(54) Title: FACIALLY AMPHIPHILIC POLYMERS AS ANTI-INFECTIVE AGENTS

(57) Abstract: Facially amphiphilic polyphenylene and heteroarylene polymers and articles made therfrom having biocidal surfaces are disclosed. The polymers can inhibit the growth of microorganisms in contact with the surface or in areas adjacent to said biocidal surface. There is also disclosed a method to attach facially amphiphilic polymers to a solid support. Utility as a contact disinfectant is disclosed.
Title: FACIALLY AMPHIPHILIC POLYMERS AS ANTI-INFECTIVE AGENTS

Abstract: Facially amphiphilic polyethylene and heteroaacrylone polymers and articles made therfrom having biocidal surfaces are disclosed. The polymers can inhibit the growth of microorganisms in contact with the surface or in areas adjacent to said biocidal surface. There is also disclosed a methods to attach facially amphiphilic polymers to a solid support. Utility as a contact disinfectant is disclosed.
FACIALLY AMPHIPHILIC POLYMERS AS ANTI-INFECTIVE AGENTS

REFERENCE TO PREVIOUS APPLICATIONS

This application claims priority to U. S. Provisional Patent Application Ser. No. 60/274,145 filed March 8, 2001.

GOVERNMENT SUPPORT

This invention was supported in part by funding from the U. S. Government (NSF Grant DMR00-79909) and the U. S. Government may therefore have certain rights in the invention.

FIELD OF THE INVENTION

The present invention relates to the design and synthesis of facially amphiphilic polymeric compounds with microbiocidal properties that can be coated on or incorporated into materials and methods to design the same. The present invention further relates to methods to identify and design facially amphiphilic polymers and methods to prevent or limit microbial growth.

BACKGROUND OF THE INVENTION

Amphiphilic molecules exhibit distinct regions of polar and nonpolar character. These regions can result from substitution of hydrophobic and hydrophilic substituents into specific and distinct regions of conformationally defined molecules. Alternately a conformationally flexible molecule or macromolecule can adopt an ordered structure in which the hydrophobic and hydrophilic substituents on the molecule segregate to different areas or faces of the molecule. Commonly occurring amphiphilic molecules include surfactants, soaps, detergents, peptides, proteins and copolymers. These
molecules have the capacity to self-assemble in appropriate solvents or at interfaces to form a variety of amphiphilic structures. The size and shape of these structures varies with the specific composition of the amphiphilic molecule and solvent conditions such as pH, ionic strength and temperature.

Amphiphilic peptides with unique broad-spectrum antimicrobial properties have been isolated from a variety of natural sources including plants, frogs, moths, silk worms, pigs and humans (H. G. Boman ImmunoI Rev. 2000 173:5-16; R. E. Hancock and R. Lehrer, Trends Biotechnol. 1998 16:82-88). These compounds include the magainin 1 (1) and dermaseptin S1 (2) isolated from the skin of frogs and the cecropin A (3) isolated from the cecropia moth. These naturally occurring compounds have broad-spectrum antibacterial activity and they do not appear prone to the development of bacterial resistance. These compounds are relatively low molecular weight peptides that have a propensity to adopt α-helical conformation in hydrophobic media or near a hydrophobic surface and as a result are facially amphiphilic (i.e., one-third to two-thirds of the cylinder generated by the helical peptide has hydrophobic side chains while the

\[\text{GIGKFLHSAGKF} \text{KAVFGEIMKS-CO}_2\text{H} \quad (1) \]

\[\text{ALWKTMKLKLGTMALHAGKAALGAAADTISQGTQ-CO}_2\text{H} \quad (2) \]

\[\text{KWKLFKIEKVQGNIRDGIKAGPAVVVGQATQI} \text{AK-NH}_2 \quad (3) \]

\[\text{RGGRCLCYCRRRCVCVGR-NH}_2 \quad (4) \]

remainder has hydrophilic side chains. These hydrophilic side chains are primarily positively-charged at neutral pH. Hydrophobic amino acids compose 40-60% of the total number of residues in most anti-microbial peptides. The selectivity of the amphiphilic peptides (e.g. for bacteria vs. human erythrocytes) depends on the overall hydrophobicity. The biological activity of these compounds depend on the ratio of charged (c) to hydrophobic (h) residues. When the ratio is varied from 1:1 (c:h) to 1:2 (c:h) peptides
with more hydrophobic residues tend to be more active toward erythrocyte membranes. The physiochemical properties rather than the presence of particular amino acids or the tertiary structure of the side chains. Related peptides have been isolated from mammals and these anti-microbial peptides have been suggested to be an important component of the innate immune response. (Gennaro, R. et al. Biopolylners (Peptide Science) 2000, 55, 31)

These observations recently have been extended to peptides (β-peptides) comprised of D-amino acids. These non-natural polypeptide mimetics also are capable of adopting stable α-helical and β-sheet structures although the precise geometries of these structure are different from those generated by α-amino acid oligomers. However, appropriate positioning of hydrophobic and hydrophilic residues results in amphiphilic conformations with similar antimicrobial properties. This further confirms the importance of repeating periodicity of hydrophobic and hydrophilic groups vis-à-vis the precise amino acid sequence in producing facial amphiphilic antimicrobial compounds. (D. Seebach and J. L. Matthews, Chem Commun. 1997 2105; Hamuro, Y., Schneider, J. P., DeGrado, W. F., J. Am. Chem. Soc. 1999, 121, 12200-12201; D. H. Appella et al., J. Am. Chem. Soc., 1999 121, 2309)

Secondary structures other than helices may also give rise to amphiphilic compounds. The protegrins (4) are a related series of anti-microbial peptides. (J. Chen et al., Biopolymers (Peptide Science), 2000 55 88) The presence of a pair of disulfide bonds between Cys⁶-Cys¹⁵ and Cys⁸-Cys¹³ results in a monomeric amphiphilic anti-parallel β-sheet formed by the chain termini and linked by a β-turn. The amphiphilic β-sheet conformation is essential for anti-microbial activity against both gram-positive and gram-negative bacteria.

The data related to anti-microbial peptides suggests that facial amphiphilicity, the alignment of polar (hydrophilic) and nonpolar (hydrophobic) side chains on opposite faces of a secondary structural element formed by the peptide backbone, and not amino
acid sequence, any particular secondary/tertiary structure, chirality or receptor specificity is responsible for their biological activity.

Suitably substituted polymers which lack polyamide linkages also are capable of adopting amphiphilic conformations. Solid phase chemistry technology was utilized to synthesize a class of meta substituted phenylacetylenes that fold into helical structures in appropriate solvents (J. C. Nelson et al., Science 1997 277:1793-96; R. B. Prince et al., Angew. Chem. Int. Ed. 2000 39:228-231). These molecules contain an all hydrocarbon backbone with ethylene oxide side chains such that when exposed to a polar solvent (acetonitrile), the backbone would collapse to minimize its contact with this polar solvent. As a result of the meta substitution, the preferred folded conformation is helical. This helical folding is attributed to a "solvophobic" energy term; although, the importance of favorable π-π aromatic interactions in the folded state are also likely to be important. Furthermore, addition of a less polar solvent (CHCl₃) results in an unfolding of the helical structure demonstrating that this folding is reversible.

Regioregular polythiophenes (5 and 6) have been shown to adopt amphiphilic conformations in highly ordered π-stacked arrays with hydrophobic side chains on one side of the array and hydrophilic side chains on the other side. These polymers form thin films useful in the construction of nanocircuits. (Bjørnholm et al., J. Am. Chem. Soc., 1998 120, 7643) These materials would be facially amphiphilic as defined herein; however, no biological properties have been reported for these compounds.

![Chemical structure](image)

5: R = CH₂CO₂⁻NMe₄⁺
6: R = (CH₂CH₂O)₃Me

Antimicrobial peptides have been incorporated onto surfaces or bulk materials, with some retention of antimicrobial properties. Haynie and co-workers at DuPont have
investigated the activity of Antibacterial peptides have been covalently attached to solid surfaces (S. L. Haynie et al., *Antimicrob Agents Chemother*, 1995 39:301-7; S. Margel et al., *J Biomed Mater Res*, 1993, 27:1463-76). A variety of natural and *de novo* designed peptides were synthesized and tested for activity while still attached to the solid support. The activity of the peptides decreased when attached to the solid support although the peptides retained their broad spectrum of activity. For example, a *de novo* designed peptide referred to as El4LKK has a MBC (minimum bactericidal activity) of 31 μg/ml in solution as opposed to 1.5 mg/ml when attached to a solid phase bead. The peptides were attached to the resin with a 2 to 6-carbon alkyl linker. The porosity of Pepsyn K, the resin used in the synthesis, is small (0.1 to 0.2 μm) compared to the bacteria, so the microbes may be unable to penetrate into the interior of the resin. Thus the great majority of the peptide would not be available for binding to cells. The antimicrobial activity did not arise from a soluble component; no leached or hydrolyzed peptide was observed and the soluble extracts were inactive. These studies indicate quite convincingly that antimicrobial peptides retain their activity even when attached to a solid support. However, there is a need to optimize the presentation of the peptides to increase their potency.

Other antimicrobial polymeric materials have been reported which contain chemical functionality known to be antimicrobial (J. C. Tiller et al., *Proc Natl Acad Sci U S A*, 2001 98:5981-85). A large portion of this work uses chemical functions such as alkylated pyridinium derivatives, which are known to be toxic to mammalian cells. The antibiotic ciprofloxacin has been grafted into a degradable polymer backbone (G. L. Y. Woo, *et al.*, *Biomaterials* 2000 21:1235-1246). The activity of this material relies on cleavage of the active component from the polymer backbone.

Anti-infective vinyl copolymers, wherein monomers with hydrophobic and hydrophilic side chains have been randomly polymerized to produce polymers with amphiphilic properties, have also been described recently W. H. Mandeville III et al. (U. S. Patent No. 6,034,129). These materials are produced by polymerization of hydrophobic and hydrophilic acrylate monomers. Alternately, the hydrophobic side chain is derived from
a styrene derivative which is copolymerized with a hydrophilic acrylate monomer wherein an ionic group is linked to the carboxylic acid. These polymers, however, have relatively random arrangements of polar and nonpolar groups and are not facially amphiphilic as defined herein.

