PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

1A

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

HO4L 29/08, GOGF 9/46 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/34386

6 August 1998 (06.08.98)

(21) International Application Number: PCT/US98/01644

(22) International Filing Date: 29 January 1998 (29.01.98)

(30) Priority Data:

08/794,269 3 February 1997 (03.02.97) Us

(71) Applicant: ORACLE CORPORATION [US/US]; 500 Oracle
Parkway, Redwood Shores, CA 94065 (US).

(72) Inventors: ADUNUTHULA, Seshu; 34542 Felix Terrace,
Fremont, CA 94555 (US). ANAND, Mala;, 501 Forest
Avenue, Palo Alto, CA 94301 (US). CHOU, Tsung-Jen; 15
La Loma Drive, Menlo Park, CA 94025 (US). NAKHODA,
Shehzaad; Apartment #14, 455 Grant Avenue, Palo Alto,
CA 94306 (US). NG, Raymond; Apartment #3, 1111 Foster
City Boulevard, Foster City, CA 94404 (US). PANG,
Robert; Apartment #19, 1240 Dale Avenue, Mountain, CA
94040 (US). SHARMA, Ankur; Apartment #365, 951-2
Old County Road, Belmont, CA 94002 (US). BOOKMAN,
Matthew; 14855 La Rinconada Drive, Los Gatos, CA 95030
(US).

(74) Agent: CARLSON, Stephen, C.; McDermott, Will & Emery,
Suite 300, 99 Canal Center Plaza, Alexandria, VA 22314
(US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, GH,
GM, GW, HU, ID, IL, IS, JP, KE, KG, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO,
NZ, PL, PT, RO, RU, SD, SE, SG, S], SK, SL, TJ, T™M, TR,
TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM,
KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: WEB REQUEST BROKER CONTROLLING MULTIPLE PROCESSES

(57) Abstract

A web server configured to respond to client requests over a network
such as the World Wide Web includes a web listener having a Hypertext
Transfer Protocol (HTTP) daemon, a plurality of extension programs
configured to perform respective operations, and a web request broker
configured to identify one of the programs for responding to a client
request, and determine the availability of an instance of the identified
program. The web request broker maintains control of multiple instances
of each server extension program to provide enhanced server operation
without overwhelming server resources. The web request broker maintains
a minimum number of instances of the identified program in memory, each
executed in its own address space. The web request broker determines
whether an available instance of the identified program is available from
an existing number of instances, and selectively initiates a new instance of
the program if no other instance is available. If no instance is available and
the existing number of instances exceeds the maximum prescribed number,
then the web request broker returns the reply to the web listener to send a
reply over the network that the request was not processed.

; |
| Samd Roply 10 Cliomt

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia SZ Swaziland
Azerbaijan GB United Kingdom MC Monaco TD Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Treland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania UG Uganda
Belarus IS Iceland MW Malawi Us United States of America
Canada IT Ttaly MX Mexico Uz Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway VA4 Zimbabwe
Cote d’Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

10

15

20

25

WO 98/34386 PCT/US98/01644

WEB REQUEST BROKER CONTROLLING MULTIPLE PROCESSES

FIELD OF THE INVENTION
This invention relates to server architectures in networked computer systems, more

specifically to web servers executing server applications supporting dynamic operations for

web users.

BACKGROUND OF THE INVENTION

The World Wide Web includes a network of servers on the Internet ("web servers"),
each of which has one or more HTML (Hypertext Markup Language) pages. The HTML
pages on a web server provide information and hypertext links to other documents on that
and (usually) other web servers. Web servers communicate with clients by using the
Hypertext Transfer Protocol (HTTP).

Users of the World Wide Web use a client program, referred to as a browser, to
request, decode and display information from a selected web server. When the user of a
browser selects a link, a request is sent over the Internet to the web server that stores
information specified in the link. In response to the request, the web server transmits the
specified information to the browser that issued the request. The browser receives the
information, presents the received information to the user, and awaits the next user request.

Traditionally, the information stored on web servers is in the form of static HTML
pages. Static HTML pages are created and stored at the web server prior to a request from a
web browser. In response to a request, a static HTML page is merely read from storage and
transmitted to the requesting browser. Currently, there is a trend to develop web server
applications that respond to browser requests by performing dynamic operations. For
example, a web server may respond to a request by issuing a query to a database,
dynamically constructing a web page containing the results of the query, and transmitting the
dynamically constructed HTML page to the requesting browser. To perform dynamic
operations, the functionality of the web server must be enhanced or augmented. Various
approaches have been developed for extending web servers to support dynamic operations.

One approach to the provide dynamic operations in response to requests from web

browsers uses the common gateway interface (CGI). CGI is a specification for transferring

1
SUBSTITUTE SHEET (rule 26)

10

15

20

25

30

WO 98/34386 PCT/US98/01644

information between a web server and a CGI program. A CGI program is any program
designed to accept and return data that conforms to the CGI specification. The program could
be written in any programming language, including C, Perl, or Visual Basic.

