

J. Briggs,

Piano Stool.

N^o 58,979.

Patented Oct 23, 1866.

Fig. 2.

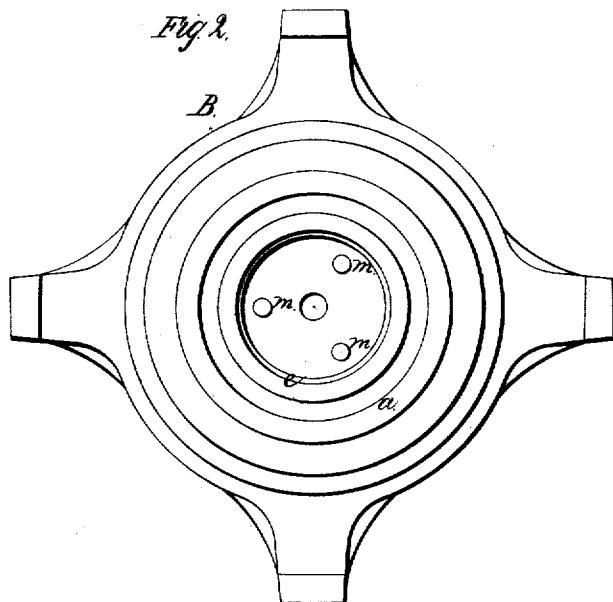
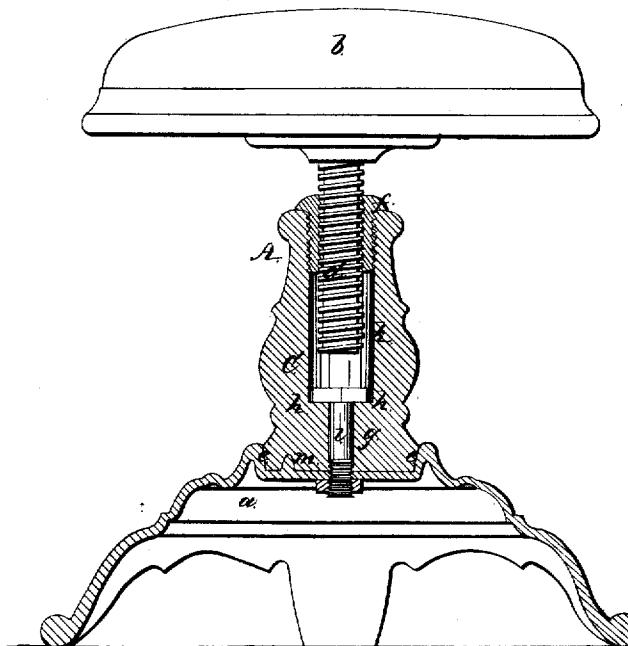



Fig. 1.

Witnesses:

M. W. Frothingham
S. M. McIntire.

Inventor:

Joshua Briggs
by his Atty
C. W. & Son.

UNITED STATES PATENT OFFICE

JOSHUA BRIGGS, OF PETERBOROUGH, NEW HAMPSHIRE.

IMPROVED PIANO-STOOL.

Specification forming part of Letters Patent No. 58,979, dated October 23, 1866.

To all whom it may concern:

Be it known that I, JOSHUA BRIGGS, of Peterborough, in the county of Hillsborough and State of New Hampshire, have invented an Improved Piano-Forte Stool; and I do hereby declare that the following, taken in connection with the drawings which accompany and form part of this specification, is a description of my invention, sufficient to enable those skilled in the art to practice it.

The invention relates to the construction of piano-forte stools, and to that class of the same in which the seat is connected to the pillar or stand by a long screw in such manner that by rotation of the seat it can be adjusted as to height to the requirements of the performer.

The object of the invention is to render such stools more portable and durable, and to have the parts more firmly united, than is usual with the common stools.

The invention consists in the employment of a pillar of wood resting in a depressed seat in a metal base, to which it is confined by a screw-bolt, and having inserted in its top a metal nut, in which the screw-spindle of the seat works; also, in the construction and mode of applying the spindle-nut; also, in constructing the metal base with pins, which keep the pillar from turning with respect to the base; also, in the construction of the pillar, or the method of inserting the base-bolt within the same.

The drawings represent a stool embodying my invention, A showing a vertical central section of the pillar and base, with the seat and its screw-spindle in elevation, and B a top view of the base.

a denotes the base; *b*, the seat; *c*, the pillar, and *d* the screw-spindle. The base *a* is a metal casting, having in its upper surface a depressed surface, *e*, in which depression the foot of the pillar *c* enters, as seen at A. This pillar is made of wood, and is bored out to receive the spindle-nut *f*, and to allow the spindle to work vertically as the seat is turned.

The pillar is not bored entirely through of the size to admit the nut and spindle, but at its lower end has a bolt-hole bored through

it, and extending up to the larger bore, as seen at *g*, the shoulder formed at *h* serving as a seat for the head of the bolt *i*, by which the base and pillar are secured together.

The hole bored for the spindle and nut enables the bolt *i* to be entered from the top of the pillar and pushed through the bolt-holes in the pillar and base, after which the nut is screwed on below, as seen in the drawings.

The nut *f* is made with a wood-screw upon its outer surface, and the spindle-hole *k* is bored of such diameter as to permit the nut to be screwed into its top, the threads of the screw cutting into the wood, and thus wedging the nut tightly and permanently in position.

To enter the nut, a wrench, having a short male thread cut on a lateral projection from one of its ends, is screwed into the nut, so that by the leverage afforded by the wrench-handle the nut is brought into place with its flange resting on the top surface of the pillar, as seen in the drawings, the nut being permanently joined to the pillar by the operation.

The seat *b* and spindle *d* are constructed and connected in the usual manner, the seat being elevated or lowered by rotating it, as is well understood.

Turning the seat to elevate it has a tendency to rotate the pillar and loosen the bolt *i*. To obviate this I cast upon the surface *e* of the base a series of pins, *m*, as seen at B, sinking holes for the entrance of these pins into the bottom surface of the pillar.

It will be obvious that when the nut on the bolt is screwed up tightly the pins will prevent any rotation of the seat *b* from effecting any movement of the pillar with reference to the base. By this construction and method of connection of the parts of the stool it may be easily dismembered for packing, and the parts may be packed very compactly.

The presence of the spindle-nut *f* in the end of the pillar prevents the bolt from being shaken out, and the parts may be arranged and fastened together with any ordinary skill.

The use of the wooden pillar materially decreases the weight of the stool and lessens its cost.

I claim—

1. Combining with the pillar *c* the spindle-nut *f*, when made with a wood-screw cut upon its outer surface, for securing it permanently to the pillar, substantially as described.

2. The combination of the pillar *c*, base *a*, and bolt *i*, when the pillar is constructed to receive the bolt through the tube in which the screw-spindle plays, and with a seat for

the head of the bolt at the bottom of said tube, substantially as set forth.

In witness whereof I have hereunto set my hand this 31st day of January, A. D. 1866.

JOSHUA BRIGGS.

Witnesses:

ALBERT S. SCOTT,
EZRA M. SMITH.