

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 November 2011 (03.11.2011)

(10) International Publication Number
WO 2011/137089 A1

(51) International Patent Classification:

C07D 209/30 (2006.01) *A61K 31/4704* (2006.01)
C07D 215/36 (2006.01) *A61K 31/538* (2006.01)
C07D 223/16 (2006.01) *A61K 31/55* (2006.01)
C07D 265/36 (2006.01) *A61P 35/00* (2006.01)
A61K 31/404 (2006.01)

[US/US]; 711 Linslade St., Gaithersburg, Maryland 20878 (US). **WALSH, Martin, J.** [US/US]; 18052 O'Hara Circle, Olney, Maryland 20832 (US).

(21) International Application Number:

PCT/US2011/033852

(22) International Filing Date:

26 April 2011 (26.04.2011)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

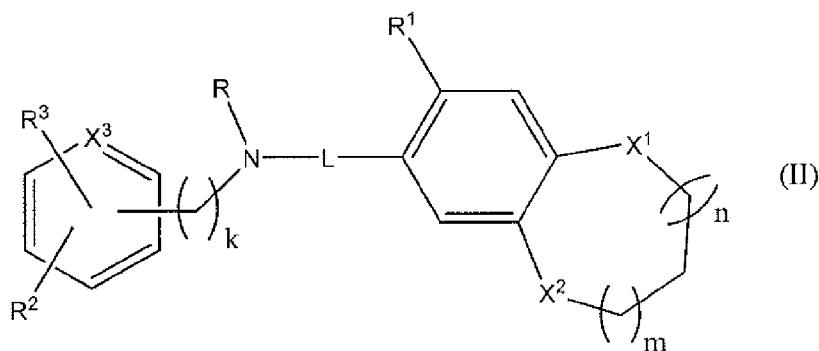
61/329,158 29 April 2010 (29.04.2010) US

(71) Applicant (for all designated States except US): **THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES** [US/US]; Office of Technology Transfer, NIH, 6011 Executive Boulevard, Suite 325, MSC 7600, Bethesda, Maryland 20892-7660 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **BOXER, Matthew, B.** [US/US]; 3912 Red Leaf Ct., Point of Rocks, Maryland 21777 (US). **SHEN, Min** [CN/US]; 259 Congressional Lane, Apt. 107, Rockville, Maryland 20852 (US). **AULD, Douglas, S.** [US/US]; 11120 Post House Court, Potomac, Maryland 20859 (US). **THOMAS, Craig, J.**

(74) Agents: **PILLAI, Xavier** et al.; **LEYDIG, VOIT & MAYER, LTD.**, Two Prudential Plaza, Suite 4900, 180 N. Stetson Avenue, Chicago, Illinois 60601 (US).


(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: ACTIVATORS OF HUMAN PYRUVATE KINASE

(57) Abstract: Disclosed are pyruvate kinase M2 activators which are compounds of Formula (I), including those of Formula (II), wherein A¹, A², L, R, R¹ to R³, X¹ to X³, k, n, and m are as defined herein, that are useful in treating a number of diseases that are treatable by the activation of PKM2, for example, cancer. A¹-NR-L-A²(I)

ACTIVATORS OF HUMAN PYRUVATE KINASE

CROSS-REFERENCE TO A RELATED APPLICATION

[0001] The present application claims the benefit of U.S. provisional patent application No. 61/329,158, filed April 29, 2010, the disclosure of which is incorporated by reference.

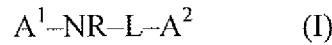
BACKGROUND OF THE INVENTION

[0002] Pyruvate kinase (PK) is a critical metabolic enzyme operating at the ultimate step in glycolysis where it catalyzes the transfer of a phosphate group from phosphoenolpyruvate to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of adenosine triphosphate (ATP). In humans there are two pyruvate kinase genes and each produces two distinct gene products by alternative splicing. The L gene produces two different mRNAs that differ only in the first exon to produce the L (liver specific) and R (red blood cell) specific isozymes. Splicing of a single exon within the M gene produces the M1 isozyme that is found in most adult tissues and the M2 isozyme that is present in fetal tissues and is found to be re-expressed in tumors. Therefore, after embryonic development, adult tissues switch to either express PK-M1 or the tissue specific L or R isozymes. However, in all tumors or cell lines of cancer lineage (including those typically expressing either the L or R isozymes), PK gene expression reverts entirely to the M2 isoform.

[0003] PK is a tetrameric enzyme composed of four identical monomers that form a dimer of dimers in the final tetrameric structure. In humans, the M2, L, and R isozymes are activated by fructose-1,6-bis phosphate (FBP) that binds to a flexible loop region at the interface of the two dimers. Activation of PK shifts the enzyme to a state showing high affinity for phosphoenolpyruvate (PEP). In contrast, the M1 isoform is not regulated by FBP and displays only high affinity PEP binding similar to the activated state of PK.

[0004] Tumor cells undergo a metabolic transformation that is required to supply the biochemical precursors necessary for rapid cell growth and proliferation. Knock-down of PKM2 and re-expression of PKM1 has been shown to significantly diminish the proliferation of cancer cells *in vivo* such that even when tumors do grow, they have delayed formation and re-expression of PKM2.

[0005] Various phosphotyrosine peptides can bind to PK-M2 near the activation loop that results in the removal of FBP from the enzyme which effectively down-regulates PK-M2


activity. These peptides are present in exacerbated levels in cancer cells. When PK-M2 is activated, glucose is converted to pyruvate. However, when PK-M2 is inactivated, a build-up of glycolytic intermediates occurs which intermediates can be diverted towards nucleotide and lipid biosynthesis required for cell growth and proliferation.

[0006] Methods for detecting activators of PK-M2 are known. However, there is a desire for the identification of new activators of PK-M2.

BRIEF SUMMARY OF THE INVENTION

[0007] The present invention provides compounds that are activators of the M2 isoform of human pyruvate kinase. In addition, the present invention provides compositions comprising these compounds and methods of using these compound as therapeutic agents in the treatment or prevention of cancer.

[0008] The invention provides a compound of formula (I):

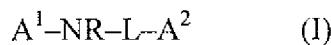
wherein A^1 and A^2 are each individually R' or R'' ;

wherein R is H or C_1 - C_4 alkyl;

wherein L is SO_2 or CO;

wherein R' is a fused bicyclic ring, wherein one ring of the bicyclic ring is phenyl which is linked to the NR-L moiety at the nitrogen atom or the sulfur atom when L is SO_2 or the carbon atom when L is CO and the other ring of the bicyclic ring is an aryl, a heteroaryl, a cyclyl, or a heterocyclyl, wherein R' is optionally substituted on one or both rings with one or more substituents selected from the group consisting of aryl, heteroaryl, cyclyl, alkyl, alkoxy, halogen, NH_2 , $NH-(C_1-C_4)alkyl$, $N-(C_1-C_4)alkyl-(C_1-C_4)alkyl$, $(C_1-C_4)alkyl-CO-$, and heterocyclyl, each of which other than halogen and NH_2 is further optionally substituted with one or more substituents selected from the group consisting of NH_2 , OH, $NH-(C_1-C_4)alkyl$ and $N-(C_1-C_4)alkyl-(C_1-C_4)alkyl$; and

wherein R'' is phenyl, benzyl, or heteroaryl, which is optionally substituted with one or more substituents selected from the group consisting of halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, cyano, alkylenedioxy, aryl, heteroaryl, benzyl, $B(OH)_2$, and C_1 - C_4 alkyl substituted with one or more halogens, or is phenyl optionally fused with an aryl, a heteroaryl, a cyclyl, or a heterocyclyl, each of which is optionally substituted with one or more substituents selected from the group consisting of halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, alkylenedioxy, aryl, heteroaryl, benzyl, and C_1 - C_4 alkyl substituted with one or more halogens;


or a pharmaceutically acceptable salt thereof.

[0009] The invention also provides a pharmaceutical composition comprising a compound or salt of the invention and a pharmaceutically acceptable carrier.

[0010] The invention further provides a method for treating cancer comprising administering to a patient in need thereof a therapeutically effective amount of a compound of the invention to a mammal afflicted therewith.

DETAILED DESCRIPTION OF THE INVENTION

[0011] In accordance with an embodiment, the invention provides a compound of formula (I):

wherein A^1 and A^2 are each individually R' or R'' ;

wherein R is H or C_1 - C_4 alkyl;

wherein L is SO_2 or CO;

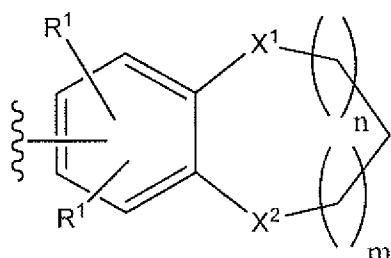
wherein R' is a fused bicyclic ring, wherein one ring of the bicyclic ring is phenyl which is linked to the NR-L moiety at the nitrogen atom or the sulfur atom when L is SO_2 or the carbon atom when L is CO and the other ring of the bicyclic ring is an aryl, a heteroaryl, a cyclyl, or a heterocyclyl, wherein R' is optionally substituted on one or both rings with one or more substituents selected from the group consisting of aryl, heteroaryl, cyclyl, alkyl, alkoxy, halogen, NH_2 , NH -(C_1 - C_4)alkyl, N -(C_1 - C_4)alkyl-(C_1 - C_4)alkyl, (C_1 - C_4)alkyl-CO-, and heterocyclyl, each of which other than halogen and NH_2 is further optionally substituted with one or more substituents selected from the group consisting of NH_2 , OH, NH -(C_1 - C_4)alkyl and N -(C_1 - C_4)alkyl-(C_1 - C_4)alkyl; and

wherein R'' is phenyl, benzyl, or heteroaryl, which is optionally substituted with one or more substituents selected from the group consisting of halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, cyano, alkylenedioxy, aryl, heteroaryl, benzyl, $B(OH)_2$, and C_1 - C_4 alkyl substituted with one or more halogens, or is phenyl optionally fused with an aryl, a heteroaryl, a cyclyl, or a heterocyclyl, each of which is optionally substituted with one or more substituents selected from the group consisting of halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, alkylenedioxy, aryl, heteroaryl, benzyl, and C_1 - C_4 alkyl substituted with one or more halogens;

or a pharmaceutically acceptable salt thereof.

[0012] In an embodiment, A^1 is R'' and A^2 is R' .

[0013] In another embodiment, the phenyl ring of the bicyclic ring of R' is fused with an aryl, a heteroaryl, a cyclyl, or a heterocyclyl, each of which is optionally substituted with one or more substituents selected from the group consisting of aryl, heteroaryl, cyclyl, alkyl,


alkoxyl, halogen, NH₂, NH-(C₁-C₄)alkyl, N-(C₁-C₄)alkyl-(C₁-C₄)alkyl, (C₁-C₄)alkyl-CO-, and heterocyclyl, each of which other than halogen and NH₂ is further optionally substituted with one or more substituents selected from the group consisting of NH₂, OH, NH-(C₁-C₄)alkyl and N-(C₁-C₄)alkyl-(C₁-C₄)alkyl.

[0014] In certain embodiments, the cyclyl or heterocyclyl of R' or R'' is a five-membered, six-membered, or seven-membered ring.

[0015] In particular embodiments, the heterocyclyl contains one or two heteroatoms.

[0016] In preferred embodiments, R is methyl or H.

[0017] In any embodiments of the above, R' is

wherein X¹ and X² are each individually O, NR⁶, or CR⁷R⁸;

wherein any CH₂-CH₂ moiety within the ring containing X¹ and X² is optionally replaced with a CH=CH moiety;

wherein any NH-CH₂ moiety within the ring containing X¹ and X² is optionally replaced with a N=CH moiety;

wherein any methylene of the ring containing X¹ and X² is optionally replaced by a carbonyl;

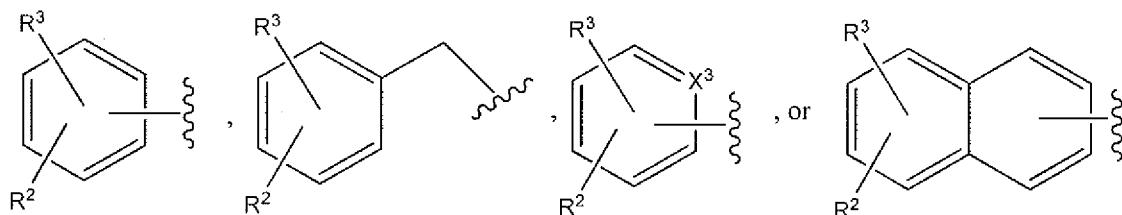
wherein n and m are each individually 0, 1, or 2, and wherein n + m is 0 to 2;

wherein each R¹ is individually H, halogen, alkyl, alkoxyl, NH₂, NH-(C₁-C₄)alkyl, N-(C₁-C₄)alkyl-(C₁-C₄)alkyl, aryl, heteroaryl, cyclyl, or heterocyclyl, each of which other than halogen and NH₂ is further optionally substituted with one or more substituents selected from the group consisting of NH₂, OH, NH-(C₁-C₄)alkyl and N-(C₁-C₄)alkyl-(C₁-C₄)alkyl;

wherein R⁶ is H, alkyl, alkylcarboxy, aryl, heteroaryl, cyclyl, or heterocyclyl, each of which is further optionally substituted with one or more substituents selected from the group consisting of NH₂, OH, NH-(C₁-C₄)alkyl and N-(C₁-C₄)alkyl-(C₁-C₄)alkyl; and

wherein R⁷ and R⁸ are each individually H, halogen, alkyl, alkoxyl, NH₂, NH-(C₁-C₄)alkyl, N-(C₁-C₄)alkyl-(C₁-C₄)alkyl, aryl, heteroaryl, cyclyl, or heterocyclyl, each of which other than halogen and NH₂ is further optionally substituted with one or more substituents

selected from the group consisting of NH₂, OH, NH-(C₁-C₄)alkyl and N-(C₁-C₄)alkyl-(C₁-C₄)alkyl.

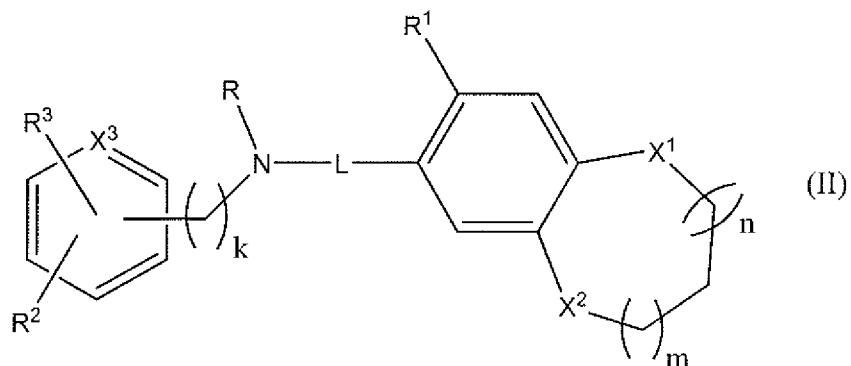

[0018] In another embodiment, one R¹ is at the ortho position relative to the carbon attached to the NR-L moiety.

[0019] In another embodiment, one R¹ is H, F, Cl, Br, methyl, N(Me)₂, NHMe, 1-piperidinyl, 2-(dimethylamino)ethyl)(methyl)amino, pyrrolidin-1-yl, 3-(dimethylamino)pyrrolidin-1-yl, 2-hydroxy-2-methylpropylamino, isopropylamino, diethylamino, 1-hydroxypropan-2-ylamino, 2-hydroxyethylamino, or phenyl.

