US008543713B2

a2 United States Patent 10) Patent No.: US 8,543,713 B2
Koski 45) Date of Patent: Sep. 24,2013
(54) COMPUTING ENVIRONMENT ARRANGED 2005/0165790 Al* 7/2005 Seligeretal. 707/10
TO SUPPORT PREDETERMINED URL 2006/0288122 Al* 12/2006 Abjanic et al. 709/238
PATTERNS 2008/0077851 Al* 3/2008 Hesmer et al. 715/234
2008/0133583 Al* 6/2008 Artanetal. 707/102
(75) Inventor: David Koski, San Jose, CA (US) OTHER PUBLICATIONS

(73) Assignee: Apple Inc., Cupertino, CA (US) “Apache HTTP Server Version 2.0, URL Rewriting Guide,”
’ ’ Engelschall, Ralf S., Dec. 1997, http://httpd.apache.org/docs/2.0/

(*) Notice: Subject to any disclaimer, the term of this ~ misc/rewriteguide html, downloaded Nov. 20, 2010, 24 pages.
patent is extended or adjusted under 35 “BitWorking,” Joe Gregorio, Rest Tips: URI space is infinite, http://
U.S.C. 154(b) by 510 days bitworking.org/news/132/REST-Tips-URI-space-is-infinite, down-

loaded Nov. 20, 2010, 9 pages.

“Blog for the Well Designed URLs Initiative”, http://blog.

welldesignedurls.org/url-design, downloaded Nov. 20, 2010, 5
g pages.

(22) Filed: Aug. 19,2008 Citrix Systems, Citrix NetScaler, http://www.citrix.com/english/ps2/

. L products/product.asp?cpmtemtOD-21679, downloaded Jan. 20,
(65) Prior Publication Data 2011, 1 page.

(21) Appl. No.: 12/194,481

US 2010/0049842 A1l Feb. 25. 2010 Citrix Systems, NetScaler Overview, http://www.citrix.com/English/
¢ ’ ps2/products/feature.asp?contentID=2300357, downloaded Jan. 21,
2011, 2 pages.

(1) Int. Cl. “Cool URIs don’t change”, http://www.w3.org/Provider/Style/URI,

GO6l 15/16 (2006.01) downloaded Nov. 20, 2010, 8 pages.
(52) US.CL i
(5153 GRS 709/229; 709/205 (Continued)
58) Field of Classification Search .
9 USPC oo eseeeeeeee e 709/220 ~ Primary Examiner — Guang Li ,
See application file for complete search history. (74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
Dowler LLP
(56) References Cited
57 ABSTRACT
U.S. PATENT DOCUMENTS A computing environment for hosting web services and appli-
6,567,377 Bl 5/2003 Vepa et al. cations is disclosed. The computing resources of the comput-
6,732,175 Bl : 5/2004 Abjanic ... 709/227 ing environment can be managed, controlled or utilized to
g’fgg’ﬁz g} | ;;5882 CB}al et al£ o 709/224 facilitate improved hosting of web services, such as hosting of
7:225: 188 BL* 52007 G;(i)\;]:l aei. a 1 websites. According to one aspect, Universal Resourc.e. Loca-
7,567,504 B2 7/2009 Darling et al. tors (URLs) can be programmatically defined and utilized to
7,590,729 B2* 9/2009 Abjanic etal. 709/224 centralize URL descriptions which can be utilized by the
20027/6701169’51§ 2(7) izl . g; %8 (1)2 Xeﬂ_neltﬂen etal ;8;; g%g computing resources. According to another aspect, custom-
arjanto ; . .
2002/0107875 Al* 82002 Seliger et al. . " 207200 ized load balancing can be provided for the computing envi

2002/0169818 Al* 11/2002 Stewart etal. .. . 709/202 ronment.

2005/0044242 Al* 2/2005 Stevens et al. .. 709/228
2005/0165775 Al* 7/2005 Harjantoc....... 707/3 22 Claims, 10 Drawing Sheets
~~ 600 (506)
500 /
s T ,
COMPARE SEGMENTS OF THE
502 602~ INCOMING REQUEST TO

PREDETERMINED PATTERNS

REQUEST
RECEIVED

604

L
DIRECT THE INCOMING

REQUEST TO WEB
PARSE INCOMING REQUEST [~ 504 SERVER
DETERMINE APPROPRIATE APPLICATION |, IDENTIFY APPLICATION ASSOCIATED
TO PROCESS THE INCOMING REQUEST 606 ~~| WITH THE MATCHING PREDETERMINED
i PATTERN
‘ APPLICATION PARSES INCOMING REQUEST [~ 508 i
DIRECT THE INCOMING REQUEST TO THE
i 608 IDENTIFIED APPLICATION
‘ APPLICATION PRODUCES RESPONSE }\' 510
PRODUCE RESPONSE
612~ TO THE INCOMING

¢ REQUEST

‘ PROVIDE RESPONSE TO REQUESTOR “‘\f 512

US 8,543,713 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Configuring Friendly URLs”, The Apache Jakarta Project, http://
jakarta.apache.org/, published Jun. 8, 2006, http://tapestry.apache.
org/tapestry4/UsersGuide/friendly-urls.html, downloaded Jan. 20,
2011, 7 pages.

“Converting rewrite rules”, NGINX, http://nginx.org/en/docs/http/
converting _rewrite_rules.html, downloaded Jan. 21, 2011, 2 pages.
“How NGINX processes a request”, Sysoev, Igor, http://nginx.org/
en/docs/http/request_ processing.html, downloaded Jan. 20, 2011, 4
pages.

“Load balancing (computing)”, Wikipedia, http://en. wikipedia.org/
wiki/Load__balancing/(computing), downloaded Nov. 20, 2010, 7
pages.

NGINX news, http://nginx.org, downloaded Jan. 20, 2011, 4 pages.
“Pretty URLs—a guide to URL rewriting”, http://roscripts.com/

Pretty URLs_-_a_guide_to URL-rewriting-168 html, posted Jul.
2,2007, downloaded Nov. 20, 2010, 4 pages.

Ruby on Rails Guides (v3.0.3), http://guides.rubyonrails.org/
#pagel 63, downloaded Jan. 20, 2011, 4 pages.

GlassFish >> Project SailFin, http://sailfin.java.net, copyright 2008-
2011, downloaded Jan. 21, 2011, 2 pages.

“Tapestry Central: Tapestry URLs: Half way there”, http://
tapestryjava.blogspot.com/2004/12/tapestry-urls-half-way-there.
html, downloaded Jan. 21, 2011, 5 pages.

“URL dispatcher” http://docs.djangoproject.com/en/dev/topics/http/
urls/?from=olddocs, copyright 2005-2010, Django Software Foun-
dation, downloaded Nov. 20, 2010, 23 pages.

“WebObjects/Web Applications/Deployment/ Apache-Wikibooks”,
May 11, 2009, http://en.wikibooks.org/wiki/Programming.
WebObjects/Web__Applications/Deployment/Apache, downloaded
Jan. 20, 2011, 4 pages.

