(54) 发明名称
传送上行链路信令信息

(57) 摘要
本发明公开了传送上行链路信令信息。蜂窝通信系统(100)的用户设备UE(101)将调度协助数据发送到包含调度上行链路分组数据的基站调度器(209)的基站(105)。调度协助数据与来自UE(101)的上行链路分组数据发送有关。UE(101)包含信道控制器(213),信道控制器(213)操作用于在上行链路空口的第一物理资源中将调度协助数据从UE (101)发送到基站(105)。第一物理资源不是由基于基站的调度器(209)管理的。调度协助数据尤其可以在与其它传输信道多路复用在物理资源上的第一传输信道中发送。尤其是,支持调度协助数据信令的传输信道可以具有高可靠性并在基站(105)中终止。
1. 一种用于在蜂窝通信系统中发送信号信息的用户设备，该用户设备包含：
 用于为基于基站的调度器生成调度协作数据的装置，所述调度协作数据与所述设备的
 分组数据通信有关；
 用于在第一信道上发送所述调度协作数据并且在第二信道上发送其它数据的装置，所述
 第一信道和第二信道在第一物理资源上复用；
 用于使用第二物理资源发送所述调度协作数据的装置；
 用于在第一物理资源和第二物理资源之间进行选择的选择装置，所述第一或第二物理
 资源响应于第一物理资源和第二物理资源的资源可用性被选择以发送所述调度协作数据；
 其中
 所述第二信道采用重新发送方案并且所述第一信道不采用重新发送方案，所述第一物
 理资源由基站调度，并且所述第二物理资源由基站调度。

2. 根据权利要求1所述的用户设备，其中，用于发送所述的所述装置被配置为以不同的发
 送可靠性发送所述第一和第二信道。

3. 根据权利要求2所述的用户设备，其中，用于发送的所述装置被配置为以比第二信
 道低的数据分组出错率发送所述第一信道。

4. 根据权利要求1所述的用户设备，其中用于发送的所述装置被配置为根据第一传输
 方案发送所述第一信道，并且根据不同的第二传输方案发送所述第二信道。

5. 根据权利要求4所述的用户设备，其中，所述第一传输方案和第二传输方案包括不
 同的纠错特性。

6. 根据权利要求1所述的用户设备，其中用于发送的所述装置被配置为执行所述第一
 信道和第二信道的速率匹配。

7. 根据权利要求6所述的用户设备，其中，用于发送的所述装置被配置为应用不同的
 穿孔或重复特性到所述第一信道和第二信道。

8. 根据权利要求1所述的用户设备，其中，所述第一信道在所述基于基站的调度器的
 基站中终止。

9. 根据权利要求1所述的用户设备，其中所述第一信道具有和所述第二信道不同的终
 点。

10. 根据权利要求1所述的用户设备，其中，所述重新发送方案是混合自动重复请求
 ARQ重新发送方案。

11. 根据权利要求1所述的用户设备，其中，所述选择装置被配置为响应于所述第一物
 理资源和第二物理资源的业务负载在所述第一物理资源和第二物理资源之间进行选择。

12. 根据前面任一项权利要求所述的用户设备，其中，所述第二信道是用户数据传输信
 道。

13. 根据权利要求1-11中任意一项所述的用户设备，其中，所述调度协作数据是所述
 基于基站的调度器和所述用户设备之间的空中接口信道状况的指示。

14. 根据权利要求13所述的用户设备，其中，所述第一物理资源是调度的上行链路资
 源，所述调度的上行链路资源由所述基于基站的调度器调度，并且所述第二物理资源是辅
 助上行链路资源。

15. 根据权利要求14所述的用户设备，其中，所述第二物理资源操作为与下行链路分
组数据业务结合以除了所述调度协助数据之外还从层 3 传送确认数据。
传送上行链路信令信息

[0001] 本申请是申请号为 200680019378.X, 申请日为 2006 年 2 月 9 日, 名称为“传送
上行链路信令信息”的发明专利申请的分案申请。更具体地说，本案案申请是基于申请号为
201010611830.X, 提交日为 2010 年 12 月 29 日, 发明名称为“传送上行链路信令信息”的
分案申请的再次分案申请。