[0020] Additional embodiments include where R¹ is optionally substituted with one or more substituents selected from the group consisting of methyl and acetyl.

[0021] In keeping with the embodiments above, R¹ is 3,4-dihydroquinolin-2(1H)-onyl, indolin-2-onyl, 4,5-dihydro-1H-benzo[b]azepin-2(3H)-onyl, 2H-benzo[b][1,4]oxazin-3(4H)-onyl, 4-methyl-2H-benzo[b][1,4]oxazin-3(4H)-onyl, 1H-benzo[d]imidazol-2(3H)-onyl, 1,3-dimethyl-1H-benzo[d]imidazol-2(3H)-onyl, 1-(indolin-1-yl)ethanonyl, 1-methyl-1H-indolyl, 1-acetyl-2-methylindolinyl, 6-chloro-2-oxoindolinyl, 3,3-dichloro-2-oxoindolinyl, 7-((2-(dimethylamino)ethyl)(methyl)amino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 2-oxo-7-(pyrrolidin-1-yl)-1,2,3,4-tetrahydroquinolinyl, 7-(3-(dimethylamino)pyrrolidin-1-yl)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(2-hydroxy-2-methylpropylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(isopropylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(diethylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(2-hydroxyethylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, (S)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, or (R)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl.

[0022] In any of the embodiments above, R² is


wherein X³ is N or CH wherein when X³ is N, the NR-L moiety is linked to a C of the ring containing X³;

wherein R² and R³ are each individually H, halogen, C₁-C₄ alkyl, C₁-C₄ alkoxy, cyano, B(OH)₂, phenyl, C₁-C₄ alkyl substituted with one or more halogens, or taken together form alkylenedioxyl.

[0023] Another embodiment is where R² and R³ are each individually H, F, Cl, Br, methyl, methoxy, cyano, trifluoromethyl, phenyl, B(OH)₂, or taken together form alkylenedioxyl.

[0024] In a particular embodiment of the compounds described above, R² is 3,4-dimethylphenyl, 3-chlorophenyl, meta-tolyl, 3-methoxyphenyl, 3-fluorophenyl, 3-trifluoromethylphenyl, biphenyl-3-yl, pyridine-3-yl, 4-chlorophenyl, para-tolyl, 4-methoxyphenyl, 4-fluorophenyl, ortho-tolyl, 2-methoxyphenyl, 2-fluorophenyl, naphthalen-2-yl, naphthalen-1-yl, 2,3-dihydrobenzo[b][1,4]dioxin-6-yl, benzyl, 3-chloro-4-methylphenyl, 3,4-dichlorophenyl, 5-chloro-2-methylphenyl, 3-cyanophenyl, 3-chloro-2-methylphenyl, 3-phenylboronic acid, 4-fluoro-3-methylphenyl, 3-fluoro-4-methylphenyl, 4-chloro-3-methylphenyl, or 3-chloro-4-fluorophenyl.

[0025] In a particular embodiment, the compound of formula (I) is a compound of formula (II):

wherein X¹ and X² are each individually O, NR⁶, or CR⁷R⁸;

wherein X³ is N or CH wherein when X³ is N, the NR-L moiety is linked to a C of the ring containing X³;

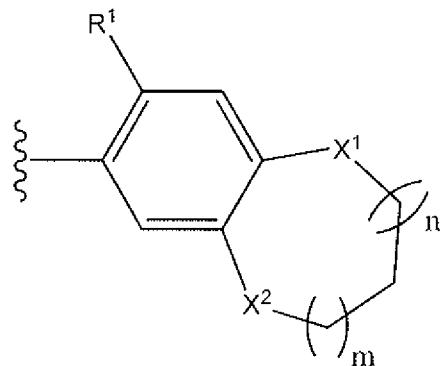
wherein any CH₂-CH₂ moiety within the ring containing X¹ and X² is optionally replaced with a CH=CH moiety;

wherein any NH-CH₂ moiety within the ring containing X¹ and X² is optionally replaced with a N=CH moiety;

wherein any methylene of the ring containing X¹ and X² is optionally replaced by a carbonyl;

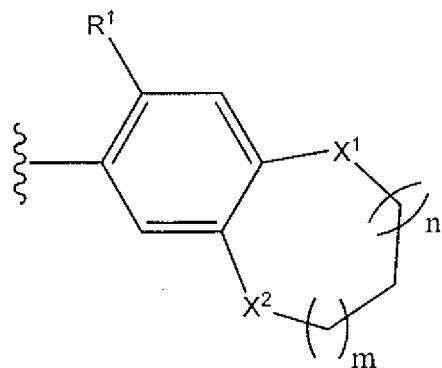
wherein n and m are each individually 0, 1, or 2, and wherein n + m is 0 to 2; wherein k is 0 or 1;

wherein R¹ is H, halogen, alkyl, alkoxy, NH₂, NH-(C₁-C₄)alkyl, N-(C₁-C₄)alkyl-(C₁-C₄)alkyl, aryl, heteroaryl, cyclyl, or heterocyclyl, each of which other than halogen and NH₂ is further optionally substituted with one or more substituents selected from the group consisting of NH₂, OH, NH-(C₁-C₄)alkyl and N-(C₁-C₄)alkyl-(C₁-C₄)alkyl;


wherein R² and R³ are each individually H, halogen, C₁-C₄ alkyl, C₁-C₄ alkoxy, cyano, B(OH)₂, phenyl, C₁-C₄ alkyl substituted with one or more halogens, or taken together form alkyleneoxy or phenyl fused to a CH:CH moiety of the ring containing X³;

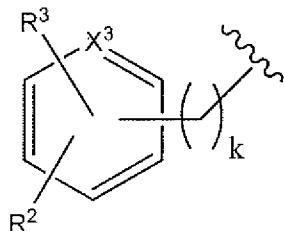
wherein R⁶ is H, alkyl, alkylcarboxy, aryl, heteroaryl, cyclyl, or heterocyclyl, each of which is further optionally substituted with one or more substituents selected from the group consisting of NH₂, OH, NH-(C₁-C₄)alkyl and N-(C₁-C₄)alkyl-(C₁-C₄)alkyl; and

wherein R⁷ and R⁸ are each individually H, halogen, alkyl, alkoxy, NH₂, NH-(C₁-C₄)alkyl, N-(C₁-C₄)alkyl-(C₁-C₄)alkyl, aryl, heteroaryl, cyclyl, or heterocyclyl, each of which other than halogen and NH₂ is further optionally substituted with one or more substituents selected from the group consisting of NH₂, OH, NH-(C₁-C₄)alkyl and N-(C₁-C₄)alkyl-(C₁-C₄)alkyl.


[0026] In a particular embodiment of formula II, R¹ is H, F, Cl, Br, methyl, N(Me)₂, NHMe, 1-piperidinyl, 2-(dimethylamino)ethyl(methyl)amino, pyrrolidin-1-yl, 3-(dimethylamino)pyrrolidin-1-yl, 2-hydroxy-2-methylpropylamino, isopropylamino, diethylamino, 1-hydroxypropan-2-ylamino, 2-hydroxyethylamino, or phenyl.

[0027] In an embodiment of formula II, the moiety

is optionally substituted with one or more substituents selected from the group consisting of methyl and acetyl.


[0028] In yet another embodiment of formula II, the moiety

is 3,4-dihydroquinolin-2(1H)-onyl, indolin-2-onyl, 4,5-dihydro-1H-benzo[b]azepin-2(3H)-onyl, 2H-benzo[b][1,4]oxazin-3(4H)-onyl, 4-methyl-2H-benzo[b][1,4]oxazin-3(4H)-onyl, 1H-benzo[d]imidazol-2(3H)-onyl, 1,3-dimethyl-1H-benzo[d]imidazol-2(3H)-onyl, 1-(indolin-1-yl)ethanonyl, 1-methyl-1H-indolyl, 1-acetyl-2-methylindolinyl, 6-chloro-2-oxoindoline, 3,3-dichloro-2-oxoindolinyl, 7-((2-(dimethylamino)ethyl)(methyl)amino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 2-oxo-7-(pyrrolidin-1-yl)-1,2,3,4-tetrahydroquinolinyl, 7-(3-(dimethylamino)pyrrolidin-1-yl)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(2-hydroxy-2-methylpropylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(isopropylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(diethylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(2-hydroxyethylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, (S)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, or (R)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl.

[0029] In another embodiment of formula II, R² and R³ are each individually H, F, Cl, Br, methyl, methoxy, cyano, trifluoromethyl, phenyl, B(OH)₂, or taken together form alkylenedioxyl or phenyl fused to a CH:CH moiety of the ring containing X³.

[0030] In accordance with an embodiment of formula II, the moiety

is 3,4-dimethylphenyl, 3-chlorophenyl, meta-tolyl, 3-methoxyphenyl, 3-fluorophenyl, 3-trifluoromethylphenyl, biphenyl-3-yl, pyridin-3-yl, 4-chlorophenyl, para-tolyl, 4-methoxyphenyl, 4-fluorophenyl, ortho-tolyl, 2-methoxyphenyl, 2-fluorophenyl, naphthalen-2-

yl, naphthalen-1-yl, 2,3-dihydrobenzo[b][1,4]dioxin-6-yl, benzyl, 3-chloro-4-methylphenyl, 3,4-dichlorophenyl, 5-chloro-2-methylphenyl, 3-cyanophenyl, 3-chloro-2-methylphenyl, 3-phenylboronic acid, 4-fluoro-3-methylphenyl, 3-fluoro-4-methylphenyl, 4-chloro-3-methylphenyl, or 3-chloro-4-fluorophenyl.

[0031] Specific examples of the compound described above include

N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dimethylphenyl)-2-oxoindoline-5-sulfonamide,

N-(3,4-dimethylphenyl)-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-7-sulfonamide,

N-(3,4-dimethylphenyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-6-sulfonamide,

N-(3,4-dimethylphenyl)-4-methyl-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-6-sulfonamide,

N-(3,4-dimethylphenyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-5-sulfonamide,

N-(3,4-dimethylphenyl)-1,3-dimethyl-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-5-sulfonamide,

1-acetyl-N-(3,4-dimethylphenyl)indoline-5-sulfonamide,

N-(3,4-dimethylphenyl)-1-methyl-1H-indole-5-sulfonamide,

N-(3-chlorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

2-oxo-N-m-tolyl-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3-fluorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

2-oxo-N-(3-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(biphenyl-3-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

2-oxo-N-(pyridin-3-yl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(4-chlorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

2-oxo-N-p-tolyl-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(4-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(4-fluorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

2-oxo-N-o-tolyl-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(2-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(2-fluorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(naphthalen-2-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(naphthalen-1-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-benzyl-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dimethylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

7-(dimethylamino)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dimethylphenyl)-7-(methylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dimethylphenyl)-2-oxo-7-(piperidin-1-yl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

6-chloro-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-sulfonamide,

6-(dimethylamino)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-sulfonamide,

6-chloro-N-(3,4-dimethylphenyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-sulfonamide,

6-bromo-N-(3,4-dimethylphenyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-sulfonamide,

N-(3,4-dimethylphenyl)-6-methyl-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-sulfonamide,

N-(3,4-dimethylphenyl)-3-oxo-6-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-sulfonamide,

N-(3,4-dimethylphenyl)-N-methyl-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-carboxamide,

N-(3-chloro-4-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dichlorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

6-chloro-N-(5-chloro-2-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-sulfonamide,

N-(3-cyanophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

1-acetyl-N-(3,4-dimethylphenyl)-2-methylindoline-5-sulfonamide,

N-(5-chloro-2-methylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

6-chloro-N-(3-chloro-4-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-sulfonamide,

N-(3-chloro-2-methylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3-chloro-4-methylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

3-(2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamido)phenylboronic acid,

N-(4-fluoro-3-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dichlorophenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3-fluoro-4-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(4-chloro-3-methylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

6-chloro-N-(3,4-dimethylphenyl)-2-oxoindoline-5-sulfonamide,

N-(4-chloro-3-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

6-chloro-N-(3-chloro-2-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-sulfonamide,

3,3-dichloro-N-(3,4-dimethylphenyl)-2-oxoindoline-5-sulfonamide,

7-((2-(dimethylamino)ethyl)(methyl)amino)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dimethylphenyl)-2-oxo-7-(pyrrolidin-1-yl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

7-(3-(dimethylamino)pyrrolidin-1-yl)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dimethylphenyl)-7-(2-hydroxy-2-methylpropylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dimethylphenyl)-7-(isopropylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

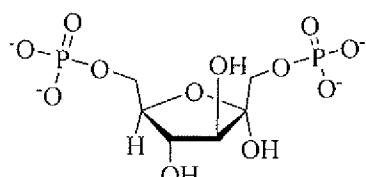
7-(diethylamino)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dimethylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

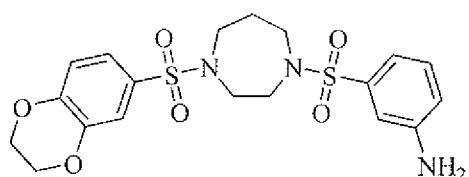
(S)-N-(3,4-dimethylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

(R)-N-(3,4-dimethylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

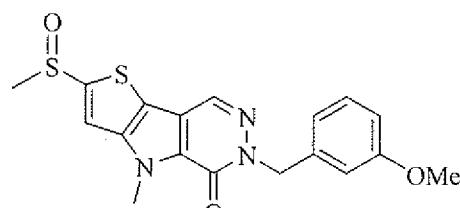
N-(3,4-dimethylphenyl)-7-(2-hydroxyethylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,


(S)-N-(3-chloro-4-methylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

(S)-N-(4-fluoro-3-methylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide, and


(S)-N-(3-chloro-4-fluorophenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide.

[0032] In one embodiment of the invention, the compounds exclude a compound of formula (II) wherein R² is a methyl in the para position relative to the NR-L moiety, R³ is a methyl in a meta position relative to the NR-L moiety, X³ is CH, k is zero, R is H, L is SO₂, R¹ is H, X¹ is NR⁶, R⁶ is H, X² is CR⁷R⁸, R⁷ and R⁸ are each H, n is 1, m is zero, and the methylene adjacent to X¹ is replaced with a carbonyl.


[0033] Certain molecule modulators of human PK activity are known. Fructose-1,6-bis phosphate (FBP) (compound 1) is required to allosterically activate human PKM2, PKL, and PKR. NCGC00185916 (compound 2), NCGC00186527 (compound 3), and others listed in International Patent Application No. PCT/US09/60237 (incorporated herein by reference) also activate human PKM2.

fructose-1,6-bis-phosphate (1)

NCGC00185916 (2)

NCGC00186527 (3)

[0034] Referring now to terminology used generically herein, the term “alkyl” means a straight-chain or branched alkyl substituent containing from, for example, 1 to about 6 carbon atoms, preferably from 1 to about 4 carbon atoms, more preferably from 1 to 2 carbon atoms. Examples of such substituents include methyl, ethyl, propyl, isopropyl, *n*-butyl, *sec*-butyl,

isobutyl, *tert*-butyl, pentyl, isoamyl, hexyl, and the like. The term “alkoxyl” means any alkyl substituent attached as a substituent via an oxygen atom.