The CGI approach suffers from the disadvantage that a separate process (a separate
instance of the CGI program) is initiated each time the specified request is received by the
server. Receipt of a thousand such requests from different users will thus cause a thousand
processes to be initiated, exhausting available resources on the server.

An alternative approach to providing dynamic responses to requests involves using a
"plug-in" extensions. A plug-in extension intercepts messages sent to the server at various
stages to perform application-specific processing for a specific user request. A web server
plug-in executes in the same address space as the web server and all other web server plug-
ins. Hence, an application developer designing a plug-in must be familiar with the lower
level operational details of the web server. Moreover, execution of the plug-ins in the same
address space as the web server exposes the web server to security and stability risks, where

a faulty plug-in may cause other plug-ins or the web server itself to crash, or perform in an

unpredictable manner.

SUMMARY OF THE INVENTION

There is a need for an arrangement that enables web servers to support dynamic
server operations, where multiple external processes may be initiated, managed, and
terminated in a controilable, scalable and efficient manner.

There is also a need for an arrangement for responding to a client request issued to a .
web server executing multiple instances of a program configured to process the request,
where the request from the client is selectively dispatched to an available instance.

There is also a need for an arrangement that responds to a client request, where an
instance of a program configured to process the request is selectively initiated based on the
availability of existing instances and a predetermined maximum number of instances.

These and other needs are attained by the present invention, where a web request
broker controls processing of a request by identifying a program that corresponds to the

request, selectively initiating an instance of the program, and dispatching the request to the

instance to process the request.

2
SUBSTITUTE SHEET (rule 26)

10

15

25

30

WO 98/34386 PCT/US98/01644

According to one aspect of the present invention, a request issued to a server from a
client over a network system is processed by obtaining the request over a network, and
identifying a program that corresponds to the request. An instance of the program is
selectively initiated based on a prescribed number of instances of the program. The request
is dispatched to the initiated instance of the program, and the instance executes the
corresponding program to process the request. The request is then responded to, based on
the execution of the instance. Hence, a plurality of programs, for example server extensions,
may be added to a server process in a controllable manner. Moreover, the selective initiation
of an instance of an identified program ensures that the server maintains control of the
multiple instances, preserving stability in server operations. The prescribed number of
instances may also specify both a minimum and a maximum number of instances, enabling
processing delays to be minimized by maintaining at least a minimum number of instances in
memory for subsequent requests, while maintaining control of server resources by limiting
the maximum number of instances.

According to another aspect of the present invention, a method for execution by a
server is configured to respond to a request for performance of an operation. The method
includes obtaining the request over a network, and forwarding the request to a dispatcher
plug-in executed by the server. The request is processed by causing the dispatcher plug-in to
determine whether an available instance of a program, configured to handle the request, is
available from an existing number of the program instances. If an instance is available, then
the request is dispatched for execution by the available instance. If no instance is available,
then a new instance is initiated if the existing number of instances does not exceed a
maximum prescribed number. If no instance is available and the existing number of
instances exceeds the maximum prescribed number; then a reply is sent over the network
indicating the request was not processed. Hence, the dispatcher plug-in manages server
resources in processing the request by selectively dispatching the request for execution or
denying the request based upon the availability of an instance relative to the maximum
prescribed number of instances.

Hence, the present invention enables a plurality of extension programs to be added to
a server process in a controllable manner. The dispatcher plug-in controls execution of

different extension programs running in separate and independent instances, and selectively

3
SUBSTITUTE SHEET (rule 26)

10

15

20

25

30

WO 98/34386 PCT/US98/01644

routes requests to available instances, ensuring that the server process and the server
extension programs are not overloaded.

Additional objects, advantages and novel features of the invention will be set forth in
part in the description which follows, and in part will become apparent to those skilled in the
art upon examination of the following or may be learned by practice of the invention. The
objects and advantages of the invention may be realized and attained by means of the

instrumentalities and combinations particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of limitation,
in the figures of the accompanying drawings in which like reference numerals refer to similar
elements and in which:

Figure 1 is a block diagram of a web server responding to a request received from a
client over a network system, according to an embodiment of the present invention;

Figure 2 is a block diagram of the web server according to a first embodiment of the
present invention;

Figures 3A and 3B are flow diagrams summarizing the method for responding to the
client request according to an embodiment of the present invention;

Figure 4 is a flow diagram illustrating a method of initiating the server process
according to an embodiment of the present invention; and

Figure 5 is a block diagram illustrating the web request broker according to a second

embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A method and apparatus for responding to a request issued to a server from a client
over a network system is described. In the following description, for the purposes of
explanation, numerous specific details are set forth in order to provide a thorough
understanding of the present invention. It will be apparent, however, to one skilled in the art
that the present invention may be practiced without the specific details. In other instances,
well-known structures and devices are shown in block diagram form in order to avoid

unnecessarily obscuring the present invention.