* cited by examiner

U.S. Patent Sep. 24, 2013 Sheet 1 of 10 US 8,543,713 B2

‘/f100

104 <~
LOAD
MANAGER <+—— CONFIGURATION
102 DA?A
\\\ 106
APPLN. APPLN.
A B
108 110

FIG. 1

U.S. Patent

—

WEB
SERVER

N
—

Sep. 24, 2013 Sheet 2 of 10 US 8,543,713 B2
‘/rzoo
204
LOAD
MANAGER <«——— CONFIGURATION
202 HESS
206
WEB
SERVER
212
APPLN. APPLN APPLN.
b A B
218 208 210

FIG. 2

U.S. Patent Sep. 24, 2013 Sheet 3 of 10 US 8,543,713 B2

300
304
BASIC
LOAD
BALANCER
302
CUSTOM
LOAD CONFIGURATION
— ™| BALANCER i FILES
> 306 /

308
y Yy v
WEB WEB
SERVER SERVER
314 316

APPLN. APPLN. APPLN. APPLN.
a b A B
310

o
—
0o
(€8]
N
o
(@8]
—
N

FIG. 3

U.S. Patent Sep. 24, 2013 Sheet 4 of 10 US 8,543,713 B2
404 1
- 400
SOFTWARE Wi
402 - LOAD
BALANCER
¥ v
406 | APPLN. POLICY 408 | APPLN. POLICY
A B
/ \ 4174 / \
)
| PARTITION |, | PARTITION PARTITION |, | PARTITION
410 7 A1 b A2 B1 67 B2
JAIN AN SN SN
Y Y \ Y
R R R R R R R R R R R R
/; /) ’/J /’) ; /} /J /) /;
M8 420 422 424 426 428 | 430 432 434 436 438 440
APPLICATION A / APPLICATION B
405 407

FIG. 4

U.S. Patent Sep. 24, 2013 Sheet 5 of 10 US 8,543,713 B2

/ 500

REQUEST

RECEIVED
?

PARSE INCOMING REQUEST [~ 504

'

DETERMINE APPROPRIATE APPLICATION
TO PROCESS THE INCOMING REQUEST

'

APPLICATION PARSES INCOMING REQUEST |~ 508

'

APPLICATION PRODUCES RESPONSE 510

'

PROVIDE RESPONSE TO REQUESTOR ' 512

506

FIG. 5

U.S. Patent Sep. 24, 2013 Sheet 6 of 10 US 8,543,713 B2

/ 600 (506)

COMPARE SEGMENTS OF THE
602 INCOMING REQUEST TO
PREDETERMINED PATTERNS

604
MATCH

? NO l 6}0

YES DIRECT THE INCOMING

REQUEST TO WEB
SERVER

IDENTIFY APPLICATION ASSOCIATED
606 —— WITH THE MATCHING PREDETERMINED
PATTERN

'

DIRECT THE INCOMING REQUEST TO THE
608 * IDENTIFIED APPLICATION

Y
l PRODUCE RESPONSE
612 | TO THE INCOMING
REQUEST

@

FIG. 6

U.S. Patent Sep. 24, 2013 Sheet 7 of 10 US 8,543,713 B2

/ 700
702

ﬁ o
<STORE> 706 712

browse
help @7 <PATH>
704 product 768 714
bﬁ <PART>
710 716

FIG. 7

U.S. Patent

Sep. 24,2013

T

Sheet 8 of 10

US 8,543,713 B2

/ 800 (602)

IDENTIFY URL SEGMENTS OF
THE INCOMING REQUEST

802

>l

SELECT FIRST (NEXT) URL SEGMENT

- 804

'

DETERMINE WHETHER THE SELECTED
URL SEGMENT MATCHES A
CORRESPONDING ELEMENT OF AT
LEAST ONE PREDETERMINED PATTERN

NO

l

806

INDICATE LACK OF
MATCHING PREDETERMINED

PATTERN

812
MORE
URL
SEGMENTS

YES TO PROCESS

IDENTIFY MATCHING
PREDETERMINED PATTERN

810

FIG. 8

U.S. Patent Sep. 24, 2013 Sheet 9 of 10

REQUEST
RECEIVED

EXAMINE INCOMING REQUEST FOR
BASIC LOAD BALANCING

US 8,543,713 B2

~— 900

904

928

LOAD
BALANCING

PARSE INCOMING REQUEST

v

y

DIRECT INCOMING
REQUEST TO SELECTED
WEB SERVER

v

DETERMINE RESPONSE
TO THE INCOMING

REQUEST

DETERMINE APPROPRIATE APPLICATION

v

DIRECT INCOMING REQUESTTO | 945
DETERMINED APPLICATION

v

APPLICATION PARSES INCOMING REQUEST
TO DETERMINE APPROPRIATE PARTITION

v

DIRECT PROCESSING REQUEST TO
DETERMINED APPLICATION

®

910

914

916

FIG. 9A

/
@ 930

U.S. Patent Sep. 24, 2013 Sheet 10 of 10 US 8,543,713 B2

DETERMINE RESOURCE TO PROCESS

918
PROCESSING REQUEST
DIRECT PROCESSING REQUEST || 920

TO DETERMINE RESOURCE

'

RETURN PROCESSING RESULTS
TO DETERMINED APPLICATION 922
VIA DETERMINED PARTITION

'

FORM RESPONSE TO INCOMING
REQUEST AT DETERMINED [~ 924
APPLICATION

F ®

RETURN RESPONSE TO
REQUESTOR

FIG. 9B

[~ 926

US 8,543,713 B2

1
COMPUTING ENVIRONMENT ARRANGED
TO SUPPORT PREDETERMINED URL
PATTERNS

BACKGROUND OF THE INVENTION

Users navigate to and within websites using a network
browser or other application. However, when displaying
webpages, the network browser or other application typically
displays a Universal Resource Locators (URL) of the network
location of the webpage. With complex websites, such as
online stores, the URLs tend to be long and not user under-
standable due to internal factors such as website design and
web applications in use. Conventionally, the URLs can be
produced by application framework control, such as provided
by WebObjects from Apple Inc., but such URLs are complex,
long and not user understandable. An example of one such
URL is:

http://store.apple.com/1-800-MY-APPLE/WebObjects/

AppleStore.woa/ 9044001 Iwol

kv2t9HQgZXbD2QPKGZ12MnfoUiC/2.2p=0
Another conventional approach is to manually produce and
parse URLs. However, once the code is in place it is very
difficult to make alterations. Another conventional approach
is to directly map URLs to a programming object. The pro-
gramming environments of JSP, JSF, WebObjects and Apache
can provide direct mappings but such have limited ability to
change and URLs are not generated in a consistent manner.
Still another conventional approach uses pattern mapping to
describe a URL format (i.e., using regex and “groups”), but
such also has limited ability to change and its URLs are not
consistent. Consequently, there remains a need for improved
approaches to produce, utilize and manage URLs.

