wo 2012/040708 A2 I 10K 000 OO KOO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(19) Work Ttellctual Propety Orsaniation /2525 | I AUAT N0 L O
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
29 March 2012 (29.03.2012) PCT WO 2012/040708 A2
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 9/46 (2006.01) GO6F 9/305 (2006.01) kind of national protection available): AE, AG, AL, AM,
GO6F 9/30 (2006.01) GO6F 9/06 (2006.01) AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
. .. CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(21) International Application Number: DZ. EC. EE. EG. ES. FL. GB. GD. GE. GH. GM. GT
PCT/US2011/053266 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
26 September 2011 (26.09.2011) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
- . NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
(26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(30) Priority Data: . o
12/924,311 25 September 2010 (25.09.2010) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): INTEL GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
CORPORATION [US/US]; 2200 Mission College UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
Boulevard, Santa Clara, California 95052 (US). RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
(72) Tnventors; and DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
(75) Inventors/Applicants (for US only): PHILLIPS, James LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
) . SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
E. [US/US]; 1602 Pin Oak Lane, Round Rock, Texas GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
78681 (US). SUBRAMANIAM, Kameswar [IN/US]; ? ’ ’ ’ ’ T ’
4501 Tello Path, Austin, Texas 78749 (US). Published:
(74) Agents: VINCENT, Lester J. et al.; Blakely Sokoloff — without international search report and to be republished

Taylor & Zafman, 1279 Oakmead Parkway, Sunnyvale,
California 94085 (US).

upon receipt of that report (Rule 48.2(g))

(54) Title: EXECUTE AT COMMIT STATE UPDATE INSTRUCTIONS, APPARATUS, METHODS, AND SYSTEMS

100

MACHINE-READABLE STORAGE MEDIA

102

EXECUTE ATRETIRE
STATE UPDATE INSTRUCTION

FIG. 1

(57) Abstract: An apparatus including an execution logic that includes circuitry to execute instructions, and an instruction execu-
tion scheduler logic coupled with the execution logic. The instruction execution scheduler logic is to receive an execute at commit
state update instruction. The instruction execution scheduler logic includes at commit state update logic that is to wait to schedule
the execute at commit state update instruction for execution until the execute at commit state update instruction is a next instruc-
tion to commit. Other apparatus, methods, and systems are also disclosed.

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
1
EXECUTE AT COMMIT STATE UPDATE INSTRUCTIONS, APPARATUS,
METHODS, AND SYSTEMS
BACKGROUND
Field

Embodiments relate to processors and other instruction processing apparatus. In
particular, embodiments relate to methods, apparatus, systems, or instructions, to update
internal state of processors and other instruction processing apparatus.

Background Information

Certain processors use pipelined execution to overlap execution phases, which may
allow multiple instructions to be in different phases of execution at the same time, which
may help to improve performance. The amount of parallelism achieved tends to increase
as the pipeline depth increases. Over time, certain processors have incorporated deeper
pipelining in an attempt to improve performance. Pipelining tends to be more effective
when the instruction stream is known so that the pipeline can be kept full and the
execution of a subsequent instruction does not need to await the results of those in the
pipeline.

To help keep the pipeline more full, pipelined processors have used dynamic
prediction (e.g., branch prediction) and speculative execution. The dynamic prediction
may be used to predict the flow of instructions in the instruction stream and inject
instructions of the predicted path into the pipeline. Branch prediction may involve
predicting the direction of a branch, for example the direction of a conditional branch
instruction, before the correct direction of the branch is definitively known. For example,
the processor may make an educated guess about what direction the conditional branch
instruction is most likely to take based on past history. The processor may then start
executing instructions speculatively based on the assumption that the predicted branch
direction is correct, but before the processor knows whether or not the predicted branch
direction is actually correct.

The dynamic prediction (e.g., the predicted branch direction) will later turn out
either to be correct or incorrect. If the predicted branch direction later turns out to be
correct, then the results of the speculative execution may be utilized. In this case, the
speculative execution offers value in greater utilization of pipeline stages that would
otherwise have been dormant or at least underutilized, while waiting for the correct

direction of the branch direction to be known. Alternatively, if the predicted branch

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
2

direction turns out to be incorrect, or the branch direction was mispredicted, then the
speculatively execution past the conditional branch instruction typically should be
discarded, and the execution typically should be rewound by jumping or branching back in
the control flow to the conditional branch that was mispredicted. Execution may then
resume, now non-speculatively, with the now definitively known correct branch direction.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The invention may best be understood by referring to the following description and
accompanying drawings that are used to illustrate embodiments of the invention. In the
drawings:

Figure 1 is a block diagram of an embodiment of an execute at commit state
update instruction stored on a machine-readable storage media.

Figure 2 is a block diagram of an embodiment of a processor or other instruction
processing apparatus having an instruction execution scheduler queue to issue an execute
at commit state update instruction.

Figure 3 is a block flow diagram of an embodiment of a method issuing an execute
at commit state update instruction.

Figure 4 is a block diagram of an embodiment of an out-of-order processor or
other instruction processing apparatus having an embodiment of an out-of-order
instruction execution scheduler queue to issue an execute at commit state update
nstruction.

Figure 5 is a block diagram of a particular example embodiment of an out-of-order
processor or other instruction processing apparatus having a particular example
embodiment of an out-of-order instruction execution scheduler queue to issue an execute
at commit state update instruction.

Figure 6 is a block diagram of a particular example embodiment of a reservation
station having a particular example embodiment of at commit state update logic to issue an
execute at commit state update instruction.

Figure 7 is a block diagram of an example embodiment of a suitable computer
system having an embodiment of a processor as disclosed herein.

DETAILED DESCRIPTION

In the following description, numerous specific details, such as particular processor

components and configurations, particular scheduling logic, and the like, are set forth.

However, it is understood that embodiments of the invention may be practiced without

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
3

these specific details. In other instances, well-known circuits, structures and techniques
have not been shown in detail in order not to obscure the understanding of this description.

One of challenges posed by speculative execution within a processor pertains to
updating or changing the internal state of the processor. Processors commonly have a
large amount of internal state that should not be changed speculatively. Some processors
have on the order of hundreds or thousands of bits of internal state. The internal state may
include system flags, bits in control registers, and the like. During the operation of the
processor, while the processor executes code, this internal state may be modified, for
example by microcode of the processor and/or by software/BIOS through interfaces
provided by microcode. However, typically much or most of this internal state should not
be modified speculatively, for example during speculative execution. In some processors,
the processor state that is most frequently modified may be renamed (for example in the
case of an out-of-order processor by being allocated and renamed to a re-order buffer),
which helps to protect against speculative changes to this state. However, due to the large
amount of processor state in some processors, all of this processor state is generally not
renamed, and the corresponding protection of the processor state through renaming is not
achieved.