An alternative method to make amphiphilic polymers is to produce block copolymers comprised of hydrophobic blocks (A) and hydrophilic blocks (B), commonly polypropyleneoxy and polyethylenoxy segments respectively, into A-B, A-B-A or similar copolymers. These copolymers also are not facially amphiphilic as defined herein.

BRIEF DESCRIPTION OF FIGURES

Specific embodiments of the invention have been chosen for the purpose of illustration and description but are not intended in any way to restrict the scope of the invention. These embodiments are shown in the accompanying drawings wherein:

In FIG. 1 there is shown typical examples of two facially amphiphilic \(p \)-phenylene monomers, \(\text{Ia} \) and \(\text{Ib} \), and the complete structure of a \(m \)-phenylene copolymer \(\text{Ig} \).

In FIG. 2 there is shown the generalized structure of arylene polymers \(\text{I} \) and typical examples of four heteroarylene monomers \(\text{Ic-If} \).

In FIG. 3 there is shown the synthesis of a phenylene ethynylene oligomer.

In FIG. 4.

SUMMARY OF THE INVENTION

One object of the invention is to provide new polymeric compounds with anti-microbial properties which can be applied to or dispersed throughout devices, articles and surfaces and which are capable of killing microorganisms on contact, but leach into the environment more slowly than traditional small molecule anti-microbials. The polymeric materials may be deposited as a film on the surface of a substrate or may be dispersed

\[
R^1 \underbrace{\text{A} \text{s} \text{B}}_{m} R^2 \quad (I)
\]
throughout a substrate to provide an anti-microbial surface. The polymeric materials of the present invention are anti-microbial polymers that are designed to possess amphiphilic properties in the presence of microbial cell walls and to disrupt the membrane and kill the organism. The polymeric materials are further designed to have low toxicity to mammalian cells.

The facially amphiphilic polymers of the present invention are polyphenylene and heteroarylene compounds of formula I wherein is either a single bond, double bond, triple bond or absent and A and B are aromatic, heteroaromatic moieties appropriately substituted with polar and nonpolar groups. R, R¹ and R² are end groups appropriate for the specific polymer chain and their design is well known in the polymer art of formulae.

These facially amphiphilic polymers are capable of adopting repeating secondary structural motifs that allow for the segregation of polar and nonpolar regions of the molecule into different spatial regions. The anti-microbial polymers adopt amphiphilic conformations when placed in contact with the cell walls of microorganisms and the amphiphilic molecules are capable of disrupting essential cell wall functions resulting in the death of the microorganism.

The present invention further provides methods for killing microorganism on surfaces by disposing thereon a facially amphiphilic polymer. The method for making compositions incorporating the facially amphiphilic polymers includes providing a solution dispersion or suspension of the polymer and applying it to the surface. Alternately compositions can be prepared by incorporating the polymer into plastics that subsequently are molded, shaped or extruded into other articles. The optimal method to deliver the polymer will depend on several factors including the desired coating thickness and the nature and configuration of the substrate and the physical characteristics of the facially amphiphilic polymer.
The facially amphiphilic polymers of the present invention can have a substantial range in molecular weight. Facial amphiphilic molecules with molecular weights of about 0.8 kD to about 20 kD will be more prone to leach from the surface of the substrate. The facially amphiphilic polymer may be attached or immobilized on the substrate by any appropriate method including covalent bonding, ionic interaction, coulombic interaction, hydrogen bonding or cross-linking. The polymers of the present invention provide a surface-mediated microbicidal that only kills organisms in contact with the surface. Moreover the polymers of the present invention are stable and retain their bioactivity for extended periods of time and are potentially nontoxic to birds, fish, mammals and other higher organisms.

The present invention further provides a computational technique to evaluate the energy of polymer conformations and identify polymers which have the capability of exhibiting amphiphilic behavior and aid in identifying optimal sites for substitution of polar and nonpolar substituents that confer amphiphilic properties.

DETAILED DESCRIPTION OF THE INVENTION

Microbial infections represent a serious continuing problem in human and animal health. While amphiphilic α and β-peptides exhibit potent antibacterial, they are, nevertheless, difficult and expensive to prepare in large quantities. Peptides are sensitive to enzymatic and chemical hydrolysis. Exposure to microbial pathogens can occur in a variety of ways. Most objects encountered daily have the potential for harboring infectious organisms and new compounds and approaches for controlling the growth of microbes are extremely valuable and have significant commercial potential. Antimicrobial peptides related to the magainins have desirable biological activities but their utility is limited. An object the present invention is to provide new stable antimicrobial polymers which are available from inexpensive and readily available monomers and which can be incorporated into, or on to, a wide variety of materials and can withstand chemical and enzymatic degradation.
In recent years, the design of non-biological polymers with well-defined secondary and tertiary structures (S. H. Gellman et al., Acc. Chem. Res. 1998 31:173-80; A. E. Barron and R. N. Zuckerman, Curr. Opin. Chem. Biol., 1999 3:681-687; K. D. Stigers et al., Curr. Opin. Chem. Biol., 1999 3:714-723) has become an active area of research. One reason for this interest is that for the first time, modern methods of solid phase organic chemistry (E. Atherton and R. C. Sheppard, Solid Phase Peptide Synthesis A Practical Approach IRL Press Oxford 1989) have allowed the synthesis of homodisperse, sequence-specific oligomers with molecular weights approaching 5,000 Daltons. The development of this new field of homodisperse sequence-specific oligomers promises to generate molecules with novel chemical and physical properties that will span the gap between polymer and protein science. Polymers are statistical mixtures of molecules typically composed of one to a few monomers. By contrast, peptides and proteins are molecules typically composed from >15 monomers with exact control over sequence, topology, and stereochemistry. These homodisperse sequence-specific oligomers represent molecules with features of both polymers and proteins.

Facially amphiphilic polymers can be homopolymers wherein one monomer is substituted with both a nonpolar and a polar substituent or copolymers wherein one monomer is substituted with a polar substituent and the other monomer is substituted with a nonpolar substituent. Since the antimicrobial activity arises from the amphiphilic character conferred by a periodic pattern of side chains rather than the precise spatial arrangement of side chains, other substitution patterns are also expected to produce facially amphiphilic polymers and they all are encompassed by the present invention.

Polyarylene and polyheteroarylene polymers represent another class of polymers which can form facially amphiphilic polymers (FIG. 1 and FIG. 2). Copolymers comprised of both aromatic and heteroaromatic monomers can also be expected to show unique properties. (U Scherf Carbon Rich Compounds II, 1999 20:163), Berresheim, A. J. et al., Chem. Rev. 1999 99:1747) The aromatic rings in the examples depicted in Figures 1 have meta and para substitution pattern, one skilled in the art would immediately appreciate that equivalent polymers could be designed with an ortho orientation and these
modifications can alter the conformation and the physical properties of the resulting polymer. Furthermore although the copolymers depicted in FIG. 2 have a 2,5-polarylenes other stereochemistries are also produce facially amphiphilic heteroarylenes and the choice and the stereochemistry is often determined by the chemical reactivity of the unsubstituted monomer which determines the positions most readily functionalized. The optimal substitution patterns of polar and nonpolar substituents are determined by the conformational properties of the polymer backbone and other substitution pattern are encompassed in the invention.

The synthetic processes can be modified to produce different ranges in molecular weight and the anti-microbrial polymer of the present invention will have a molecular weight selected to impart physical and chemical properties optimized for the particular application being contemplated. Traditional polymer syntheses produce a product with a range of molecular weights. The polymer chemist will readily appreciate that the chain length of these polymers can be varied by techniques know in the polymer art. Polymers of the present invention can range in molecular weight from about 800 Daltons up to about 350 kiloDaltons. Advancements in solid-phase and solution phase synthesis of amino acid oligomers have made available techniques to prepare homogeneous polymers or oligomers with defined sequence and size and these techniques can be adapted to the present invention.

The polymer design process simply requires a structure in which the repeating sequence of monomers matches the secondary structure adopted by the backbone. Once the periodicity is observed, monomers substituted with polar and nonpolar groups monomers must be prepared and introduced to produce a cationic, amphiphilic secondary. As exemplified in FIG 1 and 2 these arylene polymers can be homopolymers (FIG 1 1a) or copolymers (FIG 1 1b and FIG 2 1c-f). The monomers are not limited to monocyclic aryl compounds and polycyclic aromatics (1f) can be advantageously employed to modify the distances between groups which will alter the periodicity of the subunits.
Additional molecular features can be added to the macromolecular backbone to promote the desired secondary structure and disfavor other structures thereby combining elements of both positive and negative design. Conformational studies on biofoldamers (proteins and RNA), and early work with a variety of sequence-specific polymers, have shown that several elements are crucial in order for the polymers to adopt the desired folded conformation. Key elements include strong electrostatic interactions (i.e., intramolecular hydrogen bonding) between adjacent or more distant monomers, rigidification caused by the backbone torsions or by bulky functional groups, and π-π stacking interactions between noncontiguous aromatic units.

Magainin and the other naturally occurring antibacterial peptides exhibit considerable variation in their chain length, hydrophobicity and distribution of charges. These linear peptides do, however, contain positively charges amino acids and a large hydrophobic moment resulting in a high propensity to adopt α-helical conformations in a hydrophobic environment, e.g., a cell surface or a natural or synthetic membrane. (Z. Oren and Y. Shai Biopolymers (Peptide Science), 1998 47:451-463.) The periodic distribution of hydrophobic and hydrophilic side chains in their amino acid sequences allows the segregation of the hydrophobic and hydrophilic side chains to opposite faces of the cylinder formed by the helix. The overall amphiphilicity, not the specific sequence, secondary structure or chirality, correlates best with anti-microbial activity. Thus it appears that any suitably amphiphilic material (not necessarily an α-helix or β-sheet) would have anti-microbial properties. The necessary condition for forming a facially amphiphilic structure is the molecule should have a repeating pattern of polar and
nonpolar side chains whose periodicity is approximately the same as that of the secondary structure of interest.

