VOLTAGE-PROGRAMMING SCHEME FOR CURRENT-DRIVEN AMOLED DISPLAYS

Applicant: Ignis Innovation Inc., Waterloo (CA)
Inventors: Aroki Nathan, Cambridge (GB); Richard I-Heng Huang, Waterloo (CA); Stefan Alexander, Elmira (CA)
Assignee: Ignis Innovation Inc., Waterloo (CA)

Hybrid Driving Pixel Circuit

References Cited
U.S. PATENT DOCUMENTS
4,090,096 A 5/1978 Nagami
4,169,934 A 7/1979 Kirsch
4,354,162 A 10/1982 Wright
4,758,831 A 7/1988 Kasahara et al.
4,943,956 A 7/1990 Noro

FOREIGN PATENT DOCUMENTS
CA 1 294 034 1/1992
CA 2 109 951 11/1992

OTHER PUBLICATIONS

PATENT ATTORNEY — Dmitriy Bolotin
(74) Attorney, Agent, or Firm — Nixon Peabody LLP

ABSTRACT
A system and method for driving an AMOLED display is provided. The AMOLED display includes a plurality of pixel circuits. A voltage-programming scheme, a current-programming scheme or a combination thereof is applied to drive the display. Threshold shift information, and/or voltage necessary to obtain hybrid driving circuit may be acquired. A data sampling may be implemented to acquire a current/voltage relationship. A feedback operation may be implemented to correct the brightness of the pixel.

70 Claims, 23 Drawing Sheets
<table>
<thead>
<tr>
<th>Patents and Applications Cited</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. PATENT DOCUMENTS</td>
</tr>
<tr>
<td>6,859,193 B1 2/2005 Yumoto</td>
</tr>
<tr>
<td>6,875,117 B2 3/2005 Ishizuka</td>
</tr>
<tr>
<td>6,875,320 B2 3/2005 Nakamura</td>
</tr>
<tr>
<td>6,876,968 B2 4/2005 Ohashi</td>
</tr>
<tr>
<td>6,885,256 B2 4/2005 Hashimoto</td>
</tr>
<tr>
<td>6,900,485 B2 5/2005 Lee</td>
</tr>
<tr>
<td>6,903,734 B2 6/2005 Ei</td>
</tr>
<tr>
<td>6,999,114 B1 6/2005 Yamazaki</td>
</tr>
<tr>
<td>6,999,243 B2 6/2005 Inukai</td>
</tr>
<tr>
<td>6,911,960 B1 6/2005 Yokoyama</td>
</tr>
<tr>
<td>6,911,964 B1 6/2005 Lee et al.</td>
</tr>
<tr>
<td>6,914,448 B2 7/2005 Ijino</td>
</tr>
<tr>
<td>6,919,871 B1 7/2005 Kwon</td>
</tr>
<tr>
<td>6,924,602 B2 8/2005 Komiyama</td>
</tr>
<tr>
<td>6,937,215 B2 8/2005 Lo</td>
</tr>
<tr>
<td>6,940,214 B1 9/2005 Komiyama</td>
</tr>
<tr>
<td>6,947,022 B1 9/2005 McCann</td>
</tr>
<tr>
<td>6,954,194 B2 10/2005 Matsumoto et al.</td>
</tr>
<tr>
<td>6,956,547 B2 10/2005 Bae et al. 345/77</td>
</tr>
<tr>
<td>6,975,142 B2 12/2005 Azami et al.</td>
</tr>
<tr>
<td>6,975,332 B2 12/2005 Arnold et al.</td>
</tr>
<tr>
<td>6,995,519 B2 2/2006 Arnold et al.</td>
</tr>
<tr>
<td>7,025,556 B1 4/2006 Adachi</td>
</tr>
<tr>
<td>7,023,408 B2 4/2006 Chen et al.</td>
</tr>
<tr>
<td>7,027,078 B2 4/2006 Reihl</td>
</tr>
<tr>
<td>7,071,032 B2 7/2006 Libsch et al.</td>
</tr>
<tr>
<td>7,088,051 B1 8/2006 Libsch et al. 315/169.1</td>
</tr>
<tr>
<td>7,088,052 B2 8/2006 Kimura</td>
</tr>
<tr>
<td>7,127,830 B1 10/2006 Ikedo et al.</td>
</tr>
<tr>
<td>7,127,380 B1 10/2006 Ito et al.</td>
</tr>
<tr>
<td>7,129,917 B1 10/2006 Yamazaki et al.</td>
</tr>
<tr>
<td>7,141,821 B1 11/2006 Yamazaki et al.</td>
</tr>
<tr>
<td>7,164,411 B1 1/2007 Cook</td>
</tr>
<tr>
<td>7,224,322 B1 5/2007 Cook</td>
</tr>
<tr>
<td>7,245,277 B2 7/2007 Ishizuka et al. 345/78</td>
</tr>
<tr>
<td>7,279,710 B1 10/2007 Yamazaki et al.</td>
</tr>
<tr>
<td>7,315,295 B2 1/2008 Kimura</td>
</tr>
<tr>
<td>7,365,534 B2 3/2008 Sun</td>
</tr>
<tr>
<td>7,355,574 B1 4/2008 Leon et al.</td>
</tr>
<tr>
<td>7,368,808 B2 5/2008 Sakamoto</td>
</tr>
<tr>
<td>Reference</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>2002/0120143 A1</td>
</tr>
<tr>
<td>2002/0167471 A1</td>
</tr>
<tr>
<td>2002/0167474 A1</td>
</tr>
<tr>
<td>2003/0029413 A1</td>
</tr>
<tr>
<td>2003/0036003 A1</td>
</tr>
<tr>
<td>2003/0122745 A1</td>
</tr>
<tr>
<td>2003/0142088 A1</td>
</tr>
<tr>
<td>2004/0094040 A1</td>
</tr>
</tbody>
</table>
References Cited

FOREIGN PATENT DOCUMENTS

JP 11-219146 8/1999
JP 11-231805 8/1999
JP 11-282419 10/1999
JP 2001-134217 5/2001
JP 2001-195014 7/2001
JP 4-158570 10/2008
TW 342486 10/1998
TW 473622 1/2002
TW 485337 5/2002
TW 502233 9/2002
TW 538650 6/2003
TW 5691721 1/2004
TW 1221268 9/2004
TW 1223092 11/2004
TW 2007-27247 7/2007
WO 04/25954 11/1994
WO 04/984803 10/1998
WO 09/480709 9/1999
WO 01/06484 1/2001
WO 01/27910 A1 4/2001
WO 01/65587 A2 8/2001
WO 03/66124 3/2002
WO 02/067327 A 8/2002
WO 03/001493 A1 1/2003
WO 03/034389 A 4/2003
WO 03/035859 A1 7/2003
WO 03/066124 7/2003
WO 03/077213 9/2003
WO 03/105117 12/2003
WO 04/003877 1/2004
WO 04/034364 4/2004
WO 04/047058 6/2004
WO 05/022498 3/2005
WO 05/022500 A 3/2005
WO 05/029455 3/2005
WO 05/029456 3/2005
WO 05/051858 6/2005
WO 06/00101 A1 1/2006
WO 06/053424 5/2006
WO 06/063448 6/2006
WO 06/064360 8/2006
WO 06/173737 12/2006
WO 07/079572 7/2007
WO 07/120849 A2 10/2007
WO 09/05920 5/2009
WO 10/023270 3/2010

OTHER PUBLICATIONS

Chaji et al.: “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages).

References Cited

OTHER PUBLICATIONS

Extended European Search Report for European Application No. 09733076.5 mailed Apr. 27, 2011 issued during prosecution (13 pages).

Extended European Search Report for European Application No. 11191641.7 mailed July 11, 2012 (14 pages).

Nathan et al., “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”, dated Sep. 2009 (1 page).

References Cited

OTHER PUBLICATIONS

Wang et al.: “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages).
Chahi et al.: “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages).
Lee et al.: “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006 (6 pages).
Rafati et al.: “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages).

* cited by examiner
Enabling pre-charge mode

Selecting a pixel circuit, and Pre-charging (Vp)

Enabling Vt acquisition mode

Discharging (Vp)

Enabling writing mode

FIG. 4
Enabling pre-charge mode

Selecting a pixel circuit, and Pre-charging (Vp)

Enabling Vt acquisition mode

Discharging (Vp)

Sampling Vt (42)

Producing new data (i.e. the sum of Vt and Vdata) (40)

Enabling writing mode

Enabling a programming control signal (46)

FIG. 7
FIG. 8

Pixel Circuit

4T

Vsel

10A

DL

12C

Precharge Vp

56

54

52

A/D

D/A

uC

Digital Data

V(data)

50

50

50
Enabling pre-charge mode

Selecting a pixel circuit, and Pre-charging

Enabling Vt acquisition mode

Discharging

Sampling Vt (56) and Recording Vt (50)

Enabling writing mode

Providing new data (i.e. sum of Vt and Vdata)

FIG. 9
Enabling a calibration mode

Selecting a pixel circuit and Current-programming (94) to the pixel circuit

Enabling switch matrix enable signal

Sampling Vt (96)

Creating (correcting) correction table (80)

FIG. 13
Correcting video data based on the correction table (92)

Producing V data based on the corrected data (14)

FIG. 14
Producing a current/voltage correction curve

Measuring a point along the curve

Creating a new current/voltage correction curve.