[0035] The term “alkenyl,” as used herein, means a linear alkenyl substituent containing at least one carbon-carbon double bond and from, for example, about 2 to about 6 carbon atoms (branched alkenyls are about 3 to about 6 carbons atoms), preferably from about 2 to about 5 carbon atoms (branched alkenyls are preferably from about 3 to about 5 carbon atoms), more preferably from about 3 to about 4 carbon atoms. Examples of such substituents include propenyl, isopropenyl, *n*-butenyl, *sec*-butenyl, isobut enyl, *tert*-butenyl, pentenyl, isopentenyl, hexenyl, and the like. “Alkylenedioxy” means a $-\text{O}-(\text{CH}_2)_q-\text{O}-$ group, where q is from 1 to about 6, preferably from 1 to about 4, more preferably from 1 to 2.

[0036] The term “alkynyl,” as used herein, means a linear alkynyl substituent containing at least one carbon-carbon triple bond and from, for example, 2 to about 6 carbon atoms (branched alkynyls are about 3 to about 6 carbons atoms), preferably from 2 to about 5 carbon atoms (branched alkynyls are preferably from about 3 to about 5 carbon atoms), more preferably from about 3 to about 4 carbon atoms. Examples of such substituents include propynyl, isopropynyl, *n*-butynyl, *sec*-butynyl, isobutynyl, *tert*-butynyl, pentynyl, isopentynyl, hexynyl, and the like.

[0037] The term “cyclyl” as used herein encompasses cycloalkyl and cycloalkenyl. “Cycloalkyl” as used herein, means a cyclic alkyl substituent containing from, for example, about 3 to about 8 carbon atoms, preferably from about 4 to about 7 carbon atoms, and more preferably from about 4 to about 6 carbon atoms. Examples of such substituents include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like. The term “cycloalkenyl,” as used herein, means the same as the term “cycloalkyl,” however one or more double bonds are present. Examples include cyclopentenyl and cyclohexenyl. The cyclic alkyl groups may be unsubstituted or further substituted. Examples of substitutions include halogens, alkoxy groups, and alkyl groups such as methyl groups, ethyl groups, and the like. “Cyclyl” also encompasses cycloalkyl and cycloalkenyl in which a heteroatom is exocyclic. The heteroatom, for example, may be N, O, or S. For example, a methylene group of the cyclyl can be replaced with a carbonyl. A cyclyl group may be fused to another ring, including another cyclyl, heterocyclyl, aryl, or heteroaryl. A fused bicyclic ring is any ring of cyclyl, heterocyclyl, aryl, or heteroaryl fused with another cyclyl, heterocyclyl, aryl, or heteroaryl.

[0038] The term “heteroaryl,” as used herein, refers to a monocyclic or bicyclic 5- or 6-membered aromatic ring system containing one or more heteroatoms selected from the group consisting of O, N, S, and combinations thereof. Examples of suitable monocyclic heteroaryl groups include but are not limited to furanyl, thiophenyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, and triazinyl. The heteroaryl group can be attached at any available position on the heteroaryl group. For example, a thiophenyl group can be attached at the 2-position or the 3-position of the thiophenyl group. A pyridyl group can be attached at the 2-, 3-, or 4-position of the pyridyl group. Suitable bicyclic heterocycloaryl groups include monocyclic heterocycloaryl rings fused to a C₆-C₁₀ aryl or heteroaryl ring. Non-limiting examples of bicyclic heterocycloaryl groups include benzofuran, benzothiophene, quinoline, and isoquinoline. The heteroaryl group is optionally substituted with 1, 2, 3, 4, or 5 substituents as recited herein, wherein the optional substituent can be present at any open position on the heteroaryl group.

[0039] The term “heteroaryl oxide,” as used herein, refers to an oxidized heteroaryl group as that term is defined herein, wherein one or more of the heteroatoms comprising the heteroaryl group is oxidized. Non-limiting examples of heteroaryl oxide groups include pyridine N-oxide, pyrimidine N-oxide, and pyrazine N-oxide.

[0040] The term “heterocyclyl” refers to a cyclic group, which may be aromatic or non-aromatic, or saturated or unsaturated, having one or more heteroatoms such as O, N, or S. Examples of heterocyclyl groups include pyridyl, piperidinyl, piperazinyl, pyrazinyl, pyrolyl, pyranyl, tetrahydropyranyl, tetrahydrothiopyranyl, pyrrolidinyl, furanyl, tetrahydrofuran, thiophenyl, tetrahydrothiophenyl, purinyl, pyrimidinyl, thiazolyl, thiazolidinyl, thiazolinyl, oxazolyl, triazolyl, tetrazolyl, tetrazinyl, benzoxazolyl, morpholinyl, thiophorpholinyl, quinolinyl, and isoquinolinyl. A heterocyclyl group may be fused to another ring, including a cyclyl, aryl, heteroaryl, or another heterocyclyl.

[0041] The term “halo” or “halogen,” as used herein, means a substituent selected from Group VIIA, such as, for example, fluorine, bromine, chlorine, and iodine.

[0042] The term “aryl” refers to an unsubstituted or substituted aromatic carbocyclic substituent, as commonly understood in the art, and the term “C₆-C₁₀ aryl” includes phenyl and naphthyl. It is understood that the term aryl applies to cyclic substituents that are planar and comprise 4n+2 π electrons, according to Hückel’s Rule. An aryl group may be fused to another ring, including a cyclyl, heteroaryl, heterocyclyl, or another aryl.

[0043] A CH₂–CH₂ moiety is any ethylene moiety wherein there is a carbon–carbon single bond. A CH=CH moiety is any vinyl moiety that contains a carbon–carbon double bond. A NH–CH₂ moiety contains a nitrogen–carbon single bond, and a N=CH contains a nitrogen–carbon double bond. A CH:CH moiety contains a carbon–carbon bond intermediate between a single and a double bond, such as in an aromatic system, for example in the carbon–carbon bonds in benzene or the nitrogen–carbon bond in pyridine.

[0044] The present invention also provides a pharmaceutical composition comprising a compound or salt of any of the embodiments described above and a pharmaceutically acceptable carrier.

[0045] The phrase “pharmaceutically acceptable salt” is intended to include nontoxic salts synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two. Generally, nonaqueous media such as ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in *Remington's Pharmaceutical Sciences*, 18th ed., Mack Publishing Company, Easton, PA, 1990, p. 1445, and *Journal of Pharmaceutical Science*, 66, 2-19 (1977).

[0046] Suitable bases include inorganic bases such as alkali and alkaline earth metal bases, e.g., those containing metallic cations such as sodium, potassium, magnesium, calcium and the like. Non-limiting examples of suitable bases include sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate. Suitable acids include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, and the like, and organic acids such as p-toluenesulfonic, methanesulfonic acid, benzenesulfonic acid, oxalic acid, p-bromophenylsulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, acetic acid, maleic acid, tartaric acid, fatty acids, long chain fatty acids, and the like. Preferred pharmaceutically acceptable salts of inventive compounds having an acidic moiety include sodium and potassium salts. Preferred pharmaceutically acceptable salts of inventive compounds having a basic moiety (e.g., a pyridyl group) include hydrochloride and hydrobromide salts. The compounds of the present invention containing an acidic or basic moiety are useful in the form of the free base or acid or in the form of a pharmaceutically acceptable salt thereof.

[0047] It should be recognized that the particular counterion forming a part of any salt of this invention is usually not of a critical nature, so long as the salt as a whole is pharmacologically acceptable and as long as the counterion does not contribute undesired qualities to the salt as a whole.

[0048] It is further understood that the above compounds and salts may form solvates, or exist in a substantially uncomplexed form, such as the anhydrous form. As used herein, the term "solvate" refers to a molecular complex wherein the solvent molecule, such as the crystallizing solvent, is incorporated into the crystal lattice. When the solvent incorporated in the solvate is water, the molecular complex is called a hydrate. Pharmaceutically acceptable solvates include hydrates, alcoholates such as methanolates and ethanolates, acetonitrilates and the like. These compounds can also exist in polymorphic forms.

[0049] The invention contemplates embodiments in which a compound having a chiral center is a substantially pure enantiomer thereof, a racemic mixture thereof, or a mixture containing any proportion of the two enantiomers thereof. The invention also contemplates all stereoisomers and diastereoisomers of the compounds described herein.

[0050] The present invention is further directed to a pharmaceutical composition comprising a pharmaceutically acceptable carrier and at least one compound or salt described herein.

[0051] It is preferred that the pharmaceutically acceptable carrier be one that is chemically inert to the active compounds and one that has no detrimental side effects or toxicity under the conditions of use.

[0052] The choice of carrier will be determined in part by the particular compound of the present invention chosen, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of the pharmaceutical composition of the present invention. The following formulations for oral, aerosol, parenteral, subcutaneous, intra-arterial, intravenous, intramuscular, intraperitoneal, intrathecal, rectal, and vaginal administration are merely exemplary and are in no way limiting.

[0053] The pharmaceutical composition can be administered parenterally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration that comprise a solution of the inventive compound or salt dissolved or suspended in an acceptable carrier suitable for parenteral administration, including aqueous and non-aqueous isotonic sterile injection solutions.

[0054] Overall, the requirements for effective pharmaceutical carriers for parenteral compositions are well known to those of ordinary skill in the art. See, e.g., Banker and Chalmers, eds., *Pharmaceutics and Pharmacy Practice*, J. B. Lippincott Company, Philadelphia, pp. 238-250 (1982), and Toissel, *ASHP Handbook on Injectable Drugs*, 4th ed., pp. 622-630 (1986). Such solutions can contain anti-oxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. The compound or salt of the present invention may be administered in a physiologically acceptable diluent in a pharmaceutical carrier, such as a sterile liquid or mixture of liquids, including water, saline, aqueous dextrose and related sugar solutions, an alcohol, such as ethanol, isopropanol, or hexadecyl alcohol, glycols, such as propylene glycol or polyethylene glycol, dimethylsulfoxide, glycerol ketals, such as 2,2-dimethyl-1,3-dioxolane-4-methanol, ethers, such as poly(ethyleneglycol) 400, an oil, a fatty acid, a fatty acid ester or glyceride, or an acetylated fatty acid glyceride with or without the addition of a pharmaceutically acceptable surfactant, such as a soap or a detergent, suspending agent, such as pectin, carbomers, methylcellulose, hydroxypropylmethylcellulose, or carboxymethylcellulose, or emulsifying agents and other pharmaceutical adjuvants.

[0055] Oils useful in parenteral formulations include petroleum, animal, vegetable, or synthetic oils. Specific examples of oils useful in such formulations include peanut, soybean, sesame, cottonseed, corn, olive, petrolatum, and mineral. Suitable fatty acids for use in parenteral formulations include oleic acid, stearic acid, and isostearic acid. Ethyl oleate and isopropyl myristate are examples of suitable fatty acid esters.

[0056] Suitable soaps for use in parenteral formulations include fatty alkali metal, ammonium, and triethanolamine salts, and suitable detergents include (a) cationic detergents such as, for example, dimethyl dialkyl ammonium halides, and alkyl pyridinium halides, (b) anionic detergents such as, for example, alkyl, aryl, and olefin sulfonates, alkyl, olefin, ether, and monoglyceride sulfates, and sulfosuccinates, (c) nonionic detergents such as, for example, fatty amine oxides, fatty acid alkanolamides, and polyoxyethylenepolypropylene copolymers, (d) amphoteric detergents such as, for example, alkyl-beta-aminopropionates, and 2-alkyl-imidazoline quaternary ammonium salts, and (e) mixtures thereof.

[0057] The parenteral formulations can contain preservatives and buffers. In order to minimize or eliminate irritation at the site of injection, such compositions may contain one or

more nonionic surfactants having a hydrophile-lipophile balance (HLB) of from about 12 to about 17. The quantity of surfactant in such formulations will typically range from about 5 to about 15% by weight. Suitable surfactants include polyethylene sorbitan fatty acid esters, such as sorbitan monooleate and the high molecular weight adducts of ethylene oxide with a hydrophobic base, formed by the condensation of propylene oxide with propylene glycol. The parenteral formulations can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid excipient, for example, water, for injections, immediately prior to use. Extemporaneous injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.

[0058] Topical formulations, including those that are useful for transdermal drug release, are well-known to those of skill in the art and are suitable in the context of the invention for application to skin.

[0059] Formulations suitable for oral administration can consist of (a) liquid solutions, such as a therapeutically effective amount of the inventive compound dissolved in diluents, such as water, saline, or orange juice, (b) capsules, sachets, tablets, lozenges, and troches, each containing a predetermined amount of the active ingredient, as solids or granules, (c) powders, (d) suspensions in an appropriate liquid, and (e) suitable emulsions. Liquid formulations may include diluents, such as water and alcohols, for example, ethanol, benzyl alcohol, and the polyethylene alcohols, either with or without the addition of a pharmaceutically acceptable surfactant, suspending agent, or emulsifying agent. Capsule forms can be of the ordinary hard- or soft-shelled gelatin type containing, for example, surfactants, lubricants, and inert fillers, such as lactose, sucrose, calcium phosphate, and corn starch. Tablet forms can include one or more of lactose, sucrose, mannitol, corn starch, potato starch, alginic acid, microcrystalline cellulose, acacia, gelatin, guar gum, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, calcium stearate, zinc stearate, stearic acid, and other excipients, colorants, diluents, buffering agents, disintegrating agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible excipients. Lozenge forms can comprise the active ingredient in a flavor, usually sucrose and acacia or tragacanth, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin, or sucrose and acacia, emulsions, gels, and the like containing, in addition to the active ingredient, such excipients as are known in the art.

[0060] The compound or salt of the present invention, alone or in combination with other suitable components, can be made into aerosol formulations to be administered via inhalation. The compounds are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of active compound are 0.01%-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such surfactants are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight of the composition, preferably 0.25%-5%. The balance of the composition is ordinarily propellant. A carrier can also be included as desired, e.g., lecithin for intranasal delivery. These aerosol formulations can be placed into acceptable pressurized propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like. They also may be formulated as pharmaceuticals for non-pressured preparations, such as in a nebulizer or an atomizer. Such spray formulations may be used to spray mucosa.

[0061] Additionally, the compound or salt of the present invention may be made into suppositories by mixing with a variety of bases, such as emulsifying bases or water-soluble bases. Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams, or spray formulas containing, in addition to the active ingredient, such carriers as are known in the art to be appropriate.

[0062] It will be appreciated by one of ordinary skill in the art that, in addition to the aforescribed pharmaceutical compositions, the compound or salt of the present invention may be formulated as inclusion complexes, such as cyclodextrin inclusion complexes, or liposomes. Liposomes serve to target the compounds to a particular tissue, such as lymphoid tissue or cancerous hepatic cells. Liposomes can also be used to increase the half-life of the inventive compound. Liposomes useful in the present invention include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the active agent to be delivered is incorporated as part of a liposome, alone or in conjunction with a suitable chemotherapeutic agent. Thus, liposomes filled with a desired inventive compound or salt thereof, can be directed to the site of a specific tissue type, hepatic cells, for example, where the liposomes then deliver the selected compositions. Liposomes for use in the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol,

such as cholesterol. The selection of lipids is generally guided by consideration of, for example, liposome size and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, for example, Szoka et al., *Ann. Rev. Biophys. Bioeng.*, 9, 467 (1980), and U.S. Patents 4,235,871, 4,501,728, 4,837,028; and 5,019,369. For targeting to the cells of a particular tissue type, a ligand to be incorporated into the liposome can include, for example, antibodies or fragments thereof specific for cell surface determinants of the targeted tissue type. A liposome suspension containing a compound or salt of the present invention may be administered intravenously, locally, topically, etc. in a dose that varies according to the mode of administration, the agent being delivered, and the stage of disease being treated.