Embodiments of the invention pertain to a state update instruction that is operable
to cause or control a processor to update internal state (e.g., non-renamed processor state)
of the processor non-speculatively in a pipelined processor using speculative execution. In
various embodiments, the state update instruction may cause or control the processor to
update the internal state at commit (e.g., at retire or just after at retire, at complete or just
after at complete, after resolution of a dynamic prediction, after receipt of a branch
resolution signal, etc.). Executing the state update instruction at commit helps to provide
that the internal state is not updated until after the update is known to be non-speculative.
Some embodiments are applicable to out-of-order processors whereas other embodiments
are applicable to in-order processors. Other embodiments pertain to methods performed
responsive to the at state update instruction. Still other embodiments pertain to apparatus
to process the state update instruction.

Figure 1 is a block diagram of an embodiment of an execute at commit state
update instruction 102 stored on a machine-readable storage media 100. In various
embodiments, the machine-readable storage media may be a memory (e.g., a read only
memory (ROM), an instruction store, an instruction cache, an instruction queue, an

instruction buffer, a disc (e.g., a magnetic or optical disc), to name just a few examples.

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
4

The execute at commit state update instruction may be provided to, accessed by, or
otherwise processed by a machine, such as a processor or other instruction execution
apparatus. The machine may recognize that the state update instruction is an execute at
commit type of state update instruction. For example, the machine may recognize that one
or more bits of the state update instruction indicate that it is an execute at commit type of
instruction. There are various different ways in which this may be done. Examples of
suitable ways that this may be done include, but are not limited to, providing a separate
opcode for the execute at commit state update instruction, providing a tag of one or more
bits in the opcode to designate that a state update instruction identified by the opcode is of
an execute at commit variety, and providing a tag of one or more bits in another field of
the instruction (e.g., a field that is not otherwise used for that instruction) to designate that
the instruction is an execute at commit instruction, to name just a few examples.

The execute at commit state update instruction, if or when processed by the
machine may cause or result in the machine waiting to schedule/issue and execute the state
update instruction, until the state update instruction is the next instruction to commit, or
otherwise when execution of the state update instruction is non-speculative. Then, the
machine may schedule/issue, execute, and commit the state update instruction. When the
state update instruction executes or in some cases commits, the internal state of the
machine may be updated. The execute at commit state update instruction is operable to
control the processor or other instruction processing apparatus to have the state update
instruction execution occur at a particular pipeline stage, namely at commit.

In one particular example embodiment, the execute at commit state update
instruction may be an execute at commit control register write instruction that is operable
to write or modify a control register representing an example of a type of internal state.
The contents of the control register may represent system flags, paging table locations for
address translation, segmentation data, memory region types, processor modes (e.g.,
protection or caching), or the like. In one aspect, the control register may not be
configured to be renamed through register renaming, which may make the control register
or internal state even more susceptible or less protected from modification during
speculative execution.

In one or more embodiments, the execute at commit state update instruction is a
microinstruction. Other embodiments are not limited to micro-code controlled processors.

Advantageously, the execute at commit state update instruction may help to avoid

speculative updates of internal state. Since the execute at commit state update instruction

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
5

causes the machine to wait to schedule/issue and execute the state update instruction until
the state update instruction is the next instruction to commit, the state update instruction
will not cause an update of the internal state of the machine until after the execution of the
instruction is known to not be speculative. Moreover, making the state update instruction
itself an execute at commit instruction is a direct and efficient way of avoiding speculative
updates of internal state. Fundamentally, it is the state update instruction that should not
happen speculatively to avoid speculative modification of the internal state, not
conditional microbranch instructions or other types of instructions.

Figure 2 is a block diagram of an embodiment of a processor or other instruction
processing apparatus 204 having an instruction execution scheduler logic 212 to schedule
an execute at commit state update instruction 202. The processor or instruction processing
apparatus may be of various types, such as, for example, various complex instruction set
computing (CISC) types, various reduced instruction set computing (RISC) types, various
very long instruction word (VLIW) types, and various hybrids thereof, to name just a few
examples. The processor or other instruction processing apparatus may execute
instructions either in-order or out-of-order.

In one or more embodiments, the processor may be a general-purpose processor,
such as, for example, one of the general-purpose processors manufactured by Intel
Corporation, of Santa Clara, California, although this is not required. A few representative
examples of suitable general-purpose processors available from Intel Corporation include,
but are not limited to, Intel® Atom™ Processors, Intel® Core™ processors, Intel®
Core™2 processors, Intel® Pentium® processors, and Intel® Celeron® processors.

Alternatively, the processor may be a special-purpose processor. Representative
examples of suitable special-purpose processors include, but are not limited to, network
processors, communications processors, cryptographic processors, graphics processors,
co-processors, embedded processors, and digital signal processors (DSPs), to name just a
few examples. These processors can also be based on CISC, RISC, VLIW, hybrids
thereof, or other types of processors. In still other embodiments, the processor or
instruction processing apparatus may represent a controller (e.g., a microcontroller), or
other type of logic circuit capable of processing microcode or microinstructions.

Referring again to Figure 2, the instruction execution scheduler logic 212 is
operable to schedule or issue instructions for execution. During use the instruction
execution scheduler logic 212 may receive the execute at commit state update instruction

202. As mentioned, the execute at commite state update instruction may have a tag or

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
6

other indication that the instruction is an execute at commit state update instruction. In
one aspect, this tag or other indication may be provided in the front end (e.g., by
instruction fetch/sequencer logic). The instruction fetch/sequencer logic may include logic
to specify that a particular single instruction is to be executed non-speculatively in the
processor that uses speculative execution. In embodiments disclosed herein, the
specification (e.g., through a tag or one or more bits of a field of the instruction) is
included on a state update instruction.

The instruction execution scheduler includes an optional instruction queue 208.
The optional instruction queue may be used to store instructions 210 including the execute
at commit state update instruction 202. In one or more embodiments, the optional
instruction queue may also store operands or other data or parameters associated with the
instructions. The instruction scheduler logic is operable to schedule/issue the instructions
in the instruction queue for execution. In one embodiment, the instruction scheduler logic
may schedule the instructions in-order, or in another embodiment the instruction scheduler
logic may schedule the instructions out-of-order.

