发明名称
实现多模移动通信终端频率切换和自动控制的装置及方法

摘要
本发明公开了一种实现多模移动通信终端频率切换和自动控制的装置及方法，它可以实现多模移动终端的各个模式发送/接收模块共用同一个晶体振荡器以节约成本和电力消耗，并允许多模移动终端在不同模式下使用各自模式的自动频率锁定环路，以便最有效地保持各个模式通信链路的载波同步。它包括多模自动频率控制字更新装置，压控晶体振荡器和数模转换装置，多模自动频率控制字更新装置用于选择并计算目标模式下的频率控制字，数模转换装置根据所选的频率控制字完成由数字信号产生控制电压，所述的压控晶体振荡器根据所选的控制电压产生参考频率信号。另外它提供了一种利用软件实现的多模自动频率控制字更新模块代替多模自动频率控制字更新装置。
1. 一种实现多模移动通信终端频率切换和自动频率控制的装置，其特征在于，它包括多模自动频率控制字更新装置（383）、压控晶体振荡器（382）和数模转换装置（385），所述的多模自动频率控制字更新装置（383）用于选择并计算目标模式下的自动频率控制字，所述的数模转换装置（385）根据所述的频率控制字完成由数字信号产生控制电压，所述的压控晶体振荡器（382）根据所述的控制电压产生参考频率信号。

2. 如权利要求1所述的多模移动通信终端的频率切换和自动频率控制的装置，其特征在于，所述的多模自动频率控制字更新装置（383）包括控制模块（406）、数据管理模块（405）、累加器、和两个选通装置（412、413），所述的控制模块（406）通过信号（SEL）控制选通装置（413）选择有效的频率偏移估计值给所述的累加器，通过信号（LOAD）控制所述的选通装置（412）选择来自所述数据管理模块（405）或所述累加器的自动频率控制字，所述数据管理模块（405）用于存储小区信息，列表和与小区相对应的自动频率控制字，并根据所述的控制模块（406）发出的小区信息从小区信息查出对应的自动频率控制字，所述的累加器用于完成每个周期用频率偏移估计值累加并更新自动频率控制字。

3. 如权利要求1或2所述的多模移动通信终端的频率切换和自动频率控制的装置，其特征在于，在模式切换或异频切换状态时，所
述的目标模式下的自动频率控制字的初始值有以下公式得到，自动频率控制字的初始值 \(f_{t,i} = f_{i} + \lambda \times (f - f_{i}) \); 其中 \(f \) 是存储的目标小区的自动频率控制字，\(f_{i} \) 是当前小区的自动频率控制字，\(\lambda \) 是权重调节因子，取值 \([0, 1]\)。

4、如权利要求3所述的多模移动通信终端的频率切换和自动频率控制的装置，其特征在于，所述的 \(\lambda \) 的取值根据 \(f_{i} \) 和 \(f \) 的精度对比关系决定。

5、如权利要求2所述的多模移动通信终端的频率切换和自动频率控制的装置，其特征在于，所述的信号（SEL）根据终端工作模式切换而变化。

6、如权利要求2所述的多模移动通信终端的频率切换和自动频率控制的装置，其特征在于，所述的累加器由寄存器（407）、延时（408）和加法器（409）构成。

7、一种实现多模移动通信终端的频率切换和自动频率控制的方法，其特征在于，首先多模自动频率控制字更新模块（3830）选择并计算目标模式下的频率控制字，然后数模转换装置（385）根据所述的频率控制字完成由数字信号产生控制电压，最后由压控晶体振荡器（382）根据所述的控制电压产生参考频率信号。

8、如权利要求7所述的实现多模移动通信终端的频率切换和自动频率控制的方法，其特征在于，所述的多模自动频率控制字更新模块（3830）的实现包括以下步骤：

1)：在频率控制字更新周期来临时开始更新程序，执行下一步；
2) 判断是否发生频率切换或多模式切换，如发生切换执行步骤
5，如未发生切换执行下一步；

3) 根据当前工作模式从多个频偏估计模块中选择一个有效输出
的频率偏移值 Δf，执行下一步；

4) 通过累加器更新目标小区的自动频率控制字值 f_{n+1}，其中累
加器公式为 $f_{n+1} = f_n - \Delta f$，f_n 是当前小区的频率控制字值，然后执行
步骤 9；