FIG.16
To the current source (114)

To Array (110)

To the next column driver

Control from last column

Shift registers

To the column driver (112)

Control to the next column driver

FIG. 22
VOLTAGE-PROGRAMMING SCHEME FOR CURRENT-DRIVEN AMOLED DISPLAYS

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation of U.S. patent application Ser. No. 11/571,480, which is a national stage application of international application no. PCT/CA2005/001007, filed Jun. 28, 2005, which claims the benefit of and priority to Canadian Patent Application No. 2,472,671, filed on Jun. 29, 2004, each of these applications being incorporated herein by reference in its entirety.

FIELD OF INVENTION

The present invention relates to a display technique, and more specifically to technology for driving pixel circuits.

BACKGROUND OF THE INVENTION

Active matrix organic light emitting diode (AMOLED) displays are well known in the art. The AMOLED displays have been increasingly used as a flat panel in a wide variety of tools.

The AMOLED displays are classified as either a voltage-programmed display or a current-programmed display. The voltage-programmed display is driven by a voltage-programmed scheme where data is applied to the display as a voltage. The current-programmed display is driven by a current-programmed scheme where data is applied to the display as a current.

The advantage of the current-programming scheme is that it can facilitate pixel designs where the brightness of the pixel remains more constant over time than with voltage programming. However, the current-programming requires longer time of charging capacitors associated with the column.

Therefore, there is a need to provide a new scheme for driving a current-driven AMOLED display, which ensures high speed and high quality.

SUMMARY OF THE INVENTION

The present invention relates to a system and method of driving a pixel circuit in an AMOLED display. The system and method of the present invention uses Voltage-Programming Scheme For Current-Driven AMOLED Displays.

In accordance with an aspect of the present invention there is provided a system for driving a display which includes a plurality of pixel circuits, each having a plurality of thin film transistors (TFTs) and an organic light emitting diode (OLED), which includes: a voltage driver for generating a voltage to program the pixel circuit; a programmable current source for generating a current to program the pixel circuit; and a switching network for selectively connecting the data driver or the current source to one or more pixel circuits.

In accordance with another aspect of the present invention there is provided a system for driving a pixel circuit having a plurality of thin film transistors (TFTs) and an organic light emitting diode (OLED), which includes: a pre-charge controller for pre-charging and discharging a data node of the pixel circuit to acquire threshold voltage information of the TFT from the data node; and a hybrid driving circuit for programming the pixel circuit based on the acquired threshold voltage information and video data information displayed on the pixel circuit.

In accordance with further aspect of the present invention there is provided a method for driving a pixel circuit having a plurality of thin film transistors (TFTs) and an organic light emitting diode (OLED), which includes: a sampler for sampling, from a data node of the pixel circuit, a voltage required to program the pixel circuit; and a programming circuit for programming the pixel circuit based on the sampled voltage and video data information displayed on the pixel circuit.

In accordance with another aspect of the present invention there is provided a method for driving a pixel circuit having a plurality of thin film transistors (TFTs) and an organic light emitting diode (OLED), which includes the steps of: selecting a pixel circuit and pre-charging a data node of the pixel circuit; allowing the pre-charged data node to be discharged; extracting a threshold voltage of the TFT through the discharging step; and programming the pixel circuit, including compensating a programming data based on the extracted threshold voltage.

This summary of the invention does not necessarily describe all features of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:

FIG. 1 is a block diagram showing a system for driving an AMOLED display in accordance with an embodiment of the present invention;

FIG. 2 is a schematic diagram showing an example of a pixel circuit of FIG. 1;

FIG. 3 is a schematic diagram showing an example of a hybrid driving circuit, which is applicable to FIG. 1;

FIG. 4 is an exemplary flow chart for showing the operation of the hybrid driving circuit of FIG. 3;

FIG. 5 is an exemplary timing chart for showing the operation of the hybrid driving circuit of FIG. 3;

FIG. 6 is a schematic diagram showing a further example of a hybrid driving circuit, which is applicable to FIG. 1;

FIG. 7 is an exemplary flow chart for showing the operation of the hybrid driving circuit of FIG. 6;

FIG. 8 is a schematic diagram showing a further example of a hybrid driving circuit, which is applicable to FIG. 1;

FIG. 9 is an exemplary flow chart for showing the operation of the hybrid driving circuit of FIG. 8;

FIG. 10 is an exemplary timing chart for showing the operation of the hybrid driving circuit of FIG. 8;

FIG. 11 is a schematic diagram showing a further example of the pixel circuit of FIG. 1;

FIG. 12 is a block diagram showing a system for driving an AMOLED display in accordance with a further embodiment of the present invention;

FIG. 13 is an exemplary flow chart for showing the operation of the system of FIG. 12;

FIG. 14 is an exemplary flow chart for showing the operation of the system of FIG. 12;

FIG. 15 is an exemplary timing chart for showing the operation of the system of FIG. 12;

FIG. 16 is an exemplary flow chart for a hidden refresh operation of the system of FIG. 12;
FIG. 17 is a diagram showing an example of a sample of the current/voltage correction curve; FIG. 18 is a diagram showing the current/voltage correction curve of FIG. 17 and an example of a newly measured data point; FIG. 19 is a diagram showing an example of a new current/voltage correction curve based on the measured point of FIG. 18;

FIG. 20 is a block diagram showing a further example of a programming circuit for implementing a combined current and voltage-programming technique;

FIG. 21 is a block diagram showing a system for driving an AMOLED display in accordance with a further embodiment of the invention;

FIG. 22 is a schematic diagram showing an example of a switch network of FIG. 21; and

FIG. 23 is a schematic diagram showing a system for correcting the current/voltage information of the pixel circuit.

DETAILED DESCRIPTION

Embodiments of the present invention are described using an AMOLED display. Drive scheme described below is applicable to a current programmed (driven) pixel circuit and a voltage programmed (driven) pixel circuit.

In addition, hybrid technique described below can be applied to any existing driving scheme, including (a) any drive schemes that use sophisticated timing of the data, select, or power inputs to the pixels to achieve increased brightness uniformity, (b) any drive schemes that use current or voltage feedback, (c) any drive schemes that use optical feedback.

The light emitting material of the pixel circuit can be any technology, specifically organic light emitting diode (OLED) technology, and in particular, but not limited to, fluorescent, phosphorescent, polymer, and dendrimer materials.

Referring to FIG. 1, there is illustrated a system 2 for driving an AMOLED display 5 in accordance with an embodiment of the present invention. The AMOLED display 5 includes a plurality of pixel circuits. In FIG. 1, four pixel circuits 10 are shown as an example.

The system 2 includes a hybrid driving circuit 12, a voltage source driver 14, a hybrid programming controller 16, a gate driver 18A and a power-supply 18B. The pixel circuit 10 is selected by the gate driver 18A (Vsdl), and is programmed by either voltage mode using a node Vdata or current mode using a node Idata. The hybrid driving circuit 12 selects the mode of programming, and connects it to the pixel circuit 10 through a hybrid signal. In the hybrid driving circuit 12, the voltage and current signals are controlled by the hybrid controller 16.

In the description, Vdata refers to data, a data signal, a data line or a node for supplying the data or data signal Vdata, or a voltage on the data line or the node. Similarly, Idata refers to data, a data signal, a data line or a node for supplying the data or data signal Idata, or a current on the data line or the node. VP refers to a pre-charge signal, a pre-charge pulse, a pre-charge voltage for pre-charge/discharging, a line or a node for supplying the pre-charge signal, pre-charge pulse or pre-charge voltage Vp. VSdl refers to a pulse or a signal for selecting a pixel circuit or a line or a node for supplying the pulse or signal Vsdl. The terms “hybrid signal”, “hybrid signal node”, and “hybrid signal line” may be used interchangeably.

The pixel circuit 10 includes a plurality of TFTs, and an organic light emitting diode (OLED). The TFT may be an n-type TFT or a p-type TFT. The TFT is, for example, but not limited to, an amorphous silicon (a-Si:H) based TFT, a poly-crystalline silicon based TFT, a crystalline silicon based TFT, or an organic semiconductor based TFT. The OLED may be a regular (P1-N) stack or inverted (N1-P) stack. The OLED can be located in the source or the drain of one or more driving TFTs.

FIG. 2 illustrates an example of the pixel circuit 10 of FIG. 1. The pixel circuit of FIG. 2 includes four thin film transistors (TFTs) 20-26, a capacitor Cs 28 and an organic light emitter diode (OLED) 30. The TFT (T’drive) 26 is a drive TFT that is connected to the OLED 30 and the capacitor Cs 28. The pixel circuit of FIG. 2 is selected by the select line Vsdl, and is programmed by a data line DL. The data line DL is controlled by the hybrid signal output from the hybrid driving circuit 12 of FIG. 1.