Today, data centers (e.g., Internet data centers) are often
used to store content associated with websites. These data
centers must be capable of handing requests from large num-
bers of users without significant delay. Data centers conven-
tionally load balance across duplicative hardware and soft-
ware resources. Typically, load balancers can be configured to
route traffic to different servers. However, load balancing is
conventionally a static configuration that only operates on
data in an incoming request and is not able to utilize rule sets
that are customized to website or data center design.

SUMMARY OF THE INVENTION

The invention relates a computing environment for hosting
web services and applications. The computing resources of
the computing environment can be managed, controlled or
utilized to facilitate improved hosting of web services, such as
hosting of websites.

One aspect of the invention pertains to customized load
balancing in a multi-computer system in view of configura-
tion information. In one embodiment, the configuration infor-
mation can pertain to particular configurations of applica-
tions, partitions and/or resources utilized within the multi-
computer system. As a result, load balancing can be
customized to computing environments and/or business
objectives.

Another aspect of the invention pertains to Universal
Resource Locators (URLs) that can be programmatically
defined and utilized to centralize URL descriptions which can
be utilized by applications provided by the multi-computer
system. The URLs can thus be centrally controlled or man-
aged such that application or processes can be provided in a
manner that is independent of the particular URLs. As one
example, the programmatically defined URLs are able to be

20

25

30

35

40

45

50

55

60

65

2

intelligently parsed and/or written. This permits control over
the URLs as well as the ability to render the URLs descriptive
or at least meaningful to recipients of the URLs or applica-
tions that display the URLs.

The invention can be implemented in numerous ways,
including as a method, system, device, or apparatus (includ-
ing computer readable medium). Several embodiments of the
invention are discussed below.

As a method for processing a request at a computing sys-
tem coupled to a network, where the computing system sup-
ports a plurality of applications, one embodiment of the
invention includes at least: receiving an incoming request;
parsing the incoming request to determine one or more seg-
ments of the incoming request; determining an appropriate
one of the applications to receive the incoming request based
on at least one of the determined segments; directing the
incoming request to the determined application; processing
the incoming request at the determined application; and
responding to the incoming request with a response provided
by the determined application.

As a computing system having a plurality of server com-
puters for supporting a website, one embodiment of the inven-
tion includes at least: a plurality of applications configured to
interface with a plurality of processes operable on a set of the
server computers, and a load balancer operatively connected
to direct an incoming request to one of the applications. The
load balancer compares the incoming request against a set of
predetermined patterns to provide comparison data, and the
load balancer operates to determine one of the applications to
receive the incoming request based on the comparison data.

As a computer readable medium including at least execut-
able computer program code tangibly embodied therein for
processing a request to a computing system coupled to a
network, where the computing system supports a plurality of
applications, one embodiment of the invention includes at
least: computer program code for receiving an incoming
request; computer program code for parsing the incoming
request to determine one or more segments of the incoming
request; computer program code for determining whether one
or more of the determined segments of the incoming request
match any of a plurality of predetermined patterns; computer
program code for determining an appropriate one of the appli-
cations to receive the incoming request based on the matching
of one or more of the determined segments to one of the
predetermined patterns; and computer program code for
directing the incoming request to the determined application.

As amethod for managing universal resource locators, one
embodiment of the invention includes at least: programmati-
cally defining a URL pattern having a name and a URL path,
the URL path structure including a plurality of path elements;
defining at least one URL parameter provided as at least one
of the path elements of the URL path structure; and subse-
quently processing a URL in accordance with the defined
URL patterns and the at least one URL parameter.

As a computer readable medium including at least execut-
able computer program code tangibly embodied therein for
processing universal resource locators, one embodiment of
the invention includes at least: computer program code, or a
compiled data structure therefrom, that defines a plurality of
predetermined URL patterns, each of the URL patterns
including one or more parameters; computer program code
for recognizing an incoming URL as matching one of the
predetermined URL patterns; and computer program code for
dispatching the incoming URL to an application for process-
ing based on one of the predetermined URL patterns that
matches the incoming URL.

US 8,543,713 B2

3

Other aspects and embodiments of the invention will
become apparent from the following detailed description
taken in conjunction with the accompanying drawings which
illustrate, by way of example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be readily understood by the following
detailed description in conjunction with the accompanying
drawings, wherein like reference numerals designate like
structural elements, and in which:

FIG. 1is ablock diagram of a computing system according
to one embodiment of the invention.

FIG. 2 is a block diagram of a computing system according
to another embodiment of the invention.

FIG. 3 is a block diagram of a computing system according
to still another embodiment of the invention.

FIG. 4 is a block diagram of a computing system according
to yet still another embodiment of the invention.

FIG. 5 is a flow diagram of a response process according to
one embodiment of the invention.

FIG. 6 is a flow diagram of an application determination
process according to one embodiment of the invention.

FIG. 7 is a schematic illustration of an exemplary data
structure according to one embodiment of the invention.

FIG. 8 is a flow diagram of a compare process according to
one embodiment of the invention.

FIGS. 9A and 9B are flow diagrams of a response process
according to one embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates a computing environment for hosting
web services and applications. The computing resources of
the computing environment can be managed, controlled or
utilized to facilitate improved hosting of web services, such as
hosting of websites.

One aspect of the invention pertains to customized load
balancing in a multi-computer system in view of configura-
tion information. In one embodiment, the configuration infor-
mation can pertain to particular configurations of applica-
tions, partitions and/or resources utilized within the multi-
computer system. As a result, load balancing can be
customized to computing environments and/or business
objectives. For example, load balancing can be customized to
business logic, session data, and/or dynamic site data.

Another aspect of the invention pertains to Universal
Resource Locators (URLs) that can be programmatically
defined and utilized to centralize URL descriptions which can
be utilized by applications provided by the multi-computer
system. The URLs can thus be centrally controlled or man-
aged such that application or processes can be provided in a
manner that is independent of the particular URLs. As one
example, the programmatically defined URLs are able to be
intelligently parsed and/or written. This permits control over
the URLs as well as the ability to render the URLs descriptive
or at least meaningful to recipients of the URLs or applica-
tions that display the URLs.

Embodiments of various aspects of the invention are dis-
cussed below with reference to FIGS. 1-9B. However, those
skilled in the art will readily appreciate that the detailed
description given herein with respect to these figures is for
explanatory purposes as the invention extends beyond these
limited embodiments.

FIG. 1 is a block diagram of a computing system 100
according to one embodiment of the invention. The comput-
ing system 100 typically utilizes a plurality of difterent com-

20

25

30

35

40

45

50

55

60

65

4

puting devices that are interconnected to provide significant
computing resources. In one embodiment, the computing
system 100 can be utilized to support a web-based server
system that can receive incoming requests for particular
webpages, access and/or process data to form appropriate
responses, and then supply appropriate responses back to the
requesters in the form of the particular webpages.