技术领域
[0002] 本发明涉及蜂窝通信系统中调度协助数据的信令，尤其，但不排斥地涉及第 3 代
合作项目 (3GPP) 蜂窝通信系统中的信令。

背景技术
[0003] 当前，正在推广第 3 代蜂窝通信系统，以便进一步改进提供给移动用户的通信服
务。最广泛采用的第 3 代通信系统基于码分多址 (CDMA) 和频分双工 (FDD) 或时分双工
(TDD)。在 CDMA 系统中，通过在相同载波频率上和在相同时间间隔内将不同扩展和 / 或加扰
码分配给不同用户来获得用户分离。在 TDD 中，通过以与 TDMA 相似的方式将不同时间隙分配
给不同用户来实现用户分离。然而，与 TDMA 相反，TDD 提供相同载波频率用于上行链路和下
行链路传输。利用这个原理的通信系统的例子是通用移动电信系统 (UMTS)。UMTS 的 CDMA，
特别是宽带 CDMA (WCDMA) 模式的进一步描述可以在如下文献中找到:“WCDMA for UMTS”,
Harri Holma (编著), Antti Toskala (编著), Wiley 和 Sons, 2001, ISBN 0471486876。
[0004] 为了提供增强通信服务，为各种不同服务设计了第 3 代蜂窝通信系统，包括基于
分组的数据通信。同样，像全球移动通信系统 (GSM) 那样的现有第 2 代蜂窝通信系统已经
被增强支持数量不断增加的不同服务。一种这样的增强是通用分组无线电系统 (GPRS)，
GPRS 是为在 GSM 通信系统中允许基于分组数据的通信而开发的系统。分组数据通信尤其适
用于像, 例如, 因特网访问服务那样具有动态变化通信要求的数据服务。
[0005] 对于业务和数据具有非恒定数据速率的蜂窝移动通信系统，在特定时刻在用户之
间按照他们的时间动态地共享无线电资源是有效的。这与数据速率恒定的服务相反，在
数据速率恒定的业务中，可以在诸如呼叫持续时间的短期基础上分配适合业务数据速率的
无线电资源。
[0006] 在当前 UMTS TDD 标准下，可以通过无线电网络控制器 (RNC) 中的调度器来动态地
分配 (调度) 上行链路共享无线电资源。然而，为了有效地工作，调度器需要知道在各个移动
用户正在等待上行链路传输的上行链路数据的量。这样才能使调度器将资源分配给最需要
它们的用户，尤其可以防止因分配给没有任何数据要发送的移动台而造成资源浪费。
[0007] 有效调度的进一步方面是考虑用户无线电信道状况。到另一个小区的无线电路径
增益与到当前服务小区的无线电路径增益相似的用户可能在其它小区中引起严重干扰。可
以证明，如果调度器考虑到从用户到处在网络的特定地点中的每个小区的相对路径增益，
则可以显著提高系统效率。在这样的方案中，限制到一个或多个非服务小区的路径增益具
有与到当前服务小区的路径增益相似的幅度的用户发送的功率，以便控制和管理引起的小
区间干扰。相反，相对较小地限制到服务小区的路径增益远大于到其它小区的路径增益的
用户发送的发送功率，因为这种用户引起的每单位发送功率的小区间干扰较小。
[0008] 在实际系统中，无线电状况和等待数据量状态两者都可能非常迅速地变化。为了
在发生这些变化时优化系统效率，重要的是将最新状况通知网络中的调度器，以便可以实现
t协调器操作所需的及时调整。
[0009] 例如，在典型的场景中，军队中将发送上行链路数据的周期性脉冲（例如，当发送电
子邮件时、当发送完成的因特网表单时，或当发送诸如网页的相应下行链路传送的 TCP 确
认时）。这些短数据脉冲被称为分组呼叫，它们的持续时间通常可以几毫秒到几秒。在分
组呼叫期间，频繁地分配上行链路资源，并且在这些上行链路传输上有效地装载缓冲器容
量和无线电信道信息，以便针对用户的数据发送需要而不断更新调度器。然而，一旦分组呼
叫结束（发送了要发送的所有数据以及发送缓冲器暂时是空的），则上行链路资源的分配被
中止。在这种情况下，必须找到将新数据的到达（在开始新的分组呼叫时）通知调度器的手
段。由于这一直接影响用户感觉的发送速度，使这个信号中的任何延迟达到最小是重要的。
[0010] 有关 3GPP UMTS TDD 的技术规范版本 99 定义了被称为 PUSCH（物理上行共享
信道）容量请求（PCR）信息的第 3 消息。根据是否存在可用资源，可以将携带 PCR 的逻辑信
道（被称为共享信道控制信道— SHCCH）路由到不同传输信道。例如，可以在终止在 RNC 内
的随机访问信道（RACH）上发送 PCR 消息。作为另一个例子，如果资源可用，则在一些情
况下也可以在上行链路共享信道（USCH）上发送 PCR。
[0011] 然而，尽管这种方法适用于许多应用，但对于许多其它应用来说不是最佳的。例
如，定义的信令旨在将调度信息提供给基于 RNC 的调度器并为这种应用而设计，尤其被设
计成具有适用于这个目的的动态性能和延迟。特别是，由于与基站和 RNC 之间的通信相
关的延迟（在 Tlb 接口上），以及在通过对等层 3 信令来接收 PCR 和发送分配授权消息过程中的
协议栈延迟，信令响应较慢以及 RNC 调度器的分配响应不是特别快。
[0012] 最近，人们将许多精力放在提高 3GPP 系统的上行链路性能上。达到这个目的的一
种方式是将调度实体移到 RNC 之外并移入基站中，以便可以缩短发送和重新发送等待时
间。其结果是，可以实现更快得多和有效得多的调度。这又提高了最终用户感觉的吞吐量。
在这样的实现中，位于基站中（而不是 RNC 中）的调度器对上行链路资源的授权采取控制。在
改善调度效率和各个 UE 的发送延迟时，对用户业务需要和信道状况的快速调度响应是期
望的。
[0013] 然而，由于调度活动的效率依赖于有足够信息可用，对信令功能的要求越来越
严格。特别是，通过层 3 信令将信令发送到 RNC 的现有手段效率低下，并且引入限制基于基
站调度器的调度性能的延迟。尤其是，由于使用的传输信道在 RNC 中终止—信令信息因此
结束在与调度器驻留的网络实体不同的网络实体中，以及在将它传送到基站调度器时引入
了附加延迟，使用与现有技术相同的技术（比如，使用 PCR 消息）不那么吸引人。
[0014] 例如，在 3GPP TDD 系统中，由于上行链路和下行链路无线电信道是可互换的，无线电
信道状况的及时更新特别重要。这样，如果用户能够将最新信道状况（例如，在下行链路
上测量的）通知网络调度器，并且调度器能够以最短延迟作出响应，那么，调度器就可以利
用互换性，并且调度和进行上行链路发送的时候，假设无线电信道状况相对不变。可以由移
d动台报告的信道状况可以包括有关调度器的小区的信道状况，但也可以包括与其它小区有
关的信道状况，从而允许考虑其它小区的瞬时状况和引起的最终小区间干扰的快速和有效调度。

【0015】作为另一个例子，在3GPP FDD系统中，在上行链路发送本身内传送移动台缓冲器容量状态。该数据与其它上行链路净荷数据一样包含在相同的协议数据单元（PDU）内——尤其包含在MAC-e PDU信封中。然而，这意味着信号信息依赖于上行链路数据发送本身的性能和特性。

【0016】还应该注意到，在这种发送信号数据的特定方法中，在应用前向纠错之前将信号数据和用户数据多路复用在一起，因此两个信息流具有相同的发送可靠性。因此，当MAC-e PDU需要重新发送时，这影响信号和用户数据两者，因此为信号引入了附加延迟。而且，当第次发送出现错误的概率较高（例如，10％到50％）时，对于使用混合和快速重新发送方案的上行链路系统来说，数据重新发送是常见的，因为实现了最佳链路效率（每每个无错发送位所需的能量而言）。因此，适用于3GPP FDD上行链路的上行链路信号技术存在如果应用于TDD上行链路系统，则可能使那个TDD系统的性能与可达到的性能水平相比严重下降的等待时间问题。因此，在蜂窝通信系统中使用改进的信号是有利的，尤其是使用允许提高灵活性、缩短信号延迟、改善调度，适用于基于基站的调度和/或提高性能的系统是有利的。

发明内容

【0017】于是，本发明试图单独地或以任何组合来优选地缓和、减轻或消除一个或多个上述缺点。

【0018】根据本发明的第一方面，提供了一种用于在蜂窝通信系统中发送上行链路信号信息的设备；该设备包含：为基于基站的调度器生成调度辅助数据的装置，所述调度辅助数据与来自用户设备UE的上行链路分组数据发送有关；在上行链路空中接口的第一物理资源中从UE发送调度辅助数据的装置；其中，第一物理资源不是由基于基站的调度器管理的。

