAGAATTAGATCGATGGGAAAAAATTCGGTTAAGGCCAGGGGA	
CD19Rop_epHIV7	(351)	GCGGGGGAGAATTAGATCGATGGGAAAAAATTCGGTTAAGGCCAGGGGA	
Consensus	(351)	GCGGGGGAGAATTAGATCGATGGGAAAAAATTCGGTTAAGGCCAGGGGA	
	401		450
IL13 (EQ) 41BBZeta	(401)	AAGAAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGA	
CD19Rop_epHIV7	(401)	AAGAAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGA	
Consensus	(401)	AAGAAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGA	
	451		500

IL13 (EQ) 41BBZeta	(451)	ACGATT CGCAGTTAACCTGGCCTGTTAGAACATCAGAAGGCTGTAGAC
CD19Rop_epHIV7	(451)	ACGATT CGCAGTTAACCTGGCCTGTTAGAACATCAGAAGGCTGTAGAC
Consensus	(451)	ACGATT CGCAGTTAACCTGGCCTGTTAGAACATCAGAAGGCTGTAGAC
	501	550
IL13 (EQ) 41BBZeta	(501)	AAATACTGGGACAGCTACAACCATCCCTCAGACAGGATCAGAAGAACTT
CD19Rop_epHIV7	(501)	AAATACTGGGACAGCTACAACCATCCCTCAGACAGGATCAGAAGAACTT
Consensus	(501)	AAATACTGGGACAGCTACAACCATCCCTCAGACAGGATCAGAAGAACTT
	551	600
IL13 (EQ) 41BBZeta	(551)	AGATCATTATATAATACAGTAGCAACCCCTATTGTGTGCATCAAAGGAT
CD19Rop_epHIV7	(551)	AGATCATTATATAATACAGTAGCAACCCCTATTGTGTGCATCAAAGGAT
Consensus	(551)	AGATCATTATATAATACAGTAGCAACCCCTATTGTGTGCATCAAAGGAT
	601	650
IL13 (EQ) 41BBZeta	(601)	AGAGATAAAAGACACCAAGGAAGCTTAGACAAGATAGAGGAAGAGCAA
CD19Rop_epHIV7	(601)	AGAGATAAAAGACACCAAGGAAGCTTAGACAAGATAGAGGAAGAGCAA
Consensus	(601)	AGAGATAAAAGACACCAAGGAAGCTTAGACAAGATAGAGGAAGAGCAA
	651	700
IL13 (EQ) 41BBZeta	(651)	ACAAAAGTAAGAAAAAGCACAGCAAGCAGCAGCTGACACAGGACACAGC
CD19Rop_epHIV7	(651)	ACAAAAGTAAGAAAAAGCACAGCAAGCAGCAGCTGACACAGGACACAGC
Consensus	(651)	ACAAAAGTAAGAAAAAGCACAGCAAGCAGCTGACACAGGACACAGC
	701	750
IL13 (EQ) 41BBZeta	(701)	AATCAGGT CAGCCAAAATTACCCCTATAGTGCAGAACATCCAGGGGCAAAT
CD19Rop_epHIV7	(701)	AATCAGGT CAGCCAAAATTACCCCTATAGTGCAGAACATCCAGGGGCAAAT
Consensus	(701)	AATCAGGT CAGCCAAAATTACCCCTATAGTGCAGAACATCCAGGGGCAAAT
	751	800
IL13 (EQ) 41BBZeta	(751)	GGTACATCAGGCCATATCACCTAGAACCTTAAATGCATGGTAAAAGTAG
CD19Rop_epHIV7	(751)	GGTACATCAGGCCATATCACCTAGAACCTTAAATGCATGGTAAAAGTAG
Consensus	(751)	GGTACATCAGGCCATATCACCTAGAACCTTAAATGCATGGTAAAAGTAG
	801	850
IL13 (EQ) 41BBZeta	(801)	TAGAAGAGAAGGCTTCAGCCCAGAAGTGATAACCCATGTTTCAGCATTA
CD19Rop_epHIV7	(801)	TAGAAGAGAAGGCTTCAGCCCAGAAGTGATAACCCATGTTTCAGCATTA
Consensus	(801)	TAGAAGAGAAGGCTTCAGCCCAGAAGTGATAACCCATGTTTCAGCATTA
	851	900
IL13 (EQ) 41BBZeta	(851)	TCAGAAGGAGCCACCCCACAAGATTAAACACCATGCTAACACAGTGGG
CD19Rop_epHIV7	(851)	TCAGAAGGAGCCACCCCACAAGATTAAACACCATGCTAACACAGTGGG
Consensus	(851)	TCAGAAGGAGCCACCCCACAAGATTAAACACCATGCTAACACAGTGGG
	901	950
IL13 (EQ) 41BBZeta	(901)	GGGACATCAAGCAGCCATGCAAATGTTAAAGAGACCATCAATGAGGAAG
CD19Rop_epHIV7	(901)	GGGACATCAAGCAGCCATGCAAATGTTAAAGAGACCATCAATGAGGAAG
Consensus	(901)	GGGACATCAAGCAGCCATGCAAATGTTAAAGAGACCATCAATGAGGAAG
	951	1000
IL13 (EQ) 41BBZeta	(951)	CTGCAGGCAAAGAGAAGAGCTGGTGCAGAGAGAAAAAGAGCAGTGGGAAT
CD19Rop_epHIV7	(951)	CTGCAGGCAAAGAGAAGAGCTGGTGCAGAGAGAAAAAGAGCAGTGGGAAT
Consensus	(951)	CTGCAGGCAAAGAGAAGAGCTGGTGCAGAGAGAAAAAGAGCAGTGGGAAT
	1001	1050
IL13 (EQ) 41BBZeta	(1001)	AGGAGCTTGTCTGGTCTTGGGAGCAGCAGGAAGCAGTATGGCG
CD19Rop_epHIV7	(1001)	AGGAGCTTGTCTGGTCTTGGGAGCAGCAGGAAGCAGTATGGCG
Consensus	(1001)	AGGAGCTTGTCTGGTCTTGGGAGCAGCAGGAAGCAGTATGGCG
	1051	1100
IL13 (EQ) 41BBZeta	(1051)	CAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATA
CD19Rop_epHIV7	(1051)	CAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATA
Consensus	(1051)	CAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATA
	1101	1150
IL13 (EQ) 41BBZeta	(1101)	GTGCAGCAGCAGAACAAATTGCTGAGGGCTATTGAGGCGAACAGCATCT
CD19Rop_epHIV7	(1101)	GTGCAGCAGCAGAACAAATTGCTGAGGGCTATTGAGGCGAACAGCATCT
Consensus	(1101)	GTGCAGCAGCAGAACAAATTGCTGAGGGCTATTGAGGCGAACAGCATCT

IL13 (EQ) 41BBZeta	(1151)	1151	1200
CD19Rop_epHIV7	(1151)	GTTGCAACTCACAGTCTGGGCATCAAGCAGCTCCAGGCAAGAATCCTGG	
Consensus	(1151)	GTTGCAACTCACAGTCTGGGCATCAAGCAGCTCCAGGCAAGAATCCTGG	
		1201	1250
IL13 (EQ) 41BBZeta	(1201)	CTGTGGAAAGATACTAAAGGATCAACAGCTCCTGGGATTGGGTTGC	
CD19Rop_epHIV7	(1201)	CTGTGGAAAGATACTAAAGGATCAACAGCTCCTGGGATTGGGTTGC	
Consensus	(1201)	CTGTGGAAAGATACTAAAGGATCAACAGCTCCTGGGATTGGGTTGC	
		1251	1300
IL13 (EQ) 41BBZeta	(1251)	TCTGGAAAACTCATTGCACCACTGCTGCTGGATCTACAAATGGCA	
CD19Rop_epHIV7	(1251)	TCTGGAAAACTCATTGCACCACTGCTGCTGGATCTACAAATGGCA	
Consensus	(1251)	TCTGGAAAACTCATTGCACCACTGCTGCTGGATCTACAAATGGCA	
		1301	1350
IL13 (EQ) 41BBZeta	(1301)	GTATTCCACAAATTAAAAGAAAAGGGGGATTGGGGGTACAGTGC	
CD19Rop_epHIV7	(1301)	GTATTCCACAAATTAAAAGAAAAGGGGGATTGGGGGTACAGTGC	
Consensus	(1301)	GTATTCCACAAATTAAAAGAAAAGGGGGATTGGGGGTACAGTGC	
		1351	1400
IL13 (EQ) 41BBZeta	(1351)	AGGGGAAAGAATAGACATAATAGCAACAGACATAAAACTAAAGAAT	
CD19Rop_epHIV7	(1351)	AGGGGAAAGAATAGACATAATAGCAACAGACATAAAACTAAAGAAT	
Consensus	(1351)	AGGGGAAAGAATAGACATAATAGCAACAGACATAAAACTAAAGAAT	
		1401	1450
IL13 (EQ) 41BBZeta	(1401)	TACAAAAACAAATTACAAAATTCAAAATTTCGGTTTATTACAGGGAC	
CD19Rop_epHIV7	(1401)	TACAAAAACAAATTACAAAATTCAAAATTTCGGTTTATTACAGGGAC	
Consensus	(1401)	TACAAAAACAAATTACAAAATTCAAAATTTCGGTTTATTACAGGGAC	
		1451	1500
IL13 (EQ) 41BBZeta	(1451)	AGCAGAGATCCAGTTGGGATCAATTGCATGAAGAATCTGCTTAGGGTT	
CD19Rop_epHIV7	(1451)	AGCAGAGATCCAGTTGGGATCAATTGCATGAAGAATCTGCTTAGGGTT	
Consensus	(1451)	AGCAGAGATCCAGTTGGGATCAATTGCATGAAGAATCTGCTTAGGGTT	
		1501	1550
IL13 (EQ) 41BBZeta	(1501)	AGGCCTTTGCGCTGCTCGCGAGGATCTGCATCGCTCCGGTGCCGTC	
CD19Rop_epHIV7	(1501)	AGGCCTTTGCGCTGCTCGCGAGGATCTGCATCGCTCCGGTGCCGTC	
Consensus	(1501)	AGGCCTTTGCGCTGCTCGCGAGGATCTGCATCGCTCCGGTGCCGTC	
		1551	1600
IL13 (EQ) 41BBZeta	(1551)	AGTGGGCAGAGCGCACATGCCAACAGTCCCCGAGAAGTTGGGGGAGGG	
CD19Rop_epHIV7	(1551)	AGTGGGCAGAGCGCACATGCCAACAGTCCCCGAGAAGTTGGGGGAGGG	
Consensus	(1551)	AGTGGGCAGAGCGCACATGCCAACAGTCCCCGAGAAGTTGGGGGAGGG	
		1601	1650
IL13 (EQ) 41BBZeta	(1601)	GTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGGGGTAAACTGGGA	
CD19Rop_epHIV7	(1601)	GTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGGGGTAAACTGGGA	
Consensus	(1601)	GTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGGGGTAAACTGGGA	
		1651	1700
IL13 (EQ) 41BBZeta	(1651)	AAAGTGATGTCGTACTGGCTCCGCCTTTCCCGAGGGTGGGGGAGAAC	
CD19Rop_epHIV7	(1651)	AAAGTGATGTCGTACTGGCTCCGCCTTTCCCGAGGGTGGGGGAGAAC	
Consensus	(1651)	AAAGTGATGTCGTACTGGCTCCGCCTTTCCCGAGGGTGGGGGAGAAC	
		1701	1750
IL13 (EQ) 41BBZeta	(1701)	CGTATATAAGTCAGTAGTCGCCGTGAACGTTCTTCGCAACGGGTTT	
CD19Rop_epHIV7	(1701)	CGTATATAAGTCAGTAGTCGCCGTGAACGTTCTTCGCAACGGGTTT	
Consensus	(1701)	CGTATATAAGTCAGTAGTCGCCGTGAACGTTCTTCGCAACGGGTTT	
		1751	1800
IL13 (EQ) 41BBZeta	(1751)	GCCGCCAGAACACAGCTGAAGCTCGAGGGCTCGCATCTCCCTCACG	
CD19Rop_epHIV7	(1751)	GCCGCCAGAACACAGCTGAAGCTCGAGGGCTCGCATCTCCCTCACG	
Consensus	(1751)	GCCGCCAGAACACAGCTGAAGCTCGAGGGCTCGCATCTCCCTCACG	
		1801	1850
IL13 (EQ) 41BBZeta	(1801)	CGCCCGCCGCCCTACCTGAGGCCCATCCACGCCGGTTGAGTCGCGTTC	
CD19Rop_epHIV7	(1801)	CGCCCGCCGCCCTACCTGAGGCCCATCCACGCCGGTTGAGTCGCGTTC	