The computing system 100 can utilize a load manager 102.
In general, the load manager 102 operates to distribute a
processing “load” across the different computing resources.
More particularly, the load manager 102 can receive an
incoming request over a network link 104, and evaluate the
incoming request utilizing configuration data 106 to deter-
mine an appropriate application to process the incoming
request. The configuration data 106 can, in one embodiment,
be considered configuration data that serves to customize the
load manager 102 for the computing environment in which
the load manager 102 operates. In the embodiment illustrated
in FIG. 1, the load manager 102 can direct the incoming
request to either application A 108 or application B 110. The
configuration data 106 can be used to control or guide the
manner in which the load manager 102 determines whether
the incoming requests should be directed to the application A
108 or the application B 110. As a result, the load manager
102 is able to intelligently distribute processing loads in
accordance with the computing environment. Although FIG.
1 illustrates the load manager 102 distributing processing
loads to only a pair of applications, it should be understood
that the load manager 102 can distribute processing load to a
large number of computing resources, such as applications,
partitions, processes or devices.

In one embodiment, the configuration data 106 pertains to
or includes predetermined network address patterns, namely,
predetermined universal resource locator (URL) patterns.
The load manager 102 can determine whether the incoming
request 104, which itself is or has a URL, matches any of the
predetermined URL patterns. If it is determined that the
incoming request 104 does match one of the predetermined
URL patterns, the load manager 102 can cause the incoming
request to be directed to the application that has previously
been associated with the predetermined URL pattern.

In one embodiment, the configuration data 106 is provided
as one or more files containing a compiled version of the
predetermined URL patterns. The predetermined URL pat-
terns can be programmatically defined and then compiled into
a binary form (compiled version). In one implementation, to
facilitate rapid matching with respect to the predetermined
URL patterns, the configuration data 106 can be provided in
a data structure suitable for efficient matching. For example,
one data structure suitable for efficient matching is a Trie data
structure.

FIG. 2 is a block diagram of a computing system 200
according to one embodiment of the invention. The comput-
ing system 200 is somewhat similar to the computing system
100 illustrated in FIG. 1. Like the computing system 100, the
computing system 200 typically utilizes a plurality of difter-
ent computing devices that are interconnected to provide
significant computing resources. In one embodiment, the
computing system 200 can be utilized to support a web-based
server system that can receive incoming requests for particu-
lar webpages, access and/or process data to form appropriate
responses, and then supply the appropriate responses back to
the requester in the form of the particular webpages.

The computing system 200 can utilize a load manager 202.
The load manager 202 can receive an incoming request over
a network link 204, and evaluate the incoming request utiliz-
ing configuration file 206 to determine an appropriate appli-

US 8,543,713 B2

5

cation to process the incoming request. The configuration file
206 can contain configuration data that serves to customize
the load manager 202 for the computing environment in
which the load manager 202 operates. The load manager 202
can also direct the incoming request to either application A
208 or application B 210. More particularly, the load manager
202 can direct the incoming request to application A 208 or
application B 210 based on configuration data provided in the
configuration file 206. As a result, the load manager 202 is
able to intelligently distribute processing loads in accordance
with the computing environment.

In one embodiment, the configuration file 206 can contain
predetermined URL patterns that are associated with the
applications 208 and 210. Ifit is determined that the incoming
request does match one of the predetermined URL patterns,
the load manager 202 can cause the incoming request to be
directed to the application that has previously been associated
with the predetermined URL pattern. The application receiv-
ing the incoming request can then process the incoming
request to produce an appropriate response, and then supply
the appropriate response back to the requester in the form of
the particular webpages.

On the other hand, if it is determined that the incoming
request does not match any of the predetermined URL pat-
terns, the load manager 202 can direct the incoming request to
a web server 212 or a web server 214. Here, the computing
system 200 can further include one or more web servers, such
as the web server 212 and the web server 214, which are
suitable to process or forward the incoming request. The web
server 212, 214 may be able to satisfy the incoming request.
Alternatively, the web server 212, 214 may direct the incom-
ing request to any of a number of available applications. For
example, as illustrated in FIG. 2, either of the web servers 212
and 214 can direct the incoming request to application A 216
or application B 218. The manner by which the load manager
202 selects one of the web servers 212 and 214 may not use
the configuration file 206. Instead, the load manager 202 can
merely distribute the incoming requests to a web server so as
to balance the load across the web servers 212 and 214 with-
out regard for the computing environment. Alternatively, the
load manager 212 might use a simplified rule, such as a rule
based on a file extension, to direct the incoming requests to
one of the web servers 212 and 214. For example, if the
incoming request is a request for a specific image file (e.g.,
“jpg” file extension), then the load manager 202 can direct
the incoming request to one of the web servers 212 and 214
for processing, which merely involves retrieval of the image
file.

Although FIG. 2 illustrates the load manager 202 distrib-
uting processing loads to a pair of web servers or several
applications, it should be understood that the load manager
102 can distribute processing loads to a large number of web
servers or applications.

FIG. 3 is a block diagram of a computing system 300
according to one embodiment of the invention. The comput-
ing system 300 includes a basic load balancer 302. The basic
load balancer 302 can receive an incoming request over a
network link 304. The basic load balancer 302 can then deter-
mine whether the incoming request 304 should be directed to
a custom load balancer 306. The custom load balancer can,
for example, pertain to the load manager 102 illustrated in
FIG. 1 or the load manager 202 illustrated in FIG. 2. The
custom load balancer 306 can cause the incoming request to
be directed to a particular application based on configuration
data provided in a configuration file 308. In particular, the
custom load balancer 306 can compare the incoming request
with predetermined URL patterns associated with the con-

20

25

30

35

40

45

50

55

60

65

6

figuration data provided by the configuration file 308, and
then direct the incoming request to either application A 310 or
application B 312 based upon the comparison results. The
application A 310 or application B 312 receiving the incom-
ing request can then itself (or with assistance of other pro-
cessing resources) produce a response that can be returned to
the requester. For example, when the incoming request is a
request for a particular webpage, the application A 310 or
application B 312 can render the requested webpage and
provide the requested webpage to the requester.

The computing system 300 also includes web servers 314
and 316. The basic load balancer 302 can direct a subset of the
incoming requests to the web servers 314 and 316. For
example, if there is a basic rule or class of incoming request
that cannot or need not be processed by the custom load
balancer 306, such incoming requests can be directed to one
ofthe web servers 314 and 316. The web servers 314 and 316
are able to access and utilize application a 318 and application
b 320 if needed to satisfy an incoming request. The web
servers 314 and 316 can thus satisfy the incoming request by
returning a response to the requester. Additionally, the custom
load balancer 306 can also be coupled to the web servers 314
and 316 so that the custom load balancer 306 can optionally
direct an incoming request that does not match any of the
predetermined URL patterns to one of the web servers 314
and 316 for processing.