In FIG. 2, four TFTs are illustrated. However, the pixel circuit 10 of FIG. 1 may include less than four TFTs or more than four TFTs.

In the description, the terms “data line DL” and “data node DL” may be used interchangeably.

Referring to FIGS. 1-2, the data node DL is pre-charged and discharged to acquire the threshold voltage of a drive TFT (e.g., T’drive 26 of FIG. 2) or the threshold voltage shift. In the description, the Vt shift, voltage information, Vt, and Vt information may be used interchangeably. The pixel circuit 10 is then consecutively programmed by the source driver 14 using voltage-programming. The acquired Vt shift information is utilized to compensate for degradation of the pixel circuit 10, thus maintaining uniform brightness of the display 5.

The process of acquiring Vt starts by applying Vsdl to T1 20 and T2 22 to the pixel circuit illustrated in FIG. 2. Such action causes the drain and gate of T3 24 to be at the same voltage. This allows the Vt of T3 24 to be extracted by first applying the pre-charge voltage Vp to the data line DL, which is then allowed to be discharged. The rate of discharge is a function of Vt. Thus, by measure of the rate of discharge, Vt can be obtained.

FIG. 3 illustrates an example of a hybrid driving circuit, which is applicable to the hybrid driving circuit 12 of FIG. 1. The hybrid driving circuit 12A of FIG. 3 implements voltage programming technique.

The hybrid driving circuit 12A of FIG. 3 includes a charge programming capacitor Cc 32. The charge programming capacitor Cc 32 is provided between the data line Vdata and the data node DL. The pre-charge line Vp is also connected to the data node DL.

The hybrid driving circuit 12A is provided to a pixel circuit 10A having four TFTs (such as the pixel circuit of FIG. 2). However, the pixel circuit 10A may include more than four TFTs or less than four TFTs.

The charge programming capacitor Cc 32 is provided to program the pixel circuit 10A with a voltage that is equal to

FIG. 4

FIG. 17 is a diagram showing an example of a sample of the current/voltage correction curve; FIG. 18 is a diagram showing the current/voltage correction curve of FIG. 17 and an example of a newly measured data point; FIG. 19 is a diagram showing an example of a new current/voltage correction curve based on the measured point of FIG. 18;

FIG. 20 is a block diagram showing a further example of a programming circuit for implementing a combined current and voltage-programming technique;

FIG. 21 is a block diagram showing a system for driving an AMOLED display in accordance with a further embodiment of the invention;

FIG. 22 is a schematic diagram showing an example of a switch network of FIG. 21; and

FIG. 23 is a schematic diagram showing a system for correcting the current/voltage information of the pixel circuit.

DETAILED DESCRIPTION

Embodiments of the present invention are described using an AMOLED display. Drive scheme described below is applicable to a current programmed (driven) pixel circuit and a voltage programmed (driven) pixel circuit.

In addition, hybrid technique described below can be applied to any existing driving scheme, including (a) any drive schemes that use sophisticated timing of the data, select, or power inputs to the pixels to achieve increased brightness uniformity, (b) any drive schemes that use current or voltage feedback, (c) any drive schemes that use optical feedback.

The light emitting material of the pixel circuit can be any technology, specifically organic light emitting diode (OLED) technology, and in particular, but not limited to, fluorescent, phosphorescent, polymer, and dendrimer materials.

Referring to FIG. 1, there is illustrated a system 2 for driving an AMOLED display 5 in accordance with an embodiment of the present invention. The AMOLED display 5 includes a plurality of pixel circuits. In FIG. 1, four pixel circuits 10 are shown as an example.

The system 2 includes a hybrid driving circuit 12, a voltage source driver 14, a hybrid programming controller 16, a gate driver 18A and a power-supply 18B. The pixel circuit 10 is selected by the gate driver 18A (Vsdl), and is programmed by either voltage mode using a node Vdata or current mode using a node Idata. The hybrid driving circuit 12 selects the mode of programming, and connects it to the pixel circuit 10 through a hybrid signal. A pre-charge signal (Vp) is applied to the pixel circuit 10 to acquire threshold voltage (Vt) shift information (or Vt shift information) from the pixel circuit 10. The hybrid driving circuit 12 controls the pre-charging, if pre-charging technique is used. The pre-charge signal (Vp) may be generated within the hybrid driving circuit 12, which depends on the operation condition. The power-supply 18B (Vdd) supplies the current required to energize the display 5 and to monitor the power consumption of the display 5.

The hybrid controller 16 controls the individual components that make up the entire hybrid programming circuit. The hybrid controller 16 handles timing and controls the order in which the required functions occur. The hybrid controller 16 may generate data Idata and supplied to the hybrid driving circuit 12. The system 2 may have a reference current source, and the Idata may be supplied under the control of the hybrid controller 16.

The hybrid driver 12 may be implemented either as a switching matrix, as a hybrid driving circuit(s) of FIG. 3, 6, 8 or 20 or combination thereof.
the sum of threshold \(V_t \) of the TFT and \(V_{data} \), scaled by a constant \(K \). The constant is determined by the voltage division network formed by the charge storage capacitor (e.g. \(C_s \) of FIG. 2) and the charge programming capacitor \(C_c \) of FIG. 2. FIG. 4 illustrates an exemplary flow chart for showing the operation of the hybrid driving circuit \(12A \) of FIG. 3. At step \(S10 \), pre-charge mode is enabled. At step \(S12 \), a pixel circuit is selected and pre-charging \((V_p) \) is started. At step \(S14 \), \(V_t \) acquisition mode is enabled, and at step \(S16 \), discharging \((V_p) \) starts. \(V_t \) information is acquired through \(C_c \). Then at step \(S18 \), writing mode is enabled.

FIG. 5 illustrates an exemplary timing chart for showing the operation of the hybrid driving circuit \(12A \) of FIG. 3. In the drawings, \(V_{data} \) represents voltage at the data node (e.g. DL of FIG. 2) of the pixel circuit; \(\text{Idata} \) represents current at the data node (e.g. DL of FIG. 2) of the pixel circuit.

The programming procedure starts by selecting the pixel to be programmed with the pulse \(V_{sel} \). At the same time, the pre-charge pulse \(V_p \) is applied to the pixel circuit’s data input (e.g. DL of FIG. 2).

During the \(V_t \) acquisition phase, voltage on the data line (DL) is allowed to be discharged through the pixel circuit, which is in a current mirror connection with the \(V_{sel} \) line held high. The data line (DL) is discharged to a certain voltage, and the \(V_t \) of a drive TFT is extracted from that voltage. The voltage at \(V_{data} \) is at ground.

During the programming (writing) phase, the calculated compensated voltage is applied to the data input line (DL) of the pixel circuit. The programming routine finishes with the lowering of the \(V_{sel} \) signal.

The calculated compensated voltage is obtained through analog means of a charge programming capacitor \(C_c \). However, any other analog means for obtaining compensated voltage may be used. Further, any (external) digital circuit (e.g. \(50 \) of FIG. 7) may be used to obtain the calculated compensated voltage.

The source driver \((14 \) of FIG. 1) supplies \(V_{data} \) to the capacitor \(C_c \). When \(V_{data} \) is increased from ground to the desired voltage level, the voltage at \(\text{Idata} \) is equal to \((V_{data} - V_t) \).

The structure of FIG. 3 is simple, and is easily implemented.

FIG. 6 illustrates a further example of a hybrid driving circuit, which is applicable to the hybrid driving circuit \(12 \) of FIG. 4. The hybrid driving circuit \(12B \) of FIG. 6 implements voltage programming technique.

The hybrid driving circuit \(12B \) includes a sample \(40 \) and hold \((S/H)\) circuit \(42 \) and a switching element \(44 \). The \((S/H)\) circuit \(42 \) samples \(\text{Idata} \) and holds it for a certain period. The summer \(40 \) receives \(V_{data} \) and the output of the \((S/H)\) circuit \(42 \). The switching element \(44 \) connects the output of the summer \(40 \) to the data node DL in response to a programming control signal \(46 \).

The hybrid driving circuit \(12B \) utilizes the summer \(40 \), instead of the charge coupling capacitor \(C_c \), to produce the programming voltage that is equal to the sum of \(V_t \) and \(V_{data} \). As the hybrid driving circuit \(12B \) does not utilize a capacity, programming voltage is not affected by the parasitic capacitance, and it has less charge feed-through effect. As the hybrid driving circuit \(12B \) does not utilize a charge storage capacitor, programming voltage is not affected by the charge storage capacitance. As the hybrid driving circuit \(12B \) does not utilize a charge programming capacitor, it achieves faster \(V_t \) acquisition time. Removal of the charge programming capacitor eliminates the charge dependency of the programming scheme. Thus the programming voltage is not affected by the charge being shared between the charge storage capacitor and the parasitic capacitance of the system. This results in a higher effective programming voltage.