The term "microorganism" as used herein includes bacteria, algae, fungi, yeast, mycoplasms, parasites and protozoa.

The term "antimicrobial", "microbicidal" or "biocidal" as used herein means that the materials inhibit, prevent, or destroy the growth or proliferation of microorganisms. This activity can be either bacteriocidal or bacteriostatic. The term "bacteriocidal" as used herein means the killing of microorganisms. The term "bacteriostatic" as used herein means inhibiting the growth of microorganisms which can be reversible under certain conditions.

The term “polymer” as used herein refers to a macromolecule comprising a plurality of repeating units or monomers. The term includes homopolymers, which are formed from a single type of monomers and copolymers that are formed from two or more different monomers. In copolymers the monomers may be distributed randomly (random copolymer), in alternating fashion (alternating copolymer) or in blocks (block copolymer). The polymers of the present invention are either homopolymers or alternating copolymers. The term "polymer" as used herein is intended to exclude proteins, peptides, polypeptides and other proteinaceous materials composed exclusively of α or β-amino acids. The term "oligomer" as used herein refers to a homogenous polymer with a defined sequence and molecular weight.

The term “polymer backbone” or “backbone” as used herein refers to that portion of the polymer which is a continuous chain comprising the bonds formed between monomers upon polymerization. The composition of the polymer backbone can be described in terms of the identity of the monomers from which it is formed without regard to the composition of branches, or side chains, off the polymer backbone.

The term “polymer side chain” or “side chain” refers to portions of the monomer which, following polymerization, forms an extension off the polymer backbone. In
homopolymers all the polymer side chains are derived from the same monomer. A copolymer can comprise two or more distinct side chains from different monomers.

The term "alkyl" as used herein denotes a univalent saturated branched or straight hydrocarbon chain. Unless otherwise stated such chains contain from 1 to 18 carbon atoms. Representative of such alkyl groups are methyl, ethyl, propyl, *iso*-propyl, *sec*-butyl, *tert*-butyl, pentyl, *neo*-pentyl, *iso*-pentyl, hexyl, *iso*-hexyl, heptyl, octyl, nonyl, decyl, tridecyl, tetradecyl, hexadecyl octadecyl, and the like. When qualified by "lower" the alkyl group will contain from 1 to 6 carbon atoms. The term "cycloalkyl" as used herein denotes a univalent cyclic hydrocarbon chain. Representative groups are cyclopropyl, cyclobutyl, cyclohexyl, cyclopentyl and cyclohexyl.

The phrase "groups with chemically nonequivalent termini" refers to functional groups such as esters amides, sulfonamides and N-hydroxyoximes where reversing the orientation of the substituents, e.g. R¹C(=O)OR² vs. R¹O(O=)CR², produces unique chemical entities.

The term "basic heterocycle" as used herein denotes cyclic atomic array which includes a nitrogen atom that has a pKa greater than about 5 and that is protonated under physiological conditions. Representative of such basic heterocycles are pyridine, quinoline, imidazole, imidazoline, cyclic guanidines, pyrazole, pyrazoline, dihydropyrazoline, pyrrolidine, piperidine, piperazine, 4-alkylpiperazine, and derivatives thereof such as 2-aminopyridine, 4-aminopyridine, 2-aminoimidazoline, 4-aminimidazoline or VII where X¹ is O, N, S or absent and i is 2 to 4.

![Diagram](VII)

The term "amphiphilic" as used herein describes a three-dimensional structure having discrete hydrophobic and hydrophilic regions. An amphiphilic polymer requires the presence of both hydrophobic and hydrophilic elements along the polymer backbone. The presence of hydrophobic and hydrophilic groups is a necessary, but not sufficient,
condition to produce an amphiphilic molecule or polymer. Polymers frequently adopt a random or disordered conformation in which the side chains are located randomly in space and there are no distinctive hydrophobic and hydrophilic regions.

The term "facially amphiphilic" or "facial amphiphilicity" as used herein describes polymers with polar (hydrophilic) and nonpolar (hydrophobic) side chains that adopt conformation(s) leading to segregation of polar and nonpolar side chains to opposite faces or separate regions of the structure. This structure can comprise any of the energetically accessible low-energy conformations for a given polymer backbone. Additionally random or block copolymers may adopt random backbone conformations that do not lead to distinct hydrophilic and hydrophobic regions or which do not segregate along different faces of the polymer. These copolymers are not facially amphiphilic as defined herein.

The term "naturally occurring amino acids" means the L-isomers of the naturally occurring amino acids. The naturally occurring amino acids are glycine, alanine, valine, leucine, isoleucine, serine, methionine, threonine, phenylalanine, tyrosine, tryptophan, cysteine, proline, histidine, aspartic acid, asparagine, glutamic acid, glutamine, carboxyglutamic acid, arginine, ornithine and lysine. Unless specifically indicated, all amino acids referred to in this application are in the L-form.

The term "side chain of a naturally occurring amino acid" as used herein refers to the substituent on the α-carbon of an α amino acid. The term "polar side chain of a naturally occurring amino acid" refers to the side chain of a positively charged, negatively charged or hydrophilic amino acid. The term "nonpolar side chain of a naturally occurring amino acid" refers to the side chain of a hydrophobic amino acid.

The term "positively charged amino acid" or "cationic amino acid" as used herein includes any naturally occurring or unnatural amino acid having a positively charged side chain under normal physiological conditions. Examples of positively charged naturally occurring amino acids are arginine, lysine and histidine.
The term "negatively charged amino acid" includes any naturally occurring or unnatural amino acid having a negatively charged side chain under normal physiological conditions. Examples of negatively charged naturally occurring amino acids are aspartic acid and glutamic acid.

The term "hydrophilic amino acid" means any amino acid having an uncharged, polar side chain that is relatively soluble in water. Examples of naturally occurring hydrophilic amino acids are serine, threonine, tyrosine, asparagine, glutamine, and cysteine.

The term "hydrophobic amino acid" means any amino acid having an uncharged, nonpolar side chain that is relatively insoluble in water. Examples of naturally occurring hydrophobic amino acids are alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine.

An embodiment of the present invention is a facially amphiphilic polymer of formula I

\[
\text{R}^1 \left[\begin{array}{c}
A \quad s \quad B \\
\text{m}
\end{array} \right] \text{R}^2 \\
\text{(I)}
\]

wherein:

A and B are independently optionally substituted \(o-, m-, p- \)phenylene or optionally substituted heteroarylene wherein either (i) A and B are both substituted with a polar (P) group and a nonpolar (NP) group, (ii) one of A or B is substituted with a polar (P) group and a nonpolar (NP) group and the other of A or B is substituted with neither a polar (P) group nor a nonpolar (NP) group, or (iii) one of A or B is substituted with one or two polar (P) group(s) and the other of A or B is substituted with one or two nonpolar (NP) group(s), or (iv) one of A or B is substituted at the 2 position with a polar (P) group and at the 5- or 6-position with a nonpolar (NP) group and the other of A or B is substituted with a non-polar group; or,

A is as defined above and substituted with a polar (P) group and a nonpolar (NP) group, and B is a group \(\text{C} = \text{C} (\text{CH}_2)_p \text{C} = \text{C} \) wherein \(p \) is as defined below;
s is absent, or represents a single, double or triple bond, or VI optionally substituted with polar (P) and nonpolar (NP) groups wherein t is O or S;

R¹ is (i) halo and R² is hydrogen; or (ii) C-s-B-s- and R² is C; or, (iii) C-s- and R² is -A-s-C wherein C is pyridine or phenyl said pyridine or phenyl optionally substituted with 1 or 2 substituents independently selected from a group consisting of halo, nitro, cyano, C₁-C₆ alkoxy, C₁-C₆ alkoxy carbonyl, and benzyloxy carbonyl; or, R¹ and R² together are s;

NP is a nonpolar group an independently selected from R⁴ or -U-(CH₂)ₚ-R⁴ wherein R⁴ is selected from a group consisting of hydrogen, C₁-C₁₀ alkyl, C₃-C₁₈ branched alkyl, C₃-C₈ cycloalkyl, monocyclic or polycyclic phenyl optionally substituted with one or more C₁-C₄ alkyl or halo groups and monocyclic or polycyclic heteroaryl optionally substituted with one or more C₁-C₆ alkyl or halo groups and U and p are as defined below;

P is a polar group selected from a group consisting of III, hydroxyethoxymethyl, methoxyethoxymethyl and polyoxyethylene

\[\text{--U--(CH₂)ₚ--V} \quad \text{(III)} \]

wherein;

U is absent or selected from a group consisting of O, S, S(=O), S(=O)₂, NH, -C(=O)O⁻, -C(=O)NH⁻, -C(=O)S⁻, -C(=S)NH⁻, -S(=O)₂NH⁻, and C(=NO⁻) wherein groups with two chemically nonequivalent termini can adopt both possible orientations;

V is selected from a group consisting of amino, hydroxyl, C₁-C₆ alkylamino, C₁-C₆ dialkylamino, NH(CH₂)ₚNH₂, N(CH₂CH₂NH₂)₂, amidine, guanidine, semicarbazone, basic heterocycle, and phenyl optionally substituted with an amino, C₁-C₆ alkylamino, C₁-C₆ dialkylamino and lower acylamino optionally substituted with one or more amino, lower alkylamino or lower dialkylamino;

and the alkylene chain is optionally substituted with an amino or hydroxyl group or unsaturated;

p is independently 0 to 8; and,

m is 2 to at least about 500.
with the proviso that if A and B are thiophene the polar groups cannot be 3-(propionic acid) or methoxy(diethoxy)ethyl and the nonpolar group cannot be n-dodecyl.