FIG. 4 is a block diagram of a computing system 400
according to one embodiment of the invention. In one
embodiment, the computing system 400 can be utilized to
support a web-based server system that can receive incoming
requests for particular webpages, access and/or process data
to form appropriate responses, and then supply appropriate
responses back to the requesters in the form of the particular
webpages.

The computing system 400 can utilize a software load
balancer 402. In general, the software load balancer 102
operates to distribute a processing “load” across the different
computing resources. As an example, the load manager 102
illustrated in FIG. 1 can be implemented by the software load
balancer 402. The software load balancer 402 can receive an
incoming request over a network link 404, and evaluate the
incoming request to determine an appropriate application to
process the incoming request. The software load balancer 402
can be programmatically operated to balance the processing
load from incoming requests to various resources of the com-
puting system 400. In particular, the software load balancer
402 can direct an incoming request to either application A 405
or application B 407. The decision by the software load bal-
ancer 402 can be based configuration data (such as system
configuration data). As noted herein, the configuration data
can include or pertain to predetermined patterns.

The applications 405 and 407 manage processing of
incoming requests as supplied by the software load balancer
402. If the application A 405 receives the incoming request,
an application policy A 406 within the application A 405 can
then decide whether the incoming request should be directed
to partition A1l 410 or partition A2 412. The decision by the
application policy A 406 can be based configuration data
(such as system configuration data). Similarly, if the applica-
tion B 407 receives the incoming request, an application
policy B 408 can then decide whether the incoming request
should be directed to partition B1 414 or partition B2 414. The
decision by the application policy B 408 can also be based
configuration data (such as system configuration data). In one
embodiment, the application policy A 406 and the application
policy B 408 pertain to modules or data structures that include
a name and a policy and also use configuration data (e.g., the

US 8,543,713 B2

7

system configuration data). In one embodiment, the partitions
410-416 are also modules or data structures.

For a given incoming request, one of the partitions 410-416
can receive the incoming request and then in turn direct the
incoming request to a destination resource 418-440. In one
embodiment, a destination resource can represent a process
operating on a hardware device within the computing system
400. For example, the computing system 400 can pertain to a
data center and the destination resources 418-440 can be a
physical host, applications (e.g., web applications), or ports
of the data center. The computing system 400 typically uti-
lizes a plurality of different computing devices that are inter-
connected to provide significant computing resources. The
destination resource receiving the incoming request can pro-
cess the incoming request to determine data for a response.
One or more of the destination resource, the partition and the
application policy can form a response to the incoming
request, and the application can cause the response to be
returned to the requester. As shown in FIG. 4, the destination
resources 418-440 can be allocated to particular partitions
410-416. For example, the partition A1 410 has destination
resources 418, 420 and 422 associated therewith. Alterna-
tively, the resources could be shared by different partitions.

In one embodiment, the computing system 400 imple-
ments a software load balancer according to one embodiment
of the invention. In such an embodiment, the software load
balancer 402 represents a front-end interface to the software
load balancer. Also, in this embodiment, the application poli-
cies 406 and 408 and the partitions 410-416 are all part (e.g.,
modules or data structures) of the software load balancer. Still
father, in this embodiment, the destination resources 418-440
can be considered separate or part of the software load bal-
ancer.

FIG. 5 is a flow diagram of a response process 500 accord-
ing to one embodiment ofthe invention. The response process
500 is processing that can be performed by any of the com-
puting systems 100, 200, 300 or 400 discussed above. The
response process 500 can begin with a decision 502 that
determines whether a request has been received. For example,
the request can be received by a computing system over a
network and seek a response containing certain information.
When the decision 502 determines that a request has not been
received, then the response process 500 waits until a request
has been received. In other words, the response process 500
can be deemed to be invoked once a request is received.

In any event, once the decision 502 determines that a
request has been received, the incoming request can be parsed
504. For example, the incoming request can be in the form of
a network address (e.g., URL) for a webpage containing
certain information. The network address can be parsed 504
by identifying the multiple segments of the URL. Next, an
appropriate application to process the incoming request can
be determined 506. For example, based upon one or more
segments that have been parsed 504 from the incoming
request, it can be determined which of a plurality of available
applications is appropriate to process the incoming request.
The available applications can, in one embodiment, pertain to
data structures used by the software load balancer. The
incoming request can then be directed to an appropriate appli-
cation where the incoming request can be parsed 518.
Although the incoming request was parsed 504 to determin-
ing 506 the appropriate application to process the incoming
request, the appropriate application, upon receiving the
incoming request, can itself parse 508 the incoming request.
In this regard, the parsing 508 of the incoming request by the
determined application can be different than the parsing 504.
For example, the application can parse the incoming request

20

25

30

35

40

45

50

55

60

65

8

to a greater extent so as to further understand the incoming
request. The parsing 508 may identify one or more segments
that correspond to parameters which may be objects. Next,
the application can process the incoming request to produce
510 aresponse. The application that processes the request can
be provided locally (e.g., within the load balancer or remotely
with an external application). Thereafter, the response can be
provided 512 to the requester. Following the block 512, the
response process 500 can return to repeat the decision 502 and
subsequent blocks so that the response process 500 can simi-
larly process other incoming requests.

FIG. 6 is a flow diagram of an application determination
process 600 according to one embodiment of the invention.
The application determination process 600 can, for example,
be utilized as processing performed by the block 506 of the
response process 500 illustrated in FIG. 5. The application
determination process 600 can compare 602 segments of the
incoming request to predetermined patterns. The predeter-
mined patterns can be provided in the form of a data structure
that facilitates match processing by the application determi-
nation process 600. After the segments of the incoming
request have been compared 602 to the predetermined pat-
terns, a decision 604 can determine whether the segments of
the incoming request match any of the predetermined pat-
terns. When the decision 604 determines that the segments
match one of the predetermined patterns, an application asso-
ciated with the matching predetermined pattern can be iden-
tified 606. Then, the incoming request can be directed 608 to
the identified application. Following the block 608, the appli-
cation determination process 600 is complete with the appli-
cation to process the incoming request having been deter-
mined. Thereafter, the processing can return to the block 508
of the response process 500 illustrated in FIG. 5.

Alternatively, when the decision 604 determines that the
segments of the incoming request do not match any of the
predetermined patterns, the incoming request can be directed
610 to a web server. The web server can then operate to
produce 612 a response to the incoming request. Following
the block 612, the processing can proceed to block 512 of the
response process 500 so that the response can be provided 512
to the requester.

As noted above, a data structure can be provided to con-
figure or influence request processing. As one example,
assume that an exemplary data structure is to include the
following set of predetermined patterns:

/<Store>
/<Store>/browse/<Path>
/<Store>/help/<Path>
/<Store>/product/<Part>

These predetermined patterns can respectively correspond to
a website application having a home webpage, a browse
webpage, a help webpage, and a product webpage. Each of
the paths is made up of a combination of segments separated
by delimiters (“/”’). Each segment is either a parameter or a
path. The parameter or path can be static or dynamic. In this
example, “<Store>" and “<Part>" are dynamic parameters,
and “<Path>" is a dynamic path. Also, “browse”, “help” and
“product” are all static parameters.