Consensus	(1801)	CGCCC GCCGCC TACCTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTC 1851 1900
IL13 (EQ) 41BBZeta	(1851)	TGCCGCCTCCCGCCTGTGGTGCCTCCTGAAC TGCGTCCGCCGTAGGTA
CD19Rop_epHIV7	(1851)	TGCCGCCTCCCGCCTGTGGTGCCTCCTGAAC TGCGTCCGCCGTAGGTA
Consensus	(1851)	TGCCGCCTCCCGCCTGTGGTGCCTCCTGAAC TGCGTCCGCCGTAGGTA 1901 1950
IL13 (EQ) 41BBZeta	(1901)	AGTTAAAGCTCAGGTCGAGACC CGGGCCTTGTCCGGCGCTCCCTGGAG
CD19Rop_epHIV7	(1901)	AGTTAAAGCTCAGGTCGAGACC CGGGCCTTGTCCGGCGCTCCCTGGAG
Consensus	(1901)	AGTTAAAGCTCAGGTCGAGACC CGGGCCTTGTCCGGCGCTCCCTGGAG 1951 2000
IL13 (EQ) 41BBZeta	(1951)	CCTACCTAGACTCAGCCGGCTCTCCACGCTTGTCCGGCGCTCCCTGGAG
CD19Rop_epHIV7	(1951)	CCTACCTAGACTCAGCCGGCTCTCCACGCTTGTCCGGCGCTCCCTGGAG
Consensus	(1951)	CCTACCTAGACTCAGCCGGCTCTCCACGCTTGTCCGGCGCTCCCTGGAG 2001 2050
IL13 (EQ) 41BBZeta	(2001)	AACTCTACGTCTTGTTCGTTCTGTTCTGC CGCTTACAGATCCAAG
CD19Rop_epHIV7	(2001)	AACTCTACGTCTTGTTCGTTCTGTTCTGC CGCTTACAGATCCAAG
Consensus	(2001)	AACTCTACGTCTTGTTCGTTCTGTTCTGC CGCTTACAGATCCAAG 2051 2100
IL13 (EQ) 41BBZeta	(2051)	CTGTGACCGGGCGCCTACGGCTAGCGCCGCCACCATGCTGCTGGTGAC
CD19Rop_epHIV7	(2051)	CTGTGACCGGGCGCCTACGGCTAGCGCCGCCACCATGCTGCTGGTGAC
Consensus	(2051)	CTGTGACCGGGCGCCTACGGCTAGCGCCGCCACCATGCTGCTGGTGAC 2101 2150
IL13 (EQ) 41BBZeta	(2101)	CAGCCTGCTGCTGTGCGAGCTGCCCAACCCCGCCTTCTGCTGATCCCTG
CD19Rop_epHIV7	(2101)	CAGCCTGCTGCTGTGCGAGCTGCCCAACCCCGCCTTCTGCTGATCCCG
Consensus	(2101)	CAGCCTGCTGCTGTGCGAGCTGCCCAACCCCGCCTTCTGCTGATCCC G 2151 2200
IL13 (EQ) 41BBZeta	(2151)	GC--CCCG-TGCCCTAGCACCGCC---CTGCCTACCTGATCGAGGAA
CD19Rop_epHIV7	(2151)	ACATCCAGATGACCCAGACCACCTCAGCCTGAGCGCCAGCCTGGCGAC
Consensus	(2151)	C CC G TG CCC A CACC CC CTG GC C T G GA 2201 2250
IL13 (EQ) 41BBZeta	(2195)	CTGGTGA-----ACATCACCCAGAACCAAGAA
CD19Rop_epHIV7	(2201)	CGGGTGACCATCAGCTGCCGGCCAGCAGCATCAGCAAGTACCTGAA
Consensus	(2201)	C GGTGA ACATCA C AG ACC GAA 2251 2300
IL13 (EQ) 41BBZeta	(2221)	-----AGCCC-----CC-----CTGTGCAAC---
CD19Rop_epHIV7	(2251)	CTGGTATCAGCAGAAGCCGACGGCACCGTCAAGCTGCTGATCTACCACA
Consensus	(2251)	AGCCC CC CTG C AC 2301 2350
IL13 (EQ) 41BBZeta	(2237)	-----GGCAGCAT---GGTGTG-----
CD19Rop_epHIV7	(2301)	CCAGCCGGCTGCACAGCGGGTGCCTAGCCGGTTAGCGGCAGCGGCTCC
Consensus	(2301)	GGC GCA GG GTG 2351 2400
IL13 (EQ) 41BBZeta	(2251)	-----GAGCATC---AACCTG-----
CD19Rop_epHIV7	(2351)	GGCACCGACTACAGCCTGACCATCTCAACCTGGAACAGGAAGATATCGC
Consensus	(2351)	GA CATC AACCTG 2401 2450
IL13 (EQ) 41BBZeta	(2264)	-ACC-----GCCGGCATGT-----ACTG-----TGCCGCC-
CD19Rop_epHIV7	(2401)	CACCTACTTTGCCAGCAGGGCAACACACTGCCCTACACCTTGGCGCG
Consensus	(2401)	ACC GCC GCA G ACTG TG CG C 2451 2500
IL13 (EQ) 41BBZeta	(2288)	-----CTGGAAA-----GCCTGATCAACGTGAGCGGCT-----
CD19Rop_epHIV7	(2451)	GAACAAAGCTGGAAATCACGGCAGCACCTCCGGCAGCGGCAAGCCTGGC
Consensus	(2451)	CTGGAAA GC A C CG AGCGGC 2501 2550
IL13 (EQ) 41BBZeta	(2316)	-----GCAGCGCCATCG-----AGAAAA-----

CD19Rop_epHIV7 Consensus	(2501)	AGCGGGCAGGGCAGCACCAAGGGCAGGTGAAGCTGCAGGAAAGCGGCC GCAGC CCA G AG AAA	2551	2600
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2334)	-----CCAGCG-----		
	(2551)	TGGCCTGGTGGCCCCCAGCCAGACCTGAGCGTGACCTGCACCGTGAGCG CCCAGC		
	(2551)	2601	2650	
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2341)	---GATGCTGTCCGGCTTCTGC-----CCCCACAAG		
	(2601)	GCGTGAGCCTGCCGACTACGGCGTGAGCTGGATCCGGCAGCCCCCAGG GA CTG CCG CT C GC CCCC CA G		
	(2601)	2651	2700	
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2369)	-----GTGTCCGCCGGAC---AGTT		
	(2651)	AAGGGCCTGGAATGGCTGGCGTGATCTGGGCAGCGAGACCACTACTA G G C GC GAC A T		
	(2651)	2701	2750	
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2386)	CAGCAGCCTGC--ACGTGCGGG-----ACACCAAGA		
	(2701)	CAACAGCGCCCTGAAGAGCCGCTGACCATCATCAAGGACAACAGCAAGA CA CAGC C A G GC GG ACA CAAGA		
	(2701)	2751	2800	
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2415)	TCGAGGTGGCCCAGTTCTGTGAAGGACCTGCTG-----C		
	(2751)	GCCAGGTGTTCTGAAGATGAAACAGCCTGCAGACCGACGACACCGCCATC C AGGTG CC G TGAA CCTGC G		
	(2751)	2801	2850	
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2448)	TGCACCTG---AAGAA-----GCTGTTCCG---GGA---		
	(2801)	TACTACTGCGCCAAGCACTACTACGGCGGCAGCTACGCCATGGACTA T C CTG AAG A GC G T CG GGA		
	(2801)	2851	2900	
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2473)	---GGGCCGGTTCAAC-----		
	(2851)	CTGGGGCCAGGGCACCAGCGTGACCGTGAGCAGCAGAGCAAGTACGGCC GGGCC G CA C GAGAGCAAGTACGGCC		
	(2851)	2901	2950	
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2502)			
	(2901)	CTCCCTGCCCCCTTGCCTGCCCTGCCCCGAGTTCTGGCGGACCCAGCGTG CTCCCTGCCCCCTTGCCTGCCCTGCCCC GAGTTC GGGCGGACCCAGCGTG		
	(2901)	2951	3000	
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2552)			
	(2951)	TTCCCTGTTCCCCCAAGCCAAGGACACCCCTGATGATCAGCCGGACCCC TTCCCTGTTCCCCCAAGCCAAGGACACCCCTGATGATCAGCCGGACCCC		
	(2951)	3001	3050	
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2602)			
	(3001)	CGAGGTGACCTGCGTGGTGGACGTGAGCCAGGAAGATCCCGAGGTCC GAGGTGACCTGCGTGGTGGACGTGAGCCAGGAAGATCC GAGGTCC		
	(3001)	3051	3100	
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2652)			
	(3051)	AGTTCAATTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAG AGTTCAATTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAG		
	(3051)	3101	3150	
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2702)			
	(3101)	CCCAGGGAAGAGCAGTTCAACAGCACCTACCGGGTGGTGTCCGTGCTGAC CCCAGGGAAGAGCAGTTCAAGCACCTACCGGGTGGTGTCCGTGCTGAC		
	(3101)	3151	3200	
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(2752)			
	(3151)	CGTGCTGCACCAGGACTGGCTGAACGGCAAAGAATACAAGTGCAGGTGT CGTGCTGCACCAGGACTGGCTGAACGGCAAAGAATACAAGTGCAGGTGT		
	(3151)	3201	3250	