5) 判断当前小区是否已记录在数据库中，如未记录即为新小区，
执行步骤 8，如已记录，则为已测量小区，执行下一步；

6) 从数据库中读出该小区自动频率控制字的初始值为 f，执行下
一步；

7) 通过累加器更新目标小区自动频率控制字值 f_{n+1}，其中累加
器公式 $f_{n+1} = f_n + \lambda \times (f - f_n)$，$f_n$ 是当前小区的频率控制字值，
λ 是权重调节因子，取值 $[0, 1]$，然后执行步骤 9；

8) 更新数据库内容，添加目标小区，以当前累加器所含有的频
率控制字值 f_n 作为自动频率控制字的初始值，然后回到等待状态，如
果频率控制字更新周期来临，则重复步骤 1；

9) 将所述的 f_{n+1} 输出到数模转换装置（385）中；

10) 用所述的 f_{n+1} 作为当前小区最新的自动频率控制字值替换
数据库中的原保存值，然后回到等待状态，如果频率控制字更新周期
来临，则重复步骤 1。

9、如权利要求 8 所述的多模移动通信终端的频率切换和自动频
率控制的装置，其特征在于，步骤 7 所述的 λ 的取值根据所述 f，f_1 的精度对比关系决定。
实现多模移动通信终端频率切换和自动控制的装置及方法

技术领域

本发明涉及支持多模式通信系统的移动终端设备对多个模式基站的频率切换和频率控制方法和装置。

背景技术

在移动通信领域，第三代移动通信技术由于其技术的先进性必将会取代第二代移动通信技术。GSM 是全球数字移动通信系统，属于第二代移动通信系统规范。WCDMA 是宽带码分多址技术，是第三代移动通信系统规范的三大标准之一。

在技术更新阶段，为规避风险和考虑到第二代通信设备的普及率和覆盖率较高，支持两种或多种模式的移动通信终端设备应运而生。典型的已知多模式终端包括支持 GSM 和 WCDMA 两种模式的双模移动通信终端。如图 1 所示，它是目前双模终端在 WCDMA 和 GSM 覆盖交界处的工作示意图，该终端既可以接收和处理 GSM 基站发送的无线信号，也可以接收和处理 WCDMA 基站发送的无线信号，因此它既可以工作在 GSM 的覆盖区域，也可以工作在 WCDMA 的覆盖区域，在它们的交叉覆盖区域还可以选择最好的基站用于服务。

在无线通信系统中，当采用同步解调或相干检测时，接收端需要提供一个与发射端调制载波同频同相的相干载波。这个相干载波的获
取就称为载波同步。载波同步不精确会导致通信质量下降直至通信失败，因而载波同步是无线通信系统中的一项关键技术。移动终端通常使用 AFC（自动频率控制）装置对载波频偏（频率偏移的简称）进行连续跟踪，并且根据频偏大小实时调节压控晶体振荡器的输入电压，以补偿频率偏移，提高载波同步的精确程度。如图 2 所示，它是目前双模终端的自动频率锁定环路结构框图，这种双模终端使用完全独立的载波同步环路，不利于降低终端设备的成本，在第一模式活动状态下对第二模式基站进行测量时，第二模式的频率控制环路初始设定值难以确定。在频偏较大的情况下造成第二模式基站信号测量结果的不准确，更有可能导致终端从第一模式切换到第二模式时频率控制环路长时间不能锁定，引起业务的中断。

发明内容

本发明所要解决的技术问题是提供一种多模移动通信终端实现频率切换和自动控制的装置及方法，它可以实现多模移动终端的各个模式发送/接收模块共用同一个晶体振荡器以节约成本和电力消耗，并允许多模移动终端在不同模式下使用各自模式的自动频率锁定环路，以便最有效地保持各个模式通信链路的载波同步。

为了解决以上技术问题，本发明提供了一种多模移动通信终端实现频率切换和自动控制的装置，它包括多模自动频率控制字更新装置、压控晶体振荡器和数模转换装置，所述的多模自动频率控制字更新装置用于选择并计算目标模式下的频率控制字，所述的数模转换装置根据所述的频率控制字完成由数字信号产生控制电压，所述的压控
晶体振荡器根据所述的控制电压产生参考频率信号。