FIG. 7 is a schematic illustration of an exemplary data
structure 700 according to one embodiment of the invention.
The exemplary data structure 700 can represent one imple-
mentation of the exemplary data structure that represents the
set of predetermined patterns in the above example. The

US 8,543,713 B2

9

exemplary data structure 700 is a Trie data structure having
branch nodes 702-710 and element nodes 712-716. More
particularly, the exemplary data structure 700 includes an
initial branch node 702, a home branch/element node 704, a
browse branch node 706, a help branch node 708, a product
branch node 710, a browse element node 712, a help element
node 714, and a product element node 716. In this example,
the branch/element node 704 can serve as either a branch
node or an element node. Use of a Trie data structure serves to
facilitate rapid, simultaneous searching for predetermined
patterns that match an incoming request.

FIG. 8 is a flow diagram of'a compare process 800 accord-
ing to one embodiment of the invention. The compare process
800 is, for example, processing suitable for implementing the
block 602 of the application determination process 600 illus-
trated in FIG. 6.

The compare process 800 can identify 802 URL segments
of'the incoming request. Typically, the incoming request is a
URL having a plurality of URL segments. One or more of the
identified URL segments can pertain to parameters, and one
of the identified URL segments can pertain to a path (which
may include one or a series of segments). The parameters can
be either static or dynamic. A dynamic parameter can also be
referred to as an object (or programming object).

Next, a first URL segment is selected 804 from the URL
segments that have been identified 802. Then, it is determined
806 whether the selected URL segment matches a corre-
sponding element of at least one predetermined pattern. Typi-
cally, the URL segment is simultaneously compared to a
plurality of different elements associated with a plurality of
predetermined patterns. By simultaneously comparing the
URL segment to these various elements of the plurality of
predetermined patterns, the compare process 800 can rapidly
determine whether a matching pattern exists. After it has been
determined 806 whether the selected URL segment matches
a corresponding element of at least one predetermined pat-
tern, a decision 808 can determine whether there has been an
element match. When the decision 808 determines that there
is no matching element for the selected URL element, the lack
of'a matching predetermined pattern can be indicated 810. At
this point, in the case in which there is no match for the
selected URL element, the compare process 800 ends with no
match being found.

On the other hand, when the decision 808 determines that
there is a match for the selected URL element, a decision 812
can determine whether there are more URL segments to be
processed. When the decision 812 determines that there are
more URL segments to process, the compare process 800
returns to repeat the block 804 so that a next URL element can
be selected and similarly processed. Alternatively, when the
decision 812 determines that there are no more URL seg-
ments to process, the matching predetermined pattern can be
identified 814. In this case, the compare process 800 ends
with the matching predetermined pattern being identified
814.

FIGS. 9A and 9B are flow diagrams of a response process
900 according to one embodiment of the invention. The
response process 900 can, for example, pertain to processing
performed utilizing the computing system 300 illustrated in
FIG. 3.

The response process 900 can begin with a decision 902
that determines whether a request has been received. When
the decision 902 determines that a request is not yet been
received, the response process 900 can await receipt of a
request. The response process 900 can thus be deemed
invoked when a request is received. In any event, once the
decision 902 determines that a request has been received, the

20

25

30

35

40

45

50

55

60

65

10

incoming request can be examined 904 for basic load balanc-
ing. As an example, in FIG. 3, the basic load balancer 302 can
perform the basic load balancing. In one embodiment, the
basic load balancing can determine whether to perform cus-
tom load balancing with respect to the incoming request.
Hence, after examining 904 the incoming request for basic
load balancing, a decision 906 can determine whether custom
load balancing is to be performed.

When the decision 906 determines that custom load bal-
ancing is to be performed, additional processing can be car-
ried out. In one implementation, the additional processing can
be associated with processing performed by the custom load
balancer 306 and the associated one or more applications 310
and 312 illustrated in FIG. 3. In particular, the incoming
request can be parsed 908 to identify segments as discussed
above. Next, an appropriate application can be determined
910. Here, the segments of the incoming request can be com-
pared against a plurality of predetermined patterns, and when
a match is found, the application corresponding to the match-
ing predetermined pattern can be determined 910.

Once the appropriate application has been determined 910,
the incoming request can be directed 912 to the determined
application. The determined application can then parse 914
the incoming request to determine an appropriate partition.
Although FIG. 3 does not illustrate partitions, FIG. 4 illus-
trates how partitions can be utilized below the appropriate
application to further manage utilization of processing
resources being provided by the computing system. After the
appropriate partition is determined, the appropriate applica-
tion can then direct 916 a processing request to the deter-
mined partition. In other words, the appropriate application
can request certain processing be performed by the deter-
mined partition on its behalf. The partition can in turn deter-
mine 918 a resource (processing resource) to process the
processing request. The processing request can then be
directed 920 the determined resource. The determined
resource can then return 922 the processing results to the
determined application via the determined partition. A
response to the incoming request can then be formed 924 at
the determined application utilizing the processing results
that have been provided by the determined partition. There-
after, the response can be returned 926 to the requester. Fol-
lowing the block 926, in the case in which custom load bal-
ancing is performed, the response process 900 can end.

On the other hand, when the decision 906 determines that
custom load balancing is not to be performed, the incoming
request can be directed 928 to a selected web server. Then, a
response to the incoming request can be determined 930 at the
selected web server. Following the determination 930 of the
response to the incoming request, the response process 900
can proceeded to return 926 the response to the requester. In
this case, custom load balancing is not performed, but a
response can nevertheless be returned to the requester.

According to one aspect of certain embodiments of the
invention, predetermined paths can be used to mange utiliza-
tion of available processing resources (e.g., load balancing).
These predetermined paths can be described in configuration
data that can be used to customize operation of a load bal-
ancer. The configuration data can be provided as a data struc-
ture that facilitates match processing. One example of a data
structure is a Trie tree having a tree structure with branch
nodes and element nodes.

In one embodiment, predetermined patterns of a website
that are to be supported by a computing system can be pro-
grammatically defined. Thereafter, applications or processes
operating on requests for webpages of the website can utilize
programmatically defined predetermined patterns that parse

US 8,543,713 B2

11

or write network addresses (e.g., URLs) for such webpages.
Moreover, in one embodiment, the programmatically defined
predetermined patterns can be compiled into configuration
data (e.g., data structure, such as a Trie) which can be
searched for matching of incoming requests to the predeter-
mined patterns.