The instruction scheduler logic includes at commit state update logic 214. The at
commit state update logic is operable to wait to schedule/issue the execute at commit state
update instruction for execution until the state update instruction is a next instruction to
commit. The older instructions that are older than the execute at commit state update
instruction may execute and commit before the execute at commit state update instruction
is allowed to schedule/issue and execute. In one or more embodiments, the instruction
execution scheduler logic may receive an indication of the next instruction to commit
and/or an indication that execution is non-speculative from another component, such as,
for example, a reorder buffer, commit logic, or branch resolution logic (e.g., a branch
resolution signal). When the state update instruction is the next instruction to commit
and/or non-speculative, the instruction execution scheduler logic may schedule/issue 216
the state update instruction for execution.

The execution logic 220 is coupled with the instruction execution scheduler logic.
The execution logic may receive the issued state update instruction. The execution logic
may include logic, such as hardware (e.g., circuitry), software, firmware, or some
combination thereof, to execute the state update instruction. In one or more embodiments,
the execution logic includes at least some circuitry to execute the state update instruction.
For example, the circuitry may include particular/specialized circuitry responsive to the

state update instruction or microinstruction.

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
7

In one or more embodiments, an execute at commit state update instruction may be
withheld from scheduling/issue and execution in an out-of-order portion of a processor or
other instruction processing apparatus. In one or more embodiments, an instruction
execution scheduler logic may be included in an out-of-order portion of a processor or
other instruction processing apparatus.

Figure 3 is a block flow diagram of an embodiment of a method 370 of scheduling
an execute at commit state update instruction. The method includes receiving the execute
at commit state update instruction, at block 371. The method includes waiting to schedule
the execute at commit state update instruction for execution until the execute at commit
state update instruction is a next instruction to commit, at block 372. The method includes
scheduling the execute at commit state update instruction for execution when it is the next
instruction to commit, at block 373.

Figure 4 is a block diagram of an embodiment of an out-of-order processor or
other instruction processing apparatus 404 having an embodiment of an out-of-order
instruction execution scheduler queue 406. The processor or other instruction processing
apparatus may be of various types, such as, for example, various complex instruction set
computing (CISC) types, various reduced instruction set computing (RISC) types, various
very long instruction word (VLIW) types, and various hybrids thereof, to name just a few
examples.

In one or more embodiments, the processor may be a general-purpose processor,
such as, for example, one of the general-purpose processors manufactured by Intel
Corporation, of Santa Clara, California, although this is not required. A few representative
examples of suitable general-purpose processors available from Intel Corporation include,
but are not limited to, Intel® Atom™ Processors, Intel® Core™ processors, Intel®
Core™2 processors, Intel® Pentium® processors, and Intel® Celeron® processors.

Alternatively, the processor may be a special-purpose processor. Representative
examples of suitable special-purpose processors include, but are not limited to, network
processors, communications processors, cryptographic processors, graphics processors,
co-processors, embedded processors, and digital signal processors (DSPs), to name just a
few examples. These processors can also be based on CISC, RISC, VLIW, hybrids
thereof, or other types of processors. In still other embodiments, the processor or other
instruction processing apparatus may represent a controller (e.g., a microcontroller), or

other type of logic circuit capable of processing microcode or microinstructions.

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
8

The processor is an on-of-order processor that is operable to execute instructions
out-of-order. In some cases, a subsequent instruction may depend upon the execution of a
prior instruction. The ability to execute instructions out-of-order allows the processor to
fill portions of the pipeline with instructions that do not depend on the execution of a prior
instruction in the pipeline, while those that are dependent on the execution of a prior
instruction wait for the instruction on which they depend to finish. This may help to
increase the performance of the processor. The processor, however, may present the
architectural state of the processor to software or a user in original program order. To
accomplish this, the out-of-order processor may include logic (e.g., a re-order buffer) to
allow state from the execution of a younger instruction that has executed prior to an older
instruction to be preserved until after the execution from the older instruction is available.
When the execution of the older instruction becomes available, retirement logic or commit
logic may be operable to control the update of the architectural state of the processor (e.g.,
from the re-order buffer) by updating the state in the original instruction order. The
mapping of visible state to re-order buffer entries may be achieved by renaming.

Referring again to Figure 4, the out-of-order processor or other instruction
processing apparatus includes an in-order front end section or portion 424, which may
process instructions in-order. Without limitation, the front end may include one or more
components, such as, for example, instruction fetch/sequence logic (e.g., an instruction
fetch/sequence logic or circuit, not shown), instruction decode logic (e.g., a decoder or
decode circuit, not shown), and instruction dispatch logic (e.g., an instruction dispatch
logic or circuit, not shown), although the scope of the invention is not limited to any
known components in the front end. In one or more embodiments, logic in the front end
section or portion (e.g., fetch/scheduler logic) may tag or otherwise specify that a state
update instruction is of an execute at commit variety.

The out-of-order processor or apparatus also includes an out-of-order back end
section or portion 426 coupled with the front end section or portion to receive instructions
including the execute at commit state update instruction 402. The out-of-order back end
may reorder the instructions and process the instructions out-of-order.

As shown, the out-of-order back end may include an embodiment of an out-of-
order instruction execution scheduler queue 406. The out-of-order instruction execution
scheduler queue may also be referred to as a dynamic instruction execution scheduler
queue. The out-of-order back end may also include instruction reorder logic (e.g., a

reorder buffer, not shown) and instruction execution logic (e.g., an execution logic, not

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
9

shown). The instruction execution logic may execute the instructions out-of-order and
provide execution results 430.

The illustrated embodiment of the out-of-order instruction execution scheduler
queue includes an instruction queue 408, an out-of-order instruction scheduler logic 428,
and an at commit state update logic 414. The instruction queue may be as previously
described. The at commit state update logic, according to one or more embodiments, may
cause the out-of-order instruction execution scheduler queue to wait to schedule the
execute at commit state update instruction for execution until the state update instruction is
a next instruction to commit.

The out-of-order instruction scheduler logic may schedule the instructions in the
instruction queue out-of-order. In one aspect, the out-of-order instruction scheduler logic
may include logic to ensure, check, or evaluate a number of factors before scheduling an
instruction for execution. Representative examples of such factors include potentially that
whether or not the input (e.g., a source operand) of an instruction depends on an execution
result of an as-of-yet unexecuted instruction, whether or not the input of the instruction
needs to be loaded from memory, and whether or not the instruction needs to wait for a
busy execution logic or other resource to become available.

Advantageously, since the instruction execution scheduler queue 406 is an out-of-
order instruction execution scheduler queue, is located in an out-of-order portion or
section 426 of the processor, and has the out-of-order instruction scheduler logic, the out-
of-order instruction execution scheduler queue is operable to schedule/issue one or more
younger instructions 410 for execution before scheduling/issuing the execute at commit
state update instruction 402 for execution, which is held back from scheduling/issue and
execution until it is the next instruction to commit. For clarity, the younger instructions
410 are younger than the execute at commit state update instruction 402 meaning that they
occur chronologically after the execute at commit state update instruction in original
program order (e.g., the younger instructions would be fetched and decoded after the
execute at commit state update instruction in the in-order front end).