IL13 (EQ) 41BBZeta	(2802)			
CD19Rop_epHIV7	(3201)	CCAACAAGGGCCTGCCAGCAGCATCGAGAAAACCATCAGCAAGGCCAG		
Consensus	(3201)	CCAACAAGGGCCTGCCAGCAGCATCGAGAAAACCATCAGCAAGGCCAG		
	3251			3300
IL13 (EQ) 41BBZeta	(2852)			
CD19Rop_epHIV7	(3251)	GGCCAGCCTCGGGAGCCCCAGGTGTACACCCTGCCCTTCCCAGGAAGA		
Consensus	(3251)	GGCCAGCCTCGGGAGCCCCAGGTGTACACCCTGCCCTTCCCAGGAAGA		
	3301			3350
IL13 (EQ) 41BBZeta	(2902)			
CD19Rop_epHIV7	(3301)	GATGACCAAGAACATCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACC		
Consensus	(3301)	GATGACCAAGAACATCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACC		
	3351			3400
IL13 (EQ) 41BBZeta	(2952)			
CD19Rop_epHIV7	(3351)	CCAGCGACATGCCGTGGAGTGGAGAGCAACGGCCAGGCCGAGAACAAAC		
Consensus	(3351)	CCAGCGACATGCCGTGGAGTGGAGAGCAACGGCCAGGCCGAGAACAAAC		
	3401			3450
IL13 (EQ) 41BBZeta	(3002)	TACAAGACCACCCCCCTGTGCTGGACAGCGACGGCAGCTCTTCTGTGA		
CD19Rop_epHIV7	(3401)	TACAAGACCACCCCCCTGTGCTGGACAGCGACGGCAGCTCTTCTGTGA		
Consensus	(3401)	TACAAGACCACCCCCCTGTGCTGGACAGCGACGGCAGCTCTTCTGTGA		
	3451			3500
IL13 (EQ) 41BBZeta	(3052)	CAGCAGGCTGACCGTGGACAAGAGCCGGTGGCAGGAAGGCAACGTCTTA		
CD19Rop_epHIV7	(3451)	CAGCAGGCTGACCGTGGACAAGAGCCGGTGGCAGGAAGGCAACGTCTTA		
Consensus	(3451)	CAGCAGGCTGACCGTGGACAAGAGCCGGTGGCAGGAAGGCAACGTCTTA		
	3501			3550
IL13 (EQ) 41BBZeta	(3102)	GCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAACAGGC		
CD19Rop_epHIV7	(3501)	GCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAACAGGC		
Consensus	(3501)	GCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAACAGGC		
	3551			3600
IL13 (EQ) 41BBZeta	(3152)	CTGTCCTGAGCCTGGCAAG		
CD19Rop_epHIV7	(3551)	CTGTCCTGAGCCTGGCAAGATGGCCCTGATCGTGTGGCGCGTGGC		
Consensus	(3551)	CTGTCCTGAGCCTGGCAAGATGGCCCTGATCGTGTGGCGCGTGGC		
	3601			3650
IL13 (EQ) 41BBZeta	(3202)			
CD19Rop_epHIV7	(3601)	CGGGCTGCTGCTGTTCATGGCCTGGCATCTTTTC-----		
Consensus	(3601)	CGGGCTGCTGCTGTTCATGGCCTGGCATCTTTTC		
	3651			3700
IL13 (EQ) 41BBZeta	(3252)			
CD19Rop_epHIV7	(3638)	-----C-----		
Consensus	(3651)	C		
	3701			3750
IL13 (EQ) 41BBZeta	(3302)			
CD19Rop_epHIV7	(3639)	-----		
Consensus	(3701)			
	3751			3800
IL13 (EQ) 41BBZeta	(3352)		CGGGTGAAGTTCAGCCGGTCCGCCGACG	
CD19Rop_epHIV7	(3639)	-----	GGGTGAAGTTCAGCCGGTCCGCCGACG	
Consensus	(3751)		GGGTGAAGTTCAGCCGGTCCGCCGACG	
	3801			3850
IL13 (EQ) 41BBZeta	(3402)	CCCCTGCCTACCAGCAGGGCCAGAACCACTGTACAACGAGCTGAACCTG		
CD19Rop_epHIV7	(3666)	CCCCTGCCTACCAGCAGGGCCAGAACCACTGTACAACGAGCTGAACCTG		
Consensus	(3801)	CCCCTGCCTACCAGCAGGGCCAGAACCACTGTACAACGAGCTGAACCTG		
	3851			3900
IL13 (EQ) 41BBZeta	(3452)	GGCAGGCAGGGAGGAATACGACGTGCTGGACAAGCGGAGAGGCCGGGACCC		
CD19Rop_epHIV7	(3716)	GGCAGGCAGGGAGGAATACGACGTGCTGGACAAGCGGAGAGGCCGGGACCC		
Consensus	(3851)	GGCAGGCAGGGAGGAATACGACGTGCTGGACAAGCGGAGAGGCCGGGACCC		

		3901	3950
IL13 (EQ) 41BBZeta	(3502)	TGAGATGGCGGGCAAGCCTCGCGGAAGAACCCCCAGGAAGGCCTGTATA	
CD19Rop_epHIV7	(3766)	TGAGATGGCGGGCAAGCCCAGGCAGGAAGAACCTCAGGAAGGCCTGTATA	
Consensus	(3901)	TGAGATGGCGGGCAAGCCGGCGGAAGAACCC CAGGAAGGCCTGTATA	
	3951	4000	
IL13 (EQ) 41BBZeta	(3552)	ACGAAC TGCAGAAAGACAAGATGGCCGAGGCCTACAGCGAGATCGGCATG	
CD19Rop_epHIV7	(3816)	ACGAAC TGCAGAAAGACAAGATGGCCGAGGCCTACAGCGAGATCGGCATG	
Consensus	(3951)	ACGAAC TGCAGAAAGACAAGATGGCCGAGGCCTACAGCGAGATCGGCATG	
	4001	4050	
IL13 (EQ) 41BBZeta	(3602)	AAGGGCGAGCGGGAGGCAGGGCAAGGGCACGACGCCCTGTATCAGGGCCT	
CD19Rop_epHIV7	(3866)	AAGGGCGAGCGGGAGGGCAAGGGCACGACGCCCTGTACCCAGGGCCT	
Consensus	(4001)	AAGGGCGAGCGG GG GGGGCAAGGGCACGACGCCCTGTA CAGGGCCT	
	4051	4100	
IL13 (EQ) 41BBZeta	(3652)	GTCCACCGCCACCAAGGATA CCTACGACGCCCTGCACATGCAGGCCCTGC	
CD19Rop_epHIV7	(3916)	GAGCACCGCCACCAAGGATA CCTACGACGCCCTGCACATGCAGGCCCTGC	
Consensus	(4051)	G CACCGCCACCAAGGATA CCTACGACGCCCTGCACATGCAGGCCCTGC	
	4101	4150	
IL13 (EQ) 41BBZeta	(3702)	CCCCAAGG	
CD19Rop_epHIV7	(3966)	CCCC-----	
Consensus	(4101)	CCCC	
	4151	4200	
IL13 (EQ) 41BBZeta	(3752)		
CD19Rop_epHIV7	(3970)	-----	
Consensus	(4151)		
	4201	4250	
IL13 (EQ) 41BBZeta	(3802)		
CD19Rop_epHIV7	(3970)	-----	
Consensus	(4201)		
	4251	4300	
IL13 (EQ) 41BBZeta	(3852)		
CD19Rop_epHIV7	(3970)	-----	
Consensus	(4251)		
	4301	4350	
IL13 (EQ) 41BBZeta	(3902)		
CD19Rop_epHIV7	(3970)	-----	
Consensus	(4301)		
	4351	4400	
IL13 (EQ) 41BBZeta	(3952)		
CD19Rop_epHIV7	(3970)	-----	
Consensus	(4351)		
	4401	4450	
IL13 (EQ) 41BBZeta	(4002)		
CD19Rop_epHIV7	(3970)	-----	
Consensus	(4401)		
	4451	4500	
IL13 (EQ) 41BBZeta	(4052)		
CD19Rop_epHIV7	(3970)	-----	
Consensus	(4451)		
	4501	4550	
IL13 (EQ) 41BBZeta	(4102)		
CD19Rop_epHIV7	(3970)	-----	
Consensus	(4501)		
	4551	4600	
IL13 (EQ) 41BBZeta	(4152)		
CD19Rop_epHIV7	(3970)	-----	