4
SUBSTITUTE SHEET (rule 26)

10

15

20

25

30

WO 98/34386 PCT/US98/01644

OVERVIEW OF WEB SERVER ARCHITECTURE

Figure 1 is a diagram of a web server responding to a request received from a client
over a network system according to an embodiment of the present invention. The web server
10 receives the request from a client 12 over a network system 14, for example the World
Wide Web using Transmission Control Protocol/Internet Protocol (TCP/IP). The web server
10 includes a web listener 16, a web request broker 18, and a plurality of server extension
programs 20. A user of the network 14 uses the client program 12 to request, decode and
display information from the web server 10. The client program 12 includes a web browser
22 that sends a request to the web listener 16 via the network 14. The client program also
includes browser extension programs 24 (e.g., "plug-in" extensions) that provide additional
processing capabilities for the web browser 22. Communication between the web browser
22 and the web listener 16 is executed using standardized protocol, for example Hypertext
Transfer Protocol (HTTP), Version 1.0. The HTTP 1.0 protocol may be used with optional
secure sockets layer (SSL) based data-encryption to establish a short-term connection
between the web browser 22 and the web listener 16.

As described below, the web listener 16 receives the client request over the network
14, and forwards the request to the web request broker 18. The web request broker 18
selectively dispatches the request to an executable instance of one of the server extension
programs 20 for processing. The web listener 16, upon receiving a reply from the web
request broker 18, outputs the reply to the client request via the network 14. Upon receiving
the reply, the web browser 22 determines the type of request received, and determines how to
handle the response. For example, the response may either be processed natively by the web
browser 22, or the web browser 22 may use one of the browser extension programs 24 for
further processing. The browser extension programs 24 will typically be implemented as a
client-side plug-in that performs specific processing of the reply. Upon completing the
processing, the client 12 will typically display the result in the web browser's main viewing

area as a hypertext mark-up language (HTML) page.

WEB REQUEST BROKER
According to the present invention, web request broker 18, is configured to manage

processing of client requests by selectively routing the client request to server extensions

running in separate processes.

5
SUBSTITUTE SHEET (rule 26)

10

15

20

25

30

WO 98/34386 PCT/US98/01644

Figure 2 is a block diagram of the server 10 according to a first embodiment of the
present invention. The web listener 16 includes an HTTP daemon 16a that supports network
transport according to HTTP protocol. The web listener 16 receives the client request from
the network 14, typically delivered in the form of a Uniform Resource Locator (URL). The
client request serves as an identifier for a web object, for example an HTML page or an
operation to be performed. The web listener 16 hands off the client request to the web
request broker 18 without any attempt at interpreting the client request.

The web request broker 18 includes a dispatcher plug-in 30 and a plurality of
execution engines 32. The web request broker 18 controls processing of the client request by
identifying an extension program 20 configured to process the client request, and dispatching
the client request for execution by an available instance of the extension program. The
dispatcher plug-in 30 includes a configuration library 34 that identifies the available
programs for handling different requests, described in detail below. Once the dispatcher
plug-in 30 identifies a program extension 20 that is configured to process the request, the
dispatcher plug-in 30 determines whether an available instance of the program configured to
handle the request is available, and dispatches the request for execution by the available
instance, described below.

The web server 10 also includes a plurality of server extension programs 20a, 20b
and 20c. Each server extension program, also referred to as a system cartridge, is configured
for a different operation. Specifically, a server extension program is configured as a
cartridge that performs a well-defined function, or as a programmable cartridge that acts as
an interpreter or a routine environment for an application. An example of a programmable
cartridge is a PL/SQL agent 20a, configured to process database queries according to the
Oracle-based Programming Language using Structured Query Language (PL/SQL). The
PL/SQL agent 20a executes a client request having a database query by executing an
individual process 36 (i.e., a separate instance of the PL/SQL agent 20a). Execution of the
instance 36a causes the instance to process the request, for example accessing a database
server 40 in communication with the instance 36 via a data link 42.

Another example of a programmable cartridge-type server extension program is a
JAVA mterpreter 20b, which enable web application developers to write server-side JAVA

applications to process client requests. Similarly, a custom server 20c may be configured as

6
SUBSTITUTE SHEET (rule 26)

10

15

20

25

30

WO 98/34386 PCT/US98/01644

an extension program in order to provide dynamic operations, for example accessing
processes executed by a third party server 46.

The extension programs 20a, 20b, and 20c, stored as executable code, are executed
by first initiating an instance 36 of the corresponding extension program 20 into server
memory, and executing the instance. An instance is equivalent to a process in a UNIX
environment. The web request broker 18 manages the execution of each of the extension
programs 20 by initiating a predetermined minimum number of instances 36a, 36b, 36¢ for
the extension programs 20a, 20b, 20c, respectively. If the web request broker 18 receives a
client request and determines that no instance 36 of the appropriate extension program is
available, the web request broker 18 will initiate a new instance of the program to execute
the request if the existing number of instances does not exceed a maximum prescribed
number.