As noted herein, one aspect of the invention pertains to
programmatically defining URLs. One embodiment of pro-
grammatically defining the predetermined patterns is as fol-
lows. The programmatic definitions are able to be used for not
only generating URLs but also recognizing them. A syntax
for illustration can describe a pattern as follows:

name = {
url = “/some/path”;
b

This gives the pattern a name so that the software can refer to
it and defines the structure of the URL as “/some/path”. Many
URLSs need to define parameters to a web application. The
definition can also include one or more parameters. As an
example, a parameter in the path can be defined by:

STORE = {
name = store;
type = StoreParameter;
5
home = {
url = “<STORE>/home”;
i

The resulting pattern can describe the pattern for a homepage
as something that indicates the store followed by “home”. For
example, the resulting pattern can represent URLs such as
“/us/home”, “/uk/home” or “us-eduw/home” which can repre-
sent home pages for different stores (based on countries,
market or classification). Similar constructs can be used to
describe optional/required parameters, query string (e.g.,
“?sort=top-sellers”) parameters, and their types.

A “refactoring” or “composition” technique can be used to
add an additional feature. Consider the following example of
refactoring:

patternl = {
url = “/AppleStore/WebObjects/Mercury.woa/some/path”;
¥

pattern2 = {
url = “/AppleStore/WebObjects/Mercury.woa/different/path”;
%

might be written as:

MERCURY = {
fragment = “/AppleStore/WebObjects/Mercury.woa”;
¥

patternl = {
url = “<MERCURY>/some/path”;

pattern2 = {
url = “<MERCURY >/different/path”;
b

20

25

30

35

40

45

50

55

60

65

12

Hence, common path elements can be expressed by factoring
them out and building the final representation through com-
position.

Advantageously, software programs can now refer to these
patterns in URL generation. For example, a software program
that writes a URL can merely specify a pattern and a param-
eter, such as:

 . . .

Here, the pattern to be emitted is named is “home” and the
parameter is a “store” parameter. The actual representation of
this URL is encapsulated by the URL system and the software
code is referring to it symbolically. If the URL pattern sub-
sequently changes, the call sites in software programs need
not change (unless additional parameters are now required).
For example, if the pattern is redefined as:

home = {
url = “<STORE>";

>

URLs would be emitted and recognized as: “/us”, “/uk” or
“/us-edu”. However, if the pattern is subsequently changed to
the pattern of:

home = {
url = “home?store=<STORE>";
%

then the URLs would be emitted and recognized as:
“/home?store=us”, “/home?store=uk” or ‘“/home?store=us-
edu”. The dispatch mechanism also has access to these pat-
terns and can recognize “/us/home” as referring to the
“home” pattern with “us” providing the store parameter.

The defined patterns can further describe how to dispatch
the URL. For example, additional metadata can be attached to
the URL definition. This might tell the software program how
to dispatch the recognized URL (e.g., what class/page it rep-
resents) Moreover, documentation could also be attached to
the definition.

The defined patterns can also be used with URL forwarding
or URL translation. In one embodiment, legacy URLs can be
described with some additional metadata:

old-pattern = {

url = “/1-800-MY-APPLE/WebObjects/AppleStore.woa”;
parameters = {

// AppleStore really means “us”

store = us;

i

rewrite = home;

>

and then provides the URL they now map to:

home = {
url = “<STORE>/home”;
%

This approach can be used with URLs that get deprecated or
change over time and leverages the URL pattern definitions
for both recognizing old URLs and understanding the format
of the new URLs.

US 8,543,713 B2

13

In another embodiment, canonicalization rules can be used
to consolidate multiple addresses for the same page. Some-
times a website has several different ways of addressing the
same page. For example, the following URLs can all lead to
the same page:

http://store.apple.com/us/ipod

http://store.apple.com/us/browse’/home/family/ipod

http://store.apple.com/1-800-MY-APPLE/WebObjects/

AppleStore.woa?family=ipod

http://store.apple.com/1-800-MY-APPLE/WebObjects/

AppleStore.woa/wa/

RSLID?nnmm=browse&node=home/family/ipod
The first URL is the most desirable because it is the shortest
and clearest. The rewriting technique described above can be
used to describe that the latter two legacy URLs as mapping
to the first URL. However, another approach would be to
describe that the “browse” pattern as having some canonical
forms based on the “path” parameter:

browse = {

url = “<STORE>/browse/<PATH>";
canonical-form = {

path = {

“home/family/ipod” = {

pattern = ipod;

b
ipod = {

url = “<STORE>/ipod™;

>

Here the metadata attached to the “browse” rules says that if
the path is equal to “home/family/ipod” then it should substi-
tute the ipod pattern. Advantageously, a single URL definition
can be use in this manner across various sites. The system can
automatically substitute the canonical URL based on the
parameters. If a usage lands on a URL that has a better
canonical form, the application can automatically redirect
them to the canonical URL. As an additional benefit, search
engine optimization operates when a single URL is used for a
single page.

In one embodiment, the parameters within a defined pat-
tern may be complex types that are serialized into and out of
the URL. The encapsulation allows us to symbolically name
our patterns and parameters on the program side and generate
the appropriate URLs. For example, the parameter for the
home page is called “store” to the program, but might be
rendered in the URL path (e.g., “/us’home™) or as a query
string parameter (e.g., “/home?s=us”). In both cases, the rep-
resentation in the URL is encapsulated by the URL system
and not of any concern to the calling software program.
Hence, the parameters of a defined pattern can be complex
values or objects (i.e., programming language objects) which
can be passed in as parameters and extracted when recog-
nized. For example, one representation of a store might be a
Store object:

Store {
String name;

The such case, the current Store object is passed in (as
opposed to the string “us”). The type of the parameter:

20

25

30

40

45

50

55

60

65

14

STORE = {
name = store;
type = StoreParameter;

can indicate that we want the name to be put in th URL and
when recognized, lookup the store with that name.

Additionally, in one embodiment, the system may provide
some automatic features based on the machine description of
the URL patterns. One automatic feature is source code docu-
mentation. Documentation for non-annotated source code
can be automatically generated based on the patterns and their
arguments. If the pattern definitions provide some annota-
tions, such can also be included in the documentation.
Another automatic feature is an interactive URL debugger
that can assist in troubleshooting parsing and generation
issues.

Advantageously, any URL can be described using the pro-
grammatic definitions. Once defined, the patterns can be used
for both generation and recognition of URLs. Callers never
need to worry about the exact format of the URLs because
that is encapsulated. Additionally, the features like canonical-
ization and complex parameter types remove the need to
manually write code that would do that for you. The same
pattern can be used for both the generation and recognition of
the URLs. These patterns can be compiled into state
machines. In one implementation, any number of URL pat-
terns can be recognized with constant cost (based only on the
length of the URL rather than the number of patterns).

The various aspects, embodiments, implementations or
features of the invention can be used separately or in any
combination.