Consensus	(4551)	4601	4650
IL13 (EQ) 41BBZeta	(4202)		
CD19Rop_epHIV7	(3970)	-----	-----
Consensus	(4601)		
	4651		4700
IL13 (EQ) 41BBZeta	(4252)		
CD19Rop_epHIV7	(3970)	-----	-----
Consensus	(4651)		
	4701		4750
IL13 (EQ) 41BBZeta	(4302)		
CD19Rop_epHIV7	(3970)	-----	-----
Consensus	(4701)	C-----AGG-----	-----
	4751	C	AGG
IL13 (EQ) 41BBZeta	(4352)		4800
CD19Rop_epHIV7	(3974)	-----	-----
Consensus	(4751)	T-----	-----
	4801		4850
IL13 (EQ) 41BBZeta	(4402)		
CD19Rop_epHIV7	(3975)	-----	-----
Consensus	(4801)		
	4851		4900
IL13 (EQ) 41BBZeta	(4452)		
CD19Rop_epHIV7	(3975)	-----	-----
Consensus	(4851)		
	4901		4950
IL13 (EQ) 41BBZeta	(4502)		
CD19Rop_epHIV7	(3975)	-----	-----
Consensus	(4901)		
	4951		5000
IL13 (EQ) 41BBZeta	(4552)		
CD19Rop_epHIV7	(3975)	-----	-----
Consensus	(4951)		
	5001		5050
IL13 (EQ) 41BBZeta	(4602)		
CD19Rop_epHIV7	(3975)	-----	-----
Consensus	(5001)		
	5051		5100
IL13 (EQ) 41BBZeta	(4652)		
CD19Rop_epHIV7	(3975)	-----	-----
Consensus	(5051)		
	5101		5150
IL13 (EQ) 41BBZeta	(4702)		
CD19Rop_epHIV7	(3975)	-----	-----
Consensus	(5101)		
	5151		5200
IL13 (EQ) 41BBZeta	(4752)	TCTAGACCCGGGCTGCAGGAATTGATATCAAGCTTATCGATAATCAA	
CD19Rop_epHIV7	(3975)	-----GACCCGGGCTGCAGGAATTGATATCAAGCTTATCGATAATCAA	
Consensus	(5151)	GACCCGGGCTGCAGGAATTGATATCAAGCTTATCGATAATCAA	
	5201		5250
IL13 (EQ) 41BBZeta	(4802)	CCTCTGGATTACAAAATTGTGAAAGATTGACTGGTATTCTTAACATATGT	
CD19Rop_epHIV7	(4019)	CCTCTGGATTACAAAATTGTGAAAGATTGACTGGTATTCTTAACATATGT	
Consensus	(5201)	CCTCTGGATTACAAAATTGTGAAAGATTGACTGGTATTCTTAACATATGT	
	5251		5300
IL13 (EQ) 41BBZeta	(4852)	TGCTCCTTTACGCTATGTGGATACGCTGCTTAATGCCTTGTATCATG	

CD19Rop_epHIV7 Consensus	(4069)	TGCTCCCTTTACGCTATGTGGATACGCTGCTTAATGCCTTGTATCATG
	(5251)	TGCTCCCTTTACGCTATGTGGATACGCTGCTTAATGCCTTGTATCATG 5301
		5350
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(4902)	CTATTGCTTCCCGTATGGCTTCATTTCTCCTCCTGTATAAATCCTGG
	(4119)	CTATTGCTTCCCGTATGGCTTCATTTCTCCTCCTGTATAAATCCTGG
	(5301)	CTATTGCTTCCCGTATGGCTTCATTTCTCCTCCTGTATAAATCCTGG 5351
		5400
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(4952)	TTGCTGTCTCTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGT
	(4169)	TTGCTGTCTCTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGT
	(5351)	TTGCTGTCTCTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGT 5401
		5450
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(5002)	GGTGTGCACTGTGTTGCTGACGCAACCCCCACTGGTGGGGCATTGCCA
	(4219)	GGTGTGCACTGTGTTGCTGACGCAACCCCCACTGGTGGGGCATTGCCA
	(5401)	GGTGTGCACTGTGTTGCTGACGCAACCCCCACTGGTGGGGCATTGCCA 5451
		5500
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(5052)	CCACCTGTCAGCTCCTTCCGGGACTTCGCTTCCCCCTCCCTATTGCC
	(4269)	CCACCTGTCAGCTCCTTCCGGGACTTCGCTTCCCCCTCCCTATTGCC
	(5451)	CCACCTGTCAGCTCCTTCCGGGACTTCGCTTCCCCCTCCCTATTGCC 5501
		5550
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(5102)	ACGGCGGAACACTCATGCCGCCTGCCCTGGCGCTGCTGGACAGGGGCTCG
	(4319)	ACGGCGGAACACTCATGCCGCCTGCCCTGGCGCTGCTGGACAGGGGCTCG
	(5501)	ACGGCGGAACACTCATGCCGCCTGCCCTGGCGCTGCTGGACAGGGGCTCG 5551
		5600
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(5152)	GCTGTTGGGCACTGACAATTCCGTGGTGTGTCGGGAAATCATGTCCT
	(4369)	GCTGTTGGGCACTGACAATTCCGTGGTGTGTCGGGAAATCATGTCCT
	(5551)	GCTGTTGGGCACTGACAATTCCGTGGTGTGTCGGGAAATCATGTCCT 5601
		5650
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(5202)	TTCCTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGGGGACGTCC
	(4419)	TTCCTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGGGGACGTCC
	(5601)	TTCCTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGGGGACGTCC 5651
		5700
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(5252)	TTCTGCTACGTCCCTCGGCCCTCAATCCAGCGGACCTCCTCCGC
	(4469)	TTCTGCTACGTCCCTCGGCCCTCAATCCAGCGGACCTCCTCCGC
	(5651)	TTCTGCTACGTCCCTCGGCCCTCAATCCAGCGGACCTCCTCCGC 5701
		5750
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(5302)	CCTGCTGCCGGCTCTGCCCTCTCCCGCTTCCGCTTCGCCCTCAGA
	(4519)	CCTGCTGCCGGCTCTGCCCTCTCCCGCTTCCGCTTCGCCCTCAGA
	(5701)	CCTGCTGCCGGCTCTGCCCTCTCCCGCTTCCGCTTCGCCCTCAGA 5751
		5800
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(5352)	CGAGTCGGATCTCCCTTGGCCGCTCCCGCATCGATACCGTCGACTA
	(4569)	CGAGTCGGATCTCCCTTGGCCGCTCCCGCATCGATACCGTCGACTA
	(5751)	CGAGTCGGATCTCCCTTGGCCGCTCCCGCATCGATACCGTCGACTA 5801
		5850
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(5402)	GCCGTACCTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTAGCCA
	(4619)	GCCGTACCTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTAGCCA
	(5801)	GCCGTACCTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTAGCCA 5851
		5900
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(5452)	CTTTTAAAAGAAAAGGGGGACTGGAAGGGCTAATTCACTCCAAAGAA
	(4669)	CTTTTAAAAGAAAAGGGGGACTGGAAGGGCTAATTCACTCCAAAGAA
	(5851)	CTTTTAAAAGAAAAGGGGGACTGGAAGGGCTAATTCACTCCAAAGAA 5901
		5950
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(5502)	GACAAGATCTGCTTTGCCTGTACTGGGTCTCTGGTTAGACCAGATC
	(4719)	GACAAGATCTGCTTTGCCTGTACTGGGTCTCTGGTTAGACCAGATC
	(5901)	GACAAGATCTGCTTTGCCTGTACTGGGTCTCTGGTTAGACCAGATC 5951
		6000