For example, if a client request specifies a request for access of the database 40, the
web request broker 18 will identify the PL/SQL agent 20a as the program configured to
handle the request. The web request broker 18 will determine whether an existing instance
36a of the program 20a is available to handle the request. If no instance is available, e.g., all
the existing instances 36a,-36a, are processing other client requests, the web request broker
18 will initiate a new instance 36a,,, if the existing number of instances 36a does not exceed
a maximum prescribed number.

As shown in Figure 2, the web request broker 18 includes web request broker
execution engines (WRBX) 32 for each of the extension programs 20. The execution engine
32 controls execution of the instances of the corresponding program by providing an
application programming interface (WRB API) that specifies predetermined operations to be
performed by the instances of the corresponding program. By establishing basic callback
functions between the execution engine 32 and an extension program, any extension program
can be integrated into the server 10 by configuring the extension program to respond to the
callback functions (for example an initialization function, a request handler, and a shutdown
function), and then registering the extension program in the configuration library 34,
described below.

Thus, if the dispatcher plug-in 30 determines that the PL/SQL agent 20a is the
appropriate extension to process a request, the dispatcher plug-in 30 dispatches the request to

the execution engine 32a. If a new instance of the program 20 needs to be initiated, the

7
SUBSTITUTE SHEET (rule 26)

10

15

20

25

30

WO 98/34386 PCT/US98/01644

dispatcher plug-in 30 creates a new instance of the program in a separate address space and
dispatches the request to the execution engine 32a of the new instance. The address space
used to execute the instance of the program may be within memory of the computer system
upon which the web request broker is executing, or on another computer system. The
execution engine 32a then issues a request handler callback function to the specified instance
36a,, causing the instance 363, to process the request, for example by accessing the database
40. The instance 36a, executing the request returns the result to the execution engine 32a,
which forwards the resuit to the dispatcher plug-in 30. In the event that the web request
broker 18 detects a fault in the operation, the execution engine 32a issues a shutdown
function to abort the instance from memory.

Hence, the execution engine 32a provides an application programming interface to
the web request broker 18 (WRB API) that specifies predetermined operations to be
performed. Use of the WRB API enables programmers of the extension programs 20 to
configure each extension program for high-level integration into the server 10 independent of
the protocols used by the particular web listener with which the extension program will be
used.

Figures 3A and 3B summarize a flow diagram illustrating a method of responding to
the client request according to an embodiment of the present invention. The client request is
received in step 50 by the web listener 16. Upon receiving the client request, the web
listener 16 forwards the request to the web request broker 18 in step 52. The dispatcher plug-
in 30 identifies the program that corresponds to the client request by accessing in step 54 the
configuration library 34. The configuration library 34 includes for each program an object
type corresponding to the request processed by the corresponding program. For example, if
the client request is a URL request beginning with the virtual path "/java", the configuration
library 34 will store a corresponding object specifying that the JAVA interpreter 36b is
configured to handle requests having the virtual path "/java". The configuration library 34
will also include a virtual path specifying an address location for the stored program used to
initiate instances of the program 20.

The dispatcher plug-in 30 determines in step 56 if the request object type (e.g., the
virtual path specified in the client request) corresponds to an identifiable program, where the
request object type corresponds to an object type stored in the configuration library 34. If the

request object type does not correspond to an identifiable program, the request is returned to

8
SUBSTITUTE SHEET (rule 26)

10

15

20

25

30

WO 98/34386 PCT/US98/01644

the web listener 16 in step 58 (see Figure 3B). If in step 58 the HTTP daemon 16a
recognizes the request as a request for a static HTML page, the HTTP daemon accesses the
static HTML page from the page memory 16b, and sends the reply to the client in step 60. If
the client request is not recognized by the HTTP daemon, the reply is sent to the client in
step 60 indicating that the request was unrecognizable.

If in step 56 the dispatcher plug-in 30 identifies from the configuration library 34 an
extension program configured to handle the request, the dispatcher plug-in 30 determines in
step 62, shown in Figure 3B, whether an available instance of the identified program is
available among the existing number of instances 36. If in step 62 the dispatcher plug-in 30
identifies an available mstance, for example instance 36a, of the PL/SQL agent 20a, the
corresponding execution engine 32 is called in step 68 to execute the available instance to
process the request, described below. However, if in step 62 no instance of the identified
program 20 is available, the dispatcher plug-in 30 determines in step 64 if the existing
number of instances exceeds a maximum prescribed number, stored in the configuration
library 34. If the existing number of instances exceeds the maximum prescribed number in
step 64, the dispatcher plug-in 30 returns the request to the web listener 16 in step 58, after
which the web listener sends a reply to the client over the network in step 60 indicating the
request was not processed.