【0019】本发明允许通过基于基站的调度器的改进调度，使蜂窝通信系统的性能总体上得到提高。本发明允许提高最终用户感觉到的性能。本发明可以提供，例如，提高的容量、缩短的延迟和/或增大的有效吞吐量。本发明允许灵活的信号，并允许短延迟地提供调度辅助数据。本发明尤其提供用于特别适用于基于基站的调度器的调度辅助数据的信号。

【0020】第一物理资源上的数据即使由基于基站调度器调度的。更确切地说，第一物理资源上的数据可以由，例如支持基于基站的调度器的基站的RNC的调度器来调度。第一物理资源可以是基于基站的调度器与其没有任何控制关系和/或不含其信息的资源。物理资源可以是，例如蜂窝通信系统的一个或多个物理信道的组。UE的上行链路分组数据发送可以用于共享上行链路分组数据服务和/或信道。

【0021】接收上行链路信号信息的设备可以是用户设备。

【0022】根据本发明的可选特征，用于发送的装置被安排成在第一物理资源所支持的第一传输信道上发送调度辅助数据。

【0023】这使有效实现成为可能，并且可以提供与许多现有蜂窝通信系统的兼容性。

【0024】根据本发明的可选特征，第一传输信道是在基于基站的调度器的基站中终止的基
站终止传输信道。
[0025] 这样改进调度成为可能，尤其使较快和较复杂的数据通信的传送成为可能。尤其，在现有蜂窝通信系统中，可以引入尤其适用于在基站进行的调度的信传输信道。
[0026] 根据本发明的可选特征，用于发送的装置被安排成在第一物理资源与第一传输信道多路复用的第二传输信道上发送其它数据。
[0027] 这使提高灵活性、效率和功能成为可能。该特征使实际使用物理资源成为可能，并且使利用可以用于其它目的的物理资源有效传送调度数据成为可能。另外或可替代地，这允许通过降低发送其它数据的要求所施加的限制来优化调度数据的发送特性。
[0028] 根据本发明的可选特征，第一传输信道具有与第二传输信道不同的终止点。
[0029] 第一传输信道可以在与第二传输信道不同的网络实体中终止。例如，第一传输信道可以在基站终止，而第二传输信道在 RNC 终止。该特征特别适用于信令系统成为可能，并且使更快速传送调度数据并因此改善调度成为可能，同时使与从不同位置管理的其它通信有效共享资源成为可能。
[0030] 根据本发明的可选特征，第二传输信道采用重新发送方案，而第一传输信道不采用重新发送方案。
[0031] 这使提高性能成为可能，尤其使在保证调度数据的快速发送的同时有效传送其它数据成为可能。
[0032] 根据本发明的可选特征，按照第一发送方案来编码第一传输信道，以及按照不同的第二发送方案来编码第二传输信道。
[0033] 可以用不同发送可靠性来发送第一和第二传输信道，使得对于调度数据和其它上行链路数据、出错率是不同的。这尤其使通过缩短延迟的保证调度成为可能，同时使其它数据的有效空口上行链路资源使用成为可能。
[0034] 根据本发明的可选特征，第一传输方案和第二传输方案包含不同的纠错特性。
[0035] 这使提高性能和实际实现成为可能。
[0036] 根据本发明的可选特征，用于发送的装置被安排成进行第一传输信道和第二传输信道的速率匹配。
[0037] 进行速率匹配是为了调整第一和第二传输信道的纠错能力。这使提高性能和实际实现成为可能。
[0038] 根据本发明的可选特征，该设备进一步包含利用第二物理资源来发送调度数据的装置，和在第一物理资源和第二物理资源之间进行选择的选装装置。
[0039] 这可以提高性能并允许尤其适用于物理资源的当前状况和当前特性且调度的调度数据的通信。例如，在 3GPP 系统中，该设备可以在物理随机访问信道（例如，PRACH）、专用物理信道（例如，DPCCH）和 / 或基于基站的调度器所调度的上行链路信道之间进行选择。
根据当前建立了这些信道中的哪些，在物理随机访问信道（例如，PRACH）、专用物理信道（例如，DPCH）和/或基于基站的调度器所调度的上行链路信道之间进行选择。可用性可以是例如自物理资源可用以来的持续时间。

[0042] 根据本发明的可选特征，选择装置被安排成响应于第一物理资源和第二物理资源的业务负载，在第一物理资源和第二物理资源之间进行选择。

[0043] 这使有效传送成为可能，并且使例如在具有多余容量的物理资源上通信调度协助数据成为可能。例如，在3GPP系统中，该设备可以根据这些信道中的哪些具有空余容量，在物理随机访问信道（例如，PRACH）、专用物理信道（例如，DPCH）和/或基于基站的调度器所调度的上行链路信道之间进行选择。

[0044] 根据本发明的可选特征，选择装置被安排成响应于与第一物理资源和第二物理资源相关的等待时间特性，在第一物理资源和第二物理资源之间进行选择。

[0045] 这使有效传送成为可能，并且使例如在导致调度协助数据的延迟最短的物理资源上通信调度协助数据成为可能。由于延迟缩短了，这可以提供改善的性能和调度。等待时间特性可以是例如在每个物理资源上发送调度协助数据的估计、假设或计算的延迟。

[0046] 根据本发明的可选特征，第二物理资源是基于基站的调度器管理的物理资源。

[0047] 第二物理资源可以支持由基站的调度器调度的数据。第二物理资源可以特别支持基于基站的调度器调度信息的用户数据信道。例如，在3GPP系统中，该设备可以在物理随机访问信道（例如，PRACH）、RNC调度器所控制的专用物理信道（例如，DPCH）和/或基于基站的调度器所调度的分组数据上行链路信道之间进行选择。

[0048] 根据本发明的可选特征，第一物理资源与第一传输信道相关，以及第二物理资源与第二传输信道相关，以及选择装置被安排成通过将调度协助数据与第一或第二传输信道相关联来分配调度协助数据。

[0049] 这可以提供一种高度有利的手段，尤其使有效选择适当的物理资源成为可能，同时使为调度协助数据分别优化发送特性成为可能。可以响应于与传输信道的物理资源相关的特性来选择传输信道。