FIG. 7 illustrates an exemplary flow chart for showing the operation of the hybrid driving circuit \(12B \) of FIG. 6. During the \(V_t \) acquisition mode, the \(V_t \) is sampled at step \(S20 \), and new \(V_{data} \) is produced at step \(S22 \). When writing mode is enabled, the new \(V_{data} \) is supplied to the pixel circuit in response to the programming control signal \(46 \) at \(S24 \). It is noted that the operation of the system having the hybrid driving circuit \(12B \) is not limited to FIG. 7. The new \(V_{data} \) may be produced after step \(S18 \). The control signal \(46 \) may be enabled before step \(S18 \).

During the \(V_t \) acquisition cycle, \(V_{data} \) is at ground, and the voltage at the data node DL is equal to \(V_t \) of the TFT by the pre-charging/discharging operation \((V_p) \). The voltage on the data node DL is sampled and held by the \((S/H)\) circuit \(42 \). The \(V_t \) is provided to the summer \(40 \) through the \((S/H)\) circuit \(42 \). When \(V_{data} \) is increased from ground to the desired voltage level, the summer \(40 \) outputs the sum of \(V_t \) and \(V_{data} \). The switch \(44 \) turns on in response to the programming control signal \(46 \). The voltage at the data node DL goes to \(V_{data} \). Timing chart for showing the operation of the system 2 having the hybrid driving circuit \(12B \) is similar to that of FIG. 5.

FIG. 8 illustrates a further example of a hybrid driving circuit, which is applicable to the hybrid driving circuit \(12 \) of FIG. 1. The hybrid driving circuit \(12C \) of FIG. 8 implements voltage programming technique.

The hybrid driving circuit \(13C \) is a direct digital hybrid driving circuit. The direct digital programming circuit \(13C \) includes a microcomputer \(\text{uc} \) \(50 \) which receives digital data \((V_{data}) \), a digital to analog (D/A) converter \(52 \), a voltage follower \(54 \) for increasing current without affecting voltage, and an analog to digital (A/D) converter \(56 \).

The threshold \(V_t \) of the drive TFT may increase slowly. Thus, it may not be necessary to acquire the threshold \(V_t \) of the drive TFT every programming cycle. This effectively hides the \(V_t \) acquisition for the majority of the programming cycle. In the direct digital hybrid driving circuit \(13C \), the threshold \(V_t \) acquired from the pixel circuit \(10A \) is digitized at the A/D converter \(56 \), and is stored in memory contained in the \(\text{uc} \) \(50 \). The digital data that defines the brightness of the pixel is added to the \(V_t \) in the \(\text{uc} \) \(50 \). The resulting voltage is then converted back to an analog value at the \(D/A \) \(52 \), which is programmed into the pixel circuit \(10A \). This programming method is designed to compensate for the slow process of the \(V_t \) acquisition.

FIG. 9 illustrates an exemplary flow chart for showing the operation of the \((S/H)\) driving circuit \(12C \) of FIG. 8. At the \(V_t \) acquisition mode, the \(V_t \) is sampled and recorded at step \(S30 \). When writing mode is enabled, new \(V_{data} \) is provided based on the recorded data. It is noted that the operation of the system having the hybrid driving circuit \(12C \) of FIG. 8 is not limited to FIG. 9. At the writing mode, the data which have been recorded may be used without implementing the \(V_t \) acquisition.

FIG. 10 illustrates an exemplary timing chart for showing the operation of the hybrid driving circuit \(12C \) of FIG. 8. During the \(V_t \) acquisition, sampling by the A/D converter \(56 \) is implemented. In a next cycle, the hybrid driving circuit \(13C \) may use the \(V_t \) that has been previously acquired and has been recorded in the \(\text{uc} \) \(50 \).

The conversion of the output on the data node DL by A/D can remove the requirements of having to acquire the \(V_t \) every programming cycle. The \(V_t \) of the pixel circuit \(10A \) may be acquired once every second or less. Thus, it may acquire \(V_t \) for only one row of the display per frame cycle. This effec-
tively increases the amount of time for the pixel programming cycle. Less frequent need of Vt acquisition ensures faster programming time.

In the above description, FIG. 2 is used to describe the pixel circuit 10 of FIG. 1. However, the pixel circuit 10 is not limited to that of FIG. 2. The pixel circuit 10 may be a pixel circuit illustrated in FIG. 11 (J. Kanichi, J.-H. Kim, J. Y. Nahm, Y. He and R. Hattori “Amorphous Silicon Thin-Film Transistor Based Active-Matrix Organic Light Emitting Display” Asia Display IDW 2001 pp. 315). The pixel circuit of FIG. 11 includes four TFTs 64-70, a capacitor C17,72 and an OLED 74. The TFT 78 is a drive TFT that is connected to the OLED 74 and the capacitor C17,72. The pixel circuit of FIG. 11 is selected by Vsselect 1 and Vsselect 2, and is programmed by Idta. The voltage acquired is a combination of the voltages across the OLED 74 and T3 68. The technique compensates the voltage change of both the Vt and the OLED 74. Idata of FIG. 11 corresponds to the data node DL of FIG. 2.

FIG. 12 illustrates a system for driving an AMOLED display in accordance with a further embodiment of the invention. The system 82 of FIG. 12 includes a hybrid programming circuit having a correction table 80, a source driver 14 for implementing a voltage-programming scheme and a reference current source 94 for implementing a current-programming scheme. The system 82 drives a display having a plurality of pixel circuits using the voltage-programming scheme and the current-programming scheme.

A hybrid controller 98 is provided to control each component. In FIG. 12, the hybrid controller 98 is placed between the A/D converter 96 and the correction table 80, as an example. The hybrid controller 98 is similar to the hybrid controller 16 of FIG. 1.

The pixel circuit driven by the system 82 may be the pixel circuit 10 of FIG. 1, and may be a current programmed pixel circuit or a voltage programmed pixel circuit. The pixel circuit driven by the system 82 may be implemented by FIG. 2 or FIG. 11, however, is not limited to those of FIGS. 2 and 11.

The hybrid programming circuit includes a correction calculation module 92 for correcting data from the data source 90 based on the correction table 80 and an A/D converter 96. The data corrected by the correction calculation module 92 is applied to the source driver 14. The source driver 14 generates Vdata based on the corrected data output from the correction calculation module 92. Vdata from the source driver 14 and Idata from the reference current source 94 are supplied to the hybrid driver 12.

The data source 90 is, for example, but not limited to, a DVD. The hybrid driver 12 may be implemented either as a switching matrix, or as the digital programming circuit(s) of FIG. 8, 20 or combination thereof. The A/D converter 96 may be the A/D converter 56 of FIG. 8. The system 82 may implement the Vt acquisition technique described above using the A/D converter 96 (56).

The correction table 80 is a lookup table. The correction table 80 records the relationship between current required to program the pixel circuit and voltage necessary to obtain that current. The correction table 80 is built for every pixel in the entire display.

In the description, the relationship between the current required to program the pixel circuit and the voltage necessary to obtain that programming current, is referred to as “current/voltage correction information”, “current/voltage correction curve”, or “current/voltage information”, or “current voltage curve”.

In FIG. 12, the correction table 80 is illustrated separately from the correction calculation module 92. However, the correction table 80 may be included in the correction calculation module 92.

The operation of the system of FIG. 12 has two modes, namely display mode and calibration mode. In the display mode, the data from the data source 90 is corrected using the data in the correction table 80, and is applied to the source driver 14. The hybrid driver 12 is not involved in the display mode. In the calibration mode, the current from the reference current source 94 is applied to the pixel circuit, and the voltage associated with the current is read from the pixel circuit. The voltage is converted to a digital data by the A/D converter 96. The correction table 80 is updated with the correct value based on the digital data.

During the display mode, a voltage-programming scheme is implemented. The voltage on the data line (e.g. DL of FIG. 2) of the pixel circuit determines the brightness of the pixels. The voltage required to program the pixel circuit is calculated from the pixel brightness to be displayed (from the incoming video information) combined with the current/voltage correction information stored in the correction table 80. The information on the correction table 80 is combined with incoming video information to ensure that each pixel will maintain a constant brightness over long-term use.

After the display has been used for a fixed period of time, the display enters the calibration mode. The current source 94 is connected to the data input node (DL) of the pixel circuit via the hybrid driver 12. Each pixel is programmed through a current-programming scheme (where the level of current on the data line determines the brightness of the pixel), and the voltage required to achieve that current is read by the A/D converter 96.

The voltage required to program the pixel current is sampled at multiple current points by the A/D converter 96. The multiple points may be a subset of the possible current levels (e.g. 256 possible levels for 8-bit, or 64 levels for 6-bit).

This subset of voltage measurements is used to construct the correction table 80 that is interpolated from the measurement points.

The calibration mode may be entered either through user's command or may be combined with the normal display mode so that the calibration takes place during the display refresh period.

In one example, the entire display may be calibrated at once. The display may stop showing incoming video information for a short period of time while each pixel was programmed with a current and the voltage recorded.