[0063] Suitable doses and dosage regimens can be determined by conventional range-finding techniques known to those of ordinary skill in the art. Generally, treatment is initiated with smaller dosages that are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. The present inventive method typically will involve the administration of about 0.001 to about 300 mg of one or more of the compounds described above per kg body weight of the individual. The administration can involve about 0.001 mg, about 0.01 mg, about 0.1 mg, about 1 mg, about 5 mg, about 10 mg, about 20 mg, about 50 mg, about 100 mg, about 200 mg, or about 300 mg or more of one or more of the compounds described above per kg body weight of the individual. Alternatively, or in addition, the administration can involve about 300 mg, about 200 mg, about 100 mg, about 50 mg, about 20 mg, about 10 mg, about 5 mg, about 1 mg, about 0.1 mg, about 0.01 mg, or about 0.001 mg or less of one or more of the compounds described above per kg body weight of the individual. Thus, the administration can be bounded by any two of the aforementioned endpoints. For example, the administration can be about 0.001 mg to about 200 mg, about 0.001 mg to about 1 mg, about 0.01 mg to about 50 mg, about 0.1 mg to about 20 mg, about 1 mg to about 10 mg, about 1 mg to about 20 mg, about 10 mg to about 50 mg, or any other combination of endpoints, of one or more of the compounds described above per kg body weight of the individual.

[0064] The present invention further provides a method of treating a disease responsive to activation of human PK-M2 comprising administering to a patient in need thereof a therapeutically effective amount of any of the compounds described herein or a pharmaceutically acceptable salt thereof.

[0065] The invention further provides any of the compounds described herein or a pharmaceutically acceptable salt thereof for use in treating a disease responsive to activation of human PK-M2.

[0066] The invention further provides the use of a compound or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating a disease responsive to activation of human PK-M2 of a patient, wherein the compound is any of the compounds described herein or a pharmaceutically acceptable salt thereof

[0067] The disease responsive to activation of PK-M2 can be caused by or associated with, e.g., the function PKM2. These diseases may include, e.g., cancer, obesity, diabetes, atherosclerosis, restenosis, autoimmune diseases, and proliferation-dependent diseases.

[0068] Cancers include, without limitation, leukemias (e.g., acute leukemia, acute lymphocytic leukemia, acute myelocytic (myeloid) leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute monocytic leukemia, acute erythroleukemia, chronic leukemia, chronic myelocytic (myeloid) leukemia, chronic lymphocytic leukemia), polycythemia vera, lymphoma (e.g., Hodgkin's disease or non-Hodgkin's disease), Waldenstrom's macroglobulinemia, multiple myeloma, heavy chain disease, and solid tumors such as sarcomas and carcinomas (e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, (malignant) mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma (including alveolar), colon carcinoma (colon cancer), pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct/intrahepatic bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, uterine cancer, testicular cancer, lung carcinoma (lung cancer), small cell lung carcinoma, bladder carcinoma (urinary bladder cancer), epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendrogloma, schwannoma, meningioma, melanoma, neuroblastoma, and retinoblastoma). The cancers may include bone cancer, brain cancer, cancer of the anus, anal canal, or anorectum, cancer of the eye, cancer of the joints, cancer of the neck, gallbladder, or pleura, cancer of the nose, nasal cavity, or middle ear, cancer of the oral cavity, cancer of the vulva, esophageal cancer,

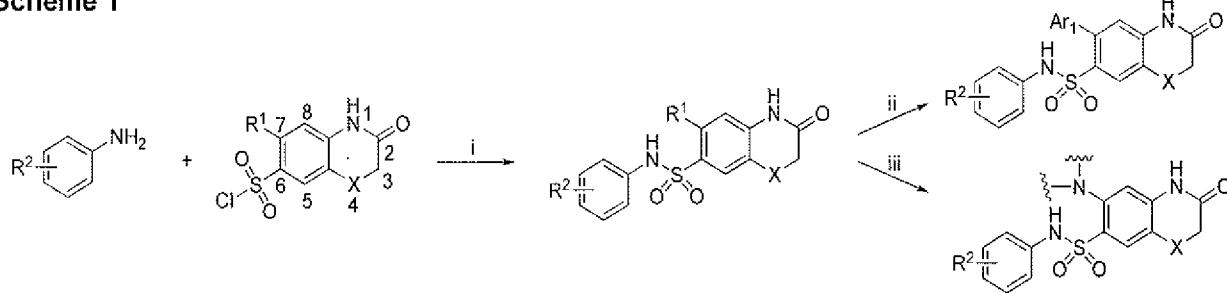
gastrointestinal carcinoid tumor, hypopharynx cancer, kidney cancer, larynx cancer, liver cancer, nasopharynx cancer, non-small cell lung cancer, peritoneum, omentum, and mesentery cancer, pharynx cancer, rectal cancer, renal cancer, small intestine cancer, soft tissue cancer, stomach cancer, thyroid cancer, and ureter cancer.

[0069] Other diseases include diabetes and obesity. Adipose tissue expresses PKM2. Additionally, activators of PKM2, described herein, may be useful in the treatment of type II diabetes, as the activation of PKM2 may allow for decreased lipid production and increased oxidative phosphorylation in adipose tissue. This effect should decrease adiposity, which is known to contribute to type 2 diabetes.

[0070] Additionaly diseases include autoimmune diseases and proliferative diseases. Activators of PKM2, described herein, may be used to treat, e.g., autoimmune diseases or proliferative diseases. Autoimmune disorders include, e.g., type I diabetes, Crohn's disease, multiple sclerosis, arthritis, rheumatoid arthritis, systemic lupus erythematosus, autoimmune (Hashimoto's) thyroiditis, autoimmune liver diseases (e.g., hepatitis and primary biliary cirrhosis), hyperthyroidism (e.g., Graves' disease and thyrotoxicosis), insulin-resistant diabetes, autoimmune adrenal insufficiency (e.g., Addison's disease), autoimmune oophoritis, autoimmune orchitis, autoimmune hemolytic anemia, paroxysmal cold hemoglobinuria, Behcet's disease, autoimmune thrombocytopenia, autoimmune neutropenia, pernicious anemia, pure red cell anemia, autoimmune coagulopathies, myasthenia gravis, experimental allergic encephalomyelitis, autoimmune polyneuritis, pemphigus and other bullous diseases, rheumatic carditis, Goodpasture's syndrome, postcardiotomy syndrome, Sjogren's syndrome, polymyositis, dermatomyositis, and scleroderma. Autoimmune disorders are described in U.S. Pat. Nos. 5,891,435 and 6,773,705, hereby incorporated by reference.

[0071] Proliferative diseases include, e.g., cancer (e.g., benign and malignant), benign prostatic hyperplasia, psoriasis, abnormal keratinization, lymphoproliferative disorders (e.g., a disorder in which there is abnormal proliferation of cells of the lymphatic system), chronic rheumatoid arthritis, arteriosclerosis, restenosis, and diabetic retinopathy. Proliferative diseases are described in U.S. Pat. Nos. 5,639,600 and 7,087,648, hereby incorporated by reference.

[0072] The terms "treat" and "prevent," as well as words stemming therefrom, as used herein, do not necessarily imply 100% or complete treatment or prevention. Rather, there are varying degrees of treatment or prevention of which one of ordinary skill in the art recognizes as having a potential benefit or therapeutic effect. In this respect, the inventive methods can


provide any amount of any level of treatment or prevention in a mammal. Furthermore, the treatment or prevention provided by the inventive method can include treatment or prevention of one or more conditions or symptoms of the diseases described herein being treated or prevented. Also, for purposes herein, “prevention” can encompass delaying the onset of the disease, or a symptom or condition thereof.

[0073] The invention further provides a use of a compound or salt of the invention in the manufacture of a medicament for treating disease responsive to activation of PK-M2. The medicament typically is a pharmaceutical composition as described herein.

[0074] One skilled in the art will appreciate that suitable methods of utilizing a compound and administering it to a human for the treatment of disease states, in particular, diseases responsive to activation of PK-M2, which would be useful in the method of the present invention, are available. Although more than one route can be used to administer a particular compound, a particular route can provide a more immediate and more effective reaction than another route. Accordingly, the described methods are merely exemplary and are in no way limiting.

[0075] The dose administered to a human in accordance with the present invention should be sufficient to effect the desired response. Such responses include reversal or prevention of the bad effects of the disease responsive to activation of PK-M2 for which treatment is desired or to elicit the desired benefit. One skilled in the art will recognize that dosage will depend upon a variety of factors, including the age, condition, and body weight of the human, as well as the source, particular type of the cancer, and extent of cancer in the human. The size of the dose will also be determined by the route, timing and frequency of administration as well as the existence, nature, and extent of any adverse side-effects that might accompany the administration of a particular compound and the desired physiological effect. It will be appreciated by one of skill in the art that various conditions or disease states may require prolonged treatment involving multiple administrations.

[0076] The compounds of the invention can be prepared as follows. For example, the synthetic elaboration of substituted 2-oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamides can begin with a standard coupling between commercially available sulfonyl chlorides and substituted anilines, according to Scheme I.

Scheme 1

Conditions and reagents: (i) Hunig's base, DMF, rt, 1 h; (ii) Ar₁-B(OH)₂, tetrakis (3 mol%), Na₂CO₃, 1,2,-DME/H₂O, μW, 120 °C, 20 min; (iii) R³''N, MeCN, μW, 180 °C, 1h.

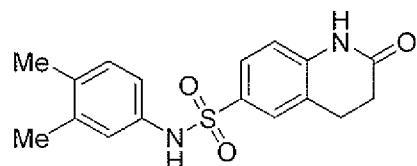
[0077] The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.

EXAMPLE 1

[0078] This example illustrates methods used in preparing exemplary compounds of the invention.

[0079] *General methods used for all exemplary compounds.* All air or moisture sensitive reactions were performed under positive pressure of nitrogen with oven-dried glassware. Anhydrous solvents such as tetrahydrofuran (THF), toluene, dichloromethane, N,N-dimethylformamide (DMF), acetonitrile, methanol and triethylamine were obtained from Sigma-Aldrich (St. Louis, MO, USA). Preparative purification was performed on a Waters[®] (Milford, MA, USA) semi-preparative HPLC. The column used was a Phenomenex (Torrance, CA, USA) Luna C18 (5 micron, 30 x 75 mm) at a flow rate of 45 mL/min. The mobile phase consisted of acetonitrile and water (each containing 0.1% trifluoroacetic acid). A gradient of 10% to 50% acetonitrile over 8 minutes was used during the purification. Fraction collection was triggered by UV detection (220 nM). Analytical analysis was performed on an Agilent LC/MS (Agilent Technologies, Santa Clara, CA, USA).

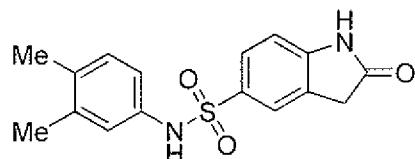
[0080] Method 1: A 7 minute gradient of 4% to 100% Acetonitrile (containing 0.025% trifluoroacetic acid) in water (containing 0.05% trifluoroacetic acid) was used with an 8 minute run time at a flow rate of 1 mL/min. A Phenomenex Luna C18 column (3 micron, 3 x 75 mm) was used at a temperature of 50°C.


[0081] Method 2: A 3 minute gradient of 4% to 100% Acetonitrile (containing 0.025% trifluoroacetic acid) in water (containing 0.05% trifluoroacetic acid) was used with a 4.5

minute run time at a flow rate of 1 mL/min. A Phenomenex Gemini Phenyl column (3 micron, 3 x 100 mm) was used at a temperature of 50 °C.

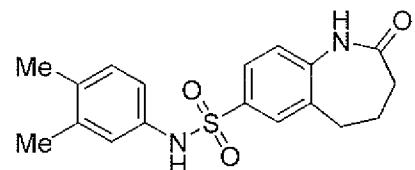
[0082] Purity determination was performed using an Agilent Diode Array Detector. Mass determination was performed using an Agilent 6130 mass spectrometer with electrospray ionization in the positive mode. ¹H NMR spectra were recorded on Varian (Palo Alto, CA, USA) 400 MHz spectrometers. Chemical Shifts are reported in ppm with tetramethylsilane (TMS) as internal standard (0 ppm) for CDCl₃ solutions or undeuterated solvent (DMSO-H6 at 2.49 ppm) for DMSO-d6 solutions. All of the analogues for assay have purity greater than 95% based on both analytical methods. High resolution mass spectrometry was recorded on Agilent 6210 Time-of-Flight LC/MS system. Confirmation of molecular formula was accomplished using electrospray ionization in the positive mode with the Agilent Masshunter software (version B.02).

[0083] *General procedure for synthesis of compounds 4-31, 35, 37-39, 41, and 43-60.* The methods of synthesizing compound 4 were generally followed for all compounds 4-31, 35, 37-39, 41, and 43-60.

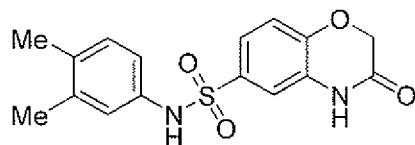

[0084] Compound 4. N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide

2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonyl chloride (0.2 g, 0.814 mmol) was dissolved in DMF (2 ml) and 3,4-dimethylaniline (0.118 g, 0.977 mmol) was added followed by the dropwise addition of DIPEA (0.213 ml, 1.221 mmol). The reaction was stirred at RT for 1 h then purified by directly injecting to a Waters® reverse phase purification system.

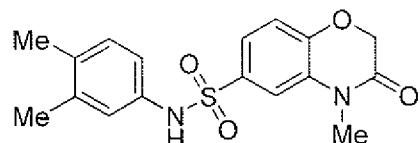
¹H NMR (400 MHz, DMSO-d6) δ ppm: 10.40 (s, 1 H), 9.91 (br. s., 1 H), 7.56 (s, 1 H), 7.51 (dd, *J*=8.41, 1.96 Hz, 1 H), 6.95 (d, *J*=8.22 Hz, 1 H), 6.90 (d, *J*=8.22 Hz, 1 H), 6.86 (s, 1 H), 6.81 (dd, *J*=8.02, 1.96 Hz, 1 H), 2.90 (t, *J*=7.53 Hz, 2 H), 2.46 (t, *J*=7.63 Hz, 2 H), 2.10 (s, 3H), 2.08 (s, 3H). LC/MS: Method 1, retention time: 5.744 min; HRMS: *m/z* (M⁺) = 454.0872 (Calculated for C₁₉H₂₂N₂O₇S₂ = 454.0868).


[0085] Compound 5. N-(3,4-dimethylphenyl)-2-oxoindoline-5-sulfonamide

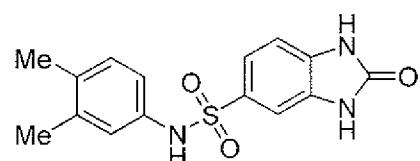
2-oxoindoline-5-sulfonyl chloride (0.189 g, .814 mmol) was dissolved in DMF (2 ml) and 3,4-dimethylaniline (0.118 g, 0.977 mmol) was added followed by the dropwise addition of DIPEA (0.213 ml, 1.221 mmol). The reaction was stirred at RT for 1 h then purified by directly injecting to a Waters® reverse phase purification system.


¹H NMR (400 MHz, DMSO-*d*6) δ ppm: 10.70 (s, 1 H), 9.87 (s, 1 H), 7.44 - 7.62 (m, 2 H), 6.67 - 6.98 (m, 4 H), 3.50 (s, 2 H), 2.05 (m, 6 H). LC/MS: Method 1, retention time: 4.833 min; HRMS: *m/z* (M⁺) = 316.0878 (Calculated for C₁₆H₁₆N₂O₃S = 316.0882).