[0050] 根据本发明的可选特征，第一物理资源是随机访问信道。随机访问信道可以提供特别适合的信道，因为当没有其它物理信道可用时可以使用它。本发明使在不受基于基站的调度器控制，而由例如基于RNC的调度器控制的随机访问信道上发送基于基站的调度器的调度协助数据成为可能。

[0051] 根据本发明的可选特征，调度协助数据包含等待发送的数据量的指示和/或UE的空中接口信道状况的指示。调度协助数据可以可替代地或另外包含例如UE的上行链路发送的相对发送功率的指示和/或与UE相关的用户标识的指示。这样的信息使特别有利的调度成为可能。

[0052] 根据本发明的可选特征，蜂窝通信系统是第3代合作项目系统，即，3GPP系统。3GPP系统尤其是UMTS蜂窝通信系统。本发明使在3GPP蜂窝通信系统中提高性能成为可能。

[0053] 根据本发明的可选特征，蜂窝通信系统是时分双工系统。本发明使在TDD蜂窝通信系统中提高性能成为可能，尤其使通过利用可应用于上行链路和下行链路信道的信道状况信息的改进信令来改善调度成为可能。
根据本发明的第二方面，提供了一种用于在蜂窝通信系统中接收上行链路信令信息的设备。该设备包含：在上行链路空中接口的第一物理资源中从 UE 接收基于基站的调度器的调度协助数据的装置，调度协助数据与来自用户设备的上行链路分组数据发送有关；其中，第一物理资源不是由基于基站的调度器管理的。

应该懂得，上面针对用于发送上行链路信令信息的设备所述的可选特征、评论和／或优点同样适用于接收上行链路信令信息的设备，以及这些可选特征可以单独或以任何组合包括在用于接收上行链路信令信息的设备中。

用于接收上行链路信令信息的设备可以是基站。

根据本发明的第三方面，提供了一种在蜂窝通信系统中发送上行链路信令信息的方法；该方法包含：基于基站的调度器生成调度协助数据，调度协助数据与来自用户设备 UE 的上行链路分组数据发送有关；在上行链路空中接口的第一物理资源中从 UE 发送调度协助数据；其中，第一物理资源不是由基于基站的调度器管理的。

应该懂得，上面针对用于发送上行链路信令信息的设备所述的可选特征、评论和／或优点同样适用于发送上行链路信令信息的方法，以及这些可选特征可以单独或以任何组合包括在用于发送上行链路信令信息的方法中。

例如，按照本发明的可选特征，在第一物理资源所支持的第一传输信道上发送调度控制数据。

作为另一个例子，按照本发明的可选特征，第一传输信道在基于基站的调度器的基站中终止。

作为另一个例子，按照本发明的可选特征，该方法进一步包含：在第一物理资源上与第一传输信道复用的第二传输信道上发送其它数据。

作为另一个例子，按照本发明的可选特征，按照第一发送方案来编码第一传输信道，以及按照不同的第二发送方案来编码第二传输信道。

作为另一个例子，按照本发明的可选特征，该方法进一步包含：利用第二物理资源来发送调度控制数据，以及在第一物理资源和第二物理资源之间进行选择。

作为另一个例子，按照本发明的可选特征，第二物理资源是由基于基站的调度器管理的物理资源。

作为另一个例子，按照本发明的可选特征，第一物理资源是随机访问信道。

根据本发明的第四方面，提供了一种在蜂窝通信系统中接收上行链路信令信息的方法；该方法包含：在上行链路空中接口的第一物理资源中从 UE 接收用于基于基站的调度器的调度协助数据，调度协助数据与来自用户设备的上行链路分组数据发送有关；其中，第一物理资源不是由基于基站的调度器管理的。

应该懂得，上面针对发送上行链路信令信息的设备所述的可选特征、评论和／或优点同样适用于接收上行链路信令信息的方法，以及这些可选特征可以单独或以任何组合包括在接收上行链路信令信息的方法中。

通过结合附图对本发明的优选实施例进行如下详细描述，本发明的这些和其它方面、特征和优点将更加显而易见。
具体实施方式

[0075] 如下的描述集中在可应用于 UMTS（通用移动电信系统）蜂窝通信系统，尤其是在时分双工（TDD）模式下操作的 UMTS 地面无线电访问网络（UTRAN）的本发明实施例。但是，应该懂得，本发明不局限于这种应用，而是可应用于包括例如 GSM（全球移动通信系统）蜂窝通信系统的许多其它蜂窝通信系统。

[0076] 图 1 例示了可以应用本发明实施例的蜂窝通信系统 100 的例子。

[0077] 在蜂窝通信系统中，将地理区域划分成每一个由基站服务的许多小区。基站通过可以在基站之间通信数据的固定网络互连。移动台通过无线电通信链路由移动台所在小区的基站服务。

[0078] 当移动台移动时，它可以从一个基站的覆盖区移到另一个基站的覆盖区，即，从一个小区移动到另一个小区。当移动台在基站移动时，它进入两个基站的重叠覆盖区的区域，并且在这个重叠区域内改变由基站支持。随着移动台进一步移动到新的小区，它继续得到新的基站支持。这被称为移动台在小区之间的转移或越区切换。

[0079] 典型蜂窝通信系统通常扩展到覆盖整个国家，并包含支持数千甚至数百万移动台的几百甚至数千个小区。从移动台到基站的通信被称为上行链路，而从基站到移动台的通信被称为下行链路。

[0080] 在图 1 的例子中，第一用户设备（UE）101 和第二 UE 103 在由基站 105 支持的第一小区内。UE 可以是例如遥控单元、移动台、通信终端、个人数字助理、膝上型计算机、嵌入式通信处理器或在蜂窝通信系统的空中接口上通信的任何通信元件。

[0081] 基站 105 与 RNC 107 搭配。RNC 执行与空中接口有关的许多控制功能，包括无线电资源管理、以及将数据路由到适当基站和从适当基站路由数据。

[0082] RNC 107 与核心网络 109 搭配。核心网络互连多个 RNC，并操作用于在任何两个 RNC 之间路由数据，从而使小区中的遥控单元与任何其它小区中的遥控单元通信。另外，核心网络包含与像公共电话交换网（PSTN）那样的外部网络互连的网关功能，从而使移动台可以与陆线电话和通过陆线连接的其它通信终端通信。而且，核心网络包含管理传统蜂窝通信网络所需的许多功能，包括路由数据、许可控制、资源分配、客户管理、移动台验证等的功能。

