发明名称
全量程红外气体探测器及其测量方法

摘要
本发明提供一种全量程红外气体探测器及其测量方法，所述气体探测器包括设置有滤光片的金属外壳和设置有探测器的基座，金属外壳和基座封装在一起，金属外壳上设置有四个不同波长的滤光片，探测器包括有一个参考热电堆芯片和三个相同的测量热电堆芯片，第一滤光片与参考热电堆芯片构成参考通道，其余三个滤光片与三个测量热电堆芯片构成三路测量通道。所述测量方法是将被测气体的全量程设置成三个被测量程，并使三路测量通道分别对应一个被测量程；最后，输出测量通道获取的测量信号值和参考通道获取的基本值，该气体探测器具有使用方便、实用性强、精度高的优点，该测量方法简单实用，拓宽了探测器的应用空间。
1. 一种全过程红外气体探测器，包括设置有滤光片的金属外壳和设置有探测器的基座，所述金属外壳和所述基座封装在一起，其特征在于：所述金属外壳上设置有 N+1 个不同波长的滤光片。所述探测器包括有一个参考热电堆芯片和 N 个相同的测量热电堆芯片。其中，第一滤光片与所述参考热电堆芯片构成参考通道，其余 N 个滤光片分别与 N 个测量热电堆芯片一一对应并构成 N 路测量通道；将被测气体的全量程设置成 N 个被测量程，N 路测量通道分别对应一个被测量程；N 是大于 3 的自然数。

2. 根据权利要求 1 所述的全过程红外气体探测器，其特征在于：所述金属外壳上设置有四个不同波长的滤光片。所述探测器包括有一个参考热电堆芯片和三个相同的测量热电堆芯片，其中，第一滤光片与所述参考热电堆芯片构成参考通道，其余三个滤光片分别与三个测量热电堆芯片一一对应并构成三路测量通道。

3. 权利要求 1 所述的全过程红外气体探测器的测量方法，其特征在于：将被测气体的全量程设置成 N 个被测量程，并根据每路测量通道的滤光片波长，使 N 路测量通道分别对应一个被测量程；然后，通过 N 路测量通道获取 N 个测量信号值，通过所述参考通道获取一个基本参考值；最后，输出被测气体的 N 个测量信号值和一个基本参考值；其中，N 是大于 3 的自然数。

4. 根据权利要求 3 所述的全过程红外气体探测器的测量方法，其特征在于：根据 N 个测量信号值，判断并确定最适合所述被测气体探测的被测量程，再查找与所述被测量程对应的测量通道，并输出该测量通道获取的测量信号值和所述参考通道获取的基本值。
全量程红外气体探测器及其测量方法

技术领域
[0001] 本发明涉及一种红外气体探测器，具体地说，涉及了一种全量程红外气体探测器及其测量方法。

背景技术
[0002] 目前，红外气体探测器无法实现全量程测量，即，无法达到从 ppm 级到 100%VOL 级的探测；如，对于大多数含有碳氢键气体的检测，滤光片在 3.4 微米处都有一个强吸收峰，换句话说，测量含有碳氢键气体所采用的测量通道，其滤光片通常选择 3.4 微米波长的滤光片，但是，其只适合某一量程或某一浓度范围的探测，而超出此量程或此浓度范围的探测，探测的分辨率将难以满足实际需要；不难看出，现有的红外气体探测器在 IR 仪器检测领域的使用，总是限于探测某一量程或某一浓度范围的气体，而难以满足同一气体全量程探测的使用需求。
[0003] 现有的红外气体探测器，其探测范围总是局限在高浓度的探测，无法满足低浓度小量程范围的测量；若想满足不同量程的需求，就需多个不同量程的探测器，这样大大增加了成本，而且选择和使用都很麻烦。
[0004] 为了解决以上存在的问题，人们一直在寻求一种理想的技术解决方案。

发明内容
[0005] 本发明的目的是针对现有技术的不足，从而提供了一种设计巧妙、使用方便、实用性强、精度高、可靠性高的全量程红外气体探测器，还提供了一种全量程红外气体探测器的测量方法。
[0006] 为了实现上述目的，本发明所采用的技术方案是：一种全量程红外气体探测器，它包括设置有滤光片的金属外壳和设置有探测器的基座，所述金属外壳和所述基座封装在一起，其中，所述金属外壳上设置有 N+1 个不同波长的滤光片，所述探测器包括有一个参考热电堆芯片和 N 个相同的测量热电堆芯片，其中，第一滤光片与所述参考热电堆芯片构成参考通道，其余 N 个滤光片分别与 N 个测量热电堆芯片一一对应并构成 N 路测量通道，N 是大于 3 的自然数。
[0007] 基于上述，所述金属外壳上设置有四个不同波长的滤光片，所述探测器包括有一个参考热电堆芯片和三个相同的测量热电堆芯片，其中，第一滤光片与所述参考热电堆芯片构成参考通道，其余三个滤光片分别与三个测量热电堆芯片一一对应并构成三路测量通道。
[0008] 一种全量程红外气体探测器的测量方法，在于，将被测气体的全量程设置成 N 个被测量程，并根据每路测量通道的滤光片波长，使 N 路测量通道分别对应一个被测量程；然后，通过 N 路测量通道获取 N 个测量信号值，通过所述参考通道获取一个基本参考值；最后，输出被测气体的 N 个测量信号值和一个基本参考值，其中，N 是大于 3 的自然数。
[0009] 基于上述，根据 N 个测量信号值，判断并确定最适合所述被测气体探测的被测量
程，再查找与所述被测量速对应的测量通道，并输出该测量通道获取的测量信号值和所述参考通道获取的基值值。