In a further example, a subset of the pixels may be calibrated, such as one pixel every fixed number of frames. This is virtually transparent to the user, and the correction information may still be acquired for each pixel.

When a conventional voltage-programming scheme is utilized, a pixel circuit is programmed in an open loop configuration, where there is no feedback from the pixel circuit regarding the threshold voltage shift of the TFTs. When a conventional current-programming scheme is utilized, the brightness of the pixel may remain constant over time. However, the current programming scheme is slow. Thus, the table lookup technique combines the technique of the current-programming scheme with the technique of the voltage-programming scheme. The pixel circuit is programmed with a current through a current-programming scheme. A voltage to maintain that current is read and is stored at a lookup table. The next time that particular level of current is applied to the pixel circuit, instead of programming with a current, the pixel circuit is programmed based on information on the lookup
Accordingly, it attains the compensation inherent in the current programming scheme while attaining the fast programming time that is only possible with voltage-programming scheme.

In the above description, the correction table (lookup table) is used to correct the current/voltage correction information. However, the system of FIG. 12 may use the lookup table to correct the Vt shift and the current/voltage correction information at the same time in combination with the hybrid driving circuit of FIG. 3, 6, 8, or 20.

For example, several voltage measurements are captured at many different current points by the A/D converter (56). The hybrid controller (98) extracts the Vt shift information by extending the voltage versus current curve to zero current point. The Vt shift information is stored in an array of tables (correction table (80)) which is applied to incoming display data.

The uC of FIG. 8 or 20 may utilize the lookup table to generate appropriate voltage and program the pixel circuit. The hybrid circuits of FIGS. 3 and 129 of FIG. 6 may be integrated into the system of FIG. 12.

FIGS. 13-14 illustrate exemplary flow charts for showing the operation of the system of FIG. 12. Referring to FIG. 13, at step 540, calibration mode is enabled. At step 542, a pixel circuit is selected and current programming is implemented to the selected pixel circuit. At step 544, a switch matrix enable signal is enabled. Then the connection to the pixel circuit is changed. The Vt is sampled at step 546, and then the correction table is created/corrected at step 548. Referring to FIG. 14, at step 550, video data are corrected based on the correction table. Then at step 552, new Vdata is produced based on the corrected data.

It is noted that the writing mode may be implemented based on the previously created correction table without implementing the calibration mode. It is noted that the operation of the system of FIG. 12 is not limited to FIGS. 13-14.

FIG. 15 illustrates an exemplary timing chart for showing a combination of the Vt shift acquisition and the current/voltage correction. A switch matrix enable signal in FIG. 15 represents a control signal for the hybrid driver of FIG. 12.

Referring to FIGS. 12 and 15, the calibration mode (i.e. the current-programming scheme) is enabled when the switch matrix enable signal is high. The programming mode (i.e. the voltage-programming scheme) is enabled when the switch matrix enable signal is low. However, the calibration mode may be enabled when the switch matrix enable signal is low. The programming mode may be enabled when the switch matrix enable signal is high.

A/D sampling is implemented during the calibration mode. During the calibration mode, the current from the reference current source is applied to the pixel circuit. The voltage on the data input node is converted to a digital voltage by the A/D converter. Based on the digital voltage and current associated with the digital voltage, current/voltage correction information is recorded at the lookup table. The Vt shift information is generated based on the data in the correction table or the output from the A/D converter.

The system of FIG. 12 may implement hidden refresh technique for refreshing current/voltage correction information in addition to the table lookup technique described above.

Under the hidden refresh operation, new current/voltage correction information is constructed while completely hidden from the user’s perception. This technique utilizes the information that is currently displayed on the screen (i.e. the incoming video data). By obtaining the pixel characteristics from the full calibration routine that has been performed during the manufacturing process of the display, the current/voltage correction information for each pixel in the display is known. During the display’s usage, the current/voltage correction curve may shift due to the change in Vt. By measuring a single point along the current/voltage correction curve (which is the data currently displayed, that is part of the video image), a new current/voltage correction curve is extrapolated from the point so that it is fitted to the measured point. Based on the new current/voltage correction curve, the Vt shift information is extracted which is used to compensate for the shift in Vt.

FIG. 16 illustrates an exemplary flow chart for the hidden refresh operation of the system of FIG. 12. First, a current/voltage correction curve is produced during the calibration process that is implemented during the manufacturing of the display (step S62). FIG. 17 illustrates an example of a sample of the current voltage correction curve.

Referring to FIG. 16, the next step is to measure a point along the curve during the usage of the display. This point can be any point along the curve, so any data that the user currently has on the display can be used for calibration (step S64). FIG. 18 illustrates the current voltage correction of FIG. 17 and an example of a newly measured data point.

Referring to FIG. 16, the last step is to shift the current/voltage correction curve to fit the point of voltage verses current relationship that is measured (step S66). FIG. 19 illustrates an example of a new current voltage correction curve based on the measured point of FIG. 18.

The process associated with FIGS. 17-19 is implemented in the hybrid controller of FIG. 12.

The system of FIG. 12 may implement a combined current and voltage-programming technique. FIG. 20 illustrates one example of a hybrid driving circuit for implementing the combined current and voltage-programming technique. The hybrid driving circuit of FIG. 20 may be included in the hybrid driving circuit 12 of FIG. 12.

In the hybrid driving circuit of FIG. 20, the digital hybrid driving circuit 12C and a current source are provided to the data line DL of the pixel circuit.

To enhance the circuit’s ability to compensate for a change in the current/voltage correction curve due to temperature, threshold voltage shift, or other factors, the pixel circuit programming is divided into two phases.

During the writing mode, the pixel circuit is voltage-programmed first to set the gate voltage of the driving TFT to an approximate value, then followed by a current programming phase. The current programming phase can then fine-tune the output current. The system of FIG. 20 is faster than current programming and has the compensation capabilities of the current programming scheme.

In FIG. 20, the digital hybrid driving circuit 12C is provided. However, the combined current and voltage-programming technique may be implemented by combining the hybrid driving circuit 12A of FIG. 3 or 12B of FIG. 6 with the current source. The current source may be the reference current source of FIG. 12.

The system of FIG. 1 may implement the hidden refresh technique described above. The system of FIG. 1 may implement the combined current and voltage-programming technique. The system of FIG. 1 may include the hybrid driving circuit of FIG. 20 to implement the combined current and voltage-programming technique.

Extension of the direct digital programming scheme is now described in detail. The direct digital programming scheme (FIGS. 6, 8, and 20) can be extended to drive an OLED array (e.g. a 4T OLED array) using voltage programmed column drivers, such as those used for driving Active Matrix Liquid
Crystal Display (AMLCD), or voltage-programmed Active-Matrix Organic Light Emitting Diode (AMOLED) displays, or any other voltage-output display driver.

FIG. 21 illustrates a system for driving an AMOLED array having a plurality of pixel circuits in accordance with a further embodiment of the invention. The system 105 of FIG. 21 includes a voltage column driver 112, a programmable current source 114, a switching network 116, an A/D converter 118 and a row driver 120.

The voltage column driver 112 is a voltage programmed column driver. Each of the voltage column driver 112 and the row driver 120 may be any driver that has a voltage output, such as those designed for the AMLCD. The voltage column driver 112 and the programmable current source 114 are connected to an OLED array 110 through the switching network 116. The OLED array 110 forms an AMOLED display, and contains a plurality of pixel circuits (such as 10 of FIG. 1). The pixel circuit may be a current programmed pixel circuit or a voltage programmed pixel circuit.

The A/D converter 118 is an interface that allows an analog signal (i.e. current driving the display 110) to be read back as a digital signal. The digital signal associated with the current can then be processed and/or stored. The A/D converter 118 may be the A/D converter 56 of FIGS. 8 and 20. The column driver 112 may be the source driver 14 of FIGS. 1 and 12.

The system 105 of FIG. 21 implements the calibration mode and the display mode as described above.

FIG. 22 illustrates an example of the switching network 116 of FIG. 21. The switching network 116 of FIG. 22 includes two MOSFET switches 122 and 124 that can switch the column of the display 110 from connecting to the column driver 112 to the combination of the current source 114 and the A/D converter 118, and vice versa. A shift register 126 is a source of the control digital signal that controls the operation of the MOS switches 122 and 124. An inverter 128 inverts an output from the shift register 126. Thus, when the shift register 122 is on (off), the switch 124 is off (on).

The switching network 116 may be located either off the glass in the column driver 112 or directly on the glass using TFT switches.

Referring to FIGS. 21-22, the system 105 uses only one current source 114. The voltage-programmed drivers (such as, AMLCD drivers, or any other voltage-output drivers) drive the rest of the display 110. The switching matrix (switching network 116) allows different pixels within the array of pixels to be connected to a single current source 114 through a time division method. This allows a single current source to be applied to the entire display. This lowers the cost of the circuit driver and speeds up the programming time for the pixel circuit.