[0083] 应该懂得，为了清楚和简洁起见，只示出了描述本发明一些实施例所需的蜂窝通信系统的特定元件，但蜂窝通信系统可以包含许多其它元件，包括其它基站和 RNC，以及诸如 SGSN、GGSN、HLR、VLR 等的其它网络实体。

[0084] 传统上，空中接口上的数据的调度由 RNC 执行。但是，最近已经提出了分组数据服
务，其当在共享信道上调度数据时试图利用起伏信道状况。具体地说，3GPP当前正在将高速下行链路分组访问(HSDPA)服务标准化。HSDPA使通过考虑各个UE的状况来进行调制度成为可能。因此，当信道传播允许使用少量资源进行通信时，可以为UE调度数据。但是，为了使这种调度快到足以跟得上动态变化，HSDPA要求在基站而不是通过RNC来进行调度。使调度功能位于基站中避免了在基站上与RNC接口(Iub接口)通信的要求，从而缩短与之相关的显著延迟。

[0085]为了使调制度有效，基站调度器需要信道状况的当前信息。于是，在TDD HSDPA系统中，移动台通过利用受下行链路调度器控制的信道将这个信息发送到基站来提供信息。当UE接收下行链路HSDPA数据的分配时，隐含地指定上行链路资源(表示为HS-SICH)，使得可以将那个下行链路数据的肯定或否定确认发送回到基站在的下行链路调度器。除了在隐含指定的上行链路物理资源上发送确认信息之外，UE还包括信道状况的当前信息。因此，在控制HSDPA通信的调度器所建立和控制的HS-SICH上将信息发送到调度器。

[0086]人们最近提出了引入与HSDPA类似的上行链路分组数据服务。尤其是，这样的服务将利用基于基站的调度器来调度在上行链路分组信道上的用户数据。但是，为了使这样的系统有效地工作，必须使来自UE的信息延迟最短地提供给调度器。已经提出了通过上行链路用户数据来包括所述信息来提供这种信息。具体地说，已经提出了通过在上行链路用户数据PDU(分组数据单元)的MAC-e信头中包括这样的数据，在用户数据分组上搭载所述数据。

[0087]但是，在通过基站调度器调度数据的物理资源上发送信令数据的解决方案在许多情况下不是最佳的。尤其是，它导致了不灵活的系统并限制了可能的调制度，因为调度器也必须保证经常有效地发送数据分组，以便使信令信息得到发送。因此，虽然该解决方案在存在足够频繁的上行链路发送的情形下可能是实用的，但不适用于UE在相对长的间隔内不发送分组数据的情形。

[0088]图2更详细地列示了图1的例子的UE 101、RNC 107和基站105。在本例中，RNC 107包含RNC调度器201，正如本领域的普通技术人员所知的那样，RNC调度器201负责调度如例如专用物理信道(DPCCH)那样的传统3GPP物理信道。RNC调度器201调度在像定义在3GPP技术规范版本99中的空中接口上通信的数据。

[0089]在图2的例子中，基站105包含RNC接口203，RNC接口203负责在Iub接口上与RNC 107通信。RNC接口203与控制基站105的操作的基站在控制器205耦合。基站控制器205与收发器207耦合，收发器207操作用于在空中接口上与UE 101通信。基站控制器205执行将从RNC 107接收的数据发送到UE 101，以及从UE 101接收数据并将从UE 101接收的数据转发到RNC 107所需的所有功能。

[0090]基站105进一步包含与基站控制器205耦合的基站调度器209。基站调度器209负责调度上行链路共享分组数据服务的数据。具体地说，基站调度器209调度共享物理资源的共享传输信道上的用户数据，并且生成共享物理资源的资源分配信息。使分配信息插入基站调度器209，并且在空中接口上发送到UE 101和103。

[0091]由于基站调度器209位于基站105中，它可以调制度而没有在Iub接口上通信分配信息所需(RNC调度器201所需)的附加延迟。

[0092]基站调度器209根据不同信息来调度上行链路传输信道的数据。尤其是，基站调
度器 209 可以响应于 UE 的各自空中接口信道传播特性和当前发送缓冲器要求来调度数据。因此，最好从从 UE 101 和 103 发送到基站 105 的调度协助数据中获取这个信息。

[0093] 为了有效地调度，最好以短延迟和低频率间隔接收所述调度协助数据。因此，期望将调度协助数据提供给基站 209，而不是首先在 1ub 接口上发送到 RNC 107 并从 RNC 107 接收。

[0094] 在图 2 的例子中，UE 101 包含收发器 211，收发器 211 操作用于按照 3GPP 技术规范在空中接口上与基站 105 通信。应该懂得，UE101 进一步包含 3GPP 蜂窝通信系统的 UE 所需或所希望的功能。

[0095] UE 101 包含信道控制器 213，信道控制器 213 操作用于将数据分配给与 3GPP 技术规范相对应的各自物理资源和传输信道。例如，UE 101 可能牵涉到电路交换常规版本 99 通信。因此，UE 可以包含生成要发送到 RNC 107 的用户数据的专用数据源 215。信道控制器 213 与专用数据源 215 搭配，并且可以将专用数据分配给诸如 DCH（专用信道）的适当信道。信道控制器 213 可以进一步控制在诸如 DPCH（专用物理信道）的适当物理信道中将这个数据发送到基站。

[0096] 在本例中，UE 101 进一步牵涉到分组数据通信。例如，UE 101 可能牵涉到由上行链路分组数据服务支持的因特网访问应用。在图 1 的例子中，UE 101 包含存储分组数据直到所述分组数据被调度在共享上行链路信道上发送的分组数据发送缓冲器 217。这个调度由基站调度器 209 执行，而不是由 RNC 调度器 201 执行。

[0097] 分组数据发送缓冲器 217 与生成发送到基站 105 的调度协助数据的调度协助数据发生器 219 搭配。尤其是，调度协助数据涉及可在 UE 101 获得并可在基站调度器 209 调度数据时使用的信息。

[0098] 针对图 2 具体地说，调度协助数据发生器 219 与分组数据发送缓冲器 217 搭配，并从其获取当前缓冲器负载的动态信息。因此，调度协助数据发生器 219 确定有多少数据当前存储在分组数据发送缓冲器 217 中等待在上行链路信道上发送。

[0099] 调度协助数据发生器 219 将这个等待发送数据量的指示包括在调度协助数据中。而且，可以将指示当前传播状况的信息提供给调度协助数据发生器 219，以及调度协助数据发生器 219 可以将这个信息包括在调度协助数据中。可以从例如对接收信号的信号电平测量结果中确定共享物理资源的传播状况。在 TDD 系统的例子中，可以认为这个下行链路传播数据也可应用于上行链路传播数据，因为上行链路和下行链路两者使用相同的频率。