IL13 (EQ) 41BBZeta	(5552)	TGAGCCTGGGAGCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCA
CD19Rop_epHIV7	(4769)	TGAGCCTGGGAGCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCA
Consensus	(5951)	TGAGCCTGGGAGCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCA 6001 6050
IL13 (EQ) 41BBZeta	(5602)	ATAAAGCTTGCCTGAGTGCCTCAAGTAGTGTGTGCCGTCTGTTGTGTG
CD19Rop_epHIV7	(4819)	ATAAAGCTTGCCTGAGTGCCTCAAGTAGTGTGTGCCGTCTGTTGTGTG
Consensus	(6001)	ATAAAGCTTGCCTGAGTGCCTCAAGTAGTGTGTGCCGTCTGTTGTGTG 6051 6100
IL13 (EQ) 41BBZeta	(5652)	ACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGGAAAATC
CD19Rop_epHIV7	(4869)	ACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGGAAAATC
Consensus	(6051)	ACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGGAAAATC 6101 6150
IL13 (EQ) 41BBZeta	(5702)	TCTAGCAGAATTGATATCAAGCTTATCGATACCGTCGACCTCGAGGGGG
CD19Rop_epHIV7	(4919)	TCTAGCAGAATTGATATCAAGCTTATCGATACCGTCGACCTCGAGGGGG
Consensus	(6101)	TCTAGCAGAATTGATATCAAGCTTATCGATACCGTCGACCTCGAGGGGG 6151 6200
IL13 (EQ) 41BBZeta	(5752)	GGCCCGGTACCCAATTGCCCTATAGTGAGTCGTATTACAATTCACTGGC
CD19Rop_epHIV7	(4969)	GGCCCGGTACCCAATTGCCCTATAGTGAGTCGTATTACAATTCACTGGC
Consensus	(6151)	GGCCCGGTACCCAATTGCCCTATAGTGAGTCGTATTACAATTCACTGGC 6201 6250
IL13 (EQ) 41BBZeta	(5802)	CGTCGTTTACAACGTCGTGACTGGGAAAACCTGGCGTTACCCAACTTA
CD19Rop_epHIV7	(5019)	CGTCGTTTACAACGTCGTGACTGGGAAAACCTGGCGTTACCCAACTTA
Consensus	(6201)	CGTCGTTTACAACGTCGTGACTGGGAAAACCTGGCGTTACCCAACTTA 6251 6300
IL13 (EQ) 41BBZeta	(5852)	ATCGCCTTGCAGCACATCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAG
CD19Rop_epHIV7	(5069)	ATCGCCTTGCAGCACATCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAG
Consensus	(6251)	ATCGCCTTGCAGCACATCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAG 6301 6350
IL13 (EQ) 41BBZeta	(5902)	GCCCGCACCGATGCCCTTCCAACAGTTGCGCAGCCTGAATGGCGAATG
CD19Rop_epHIV7	(5119)	GCCCGCACCGATGCCCTTCCAACAGTTGCGCAGCCTGAATGGCGAATG
Consensus	(6301)	GCCCGCACCGATGCCCTTCCAACAGTTGCGCAGCCTGAATGGCGAATG 6351 6400
IL13 (EQ) 41BBZeta	(5952)	GAAATTGTAAGCGTTAATATTTGTTAAAATTGCGTTAAATTGTTGTTA
CD19Rop_epHIV7	(5169)	GAAATTGTAAGCGTTAATATTTGTTAAAATTGCGTTAAATTGTTGTTA
Consensus	(6351)	GAAATTGTAAGCGTTAATATTTGTTAAAATTGCGTTAAATTGTTGTTA 6401 6450
IL13 (EQ) 41BBZeta	(6002)	AATCAGCTCATTGTTAACCAATAGGCCGAAATCGGAAAATCCCTTATA
CD19Rop_epHIV7	(5219)	AATCAGCTCATTGTTAACCAATAGGCCGAAATCGGAAAATCCCTTATA
Consensus	(6401)	AATCAGCTCATTGTTAACCAATAGGCCGAAATCGGAAAATCCCTTATA 6451 6500
IL13 (EQ) 41BBZeta	(6052)	AATCAAAAGAATAGACCGAGATAGGGTTGAGTGTGTTCCAGTTGGAAC
CD19Rop_epHIV7	(5269)	AATCAAAAGAATAGACCGAGATAGGGTTGAGTGTGTTCCAGTTGGAAC
Consensus	(6451)	AATCAAAAGAATAGACCGAGATAGGGTTGAGTGTGTTCCAGTTGGAAC 6501 6550
IL13 (EQ) 41BBZeta	(6102)	AAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAAC
CD19Rop_epHIV7	(5319)	AAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAAC
Consensus	(6501)	AAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAAC 6551 6600
IL13 (EQ) 41BBZeta	(6152)	CGTCTATCAGGGCGATGGCCCACTACGTGAACCACATCACCCTAATCAAGTT
CD19Rop_epHIV7	(5369)	CGTCTATCAGGGCGATGGCCCACTACGTGAACCACATCACCCTAATCAAGTT
Consensus	(6551)	CGTCTATCAGGGCGATGGCCCACTACGTGAACCACATCACCCTAATCAAGTT 6601 6650
IL13 (EQ) 41BBZeta	(6202)	TTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGC
CD19Rop_epHIV7	(5419)	TTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGC
Consensus	(6601)	TTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGC

		6651	6700
IL13 (EQ) 41BBZeta	(6252)	CCCCGATTTAGAGCTTGACGGGAAAGCCGGCAACGTGGCGAGAAAGGA	
CD19Rop_epHIV7	(5469)	CCCCGATTTAGAGCTTGACGGGAAAGCCGGCAACGTGGCGAGAAAGGA	
Consensus	(6651)	CCCCGATTTAGAGCTTGACGGGAAAGCCGGCAACGTGGCGAGAAAGGA	
	6701		6750
IL13 (EQ) 41BBZeta	(6302)	AGGGAAGAAAGCGAAAGGAGCGGGCTAGGGCGCTGGCAAGTGTAGCGG	
CD19Rop_epHIV7	(5519)	AGGGAAGAAAGCGAAAGGAGCGGGCTAGGGCGCTGGCAAGTGTAGCGG	
Consensus	(6701)	AGGGAAGAAAGCGAAAGGAGCGGGCTAGGGCGCTGGCAAGTGTAGCGG	
	6751		6800
IL13 (EQ) 41BBZeta	(6352)	TCACGCTGCGCGTAACCACCAACACCCGCCGCGCTTAATGCGCCGCTACAG	
CD19Rop_epHIV7	(5569)	TCACGCTGCGCGTAACCACCAACACCCGCCGCGCTTAATGCGCCGCTACAG	
Consensus	(6751)	TCACGCTGCGCGTAACCACCAACACCCGCCGCGCTTAATGCGCCGCTACAG	
	6801		6850
IL13 (EQ) 41BBZeta	(6402)	GGCGCGTCAGGTGGCACTTCGGGAAATGTGCGCGGAACCCCTATTG	
CD19Rop_epHIV7	(5619)	GGCGCGTCAGGTGGCACTTCGGGAAATGTGCGCGGAACCCCTATTG	
Consensus	(6801)	GGCGCGTCAGGTGGCACTTCGGGAAATGTGCGCGGAACCCCTATTG	
	6851		6900
IL13 (EQ) 41BBZeta	(6452)	TTTATTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAAC	
CD19Rop_epHIV7	(5669)	TTTATTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAAC	
Consensus	(6851)	TTTATTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAAC	
	6901		6950
IL13 (EQ) 41BBZeta	(6502)	CCTGATAAAATGCTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCA	
CD19Rop_epHIV7	(5719)	CCTGATAAAATGCTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCA	
Consensus	(6901)	CCTGATAAAATGCTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCA	
	6951		7000
IL13 (EQ) 41BBZeta	(6552)	CATTTCCGTGTCGCCCTTATCCCTTTGCGGCATTTGCCTTCCTGT	
CD19Rop_epHIV7	(5769)	CATTTCCGTGTCGCCCTTATCCCTTTGCGGCATTTGCCTTCCTGT	
Consensus	(6951)	CATTTCCGTGTCGCCCTTATCCCTTTGCGGCATTTGCCTTCCTGT	
	7001		7050
IL13 (EQ) 41BBZeta	(6602)	TTTTGCTCACCCAGAAACGCTGGTCAAAGTAAAAGATGCTGAAGATCAGT	
CD19Rop_epHIV7	(5819)	TTTTGCTCACCCAGAAACGCTGGTCAAAGTAAAAGATGCTGAAGATCAGT	
Consensus	(7001)	TTTTGCTCACCCAGAAACGCTGGTCAAAGTAAAAGATGCTGAAGATCAGT	
	7051		7100
IL13 (EQ) 41BBZeta	(6652)	TGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAAGATC	
CD19Rop_epHIV7	(5869)	TGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAAGATC	
Consensus	(7051)	TGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAAGATC	
	7101		7150
IL13 (EQ) 41BBZeta	(6702)	CTTGAGAGTTTCGCCCCGAAGAACGTTTCCAATGATGAGCACTTTAA	
CD19Rop_epHIV7	(5919)	CTTGAGAGTTTCGCCCCGAAGAACGTTTCCAATGATGAGCACTTTAA	
Consensus	(7101)	CTTGAGAGTTTCGCCCCGAAGAACGTTTCCAATGATGAGCACTTTAA	
	7151		7200
IL13 (EQ) 41BBZeta	(6752)	AGTTCTGCTATGTCGGCGCGTATTATCCGTATTGACGCCGGCAAGAGC	
CD19Rop_epHIV7	(5969)	AGTTCTGCTATGTCGGCGCGTATTATCCGTATTGACGCCGGCAAGAGC	
Consensus	(7151)	AGTTCTGCTATGTCGGCGCGTATTATCCGTATTGACGCCGGCAAGAGC	
	7201		7250
IL13 (EQ) 41BBZeta	(6802)	AACTCGGTGCCGCATACACTATTCTCAGAACGACTGGTTGAGTACTCA	
CD19Rop_epHIV7	(6019)	AACTCGGTGCCGCATACACTATTCTCAGAACGACTGGTTGAGTACTCA	
Consensus	(7201)	AACTCGGTGCCGCATACACTATTCTCAGAACGACTGGTTGAGTACTCA	
	7251		7300
IL13 (EQ) 41BBZeta	(6852)	CCAGTCACAGAAAAGCATCTACGGATGGCATGACAGTAAGAGAATTATG	
CD19Rop_epHIV7	(6069)	CCAGTCACAGAAAAGCATCTACGGATGGCATGACAGTAAGAGAATTATG	
Consensus	(7251)	CCAGTCACAGAAAAGCATCTACGGATGGCATGACAGTAAGAGAATTATG	
	7301		7350
IL13 (EQ) 41BBZeta	(6902)	CAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGA	
CD19Rop_epHIV7	(6119)	CAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGA	