The invention can be implemented by software, hardware,
or acombination of hardware and software. The invention can
also be embodied as computer readable code on a computer
readable medium. The computer readable medium is any data
storage device that can store data which can thereafter be read
by a computer system. Examples of the computer readable
medium generally include read-only memory and random-
access memory. More specific examples of computer read-
able medium are tangible and include Flash memory,
EEPROM memory, memory card, CD-ROM, DVD, hard
drive, magnetic tape, and optical data storage device. The
computer readable medium can also be distributed over net-
work-coupled computer systems so that the computer read-
able code is stored and executed in a distributed fashion.

The many features and advantages of the present invention
are apparent from the written description. Further, since
numerous modifications and changes will readily occur to
those skilled in the art, the invention should not be limited to
the exact construction and operation as illustrated and
described. Hence, all suitable modifications and equivalents
may be resorted to as falling within the scope of the invention.

What is claimed is:

1. A method for processing a request at a computing system
having a plurality of computers coupled to a network, the
computing system supporting a plurality of applications, said
method comprising:

receiving an incoming request line comprising a Universal

Resource Locator(URL);

parsing the incoming request to determine one or more

segments of the incoming request line;

identifying a set of URL segments within the URL pertain-

ing to the incoming request line;

US 8,543,713 B2

15

determining whether the set of URL segments match cor-
responding segments of any of a plurality of predeter-
mined URL patterns which are provided in a data struc-
ture which includes a Trie, with the different segments of
the plurality of predetermined URL patterns being
branches or endpoints in the Trie;
determining an appropriate one of the applications to
receive the incoming request line based on the matching
one of the predetermined URL patterns;
directing the incoming request line to the determined appli-
cation based on at least one of the determined segments
of the incoming request line;
receiving a response to the incoming request line from the
determined application; and
responding to the incoming request line with the response
provided by the determined application.
2. The method as recited in claim 1, wherein said deter-
mining of the appropriate one of the applications to receive
the incoming request line comprises:
determining whether one or more of the determined seg-
ments of the incoming request line match any of a plu-
rality of predetermined patterns; and
determining the appropriate one of the applications to
receive the incoming request line based on the matching
of'one or more of the determined segments to one of the
predetermined patterns.
3. The method as recited in claim 1, wherein said deter-
mining whether the set of the URL segments match corre-
sponding segments of any of the plurality of predetermined
URL patterns operates to simultaneously evaluate the prede-
termined URL patterns.
4. The method as recited in claim 1, wherein the predeter-
mined URL patterns are programmatically defined and com-
piled into a data structure.
5. The method as recited in claim 1, wherein the computing
system is a data center that hosts at least one website, wherein
the incoming request line is a request for information pertain-
ing to the website.
6. The method as recited in claim 5, wherein the applica-
tions are web applications.
7. A computing system having a plurality of server com-
puters for supporting a website, comprising:
aprocessor and a memory in each of the plurality of server
computer,
a plurality of applications configured to interface with a
plurality of processes operable on a set of the server
computers; and
a load balancer operatively connected to direct an incom-
ing request including a URL to one of said applications,
wherein the load balancer is configured to,
identify a set of URL segments within the URL pertain-
ing to the incoming request,

determine whether the set of URL segments match cor-
responding segments of any of a plurality of predeter-
mined URL patterns stored in a data structure which
includes a Trie, with the different segments of the
plurality of predetermined patterns being branches or
endpoints in the Trie, and

determine the appropriate one of the applications to
receive the incoming request based on the matching
one of the predetermined URL patterns.

8. The computing system as recited in claim 7, wherein said
load balancer simultaneously compares the incoming request
against the set of predetermined patterns to provide the com-
parison data.

9. The computing system as recited in claim 7, wherein the
set of predetermined patterns are provided in a data structure.

20

25

30

35

45

50

55

60

65

16

10. The computing system as recited in claim 9, wherein
the data structure allows said load balancer to simultaneously
compare the incoming request against the set of predeter-
mined patterns.
11. The computing system as recited in claim 7, the com-
paring of the incoming request against the set of predeter-
mined patterns by said load balancer comprises determining
whether a URL corresponding to the incoming request
matches any of the predetermined patterns.
12. The computing system as recited in claim 7, wherein
the server computers are arranged into different partitions,
and wherein each of said applications are operable to select
and interface with a subset of the partitions.
13. The computing system as recited in claim 12, wherein
the partitions are configured to interface with the processes
operating on the server computers.
14. The computing system as recited in claim 12, wherein
said applications are configured to parse the incoming request
against a set of predetermined patterns to determine the one of
the partitions to receive the incoming request.
15. The computing system as recited in claim 14, wherein
the parsing identifies a plurality of segments of the incoming
request, and wherein at least one of the segments is a param-
eter pertaining to a programming language object.
16. The computing system as recited in claim 7, wherein
said load balancer receives configuration data embodying the
set of predetermined patterns.
17. The computing system as recited in claim 16, wherein
the predetermined patterns are programmatically defined and
compiled into the configuration data.
18. A computer readable medium, which is non-transitory,
including at least executable computer program code tangibly
embodied therein for processing a request to a computing
system coupled to a network, where the computing system
supports a plurality of applications, said computer readable
medium comprising:
computer program code for receiving an incoming request
line comprising a Universal Resource Locator;

computer program code for parsing the incoming request
line containing a URL to determine one or more seg-
ments of the incoming request line;

computer program code for identifying a set of URL seg-

ments within the URL pertaining to the incoming
request line;
computer program code for determining whether the set of
URL segments match corresponding segments of any of
a plurality of predetermined URL patterns which are
provided in a data structure which includes a Trie, with
the different segments of the plurality of predetermined
patterns being branches or endpoints in the Trie;

computer program code for determining an appropriate
one of the applications to receive the incoming request
based on the matching of one of the predetermined URL
patterns; and

computer program code for directing the incoming request

line to the determined application.

19. The computer readable medium as recited in claim 18,
wherein the predetermined patterns are programmatically
defined and compiled into a data structure.

20. The computer readable medium as recited in claim 19,
wherein said computer readable medium further comprises:

computer program code for receiving a response to the

incoming request line from the determined application;
and

computer program code for responding to the incoming

request line with the response provided by the deter-
mined application.

US 8,543,713 B2

17

21. A computer readable medium, which is non-transitory,
including at least executable computer program code tangibly
embodied therein for processing universal resource locators,
said computer readable medium comprising:

computer program code for parsing an incoming request

containing a URL to determine one or more segments of
the incoming request;

computer program code for identifying a set of URL seg-

ments within the URL pertaining to the incoming
request;
computer program code for determining whether the set of
URL segments match corresponding segments of any of
a plurality of predetermined URL patterns which are
provided in a data structure which includes a Trie, with
the different segments of the plurality of predetermined
patterns being branches or endpoints in the Trie; and

computer program code for dispatching the incoming URL
to an application for processing based on one of the
predetermined URL patterns that matches the incoming
URL.

22. The computer readable medium as recited in claim 21,
wherein said computer readable medium further comprises:
computer program code for generating a URL in accordance
with one of the predetermined URL patterns.

#* #* #* #* #*

—

5

20

25

18