[0100] 调度协助数据发生器 219 与被安排成在上行链路空中接口的第一物理资源中从 UE 101 发送调度协助数据的信道控制器 213 搭配。因此，信道控制器 213 从调度协助数据发生器 219 接收调度协助数据，并且使这个数据在空中接口的物理资源上发送到基站。

[0101] 在图 2 的例子中，信道控制器 213 不是由基于基站的调度器管理的物理资源上发送调度协助数据。尤其是，信道控制器 213 选择由 RNC 调度器 201 控制的物理信道。

[0102] 作为一个例子，信道控制器 213 可以在用于电路交换话音呼叫的专用物理资源上发送调度协助数据。特别是，信道控制器可以将调度协助数据与 RNC 调度器 201 已经建立并控制的 DPDCH 一起搭载在 RNC 调度器 201 再次建立并控制的 DPCH 物理资源上。作为另一个例子，信道控制器可以在随机访问信道（PRACH 信道）上发送调度协助数据。

[0103] 当在基站 105 接收到通信时，基站控制器 205 在图 2 的例子中被安排成提取调度
协助数据，并且将它发送到基站调度器 209。例如，基站控制器 205 可以监视 DPDC 和 / 或
PRACH，并且当检测到正在接收调度协助数据时，可以解码这个数据并将它发送到基站调度器 209。

[0104] 应该懂得，在一些实际中，RNC 调度器 201 可以具体分配传送调度协助数据的物
理资源段，以及可以将标识这些段的信息传给基站 105 和 UE 101 两者。

[0105] 因此，在本例中，在由 RNC 中的调度所支持的其它服务共享的物理资源上接收调度
协助数据。在一些实施例中，像在用于 HSDPA 的 HS-SICH 的情况中那样，可以在基站 105
中的不同调度器所支持的物理资源上接收调度协助数据。具体地说，这些服务可以是常规
版本 99，版本 4 或版本 5 服务。因此，在保持向后兼容性和避免需要为调度协助数据分配资
源的基站调度器 209 的要求的同时实现调度协助数据的有效和灵活通信。更确切地说，在
许多状况下，RNC 调度的物理资源的未用资源可以用于调度协助数据的通信。

[0106] 而且，图 2 的系统允许极快速地通信调度协助数据，因为该传送避免了基站 105 和
RNC 107 之间的 lnb 接口上的固有通信延迟。

[0107] 在本例中，可以频繁地（由于有效资源利用）和延迟非常短地将指示 UE 101 和 103
的空中接口信道状况的和发送数据要求的调度协助数据提供给基站调度器 209。这使考虑
到快速变化特性的更快速调度成为可能，因此导致调度改善许多。这使蜂窝通信系统总体
上资源利用得到改善和容量有所增加。

[0108] 在图 2 的例子中，在传输信道上通信调度协助数据。所述传输信道可以是承载到
达和来自物理层和 MAC 层的 PDU 的信道。物理信道在空中接口上承载。具体地说，物理
信道是层 1（物理层）信道。逻辑信道在 MAC 层和 RLC（无线电链路控制）层之间承载 PDU。

[0109] 具体地说，对于 3GPP 系统，传输信道是 3GPP 多路访问控制 (MAC) 实体与 3GPP 物
理层实体之间的信息承载接口。物理信道是发送资源的单位，在 3GPP 中定义成特定扩展码
和在空中接口上占据的时间段。逻辑信道是输入到 MAC 的发送中的信息承载接口。

[0110] 在特例中，物理资源支持被多路复用成相同物理资源的两个或更多个传输信道。具
体地说，可以为调度协助数据的通信定义新的传输信道，并且可以将这个传输信道与一个
或多个 DCH 一起多路复用成在 3GPP 系统中承载 DCH 的一个或多个物理 DPCH 信道。

[0111] 对于 3GPP 系统，可以以如下几种方式将两个或更多个分立信息流多路复用成一
组公用物理资源。

[0112] 物理层字段多路复用

[0113] 对于物理层字段多路复用，多个信息流被分开编码（如果需要）并占据发送净荷的
相互排它（和通常相邻）部分。通过为每个流提取发送净荷的相关部分和此后独立地处理它
们来实现多路分用。

[0114] 传输信道多路复用

[0115] 对于传输信道多路复用，多个信息流被分开编码，并且将协调速率匹配方案应用于
每个流，使得速率匹配之后的总位数完全与发送净荷相配。一般说来，除了在最后发送净
荷中与每个信息流对应的位通常不相邻之外，这与物理层多路复用类似。另外，速率匹配
方案以这样的方式设计，使得应用于每个流的 FEC 的量可以以灵活的方式变化，以便对于
每个流独立地满足各种不同质量要求。通过知道应用在发送器中的速率匹配方案算法的接
收器来实现多路分用。
逻辑信道多路复用

对于逻辑信道多路复用，在通过物理层前向纠错编码之前由 MAC 层来多路复用多个信息流，将信头应用于每个流以便在接收器中多路分用。将 FEC 编码应用于每个（多路复用）流，因此每个流将具有相同的发送可靠性。

将期望尽管像 DPCH 信道那样的物理资源由 RNC 调度器控制，但用于调度数据的传输信道最好在基站 105 终止，而专用传输信道 DCH 在 RNC 107 终止。因此，尽管用于调度数据的传输信道和用于其它数据的传输信道被多路复用成相同物理资源，但它们在不同实体终止。这可以使信令特别有效和灵活，尤其使调度数据的延迟达到最短。具体地说，可以避免与在 RNC 终止传输信道上接收调度数据并将它重新发送到基站 105 相关的延迟。

将期望 RNC 107 所控制的不同物理资源可以用于支持调度数据的通信。

例如，如上所述，可以使用 DPCH 或 PRACH 物理信道。在一些实例中，UE 101 和基站 105 可以另外包含在基站调度器 209 管理的物理资源上传送调度数据的功能。因此，在本例中，UE 101 可以包含在许多不同物理资源上传送的功能。在图 2 的例子中，可以根据当前状况和工作环境来选择传送调度数据的适当物理资源，并且可以跨越适当物理信道以便为当前状况提供最佳性能。

因此，在本例中，根据当前偏好和状况，在不同上行链路物理资源上智能地路由和发送用于帮助基站调度器 209 的增强上行链路调度过程的信令。尤其是，可以根据那些上行链路物理资源的存在与否来选择物理资源。可以在终止在基站 105 中的传输信道上进一步传送调度数据。