所述的多模自动频率控制字更新模块包括控制模块、数据管理模块、累加器、和两个选通装置，所述的控制模块通过信号 SEL 控制一个选通装置选择有效的频率偏移估计值给所述的累加器，通过信号 LOAD 控制所述的另一个选通装置选择来自所述数据管理模块或所述累加器的自动频率控制字，所述数据管理模块用于存储选区信息，列表和与小区相对应的自动频率控制字，并根据所述的控制模块发出的小区信息从小区信息查出对应的自动频率控制字，所述的累加器用于完成每个周期用频率偏移估计值累加并更新自动频率控制字。

在模式切换或异频切换状态时，所述的目标模式下的自动频率控制字的初始值有以下公式得到，自动频率控制字的初始值 \(f_{k+1} = f_k + \lambda \times (f - f_k) \); 其中 \(f \) 是存储的目标小区域自动频率控制字，\(f_k \) 是当前小区域的自动频率控制字，\(\lambda \) 是权重调节因子，取值 \([0, 1]\)。

另外，本发明还提供了一种实现多模移动通信终端的频率切换和自动频率控制的方法，首先多模自动频率控制字更新模块选择并计算目标模式下的频率控制字，然后数模变换装置根据所述的频率控制字完成由数字信号产生控制电压，最后由电压控制晶体振荡器根据所述的控制电压产生参考频率信号。

所述的多模自动频率控制字更新模块的实现包括以下步骤：1)：在频率控制字更新周期来临时开始更新程序，执行下一步；2)：判断是否发生频率切换或多模式切换，如发生切换执行步骤 5，如未发生切换执行下一步；3)：根据当前工作模式从多个频偏估计模块中选择
一个有效输出的频率偏移值 Δf，执行下一步：4) 通过累加器更新目标小区的自动频率控制字值 $f_{k,1}$，其中累加器公式为 $f_{k,1} = f_{k} - \Delta f$，$f_{k}$ 是当前小区的频率控制字值，然后执行步骤 9；5) 判断当前小区是否已记录在数据库中，如未记录即为新小区，执行步骤 8，如已记录，则为已测量小区，执行下一步；6) 从数据库中读出该小区自动频率控制字的初始值为 f，执行下一步；7) 通过累加器更新目标小区自动频率控制字值 $f_{k,1}$，其中累加器公式 $f_{k,1} = f_{k} + \lambda \times (f_{k} - f_{k})$，$f_{k}$ 是当前小区的频率控制字值，λ 是权重调节因子，取值 $[0, 1]$，然后执行步骤 9；8) 更新数据库内容，添加目标小区，以当前累加器所含有的频率控制字值 f_{k} 作为自动频率控制字的初始值，然后回到等待状态，如果频率控制字更新周期来临，则重复步骤 1；9) 将所述的 $f_{k,1}$ 输出到数模转换装置中；10) 用所述的 $f_{k,1}$ 作为当前小区最新的自动频率控制字值替换数据库中的原保存值，然后回到等待状态，如果频率控制字更新周期来临，则重复步骤 1。

因为本发明允许多模移动终端的各个模式发送/接收模块共用同一个压控晶体振荡器以节约成本和电力消耗，并允许多模移动终端在不同模式下使用各自模式的自动频率锁定环路，以便最有效地保持各个模式通信链路的载波同步。采用优化的自动频率控制字（以下简称“AFC 控制字”）保存，载入和更新控制装置或模块，达到在两种模式或频率切换时加快频偏收敛过程。特别是采用公式：自动频率控制字的初始值 $f_{k,1} = f_{k} + \lambda \times (f_{k} - f_{k})$，计算 AFC 控制字初始值，加快了自动频率控制的收敛速度，提高了第二模式频率控制初始
设定的可靠性，使载波同步快速而准确。