If in step 64 the existing number of instances does not exceed the maximum
prescribed number, the dispatcher plug-in 30 initiates a new instance of the identified
program and dispatches the request to the execution engine 32a of the new instance. For
example, the dispatcher plug-in 30 initiates a new instance of the PL/SQL agent 20a. During
this step, the stored sequences of instructions for the PL/SQL agent 20a are accessed to
create a new instance 36a; of the program 20a in an.address space that is separate from the
address space in which dispatcher plug-in 30 is executing.

Once the new instance 36a; is running, the dispatcher plug-in 30 dispatches the
request to the execution engine 32a associated with the new instance 36a, in step 68. The
execution engine 32a sends a callback message to the new instance 362, requesting execution
of the request. The execution engine 20 passes in the callback message any parameters
necessary for the instance 36a; to process the request, for example passwords, database
search keys, or any other argument for a dynamic operation executed by the instance 36a;.

The instance 36a, then executes the request. During the execution of the request by the

9
SUBSTITUTE SHEET (rule 26)

10

15

20

25

30

WO 98/34386 PCT/US98/01644

instance in step 68, the dispatcher plug-in 30 monitors the instance to determine the
occurrence of a fault in step 70. If in step 70 the dispatcher plug-in 30 detects a fault, the
dispatcher plug-in 30 calls the corresponding execution engine 32 in step 72 to abort the
instance 36 having the fault. The corresponding execution engine 32 in turn issues a shut
down command across the API to the faulty instance. The instance, responding to the shut
down command by the execution engine 32, will shut down without affecting any other
process in any other address space.

If in step 70 no fault is detected, the dispatcher plug-in 30 receives a reply from the
instance 36 upon completion of execution in step 74. The dispatcher plug-in 30 in step 76
forwards the reply to the web listener 16, which responds to the client with the reply from the
executed instance 36. After executing the instance, the dispatcher plug-in 30 in step 78
maintains the instance in the memory, as shown in step 78 to enable execution of a
subsequent request.

Hence, the disclosed arrangement manages multiple instances of different extension
programs to process a variety of user requests. Each instance 36 for any program 20 is
executed in a separate memory space, enabling a faulty instance 36 of a program 20 to be
aborted without affecting any other instances of the programs. The web request broker 18
also controls the number of instances for each given extension program 20. Hence, server
resources are controlled to ensure that a large number of requests do not overwhelm the
server 10 by an uncontrollable generation of instances. Execution throughput also is
improved by maintaining a minimum number of instances ready for execution. Moreover,
additional instances may be 1nitiated and maintained in memory for executing subsequent
requests, as opposed to terminating an instance after a single execution and then reloading
the extension program into memory in order to recreate an instance for execution of a
subsequent request.

Figure 4 is a diagram illustrating the initialization of the server 10 according to an
embodiment of the present invention. The server 10 is initialized by starting the server
process in step 90, where the web listener and supporting processes are loaded into memory
space. The server 10 then starts the dispatcher plug-in 30 in step 92, causing the sequences
of instruction for executing the web request broker 18 to be stored in memory. The
extension programs 20 are then registered with the dispatcher plug-in 30 in step 94 by storing

in the configuration library 34, for each extension program 20: (1) the cartridge name; (2) the

10
SUBSTITUTE SHEET (rule 26)

10

15

20

25

30

WO 98/34386 PCT/US98/01644

minimum number of required instances 36; (3) the maximum number of instances; (4) the
virtual path for accessing the extension program, i.e., the address space to be accessed to
initiate a new instance of the program; (5) the program-dependent function names used by
the execution engine to execute the callback functions (initialization, request handler,
shutdown); and (6) an object identifier, for example an object type to be supplied by a client
request for requesting performance of an operation by the corresponding extension program
20. The object type may be a specific word, or may include a virtual path, for example
"/java". The extension programs 20 may be registered in step 94 by a server manager, i.e., a
web master having access to the configuration library in a real-time user-interactive
environment. Once the server maﬁager has established the configuration library, the
extension programs may be registered in step 94 automatically by accessing a non-volatile
memory, for example a disk.

After registering the extension programs with the dispatcher piug-in 30, the
dispatcher plug-in 30 initiates the minimum instances for each program in a separate address
space in step 96. Once the minimum number of instances has been initiated, the server 10 is
prepared to process client requests. Each execution engine 32 tracks the location in memory
and status of each instance 36 of the corresponding program 20.

Figure 5 is a block diagram of the server 10, according to a second embodiment of
the present invention. The first embodiment of Figure 2 assumes that the dispatcher plug-in
30 is compatible with the lower level processes of the web listener 16 and the HTTP daemon
16a. The embodiment of Figure 5 is a modification of the first embodiment of Figure 2, in
that the server includes a transport adapter 17 that receives a client request from the HTTP
daemon 16' operating according to a protocol different from the web request broker 18.