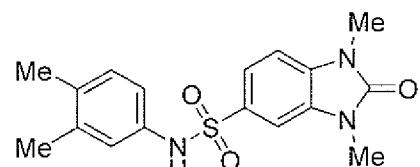
[0086] Compound 6. N-(3,4-dimethylphenyl)-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-7-sulfonamide


¹H NMR (400 MHz, DMSO-*d*6) δ ppm: 9.89 (br. s., 1 H), 9.77 (br. s., 1 H), 7.38 - 7.67 (m, 2 H), 7.00 (d, *J*=8.2 Hz, 1 H), 6.93 (d, *J*=8.0 Hz, 1 H), 6.61 - 6.86 (m, 2 H), 2.57 - 2.72 (m, 2 H), 1.93 - 2.22 (m, 10 H). LC/MS: Method 1, retention time: 5.081 min; HRMS: *m/z* (M⁺) = 344.1195 (Calculated for C₁₈H₂₀N₂O₃S = 344.1195).

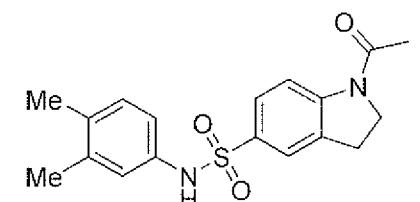
[0087] Compound 7. N-(3,4-dimethylphenyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*6) δ ppm: 10.90 (br. s., 1 H), 9.97 (br. s., 1 H), 7.17 - 7.32 (m, 2 H), 7.01 (d, *J*=8.8 Hz, 1 H), 6.94 (d, *J*=8.2 Hz, 1 H), 6.83 (d, *J*=1.8 Hz, 1 H), 6.76 (dd, *J*=8.1, 2.1 Hz, 1 H), 4.62 (s, 2 H), 2.07 (m, 6 H). LC/MS: Method 1, retention time: 5.133 min; HRMS: *m/z* (M⁺) = 332.0823 (Calculated for C₁₆H₁₆N₂O₄S = 332.0831).

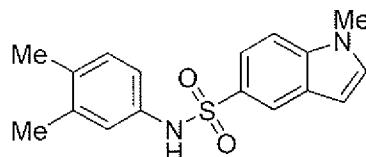
[0088] Compound 8. N-(3,4-dimethylphenyl)-4-methyl-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 9.93 (s, 1 H), 7.25 - 7.43 (m, 2 H), 7.06 (d, *J*=8.4 Hz, 1 H), 6.94 (d, *J*=8.0 Hz, 1 H), 6.86 (s, 1 H), 6.79 (dd, *J*=8.0, 2.2 Hz, 1 H), 4.70 (s, 2 H), 3.19 (s, 3 H), 2.07 (m, 6 H). LC/MS: Method 1, retention time: 5.519 min; HRMS: *m/z* (M⁺) = 346.0989 (Calculated for C₁₇H₁₈N₂O₄S = 346.0987).

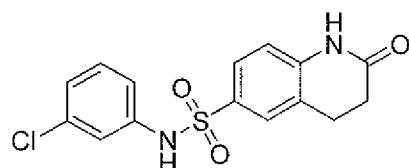
[0089] Compound 9. N-(3,4-dimethylphenyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-5-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 11.02 (br. s., 1 H), 10.89 (br. s., 1 H), 9.83 (br. s., 1 H), 7.31 (dd, *J*=8.2, 1.6 Hz, 1 H), 7.21 (d, *J*=1.6 Hz, 1 H), 6.96 (d, *J*=8.2 Hz, 1 H), 6.90 (d, *J*=8.2 Hz, 1 H), 6.81 (s, 1 H), 6.75 (dd, *J*=8.0, 2.0 Hz, 1 H), 2.05 (m, 6 H). LC/MS: Method 1, retention time: 4.535 min; HRMS: *m/z* (M⁺) = 317.0837 (Calculated for C₁₅H₁₅N₃O₃S = 317.0834).

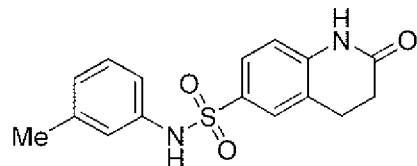
[0090] Compound 10. N-(3,4-dimethylphenyl)-1,3-dimethyl-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-5-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 9.87 (s, 1 H), 7.33 - 7.52 (m, 2 H), 7.21 (d, *J*=8.0 Hz, 1 H), 6.90 (d, *J*=8.0 Hz, 1 H), 6.85 (d, *J*=1.8 Hz, 1 H), 6.77 (dd, *J*=8.1, 2.1 Hz, 1 H), 3.23 - 3.37 (s, 6 H), 2.05 (m, 6 H). LC/MS: Method 1, retention time: 5.179 min; HRMS: *m/z* (M⁺) = 345.1152 (Calculated for C₁₇H₁₉N₃OS = 345.1147).

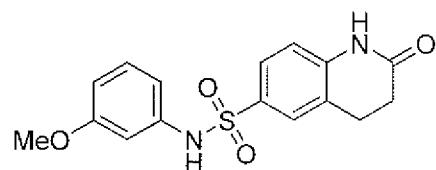
[0091] Compound 11. 1-acetyl-N-(3,4-dimethylphenyl)indoline-5-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 9.86 (s, 1 H), 8.02 (d, *J*=8.8 Hz, 1 H), 7.41 - 7.56 (m, 2 H), 6.91 (d, *J*=8.2 Hz, 1 H), 6.82 (s, 1 H), 6.75 (dd, *J*=7.9, 1.9 Hz, 1 H), 4.08 (t, *J*=8.5 Hz, 2 H), 3.11 (t, *J*=8.4 Hz, 2 H), 2.12 (s, 3 H), 2.05 (m, 6 H). LC/MS: Method 1, retention time: 5.338 min; HRMS: *m/z* (M⁺) = 344.1196 (Calculated for C₁₈H₂₀N₂O₃S = 344.1195).

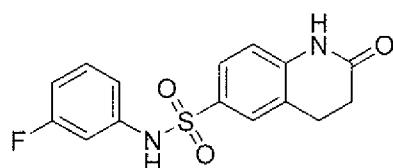
[0092] Compound 12. N-(3,4-dimethylphenyl)-1-methyl-1H-indole-5-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 9.82 (s, 1 H), 7.96 (d, *J*=1.2 Hz, 1 H), 7.40 - 7.55 (m, 3 H), 6.80 - 6.91 (m, 2 H), 6.72 - 6.80 (m, 1 H), 6.55 (d, *J*=2.9 Hz, 1 H), 3.76 (s, 3 H), 2.01 (m, 6 H). Method 1, retention time: 5.895 min; HRMS: *m/z* (M⁺) = 314.1095 (Calculated for C₁₇H₁₈N₂O₂S = 314.1089).

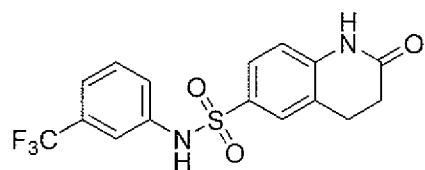
[0093] Compound 13. N-(3-chlorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.41 (s, 2 H), 7.46 - 7.63 (m, 2 H), 7.22 (t, *J*=8.1 Hz, 1 H), 6.98 - 7.13 (m, 3 H), 6.90 (d, *J*=8.4 Hz, 1 H), 2.89 (t, *J*=7.6 Hz, 2 H), 2.35 - 2.48 (m, 2 H). LC/MS: Method 1, retention time: 4.933 min; HRMS: *m/z* (M⁺) = 336.0333 (Calculated for C₁₅H₁₃ClN₂O₃S = 336.0335).

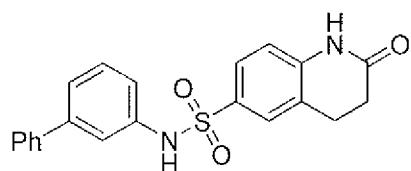
[0094] Compound 14. 2-oxo-N-m-tolyl-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.38 (s, 1 H), 10.03 (s, 1 H), 7.41 - 7.61 (m, 2 H), 7.06 (t, *J*=7.8 Hz, 1 H), 6.82 - 6.93 (m, 3 H), 6.78 (d, *J*=7.2 Hz, 1 H), 2.87 (t, *J*=7.6 Hz, 2 H), 2.39 - 2.45 (t, *J*=7.8 Hz, 2 H), 2.16 (s, 3 H). LC/MS: Method 1, retention time: 4.741 min; HRMS: *m/z* (M⁺) = 316.0886 (Calculated for C₁₆H₁₆N₂O₃S = 316.0882).

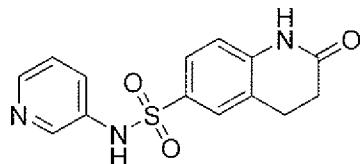
[0095] Compound 15. N-(3-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.38 (s, 1 H), 10.12 (s, 1 H), 7.45 - 7.60 (m, 2 H), 7.08 (t, *J*=8.3 Hz, 1 H), 6.89 (d, *J*=8.2 Hz, 1 H), 6.60 - 6.69 (m, 2 H), 6.44 - 6.60 (m, 1 H), 3.62 (s, 3 H), 2.88 (t, *J*=7.6 Hz, 2 H), 2.39 - 2.45 (t, *J*=7.5 Hz, 2 H). LC/MS: Method 1, retention time: 4.513 min; HRMS: *m/z* (M⁺) = 332.0830 (Calculated for C₁₆H₁₆N₂O₄S = 332.0831).

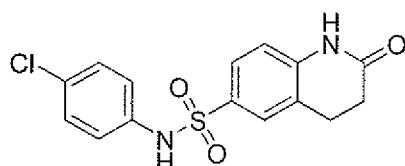
[0096] Compound 16. N-(3-fluorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.28 - 10.52 (m, 2 H), 7.43 - 7.65 (m, 2 H), 7.13 - 7.31 (m, 1 H), 6.85 - 6.99 (m, 3 H), 6.71 - 6.85 (m, 1 H), 2.89 (t, *J*=7.6 Hz, 2 H), 2.36 - 2.46 (t, *J*=7.1 Hz, 2 H). LC/MS: Method 1, retention time: 4.650 min; *m/z* (M⁺) = 320.0628 (Calculated for C₁₅H₁₃FN₂O₃S = 320.0631).

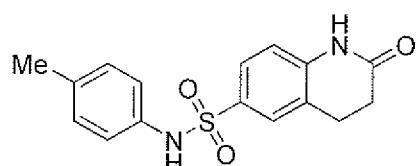
[0097] Compound 17. 2-oxo-N-(3-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.56 (s, 1 H), 10.41 (s, 1 H), 7.51 - 7.64 (m, 2 H), 7.45 (t, *J*=8.1 Hz, 1 H), 7.24 - 7.39 (m, 3 H), 6.90 (d, *J*=8.4 Hz, 1 H), 2.88 (t, *J*=7.6 Hz, 2 H), 2.37 - 2.45 (t, *J*=7.9 Hz, 2 H). LC/MS: Method 1, retention time: 5.151 min; HRMS: *m/z* (M⁺) = 370.0596 (Calculated for C₁₆H₁₃F₃N₂O₃S = 370.0599).

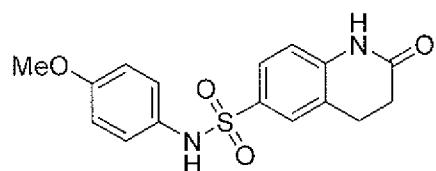
[0098] Compound 18. N-(biphenyl-3-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.38 (s, 1 H), 10.23 (br. s., 1 H), 7.51 - 7.65 (m, 2 H), 7.44 (dt, *J*=15.0, 7.6 Hz, 4 H), 7.16 - 7.38 (m, 4 H), 7.06 (dd, *J*=6.8, 1.6 Hz, 1 H), 6.90 (d, *J*=8.4 Hz, 1 H), 2.88 (t, *J*=7.5 Hz, 2 H), 2.42 (t, *J*=7.5 Hz, 2 H). LC/MS: Method 1, retention time: 5.406 min; HRMS: *m/z* (M⁺) = 378.1039 (Calculated for C₂₁H₁₈N₂O₃S = 378.1038).

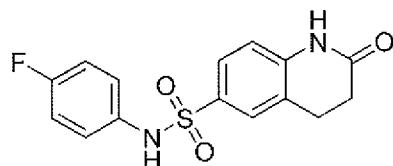
[0099] Compound 19. 2-oxo-N-(pyridin-3-yl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.33 - 10.53 (m, 2 H), 8.15 - 8.33 (m, 2 H), 7.57 (s, 1 H), 7.46 - 7.54 (m, 2 H), 7.29 (dd, *J*=8.2, 4.7 Hz, 1 H), 6.90 (d, *J*=8.4 Hz, 1 H), 2.89 (t, *J*=7.6 Hz, 2 H), 2.39 - 2.44 (t, *J*=7.4 Hz, 2 H). LC/MS: Method 1, retention time: 2.984 min; HRMS: *m/z* (M⁺) = 303.0683 (Calculated for C₁₄H₁₃N₃O₃S = 303.0678).

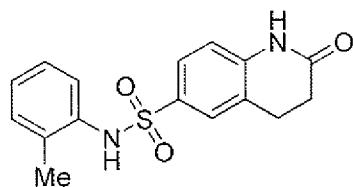
[0100] Compound 20. N-(4-chlorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.40 (s, 1 H), 10.27 (s, 1 H), 7.45 - 7.60 (m, 2 H), 7.20 - 7.33 (m, 2 H), 7.06 (d, *J*=8.8 Hz, 2 H), 6.89 (d, *J*=8.4 Hz, 1 H), 2.88 (t, *J*=7.6 Hz, 2 H), 2.37 - 2.47 (t, *J*=7.5 Hz, 2 H). LC/MS: Method 1, retention time: 4.938 min; HRMS: *m/z* (M⁺) = 336.0328 (Calculated for C₁₅H₁₃ClN₂O₃S = 336.0335).

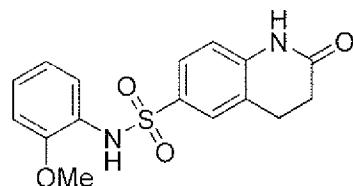
[0101] Compound 21. 2-oxo-N-p-tolyl-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.37 (s, 1 H), 9.93 (s, 1 H), 7.52 (s, 1 H), 7.46 (dd, *J*=8.4, 2.0 Hz, 1 H), 6.91 - 7.05 (m, 4 H), 6.86 (d, *J*=8.4 Hz, 1 H), 2.87 (t, *J*=7.6 Hz, 2 H), 2.38 - 2.44 (t, *J*=7.5 Hz, 2 H), 2.15 (s, 3 H). LC/MS: Method 1, retention time: 4.747 min; HRMS: *m/z* (M⁺) = 316.0879 (Calculated for C₁₆H₁₆N₂O₃S = 316.0882).

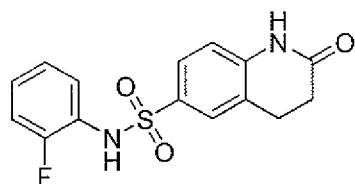
[0102] Compound 22. N-(4-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.37 (s, 1 H), 9.72 (s, 1 H), 7.47 (s, 1 H), 7.40 (dd, *J*=8.3, 2.1 Hz, 1 H), 6.90 - 6.97 (m, 2 H), 6.86 (d, *J*=8.2 Hz, 1 H), 6.68 - 6.83 (m, 2 H), 3.63 (s, 3 H), 2.86 (t, *J*=7.5 Hz, 2 H), 2.36 - 2.47 (t, *J*=7.6 Hz, 2 H). LC/MS: Method 1, retention time: 4.422 min; HRMS: *m/z* (M⁺) = 332.0830 (Calculated for C₁₆H₁₆N₂O₄S = 332.0831).