Consensus	(7301)	CAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGA 7351	7400
IL13 (EQ) 41BBZeta	(6952)	CAACGATCGGAGGACCGAAGGGAGCTAACCGCTTTTGACAAACATGGGG	
CD19Rop_epHIV7	(6169)	CAACGATCGGAGGACCGAAGGGAGCTAACCGCTTTTGACAAACATGGGG	
Consensus	(7351)	CAACGATCGGAGGACCGAAGGGAGCTAACCGCTTTTGACAAACATGGGG 7401	7450
IL13 (EQ) 41BBZeta	(7002)	GATCATGTAACTCGCCTGATCGTTGGAACCGGAGCTGAATGAAGCCAT	
CD19Rop_epHIV7	(6219)	GATCATGTAACTCGCCTGATCGTTGGAACCGGAGCTGAATGAAGCCAT	
Consensus	(7401)	GATCATGTAACTCGCCTGATCGTTGGAACCGGAGCTGAATGAAGCCAT 7451	7500
IL13 (EQ) 41BBZeta	(7052)	ACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGT	
CD19Rop_epHIV7	(6269)	ACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGT	
Consensus	(7451)	ACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGT 7501	7550
IL13 (EQ) 41BBZeta	(7102)	TGCGCAAACATTAACTGGCGAACTACTTACTCTAGCTTCCCGCAACAA	
CD19Rop_epHIV7	(6319)	TGCGCAAACATTAACTGGCGAACTACTTACTCTAGCTTCCCGCAACAA	
Consensus	(7501)	TGCGCAAACATTAACTGGCGAACTACTTACTCTAGCTTCCCGCAACAA 7551	7600
IL13 (EQ) 41BBZeta	(7152)	TTAATAGACTGGATGGAGGCGGATAAAAGTTGCAGGACCACTTCTGCGCTC	
CD19Rop_epHIV7	(6369)	TTAATAGACTGGATGGAGGCGGATAAAAGTTGCAGGACCACTTCTGCGCTC	
Consensus	(7551)	TTAATAGACTGGATGGAGGCGGATAAAAGTTGCAGGACCACTTCTGCGCTC 7601	7650
IL13 (EQ) 41BBZeta	(7202)	GGCCCTCCGGCTGGCTGGTTATTGCTGATAAAATCTGGAGCCGGTGAGC	
CD19Rop_epHIV7	(6419)	GGCCCTCCGGCTGGCTGGTTATTGCTGATAAAATCTGGAGCCGGTGAGC	
Consensus	(7601)	GGCCCTCCGGCTGGCTGGTTATTGCTGATAAAATCTGGAGCCGGTGAGC 7651	7700
IL13 (EQ) 41BBZeta	(7252)	GTGGGTCTCGCGGTATCATTGCAGCACTGGGCCAGATGGTAAGCCCTCC	
CD19Rop_epHIV7	(6469)	GTGGGTCTCGCGGTATCATTGCAGCACTGGGCCAGATGGTAAGCCCTCC	
Consensus	(7651)	GTGGGTCTCGCGGTATCATTGCAGCACTGGGCCAGATGGTAAGCCCTCC 7701	7750
IL13 (EQ) 41BBZeta	(7302)	CGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACG	
CD19Rop_epHIV7	(6519)	CGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACG	
Consensus	(7701)	CGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACG 7751	7800
IL13 (EQ) 41BBZeta	(7352)	AAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGTAAC	
CD19Rop_epHIV7	(6569)	AAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGTAAC	
Consensus	(7751)	AAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGTAAC 7801	7850
IL13 (EQ) 41BBZeta	(7402)	TGTCAGACCAAGTTACTCATATATACCTTAGATTGATTAAAAACTTCAT	
CD19Rop_epHIV7	(6619)	TGTCAGACCAAGTTACTCATATATACCTTAGATTGATTAAAAACTTCAT	
Consensus	(7801)	TGTCAGACCAAGTTACTCATATATACCTTAGATTGATTAAAAACTTCAT 7851	7900
IL13 (EQ) 41BBZeta	(7452)	TTTAATTTAAAAGGATCTAGGTGAAGATCCTTTGATAATCTCATGAC	
CD19Rop_epHIV7	(6669)	TTTAATTTAAAAGGATCTAGGTGAAGATCCTTTGATAATCTCATGAC	
Consensus	(7851)	TTTAATTTAAAAGGATCTAGGTGAAGATCCTTTGATAATCTCATGAC 7901	7950
IL13 (EQ) 41BBZeta	(7502)	CAAATCCCTAACGTGAGTTCTGTTCCACTGAGCGTCAGACCCCCGTAG	
CD19Rop_epHIV7	(6719)	CAAATCCCTAACGTGAGTTCTGTTCCACTGAGCGTCAGACCCCCGTAG	
Consensus	(7901)	CAAATCCCTAACGTGAGTTCTGTTCCACTGAGCGTCAGACCCCCGTAG 7951	8000
IL13 (EQ) 41BBZeta	(7552)	AAAAGATCAAAGGATCTCTTGAGATCCTTTCTGCGCGTAATCTGC	
CD19Rop_epHIV7	(6769)	AAAAGATCAAAGGATCTCTTGAGATCCTTTCTGCGCGTAATCTGC	
Consensus	(7951)	AAAAGATCAAAGGATCTCTTGAGATCCTTTCTGCGCGTAATCTGC 8001	8050
IL13 (EQ) 41BBZeta	(7602)	TGTTGCAAACAAAAACCACCGTACCGAGCGGTGGTTGTTGCCGGA	

CD19Rop_epHIV7 Consensus	(6819)	TGCTTCAAACAAAAACCCGCTACCAGCGTGGTTGCTTGC
	(8001)	GAGCGCTACCGCTACAGCGTGGTTGCTTGC
		8051
		8100
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(7652)	TCAAGAGCTACCAACTCTTTCCGAAGGTAAC
	(6869)	GGCTCAGCAGAGCGC
	(8051)	TCAAGAGCTACCAACTCTTTCCGAAGGTAAC
		GGCTCAGCAGAGCGC
		8150
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(7702)	AGATACCAAATACTGTTCTCTAGTGTAGCGTAG
	(6919)	TAGGCCACCACTTC
	(8101)	AGATACCAAATACTGTTCTCTAGTGTAGCGTAG
		TAGGCCACCACTTC
		8151
		8200
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(7752)	AAGAAC
	(6969)	CTGTAGCACCACATACCTCGCTCGTAATCCTGTTACC
	(8151)	AAGAAC
		CTGTAGCACCACATACCTCGCTCGTAATCCTGTTACC
		8201
		8250
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(7802)	AGTGGCTGCTGCCAGTGGCGATAAGTCGTGCTTAC
	(7019)	CGGGTTGGACTCAA
	(8201)	AGTGGCTGCTGCCAGTGGCGATAAGTCGTGCTTAC
		CGGGTTGGACTCAA
		8251
		8300
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(7852)	GACGATAGTTACCGGATAAGCGCAGCGGTGCGTGA
	(7069)	ACGGGGTTTC
	(8251)	GACGATAGTTACCGGATAAGCGCAGCGGTGCGTGA
		ACGGGGTTTC
		8301
		8350
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(7902)	TGCACACAGCCCAGCTTGGAGCGAACGAC
	(7119)	CTACACCGAACGAGATACCT
	(8301)	TGCACACAGCCCAGCTTGGAGCGAACGAC
		CTACACCGAACGAGATACCT
		8351
		8400
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(7952)	ACAGCGTGAGCTATGAGAAAGCGCCAC
	(7169)	GCTTCCGAAGGGAGAAAGGCGG
	(8351)	ACAGCGTGAGCTATGAGAAAGCGCCAC
		GCTTCCGAAGGGAGAAAGGCGG
		8401
		8450
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(8002)	ACAGGTATCCGTAAGCGGCAGGGT
	(7219)	CGGAACAGGAGAGCGCACGGGAG
	(8401)	ACAGGTATCCGTAAGCGGCAGGGT
		CGGAACAGGAGAGCGCACGGGAG
		8451
		8500
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(8052)	CTTCCAGGGGAAACGCCTGGTATCTTATAG
	(7269)	TCTGTCGGGTTTCG
	(8451)	CTTCCAGGGGAAACGCCTGGTATCTTATAG
		TCTGTCGGGTTTCG
		8501
		8550
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(8102)	CCTCTGACTTGAGCGTCGATTTGT
	(7319)	GATGCTCGTCAGGGGGCGGAGCC
	(8501)	CCTCTGACTTGAGCGTCGATTTGT
		GATGCTCGTCAGGGGGCGGAGCC
		8551
		8600
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(8152)	TATGGAAAAACGCCAGCAACGCC
	(7369)	CTTTTACGGTTCTGGC
	(8551)	TATGGAAAAACGCCAGCAACGCC
		CTTTTACGGTTCTGGC
		8601
		8650
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(8202)	TGGCCTTGT
	(7419)	CACATGTTCTCCTGCGT
	(8601)	TGGCCTTGT
		CACATGTTCTCCTGCGT
		8651
		8700
IL13 (EQ) 41BBZeta CD19Rop_epHIV7 Consensus	(8252)	TAACCGTATTACCGC
	(7469)	CTTGTAGTGAGCTGATACCGCTCGCC
	(8651)	TAACCGTATTACCGC
		CTTGTAGTGAGCTGATACCGCTCGCC
		8701
		8750