在一种可替代手段中，可以通过网络到 UE 信令装置，在网络的控制下，在不同传输信道上，并因此在不同物理资源上路由和发送用于帮助基站调度器 209 的增强上行链路调度过程的信令。

智能路由手段将参照考虑三种特殊配置的例子加以示例：

情形 1：

用户设备 101 打算将它的当前分组数据发送缓冲器状态或无线电状况通知基站调度器 209，但没有增强上行链路资源被允许用于发送，以及没有其它上行链路无线电资源存在或可用。当 UE 101 以前完成了分组呼叫的发送，已经空闲了一段时间，以及新的数据到达 UE 101 的分组数据发送缓冲器 217 时，这种状况是常见的。然后，用户必须通知基站调度器 209 它需要发送资源来发送新数据。

情形 2：

用户设备 101 打算用新的空中接口状态信息或缓冲器信息来更新基站调度器 209，以及基站调度器 209 所调度的分组数据上行链路资源已经可用。在这种情况下，UE 101 可以利用允许用于发送上行链路分组数据本身的一部分资源来搭载上行链路信令。

情形 3：

用户设备 101 打算用新的信道或缓冲器信息来更新基站调度器 209，没有基站调度器 209 所管理的分组数据上行链路资源可用，但其它 RNC 管理的上行链路资源存在并可用。在这种情况下，UE 101 可以利用现有上行链路资源的一部分来搭载信令。

因此，在一些实施例中，UE 101 的信道控制器 213 和基站 105 的基站控制器 205 包
含在不同物理资源之间进行选择的功能。而且，可以响应于不同物理资源是否可用来执行这种选择。

[0131] 作为一个特例，信道控制器 213 可以首先评估基站调度器 209 所控制的上行链路分组数据信道是否可用。如果是，则选择这个信道用于发送调度协助数据。否则，信道控制器 213 可以评估 RNC 调度器 201 所控制的上行链路物理信道是否已建立（例如，DPCH）。如果是，则在该信道上发送调度协助数据。但是，如果没有这样的信道可用，信道控制器 213 可以继续利用随机访问信道（PRACH）来发送调度协助数据。

[0132] 在不同实施例中，可以响应于不同参数或特性来进行物理资源的选择。例如，信道控制器 213 和基站控制器 205 可以考虑诸如如下的参数：

[0133] o 上行链路物理资源类型的存在与否；

[0134] o 自最后存在上行链路物理资源类型以来的时间。例如，只有当在给定时间间隔内可用时才可以选择给定物理资源；

[0135] o 影响到上行链路资源类型的信道的业务负荷。例如，如果业务负荷很低以至于存在空余可用资源，则可以选择物理资源；

[0136] o 上行链路信令的发送等待时间的考虑。例如，由于信令延迟、编码等，每个物理资源可能具有相关等待时间，以及可以比其他物理资源优先地选择等待时间最短的物理资源。

[0137] 可替代地或另外，也可以响应于通过固定网络，尤其是 RNC 的配置来进行物理资源的选择。例如，可以通过固定网络来隐含地允许或不允许一些信令路由。

[0138] 可以通过例如选择传输信道，然后选择发送这个传输信道的物理资源来进行物理资源的选择。作为另一个例子，可以通过让不同传输信道与不同物理信道链接，然后选择适当传输信道来进行物理资源的选择。

[0139] 图 3 例示了这些示范性切换实施例之间的原理。尤其是，图 3a 例示了在上行链路物理资源类型与切换单个传输信道的例子，以及图 3b 例示了将信令信息流切换到每一个与物理资源类型存在固定关联的两个或更多个传输信道中的例子。

[0140] 在图 3a 的例子中，调度协助数据包括在新的传输信道（TrCH ≠ 1）中。然后，根据所需物理资源类型，将传输信道切换到第一或第二传输信道多路复用器。所选传输信道多路复用器将传输信道与其它传输信道多路复用，以便在物理资源上通信。

[0141] 在图 3b 的例子中，调度协助数据包括在第一传输信道（TrCH ≠ 1）或第二传输信道（TrCH ≠ 2）中。每个传输信道由不同物理资源支持，并且在在物理资源上发送之前将所选传输信道与其它传输信道多路复用。可以响应于与各传输信道相关的物理资源的特性，来进行用于调度协助数据的特定传输信道的选择。

[0142] 应该懂得，在这些特例中，应用了传输信道多路复用。传输信道的多路复用提供了尤其适用于所述实施例的许多优点和选项。

[0143] 例如，与物理层多路复用相反，使上行链路信令与旧信道（例如，版本 99 定义的信道）多路复用，而对 3GPP 技术规范没有太大影响。而且，可以对 3GPP 技术规范影响很小地重新使用用于 3GPP 内的传输信道多路复用的现有手段，因此可以取得改善的向后兼容性。

[0144] 而且，在一些实施例中，传输信道多路复用的用法可以用于分别优化各个传输信道的性能。在一些实施例中，将不同发送方案用于不同传输信道。尤其，可以使用导致不同
发送可靠性的不同发送方案。

【0145】作为一个特例，可以为每个传输信道独立选择前向纠错编码，以及例如，可以为传送调度协助数据的传输信道选择比传输用户数据的传输信道更高可靠性的前向纠错编码。可以通过利用不同编码器/解码器来实现这种前向纠错编码的差异，或可以通过进行速率匹配时应用的不同穿孔或重复特性来实现。

【0146】尤其是，传输信道之一可以采用从 UE 101 重新发送有错数据分组的重新发送方案，而其他传输信道不采用重新发送方案，而是以更可靠的方法来发送数据。因此，在本例中，单个物理资源可以包含用于发送延迟不敏感数据的第一传输信道。这些发送可能具有较高的数据分组出错率，比如说，10 - 30%，导致大量重新发送，因此使延迟变长，但也使资源得到非常有效利用。同时，物理资源可以支持用于发送调度协助数据的第二传输信道，而这个传输信道可以具有非常低的流量率，因此保证了分组数据被可靠接收，并因此使延迟最短，从而使基站调度器 209 的调度性能得到改善。

【0147】而且，在一些实施例中，物理资源的传输信道可以终止在固定网络中的不同点。具体地说，传输信道可以用于用户数据发送并可以终止在 RNC 107，而第二传输信道用于通信调度和数据并终止在基站 105。因此，同一物理资源可以支持分别终止在最佳位置的多个传输信道。这可以缩短与调度协助数据相关的延迟，并可以提高基站调度器的性能。