Advantageously, allowing the younger instructions to issue and execute around the
held up execute at commit state update instruction may help to avoid a bubble in execution
that would otherwise tend to reduce performance. If instead the execute at commit state
update instruction were held back from execution in the in-order front end portion or
section of the processor, then all microinstructions younger than the execute at commit

state update instruction would also typically be held back from issue and execution behind

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
10

the execute at commit state update instruction. The younger microinstructions cannot get
around the held back execute at commit state update instruction. The execute at commit
state update instruction and all younger instructions may be held back while all
instructions older than the execute at commit state update instruction traverse the pipeline,
and potentially encounter latencies (e.g., due to load misses, ctc.), before the execute at
commit state update instruction and any younger instructions are allowed to issue and
execute. This may cause a bubble in execution that may tend to reduce performance.

Referring again to Figure 4, the out-of-order processor or apparatus also includes
an in-order commit logic 432 coupled with the out-of-order back end portion or section
426 to receive the execution results 430. The in-order commit logic may reorder the
execution results so that they are in-order and then commit the execution results in-order.
In one aspect, the commit logic may not commit instructions until all older instructions
ahead of it in original program order have committed. Committing the instructions may
include writing 433 the execution results associated with the instructions in-order to the
register file or other programmer-visible architectural state 434 of the processor. When an
instructions results are written to of the processor, that instruction is said to have
committed. In the case of the state update instructions previously discussed, the
architectural state may include the internal state previously discussed (e.g., flags, control
registers, etc.) In one aspect, the internal state may be updated when the state update
instruction executes, before it actually commits. For example, this may be the case for
non-renamed internal state. The processor may update renamed processor state at commit,
but update non-renamed processor state at execution.

Figure 5 is a block diagram of a particular example embodiment of an out-of-order
processor or other instruction processing apparatus 504 having a particular example
embodiment of an out-of-order instruction execution scheduler queue 506 to issue an
execute at commit state update instruction 502. The processor or other instruction
processing apparatus may be any of the various types previously mentioned (e.g., CISC,
RISC, general-purpose, special-purpose, etc.).

The processor or other apparatus includes an issue reorder buffer 540. In one or
more embodiments, the issue reorder buffer may be a buffer that is coupled between an in-
order front-end and execution logic. Instructions may enter the issue reorder buffer in-
order, and the issue reorder buffer may store or buffer the instructions as well as
information associated with the instructions, such as, for example, the instructions status,

operands, and the instructions original place or location in the program order or sequence.

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
11

The instructions may wait in the issue reorder buffer until data needed to execute the
instructions (e.g., input operands) is available and resources needed to execute the
instruction are available.

The processor or other apparatus also includes the out-of-order instruction
execution scheduler queue, which is operable to receive an execute at commit state update
instruction 502. As shown, in on¢ or more embodiments, the execute at commit state
update instruction may optionally be received from an allocator logic 542 of the processor,
which may be coupled with the out-of-order instruction execution scheduler queue.

The out-of-order instruction execution scheduler queue includes an instruction
queue 508, which as previously described may be used to store instructions including the
execute at commit state update instruction. The out-of-order instruction execution
scheduler queue also includes an out-of-order instruction scheduler logic 512, which as
previously described may schedule the instructions for execution potentially out-of-order.
The out-of-order instruction execution scheduler queue also includes an at commit state
update logic 514, which as previously described in one or more embodiments may wait to
schedule the state update instruction for execution until the state update instruction is a
next instruction to commit. As shown, the out-of-order instruction scheduler logic may
receive an indication of a next instruction to commit 544.

The processor or other apparatus also includes an out-of-order execution logic 520
coupled with the out-of-order instruction execution scheduler queue. The execution logic
may receive the issued or scheduled instructions from the instruction execution scheduler
queue, including the execute at commit state update instruction when it is indicated to be
the next instruction to be committed. The out-of-order execution logic may include logic,
in one embodiment at least some circuitry, to execute instructions in this case out-of-order.

The processor or other apparatus also includes an in-order commit logic 532 that is
coupled with the out-of-order execution logic to receive execution results. As shown, in
one or more embodiments, the commit logic may include a complete reorder buffer 546.
The complete reorder buffer 546 and the issue reorder buffer 540 may either be the same
buffer or different buffers. In one or more embodiments, the issue reorder buffer and the
complete reorder buffer may be or may include a conventional or substantially
conventional reorder buffer (ROB) as employed in certain out-of-order processors. In
another embodiment, the reorder buffer may be replaced by a completion queue.

The complete reorder buffer may buffer the instructions and the execution results

until they are ready to be committed in-order. The reorder buffer may keep track of the

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
12

instructions that have executed and may assist with retiring or committing the executed
instructions in-order. The complete reorder buffer may have logic to put the instructions
and their associated result data coming from the out-of-order section of the processor into
the same order that the instructions had in the in-order front end section of the processor.
As the instruction commits it may read the result data out of the reorder buffer and write
the result data to the architectural state of the processor. In the case of the execute at
commit state update instructions previously discussed, the architectural state may include
the internal state previously discussed (e.g., flags, control registers, etc.). In one aspect,
the internal state may be updated when the state update instruction executes, before it
actually commits. For example, this may be the case for non-renamed internal state. The
processor may update renamed processor state at commit, but update non-renamed
processor state at execution.

As shown, in one or more embodiments, the complete reorder buffer, which
already tracks instructions being retired, may provide a retire pointer or other indication of
the next instruction to retire 544 to the out-of-order instruction execution scheduler queue.
The next instruction to retire is an example of an indication of a next instruction to
commit. Other examples of indications that an instruction is ready to commit may include
a complete signal or be based on a dynamic prediction resolution (e.g., a branch resolution
signal), to name a few additional examples. It is also to be clarified that the concept of
retirement, while shown here for an out-of-order processor, is not limited to out-of-order
processors. When the execute at commit instruction is the next instruction to commit, the
complete reorder buffer may provide an indication to the out-of-order instruction
execution scheduler queue that the execute at commit state update instruction is the next
instruction to commit. The execute at commit state update instruction may then issue,
execute, commit, and update internal state 536.