IL13 (EQ) 41BBZeta	(8302)	CGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATA
CD19Rop_epHIV7	(7519)	CGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATA
Consensus	(8701)	CGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATA 8751 8800
IL13 (EQ) 41BBZeta	(8352)	CGCAAACCGCCTCTCCCGCGCGTTGGCGATTCAATTAAATGCAGCTGGCA
CD19Rop_epHIV7	(7569)	CGCAAACCGCCTCTCCCGCGCGTTGGCGATTCAATTAAATGCAGCTGGCA
Consensus	(8751)	CGCAAACCGCCTCTCCCGCGCGTTGGCGATTCAATTAAATGCAGCTGGCA 8801 8850
IL13 (EQ) 41BBZeta	(8402)	CGACAGGTTCCGACTGGAAAGCGGGCAGTGAGCGAACGCAATTAAATG
CD19Rop_epHIV7	(7619)	CGACAGGTTCCGACTGGAAAGCGGGCAGTGAGCGAACGCAATTAAATG
Consensus	(8801)	CGACAGGTTCCGACTGGAAAGCGGGCAGTGAGCGAACGCAATTAAATG 8851 8900
IL13 (EQ) 41BBZeta	(8452)	TGAGTTAGCTCACTCATTAGGCACCCAGGCTTACACTTTATGCTTCCG
CD19Rop_epHIV7	(7669)	TGAGTTAGCTCACTCATTAGGCACCCAGGCTTACACTTTATGCTTCCG
Consensus	(8851)	TGAGTTAGCTCACTCATTAGGCACCCAGGCTTACACTTTATGCTTCCG 8901 8950
IL13 (EQ) 41BBZeta	(8502)	GCTCGTATGTTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAA
CD19Rop_epHIV7	(7719)	GCTCGTATGTTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAA
Consensus	(8901)	GCTCGTATGTTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAA 8951 9000
IL13 (EQ) 41BBZeta	(8552)	CAGCTATGACCATGATTACGCCAACGCTGAAATTAAACCTCACTAAAGGG
CD19Rop_epHIV7	(7769)	CAGCTATGACCATGATTACGCCAACGCTGAAATTAAACCTCACTAAAGGG
Consensus	(8951)	CAGCTATGACCATGATTACGCCAACGCTGAAATTAAACCTCACTAAAGGG 9001 9050
IL13 (EQ) 41BBZeta	(8602)	AACAAAAGCTGGAGCTCCACCGCGGTGGCGGCCTCGAGGTCGAGATCCGG
CD19Rop_epHIV7	(7819)	AACAAAAGCTGGAGCTCCACCGCGGTGGCGGCCTCGAGGTCGAGATCCGG
Consensus	(9001)	AACAAAAGCTGGAGCTCCACCGCGGTGGCGGCCTCGAGGTCGAGATCCGG 9051 9100
IL13 (EQ) 41BBZeta	(8652)	TCGACCAGCAACCATACTCCGCCCTAACTCCGCCATCCGCCCTAA
CD19Rop_epHIV7	(7869)	TCGACCAGCAACCATACTCCGCCCTAACTCCGCCATCCGCCCTAA
Consensus	(9051)	TCGACCAGCAACCATACTCCGCCCTAACTCCGCCATCCGCCCTAA 9101 9150
IL13 (EQ) 41BBZeta	(8702)	CTCCGCCAGTTCCGCCATTCTCCGCCCATGGCTGACTAATTNTTTTT
CD19Rop_epHIV7	(7919)	CTCCGCCAGTTCCGCCATTCTCCGCCCATGGCTGACTAATTNTTTTT
Consensus	(9101)	CTCCGCCAGTTCCGCCATTCTCCGCCCATGGCTGACTAATTNTTTTT 9151 9200
IL13 (EQ) 41BBZeta	(8752)	ATTTATGCAGAGGCCGAGGCCGCTCGGCCTTGAGCTATTCCAGAAGTA
CD19Rop_epHIV7	(7969)	ATTTATGCAGAGGCCGAGGCCGCTCGGCCTTGAGCTATTCCAGAAGTA
Consensus	(9151)	ATTTATGCAGAGGCCGAGGCCGCTCGGCCTTGAGCTATTCCAGAAGTA 9201 9250
IL13 (EQ) 41BBZeta	(8802)	GTGAGGAGGTTTTGGAGGCCTAGGTTTGCAAAAAGCTTCGACGGT
CD19Rop_epHIV7	(8019)	GTGAGGAGGTTTTGGAGGCCTAGGTTTGCAAAAAGCTTCGACGGT
Consensus	(9201)	GTGAGGAGGTTTTGGAGGCCTAGGTTTGCAAAAAGCTTCGACGGT 9251 9300
IL13 (EQ) 41BBZeta	(8852)	ATCGATTGGCTCATGTCAAACATTACGCCATGTTGACATTGATTATTGA
CD19Rop_epHIV7	(8069)	ATCGATTGGCTCATGTCAAACATTACGCCATGTTGACATTGATTATTGA
Consensus	(9251)	ATCGATTGGCTCATGTCAAACATTACGCCATGTTGACATTGATTATTGA 9301 9350
IL13 (EQ) 41BBZeta	(8902)	CTAGTTATTAATAGTAATCAATTACGGGTCAATTAGTCATAGCCCATAT
CD19Rop_epHIV7	(8119)	CTAGTTATTAATAGTAATCAATTACGGGTCAATTAGTCATAGCCCATAT
Consensus	(9301)	CTAGTTATTAATAGTAATCAATTACGGGTCAATTAGTCATAGCCCATAT 9351 9400
IL13 (EQ) 41BBZeta	(8952)	ATGGAGTCCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACC
CD19Rop_epHIV7	(8169)	ATGGAGTCCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACC
Consensus	(9351)	ATGGAGTCCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACC

		9401	9450
IL13 (EQ) 41BBZeta	(9002)	GCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAG	
CD19Rop_epHIV7	(8219)	GCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAG	
Consensus	(9401)	GCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAG	
		9451	9500
IL13 (EQ) 41BBZeta	(9052)	TAACGCCAATAGGGACTTCCATTGACGTCAATGGTGGAGTATTCACGG	
CD19Rop_epHIV7	(8269)	TAACGCCAATAGGGACTTCCATTGACGTCAATGGTGGAGTATTCACGG	
Consensus	(9451)	TAACGCCAATAGGGACTTCCATTGACGTCAATGGTGGAGTATTCACGG	
		9501	9550
IL13 (EQ) 41BBZeta	(9102)	TAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCC	
CD19Rop_epHIV7	(8319)	TAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCC	
Consensus	(9501)	TAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCC	
		9551	9600
IL13 (EQ) 41BBZeta	(9152)	CCCTATTGACGTCAATGACGGTAAATGCCCGCCTGGCATTATGCCAGT	
CD19Rop_epHIV7	(8369)	CCCTATTGACGTCAATGACGGTAAATGCCCGCCTGGCATTATGCCAGT	
Consensus	(9551)	CCCTATTGACGTCAATGACGGTAAATGCCCGCCTGGCATTATGCCAGT	
		9601	9650
IL13 (EQ) 41BBZeta	(9202)	ACATGACCTTATGGGACTTCCACTTGGCAGTACATCTACGTATTAGTC	
CD19Rop_epHIV7	(8419)	ACATGACCTTATGGGACTTCCACTTGGCAGTACATCTACGTATTAGTC	
Consensus	(9601)	ACATGACCTTATGGGACTTCCACTTGGCAGTACATCTACGTATTAGTC	
		9651	9700
IL13 (EQ) 41BBZeta	(9252)	ATCGCTATTACCATGGTATGCCGGTTTGGCAGTACATCAATGGCGTGG	
CD19Rop_epHIV7	(8469)	ATCGCTATTACCATGGTATGCCGGTTTGGCAGTACATCAATGGCGTGG	
Consensus	(9651)	ATCGCTATTACCATGGTATGCCGGTTTGGCAGTACATCAATGGCGTGG	
		9701	9750
IL13 (EQ) 41BBZeta	(9302)	ATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCA	
CD19Rop_epHIV7	(8519)	ATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCA	
Consensus	(9701)	ATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCA	
		9751	9800
IL13 (EQ) 41BBZeta	(9352)	ATGGGAGTTGTTGGCACCAAAATCAACGGGACTTCAAAATGTCGT	
CD19Rop_epHIV7	(8569)	ATGGGAGTTGTTGGCACCAAAATCAACGGGACTTCAAAATGTCGT	
Consensus	(9751)	ATGGGAGTTGTTGGCACCAAAATCAACGGGACTTCAAAATGTCGT	
		9801	9850
IL13 (EQ) 41BBZeta	(9402)	AACAACCTCCGCCATTGACCAAATGGCGGTAGCGTGTACGGAATT	
CD19Rop_epHIV7	(8619)	AACAACCTCCGCCATTGACCAAATGGCGGTAGCGTGTACGGAATT	
Consensus	(9801)	AACAACCTCCGCCATTGACCAAATGGCGGTAGCGTGTACGGAATT	
		9851	9900
IL13 (EQ) 41BBZeta	(9452)	GGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTGCCTGT	
CD19Rop_epHIV7	(8669)	GGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTGCCTGT	
Consensus	(9851)	GGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTGCCTGT	
		9901 9914	
IL13 (EQ) 41BBZeta	(9502)	ACTGGGTCTCTCTG	
CD19Rop_epHIV7	(8719)	ACTGGGTCTCTCTG	
Consensus	(9901)	ACTGGGTCTCTCTG	

FIGURE 19

IL13(EmY)-CD8h3-CD8tm2-41BB-Zeta

MILLVTSLLLCELPHAFLLIPGPVPPSTALR LIEELVNITQNQAPLCNGSMVWSINLTAGM

GMCSFRa signal peptide

IL13(EmY)

YCAALESLINVGCSAIEKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLHLKKLF

REGRFNAKPTTPAPRPPPTAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAG

CD8hinge (48 aa)

CD8tm(2)

TCGVLLSLVITLYKRGGRKKLLYIFKQPFMRPVQTTQEE GCSCRPEEEE EGGCELGGGRVKFS

4-1BB cyto

CD3 ζ RSADAPAYQQGQNQLYNE NLGRREEYDVL DKRRGRDPEMGGKPRRKNPQEGLYNE LQKDKMAEAYSEIGMKGERRGKGHDGLYQGLSTATKDTYDALHMQALPPR

GMCSFRa signal peptide

IL13(EmY)

CD8hinge

CD8 transmembrane (2)

4-1BB cyto

(Gly)3

Zeta

FIGURE 20

IL13(EmY)-CD8h3-CD28tm-CD28gg-41BB-Zeta

MILLVTSLLLCELHPAFL
GMCSFRa signal peptide

IL13(EmY)

YCAALESLINSGCSAIEKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLLHLKKLF

REGRFNAKPTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAHVTRGLDFACDFWVLVVVG

CD8 hinge (48 aa)

CD28tm

GVLACYSLLVTVAIFIWVRSKRSRGGHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSG

CD28gg

GGKRGKLLYIFKQPFMRPVQTTQEDGCSCRFPEEEEGGCELGGRVKFSRSADAPAYQ

4-1BB cyto

CD3 ζ QGQNQLYNENLGRREYDVLKRRGRDPEMGGKPRRKNPQEGLYNELQDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR

GMCSFRa signal peptide

IL13(EmY)

CD8hinge

CD28 transmembrane

CD28gg

4-1BB cyto

(Gly)3

Zeta

FIGURE 21

IL13(EmY)-IgG4(HL-CH3)-CD4tm-41BB-Zeta

MLLLVTSLLCELPHAFLLIPGPVPPSTALR LIEELVNITQNQKAPLCNGSMVWSINLTAGM
 GMCSFRa signal peptide IL13(EmY)

YCAALESLINSGCSAIEKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLHLKKLF

REGRFNESKYGPPCP CPGGGSSGGSGGQPREPVYTLPPSQEEMTKNQVSLTCLVKGFY
 IgG4Hinge Linker IgG4-CH3

PSDIAVEWESNGQPENNYKTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHN

HYTQKSLSLSGKMALIVLGGVAGLLLFIGLGIFFKRGRKKLLYIFKQPFMRPVQTTQEDGCS
 CD4 tm 4-1BB cyto

CRFPEEEEGGCELGGGRVKFSRSADAPAYQQGQNQLYNELNLRREYDVLDRGRDPE
 CD3 ζ

MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRGKGHDGLYQGLSTATKDTYDA

LHMQALPPR

GMCSFRa signal peptide

IL13(EmY)