Yet another embodiment of the present invention is a facially amphiphilic polymer of formula I wherein:

A and B are independently optionally substituted o-, m-, or p-phenylene;
s is absent or represents a single, double or a triple bond;
NP is a nonpolar group independently selected from R^4 or -U-(CH_2)_p-R^4 wherein R^4 is selected from a group consisting of hydrogen, C_1-C_4 alkyl, C_3-C_12 branched alkyl, C_3-C_8 cycloalkyl, phenyl optionally substituted with one or more C_1-C_4 alkyl groups and heteroaryl optionally substituted with one or more C_1-C_4 alkyl groups and U and p are as defined below;
P is a polar group selected from a group consisting of III, hydroxyethoxymethyl, methoxyethoxymethyl or polyoxyethylene

\[\text{---U---(CH}_2\text{)}_\text{p}\text{---V} \quad \text{(III)} \]

wherein:

U is absent, O, S, SO, SO_2, or NH;

V is selected from a group consisting of amino, hydroxyl, C_1-C_6 alkylamino, C_1-C_6 dialkylamino, NH(CH_2)_pNH_2, N(CH_2CH_2NH_2)_2, amidine, guanidine, semicarbazone, imidazole, piperidine, piperazine, 4-alkylpiperazine and phenyl optionally substituted with an amino, C_1-C_6 alkylamino, C_1-C_6 dialkylamino and lower acylamino optionally substituted with one or more amino, lower alkylamino or lower dialkylamino;

the alkylene chain is optionally substituted with an amino or hydroxyl group or unsaturated;

p is independently 0 to 8; and,

m is 2 to at least about 500.

Still another embodiment of the present invention is a facially amphiphilic polymer of formula I wherein:

A and B are independently optionally substituted m-phenylene wherein (i) A is substituted at the 5-position with a nonpolar (NP) group and B is substituted at
the 5-position with a nonpolar (P) group, (ii) A is substituted at the 2-position with a polar (P) and at the 5-position with a nonpolar (NP) group and B is substituted at the 2-position with a nonpolar (NP) group and at the 5-position with a polar (P) group, (iii) one of A or B is substituted at the 2-position with a polar group and the 5-position with a nonpolar group and the other of A or B is substituted by neither a polar group nor a nonpolar group; or, (iv) one of A or B is substituted at the 5-position with a polar group and the 2-position with a nonpolar group and the other of A or B is substituted by neither a polar group nor a nonpolar group;

s is absent or represents a single, double or a triple bond;

NP is a nonpolar group independently selected from R^4 or -U-(CH_2)_p-R^4 wherein

R^4 is selected from a group consisting of hydrogen, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, and sec-pentyl and U and p are as defined below;

P is a polar group U-(CH_2)_p-V wherein U is absent or selected from a group consisting of O and S, and V is selected from a group consisting of amino, lower alkyl amino, lower dialkylamino, imidazole, guanidine, NH(CH_2)_6NH_2, N(CH_2CH_2NH_2)_2, piperidine, piperazine, 4-alkylpiperazine;

p is independently 0 to 8; and

m is 2 to at least about 500.

Another embodiment of the present invention is a facially amphiphilic polymer according of formula XIX

![Diagram](attachment:image.png)

wherein

NP is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, and sec-pentyl;
P is a polar group \(U-(\text{CH}_2)_p-V \) wherein \(U \) is \(O \) or \(S \), \(p \) is 0 to 8 and \(V \) is selected from a group consisting of amino, lower alkyl amino, lower dialkylamino, guanidine, pyridine, piperazine, 4-alkylpiperazine;

\(p \) is 0 to 8; and,
\(m \) is 2 to at least about 30.

Still another embodiment of the present invention is a facially amphiphilic polymer of formula XX

\[
\begin{array}{c}
\text{ONP} \\
\text{R}^2
\end{array}
\begin{array}{c}
\text{R}^1 \\
\text{P}
\end{array}
\begin{array}{c}
\text{m}
\end{array}
\]

wherein

NP is methyl, ethyl, \(n \)-propyl, \(iso \)-propyl, \(n \)-butyl, \(iso \)-butyl, \(n \)-butyl, \(sec \)-butyl, \(tert \)-butyl, \(n \)-pentyl, \(iso \)-pentyl, and \(sec \)-pentyl;

P is a polar group \(U-(\text{CH}_2)_p-V \) wherein \(U \) is \(O \) or \(S \), \(p \) is 0 to 8 and \(V \) is selected from a group consisting of amino, lower alkyl amino, lower dialkylamino, guanidine, pyridine, piperazine, 4-alkylpiperazine;

\(p \) is 0 to 8; and,
\(m \) is 2 to at least about 30.

Another embodiment of the present invention is a polymer according to claim 1 comprising a compound of formula I wherein:

A and B are independently optionally substituted \(p \)-phenylene wherein (i) A is substituted at the 2-position with a nonpolar (NP) group and B is substituted at the 5- or 6-position with a nonpolar (P) group, (ii) both A and B are substituted with a polar (P) group at the 2-position and a nonpolar (NP) group at the 5- or 6-position; or, (iii) one of A or B is substituted at the 2 position with a polar (P) group and at the 5- or 6-position with a nonpolar (NP) group and the other of A or B is substituted with neither a polar group nor a non-polar group;
s is absent or represents a single, double or a triple bond;
NP is a nonpolar group independently selected from \(R^4 \) or \(-U-(CH_2)_p-R^4\) wherein
\(R^4 \) is selected from a group consisting of hydrogen, methyl, ethyl, \(n \)-propyl,
\(iso \)-propyl, \(n \)-butyl, \(iso \)-butyl, \(sec \)-butyl, \(tert \)-butyl, \(n \)-pentyl \(iso \)-pentyl, and
\(sec \)-pentyl and \(U \) and \(p \) are as defined below;

\(P \) is a polar group \(U-(CH_2)_p-V \) wherein \(U \) is absent or selected from a group
consisting of \(O \) and \(S \), and \(V \) is selected from a group consisting of amino,
lower alkyl amino, lower dialkylamino, imidazole, guanidine, \(NH(CH_2)_pNH_2 \),
\(N(CH_2CH_2NH_2)_2 \), piperidine, piperazine, 4-alkylpiperazine;

\(p \) is independently 0 to 8; and,

\(m \) is 2 to at least about 500.

Another embodiment of the present invention is a facially amphiphilic polymer according
of formula \(I \) wherein:

\(A \) and \(B \) are independently optionally substituted \(p \)-phenylene wherein (i) \(A \) is
substituted at the 2-position with a nonpolar (NP) group and \(B \) is substituted at the
5- or 6-position with a nonpolar (P) group, (ii) both \(A \) and \(B \) are substituted with a
polar (P) group at the 2-position and a nonpolar (NP) group at the 5- or 6-
position; or, (iii) one of \(A \) or \(B \) is substituted at the 2-position with a polar (P)
group and at the 5- or 6-position with a nonpolar (NP) group and the other of \(A \) or
\(B \) is substituted with neither a polar group nor a non-polar group;

\(s \) is absent or represents a single, double or a triple bond;

\(NP \) is a nonpolar group independently selected from \(R^4 \) or \(-U-(CH_2)_p-R^4\) wherein
\(R^4 \) is selected from a group consisting of hydrogen, methyl, ethyl, \(n \)-propyl,
\(iso \)-propyl, \(n \)-butyl, \(iso \)-butyl, \(sec \)-butyl, \(tert \)-butyl, \(n \)-pentyl \(iso \)-pentyl, and
\(sec \)-pentyl and \(U \) and \(p \) are as defined below;

\(P \) is a polar group \(U-(CH_2)_p-V \) wherein \(U \) is absent or selected from a group
consisting of \(O \) and \(S \), and \(V \) is selected from a group consisting of amino,
lower alkyl amino, lower dialkylamino, imidazole, guanidine, \(NH(CH_2)_pNH_2 \),
\(N(CH_2CH_2NH_2)_2 \), piperidine, piperazine, 4-alkylpiperazine;

\(p \) is independently 0 to 8; and,

\(m \) is 2 to at least about 500.
Yet another embodiment of the present invention is a facially amphiphilic polymer of compound I wherein:

A and B are independently optionally substituted heteroarylene wherein one of A or B is substituted with one or two polar (P) group(s) and the other of A or B is substituted with one or two nonpolar (NP) group(s);

s is absent or represents a single, double or a triple bond;

NP is a nonpolar group independently selected from R^4 or -U-(CH_2)_p-R^4 wherein R^4 is selected from a group consisting of hydrogen, C_1-C_4 alkyl, C_3-C_12 branched alkyl, C_3-C_8 cycloalkyl, and heteroaryl optionally substituted with one or more C_1-C_4 alkyl groups and U and p are as defined below;

P is a polar group selected from a group consisting of III, hydroxyethoxymethyl, methoxyethoxymethyl or polyoxyethylene,

\[\text{---U--(CH}_2\text{)}_p\text{--V} \quad \text{(III)} \]

wherein,

U is absent, O, S, SO, SO_2, or NH;

V is selected from a group consisting of amino, hydroxyl, C_1-C_6 alkylamino, C_1-C_6 dialkylamino, NH(CH_2)_nNH_2, N(CH_2CH_2NH_2)_2, amidine, guanidine, semicarbazone, imidazole, piperidine, piperazine, 4-alkylpiperazine and phenyl optionally substituted with an amino, C_1-C_6 alkylamino, C_1-C_6 dialkylamino and lower acylamino optionally substituted with one or more amino, lower alkylamino or lower dialkylamino;

the alkylene chain is optionally substituted with an amino or hydroxyl group or unsaturated;

p is independently 0 to 8; and,

m is 2 to at least about 500.