附图说明

下面结合附图和具体实施方式，对本发明做进一步阐述。

图 1 是目前多模终端在两种模式通信系统覆盖交界处的工作情况；

图 2 是具有现有多模终端的频率切换和自动频率控制装置的双模终端自动频率锁定环路结构方框图；

图 3 是具有本发明装置的双模终端自动频率锁定环路结构方框图；

图 4 是本发明的多模自动频率控制字更新装置方框图；

图 5 是本发明应用于 WCDMA 和 GSM 双模信号的方框图；

图 6 是本发明的多模自动频率控制字更新模块的流程图。

具体实施方式

图 3 是具有本发明装置的双模终端自动频率锁定环路结构方框图。移动通信终端的每个模式的自动频率锁定环路均包括基带信号处理、频率偏移估计、RF/IF 处理器、A/D（模数）转换装置、PLL（锁相环），并且每个模式共用本发明的多模终端的频率切换和自动频率控制装置。本发明的多模终端的频率切换和自动频率控制装置包括多模自动频率控制字更新装置 383、压控晶体振荡器（VCXO）382 和数模转换装置 385。多模自动频率控制字更新装置 383 用于选择频率偏移估计的估计值并计算目标模式下的 AFC 控制字，数模转换装置 385 根据 AFC 控制字完成由数字信号产生控制电压，压控晶体振荡器
器 382 根据控制电压产生参考频率信号，并将参考频率信号发送给 PLL，PLL 锁定于用于调制解调的载波频率并将所述的载波频率发送给 RF/IF 处理器，RF/IF 处理器将来自多工器的射频信号用载波频率解调，解调信号通过 A/D 转换器转换为数字信号后送入各自模式的基带信号处理器，基带信号处理器从基带信号中提取出可用于频偏估计的数字信号序列输出给各自模式的频偏估计装置。

图 4 是本发明的方框图，其中多模自动频率控制字更新装置 383 包括控制模块 406、数据管理模块 405、累加器，和两个选通装置 412、413，控制模块 406 通过信号 SEL 控制选通装置 413 选择有效的频率偏移估计值给所述的累加器，通过信号 LOAD 控制选通装置 412 选择来自所述数据管理模块 405 或所述累加器的 AFC 控制字，数据管理模块 405 用于存储小区信息，列表和与小区相对应的 AFC 控制字，并根据控制模块 406 发出的小区信息从小区信息查出对应的 AFC 控制字，累加器用于完成每个周期用频率偏移估计值累加并更新自动频率控制字。其中累加器由寄存器 407、延时 408 和加法器 409 构成。

其中 AFC 控制字更新分为三部分实现，1）采用负反馈方式主要由累加器构成的对 AFC 控制字周期性更新的模块；2）数据管理模块 405，它管理所有已经测量过的小区列表，并且保存每个小区的 AFC 控制字，以及提供 AFC 控制字的初始值。3）控制模块 406，它依据当前工作模式通过选通装置 413 选择正确的频偏估计装置的输出给累加器；控制模块 406 通过共享数据通知数据管理模块 405 当前小区信息；控制模块 406 在工作模式切换或异频切换时通过装载信
号通知数据管理模块 405 给出 AFC 控制字初始值，和通知将初始值载入累加器，其中异频切换指同模式不同频率的小区的切换。在数据管理模块中 AFC 控制字更新的方法按照如下方式工作：

在正常通信阶段：累加器在每个周期将频偏估计值加入寄存器 407 中。而数据管理模块 405 每个周期读出 AFC 控制字，用此 AFC 控制字更新该小区的 AFC 控制字。当有新小区被测量时添加小区列表的元素；

在模式切换或异频切换状态时：首先移动终端对目标模式射频合成 PLL 作适当设定以获得期望的目标载波频率；其次数据管理模块 405 读出目标小区的 AFC 控制字 \(f \) 和当前小区的 AFC 控制字 \(f_n \)，用如下公式计算用于切换后目标小区的 AFC 控制字初始值

\[
AFC \text{ 控制字的初始值 } f_{n+i} = f + \lambda \times (f - f_n)
\]

（公式 1）

其中 \(\lambda \) 是权重调节因子取值 \([0, 1]\)。其取值根据 \(f_n \) 和 \(f \) 的精度对比关系决定。如对模式 2 目标小区的频率估计越精确，则 \(\lambda \) 的取值应越接近 1；反之如果对模式 2 目标小区的频率估计越不精确，则表明应该更为相信模式 1 源小区的 AFC 控制字收敛值，因此 \(\lambda \) 的取值应越接近于 0。由公式 1 算出的 AFC 控制字写入累加器中的寄存器作为累加器的初始值。

