

United States Patent

[11] 3,631,373

[72] Inventor **Robert M. Matisian**
Lemoyne, Pa.
[21] Appl. No. **39,042**
[22] Filed **May 20, 1970**
[45] Patented **Dec. 28, 1971**
[73] Assignee **Berg Electronics, Inc.**
New Cumberland, Pa.

3,028,182	4/1962	Brown	287/52 R
3,484,141	12/1969	Collett	287/111
2,711,524	6/1955	Beaver	339/256 R
3,369,212	2/1968	Coldren et al.	339/32 R
2,814,024	11/1957	Narozny	339/193 R
2,603,681	7/1952	Salisbury	339/17 D
3,222,632	12/1965	Fuller	339/17 R X

FOREIGN PATENTS

604,880 7/1948 Great Britain

339/258

Primary Examiner—Marvin A. Champion

Assistant Examiner—Terrell P. Lewis

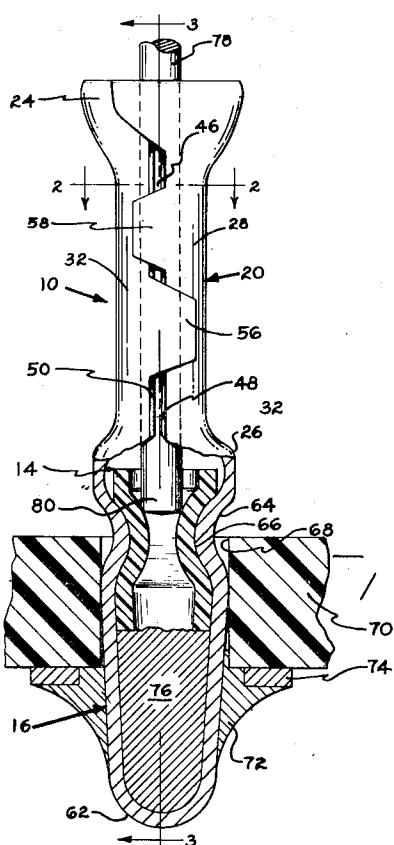
Attorney—Thomas Hooker

[54] **PLUGGABLE SOCKET CONNECTOR**
12 Claims, 5 Drawing Figs.