The transport adapter 17 is configured to recognize the protocols of different HTTP
daemons, and can convert the client requests received from the HTTP daemon 16' into a
converted client request having a second protocol independent from the protocol of the
HTTP daemon 16' and matching the protocol of the web request broker 18. Hence, the
transport adapter 17 enables the web request broker 18 to be used with HTTP daemons from
different vendors. Moreover, transport adapter 17 may be configured to accommodate
different server architectures and operating systems. Hence, the transport adapter 17
converts a client request from the HTTP daemon 16' from a first protocol to a second

protocol compatible with the web request broker 18. Similarly, replies from the web request

11
SUBSTITUTE SHEET (rule 26)

WO 98/34386 PCT/US98/01644

broker are converted to the transport protocol of the HTTP daemon 16' to enable the HTTP
daemon 16' to send the reply to the user via the network.

In the foregoing speciﬁcation, the invention has been described with reference to
specific embodiments thereof. It will, however, be evident that various modifications and
changes may be made thereto without departing from the broader spirit and scope of the
invention. The specification and drawings are, accordingly, to be regarded in an illustrative

rather than restrictive sense.

12
SUBSTITUTE SHEET (rule 26)

O© 00 3 N W B W e

[am—y

(U, T~ US B

B W N -

WO 98/34386 PCT/US98/01644

What is claimed is:

1. A method for responding to a request issued to a server from a client over a
network system, the method comprising the steps of:

obtaining the request over a network;

identifying a program that corresponds to the request;

selectively initiating an instance of the program based on a prescribed number of
instances of said program;

dispatching the request to said instance of said program,;

executing said instance to cause said instance to process said request; and

responding to the request based on execution of said instance.

2. The method of Claim 1, wherein:

the step of obtaining the request over a network is performed by a server process
executing in a first address space;

the step of selectively initiating an instance of the program includes initiating said

instance in a second address space that is separate from the first address space.

3. The method of Claim 1, further comprising the step of, after executing said

instance, maintaining said instance in memory for executing a subsequent request.

4. The method of Claim 1, further comprising the steps of:
detecting a fault in the instance during execution thereof; and

aborting the instance in response to detecting said fault.

5. The method of Claim 1, wherein the prescribed number of said instances specifies
at least one of a maximum and a minimum number of instances, wherein each instance

executes within an address space that is separate from the address spaces used by other

instances of said program.

13
SUBSTITUTE SHEET (rule 26)

~N Y o B W

BOWON

p—

L o

WO 98/34386 PCT/US98/01644

6. The method of Claim 5, wherein:

the step of selectively initiating an instance of the program includes the step of
initiating a specified minimum number of instances of said program prior to obtaining the
request over the network; and

the method further includes the step of, after obtaining the request over the network,
determining if one of the minimum number of instances is available for processing said

request.

7. The method of Claim 6 further including the step of, after obtaining the request
over the network, initiating a new instance of the program if none of the minimum number of
instances is available for processing said request and the number of instances is less than the

maximum number of instances.

8. The method of Claim 6, wherein the step of executing said instance includes

executing an available instance from the minimum number of instances.

9. The method of Claim 1, wherein the step of selectively initiating an instance of
the program includes the step of returning the request to the network without processing said

request based on the prescribed number of said instances exceeding a maximum value.

10. The method of Claim 1 further comprising the step of registering a plurality of
programs with the server, wherein registration of each of said programs includes specifying a

maximum number of instances for said program, and a virtual path for said program.

11. The method of claim 10, wherein:

the request identifies a virtual path; and

the step of identifying a program that corresponds to the request includes the step of

identifying the program based on the virtual path identified in the request.

12. The method of Claim 1, wherein:

the step of obtaining the request over a network comprises receiving the request from

a transport protocol process operating according to a first protocol; and

14
SUBSTITUTE SHEET (rule 26)

O 00 ~I O W~ W N

I N
w»mi B W NN = O

AWM

HOW N =

WO 98/34386 PCT/US98/01644

the method includes the step of converting the request to a second protocol

independent from the first protocol.

13. A method, for execution by a server, for responding to a request for performance
of an operation, the method comprising:

obtaining the request over a network;

forwarding the request to a dispatcher executed by the server; and

processing the request by causing the dispatcher to perform the steps of:

A) determining whether an available instance of a program configured to handle the
request is available among an existing number of instances of the program,

B) if an available instance is available, then dispatching the request for execution by
the available instance,

C) if no instance is available, then initiating a new instance of the program for
execution of the request if the existing number of instances does not exceed a maximum
prescribed number, and

D) if no instance is available and the existing number of instances exceeds the
maximum prescribed number, then sending said reply over the network indicating the

request was not processed.

14. The method of Claim 13, further comprising the step of:
receiving, by the dispatcher, a reply from the instance executing the request; and

sending information contained in the reply over the network from the dispatcher to a

client that issued the request.