频偏估计（389、383）用于计算频偏的信号，一般为导频序列或训练序列等。它对其序列作差分，查表和取平均等运算完成对当前频率偏移的估计。它按周期输出频偏估计值，周期由算法特点决定。
下面结合图 4、5 对本发明作进一步的说明。图 5 是本发明应用于 WCDMA 和 GSM 双模移动终端的方框图。在图 5 中，模式一为 WCDMA 模式，其射频体系结构为外差式接收机；模式二为 GSM 模式，其射频体系结构为直接下变频式接收机。天线 301 用于接收 WCDMA 的射频信号，接收信号经过双工器 302 后由 LNA（低噪声放大器）303 进行信号放大，放大后的信号通过 RFBPF（RF 滤波器）304，然后进入由乘法器 311，321 和 IF 处理基带预处理 312 组成的解调装置，解调所需的载波信号由 PLL 331 提供，解调后的模拟基带信号经 A/D 变换器 313、323 变换为数字基带信号交给 WCDMA 数字基带信号处理模块 340 处理。天线 351 用于接收 GSM 的射频信号，接收信号经过双工器 352 后由 LNA353 进行信号放大，放大后的信号通过 RFBPF354，然后进入由乘法器 361，371 和 LPF（低通滤波器）364、362 组成的解调装置，解调所需的载波信号由 PLL 381 提供，解调后的模拟基带信号经 A/D（模数）变换器 363、373 变换为数字基带信号交给 GSM 数字基带信号处理模块 384 处理。两个模式的数字基带处理模块 340、384 将用于当前频偏估计的数字序列发送给频偏估计模块 393、389。频偏估计模块 393、389 依据输入数据计算当前周期的频率偏移，并且频偏值被输出给多模 AFC 控制字更新装置 383。多模 AFC 控制字更新装置 383 在计算和更新 AFC 控制字后将 AFC 控制字输出给数模转换装置 385，数模转换装置接收数字信号输出模拟电压用于控制可控晶体振荡器 382，压控晶体振荡器的输出的参考频率信号用于控制 PLL 381 或 331 的载波锁定。由于同一时刻压
控晶体振荡器 382 的频率只能受控于一个模式的频率控制环路，所以同一时刻频偏估计模块 393、389 只需有一个处于活动状态。多模 AFC 控制字更新装置 383 的处理如图 4 所示（图中以双模为例），它控制压控晶体振荡器 382 产生的参考频率使 PLL331、381 锁定在期望的载波频率。此载波用于各自的信号解调装置。

在图 4 中，两个频偏估计模块 393、389 分别用于估计模式一和模式二的频率偏移，它们周期性的输出当前的频率偏移估计值，在同一时刻只有一个估计值有效，控制模块 406 通过 SEL 信号选择有效值送入累加器。

在图 4 中，控制模块 406 输出 3 个信号：信号 SEL 用于选择当前频偏估计值，信号 SEL 随移动终端工作模式（模式一或模式二）切换而发生变化。信号 LOAD 指示累加器初始值设定，当发生异频切换或模式切换时，在第一个频偏估计周期，信号 LOAD 指示载入数据管理模块 405 给出的 AFC 控制字，在其他时刻 LOAD 指示载入加法器 409 运算结果。信号“小区信息”将当前小区信息共享给数据管理模块。

在图 4 中，数据管理模块 405 用于管理各个已经测量过的小区的 AFC 控制字，该模块中维护一个小区列表和相应的 AFC 控制字，当 LOAD 信号指示累加器初始值设定时，数据管理模块依据小区信息从列表中查出其 AFC 控制字，再经过公式 1 修正后输出，当列表不包含当前小区时输出 AFC 累加器当前值。当信号 LOAD 未指示更新累加器初始值，数据管理模块从累加器的寄存器 407 读取 AFC 控制字，
并且依据小区信息更新列表，当被测量小区不在列表中时，添加小区列表元素。