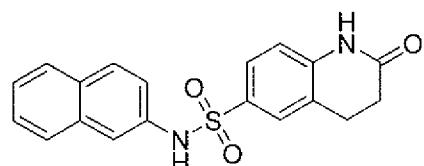
[0103] Compound 23. N-(4-fluorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.39 (s, 1 H), 10.04 (s, 1 H), 7.50 (s, 1 H), 7.45 (dd, *J*=8.3, 2.1 Hz, 1 H), 7.04 (d, *J*=6.7 Hz, 4 H), 6.87 (d, *J*=8.4 Hz, 1 H), 2.87 (t, *J*=7.6 Hz, 2 H), 2.38 (t, *J*=7.5 Hz, 2 H). LC/MS: Method 1, retention time: 4.580 min; HRMS: *m/z* (M⁺) = 320.0633 (Calculated for C₁₅H₁₃FN₂O₃S = 320.0631).

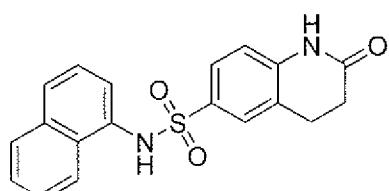
[0104] Compound 24. 2-oxo-N-*o*-tolyl-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.40 (s, 1 H), 9.33 (br. s., 1 H), 7.32 - 7.50 (m, 2 H), 6.96 - 7.14 (m, 3 H), 6.83 - 6.96 (m, 2 H), 2.86 (t, *J*=7.5 Hz, 2 H), 2.40 (t, *J*=7.4 Hz, 2 H), 2.01 (s, 3 H). LC/MS: Method 1, retention time: 4.656 min; HRMS: *m/z* (M⁺) = 316.0870 (Calculated for C₁₆H₁₆N₂O₃S = 316.0882).

[0105] Compound 25. N-(2-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide

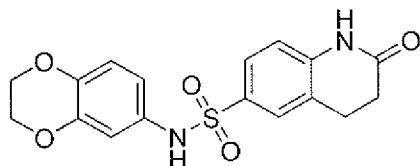

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.36 (s, 1 H), 9.21 (s, 1 H), 7.50 (s, 1 H), 7.43 (dd, *J*=8.4, 2.0 Hz, 1 H), 7.16 (dd, *J*=7.8, 1.4 Hz, 1 H), 7.06 (td, *J*=7.8, 1.6 Hz, 1 H), 6.70 - 6.92 (m, 3 H), 3.50 (s, 3 H), 2.86 (t, *J*=7.5 Hz, 2 H), 2.41 (t, *J*=7.2 Hz, 2 H). LC/MS: Method 1, retention time: 4.580 min; HRMS: *m/z* (M⁺) = 332.0833 (Calculated for C₁₆H₁₆N₂O₄S = 332.0831).

[0106] Compound 26. N-(2-fluorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide

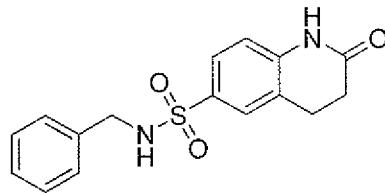

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.40 (s, 1 H), 9.95 (s, 1 H), 7.42 - 7.54 (m, 2 H), 7.20 (t, *J*=7.9 Hz, 1 H), 7.02 - 7.16 (m, 3 H), 6.89 (d, *J*=8.4 Hz, 1 H), 2.87 (t, *J*=7.5 Hz, 2 H), 2.38 (t, *J*=7.5 Hz, 2 H). LC/MS: Method 1, retention time: 4.455 min; *m/z* (M⁺) = 320.0629 (Calculated for C₁₅H₁₃FN₂O₃S = 320.0631).

[0107] Compound 27. N-(naphthalen-2-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide

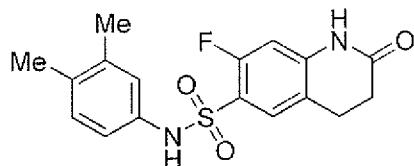
¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.35 (br. s., 2 H), 7.66 - 7.82 (m, 3 H), 7.48 - 7.66 (m, 3 H), 7.32 - 7.48 (m, 2 H), 7.26 (dd, *J*=8.8, 2.0 Hz, 1 H), 6.86 (d, *J*=8.2 Hz, 1 H), 2.85 (t, *J*=7.5 Hz, 2 H), 2.40 (t, *J*=7.5 Hz 2 H). LC/MS: Method 1, retention time: 5.077 min; HRMS: *m/z* (M⁺) = 352.0883 (Calculated for C₁₉H₁₆N₂O₃S = 352.0882).


[0108] Compound 28. N-(naphthalen-1-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide

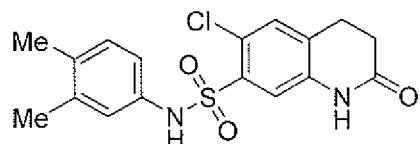
¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.36 (s, 1 H), 10.01 (s, 1 H), 8.01 (d, *J*=8.2 Hz, 1 H), 7.84 (d, *J*=7.8 Hz, 1 H), 7.73 (d, *J*=8.2 Hz, 1 H), 7.28 - 7.52 (m, 5 H), 7.12 (d, *J*=7.2 Hz, 1 H), 6.83 (d, *J*=8.2 Hz, 1 H), 2.81 (t, *J*=7.5 Hz, 2 H), 2.40 (t, *J*=8.1 Hz, 2 H). LC/MS:


Method 1, retention time: 4.938 min; HRMS: m/z (M $^+$) = 352.0883 (Calculated for C₁₉H₁₆N₂O₃S = 352.0882).

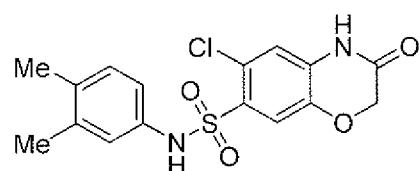
[0109] Compound 29. N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.38 (s, 1 H), 9.78 (s, 1 H), 7.39 - 7.54 (m, 2 H), 6.88 (d, *J*=8.4 Hz, 1 H), 6.67 (d, *J*=8.6 Hz, 1 H), 6.42 - 6.58 (m, 2 H), 4.12 (m, 4 H), 2.88 (t, *J*=7.6 Hz, 2 H), 2.39 (t, *J*=7.8 Hz, 2 H). LC/MS: Method 1, retention time: 4.363 min; HRMS: m/z (M $^+$) = 360.0781 (Calculated for C₁₇H₁₆N₂O₅S = 360.0780).

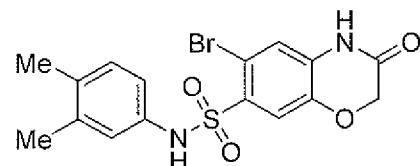
[0110] Compound 30. N-benzyl-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.38 (s, 1 H), 7.93 (t, *J*=6.4 Hz, 1 H), 7.47 - 7.58 (m, 2 H), 7.11 - 7.34 (m, 5 H), 6.91 (d, *J*=8.0 Hz, 1 H), 3.92 (d, *J*=6.3 Hz, 2 H), 2.88 (t, *J*=7.5 Hz, 2 H), 2.39 (t, *J*=7.5 Hz, 2 H). LC/MS: Method 1, retention time: 4.528 min; HRMS: m/z (M $^+$) = 316.0882 (Calculated for C₁₆H₁₆N₂O₃S = 316.0882).

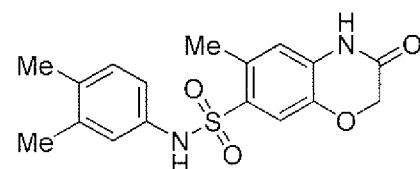
[0111] Compound 31. N-(3,4-dimethylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.42 (s, 1 H), 10.14 (s, 1 H), 7.56 (d, *J*=7.6 Hz, 1 H), 6.88 - 7.02 (m, 1 H), 6.75 - 6.88 (m, 2 H), 6.67 (d, *J*=11.3 Hz, 1 H), 2.85 (t, *J*=7.5 Hz, 2 H), 2.37 (t, *J*=7.2 Hz, 2 H), 2.06 (m, 6 H). LC/MS: Method 1, retention time: 5.105 min; HRMS: m/z (M $^+$) = 348.0949 (Calculated for C₁₇H₁₇FN₂O₃S = 348.0944).

[0112] Compound 35. 6-chloro-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-sulfonamide

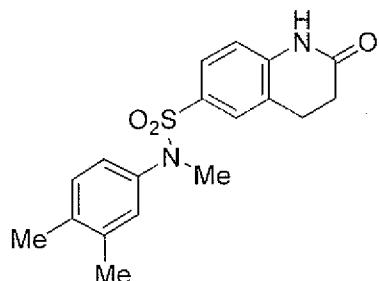

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.38 (br. s., 1 H), 10.12 (br. s., 1 H), 7.76 (s, 1 H), 6.60 - 7.13 (m, 4 H), 2.81 (t, *J*=7.5 Hz, 2 H), 2.39 (t, *J*=7.7 Hz, 2 H), 2.03 (m, 6 H). LC/MS: Method 1, retention time: 5.188 min; HRMS: *m/z* (M⁺) = 364.0652 (Calculated for C₁₇H₁₇ClN₂O₃S = 364.0648).

[0113] Compound 37. 6-chloro-N-(3,4-dimethylphenyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-sulfonamide

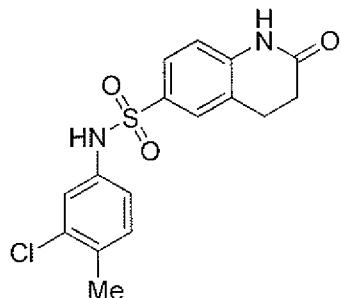

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 11.05 (s, 1 H), 10.25 (s, 1 H), 7.39 (s, 1 H), 6.69 - 7.13 (m, 4 H), 4.62 (s, 2 H), 2.05 (m, 6 H). LC/MS: Method 1, retention time: 5.308 min; HRMS: *m/z* (M⁺) = 366.0446 (Calculated for C₁₆H₁₅ClN₂O₄S = 366.0441).

[0114] Compound 38. 6-bromo-N-(3,4-dimethylphenyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-sulfonamide

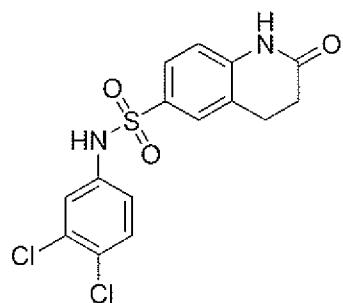
¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.89 (s, 1 H), 10.21 (s, 1 H), 7.57 (s, 1 H), 7.32 (s, 1 H), 6.94 (d, *J*=8.2 Hz, 1 H), 6.85 (s, 1 H), 6.77 (dd, *J*=8.1, 2.1 Hz, 1 H), 4.65 (s, 2 H), 2.06 (d, 6 H). LC/MS: Method 1, retention time: 5.394 min; HRMS: *m/z* (M⁺) = 409.9939 (Calculated for C₁₆H₁₅BrN₂O₄S = 409.9936).


[0115] Compound 39. N-(3,4-dimethylphenyl)-6-methyl-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-sulfonamide

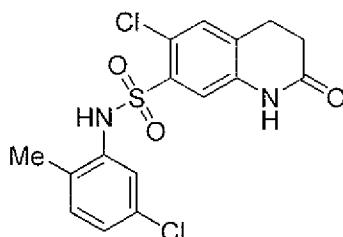
¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.93 (s, 1 H), 10.04 (br. s., 1 H), 7.29 (s, 1 H), 6.92 (d, *J*=8.2 Hz, 1 H), 6.80 (s, 1 H), 6.66 - 6.79 (m, 2 H), 4.56 (s, 2 H), 2.41 (s, 3 H), 2.11 (m, 6


H). LC/MS: Method 1, retention time: 5.202 min. HRMS: m/z (M $^+$) = 346.0993 (Calculated for C₁₇H₁₈N₂O₄S = 346.0987).

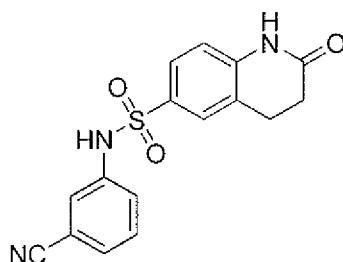
[0116] Compound 41. N-(3,4-dimethylphenyl)-N-methyl-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*6) δ ppm: 10.44 (br. s., 1 H), 7.32 (s, 1 H), 7.17 - 7.28 (m, 1 H), 6.98 - 7.16 (m, 1 H), 6.83 - 6.98 (m, 2 H), 6.72 (d, *J*=7.8 Hz, 1 H), 3.02 (s, 3 H), 2.88 (t, *J*=7.52 Hz, 2 H), 2.46 (t, *J*=7.61 Hz, 2 H), 2.15 (s, 3 H), 2.12 (s, 3H). LC/MS: Method 1, retention time: 5.457min; Method 2, retention time: 3.889 min. HRMS: m/z (M $^+$) = 344.1199 (Calculated for C₁₈H₂₀N₂O₃S₂ = 344.1195).

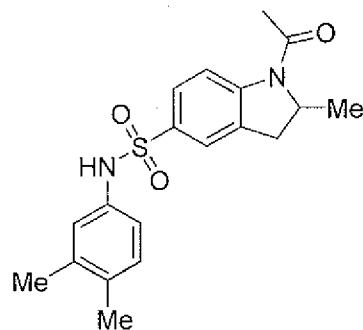
[0117] Compound 43. N-(3-chloro-4-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*6) δ ppm 10.41 (s, 1 H), 10.24 (br. s., 1 H), 7.55 (s, 1 H), 7.51 (dd, *J*=8.4, 2.0 Hz, 1 H), 7.17 (d, *J*=8.2 Hz, 1 H), 7.08 (d, *J*=2.2 Hz, 1 H), 6.95 (dd, *J*=8.2, 2.2 Hz, 1 H), 6.90 (d, *J*=8.4 Hz, 1 H), 2.89 (t, *J*=7.6 Hz, 2 H), 2.41 (t, *J*=7.4 Hz, 2 H), 2.17 (s, 3 H). Method 1, retention time: 5.150 min. HRMS: m/z (M $^+$) = 350.0489 (Calculated for C₁₆H₁₅ClN₂O₃S = 350.0492).

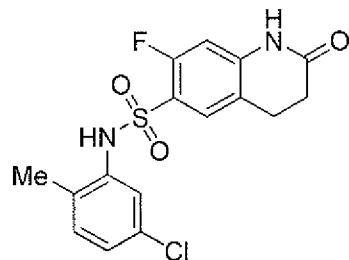
[0118] Compound 44. N-(3,4-dichlorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.54 (s, 1 H), 10.42 (s, 1 H), 7.51 - 7.61 (m, 2 H), 7.46 (d, *J*=8.8 Hz, 1 H), 7.24 (d, *J*=2.5 Hz, 1 H), 7.05 (dd, *J*=8.7, 2.4 Hz, 1 H), 6.92 (d, *J*=8.4 Hz, 1 H), 2.90 (t, *J*=7.6 Hz, 3 H), 2.49 (t, *J*=7.6 Hz, 3 H). Method 1, retention time: 5.279 min. HRMS: *m/z* (M⁺) = 369.9942 (Calculated for C₁₅H₁₂Cl₂N₂O₃S = 369.9942).