The system 105 uses the A/D converter 118 to convert an analog output of the data node (e.g. DL of FIG. 2) of the pixel circuit to digital data. The conversion by the A/D converter 118 removes the requirements of having to acquire the Vt every programming cycle. The Vt of the pixel circuit may be acquired once every few minutes. Thus it may acquire one column of the panel every refresh cycle.

Only one A/D 118 may be implemented for all the columns. The circuit acquires only one pixel per frame refresh. For example, for a 320 by 240 pixel, the number of pixels is 76,800. For a frame rate of 30 Hz, the time required to acquire Vt from all pixels for the entire frame is 43 minutes. This may be acceptable for some applications, providing that Vt does not shift substantially in an hour.

The parasitics only affect the amount of time to discharge the capacitor to acquire Vt. Since the circuit is voltage-programmed, it is not affected by the parasitics. Since Vt is only acquired one column per frame time, it can be long. For example, for a display with 320 columns that has a frame rate of 30 Hz, each frame time is 33 ms. For voltage programming, it is possible to program a pixel in 70 us. For 320 columns, the time to update the display is 22 ms, which is still less than 11 ms to complete a charge/discharge cycle.

The system 105 may implement the lookup table technique to compensate for Vt shift and/or to correct the current/voltage information as described above.

The system 105 may implement the hidden refresh technique to acquire the Vt shift information and current/voltage correction information of each pixel circuit (10) in the display 110. This current/voltage correction information is used to populate a lookup table (e.g. a correction table 80 of FIG. 12) that will then be used to compensate for the degradation in the pixel circuit, which is caused by aging. To reduce cost, the number of current-programmed circuits has been reduced so there is only one per display instead of one per column driver.

The system 105 may implement the combined current and voltage-programming technique as described above.

The system 105 may implement the voltage-programming technique of the pixel circuit can be further corrected by implementing a system illustrated in FIG. 23. FIG. 23 illustrates a system for correcting the current/voltage information of the pixel circuit. In FIG. 23, a display 130 is depicted as a 2T or 4T OLED array. However, the display 130 may also include a plurality of pixel circuits, each having three or more transistors. The display 130 may include voltage-driven pixel circuits or current-driven pixel circuits. The system of FIG. 23 is applicable to the systems 2, 82, and 105 of FIGS. 1, 12 and 22.

As illustrated in FIG. 23, a switch 132 is provided to disconnect the common electrode of the OLED. It is well known that two electrodes are provided for the OLED. One is connected to the pixel circuit, and the other is a common electrode connected to all OLEDs. It is noted that the common electrode may be Vdd or GND depending on the type of OLED. The switch 132 connects the common electrode of the OLED into a current sensing network 134 utilizing a high side common mode sensor (such as, INA168 by TI). The current sensing network 134 measures the current through the common electrode.

During the calibration phase, each pixel is lit individually and the current consumed is acquired by the sensing network 134. The acquired current is used to correct the lookup table (e.g. the correction table 80 of FIG. 12) populated by the direct digital hybrid driving circuit of FIG. 8 or 20.

A dark display current may be acquired to include the effect of dead pixel and leakage current of the array. During this procedure, all pixels are turned off, and the current (i.e. dark display current) is measured.

According to the embodiments of the present invention, the major issue with current-programmed pixel circuits, which is the slow programming time, is solved. The concept of using feedback to compensate the pixel circuit enhances the uniformity and stability of the display while retaining the fast programming capability of the voltage programmed drive scheme.

The present invention has been described with regard to one or more embodiments. However, it will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.

What is claimed is:
1. A system for programming at least one pixel circuit in a display, the system comprising:
 a) a voltage driver for generating a current or a voltage to apply to a data node of the at least one pixel circuit to
thereby program the at least one pixel circuit according to the generated current or voltage; a programmable current source for providing a first current and a second current to apply to the data node of the at least one pixel circuit; a sampler for reading a first voltage on the data node while the first current is maintained through the at least one pixel circuit via the programmable current source and for reading a second voltage on the data node while the second current is maintained through the at least one pixel circuit via the programmable current source; and a controller configured to:

- generate a voltage versus current relationship for the at least one pixel circuit based on the first current and the second current and based on the sampled first and second voltages,
- extract, based on the voltage versus current relationship for the at least one pixel circuit, a voltage corresponding to a zero current level, and
- program the at least one pixel circuit via the data node with a programming current or voltage generated by the [voltage] driver that is set according to displaying data and according to the extracted voltage corresponding to the zero current level.

2. The system according to claim 1, wherein the at least one pixel circuit is configured to be alternately programmed by a programming current applied to the data node or by a programming voltage applied to the data node.

3. The system according to claim 2, wherein the at least one pixel circuit includes a mirror transistor having a gate coupled to a gate terminal of the driving transistor, the at least one pixel circuit configured such that the data node is coupled to a gate terminal of the mirror transistor via one or more switch transistors, the applied current being conveyed via the one or more switch transistors through the mirror transistor while the gate terminal of the mirror transistor adjusts to a voltage for maintaining the applied current through the mirror transistor.

4. The system according to claim 3, wherein the one or more switch transistors include a first switch transistor and a second switch transistor,

- the first switch transistor operated according to a select signal and configured to couple the data node to the gate terminal of the mirror transistor while the first switch transistor is switched on,
- the second switch transistor operated according to the select signal and configured to couple the data node to a drain or a source terminal of the mirror transistor while the second switch transistor is switched on.

5. The system according to claim 2, wherein the at least one pixel circuit includes one or more switch transistors configured to couple the data node to a drain or a source terminal of the driving transistor while the programming current is applied to the at least one pixel circuit via the data node, the one or more switch transistors further configured to couple the data node to a gate terminal of the driving transistor while the programming current is applied, such that the gate terminal of the driving transistor adjusts to a voltage for maintaining the applied current through the driving transistor,

- the one or more switch transistors further configured to couple the data node to the gate terminal of the driving transistor while the programming voltage is applied to the at least one pixel circuit via the data node.

6. The system according to claim 1, wherein the sampler includes an analog to digital converter configured to capture digital information indicative of the first and second voltages on the data node.

7. The system according to claim 6, further comprising a memory for storing the digital information indicative of the first and second voltages, the digital information being stored in a lookup table that associates the first and second voltages with the first and second currents to thereby characterize the voltage versus current relationship of the at least one pixel circuit.

8. The system according to claim 1, wherein the controller is further configured to instruct the voltage driver to set the programming voltage for the at least one pixel circuit by adding the voltage corresponding to the zero current level to a voltage indicated by the display data.

9. The system according to claim 1, wherein the at least one pixel circuit is a plurality of pixel circuits arranged in an array of rows and columns, each of the plurality of pixel circuits having a data node coupled to a data line, and wherein the programmable current source is configured to generate a plurality of currents to apply to each of the plurality of pixel circuits and the sampler is configured to read a corresponding plurality of voltages for each of the plurality of pixel circuits while each of the plurality of currents is maintained through respective ones of the plurality of pixel circuits.

10. The system according to claim 1, wherein the controller is configured to extract the threshold voltage of the driving transistor of the at least one pixel circuit by extending the voltage versus current relationship for the at least one pixel circuit to the zero current level and determining the voltage corresponding to the zero current level, the voltage corresponding to the zero current level providing an estimate of the threshold voltage of the driving transistor of the at least one pixel circuit.

11. The system according to claim 1, further comprising a memory communicatively coupled to the controller for digitally storing digital information indicative of the first and second voltages.

12. The system according to claim 1, wherein the at least one pixel circuit includes an organic light emitting diode for emitting light according to the display data and one or more thin film transistors for conveying a current through the organic light emitting diode according to the display data.

13. A method of operating a display having at least one pixel circuit, the at least one pixel circuit having a light emitting device coupled in series with a driving transistor configured to convey a driving current through the light emitting device according to display information, the at least one pixel circuit configured to be alternately programmed according to the display information by a programming current applied to a data node of the at least one pixel circuit or by a programming voltage applied to the data node, the method comprising:

- applying a first current to the data node of the at least one pixel circuit;
- reading a first voltage on the data node while the first current is maintained through the at least one pixel circuit;
- applying a second current to the data node of the at least one pixel circuit;
- reading a second voltage on the data node while the second current is maintained through the at least one pixel circuit;
- storing digital information indicative of the first and second voltages such that the first and second voltages are associated with the first and second currents;
15 generating a voltage versus current relationship for the at least one pixel circuit based on the first and second voltages and the first and second currents;

10 extracting, based on the generated voltage versus current relationship for the at least one pixel circuit, a voltage corresponding to a zero current level; and

15 programming the at least one pixel circuit by applying, to the data node of the at least one pixel circuit, a programming voltage that is based on the display data and the voltage corresponding to the zero current level.

14. The method according to claim 13, wherein the at least one pixel circuit is at least one of a plurality of pixel circuits arranged in an array of rows and columns in the display, and wherein the applying the first and second current, the reading the first and second voltages, the storing, the generating, and the extracting are applied to each of the plurality of pixel circuits such that voltages corresponding to the zero current level are extracted for each of the plurality of pixel circuits.