When an out-of-order processor speculatively executes instructions, the
speculatively executed instructions and their execution results may be stored in the reorder
buffer(s) along with non-speculatively executed instructions. However, the reorder
buffer(s) may keep track of the speculatively executed instructions and their execution
results and prevent the speculatively executed instructions and their execution results from
committing until it is confirmed that the speculative execution is confirmed/needed
execution (e.g., the direction of a conditional branch instruction is confirmed to have been
correctly predicted). The now confirmed/needed instructions and their execution results

may then be committed and written to the architectural state. Alternatively, if the

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
13

speculative execution is found to be in error and not needed (e.g., the direction of a
conditional branch instruction was mispredicted), then the speculatively executed
instructions and their execution results may not be committed and may not be written to
the architectural state (e.g., they may be deleted from the reorder buffer(s).
Advantageously, in this embodiment, by withholding the updating or changing of the
processors internal state until after the reorder buffer indicates that the execute at commit
state update instruction is the next instruction to commit (which includes determining that
the execute at commit state update instruction is not speculative), speculative updates of
internal state may be prevented or at least reduced.

Figure 6 is a block diagram of a particular example embodiment of a reservation
station 606 having a particular example embodiment of at commit state update logic 614
to issue an execute at commit state update instruction 602. The reservation station
represents an example embodiment of an out-of-order instruction execution scheduler
queue or instruction scheduling logic. Aside from the features described below or
pertaining to the at commit state update logic, or the execute at commit state update
instructions interactions with the reservation station, the reservation station may have
other conventional or substantially conventional features. The reservation station may
either be central to or shared by the execution logic of a processor, or different reservation
stations may be provided for different sets of execution logic.

The reservation station has a plurality of entries 650-0 through 650-n, where the
number n is an integer greater than two, for example from about ten to about one hundred.
Each entry may have a queue 608-0 through 608-n to queue instructions and in some cases
miscellancous reservation station data associated with the instructions (e.g., operands
associated with the instructions). In one or more embodiments, the reservation station
may be operable to snoop or monitor a result bus on which data is written to registers, and
the reservation station may be operable to store the data from the result bus in the queues.
This may help to avoid the need to subsequently access the data from the registers.

The reservation station also has a plurality of physical destination (pdst) pointer
storage locations 652-0 through 652-n. These locations are operable to store pointers to
physical destinations or entries in a reorder buffer where the data is at for the
corresponding instruction. Each instruction and each entry may have a physical
destination (pdst) pointer. Each of these physical destination (pdst) pointers may represent

an indication of an instruction stored at a corresponding entry in the reservation station.

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
14

The reservation station also has the at commit state update logic 614. The at
commit state update logic is operable to block scheduling of the state update instruction
that is tagged to execute non-speculatively and/or at commit until the state update
instruction is next to retire or otherwise commit.

The at commit state update logic includes logic to associate an indication that the
state update instruction should execute non-speculatively and/or at commit with the at
commit state update instruction, and with the age-order of the at commit state update
instruction within the instruction sequence. For example, in the illustrated embodiment,
the at commit state update logic includes a plurality of sets of one or more at commit bits
654-0 through 654-n. Each of the sets of the one or more at commit bits corresponds to a
different entry in the reservation station. The at commit state update logic also includes
bit value adjustment logic 656 coupled with each of the sets of the at commit bits. The bit
value adjustment logic is operable, responsive to an at commit state update instruction
602, to adjust a value of a set of one or more at commit bits, at an entry in the reservation
station corresponding to the execute at commit state update instruction (e.g., at an entry
where the execute at commit state update instruction is to be queued), to a given value.

By way of example, an at commit bit may either be set to the value of one
(according to one convention) or cleared to a value of zero (according to another
convention) responsive to the at commit state update instruction. In one or more
embodiments, the at commit state update logic may include a decoder to decode an opcode
of the at commit state update instruction to determine that the instruction is an at commit
flavor of instruction, and then adjust the bits accordingly. The decoder may be
implemented using various different types of mechanisms. Examples of suitable types of
mechanisms include, but are not limited to, microcode read only memories (ROMs), look-
up tables, hardware implementations, programmable logic arrays (PLAs), and the like.
The decoder may be implemented in hardware (e.g., circuitry), firmware, software, or a
combination thereof. It is not required that the execute at commit indication be provided
through the opcode, but rather it could be provided through another field.

The at commit state update logic also includes determination logic 658. In one
aspect, the determination logic may include a plurality of sets of determination logic 658-0
through 658-n that each correspond to a different entry in the instruction queue. Each of
the sets of the determination logic is coupled with a different corresponding one of the
physical destination (pdst) pointer storage locations to receive a different one of the

physical destination (pdst) pointers. Each of the sets of the determination logic is also

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
15

coupled with a reorder buffer, for example, to receive a retire pointer 644 (e.g., a next to
retire tail pointer), which represents an embodiment of an indication of a next instruction
to retire or otherwise commit. Each of the sets of the determination logic is also coupled
with a different corresponding one of the sets of one or more at commit bits to receive a
different corresponding one of the sets of at commit bits.

The determination logic includes age-order comparator logic that includes logic to
qualify the age-order comparison (e.g., the comparison between the retire pointer 644 with
the pdst 652) with the indication via the at commit bits 654 that the state update instruction
is to execute non-speculatively and/or at commit. The determination logic is operable,
when the set of the one or more at commit bits at the entry in the instruction queue
corresponding to the at commit state update instruction has the given value (i.c., the value
it would have for an execute at commit state update instruction), to determine whether or
not an indication of a next instruction to commit (e.g., the retire pointer) matches an
indication of the at commit state update instruction at the entry in the instruction queue
corresponding to the at commit state update instruction (e.g., the physical destination
(pdst) pointer at the entry where the execute at commit state update instruction is queued).
For example, a set of determination logic at an entry in the reservation station where the
execute at commit state update instruction is stored, or is to be stored, may receive the one
or more at commit bits for the same entry, the physical destination (pdst) pointer for the
same entry, and the commit pointer, and may compare the physical destination (pdst)
pointer with the retire pointer.

The reservation or scheduling logic may include logic to block the at commit state
update instruction from being scheduled for execution until the microinstruction is next to
commit (e.g., retire). If the physical destination (pdst) pointer does not match or equal the
retire pointer, then the execute at commit state update instruction may be inferred to not be
the next instruction to retire or otherwise commit, and the determination logic may
continue to wait to schedule or issue the execute at commit state update instruction. For
example, the determination logic may provide a blocking signal to out-of-order scheduling
logic 612. This means that the execute at commit state update instruction is not yet ready
to commit. The older instructions in front of the execute at commit state update
instruction need to retire or otherwise commit before the execute at commit state update
instruction is allowed to commit. The older instructions will be retired until the time the
execute at commit state update instruction is the oldest instruction in the reservation

station and is ready to retire or otherwise commit. At some point, if or when the physical

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
16

destination (pdst) pointer matches or equals the retire pointer, then the execute at commit
state update instruction may be inferred or determined to be the next instruction to
commit, and the determination logic may determine that it is possible to schedule or issue
the execute at commit state update instruction. For example, the determination logic may
provide an unblocking signal or a signal that is not a blocking signal to the out-of-order
scheduling logic.