【0148】图 4 例示了按照本发明一些实施例的信令系统的例子。示例的功能尤其可以在图 2 的信道控制器 213 中实现。下面参照如前所述的三种特定示例性 3GPP UTRAN TDD 情形对操作加以描述。

【0149】情形 1

【0150】在情形 1 中，由于现有 RACH 在 RNC 107 终止的事实，基站 105 不能利用这个传输信道来承载必要上行链路信令。RACH 是基站 105“看不见”的，仅仅穿过它而径自到达 RNC。可以通过新的 Iub 信令将接收的信息从 RNC 转发到节点 B，尽管这种技术严重地引起这些多发送者带所受到的等待时间问题。

【0151】也可以考虑非随机访问方法（例如，循环串行），但这样的技术也导致等待时间可能延长的问题（在数据到达用户的发送缓冲器和上行链路资源被允许为那个数据服务之间可能存在显著延迟）。

【0152】按照图 4 的例子，定义了能够将调度协助数据直接传送到基站调度器 209 的新的基站终止随机访问信道。

【0153】新的随机访问信道在图 4 的例子中被称为“E-SACH（增强上行链路调度器协助信道）”。下标“R”与信道在质量上是随机访问（即，非调度，尤其不是由基站调度器 209 调度和管理的）的事实有关。该信道能够将新数据已到达用户的发送缓冲器并且实际上是对上行链路无线电资源的请求的指示传送到基站调度器 209。它也可以传送当前信道状况的指示，以及由于发送是随机访问，它也可以传送用户标识的指示，以便基站调度器 209 知道将资源分配给哪个用户。

【0154】情形 2：

【0155】对于在基站调度器 209 所调度的一个传输信道（表示成改进专用信道 E-DCH）上传送上行链路数据净荷，可以在分立传输信道（在图 4 中表示成 E-SACH）上传送上行链路
信令。与 E-SACH_b 一样，E-SACH_a 也在基站 105 终止。下标“E”用于表示在基站调度器 209 所调度的增强上行链路发送上搭载调度辅助信息。但是，由于在调度发送上传送，不需要在信令中传送用户标识。因此，E-SACH_b PDU 的 PDU 尺寸很可能不同于 E-SACH_a PDU 的 PDU 尺寸。将两个（或更多个）传输信道多路复用成同一组物理资源（称为 CCTrCH）。而且，可以调整应用于 E-SACH_a 和 E-DCH 的 FEC 编码的程度，以便按需优化每个传输信道的发送可靠性。例如，给予 E-SACH_a 比给予 E-DCH 高的 FEC 保护度是合乎需要的，以便调度器信息通过高可靠性（通常在单次发送中）到达调度器，同时 E-DCH 能通过以最佳链路可靠性操作每个发送实例来利用 ARQ（重新发送）效率（往往牵涉到在没有错误地接收到之前多次发送每个数据单元）。

【0156】情形 3

【0157】这种情形类似于情形 2，关键差异在于，在不直接与增强上行链路发送相关以及不是由基站调度器 209 调度的上行链路资源上搭载上行链路信令。这些上行链路资源在这里被称为“辅助”。例如，增强分组数据上行链路可以与 HSDPA 下行链路分组数据服务结合在一起使用。在这种情况下，存在相关上行链路 DCH（通常用于传送像 TCP（发送功率控制）确认和控制事件（例如，转接）的层 3 控制业务那样的较高层用户数据）。在这种情况下，可以在上行链路 DPCCH 物理资源上或在上行 HS-SICH（高速共享信道信道）的另一条上行链路 HSDPA 信道上发送调度辅助数据。

【0158】当没有其它上行链路发送资源可用，但需要将更新信息发送到调度器时，用户最好（由于等待时间原因或达到有效节约）将调度辅助数据的上行链路信令搭载在辅助上行链路资源上，而不是利用 E-SACH_b 随机访问过程。

【0159】此外，为了便于控制应用于辅助业务和上行链路信令的前向纠错编码的程度，以及能够分开检测每一个，将分立传输信道用于上行链路信令，被称为 E-SACH_a。与情形 2 一样，E-SACH_a 在基站 105 终止，并与其它数据一起多路复用成一组公用辅助上行链路无线电信源（辅助上行链路 CCTrCH）。

【0160】应该懂得，为了清楚起见，上面的描述参照不同功能单元和处理器描述了本发明的实施例。但是，显而易见，可以不偏离本发明地使用功能在不同功能单元或处理器之间的任何适当分配。例如，例示成由分立处理器或控制器完成的功能可以由同一处理器或控制器执行。因此，引用特定功能单元只能看作提供所述功能的适当手段，而不是指示严格的逻辑或物理结构或结构。

【0161】本发明可以包括硬件、软件、固件或它们的任何组合的任何适当方式实现。本发明可选地至少部分实现成在一个或多个数据处理器和 / 或数字信号处理器上运行的计算机软件。本发明实施例的元件和部件在物理、功能和逻辑上可以以任何适当方式实现。的确，该功能可以在单个单元、多个单元或其它功能单元的一部分中实现。这样，本发明可以在单个单元中实现或可以在物理和功能上分布在不同单元和处理器当中。

【0162】尽管通过结合一些实施例对本发明作了描述，但本发明无意局限于本文所述的特定形式。更明确地说，本发明的范围只由所附权利要求书限定。另外，尽管本发明的特征似乎是结合特定实施例描述的，但本领域的普通技术人员应该认识到，可以按照本发明组合所述实施例的各种特征。在权利要求书中，术语“包含”不排除存在其它元件或步骤。

【0163】而且，尽管分别列出，但多个装置、元件或方法步骤可以通过例如单个单元或处理
器来实现。另外，尽管各个特征可能包括在不同权利要求中，但也可以有利地组合这些特征，以及包括在不同权利要求中并不意味着这些特征的组合是不可行的和/或不利的。此外，一个特征包括在一个范畴的权利要求中并不意味着局限于这个范畴，而是指示该特征可同等应用于其它适当权利要求范畴。而且，权利要求中特征的次序并不意味着这些特征必须按其工作的任何特定次序，尤其，方法权利要求中的各个步骤的次序并不意味着必须按那个顺序执行步骤。更明确地说，可以以任何适当次序执行这些步骤。另外，单数引用并不排除复数。因此，引用“一个”、“一种”、“第一”、“第二”等并不排除复数。
图 1
图 2