[52] U.S. Cl. **339/17 C,**
174/68.5, 287/111 R, 317/101 CC, 339/17 R,
339/256 R

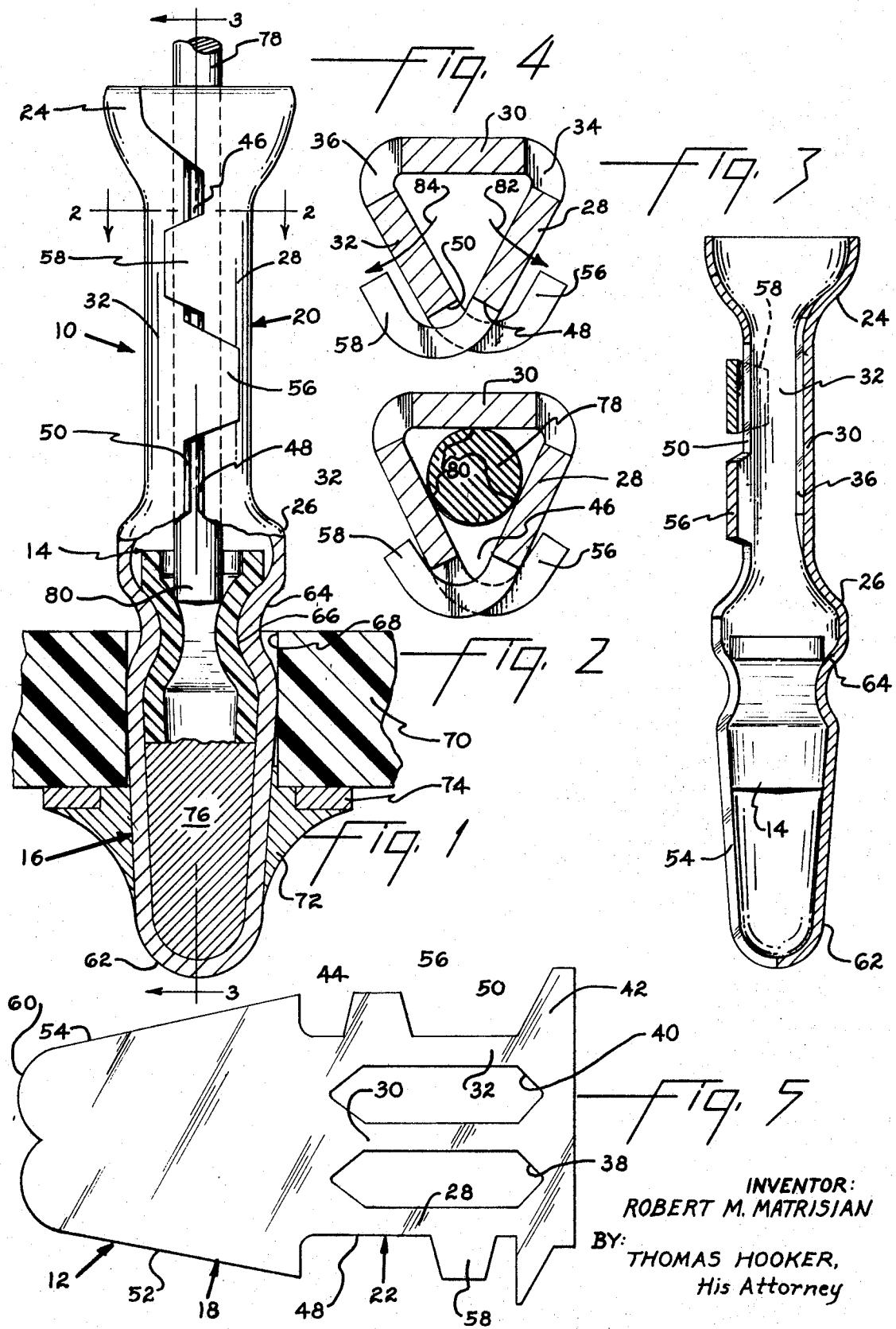
[51] Int. Cl. **H05k 1/02**

[50] **Field of Search.** **339/17 R,**
17 C, 220, 217, 216, 219, 256 R; 174/68.5;
317/101 C, 101 CC, 101 D; 287/110, 111, 52, 126


[56] **References Cited**

UNITED STATES PATENTS

2,128,132 8/1938 Frederick


339/210 T

ABSTRACT: A circuit board socket connector having a longitudinal seam with antispredding fingers on both sides of the seam extending across the seam and into close proximity with the outside part of the socket across the seam. The fingers limit spreading of the seam when a lead is inserted into the socket.

PATENTED DEC 28 1971

3,631,373

INVENTOR:
ROBERT M. MATRISIAN
BY: THOMAS HOOKER,
His Attorney

PLUGGABLE SOCKET CONNECTOR

The invention relates to a plug-type disconnect socket connector for mounting on a circuit board with a solder connection between the socket and printed circuitry on the board. The socket is rolled from sheet metal stock and includes an elongate socket body with a longitudinal seam extending along one side of the body. Fingers extend from the body on each side of the seam across the seam and into close engagement with the outside of the body on the opposite side of the seam. When a contact lead is inserted into the socket body, it engages the portions of the socket to either side of the seam to form electrical connections therewith. The fingers limit opening of the seam during insertion of the lead so that the lead is confined within the socket. The fingers also serve to increase the contact pressure between the socket and large diameter leads.

A generally conical solder plug is provided at one end of the disconnect socket body. The seam which runs along the socket extends along the plug. A cylindrical plastic solder stop is confined in the end of the plug adjacent the socket body to prevent solder which during solder dipping flows into the interior of the plug through the seam from seeping into the socket.

The pluggable socket connector represents an improvement over conventional circuit board sockets, such as disclosed in U.S. Pat. No. 3,268,851 in that the antispreading fingers assure that the socket is not permanently deformed during insertion of the lead. Also, the socket provides improved high-pressure line contact electrical connections with lead, as opposed to the point contact connections of conventional circuit board connections. The connector is inexpensively and easily manufactured from strip metal stock and plastic tubing.

Other objects and features of the invention will become apparent as the description proceeds, especially when taken in conjunction with the accompanying drawings illustrating the invention, of which there is one sheet.

In the drawings:

FIG. 1 is a partial sectional view taken through a circuit board illustrating a pluggable socket connector;

FIG. 2 is a sectional view taken along line 2-2 of FIG. 1;

FIG. 3 is a sectional view of a pluggable socket connector taken along line 3-3 of FIG. 1 before the connector is soldered to a circuit board and a lead has been inserted;

FIG. 4 is a sectional view like FIG. 2 but before a lead has been inserted into the connector; and

FIG. 5 is a plan view illustrating a blank from which the connector may be formed.