15. The method according to claim 14, wherein the voltage corresponding to the zero current level is an estimate of a threshold voltage of the driving transistor in the at least one pixel circuit, and wherein the programming is applied to each of the plurality of pixel circuits based on the display data for each of the plurality of pixel circuits and based on the estimate of the threshold voltage of the driving transistor for each of the plurality of pixel circuits such that the display is operated to compensate for the threshold voltages of the driving transistors in each of the plurality of pixel circuits.

16. The method according to claim 13, wherein the storing is carried out by digitally storing the digital information indicative of the first and second voltages in a lookup table associated with the at least one pixel circuit.

17. The method according to claim 13, wherein the applying the first current and the applying the second current are performed during a calibration mode of the display that is distinct from a normal display mode, the calibration mode being a period during which images are not shown on the display.

18. The method according to claim 13, wherein at least one of the first current or the second current is a programming current applied to the at least one pixel circuit during a programming operation of a normal display mode to program the at least one pixel circuit to emit light according to the display information.

19. The method according to claim 13, wherein the at least one pixel circuit is at least one of a plurality of pixel circuits arranged in an array of rows and columns in the display, and wherein at least one of the first current or the second current is a programming current applied to the at least one pixel circuit during a programming operation of a normal display mode while others of the plurality of pixel circuits are voltage programmed with programming voltages, thereby hiding the applying the at least one of the first current or the second current to the at least one pixel circuit.

20. The method according to claim 13, further comprising: responsive to the extracting, applying a third current to the data node of the at least one pixel circuit; reading a third voltage on the data node while the third current is maintained through the at least one pixel circuit; storing digital information indicative of the third voltage such that the third voltage is associated with the third current; updating the voltage versus current relationship for the at least one pixel circuit based on at least the third voltage and the third current;

extracting, based on the updated voltage versus current relationship for the at least one pixel circuit, a voltage corresponding to a zero current level, the voltage corresponding to the zero current level being an updated estimate of a threshold voltage of the driving transistor in the at least one pixel circuit; and

programming the at least one pixel circuit to compensate for the threshold voltage of the driving transistor by applying, to the data node of the at least one pixel circuit, a programming voltage that is based on the display data and the updated estimated threshold voltage.

21. A system for programming at least one pixel circuit in a display, the system comprising:

a voltage driver for generating a voltage to apply to a data node of the at least one pixel circuit to thereby program the at least one pixel circuit according to the generated voltage;

a programmable current source for providing a first current to apply to the data node of the at least one pixel circuit; a sampler for reading a first voltage on the data node while the first current is maintained through the at least one pixel circuit via the programmable current source; and a controller configured to:

receive calibration data indicative of a voltage versus current relationship for the at least one pixel circuit; generate an updated voltage versus current relationship for the at least one pixel circuit; and

extract, based on the updated voltage versus current relationship for the at least one pixel circuit based on the first current and the first voltage and based on the received calibration data, extract the at least one pixel circuit to emit light according to the display information.

22. The system according to claim 21, wherein the first current is a programming current applied to the at least one pixel circuit during a programming operation of a normal display mode to program the at least one pixel circuit to emit light according to the display information.

23. The system according to claim 21, wherein the at least one pixel circuit is configured to be alternately programmed by a programming current applied to the data node or by a programming voltage applied to the data node.

24. The system according to claim 21, wherein the at least one pixel circuit is a plurality of pixel circuits arranged in an array of rows and columns, each of the plurality of pixel circuits having a data node coupled to a data line, and wherein the programmable current source is configured to generate a plurality of currents to apply to each of the plurality of pixel circuits and the sampler is configured to read a corresponding plurality of voltages for each of the plurality of pixel circuits while each of the plurality of currents is maintained through respective ones of the plurality of pixel circuits.

25. The system according to claim 21, wherein the sampler includes an analog to digital converter configured to capture digital information indicative of the first and second voltages on the data node.

26. The system according to claim 25, further comprising a memory for storing the digital information indicative of the first voltage, the digital information being stored in a lookup table that associates the first voltage with the first current to thereby characterize the voltage versus current relationship of the at least one pixel circuit.
27. The system according to claim 21, wherein the at least one pixel circuit includes an organic light emitting diode for emitting light according to the display data and one or more thin film transistors for conveying a current through the organic light emitting diode according to the display data.

28. A method of operating a display having at least one pixel circuit, the at least one pixel circuit having a light emitting device coupled in series with a driving transistor configured to convey a driving current through the light emitting device according to display information, the at least one pixel circuit configured to be alternately programmed according to the display information by a programming current applied to a data node of the at least one pixel circuit or by a programming voltage applied to the data node, the method comprising:

applying a first current to the data node of the at least one pixel circuit;
reading a first voltage on the data node while the first current is maintained through the at least one pixel circuit;

storing digital information indicative of the first voltage such that the first voltage is associated with the first current;

receiving calibration data indicative of a voltage versus current relationship for the at least one pixel circuit;
generating an updated voltage versus current relationship for the at least one pixel circuit based on the first voltage, the first current, and the received calibration data;
extracting, based on the updated voltage versus current relationship for the at least one pixel circuit, a voltage corresponding to a zero current level; and
programming the at least one pixel circuit by applying, to the data node of the at least one pixel circuit, a programming voltage that is based on the display data and the voltage corresponding to the zero current level.

29. The method according to claim 28, wherein the at least one pixel circuit is at least one of a plurality of pixel circuits arranged in an array of rows and columns in the display, and wherein the applying the first current, the reading the first voltage, the storing, the receiving, the generating, and the extracting are applied to each of the plurality of pixel circuits such that voltages corresponding to the zero current level are extracted for each of the plurality of pixel circuits.

30. The method according to claim 29, wherein the voltage corresponding to the zero current level is an estimate of a threshold voltage of the driving transistor in the at least one pixel circuit, and wherein the programming is applied to each of the plurality of pixel circuits based on the display data for each of the plurality of pixel circuits and based on the estimate of the threshold voltage of the driving transistor for each of the plurality of pixel circuits such that the display is operated to compensate for the threshold voltages of the driving transistors in each of the plurality of pixel circuits.

31. A method of adjusting a programming value for a pixel circuit in an OLED display to compensate for degradation of the display or for non-uniformity and degradation of the display, the method comprising:

applying a charge to the pixel circuit to acquire threshold voltage information or a shift in threshold voltage information from the pixel circuit;

responsive to applying the charge, measuring a voltage of the pixel circuit;
extracting from the measured voltage a degradation of the pixel circuit; the degradation adversely affecting a programmed brightness of an OLED in the pixel circuit;
digitizing the extracted degradation of the pixel circuit to a digital compensation value representing the degradation of the pixel circuit; and
adjusting a video input signal to the pixel circuit based on the digital compensation value to compensate for the degradation of the pixel circuit, wherein the extracting the degradation includes extracting a threshold voltage or a shift in the threshold voltage of a drive transistor in the pixel circuit.

32. The method of claim 31, wherein the extracting the degradation includes measuring a rate of discharge of a voltage on the data node of the pixel circuit.

33. The method of claim 31, wherein the digitizing the extracted degradation includes:

storing digital data corresponding to the digitized extracted degradation in a memory;

adding the digital data to the programming value to produce a resulting voltage; and

converting the resulting voltage to a corresponding analog value to be applied as the video input signal during a programming phase.

34. The method of claim 31, wherein the adjusted video signal input is applied to the pixel circuit during the programming phase as a current or a voltage.

35. The method of claim 31, further comprising:

generating a voltage versus current relationship for the pixel circuit based on current values applied to a data node of the pixel circuit and based on voltages sampled at the data node; and

extracting, based on the generated voltage versus current relationship, a voltage corresponding to a zero current level, wherein the digital compensation value is further adjusted based on the extracted voltage.

36. A method of adjusting a programming value for a pixel circuit in an OLED display to compensate for degradation or non-uniformity of the display or for non-uniformity and degradation of the display, the method comprising:

applying a current to a node of a pixel circuit responsive to the applying, acquiring a voltage from the node;
creating, from the acquired voltage, a compensation value;

storing the compensation value in a memory device; and

correcting a video input signal applied to the pixel circuit based on the stored compensation value, wherein the compensation value is indicative of a threshold voltage or a shift in the threshold voltage of a drive transistor in the pixel circuit.

37. The method of claim 36, wherein the node is a data node.

38. The method of claim 36, wherein the voltage acquired from the data node corresponds to the threshold voltage or the shift in the threshold voltage of a drive transistor in the pixel circuit.

39. The method of claim 36, wherein the creating the compensation value includes:

storing digital data corresponding to the compensation value in a memory;

adding the digital data to the programming value to produce a resulting voltage; and

converting the resulting voltage to a corresponding analog value to be applied as the video input signal during a programming phase.