在图 4 中，二选一的选通装置 412 由信号 LOAD 控制，二选一的选通装置 413 由信号 SEL 控制。

在图 4 中，寄存器 407，延时 408 和加法器 409 构成累加器用于完成每个周期用频偏估计值累加并更新 AFC 控制字。

模数变换装置 385 完成由数字信号产生控制电压的功能。

压控晶体振荡器 382 根据控制电压产生参考频率信号。

两个 PLL 装置 381、331 分别为模式一和模式二产生用于调制解调的载波信号。

移动终端切换过程如下：假定在时刻 A 点，移动终端完成了对基站 2 的测量，这时得出了基站 2 的 AFC 控制字 f，f 被数据管理模块保存为基站 2 的 AFC 控制字。此控制字表示移动终端在 A 时刻的工作环境中（移动速度，工作温度等）对基站 2 的载波跟踪结果。而此后，移动终端一直位于基站 1 的覆盖范围，即基站 1 是移动终端的服务基站。假定移动终端在时间 B 点收到网络指令进行从基站 1 到基站 2 的切换，切换前 AFC 控制字为 f1，它同样被数据管理模块保存为基站 1 的 AFC 控制字。此控制字表示移动终端在 B 时刻的工作环境中（移动速度，工作温度等）对基站 1 的载波跟踪结果。这时切换动作发生，移动终端从基站 1 切换到基站 2。由公式 1 计算此时使用的 AFC 控制字初始值。

本发明的多模移动通信终端频率切换和自动控制的方法与多模
移动通信终端频率切换和自动控制的装置的不同点就在于，用多模自动
频率控制字更新模块 3830 代替了多模自动频率控制字更新装置
383，其它部分都相同。图 6 是本发明的多模自动频率控制字更新模
块 3830 的流程图，本流程假设移动终端支持多种模式接收，每一种
模式都有各自的频率偏移（简称“频偏”）估计模块，频偏估计模块
都是周期性输出其当前周期的频偏值。它包括以下步骤：第一步，首
先开始模块 501 被开启后，则系统就进入了等待频偏估计周期模块
502，它在频率控制字周期没有到来时处于等待状态，执行频率控制
周期来临的判断由周期来临判断模块 503 执行，当判断为频率控制字
更新周期来临时开始更新程序，执行下一步；

第二步，进入切换判断模块 504，它主要判断是否发生频率切换
或多模式的切换，如发生切换执行步骤五，如未发生切换执行下一步；

第三步，进入频偏估计模块 505，它主要根据当前工作模式从多
个频偏估计模块中选择一个有效输出，并输出频率偏移值 Δf，然后
执行下一步；

第四步，进入 AFC 控制字更新模块 506，它主要执行更新 AFC
控制字的累加器值，通过累加器更新目标小区的自动频率控制字值
f_{k+1}，其中累加器公式为 f_{k+1} = f_k - Δf，其中 f_k 是当前小区的频率控
制字值，然后执行步骤九；

第五步，进入新小区判断模块 509，它主要用以判断当前小区是
否已记录在数据库中，如未记录即为新小区，执行步骤八，如已记录，
则为已测量小区，执行下一步；
第六步，进入提取 AFC 控制字模块 510，它主要是从数据库中读出该小区 AFC 控制字为 \(f \)，执行下一步。

第七步，进入 AFC 控制字初始值的计算模块 511，它主要是通过累加器更新目标小区自动频率控制字值 \(f_{k+1} \)，其中累加器公式 \(f_{k+1} = f_k + \lambda (f - f_k) \)，\(\lambda \) 是权重调节因子，取值 [0, 1]，\(\lambda \) 的取值根据所述 \(f, f_k \) 的精度对比关系决定，然后执行步骤九。

第八步，进入数据库添加更新模块 512，它主要用于更新数据库内容，添加目标小区，以当前累加器所含有的频率控制字值 \(f_k \) 作为 AFC 控制字的初始值，然后回到等待状态，等待频率控制字更新周期的来临。

第九步，进入输出 AFC 控制字模块 507，它主要将 \(f_{k+1} \) 输出到数模变换器装置（385）用于改变压控晶体振荡器（382）的控制电压，并同时执行下一步。

第十步，进入更新 AFC 控制字数据库模块 508，它主要用 \(f_{k+1} \) 作为当前小区最新的 AFC 控制字替换数据库中的原保存值，然后回到等待状态，等待频率控制字更新周期的来临。
图 6