Still another embodiment of the present invention is a facially amphiphilic polymer of formula I wherein:

A and B are independently optionally substituted 2,5-thiophenylene or 2,5-pyrrolene wherein (i) A is substituted at the 3-position with a nonpolar (NP) group and B is substituted at the 3-position with a polar (P), (ii) A is substituted at the 3-position
with a nonpolar (NP) group and B is substituted at the 4-position with a polar (P) group, or (iii) one of A or B is substituted at the 3 and 4-position with a nonpolar (NP) group and the other of A or B is substituted at the 3 and 4-position with a polar (P) group;
s is absent or represents a single, double or a triple bond;
NP is a nonpolar group independently selected from R⁴ or -U-(CH₂)ₚ-R⁴ wherein R⁴ is selected from a group consisting of hydrogen, methyl, ethyl, n-propyl, iso-propyl, iso-butyl, sec-butyl, tert-butyl, iso-pentyl, and sec-pentyl and U and p are as defined below;
P is a polar group U-(CH₂)ₚ-V wherein U is absent or selected from a group consisting of O and S, and V is selected from a group consisting of amino, lower alkyl amino, lower dialkylamino, imidazole, guanidine, NH(CH₂)ₚNH₂, N(CH₂CH₂NH₂)₂, piperidine, piperazine, 4-alkylpiperazine;
p is independently 0 to 8; and;
m is 2 to at least about 500.

Polyphenylene and polyheteroarylene polymers can be prepared regiospecifically by utilizing palladium(0) coupling reactions as developed by Hecht, Stille, Suzuki and others. Bjørnholm et al. utilized a series of Pd(0) mediated organotin coupling reactions to prepare polythiophenes and similar chemistry can be adapted to any aromatic polymer. McCullough and Loewe have described the preparation of poly-(3-substituted)thiophenes by Ni(II) catalyzed coupling of organomagnesium derivatives (R. D. McCullough and R. S. Lowe, U. S. Patent 6,166,172) and Camps et al. have described related methodology for the synthesis of heterocyclic/aromatic electric-conducting copolymers (M. Camps et al. U. S. Patent 4,508,639). Alternatively, heterocyclic polymers can be prepared by electrolysis. Aromatic and heteroaromatic monomers in the present invention can also be linked by polybenzoazoles (If) and polybenzothiazoles. These compounds can be prepared by coupling a suitable substituted terephthalic derivative with either 1,3-diamino-4,6-dihydroxybenzene or 1,3-diamino-4,6-dimercaptobenzene in the presence of dehydrating agents (M. P. Stevens, Polymer Chemistry, Oxford University Press, 1999, p. 417).
The syntheses of appropriately substituted monomers are straightforward. The preparation of monomers for meta-phenylene derivatives is depicted in FIG 3. Ortho and para dihalides or boronic acids are suitable precursors for a variety of coupling reactions and numerous pathways are available to incorporate of polar and nonpolar side chains. Phenolic groups on the monomer can be alkylated to produce polar and nonpolar substituents. Alkylation of the commercially available phenol will be accomplished with standard Williamson ether synthesis for the non-polar side chain with ethyl bromide as the alkylating agent. Polar sidechains can be introduced with bifunctional alkylating agents such as BOC-NH(CH₂)₂Br. Alternatively the phenol group can be alkylated to install the desired polar side chain function by employing Mitsonobu reaction with BOC-NH(CH₂)₂-OH, triphenyl phoshpine, and diethyl acetylenedicarboxylate. The processes required for the synthesis of appropriate monomers is well known in the art.

Antimicrobial testing is carried out using the micro-broth dilution technique with E. coli. Other organisms screened include ampicillin and streptomycin-resistant E. coli D31, B. subtilis, vancomycin-resistant Enterococcus faecium A436, and methicillin-resistant S. aureus 5332. Any peptide that is found to be active will be purified to homogeneity, and retested to obtain an accurate IC₅₀. Secondary screens include Klebsiella pneumoniae Kp1, and Salmonella typhimunium S5, and Pseudomonas aeruginosa 10. Traditionally, the micro-broth dilution technique only evaluates a single data point between 18-24 hours; however, the measurements can be extended to 24 hr to monitor cell growth through the entire growth phase. These experiments are performed in LB medium (which is a rich medium typically used to grow cells for protein expression) and represent a critical initial screen for activity. Since salt concentrations, proteins, and other solutes can affect the activities of antibiotics, materials that showed no activity in rich medium were retested in minimal medium (M9) to determine if rich medium was limiting activity. No relationship between the media and the activity was observed which is consistent with the mode of action is believed to be through general membrane disruption.

To determine the toxicity to mammalian, as well to bacterial, cells the biocidal activity is evaluated using both cultured cells and freshly obtained human blood cells. Increasing
concentration of polymer will be added to both confluent and non-confluent cultures of human umbilical endothelial cells (HUVEC, Cambrex). Cell number, monolayer integrity, and cell viability (measured as trypan blue exclusion) will be evaluated as a function of time in culture.

While the synthesis of a variety of polymer backbones is well understood, computer-aided computational techniques can provide valuable insight and guidance in the selection of potential antimicrobial polymers. The goal of these computations is to identify potential low energy conformations which have a geometrical repeat that matches a convenient sequence repeat of less than 6 monomer units. For example in α-amino acid oligomers, the geometrical repeat of the β-sheet is 2.0 residues. Once these repeating scaffolds are identified and the frequency of the repeat is calculated, polar and nonpolar substituents can be incorporated into the monomers to confer amphiphilic properties into the molecule.

High level ab initio calculations are one technique which will identify accessible low energy conformations. Unfortunately, these techniques, while extremely powerful, are not practical with molecules the size of the present invention. Molecular Dynamics simulations provide an alternative that can be adapted efficiently to molecules envisioned in the present invention. Key elements in determining conformational energies are strong electrostatic interactions (i.e., intramolecular hydrogen bonding) between adjacent or more distant monomers and rigidification caused by the backbone torsions or by bulky functional groups. In order to simulate these interactions in molecular mechanics calculations the empirical parameters, i.e., a force field, must be determined for representative polymer backbones. Density functional theory (DFT) can be used to carry out ab initio calculations on small model compounds that share the basic structural connectivity of the polymer backbones and which will generate required torsional potentials. The procedure to carry out these computations is:

1. Select simple model compounds that share similar torsional patterns with the target polymer backbones.
2. For each compound, perform a full geometric optimization at the BLYP/6-31G(d) level of theory (multiple initial configurations ensure the global minimum is obtained).

3. Calculate the single-point energy at the most stable geometry obtained in step 2 above, using B3LYP/6-311G**(dp) or plane wave CPMD.

4. Constrain a relevant torsion to a set angle and repeat steps 2 and 3.

5. Repeat step 4 for several angles; the torsional energy is obtained by subtracting the non-bonded interactions.

6. Fit energies versus torsion angle to a cosine series whose coefficients are the force field parameters.

The potential conformations are examined for positions to attach pendant groups that will impart amphiphilic character to the secondary structure. Polymers selected from the gas-phase studies with suitable backbone conformations and with side-chains at the optimal positions to introduce amphiphilicity will be further evaluated in a model interfacial system, \(n \)-hexane/water, chosen because it is simple and cheap for calculations while it mimics well the lipid/water bilayer environment. Polymer secondary structures that require inter-polymer interactions can be identified by repeating the above-mentioned calculations using a periodically repeated series of unit cells of various symmetries (so called variable cell molecular dynamics or Monte Carlo technique) with or without solvent. The results of these calculations will guide the selection of candidates for synthesis.

An embodiment of the present is a computation technique to identify polymer backbones which can produce facially amphiphilic polymers by:

1. selecting a polymer backbones or scaffolds suitable for regiospecific introduction of polar (P) and nonpolar (NP) groups;
2. determining parameters for a molecular mechanics force field utilizing \(ab \) \textit{initio} quantum mechanical calculations;
3. calculating energetically accessible conformations of said backbone using molecular dynamics or molecular mechanics calculations;
4. identifying energetically accessible conformations of said backbone wherein the periodicity of a geometrical/conformational repeat matches a sequence repeat;
5. synthesizing monomers with polar and nonpolar substituents;
6. synthesizing an antimicrobial polymer containing said monomers by solution or solid-phase synthesis.

The facially amphiphilic polymers of the present invention can have a substantial range in molecular weight. Facially amphiphilic molecules with molecular weights of about 0.8 kD to about 20 kD will be more prone to leach from the surface of the substrate. The facially amphiphilic polymer may be attached to, applied on or incorporated into almost
any substrate including but not limited to woods, paper, synthetic polymers (plastics), natural and synthetic fibers, natural and synthetic rubbers, cloth, glasses and ceramics by appropriate methods including covalent bonding, ionic interaction, coulombic interaction, hydrogen bonding or cross-linking. Examples of synthetic polymers include elastically deformable polymers which may be thermosetting or thermoplastic including, but not limited to polypropylene, polyethylene, polyvinyl chloride, polyethylene terephthalate, polyurethane, polyesters, such as polylactide, polyglycolide, rubbers such as polyisoprene, polybutadiene or latex, polytetrafluoroethylene, polysulfone and polyethylenesulfone polymers or copolymers. Examples of natural fibers include cotton, wool and linen.

The polymers of the present invention thus provide a surface-mediated microbicidal that only kills organisms in contact with the surface. Moreover the polymers of the present invention are stable and retain their bioactivity for extended periods of time. Polymers bound to the surface will not leach out of the surface into the environment. Specificity can be imparted for microbial cell walls which can provide polymers with reduced toxicity to birds, fish, mammals and other higher organisms.

Any object that is exposed to or susceptible to bacterial or microbial contamination can be treated with these polymers. These needs are particularly acute in the health care and food industries. A growing concern with preservatives has produced a need for new materials that prevent microbiological contamination without including preservatives. The incidence of infection from food-borne pathogens is a continuing concern and antimicrobial packaging material, utensils and surfaces would be valuable. In the health care and medical device areas the utility of antimicrobial instruments, packaging and surfaces are obvious. Products used internally or externally in humans or animal health including, but not limited to, surgical gloves, implanted devices, sutures, catheters, dialysis membranes, water filters and implements, all can harbor and transmit pathogens. The polymers of the present invention can be incorporated into spinable fibers for use in materials susceptible to bacterial contamination including fabrics, surgical gowns, and carpets. Ophthalmic solutions and contact lenses easily become contaminated and cause
ocular infections. Antimicrobial storage containers for contact lens and cleaning solutions would be very valuable. Both pets and agronomic animals are exposed to and harbor a variety of infectious pathogenic organisms that can cause disease in animals or humans. Coatings, paints adhesives all are exposed to microbial contamination by and are used in locations where microbial growth is undesirable.