IgG4Hinge

Linker

IgG4-Fc-CH3

CD4 transmembrane

4-1BB cyto

(Gly)3

Zeta

FIGURE 22

IL13(EmY)-IgG4(L235E,N297Q)-CD8tm-41BB-Zeta

MLLLVTSLLCELHPAFLLIPGPVPPSTALRY LIEELVNITQNQAPLCNGSMVWSINLTAGM
GMCSFRa signal peptide IL13(EmY)

YCAALESLINSGCSAIEKTQRMLSGFCPHKVSA
GQFSSLHVRDTKIEVAQFVKDLLLHLKKLF

REGRFNE
SKYGP
PCP
CPA
PEFEGG
PSVFLF
PPKPKDTLM
ISRTPEVTCVVVDV
SQEDPEVQF
IgG4-Fc(SmP)

NWYVDGVEVHN
AKTKP
REEQFQ
STYRVV
SVLTVL
HQDWLNG
KEYKCKVSNKGLPSSIEKTIS

KAKGQPREPQVYTLPPSQ
EEEMTKNQVSLTCLVKG
FYPSDIAVEWESNGQ
PENNYKTPPV

DSDGSFFLYSRLTVDKSRWQEGNVFCSV
MHEALHNHYTQKSLSLGK
IYIWAPLAGTCV
CD8 tm

LLSLVITKRG
RKKLLYIFKQPFMRP
VQTTQEEDGC
SCRFP
EEE
EGGCE
LGGR
RVKFSRSADAP
4-1BB cyto CD3 ζ

AYQQGQNQLY
NELNLGR
REEYDVL
DKRRGRDPE
MGKPRRKNP
QEGLY
NELQ
KDKMAEA

YSEIGMKGERRGKGHDGLYQGL
STATKDTYDALH
MQALPPR

GMCSFRa signal peptide

IL13(EmY)

IgG4-Fc(SmP)

CD8 transmembrane

4-1BB cyto

(Gly)3

Zeta

FIGURE 23

IL13(EmY)-Linker-CD28tm-CD28gg-41BB-Zeta

MLLVTSLLCELPHAFLLIPGPVPPSTALRYIEELVNTQNQKAPLCNGSMVWSINLTAGM
GMCSFRa signal peptide IL13(EmY)

YCAALESLINSGCSAIEKTQRMLSGFCPHKVSGQFSSLHVRDTKIEVAQFVKDLLHLKKLF

REGRFNGGGSSGGSGMFVVLVVGGVLACYSLLVTVAIFIWVRSKRSRGHSDYMN
Linker CD28(M) tm CD28gg

TPRRPGPTRKHYQPYAPPRDFAAYRSGGGKGRKKLLYIFKQPFMRPVQTTQEDGCSCRFP
4-1BB cyto

EEEEGGCELGGGRVFKFSRSADAPAYQQGQNQLYNELNLGRREYDVLDKRRGRDPEMGGK
CD3 ζ

P RRKNPQEGLYNELQDKKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQ

ALPPR

GMCSFRa signal peptide
IL13(EmY)
Linker
CD28(M) transmembrane
CD28gg
4-1BB cyto
(Gly)3
Zeta

FIGURE 24

IL13(EmY)-HL-CD28m-CD28gg-41BB-Zeta

MLLLVTSLLCELPHAFLLIPGPVPPSTALR LIEELVNITQNQAPLCNGSMVWSINLTAGM
 GMCSFRa signal peptide IL13(EmY)

YCAALESLINSGCSAIEKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLLHLKKLF

REGRFNE SKYGP CP PGGGSSGGSGM FWVLVVGGVLACYSLLVTVAFIIFWVRSKRS
 IgG4Hinge Linker CD28(M) tm
 CD28gg

RGGHSDYMNMTPRPGPTRKHYQPYAPPRDFAAYRSGGG KRGRKKLYIFKQPFMRPVQT
 4-1BB cyto

TQEEDGCSCRFPEEEEGGCEGGGRRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVL
 DK CD3 ζ

RRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRGKGHDGLYQGLSTA

TKDTYDALHMQALPPR

GMCSFRa signal peptide

IL13(EmY)

IgG4Hinge

Linker

CD28(M) transmembrane

CD28gg

4-1BB cyto

(Gly)3

Zeta

Figure 25

IL13(EmY)-IgG4(HL-CH3)-CD28tm-CD28gg-41BB-Zeta

MLLVTSLLCLEPHAFLLIPGPVPPSTALR **LIEELVNITQNQKAPLCNGSMVWSINLTAGM**
GMCSFR α signal peptide IL13(EmY)

YCAALESLINVSGCSAIEKTQRMLSGFCPHKVSAQGFSSLHVRDTKIEVAQFVKDLLLHLLKKLF

REGRFNESKYGPPCPPCPGGGSSGGSGGQPREPQVTLPPSQEEMTKNQVSLTCLVKGFY
IgG4Hinge Linker IgG4 CH3

PSDIAVEWESNGQPENNYKTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFCSVMHEALHN

GPTRKHYQPYAPPRDFAAYRSGGGKRGRKKLLYIFKQPFMRPVQTTQEDGCSRFPEEEEG
4-1BB cyto

GCELGGGRVKFSRSADAPAYQQGQNQLYNELNLGRREYDVLDKRRGRDPEMGGKPRRK
CD3 ζ

NPQEGLYNELQDKMAEAYSEIGMKGERRRGKGDGLYQGLSTATKDTYDALHMQALPP

R

GMCSFRa signal peptide

IL13(EmY)

IgG4Hinge

Linker

IgG4 CH3

CD28 tr

CD28gg

4-1BB cyto

(Gly)₃

Zeta

FIGURE 26

IL13(EmY)-IgG4(L235E,N297Q)-CD28tm-CD28gg-41BB-Zeta

MLLLVTSLLLCELPHAFLLIPGPVPPSTALR LIEELVNITQNQKAPLCNGSMVWSINLTAGM
 GMCSFRa signal peptide IL13(EmY)

YCAALESLINSGCSAIEKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLHLKKLF

REGRFNESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF

IgG4-Fc(L235E,N297Q)

NWYVDGVEVHNAKTKPREEQFQSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLCLVKGFYPSDIAVEWESNGQPENNYKTPPPVL

DSDGSFFLYSRLTVDKSRWQEGNVFSCVMHEALHNHYTQKSLSLSGKMFWVLVVVGGV
 CD28(M) tm

LACYSLLVTVAFIIFWVRSKRSRGHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSGGG
 CD28gg

KRGRKKLLYIFKQPFMRPVQTTQEEGCSCRFPEEEEGGCELGGGRVKFSRSADAPAYQQG
 4-1BB cyto CD3 ζ

QNQLYNELNLGRREEYDVLDKRRRDPEMGGPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR

GMCSFRa signal peptide

IL13(EmY)

IgG4-Fc(L235E,N297Q)

CD28 (M) transmembrane

CD28gg

(Gly)3

4-1BB cyto

(Gly)3

Zeta

FIGURE 27

IL13(EmY)-CD8h3-CD8tm-41BB-Zeta

MLLLVTLLLCELPHPAFLLIPGPVPPSTALRLIEELVNITQNQKAPLCNGSMVWSINLTAGM

GMCSFRa signal peptide

IL13(EmY)

YCAALESLINVSGCSAIEKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLHLKKLFREGRFNAKPTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAG

CD8hinge (48 aa)

CD8tm

TCGVLLSLVITGGGKRGRKKLLYIFKQPFMRPVQTTQEEEDGCSCRFPEEEEGGCELGGGRVK

4-1BB cyto

CD3 ζ FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR

GMCSFRa signal peptide

IL13(EmY)

CD8hinge

CD8 transmembrane

(Gly)3

4-1BB cyto

(Gly)3

Zeta

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2015/051089

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07K14/715 C07K14/54 C07K19/00 C12N15/867
ADD. C12N5/0783

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07K C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, EMBL, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2010/025177 A1 (HOPE CITY [US]; JENSEN MICHAEL [US]) 4 March 2010 (2010-03-04) whole document, especially the claims. -----	1-8,10, 11 9,12-28
X	S. KONG ET AL: "Suppression of Human Glioma Xenografts with Second-Generation IL13R-Specific Chimeric Antigen Receptor-Modified T Cells", CLINICAL CANCER RESEARCH, vol. 18, no. 21, 1 November 2012 (2012-11-01), pages 5949-5960, XP055242650, US ISSN: 1078-0432, DOI: 10.1158/1078-0432.CCR-12-0319 whole document, especially page 5950 right column paragraph 3. ----- -/-	1-4,7,8, 10,11

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

20 January 2016

29/01/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Kools, Patrick

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2015/051089

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	MAHESH JONNALAGADDA ET AL: "Chimeric antigen receptors (CARs) incorporating mutations in the IgG4 Fc spacer region to eliminate Fc receptor recognition results in improved CAR T cell persistence and anti-tumor efficacy", JOURNAL FOR IMMUNOTHERAPY OF CANCER, BIOMED CENTRAL LTD, LONDON, UK, vol. 1, no. Suppl 1, 7 November 2013 (2013-11-07), page P18, XP021167131, ISSN: 2051-1426, DOI: 10.1186/2051-1426-1-S1-P18 the whole document -----	9,12-28
A	KAHLON KANWARPAL S ET AL: "Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells", CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 64, no. 24, 15 December 2004 (2004-12-15), pages 9160-9166, XP002467417, ISSN: 0008-5472, DOI: 10.1158/0008-5472.CAN-04-0454 cited in the application the whole document -----	1-28
A	B. THACI ET AL: "Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy", NEURO-ONCOLOGY, vol. 16, no. 10, 10 April 2014 (2014-04-10), pages 1304-1312, XP055243094, US ISSN: 1522-8517, DOI: 10.1093/neuonc/nou045 the whole document -----	1-28

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/US2015/051089

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 2010025177 A1	04-03-2010	CA 2735456 A1 EP 2331566 A1 ES 2553421 T3 JP 2012501180 A US 2012148552 A1 WO 2010025177 A1	04-03-2010 15-06-2011 09-12-2015 19-01-2012 14-06-2012 04-03-2010