40. The method of claim 36, wherein the corrected video signal input is applied to the pixel circuit during the programming phase as a current or a voltage.
41. A system for driving a display panel including a pixel circuit having a plurality of transistors and an organic light emitting device, the system comprising:
 a driver for generating a programming voltage or current to program the pixel circuit through a data line coupled to the pixel circuit;
 a switching network connected to the display panel;
 a measurement unit connected to the switching network and shared among multiple columns of the display panel, the measurement unit converting an analog measurement from a data node of corresponding pixel circuits in the multiple columns to a digitalized value; and
 a memory device configured to store the digital values converted by the measurement unit.
42. The method of claim 41, wherein the measurement unit includes an analog-to-digital converter.
43. A method of extracting different parameters from a pixel circuit in a display panel, comprising:
 extracting, using a first measurement implementation, from the pixel circuit a first parameter indicative of a degradation or non-uniformity of the pixel circuit;
 extracting, using a second measurement implementation different from the first measurement implementation, from the pixel circuit a second parameter indicative of the same or a different degradation or non-uniformity of the pixel circuit as the first extracted parameter; and
 driving the pixel circuit with programming information that is adjusted based on the extracted first parameter or the extracted second parameter or both, wherein the first parameter is related to a threshold voltage of a drive transistor in the pixel circuit.
44. The method of claim 43, wherein the second parameter is a current through a common electrode of an organic light emitting device in the pixel circuit, wherein the common electrode is connected to all of the organic light emitting devices in the display panel.
45. A method of adjusting a programming value for a pixel circuit in an OLED display to compensate for degradation of the display or for non-uniformity and degradation of the display, the method comprising:
 applying a charge to the pixel circuit to acquire threshold voltage information or a shift in threshold voltage information from the pixel circuit;
 responsive to applying the charge, measuring a voltage of the pixel circuit;
 extracting from the measured voltage a degradation of the pixel circuit, the degradation adversely affecting a programmed brightness of an OLED in the pixel circuit;
 digitizing the extracted degradation of the pixel circuit to a digital compensation value representing the degradation of the pixel circuit; and
 adjusting a video input signal to the pixel circuit based on the digital compensation value to compensate for the degradation of the pixel circuit, wherein the extracting the degradation includes measuring a voltage remaining on a data node of the pixel circuit during a threshold voltage acquisition.
46. The method of claim 45, wherein the voltage remaining on the data node corresponds to a threshold voltage or a shift in the threshold voltage of a drive transistor in the pixel circuit.
47. The method of claim 45, wherein the digitizing the extracted degradation includes:
 storing digital data corresponding to the digitized extracted degradation in a memory;
 adding the digital data to the programming value to produce a resulting voltage; and
 converting the resulting voltage to a corresponding analog value to be applied as the video input signal during a programming phase.
48. The method of claim 45, wherein the adjusted video signal input is applied to the pixel circuit during the programming phase as a current or a voltage.
49. A method of adjusting a programming value for a pixel circuit in an OLED display to compensate for degradation of the display or for non-uniformity and degradation of the display, the method comprising:
 applying a charge to the pixel circuit to acquire threshold voltage information or a shift in threshold voltage information from the pixel circuit;
 responsive to applying the charge, measuring a voltage of the pixel circuit;
 extracting from the measured voltage a degradation of the pixel circuit, the degradation adversely affecting a programmed brightness of an OLED in the pixel circuit;
 digitizing the extracted degradation of the pixel circuit to a digital compensation value representing the degradation of the pixel circuit; and
 adjusting a video input signal to the pixel circuit based on the digital compensation value to compensate for the degradation of the pixel circuit, wherein the extracting the degradation includes measuring a rate of discharge of a voltage on the data node of the pixel circuit.
50. The method of claim 49, wherein the digitizing the extracted degradation includes:
 storing digital data corresponding to the digitized extracted degradation in a memory;
 adding the digital data to the programming value to produce a resulting voltage; and
 converting the resulting voltage to a corresponding analog value to be applied as the video input signal during a programming phase.
The method of claim 52, wherein the extracting the degradation includes extracting a threshold voltage or a shift in the threshold voltage of a drive transistor in the pixel circuit.

55. The method of claim 54, wherein the extracting the degradation includes measuring a voltage remaining on a data node of the pixel circuit during a threshold voltage acquisition.

56. The method of claim 52, wherein the extracting the degradation includes measuring a voltage of the node corresponding to the threshold voltage or a shift in the threshold voltage of a drive transistor in the pixel circuit.

57. A method of adjusting a programming value for a pixel circuit in an OLED display to compensate for degradation of the display or for non-uniformity and degradation of the display, the method comprising:
 - applying a charge to the pixel circuit to acquire threshold voltage information or a shift in threshold voltage information from the pixel circuit;
 - responsive to applying the charge, measuring a voltage of the pixel circuit;
 - extracting from the measured voltage a degradation of the pixel circuit, the degradation adversely affecting a programmed brightness of an OLED in the pixel circuit;
 - digitizing the extracted degradation of the pixel circuit to a digital compensation value representing the degradation of the pixel circuit; and
 - adjusting a video input signal to the pixel circuit based on the digital compensation value to compensate for the degradation of the pixel circuit, wherein the adjusted video signal input is applied to the pixel circuit during a programming phase as a current or a voltage.

58. The method of claim 57, wherein the extracting the degradation includes extracting a threshold voltage or a shift in the threshold voltage of a drive transistor in the pixel circuit.

59. The method of claim 57, wherein the extracting the degradation includes measuring a voltage remaining on a data node of the pixel circuit during a threshold voltage acquisition.

60. The method of claim 59, wherein the voltage remaining on the data node corresponds to a threshold voltage or a shift in the threshold voltage of a drive transistor in the pixel circuit.

61. The method of claim 57, wherein the extracting the degradation includes measuring a rate of discharge of a voltage on the data node of the pixel circuit.

62. The method of claim 57, wherein the digitizing the extracted degradation includes:
 - storing digital data corresponding to the digitized extracted degradation in a memory;
 - adding the digital data to the programming value to produce a resulting voltage; and
 - converting the resulting voltage to a corresponding analog value to be applied as the video input signal during a programming phase.

63. The method of claim 57, further comprising:
 - generating a voltage versus current relationship for the pixel circuit based on current values applied to a data node of the pixel circuit and based on voltages sampled at the data node; and
 - extracting, based on the generated voltage versus current relationship, a voltage corresponding to a zero current level.

64. A method of adjusting a programming value for a pixel circuit in an OLED display to compensate for degradation or non-uniformity of the display or for non-uniformity and degradation of the display, the method comprising:
 - applying a current to a node of a pixel circuit; responsive to the applying, acquiring a voltage from the node;
 - creating from the acquired voltage, a compensation value; storing the compensation value in a memory device; and
 - correcting a video input signal applied to the pixel circuit based on the stored compensation value, wherein the voltage acquired from the data node corresponds to a threshold voltage or a shift in the threshold voltage of a drive transistor in the pixel circuit.

65. The method of claim 64, wherein the node is a data node.

66. The method of claim 64, wherein the creating the compensation value includes:
 - storing digital data corresponding to the compensation value in a memory;
 - adding the digital data to the programming value to produce a resulting voltage; and
 - converting the resulting voltage to a corresponding analog value to be applied as the video input signal during a programming phase.

67. The method of claim 64, wherein the corrected video signal input is applied to the pixel circuit during a programming phase as a current or a voltage.

68. A method of extracting different parameters from a pixel circuit in a display panel, comprising:
 - extracting, using a first measurement implementation, from the pixel circuit a first parameter indicative of a degradation or non-uniformity of the pixel circuit;
 - extracting, using a second measurement implementation different from the first measurement implementation, from the pixel circuit a second parameter indicative of the same or a different degradation or non-uniformity of the pixel circuit as the first extracted parameter; and
 - driving the pixel circuit with programming information that is adjusted based on the extracted first parameter or the extracted second parameter or both, wherein the second parameter is a current through a common electrode of an organic light emitting device in the pixel circuit, wherein the common electrode is connected to all of the organic light emitting devices in the display panel.

69. The method of claim 84, wherein the first parameter is related to a threshold voltage of a drive transistor in the pixel circuit.

70. A method of adjusting a programming value for a pixel circuit in an OLED display to compensate for degradation of the display or for non-uniformity and degradation of the display, the method comprising:
 - applying a charge to the pixel circuit to acquire threshold voltage information or a shift in threshold voltage information from the pixel circuit; responsive to applying the charge, measuring a voltage of the pixel circuit;
 - extracting from the measured voltage a degradation of the pixel circuit, the degradation adversely affecting a programmed brightness of an OLED in the pixel circuit;
 - digitizing the extracted degradation of the pixel circuit to a digital compensation value representing the degradation of the pixel circuit;
adjusting a video input signal to the pixel circuit based on the digital compensation value to compensate for the degradation of the pixel circuit;
generating a voltage versus current relationship for the pixel circuit based on current values applied to a data node of the pixel circuit and based on voltages sampled at the data node; and
extracting, based on the generated voltage versus current relationship, a voltage corresponding to a zero current level,
wherein the digital compensation value is further adjusted based on the extracted voltage.