Traditionally, monolayers have been created at air/water interfaces and transferred to a variety of surfaces for chemical and structural characterization, as documented in a large body of work dating back to the seminal studies of Blodgett and Langmuir. Monolayers can be chemically bonded to solid supports, resulting in stable, uniformly packed molecular layers that self-assemble by absorption. Typically, these Self-Assembled Monolayers (SAMs) are covalently tethered to solids using either alkylsiloxane or thiolate-gold linkages. Alkylthiolate-gold linkages can be formed on the surface of gold by spontaneous absorption of a thiol or disulfide. Gold layers can be deposited on most solid surfaces, providing great versatility. Alkylsiloxane monolayers can be prepared by reacting trialkoxysilanes or trichlorosilanes with a silicon dioxide surface resulting in a monolayer of crosslinked siloxanes on the surface. Siloxane monolayers may be formed on any solid that contains surface silanol groups including atomically smooth, surface-oxidized silicon wafers, glass and quartz. These two chemistries will allow amphiphilic polymers to be attached a variety of surfaces.

These amphiphilic polymers can incorporate linkers to allow the polymers to more efficiently interact with the environment around the solid surface. Tethering chemistries that allow presentation of peptides and proteins in native conformations with minimal interaction with the underlying substrate have been described. For examples, alkanethiols of the general form, HS-(CH₂)₁₁-(OCH₂-CH₂)₇-OH (denoted HS-C₁₁-E₇, n = 3 - 6), have now come into widespread use for studies of receptor/ligand interactions (M. Mrksich Cell Mol. Life Sci.1998 54:653-62; M. Mrksich and G. M. Whitesides Ann. Rev. Biophys. Biomol. Struct.1996 25:55-78). Polyethylene glycol derived amino acids, e.g. Fmoc-NH-(CH₂-CH₂-O)₂(CH₂-COOH (Neosystems) have also been described Cys will be appended to the N-terminus to act as a group that allows coupling via its thiol,

\[
\begin{align*}
\text{H}_2\text{N} & \rightarrow \text{peptide} \rightarrow \text{NH} & \text{BrCH}_2\text{COBr}, \text{DIEA} \\
& \rightarrow \text{HS-(PEG)}_n\text{-SH}, \text{DIEA} \\
& \rightarrow \text{TFA}
\end{align*}
\]

Resin bound intermediates can easily be modified to incorporate linkers. Glass surfaces can be modified to allow reaction with the thiol groups of the peptide by: (i) aminoalkylation of the glass surface by treatment with trimethoxysilylpropylamine; (ii) reaction of the amino groups with a bromoacetyl bromide or other heterobifunctional crosslinker groups capable of also reacting with a thiol group. In the above example, we show an amino surface in which we have introduced bromoacetyl groups for subsequent reaction with peptide thiols. Alternatively, thiol-reactive maleimides, vinyl-sulfones (Michael acceptors) may be incorporated using commercially available cross-linking agents. Alternatively, the surface amino groups may be converted to carboxylates by treatment with an anhydride, and then converted to thioesters under standard conditions. The resulting thioesters react facilely and with extreme regioselectivity with an N-terminal Cys residue. By incorporating quantities of inactive "filler" molecule, e.g. one example which is not limiting is a monofunctional thiol-terminated short chain polyethylene glycol polymer with the reactive teathering group the molar ratio of the oligomer to the "filler" component, it should be possible to continuously vary the surface density of the polymers attached to a solid support.

An embodiment of the present invention is a process for producing an antimicrobial surface by attaching an antimicrobial facially amphiphilic polymer to a surface comprising
treating said surface with a first chemically reactive group and reacting a facially amphiphilic polymer linked to a second reactive group thereto.

Another embodiment of the present invention is a process for attaching a facially amphiphilic polymer to a surface wherein the solid surface is treated with a 1-(trialkoxy)silyl)alkylamine and facially amphiphilic polymer contains an activated carboxylic acid.

Yet another embodiment of the present invention is a process for attaching a facially amphiphilic polymer to a surface wherein the solid surface is treated with a ω-(trialkoxy)silyl)alkyl bromomethylacetamide and facially amphiphilic polymer contains a thiol.

Another embodiment of the present invention is a process for attaching a facially amphiphilic polymer to a surface wherein the solid surface is treated with a N-[ω-(trialkoxy)silyl)alkyl] maleimide and facially amphiphilic polymer contains a thiol.

Still another embodiment of the present invention is a process for attaching a facially amphiphilic polymer to a surface wherein the surface is gold and the facially amphiphilic polymer contains a thiol.

A variety of polymers are used in a host of medical applications which require sterile surfaces. Catheters, like venous or urinary catheters are cause serious infections. Polyurethane based tubing is by far the major source of commercial catheter tubing. Amphiphilic polymers can be incorporated into polyurethane and other polymers using pre- and post manufacture techniques. The advantage of pre-manufacture incorporation is simpler modification strategies and dispersion of the antimicrobial agent throughout the tubing materials. Tubing manufacturing is typically an extrusion process in which pellets of polyurethane are heated and pressed through a dye producing tubing of the desired diameter. The thermal stability of urethane bonds is very similar to amide and urea bonds again suggesting that thermal processed conditions should not be a problem.
For the pre-manufacture approach, designed antimicrobial polymers are added to the original polyurethane pellets before extrusion resulting in a uniform dispersion throughout the extruded polymer.

Post-manufacture modifications are also possible although in this case the antimicrobial polymer will only be present on the surface of the tubing. However, since catheters have a minimal life cycle it is likely that surface treatment will render the materials sufficiently sanitary for their application. There are a variety of methods one can use to modify polymeric surfaces (E. Piskin J. Biomat. Sci.-Polymer Ed. 1992 4:45-60). The most common technique to covalent attach a amphiphilic polymer to the surface relies on irradiation to produce free radicals that form covalent bonds between the polymer and active surface agent. Unfortunately, this process is completely random with no control over orientation or functional group attachment to the surface. Alternatively, photo or chemical oxidation of the polyurethane surface can create carboxylic acid or alcohol functionality which will be reactive toward these antimicrobial polymers (the cationic side chains or cationic end groups). The most common technique for surface oxidation is plasma etching (E. Piskin loc. cit.; S. H. Hsu and W.C. Chen, Biomaterials 2000 21:359-67) although ozone can also be used. After oxidation, the surface is treated with a bifunctional epoxide followed by addition of the cationic antimicrobial polymer which can react with the epoxide.

Microbial growth in paint and on the surface of paint films also remains an unsolved problem. This can occur in the wet formulated paint or by microbial growth on the dried surface. The paint industry currently uses either isothiazolones or “formaldehyde releasers” for wet paint protection from microbes (G. Sekaran et al. J. Applied Polymer Sci. 2001 81:1567-1571; T. J. Kelly et al. Environ. Sci. Technol. 1999 33:81-88; M. Sondossi et al. International Biodeterioration & Biodegradation 1993 32:243-61). Both of these products are harmful to human beings and great lengths and expense are taken at the factory to limit employee exposure; however, there is no viable alternative currently for the industry. Isothiazolones are used mainly for their effectiveness against Pseudomonas aeruginosa and that the antimicrobial polymers discussed in preliminary data are active against this strain.
Any object that is exposed to or susceptible to bacterial or microbial contamination can be treated with these polymers. These needs are particularly acute in the health care and food industries. A growing concern with preservatives has produced a need for new materials that prevent microbiological contamination without including preservatives. The incidence of infection from food-borne pathogens is a continuing concern and antimicrobial packaging material, utensils and surfaces would be valuable. In the health care and medical device areas the utility of antimicrobial instruments, packaging and surfaces are obvious. Products used internally or externally in humans or animal health including, but not limited to, surgical gloves, implanted devices, sutures, catheters, dialysis membranes, water filters and implements, all can harbor and transmit pathogens. The polymers of the present invention can be incorporated into spinnable fibers for use in materials susceptible to bacterial contamination including fabrics, surgical gowns, and carpets. Ophthalmic solutions and contact lenses easily become contaminated and cause ocular infections. Antimicrobial storage containers for contact lens and cleaning solutions would be very valuable. Both pets and agronomic animals are exposed to and harbor a variety of infectious pathogenic organisms that can cause disease in animals or humans.

An embodiment of the current invention is a antimicrobial composition comprising a facially amphiphilic polymer and a composition selected from the group consisting of paint, coatings, lacquer, varnish, caulk, grout, adhesives, resins, films, cosmetic, soap and detergent.

Another embodiment of the present invention is an improved catheter, the improvement comprising incorporating or attaching a facially amphiphilic polymer therein or thereto.

Yet another embodiment of the present invention is an improved contact lens, the improvement comprising incorporating or attaching an amphiphilic polymer therein or thereto.

An embodiment of the present invention is improved plastic devices for the hospital and laboratory the improvement comprising incorporating or attaching a facially amphiphilic polymer therein or thereto.

A further embodiment of the present invention is an improved woven and nonwoven fabrics for hospital use the improvement comprising the incorporating or attaching a facially amphiphilic polymer therein or thereto.
The following examples will serve to further typify the nature of this invention but should not be construed as a limitation in the scope thereof, which scope is defined solely by the appended claims.

The following examples will serve to further typify the nature of this invention but should not be construed as a limitation in the scope thereof, which scope is defined solely by the appended claims.

EXAMPLE 1
Phenylene Ethynylene Synthesis (FIG 3)

A dried air-free flask was charged with m-diethylxylnyl-benzene (0.037g, 0.284 mmole, 1.03 eq), the diiodo monomer 3 (0.157 g, 0.275 mmole, 1.00 eq), 3 mol % Pd(PPh$_3$)$_4$ (0.009 g), CuI (0.003g, 0.017 mmole, 0.06 eq), 5 mL toluene, and 2 mL diisopropylamine. The solution was flushed under nitrogen, stirring, and then placed in an oil bath at 70 °C for 12 h. The solution was poured into rapidly stirring methanol and the precipitate collected. After drying overnight *in vacuo*, the molecular weight of the protected polymer 5 was determined.

7a: NP= CH$_2$CH$_2$CH$_2$CH$_2$CH$_3$, P= benzyl amine, Mn= 17,400, PDI= 2.2
7b: NP= (S)-CH$_2$CH(CH$_3$)CH$_2$CH$_3$, P= benzyl amine, Mn= 9,780, PDI= 1.4

The polymer (50 mg) was taken up in 4M HCl/dioxane at 0 °C and then allowed to warm to room temperature for 12 h. The solvent was removed *in vacuo* and the solid titrated with ether three times before drying overnight.

EXAMPLE 2
General Method for Arylene Polymerization-Suzuki Coupling

A dried flask is charged with equal molar ratios of the dibromide and the diboronic acid in toluene. A palladium catalyst, e.g., Pd(0)Cl$_2$(PPh$_3$)$_2$ is added, the reaction covered from light, and stirred at 80 °C overnight under positive N$_2$ pressure. The solvent is removed and the solid triturated with CH$_2$Cl$_2$/hexane. The degree of polymerization is
controlled by the addition of various molar amounts of a monofunctional aryl bromide. The molar amount of the aryl bromide is determined by the Flory equation.

EXAMPLE 3

Antimicrobial Assays

The inhibition studies will be carried out in suspension using BHI medium inoculated with bacteria (10^6 CFU/ml) in a 96-well format. A stock solution of the polymers was prepared DMSO/water and used to prepare a ten fold dilution series. Minimal inhibitory concentrations (MIC) were obtained by incubating the compounds with the bacteria for 18 hours at 37 °C, and measuring cell growth by monitoring at 590 nm.

All references cited in the application are hereby incorporated in their entirety into this specification. Numerous modifications and alternative embodiments of the invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Details of the structure may be varied substantially without departing from the spirit of the invention and the exclusive use of all modifications which come within the scope of the appended claim is reserved.
We claim:

1. A polymer comprising a compound of formula I

\[R^1 - \text{A-} s- \text{B} - R^2 \]

\[(\text{I}) \]

\[\text{N} - \text{t} - \text{N} - \text{t} \]

\[(\text{VI}) \]

wherein:

A and B are independently optionally substituted o-, m-, p-phenylene or optionally substituted heteroarylene wherein either (i) A and B are both substituted with a polar (P) group and a nonpolar (NP) group, (ii) one of A or B is substituted with a polar (P) group and a nonpolar (NP) group and the other of A or B is substituted with neither a polar (P) group nor a nonpolar (NP) group, or (iii) one of A or B is substituted with one or two polar (P) group(s) and the other of A or B is substituted with one or two nonpolar (NP) group(s), or (iv) one of A or B is substituted at the 2 position with a polar (P) group and at the 5- or 6-position with a nonpolar (NP) group and the other of A or B is substituted with a non-polar group; or,

A is as defined above and substituted with a polar (P) group and a nonpolar (NP) group, and B is a group \(C = C(CH_2)_pC = C \) wherein \(p \) is as defined below;

\(s \) is absent, or represents a single, double or triple bond, or \(\text{VI} \) optionally substituted with polar (P) and nonpolar (NP) groups wherein \(t \) is O or S;

\(R^1 \) is (i) halo and \(R^2 \) is hydrogen; or (ii) C-s-B-s- and \(R^2 \) is C; or, (iii) C-s- and \(R^2 \) is -A-s-C wherein C is pyridine or phenyl said pyridine or phenyl optionally substituted with 1 or 2 substituents independently selected from a group consisting of halo, nitro, cyano, \(C_1-C_6 \) alkoxy, \(C_1-C_6 \) alkoxy carbonyl, and benzyloxy carbonyl; or, \(R^1 \) and \(R^2 \) together are s;

\(\text{NP} \) is a nonpolar group an independently selected from \(R^4 \) or \(-U-(CH_2)_p-R^4\)

wherein \(R^4 \) is selected from a group consisting of hydrogen, \(C_1-C_{10} \) alkyl, \(C_3-C_{18} \) branched alkyl, \(C_3-C_8 \) cycloalkyl, monocyclic or polycyclic phenyl optionally substituted with one or more \(C_1-C_4 \) alkyl or halo groups and
monocyclic or polycyclic heteroaryl optionally substituted with one or more C\textsubscript{1}-C\textsubscript{6} alkyl or halo groups and U and p are as defined below;

P is a polar group selected from a group consisting of III, hydroxyethoxymethyl, methoxyethoxymethyl and polyoxyethylene

\[\text{---U---(CH}_2\text{)}_p\text{---V} \quad \text{(III)} \]

wherein;

U is absent or selected from a group consisting of O, S, S(=O), S(=O)\textsubscript{2}, NH, -C(=O)O-, -C(=O)NH-, -C(=O)S-, -C(=S)NH-, -S(=O)\textsubscript{2}NH-, and C(=NO-) wherein groups with two chemically nonequivalent termini can adopt both possible orientations;

V is selected from a group consisting of amino, hydroxyl, C\textsubscript{1}-C\textsubscript{6} alkylamino, C\textsubscript{1}-C\textsubscript{6} dialkylamino, NH(CH\textsubscript{2})\textsubscript{p}NH\textsubscript{2}, N(CH\textsubscript{2}CH\textsubscript{2}NH\textsubscript{2})\textsubscript{2}, amidine, guanidine, semicarbazone, basic heterocycle, and phenyl optionally substituted with an amino, C\textsubscript{1}-C\textsubscript{6} alkylamino, C\textsubscript{1}-C\textsubscript{6} dialkylamino and lower acylamino optionally substituted with one or more amino, lower alkylamino or lower dialkylamino;

and the alkylene chain is optionally substituted with an amino or hydroxyl group or unsaturated;

p is independently 0 to 8; and,

m is 2 to at least about 500.

with the proviso that if A and B are thiophene the polar groups cannot be 3-(propionic acid) or methoxy(dioxyethoxy)ethyl and the nonpolar group cannot be n-dodecyl.

2. A polymer according to claim 1 comprising a compound of formula I wherein:

A and B are independently optionally substituted \(\sigma\), \(m\), or \(p\)-phenylene;

s is absent or represents a single, double or a triple bond;

NP is a nonpolar group independently selected from \(R^4\) or \(-U-(CH}_2\text{)}_p\text{---R}^4\) wherein \(R^4\) is selected from a group consisting of hydrogen, C\textsubscript{1}-C\textsubscript{4} alkyl, C\textsubscript{3}-C\textsubscript{12} branched alkyl, C\textsubscript{3}-C\textsubscript{8} cycloalkyl, phenyl optionally substituted with one or more C\textsubscript{1}-C\textsubscript{4} alkyl groups and heteroaryl optionally substituted with one or more C\textsubscript{1}-C\textsubscript{4} alkyl groups and U and p are as defined below;
P is a polar group selected from a group consisting of III, hydroxyethoxymethyl, methoxyethoxymethyl or polyoxyethylene

$\text{--U--(CH}_2\text{)}_p\text{--V-- (III)}$

wherein:

U is absent, O, S, SO, SO$_2$, or NH;

V is selected from a group consisting of amino, hydroxyl, C$_1$-C$_6$ alkylamino, C$_1$-C$_6$ dialkyaminio, NH(CH$_2$)$_p$NH$_2$, N(CH$_2$CH$_2$NH$_2$)$_2$, amidine, guanidine, semicarbazone, imidazole, piperidine, piperazine, 4-alkylpiperazine and phenyl optionally substituted with an amino, C$_1$-C$_6$ alkylamino, C$_1$-C$_6$ dialkyaminio and lower acylamino optionally substituted with one or more amino, lower alkyamino or lower dialkyaminio;

the alkylene chain is optionally substituted with an amino or hydroxyl group or unsaturated;

p is independently 0 to 8; and,

m is 2 to at least about 500.

3. A polymer according to claim 1 comprising a compound of formula I wherein:

A and B are independently optionally substituted m-phenylene wherein (i) A is substituted at the 5-position with a nonpolar (NP) group and B is substituted at the 5-position with a nonpolar (P) group, (ii) A is substituted at the 2-position with a polar (P) and at the 5-position with a nonpolar (NP) group and B is substituted at the 2-position with a nonpolar (NP) group and at the 5-position with a polar (P) group, (iii) one of A or B is substituted at the 2-position with a polar group and the 5-position with a nonpolar group and the other of A or B is substituted by neither a polar group nor a nonpolar group; or, (iv) one of A or B is substituted at the 5-position with a polar group and the 2-position with a nonpolar group and the other of A or B is substituted by neither a polar group nor a nonpolar group;

s is absent or represents a single, double or a triple bond;

NP is a nonpolar group independently selected from R4 or -U-(CH$_2$)$_p$-R4 wherein R4 is selected from a group consisting of hydrogen, methyl, ethyl, n-propyl,
iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, and sec-pentyl and U and p are as defined below;

P is a polar group U-(CH₂)ₚ-V wherein U is absent or selected from a group consisting of O and S, and V is selected from a group consisting of amino, lower alkyl amino, lower dialkylamino, imidazole, guanidine, NH(CH₂)ₚNH₂, N(CH₂CH₂NH₂)₂, piperidine, piperezine, 4-alkylpiperazine;

p is independently 0 to 8; and

m is 2 to at least about 500.

4. A polymer according to claim 3 comprising a compound of formula XIX

![Formula XIX]

wherein

NP is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, and sec-pentyl;

P is a polar group U-(CH₂)ₚ-V wherein U is O or S, p is 0 to 8 and V is selected from a group consisting of amino, lower alkyl amino, lower dialkylamino, guanidine, pyridine, piperezine, 4-alkylpiperazine;

p is 0 to 8; and

m is 2 to at least about 30.

5. A polymer according to claim 3 comprising a compound of formula XIX

![Formula XX]

wherein

-38-
NP is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, and sec-pentyl;
P is a polar group U-(CH₂)ₚ-V wherein U is O or S, p is 0 to 8 and V is selected from a group consisting of amino, lower alkyl amino, lower dialkylamino, guanidine, pyridine, piperazine, 4-alkylpiperazine;
p is 0 to 8; and,
m is 2 to at least about 30.

6. A polymer according to claim 1 comprising a compound of formula I wherein:
A and B are independently optionally substituted p-phenylene wherein (i) A is substituted at the 2-position with a nonpolar (NP) group and B is substituted at the 5- or 6-position with a nonpolar (P) group, (ii) both A and B are substituted with a polar (P) group at the 2-position and a nonpolar (NP) group at the 5- or 6-position; or, (iii) one of A or B is substituted at the 2 position with a polar (P) group and at the 5- or 6-position with a nonpolar (NP) group and the other of A or B is substituted with neither a polar group nor a non-polar group;
s is absent or represents a single, double or a triple bond;
NP is a nonpolar group independently selected from R⁴ or -U-(CH₂)ₚ-R⁴ wherein R⁴ is selected from a group consisting of hydrogen, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl iso-pentyl, and sec-pentyl and U and p are as defined below;
P is a polar group U-(CH₂)ₚ-V wherein U is absent or selected from a group consisting of O and S, and V is selected from a group consisting of amino, lower alkyl amino, lower dialkylamino, imidazole, guanidine, NH(CH₂)ₚNH₂, N(CH₂CH₂NH₂)₂, piperidine, piperazine, 4-alkylpiperazine;
p is independently 0 to 8; and,
m is 2 to at least about 500.

7. A polymer according to claim 1 comprising a compound wherein:
A and B are independently optionally substituted heteroarylene wherein one of A or B is substituted with one or two polar (P) group(s) and the other of A or B is substituted with one or two nonpolar (NP) group(s); s is absent or represents a single, double or a triple bond; NP is a nonpolar group independently selected from R^4 or $-U-(CH_2)_p-R^4$ wherein R^4 is selected from a group consisting of hydrogen, C_1-C_4 alkyl, C_3-C_{12} branched alkyl, C_3-C_8 cycloalkyl, and heteroaryl optionally substituted with one or more C_1-C_4 alkyl groups and U and p are as defined below; P is a polar group selected from a group consisting of III, hydroxyethoxymethyl, methoxyethoxymethyl or polyoxyethylene,

$$-U-(CH_2)_p-V \quad (III)$$

wherein,

U is absent, O, S, SO, SO$_2$, or NH;

V is selected from a group consisting of amino, hydroxyl, C_1-C_6 alkylamino, C_1-C_6 dialkylamino, NH(CH$_2$)$_p$NH$_2$, N(CH$_2$CH$_2$NH$_2$)$_2$, amidine, guanidine, semicarbazone, imidazole, piperidine, piperazine, 4-alkylpiperazine and phenyl optionally substituted with an amino, C_1-C_6 alkylamino, C_1-C_6 dialkylamino and lower acylamino optionally substituted with one or more amino, lower alkylamino or lower dialkylamino; and,

the alkylene chain is optionally substituted with an amino or hydroxyl group or unsaturated;

p is independently 0 to 8; and,

m is 2 to at least about 500.

8. A polymer according to claim 1 comprising a compound of formula I wherein:

A and B are independently optionally substituted 2,5-thiophenylene or 2,5-pyrrolole wherein (i) A is substituted at the 3-position with a nonpolar (NP) group and B is substituted at the 3-position with a polar (P), (ii) A is substituted at the 3-position with a nonpolar (NP) group and B is substituted at the 4-position with a polar (P) group, or (iii) one of A or B is substituted at the 3 and 4-position with a nonpolar
(NP) group and the other of A or B is substituted at the 3 and 4-position with a polar (P) group;
s is absent or represents a single, double or a triple bond;
NP is a nonpolar group independently selected from R^4 or $-U-\{CH_2\}_p-R^4$ wherein R^4
is selected from a group consisting of hydrogen, methyl, ethyl, n-propyl, iso-
propyl, iso-butyl, sec-butyl, tert-butyl, iso-pentyl, and sec-pentyl and U and p are
as defined below;
P is a polar group $U-\{CH_2\}_p-V$ wherein U is absent or selected from a group
consisting of O and S, and V is selected from a group consisting of amino, lower
alkyl amino, lower dialkylamino, imidazole, guanidine, $NH(CH_2)_pNH_2$,
$N(CH_2CH_2NH_2)_2$, piperidine, pipеразINE, 4-alkylpiperazine;
p is independently 0 to 8; and;
m is 2 to at least about 500.

9. A method of killing microorganisms comprising the steps of:

Providing a substrate having disposed thereon a contact killing, non-leaching
facially amphiphilic polymer such that said polymer is not eluted from said
surface;

Facilitating contact between said facially amphiphilic polymer on said surface to
allow formation of pores in the cell wall of said microorganism.

10. A method according to claim 9 wherein said substrate is selected from a group
consisting of wood, synthetic polymers, plastics, natural and synthetic fibers, cloth,
paper, rubber and glass.

11. A method according to claim 10 wherein said substrate is from a plastic selected from
the group consisting of polysulfone, polyacrylate, polyurea, polyethersulfone, polyamide,
polycarbonate, polyvinylidenefluoride, polyethylene, polypropylene and cellulosics.
12. A microbiocidal composition comprising facially amphiphilic polymer and a solid support selected from a group consisting of wood, synthetic polymers, natural and synthetic fibers, cloth, paper, rubber and glass.

13. A method according to claim 12 wherein said solid support is a plastic selected from the group consisting of polysulfone, polyacrylate, polyethersulfone, polyamide, polycarbonate, polyvinylidene fluoride, polyethylene, polypropylene and cellulosics.

14. A process for producing an antimicrobial surface by attaching a antimicrobial facially amphiphilic polymer to a surface comprising treating said surface with a first chemically reactive group and reacting a facially amphiphilic polymer linked to a second reactive group thereto.

15. A process according to claim 14 where said first reactive group is a 1-(trialkoxy)silyl)propylamine and said second reactive group is an activated carboxylic acid.

16. A process according to claim 14 where said first reactive group is a ω-(trialkoxy)silyl)alkyl bromomethylacetamide and said second reactive group is a thiol.

17. A process according to claim 14 where said first reactive group is a N-[ω-(trialkoxy)silyl)alkyl] maleimide and said second reactive group is a thiol.

18. A process according to claim 14 where the first reactive group is a gold surface and said second reactive group is a thiol.

19. An antimicrobial composition comprising a facially amphiphilic polymer and a composition selected from the group consisting of paint, coatings, lacquer, varnish, caulk, grout, adhesives, resins, films, cosmetic, soap and detergent.
20. An improved catheter, the improvement comprising incorporating or attaching an
antimicrobial facially amphiphilic polymer therein or thereto.

22. An improved contact lens, the improvement comprising incorporating or attaching an
antimicrobial facially amphiphilic polymer therein or thereto.

23. Improved plastic devices for the hospital and laboratory the improvement comprising
incorporating or attaching an antimicrobial facially amphiphilic polymer therein or
thereto.

24. Improved woven and nonwoven fabrics for hospital use the improvement comprising
the incorporating or attaching an antimicrobial facially amphiphilic polymer therein
or thereto.
Figure 2

Chemical structures and their annotations:

(I) $R - \overset{A}{\underset{\text{s}}{\overset{B}{\text{m}}}} - R$

Ic: $X = S$
Id: $X = \text{NH}$

$\begin{array}{c}
P \quad \text{P}
\end{array}$

$\begin{array}{c}
\text{NP}^1
\end{array}$

O-CH$_2$-CH$_2$-NMe$_2$
O-CH$_2$-CH$_2$-(2-pyridyl)
O-CH$_2$-CH$_2$-N(CH$_2$-CH$_2$-NMe$_2$)$_2$
O-CH$_2$-CH$_2$-(2-imidazolyl)
O-CH$_2$-CH$_2$-N-NH-C(=NH)NH$_2$
O-CH$_2$-CH$_2$-N(CH$_2$CH$_2$)$_2$NH

O-CH$_3$CH$_2$
O-CH$_2$CHMe$_2$
O-CHMe$_2$
OCMe$_3$
O-CH$_2$-CHMe$_2$
O(CH$_2$)$_6$Me
\[\text{HO} - \text{I} - \text{I} \rightarrow \text{R}_1 \text{OH}, \text{DIAD, PPh}_3, \text{THF, 2h, 0°C to rt} \]

1a: \(\text{R}_1 = \text{C}_5\text{H}_{11} \) (92%)
2: \(\text{R}_1 = \text{C}_{12}\text{H}_{25} \) (90%)
1b: \(\text{R}_1 = \text{CH(Me)Et (chiral)} \) (92%)

\[\text{1} \rightarrow \text{R}_1 \text{O} \rightarrow \text{1. BH}_3, \text{THF, 18h, 0°C then reflux} \]

2: \(\text{MeOH} \)
3: \(\text{Boc}_2\text{O, NaOH, DMF/H}_2\text{O (2:1), 8 h} \)

3: \(\text{R}_1 = \text{C}_5\text{H}_{11} \) (62%)
4: \(\text{R}_1 = \text{C}_{12}\text{H}_{25} \) (64%)

\[\text{H} - \text{C} = \text{C} - \text{H} \rightarrow \text{Pd(PPh}_3)_4, \text{CuI, DIPA, Toluene, 10 h, 65°C} \]

5: \(\text{R}_1 = \text{C}_5\text{H}_{11} \) (71%)
6: \(\text{R}_1 = \text{C}_{12}\text{H}_{25} \) (80%)

\[\text{NHBOC} \rightarrow 4 \text{N HCl/Dioxane, 48 h, rt} \]

\[\text{O} - \text{n-C}_5\text{H}_{11} \]

\[\text{NH}_3^+ \text{Cl}^- \]

\[\text{Figure 3} \]