Pluggable socket connector 10 may be formed from blanked part 12 of FIG. 5 and a cylindrical Teflon solder stop 14. The connector 10 includes a generally conical solder plug 16 which is rolled from portion 18 of blank 12 and a disconnect socket 20 which is rolled from socket portion 22 of blank 12. The Teflon cylinder 14 is confined in the end of plug 16 adjacent socket 20 during the rolling operation.

Disconnect socket 20 is provided with annular collars 24 and 26 at the ends thereof. Collar 24 is funnel-shaped to facilitate insertion of a lead into a socket. The collars 24 and 26 are joined together by three longitudinally extending strips 28, 30 and 32. Strips 28 and 30 are spaced apart by slit 34 and strips 30 and 32 are spread apart by slit 36. The slits are formed during rolling of blank 12 from cutouts or slits 38 and 40 of blank portion 22. Collar 24 is formed from blank strip 42 and collar 26 is formed from blank strip 44. In the blank, strips 42 and 44 are joined together by strips or rungs 28, 30 and 32.

As illustrated in FIGS. 2 and 4, a cross section of socket 20 taken through strips 28, 30 and 32 is generally triangular in shape with the strips defining the sides of a triangle and slits 34 and 36 and seam 46 defining the corners of the triangle. By utilizing a triangular cross section, a line contact is formed between each of the strips and a lead inserted into the socket.

Longitudinally extending seam 46 extends along the body of connector 10. In socket 20 the seam is defined by the side edges 48 and 50 of strips 28 and 32. The seam extends along the solder plug 16 and is defined by abutting edges 52 and 54

of blank portions 18. In the socket 20, edges 48 and 50 are spaced slightly so that the seam is open.

Fingers 56 and 58 extend from edges 48 and 50 of strips 32 and 28 respectively across seam 46 and into close proximity with the outside of the strip on the opposite side of the seam. This relationship is best illustrated in FIG. 4. Fingers 56 and 58 are longitudinally spaced along seam 46. Plug portion 18 of blank 12 is generally trapezoidal in shape with the major base of the trapezoid adjoining strip 44. The minor base of the trapezoid compresses a pair of convex arcs 60 which, when the connector is rolled from blank 12, form the rounded end 62 of plug 16.

During the rolling operation, the Teflon cylinder 14 is positioned in the plug adjacent socket portion 20. Annular groove 64 is formed in the outside of the plug so that the cylinder 14 is stressed to an hourglass configuration and a tight solder-resistant compression seal is formed at the interface 66 between the Teflon cylinder and the inner surface of the plug.

15 The plug of connector 10 is inserted into hole 68 formed through the thickness of the circuit board 70 so that the lower end of plug 16 extends below the circuit board. The circuit board may then be wave soldered to form a solder connection 72 between the connector and printed circuitry 74 on the circuit board. During soldering a mass of solder 76 seeps into the interior of the plug 16 through the lower portion of seam 46. The Teflon cylinder 14 prevents the solder 76 in the interior of the plug from flowing up the connector 10 and into the disconnect socket 20. In this way the formation of the solder connection 20 between the plug and the circuit board does not affect the use of the disconnect socket.

25 While the embodiment of the invention disclosed herein utilizes a cylindrical piece of Teflon plastic to prevent solder from flowing into the socket of the connector, other means 30 may be utilized to prevent the flow of solder into the socket.

With a pluggable socket connector 10 secured to circuit board 70 in electrical connection with printed circuitry 74, a disconnect lead 78 may be inserted into the disconnect socket portion 20 in order to form an electrical connection with the connector 10. During insertion, lead-in 24 guides the lead into the socket. When the lead is fully inserted, as illustrated in FIG. 1, the end 80 of the lead engages the Teflon cylinder 14 which forms a stop. Insertion of the lead into the socket brings the lead into engagement with strips 28, 30 and 32 so as to form a longitudinally extending line contact 80 with each strip. Contacts 80 extend along the strips 28, 30 and 32. As the lead is inserted, strips 28 and 32 are pivoted in the direction of arrows 82 and 84 relative to strip 30, as illustrated by comparing FIGS. 2 and 4 of the drawings, so as to form the electrical connections and open seam 46. Fingers 56 and 58 lie in pivot paths of the strips 28 and 32. The connections between strips 28 and 32 and strip 30 at collars 24 and 26 are deformed during insertion of lead 78 to provide spring contact pressure between the strips 28, 30 and 32 and lead 78.