In one or more embodiments, ecach of the sets of determination logic may include
compare equal type logic, although this is not required. The compare equal logic may be
implemented with exclusive OR type logic, for example. Alternatively, other types of
determination or comparison logic suitable to determine whether or not the retire pointer
matches or equals the physical destination (pdst) pointer may be used instead.

The out-of-order scheduling logic may receive the blocking or unblocking signals
from the determination logic. When the one or more at commit bits for an entry
corresponding to an execute at commit state update instruction have the given value they
would be adjusted to for the execute at commit state update instruction, the out-of-order
scheduling logic may not schedule the execute at commit state update instruction when a
blocking signal is asserted, but may possibly schedule the execute at commit state update
instruction when an unblocking signal is asserted, depending on other factors
conventionally considered in out-of-order instruction scheduling (e.g., resource and/or
data availability.) In one or more embodiments, the out-of-order scheduling logic may
include blocking logic, ready logic, and picker logic, which aside from having to take into
account the blocking/unblocking signals or aspects due to the execute at commit state
update instruction, may be conventional or substantially conventional.

This is just one illustrative example embodiment. Other embodiments are
contemplated that have logic to block the execution of the state update instruction
differently, that use different signals besides at retire (e.g., a branch resolution signal or
other at commit signal), etc.

Still other embodiments pertain to a system (e.g., a computer system or other
electronic device) having one or more processors as disclosed herein and/or performing a
method as disclosed herein. Figure 12 is a block diagram of an example embodiment of a
suitable computer system or electronic device 1286.

The computer system includes a processor 1200. In one or more embodiments, the
processor may include microcode aliased parameter passing logic and/or microcode

aliased parameter save and restore logic as disclosed elsewhere herein.

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
17

The processor may have one or more cores. In the case of a multiple core
processor, the multiple cores may be monolithically integrated on a single integrated
circuit (IC) chip or die. In one aspect, each core may include at least one execution unit
and at least one cache. The processor may also include one or more shared caches.

In one particular embodiment, the processor may include an integrated graphics
controller, an integrated video controller, and an integrated memory controller that are
cach monolithically integrated on a single die of the general-purpose microprocessor,
although this is not required. Alternatively, some or all of these components may be
located off-processor. For example, the integrated memory controller may be omitted
from the processor and the chipset may have a memory controller hub (MCH).

The processor is coupled to a chipset 1288 via a bus (e.g., a front side bus) or other
interconnect 1287. The interconnect may be used to transmit data signals between the
processor and other components in the system via the chipset.

A memory 1289 is coupled to the chipset. In various embodiments, the memory
may include a random access memory (RAM). Dynamic RAM (DRAM) is an example of
a type of RAM used in some but not all computer systems.

A component interconnect 1290 is also coupled with the chipset. In one or more
embodiments, the component interconnect may include one or more peripheral component
interconnect express (PCle) interfaces. The component interconnect may allow other
components to be coupled to the rest of the system through the chipset. One example of
such components is a graphics chip or other graphics device, although this is optional and
not required.

A data storage 1291 is coupled to the chipset. In various embodiments, the data
storage may include a hard disk drive, a floppy disk drive, a CD-ROM device, a flash
memory device, a dynamic random access memory (DRAM), or the like, or a combination
thereof.

A network controller 1293 is also coupled to the chipset. The network controller
may allow the system to be coupled with a network.

A serial expansion port 1292 is also coupled with the chipset. In one or more
embodiments, the serial expansion port may include one or more universal serial bus
(USB) ports. The serial expansion port may allow various other types of input/output

devices to be coupled to the rest of the system through the chipset.

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
18

A few illustrative examples of other components that may optionally be coupled
with the chipset include, but are not limited to, an audio controller, a wireless transceiver,
and a user input device (e.g., a keyboard, mouse).

In one or more embodiments, the computer system may execute a version of the
WINDOWS™ goperating system, available from Microsoft Corporation of Redmond,
Washington. Alternatively, other operating systems, such as, for example, UNIX, Linux,
or embedded systems, may be used.

This is just one particular example of a suitable computer system. Other system
designs and configurations known in the arts for laptops, desktops, handheld PCs, personal
digital assistants, engineering workstations, servers, network devices, network hubs,
switches, video game devices, set-top boxes, and various other electronic devices having
processors, are also suitable. In some cases, the systems may have multiple processors.

In the description and claims, the terms “coupled” and “connected,” along with
their derivatives, may be used. It should be understood that these terms are not intended
as synonyms for each other. Rather, in particular embodiments, “connected” may be used
to indicate that two or more elements are in direct physical or electrical contact with each
other. “Coupled” may mean that two or more elements are in direct physical or electrical
contact. However, “coupled” may also mean that two or more elements are not in direct
contact with each other, but yet still co-operate or interact with each other. For example,
an instruction execution scheduler queue may be coupled with an execution logic through
one or more intervening components.

In the description above, for the purposes of explanation, numerous specific details
have been set forth in order to provide a thorough understanding of the embodiments of
the invention. It will be apparent however, to one skilled in the art, that one or more other
embodiments may be practiced without some of these specific details. The particular
embodiments described are not provided to limit the invention but to illustrate
embodiments of the invention. The scope of the invention is not to be determined by the
specific examples provided above but only by the claims below. In other instances, well-
known circuits, structures, devices, and operations have been shown in block diagram
form or without detail in order to avoid obscuring the understanding of the description.
Where considered appropriate, reference numerals or terminal portions of reference
numerals have been repeated among the figures to indicate corresponding or analogous

elements, which may optionally have similar characteristics.

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
19

Various operations and methods have been described. Some of the methods have
been described in a basic form in the flow diagrams, but operations may optionally be
added to and/or removed from the methods. In addition, while the flow diagrams show a
particular order of the operations according to example embodiments, it is to be
understood that that particular order is exemplary. Alternate embodiments may optionally
perform the operations in different order, combine certain operations, overlap certain
operations, etc. Many modifications and adaptations may be made to the methods and are
contemplated.

Certain operations may be performed by hardware components, or may be
embodied in machine-executable or circuit-executable instructions, that may be used to
cause, or at least result in, a circuit or hardware programmed with the instructions
performing the operations. The circuit may include a general-purpose or special-purpose
processor, or logic circuit, to name just a few examples. The operations may also
optionally be performed by a combination of hardware and software. An execution logic
and/or a processor may include specific or particular circuitry or other logic responsive to
a instructions or microinstructions or one or more control signals derived from a machine
instruction to perform certain operations.