[0010] 本发明相对现有技术具有突出的实质性特点和显著进步，具体的说，该全量程红外气体探测器在不改变探测器整体结构和封装结构的基础上，只需更换不同波长的滤光片，并将不同被测气体类型的测量热电堆芯片换成相同气体类型的测量热电堆芯片，即可实现全量程段范围内的测量，满足从 PPM 级到 100% VOL 级的测量，其具有设计巧妙、使用方便、实用性强、精度高、可靠性高的优点。该测量方法简单实用，满足了同一气体全量程探测的使用需求，拓宽了探测器的应用空间。

附图说明

[0011] 图 1 是本发明的结构示意图。

具体实施方式

[0012] 下面通过具体实施方式，对本发明的技术方案做进一步的详细描述。

[0013] 如图 1 所示，一种全量程红外气体探测器，它包括设置有滤光片 3 的金属外壳 1 和设置有探测器 4 的基座 2，所述金属外壳 1 和所述基座 2 在同一气体环境下封装在一起，其中，所述金属外壳 1 上设置有 N+1 个不同波长的滤光片 3，所述探测器 4 包括有一个参考热电堆芯片 6 和 N 个相同的测量热电堆芯片 5，其中，第一滤光片 3 与所述参考热电堆芯片 6 构成参考通道，其余 N 个滤光片 3 分别与 N 个测量热电堆芯片 5 一一对应并构成 N 路测量通道；N 是大于 3 的自然数。

[0014] 具体地说，在本实施例中，所述金属外壳 1 上设置有四个不同波长的滤光片 3，所述探测器 4 包括有一个参考热电堆芯片 6 和三个相同的测量热电堆芯片 5，其中，第一滤光片 3 与所述参考热电堆芯片 6 构成参考通道，其余三个滤光片 3 分别与三个测量热电堆芯片 5 一一对应并构成三路测量通道；三路测量通道的三个不同波长的滤光片，是针对同一被测气体的不同测量程而专门设计的；针对所述被测气体，所述参考通道的滤光片具有另一特定波长；同时，采用与所述被测气体具有相同吸收光谱的探测器来测定所述被测气体对红外光的吸收，换句话说，探测器的测量热电堆芯片用来测量所述被测气体，它提供了测量信号值，而探测器的参考热电堆芯片用来忽略所述被测气体，它提供了一个基本参考值。需要特别说明的是，在本实施例中，参考热电堆芯片 6 和三个测量热电堆芯片 5 是相同的热电堆芯片。

[0015] 一种全量程红外气体探测器的测量方法，在于：将被测气体的全量程设置为 N 个被测量程，并根据每路测量通道的滤光片波长，使 N 路测量通道分别对应一个被测量程；然后，通过 N 路测量通道获取 N 个测量信号值，通过所述参考通道获取一个基本参考值。最后，输出被测气体的 N 个测量信号值和一个基本参考值；其中，N 是大于 3 的自然数。

[0016] 具体地说，在本实施例中，N 选为 4，当输出被测气体的三个测量信号值和一个基本参考值后，再由应用其探测器的后续处理电路及其程序，根据三个测量信号值，判断哪一个被测量程最适合该被测气体的探测，并确定该被测量程，再查找与所述被测量程对应的测量通道，并输出该测量通道获取的测量信号值和所述参考通道获取的基值值，即可。

[0017] 在气体检测领域，只有特定的吸收区域可以定量的测定气体浓度，通常，在该区域
内的波长为2-15微米；在该吸收发生的区域内，吸收曲线特性对于特定气体而言是唯一
的。
【0018】每种气体都有自己的吸收光谱，在不同的波长处显现出不同的吸收峰，在最强的
吸收峰处适合低浓度小量程的探测，在稍弱的吸收峰处就可满足高浓度大量程的探测；气
体分子的复杂性决定着吸收峰的数量，组成分子的原子越多，吸收带就越多；针对适合探测
的不同量程，可以通过选择多种波长的元件进入光学通道，从而实现了测定全量程范围内的
气体。
【0019】在工业应用中，选择波长一般都由探测头前面的滤光片完成，光学滤光片可以从
红外光源中获取特定波长。
【0020】最后应当说明的是：以上实施例仅用以说明本发明的技术方案而非对其限制；尽
管参照较佳实施例对本发明进行了详细的说明，所属领域的普通技术人员应当理解，依然
可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换；而不脱离本发
明技术方案的精神，其均应涵盖在本发明请求保护的技术方案范围当中。