15. The method of Claim 13, further comprising the step of:
detecting by the dispatcher a fault in the instance executing the request; and

terminating by the dispatcher the instance executing the request in response to the

detected fault.

16. The method of Claim 15, further comprising the step of sending a reply over the

network indicating the request was not processed.

15
SUBSTITUTE SHEET (rule 26)

wm R W DN e

(V. T U VS B

>t R W

WO 98/34386 PCT/US98/01644

17. The method of Claim 13, further comprising the step of registering with the
dispatcher a plurality of programs configured to handle respective types of requests, the step
of registering with the dispatcher a plurality of said programs including the step of storing in
the dispatcher for each of said programs a maximum number of instances and a virtual path

specifying an address location associated with the corresponding program.

18. The method of Claim 13, wherein each instance is executed within an address

space that is separate from the address spaces used by other instances of said program.

19. The method of Claim 18, wherein the step of initiating a new instance of the
program comprises the step of initiating the new instance within an address space that is

separate from the address spaces used by the other instances of said program.

20. The method of Claim 19, further comprising the step of delaying deallocation of
said new instance at least a predetermined time interval after processing the request for

processing a subsequent request.

21. The method of Claim 13, wherein:
the step of obtaining the request over the network comprises receiving the request
from a transport protocol process operating according to a first protocol; and

the method further comprises the step of converting the request to a second protocol

independent from the first protocol.

22. The method of Claim 13, wherein the existing number of said instances is at least

a prescribed minimum number of said instances.

23. The method of Claim 13, further comprising the steps of:
causing the dispatcher to determine if a program is configured to handle the request

based on the operation specified in the request; and

if no program is configured to handle the request, then sending a reply over the

network indicating the request was not processed.

16
SUBSTITUTE SHEET (rule 26)

Eo VS N 8 SKOOO\IO\UI-PWNP—‘ [« NNV, BN SO O

AW =

WO 98/34386 PCT/US98/01644

24. The method of Claim 13, wherein:

the step of obtaining the request over the network comprises the step of executing by
the server a server process; and

the step of processing the request by causing the dispatcher to perform said steps
comprises the step of executing by the server a plug-in routine, added to the server process,

to cause the dispatcher to perform said steps.

25. A computer readable medium having stored thereon sequences of instructions for
responding to a request for performance of an operation received by a server, the sequences
of instructions including instructions for performing the steps of:

obtaining the request over a network;

identifying a program that corresponds to the request;

selectively initiating an instance of the program based on a prescribed number of
instances of said program;

dispatching the request to said instance of said program;

executing said instance to cause said instance to process said request; and

responding to the request based on execution of said instance

26. The computer readable medium of Claim 25, further comprising sequences of
instructions for performing the steps of:
detecting a fault in the instance during execution thereof; and

aborting the instance in response to detecting said fault.

27. The computer readable medium of Claim 25, wherein the prescribed number of
said instances specifies at least one of a maximum and a minimum number of instances,
wherein each instance executes within an address space that is separate from the address

spaces used by other instances of said program.

28. A computer server coriﬁgured to respond to a request for performance of an

operation, comprising:

17
SUBSTITUTE SHEET (rule 26)

O o0 2 &N U =AW

10

12
13
14

[[T G U'S T O B

[« N, TR~ VS B (O]

WO 98/34386 PCT/US98/01644

a network listener configured to receive the request over a network and send a
response to the request over the network, the request having a prescribed object type
specifying an operation to be performed;

a plurality of programs, each program configured to perform an operation that
generates an output in response to receiving a request having a corresponding object type
specifying the operation performed by the program, each program having a prescribed
number of instances executing at respective address spaces; and

a dispatcher plug-in configured to identify one of the programs for responding to the
request based on the prescribed object type, the dispatcher plug-in selectively dispatching the
request to an available instance of the identified one program based upon the corresponding
prescribed number of instances, the dispatcher plug-in sending said response to the network

listener based on execution of the request by the available instance.

29. The server of Claim 28, wherein the network listener receives and sends the request and
the response based on Hypertext Transfer Protocol (HTTP).

30. The server of Claim 29, wherein the network listener includes an HTTP daemon
configured to output a static Hypertext Markup Language (HTML) page in response to the
prescribed object type specifying sending said static HTML page.

31. The server of Claim 28, further comprising a transport adapter configured to
convert the request received by the network listener from a first protocol to a second protocol
independent from the first protocol, the transport adapter converting the response output by

the dispatcher plug-in from said second protocol to the first protocol before sending by the

network listener.

32. The server of Claim 28, further comprising a plurality of execution engines, each
execution engine configured to control execution of the instances of the corresponding
programs and provide an Application Programming Interface (API) specifying
predetermined operations to be performed by the instances of the corresponding program, the
execution engine corresponding to the identified one program receiving the request from the

dispatcher plug-in and controlling execution of the available instance processing the request.