One or more embodiments includes an article of manufacture (e.g., a computer
program product) that includes a machine-accessible and/or machine-readable medium.
The medium may include, a mechanism that provides, for example stores or transmits,
information in a form that is accessible and/or readable by the machine. The machine-
accessible and/or machine-readable medium may provide, or have stored thereon, one or
more or a sequence of instructions and/or data structures that if executed by a machine
causes or results in the machine performing, and/or causes the machine to perform, one or
more or a portion of the operations or methods or the techniques shown in the figures
disclosed herein.

In one embodiment, the machine-readable medium may include a tangible non-
transitory machine-readable storage media. For example, the tangible non-transitory
machine-readable storage media may include a floppy diskette, an optical storage medium,
an optical disk, a CD-ROM, a magnetic disk, a magneto-optical disk, a read only memory
(ROM), a programmable ROM (PROM), an erasable-and-programmable ROM (EPROM),
an electrically-erasable-and-programmable ROM (EEPROM), a random access memory
(RAM), a static-RAM (SRAM), a dynamic-RAM (DRAM), a Flash memory, a phase-

change memory, or a combinations therecof. The tangible medium may include one or

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
20

more solid or tangible physical materials, such as, for example, a semiconductor material,
a phase change material, a magnetic material, etc.

In another embodiment, the machine-readable media may include a non-tangible
transitory machine-readable communication medium. For example, the transitory
machine-readable communication medium may include electrical, optical, acoustical or
other forms of propagated signals, such as carrier waves, infrared signals, digital signals,
etc.)

Examples of suitable machines include, but are not limited to, computer systems,
desktops, laptops, notebooks, netbooks, nettops, Mobile Internet devices (MIDs), network
devices, routers, switches, cellular phones, media players, and other electronic devices
having one or more processors or other instruction execution devices. Such electronic
devices typically include one or more processors coupled with one or more other
components, such as one or more storage devices (non-transitory machine-readable
storage media), user input/output devices (e.g., a keyboard, a touchscreen, and/or a
display), and/or network connections. The coupling of the processors and other
components is typically through one or more busses and bridges (also termed bus
controllers). Thus, the storage device of a given electronic device may stores code and/or
data for execution on the one or more processors of that electronic device. Alternatively,
one or more parts of an embodiment of the invention may be implemented using different
combinations of software, firmware, and/or hardware.

It should also be appreciated that reference throughout this specification to "one
embodiment”, "an embodiment", or “one or more embodiments”, for example, means that
a particular feature may be included in the practice of embodiments of the invention.
Similarly, it should be appreciated that in the description various features are sometimes
grouped together in a single embodiment, Figure, or description thereof for the purpose of
streamlining the disclosure and aiding in the understanding of various inventive aspects.
This method of disclosure, however, is not to be interpreted as reflecting an intention that
the invention requires more features than are expressly recited in each claim. Rather, as
the following claims reflect, inventive aspects may lie in less than all features of a single
disclosed embodiment. Thus, the claims following the Detailed Description are hereby
expressly incorporated into this Detailed Description, with each claim standing on its own

as a separate embodiment of the invention.

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
21

CLAIMS
What is claimed is:
1. An apparatus comprising:

an execution logic that includes circuitry to execute instructions; and

an instruction execution scheduler logic coupled with the execution logic, the
instruction execution scheduler logic to receive an execute at commit state update
instruction, the instruction execution scheduler logic including:

at commit state update logic to wait to schedule the execute at commit state update
instruction for execution until the execute at commit state update instruction is a next
instruction to commit.

2. The apparatus of claim 1, wherein the instruction execution scheduler logic
comprises an out-of-order instruction execution scheduler queue, the out-of-order
instruction execution scheduler queue operable to schedule a younger instruction for
execution before scheduling the execute at commit state update instruction for execution.
3. The apparatus of claim 2, further comprising a reorder buffer coupled with the out-
of-order instruction execution scheduler queue, the reorder buffer to provide an indication
to the out-of-order instruction execution scheduler queue that the execute at commit state
update instruction is the next instruction to commit.

4. The apparatus of claim 1, wherein the execute at commit state update instruction
comprises an execute at commit control register write instruction, which is to write a
control register.

5. The apparatus of claim 1, wherein the execute at commit state update instruction is
to update state that is not configured to be renamed.

6. The apparatus of claim 1, wherein the instruction execution scheduler logic
comprises a reservation station.

7. The apparatus of claim 1, wherein the execute at commit state update logic
comprises:

a plurality of sets of one or more at commit bits, each of the sets of the one or more
at commit bits corresponding to a different entry in an instruction execution scheduler
queue of the instruction execution scheduler logic;

bit value adjustment logic operable, responsive to the execute at commit state
update instruction, to adjust a value of a set of one or more at commit bits at an entry in
the instruction execution scheduler queue corresponding to the execute at commit state

update instruction to a given value;

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
22

determination logic operable, when the set of the one or more at commit bits at the
entry in the instruction execution scheduler queue corresponding to the execute at commit
state update instruction has the given value, to determine whether an indication of the next
instruction to commit matches an indication of the execute at commit state update
instruction at the entry in the instruction execution scheduler queue corresponding to the
execute at commit state update instruction.
8. The apparatus of claim 7, wherein the bit value adjustment logic operable
comprises a decoder to decode the at commit state update instruction, and wherein the
determination logic comprises a plurality of sets of determination logic each
corresponding to a different entry, a set of determination logic for the entry corresponding
to the execute at commit state update instruction operable to determine if a plurality of bits
representing the next instruction to commit equals a plurality of bits representing the
execute at commit state update instruction.
9. The apparatus of claim 7, wherein the instruction scheduler logic is operable to
block issuance of the execute at commit state update instruction if the determination logic
determines that the indication of the next instruction to commit does not match the
indication of the execute at commit state update instruction.
10. A method comprising:

receiving an execute at commit state update instruction;

waiting to schedule the execute at commit state update instruction for execution
until the execute at commit state update instruction is a next instruction to commit; and

scheduling the execute at commit state update instruction for execution when it is
the next instruction to commit.
11. The method of claim 10, further comprising after receiving the instruction, and
before scheduling the instruction for execution, scheduling a younger instruction for
execution, the younger instruction being younger than the execute at commit state update
nstruction.
12. The method of claim 10, further comprising:
updating internal state of an instruction processing apparatus when the state update
instruction executes, wherein the internal state comprises a control register that is not
configured to be renamed.
13. The method of claim 10, wherein the waiting to schedule the instruction comprises
storing the instruction in an instruction queue of an instruction execution scheduler queue.