55 Fingers 56 and 58 extend across seam 46 and limit opening of the seam during insertion of the lead to assure that the lead is properly inserted within the socket. If the lead 78 moves strips 28 and 32 sufficiently to engage the fingers 56 and 58 as shown in FIG. 2, the fingers back up the strips and prevent further opening of seam 46. In this way the fingers increase the contact pressure between the lead 78 and the contact strips 28, 30 and 32. Finger 56 limits movement of strip 28 outwardly of the socket 20 and finger 58 limits movement of strip 32 outwardly from the socket. The two fingers cooperate to limit opening of the seam and back up the contact strips 28 and 30. The fingers also prevent the lead 76 from being pulled laterally out of the connector. If fingers were not provided, lateral movement of the lead would tend to open the seam 46

70 and permit the lead to be moved laterally from the socket. During insertion of the lead, the fingers prevent the end 80 from opening seam 46. The slits 34 and 36 provided between the strips 28 and 30 and 30 and 32 facilitate the described movement of strips 28 and 32 outwardly of the socket during insertion of lead 78.

While the pluggable socket connector disclosed herein utilizes a solder plug 16 for establishing an electrical connection with a circuit element, in this case printed circuitry 74, it is obvious that the socket 20 may be provided with other types of electrical contacts and it is not intended that my invention be limited to a connector with a solder plug.

While I have illustrated and described a preferred embodiment of my invention, it is understood that this is capable of modification, and I therefore do not wish to be limited to the precise details set forth, but desire to avail myself of such changes and alterations as fall within the purview of the following claims.

What I claim as my invention is:

1. A disconnect socket comprising an elongate hollow socket body having a longitudinally extending seam on one side thereof, a pair of fingers spaced along the seam, each finger extending from said body at one side of the seam, past the seam and into spaced overlapping proximity with the outer surface of the body at the opposite side of the seam, a lead contact on the inner surface of the body at each side of the seam adjacent the fingers, and electrical contact means on one end of said body, whereby the fingers limit opening of the seam upon insertion of a lead into the socket for engagement with said lead contacts.

2. A disconnect socket as in claim 1 including a funnel-type lead-in at the other end of said body and wherein said electrical contact means comprises a circuit board solder plug.

3. A disconnect socket as in claim 1 wherein said body is triangular in cross section and longitudinal slits extend along two corners of the body, said seam extending along the third corner of the body, and the portions of said body at the ends of said slits join together portions of the body at the sides of said slits.

4. A disconnect socket comprising an elongate hollow body of generally triangular cross section having a seam extending along one corner thereof, the body including a pair of spaced circumferential collars and a strip at each side of the seam extending between said collars, said strips each including a lead engaging contact on the side thereof facing the interior of the body, a finger projecting from the edge of each of said strips

10 5. A disconnect socket as in claim 4 wherein all of said strips are generally flat and slots extend along the corners to either side of the strip opposite the seam.

6. A disconnect socket as in claim 5 wherein said electrical contact means comprises a solder plug at one end of said body.

7. A disconnect socket as in claim 6 wherein said seam extends along said plug and antisolder flow means is provided in said socket adjacent said one end of said body so as to prevent molten solder from flowing from the interior of the solder plug into the interior of the body.

8. A disconnect socket as in claim 7 wherein said antisolder flow means comprises a cylindrical plastic insert held in said solder plug by an annular compression seal.

9. A blanked strip-metal part adapted to be formed into a disconnect socket, said part comprising a number of spaced parallel strips, bands joining said strips at the ends thereof, means for forming an electrical contact on the side of one band away from said strips, and a finger on the outer edge of each outer strip extending away from said strip, said fingers being spaced at different longitudinal locations along the outer strips.

10. A blanked strip-metal part as in claim 9 wherein said means comprises a generally trapezoidal portion of said strip with the major base joining said one strip.

11. A blanked strip-metal part as in claim 10 wherein the minor base of said strip portion comprises two convex arcs.

12. A disconnect socket comprising an elongate hollow body including two contact strips extending along the body and contact means joining said strips for forming an electrical connection with a circuit element, and a finger projecting from one edge of each strip across the opening between the strips and into spaced overlapping proximity with the outside of the other strip, the fingers being spaced apart along the opening between the strips.

* * * * *