18
SUBSTITUTE SHEET (rule 26)

[y

WO 98/34386 PCT/US98/01644

33. The server of Claim 32, wherein the predetermined operations specified by the
API includes at least one of initialization, execution of the request, and shutdown by at least

one of the instances of the corresponding program.

34. The server of Claim 28, wherein each execution engine initiates a prescribed

minimum number of said instances of the corresponding program.

35. The server of Claim 28, wherein the dispatcher plug-in includes a configuration

library identifying for each of the programs the corresponding object type and the prescribed

number of instances.

36. The server of Claim 28, wherein the object type of the request includes a virtual

path specifying the identified one program.

19
SUBSTITUTE SHEET (rule 26)

PCT/US98/01644

WO 98/34386

I 91n31

,ﬁ HOMIeN

A 4

r diidoL

)
J

Jaua)s gap

1oyo.g 1senbsy g

SUOISUS)XT JoAag

4

A 4

1asmolg e

SuoIsug)X3 lesmolg

1/6

PCT/US98/01644

WO 98/34386

7 9An31y

8 [————>

—— —
IdV

nf./

mf/
|

sa8ed uowae(]
TALH d21e1g dLLH A\ 91
Joua)sty
oM
Areiqiy ur-Sniq
"3yuo) Jayoyedsi(] +«—— (¢t
1
& .\ BCL
qce \
CE
./ [] ./xmm?] i Xam . v
. M i i M
[x — _| u——ow/\ ~A|- Illmlel.
1aaadia] vo¢
BAR[_ 10S/1d —
woysn) |
09t L q9¢ T T T T TN "ot
e \ \ I+ egg
20¢ q0¢ B0C 7t
o
D I9AI9S qd
9y —

2/6

WO 98/34386

50
Obtain Request

v

52
Forward Request to Dispatcher

\ 4

54
Access Config Library

56
Does Request Object

Type Match with -
-Program?

3/6

PCT/US98/01644

Figure 3A

WO 98/34386 PCT/US98/01644

62
Available Instance?

64
Max No. Instances?

66
Initiate New Instance

¥

68
Dispatch Request
to Available Instance

70
Fault Detected?

¥

72
Abort Instance

74
Receive Reply

58

Return Request $

76
L Respond to Client

60
Send Reply to Client v

78
Maintain Instance

Figure 3B

4/6

WO 98/34386 PCT/US98/01644

90
Start Server Process

\ A

92
Start Dispatcher Plug-in

v

94
Register Extension Programs
(Min, Max, Virtual Path, Object type)

A 4

96
Initiate Min. Instances for Each Program

Figure 4

5/6

PCT/US98/01644

WO 98/34386

G 9.an3IY

91
uowse(q JLLH L~
L1
19)depy yodsuel], ~
1oydedsi(q
g1 | 195j01¢ 15onboy gom
XEAM 1 xeam I xaam
IdV T IdV
AN “~ ™~ ~ €A
29¢ q9¢ eo¢

0¢

6/6

INTERNATIONAL SEARCH REPORT

Inter onai Application No

PCT/US 98/01644

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 HO04L29/08 GO6F9/46

According to Intemationat Patent Classification (IPC) or to both national ciassification and iPC

B. FIELDS SEARCHED

IPC 6 HO4L GO6F

Minimum documentation searched (classification system followed by classification symbots)

Documentation searched other than minimumdocumaentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Y MERLE P ET AL: "CorbalWeb: A generic 1,3,4,9,
object navigator" 12-16,
COMPUTER NETWORKS AND ISDN SYSTEMS, 21-26,
vol. 28, no. 11, May 1996, 28-34
page 1269-1281 XP004018226
A see the whole document 2,5-8,
10,11,
17-20,
27,34,36

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Speciai categories of cited documents :

"A" document defining the general state of the art which is not
congidered to be of particular relevance

"E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to estabiish the publicationdate of another
citation or other special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document pubiished after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particuiar relevance; the claimed invention
cannot be considered novet or cannot be considered to
involve an inventive step whaen the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-

ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actuai completion of theinternational search

3 June 1998

Date of mailing of the international search report

10/06/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized officer

Adkhis, F

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

Relevant to ctaim No.

INTERNATIONAL SEARCH REPORT

Inter anal Application No

PCT/US 98/01644

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relsvant to claim No.

EP 0 733 969 A (SUN MICROSYSTEMS INC) 25
September 1996

see abstract

see page 2, column 1, 1ine 5 - line 14
see page 2, column 2, line 32 - line 46
see page 4, column 5, 1ine 10 - line 13
see page 3, column 4, line 44 - line 53

1,3,4,9,
12-16,
21-26,
28-34

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

.ormation on patent family members

Interr onal Application No

PCT/US 98/01644

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0733969 A 25-09-1996 CA 2171683 A 23-09-1996
' JP 8339305 A 24-12-1996

Fom PCT/{SA/210 (patent family annex) (July 1992)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