14. The method of claim 10, further comprising:

10

15

20

25

30

P35678PCT

WO 2012/040708 PCT/US2011/053266
23

responsive to receiving the instruction, changing a value of one or more at commit
bits; and

blocking scheduling of the instruction, after the value of the one or more at commit
bits have been changed, until an identifier of the execute at commit state update instruction
matches an indication of the next instruction to commit.

15. An article of manufacture comprising;:

a machine-readable storage media having stored thereon an execute at commit state
update instruction that if processed by a machine results in the machine performing
operations including,

waiting to schedule the execute at commit state update instruction for execution
until the execute at commit state update instruction is a next instruction to commit; and

scheduling the execute at commit state update instruction for execution when it is
the next instruction to commit.

16. The article of manufacture of claim 15, wherein the execute at commit state update
instruction further results in the machine performing operations comprising:

scheduling a younger instruction for execution, the younger instruction being
younger than the execute at commit state update instruction, after receiving the execute at
commit state update instruction, and before scheduling the execute at commit state update
instruction for execution.

17. The article of manufacture of claim 15, wherein the execute at commit state update
instruction further results in the machine performing operations comprising:

updating internal state of the machine when the execute at commit state update
instruction commits, in which the internal state comprises a control register that is not
renamed through register renaming.

18. A system comprising:

an interconnect;

a processor coupled with the interconnect, the processor including an instruction
execution scheduler logic, the instruction execution scheduler logic having:

logic, responsive to the execute at commit state update instruction, to block
scheduling of the execute at commit state update instruction for execution until the execute
at commit state update instruction is a next instruction to commit; and

a dynamic random access memory (DRAM) coupled with the interconnect.

19. The system of claim 18, in which the instruction execution scheduler logic is

included in an out-of-order portion of the processor.

P35678PCT

WO 2012/040708 PCT/US2011/053266
24

20. The system of claim 18, wherein the execute at commit state update instruction
comprises a control register write instruction that is operable to cause the processor to

write a control register, and wherein the control register is not configured to be renamed.

WO 2012/040708

117

PCT/US2011/053266

MACHINE-READABLE STORAGE MEDIA
100

EXECUTE AT RETIRE
STATE UPDATE INSTRUCTION

102

FiG. 1

PCT/US2011/053266

WO 2012/040708

217

90

J1901
NOLLNO3X3

¢ Old

e | v
907
31vddn

J1V1S
LINWOD LY

0ic
SNOILONYLSNI

A

/

9ic
LINIWOO OL
NOILONYLSNI
LX3N SILENTHM
NOILONYLSNI 3LVddN
3LY1S ANSSI

1404 |\A

80¢
anano
NOILONYLSNI

%4
J1907¥31NA3HIS
NOILNOAX3 NOILONYLSNI

c0¢
NOILONYLSNI
31vadn 31v1S
LIANWOD LV NOILNJ3X3

WO 2012/040708 PCT/US2011/053266

3/7

FIG. 3

RECEIVE EXECUTE AT COMMIT
STATE UPDATE INSTRUCTION 371

Y

WAIT TO SCHEDULE EXECUTE AT
COMMIT STATE UPDATE INSTRUCTION
FOR EXECUTION UNTIL IT IS NEXT ~-372
INSTRUCTION TO COMMIT

Y

SCHEDULE EXECUTE AT COMMIT STATE
UPDATE INSTRUCTION FOR EXECUTION ~ 373
WHEN IT IS NEXT INSTRUCTION TO COMMIT

PCT/US2011/053266

WO 2012/040708

417

9cy
3LVLS TYNYILNI

234

IR
TWdNLOLIHOYY

A

Y

457
J1907 LINNOD
d30H0-NI

3

252

21901 31vddn
31V1S LINWOO 1V

147

J1901 431NA3HIS
NOILONYLSNI 43040-40-1N0

cor

NOILONYLSNI 31vddn
31V1S LINNOD LV NOILNO4X3

0l
SNOILONYLSNI 43ONNOA

<

o€y

80%
3N3ND NOILONYLSNI

v "OId

907
3N3IND ¥3INAIHOS NOILNIIX3
NOILONYLSNI 43d40-40-1N0

gcr
N3 XOVE 43040-40-1N0

|

404
NOILONYLSNI
31vadn 31ViS
LINWOD 1V
31N33X3

vy

aN3 INOYA
d304O-NI

PCT/US2011/053266

WO 2012/040708

5/7

9¢g
JLVLS TYNYIINI
A
97% l
> 715
¥344Nn9 >
NERREN \ 21907 3LvYadn
144 JLYLS LNWOD LY
A3 LINWOD OL
NOILONYLSNI LX3aN
21907 LINWOD —
SITNO-NI 40 NOILYOIQN] ZIC
A 21907 ¥IINAIHOS
NOILONYLSNI ¥3Q40-40-1n0
4
01907 «
NOILND3X3
¥3040-40-LNO Lo oL
LXIN NIHM X
NOILONYLSNI 31¥adN
31V1S NSS!
v0c W, 0%S
43449
g OI4 ¥3a¥0-34 INSS!

01§
SNOILONYLSNI

805
3N3NO NOILONYLSNI

3N3N0 ¥31NA3HIS NOILNDIXT
NOLLONYLSNI ¥3040-40-1N0

1901

c09

NOILONH LSNI
31vddNn 31V1IS
LINWOD LV NOILLNDAX4

PCT/US2011/053266

WO 2012/040708

6/7

sld

Uu-869 g 4\;25_8 v
29
o/ 19071
NOILONYLSNI ¥31Na3IHIS
a3NSsI/aINAIHIS NOILONYLSNI
¥30Y¥0-40-1N0
< D T7co 1pa |0799| T809 ININD - 40G9
k A
0-859
21901
NOILYNINY3L3A
559 909
79 NOILYLS
21907 INIWLSNFAY
(804 WO¥A) INTA LIS NOILYA¥ISTY
\ ¥3INIOd
¥19 FYIL3Y
209
NOILONYLSNI
31vadn 3LYLS
LINWOD 1Y NOILLNDIXT

9 'OId

WO 2012/040708 PCT/US2011/053266

717
FIG. 7
780 —’\
PROCESSOR
782
A
783
A\
SERIAL MEMORY
EXPANSION < > -« >
789 785
CHIPSET
784
DATA COMPONENT
STORAGE < > < »| INTERCONNECT
788 786
A
v
NETWORK
CONTROLLER

787

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings