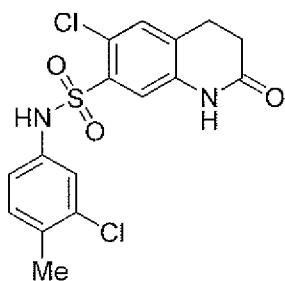
[0119] Compound 45. 6-chloro-N-(5-chloro-2-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.47 (s, 1 H), 9.89 (br. s., 1 H), 7.66 (s, 1 H), 7.09 - 7.22 (m, 2 H), 7.06 (d, *J*=2.0 Hz, 1 H), 7.00 (s, 1 H), 2.87 (t, *J*=7.6 Hz, 2 H), 2.39 - 2.46 (t, *J*=7.3 Hz, 2 H); Method 1, retention time: 5.328 min. HRMS: *m/z* (M⁺) = 384.0106 (Calculated for C₁₆H₁₄Cl₂N₂O₃S = 384.0102).

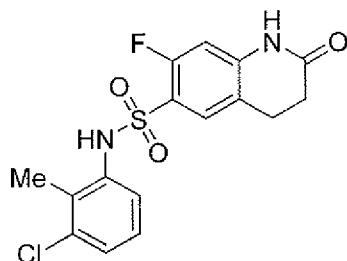
[0120] Compound 46. N-(3-cyanophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.60 (s, 1 H), 10.41 (s, 1 H), 7.51 - 7.63 (m, 2 H), 7.30 - 7.51 (m, 4 H), 6.90 (d, *J*=8.2 Hz, 1 H), 2.89 (t, *J*=7.5 Hz, 2 H), 2.40 - 2.44 (t, *J*=7.5 Hz, 2 H); Method 1, retention time: 4.389 min. HRMS: *m/z* (M⁺) = 327.0672 (Calculated for C₂₆H₁₃N₃O₃S = 327.0678).

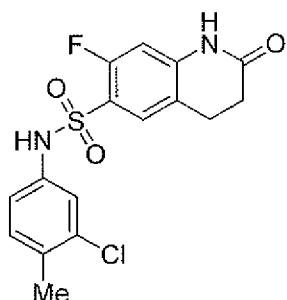
[0121] Compound 47. 1-acetyl-N-(3,4-dimethylphenyl)-2-methylindoline-5-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 9.88 (br. s., 1 H), 7.99 (br. s., 1 H), 7.48 - 7.71 (m, 2 H), 6.93 (d, *J*=6.1 Hz, 1 H), 6.71 - 6.88 (m, 2 H), 4.62 (br. s., 1 H), 2.21 (s, 3 H), 2.07 (m., 6 H), 1.16 (d, *J*=3.5 Hz, 3 H); Method 1, retention time: 5.574 min. HRMS: *m/z* (M⁺) = 358.1353 (Calculated for C₁₉H₂₂N₂O₃S = 358.1351).

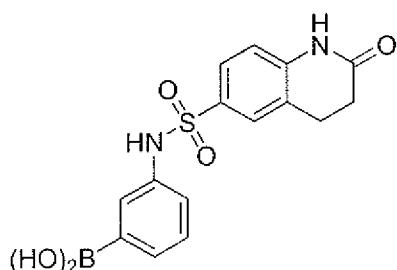
[0122] Compound 48. N-(5-chloro-2-methylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.47 (s, 1 H), 9.94 (s, 1 H), 7.46 (d, *J*=7.8 Hz, 1 H), 7.10 - 7.24 (m, 2 H), 7.07 (d, *J*=1.8 Hz, 1 H), 6.72 (d, *J*=11.3 Hz, 1 H), 2.84 (t, *J*=7.6 Hz, 2 H), 2.39 - 2.45 (t, *J*=7.6 Hz, 2 H), 2.05 (s, 3 H); Method 1, retention time: 5.197 min. HRMS: *m/z* (M⁺) = 368.0389 (Calculated for C₁₆H₁₄ClFN₂O₃S = 368.0398).

[0123] Compound 49. 6-chloro-N-(3-chloro-4-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-sulfonamide

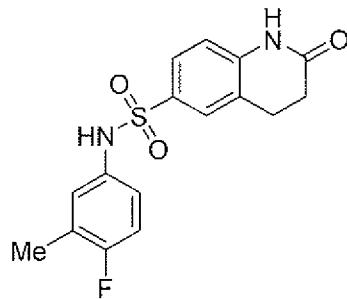

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.55 (br. s., 1 H), 10.44 (s, 1 H), 7.84 (s, 1 H), 7.16 (d, *J*=8.2 Hz, 1 H), 7.08 (d, *J*=2.2 Hz, 1 H), 6.85 - 6.99 (m, 2 H), 2.91 (t, *J*=7.6 Hz, 2 H), 2.41 (t, *J*=7.5 Hz, 2 H), 2.16 (s, 3 H); Method 1, retention time: 5.405 min. HRMS: *m/z* (M⁺) = 384.0094 (Calculated for C₁₆H₁₄Cl₂N₂O₃S = 384.0102).

[0124] Compound 50. N-(3-chloro-2-methylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide

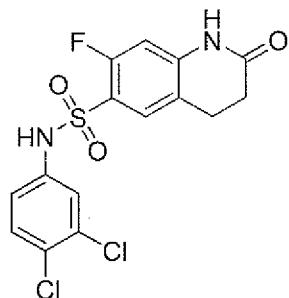

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.49 (s, 1 H), 9.96 (s, 1 H), 7.42 (d, *J*=7.6 Hz, 1 H), 7.29 (d, *J*=7.8 Hz, 1 H), 7.11 (t, *J*=8.0 Hz, 1 H), 6.95 (d, *J*=7.6 Hz, 1 H), 6.74 (d, *J*=11.3 Hz, 1 H), 2.84 (t, *J*=7.6 Hz, 2 H), 2.39 (t, *J*=7.6 Hz, 2 H), 2.17 (s, 3 H); Method 1, retention time: 5.192 min. HRMS: *m/z* (M⁺) = 368.0394 (Calculated for C₁₆H₁₄ClFN₂O₃S = 368.0398).

[0125] Compound 51. N-(3-chloro-4-methylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide

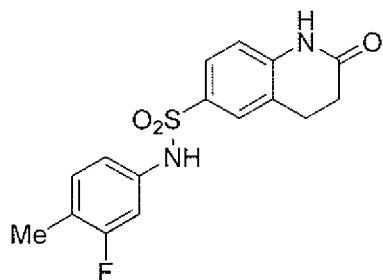
¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.52 (s, 1 H), 10.45 (s, 1 H), 7.61 (d, *J*=7.8 Hz, 1 H), 7.18 (d, *J*=8.4 Hz, 1 H), 7.10 (d, *J*=2.2 Hz, 1 H), 6.96 (dd, *J*=8.2, 2.2 Hz, 1 H), 6.69 (d, *J*=11.3 Hz, 1 H), 2.88 (t, *J*=7.6 Hz, 2 H), 2.38 - 2.46 (t, *J*=7.4 Hz, 2 H), 2.17 (s, 3 H); Method 1, retention time: 5.289 min. HRMS: *m/z* (M⁺) = 368.0387 (Calculated for C₁₆H₁₄ClFN₂O₃S = 368.0398).


[0126] Compound 52. 3-(2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamido)phenylboronic acid

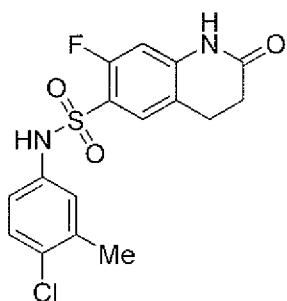
¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.36 (s, 1 H), 9.97 (s, 1 H), 7.96 (s, 1 H), 7.34 - 7.58 (m, 3 H), 7.01 - 7.21 (m, 2 H), 6.86 (d, *J*=8.2 Hz, 1 H), 3.13 (m, 2 H), 2.86 (t, *J*=7.5 Hz, 2 H),


2.42 (t, $J=7.6$ Hz, 2 H); Method 1, retention time: 3.701 min. HRMS: m/z (M $^+$) = 345.0821 (Calculated for C₁₅H₁₅BN₂O₅S = 345.0831).

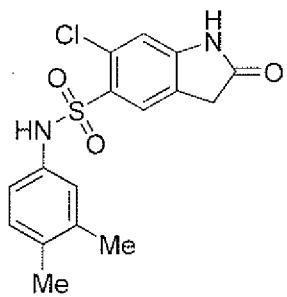
[0127] Compound 53. N-(4-fluoro-3-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.38 (s, 1 H), 9.95 (br. s., 1 H), 7.40 - 7.55 (m, 2 H), 6.91 - 7.01 (m, 2 H), 6.74 - 6.91 (m, 2 H), 2.87 (t, $J=7.5$ Hz, 2 H), 2.38 - 2.45 (t, $J=7.5$ Hz, 2 H), 2.10 (s, 3 H); Method 1, retention time: 4.909 min. HRMS: m/z (M $^+$) = 334.0781 (Calculated for C₁₆H₁₅FN₂O₃S = 334.0787).

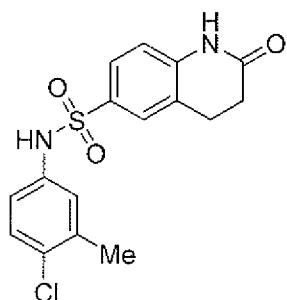
[0128] Compound 54. N-(3,4-dichlorophenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.84 (s, 1 H), 10.48 (s, 1 H), 7.66 (d, $J=7.6$ Hz, 1 H), 7.48 (d, $J=8.8$ Hz, 1 H), 7.26 (d, $J=2.5$ Hz, 1 H), 7.06 (dd, $J=8.8, 2.5$ Hz, 1 H), 6.71 (d, $J=11.3$ Hz, 1 H), 2.89 (t, $J=7.5$ Hz, 2 H), 2.39 - 2.47 (t, $J=7.6$ Hz, 2 H); Method 1, retention time: 5.442 min. HRMS: m/z (M $^+$) = 387.9850 (Calculated for C₁₅H₁₁Cl₂FN₂O₃S = 387.9851).

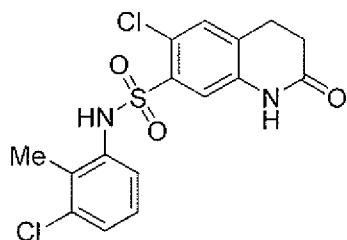
[0129] Compound 55. N-(3-fluoro-4-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.39 (s, 1 H), 10.21 (br. s., 1 H), 7.48 - 7.57 (m, 2 H), 7.08 (t, *J*=8.5 Hz, 1 H), 6.89 (d, *J*=8.2 Hz, 1 H), 6.72 - 6.84 (m, 2 H), 2.88 (t, *J*=7.6 Hz, 2 H), 2.41 (t, *J*=7.6 Hz, 2 H), 2.06 (s, 3 H); Method 1, retention time: 4.916 min. HRMS: *m/z* (M⁺) = 334.0775 (Calculated for C₁₆H₁₅FN₂O₃S = 334.0787).

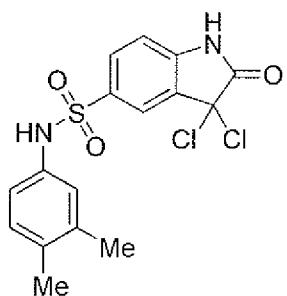
[0130] Compound 56. N-(4-chloro-3-methylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.53 (s, 1 H), 10.46 (s, 1 H), 7.61 (d, *J*=7.8 Hz, 1 H), 7.18 (d, *J*=8.4 Hz, 1 H), 7.10 (d, *J*=2.2 Hz, 1 H), 6.96 (dd, *J*=8.2, 2.2 Hz, 1 H), 6.69 (d, *J*=11.3 Hz, 1 H), 2.88 (t, *J*=7.5 Hz, 2 H), 2.40 (t, *J*=7.5 Hz, 2 H), 2.17 (s, 3 H); Method 1, retention time: 5.294 min. HRMS: *m/z* (M⁺) = 368.0388 (Calculated for C₁₆H₁₄ClFN₂O₃S = 368.0398).

[0131] Compound 57. 6-chloro-N-(3,4-dimethylphenyl)-2-oxoindoline-5-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.78 (s, 1 H), 10.13 (s, 1 H), 7.77 (s, 1 H), 6.86 - 6.95 (m, 2 H), 6.84 (s, 1 H), 6.71 - 6.82 (m, 1 H), 3.50 (s, 2 H), 2.06 (s, 3 H), 2.04 (s, 3 H); Method 1, retention time: 5.069 min. HRMS: *m/z* (M⁺) = 350.0481 (Calculated for C₁₆H₁₅ClN₂O₃S = 350.0492).

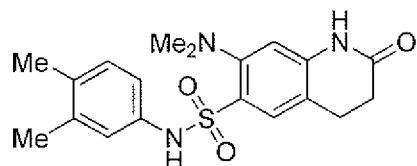
[0132] Compound 58. N-(4-chloro-3-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.40 (br. s., 2 H), 7.55 (m, 2 H), 7.14 (m, 3 H), 6.90 (d, *J*=8.4 Hz, 1 H), 2.88 (t, *J*=7.4 Hz, 2 H), 2.40 (t, *J*=7.5 Hz, 2 H), 2.20 (s, 3 H); Method 1, retention time: 5.160 min. HRMS: *m/z* (M⁺) = 350.0487 (Calculated for C₁₆H₁₅ClN₂O₃S = 350.0492).

[0133] Compound 59. 6-chloro-N-(3-chloro-2-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-sulfonamide

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.48 (s, 1 H), 9.89 (s, 1 H), 7.61 (s, 1 H), 7.28 (d, *J*=7.8 Hz, 1 H), 7.09 (t, *J*=8.0 Hz, 1 H), 7.02 (s, 1 H), 6.92 (d, *J*=7.8 Hz, 1 H), 2.86 (t, *J*=7.6 Hz, 2 H), 2.39 (t, *J*=7.6 Hz, 2 H), 2.20 (s, 3 H); Method 1, retention time: 5.352 min. HRMS: *m/z* (M⁺) = 384.0102 (Calculated for C₁₆H₁₄Cl₂N₂O₃S = 384.0102).

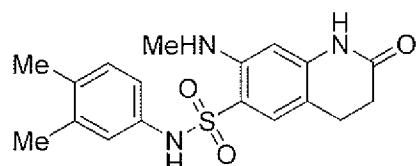
[0134] Compound 60. 3,3-dichloro-N-(3,4-dimethylphenyl)-2-oxoindoline-5-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 11.74 (s, 1 H), 9.97 (s, 1 H), 7.85 (s, 1 H), 7.70 (d, *J*=8.2 Hz, 1 H), 7.05 (d, *J*=8.2 Hz, 1 H), 6.95 (d, *J*=8.0 Hz, 1 H), 6.68 - 6.88 (m, 2 H), 2.06 (s,

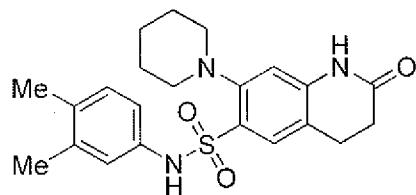
6 H); Method 1, retention time: 5.779 min. HRMS: m/z (M $^+$) = 384.0088 (Calculated for C₁₆H₁₄Cl₂N₂O₃S = 384.0102).

[0135] *General procedure for the synthesis of compounds 32-34, 36, and 61-70.*

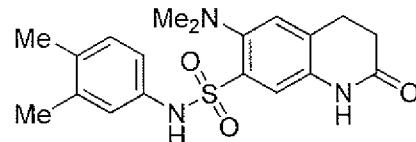
The methods of synthesizing compound 32 were generally followed for all compounds 32-34, 36, and 61-73.


[0136] Compound 32. 7-(dimethylamino)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide

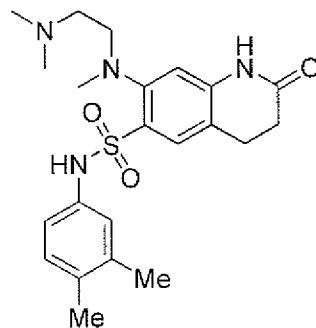
In a microwave vial, N-(3,4-dimethylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide (.01 g, 0.029 mmol) was dissolved in acetonitrile (.5 ml) and dimethylamine (2.0 M THF) (0.029 ml, 0.057 mmol) was added followed by triethylamine (6.00 μ l, 0.043 mmol). The solution was heated in a microwave at 180 °C for 1 h, cooled to RT, diluted with DMSO (0.5 mL) and purified by directly injecting to a Waters® reverse phase purification system.


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.19 (s, 1 H), 9.41 (s, 1 H), 7.50 - 7.63 (s, 1 H), 6.83 - 6.91 (m, 2 H), 6.75 - 6.83 (m, 2 H), 2.80 (t, *J*=7.5 Hz, 2 H), 2.58 (s, 6 H), 2.39 (m, 2 H), 2.04 (m, 6 H). LC/MS: Method 1, retention time: 5.170 min; HRMS: m/z (M $^+$) = 373.1461 (Calculated for C₁₉H₂₃N₃O₃S = 373.1460).

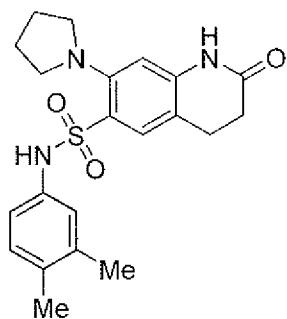
[0137] Compound 33. N-(3,4-dimethylphenyl)-7-(methylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.10 (s, 1 H), 9.83 (s, 1 H), 7.33 (s, 1 H), 6.92 (m, 2 H), 6.65 - 6.8 (m, 2 H), 6.12 (s, 1 H), 2.85 (t, *J*=7.5 Hz, 2 H), 2.69 (d, *J*=4.6 Hz, 3 H), 2.35 (t, *J*=7.4 Hz, 2 H), 2.06 (m, 6 H). LC/MS: Method 1, retention time: 5.170 min; HRMS: m/z (M $^+$) = 359.1302 (Calculated for C₁₈H₂₁N₃O₃S = 359.1304).

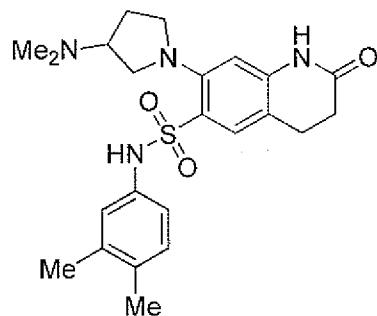
[0138] Compound 34. N-(3,4-dimethylphenyl)-2-oxo-7-(piperidin-1-yl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.21 (s, 1 H), 8.93 (s, 1 H), 7.61 (s, 1 H), 6.88 (d, *J*=8.2 Hz, 1 H), 6.78 (m, 2 H), 6.71 (dd, *J*=8.1, 2.1 Hz, 1 H), 2.81 (t, *J*=7.5 Hz, 2 H), 2.70 (m, 4 H), 2.40 (t, *J*=7.6 Hz, 2 H), 2.03 (d, *J*=4.7 Hz, 6 H), 1.73 (m, 4 H), 1.48 (m, 2 H). LC/MS: Method 1, retention time: 5.718 min; HRMS: *m/z* (M⁺) = 413.1786 (Calculated for C₂₂H₂₇N₃O₃S = 413.1773).

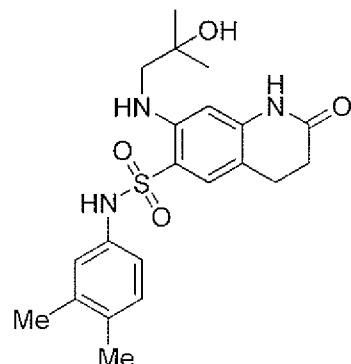
[0139] Compound 36. 6-(dimethylamino)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 10.19 (s, 1 H), 9.41 (s, 1 H), 7.58 (s, 1 H), 6.84 - 6.93 (m, 2 H), 6.67 - 6.84 (m, 2 H), 2.80 (t, *J*=7.5 Hz, 2 H), 2.58 (s, 6 H), 2.39 (t, *J*=7.5 Hz, 2 H), 1.99 - 2.07 (m, 6 H). LC/MS: Method 1, retention time: 5.196 min; HRMS: *m/z* (M⁺) = 373.1468 (Calculated for C₁₉H₂₃N₃O₃S = 373.1460).

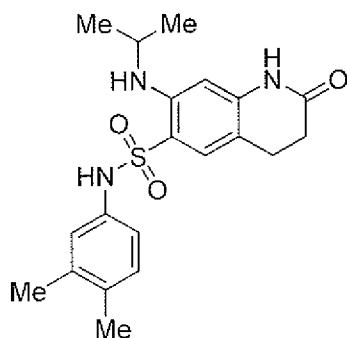
[0140] Compound 61. 7-((2-(dimethylamino)ethyl)(methyl)amino)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.29 (br. s., 1 H), 9.62 (br. s., 1 H), 8.80 (s, 1 H), 7.66 (s, 1 H), 6.69 - 6.98 (m, 3 H), 3.03 - 3.18 (m, 2 H), 2.73 - 2.96 (m, 7 H), 2.52 (s, 6 H), 2.41 (t, *J*=7.6 Hz, 2 H), 2.07 (s, 3 H), 2.04 (s, 3 H); Method 1, retention time: 4.090 min. HRMS: *m/z* (M⁺) = 430.2044 (Calculated for C₂₂H₃₀N₄O₃S = 430.2039).

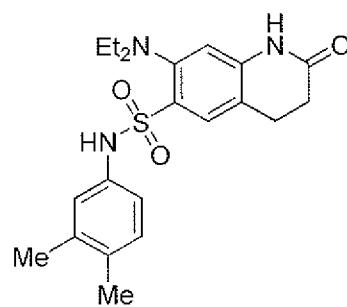
[0141] Compound 62. N-(3,4-dimethylphenyl)-2-oxo-7-(pyrrolidin-1-yl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.12 (s, 1 H), 9.41 (s, 1 H), 7.56 (s, 1 H), 6.89 (d, *J*=8.0 Hz, 1 H), 6.80 (s, 1 H), 6.73 (dd, *J*=8.0, 2.0 Hz, 1 H), 6.63 (s, 1 H), 3.54 (br. s., 24 H), 3.03 - 3.19 (m, 4 H), 2.75 (t, *J*=7.5 Hz, 3 H), 2.37 (t, *J*=7.5 Hz, 3 H), 2.05 (s, 3 H), 2.04 (s, 3 H), 1.85 (m, 4 H); Method 1, retention time: 5.262 min. HRMS: *m/z* (M⁺) = 399.1620 (Calculated for C₂₁H₂₅N₃O₃S = 399.1617).

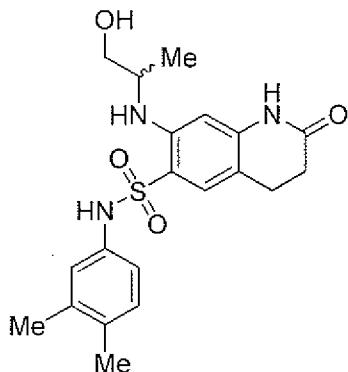
[0142] Compound 63. 7-(3-(dimethylamino)pyrrolidin-1-yl)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.27 (s, 1 H), 9.35 (s, 1 H), 7.60 (s, 1 H), 6.91 (d, *J*=8.0 Hz, 1 H), 6.79 (s, 2 H), 6.72 (dd, *J*=8.1, 1.9 Hz, 1 H), 3.23 (m, 1 H), 3.09 - 3.18 (m, 1 H), 3.03 (m, 1 H), 2.70 - 2.88 (m, 6 H), 2.46 (s, 6H), 2.39 (m, 2 H), 2.06 (m, 9 H); Method 1, retention time: 4.092 min. HRMS: *m/z* (M⁺) = 442.2040 (Calculated for C₂₂H₃₀N₄O₃S = 442.2039).

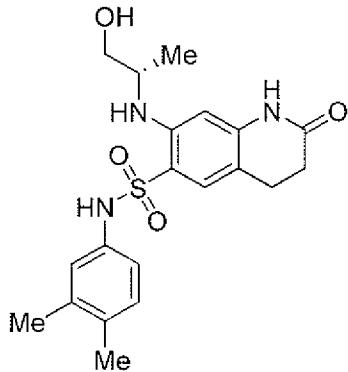
[0143] Compound 64. N-(3,4-dimethylphenyl)-7-(2-hydroxy-2-methylpropylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.03 (s, 1 H), 9.84 (s, 1 H), 7.33 (s, 1 H), 6.91 (d, *J*=8.0 Hz, 1 H), 6.79 (d, *J*=1.8 Hz, 1 H), 6.72 (dd, *J*=8.0, 2.2 Hz, 1 H), 6.05 - 6.23 (m, 2 H), 2.87 (d, *J*=4.5 Hz, 2 H), 2.68 (t, *J*=7.4 Hz, 2 H), 2.50 (s, 1 H), 2.36 (t, *J*=7.4 Hz, 2 H), 2.05 (m, 6 H), 1.12 (s, 6 H); Method 1, retention time: 5.052 min. HRMS: *m/z* (M⁺) = 417.1723 (Calculated for C₂₁H₂₇N₃O₄S = 417.1722).

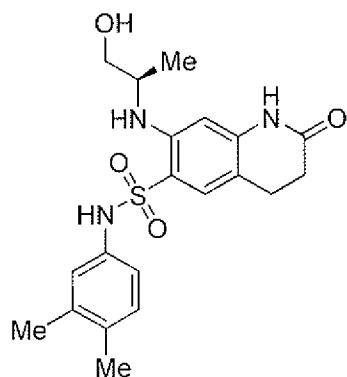
[0144] Compound 65. N-(3,4-dimethylphenyl)-7-(isopropylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.03 (s, 1 H), 9.92 (s, 1 H), 7.34 (s, 1 H), 6.92 (d, *J*=8.0 Hz, 1 H), 6.77 (s, 1 H), 6.71 (dd, *J*=8.1, 2.1 Hz, 1 H), 6.17 (s, 1 H), 5.52 (d, *J*=7.2 Hz, 1 H), 3.37 - 3.50 (m, 1 H), 2.68 (t, *J*=7.4 Hz, 3 H), 2.36 (t, *J*=7.5 Hz, 3 H), 2.06 (s, 3H), 2.05 (s, 3H), 1.07 (d, *J*=6.3 Hz, 6 H); Method 1, retention time: 5.596 min. HRMS: *m/z* (M⁺) = 387.1614 (Calculated for C₂₀H₂₅N₃O₃S = 387.1617).

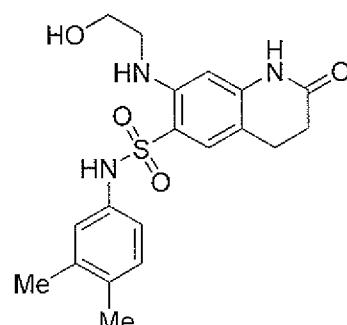
[0145] Compound 66. 7-(diethylamino)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.15 (s, 1 H), 9.42 (br. s., 1 H), 7.71 (s, 1 H), 6.87 (d, *J*=8.0 Hz, 1 H), 6.79 (d, *J*=2.9 Hz, 2 H), 6.71 (dd, *J*=8.1, 2.1 Hz, 1 H), 2.78 - 2.97 (m, 6 H), 2.40 (t, *J*=7.6 Hz, 2 H), 2.04 (s, 3H), 2.03 (s, 3 H), 0.88 (t, *J*=7.1 Hz, 6 H); Method 1, retention time: 4.328 min. HRMS: *m/z* (M⁺) = 401.1775 (Calculated for C₂₁H₂₇N₃O₃S = 401.1773).

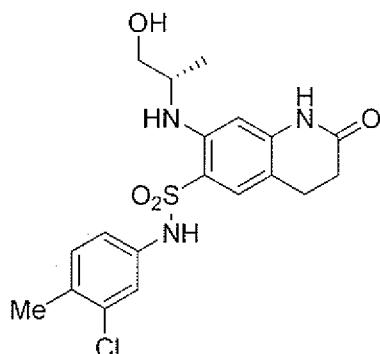
[0146] Compound 67. N-(3,4-dimethylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.04 (s, 1 H), 9.84 (s, 1 H), 7.32 (s, 1 H), 6.91 (d, *J*=8.0 Hz, 1 H), 6.77 (s, 1 H), 6.72 (d, *J*=8.0 Hz, 1 H), 6.21 (s, 1 H), 5.77 (d, *J*=6.3 Hz, 1 H), 4.82 (br. s., 1 H), 3.40 – 3.34 (m, 3H), 2.67 (t, *J*=7.4 Hz, 2 H), 2.35 (t, *J*=7.3 Hz, 2 H), 2.06 (s, 3H), 2.05 (s, 3H), 1.03 (d, *J*=5.1 Hz, 3 H); Method 1, retention time: 4.943 min. HRMS: *m/z* (M⁺) = 403.1564 (Calculated for C₂₀H₂₅N₃O₃S = 403.1566).

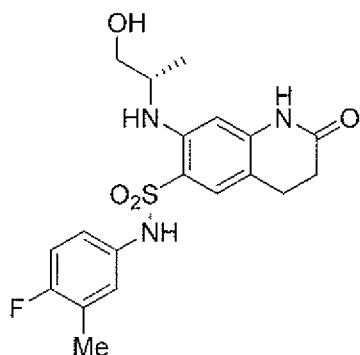
[0147] Compound 68. (S)-N-(3,4-dimethylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.04 (s, 1 H), 9.84 (s, 1 H), 7.32 (s, 1 H), 6.91 (d, *J*=8.0 Hz, 1 H), 6.77 (s, 1 H), 6.72 (d, *J*=8.0 Hz, 1 H), 6.21 (s, 1 H), 5.77 (d, *J*=6.3 Hz, 1 H), 4.82 (br. s., 1 H), 3.40 – 3.34 (m, 3H), 2.67 (t, *J*=7.4 Hz, 2 H), 2.35 (t, *J*=7.3 Hz, 2 H), 2.06 (s, 3H), 2.05 (s, 3H), 1.03 (d, *J*=5.1 Hz, 3 H); [α]_D = -53 (c = 1.0, MeOH). Method 1, retention time: 4.943 min. HRMS: *m/z* (M⁺) = 403.1562 (Calculated for C₂₀H₂₅N₃O₃S = 403.1566).

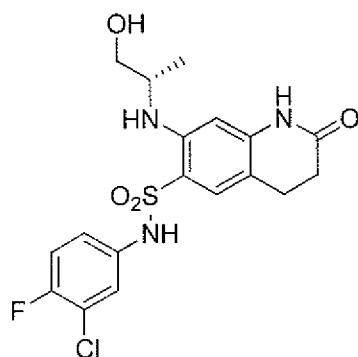
[0148] Compound 69. (R)-N-(3,4-dimethylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.04 (s, 1 H), 9.84 (s, 1 H), 7.32 (s, 1 H), 6.91 (d, *J*=8.0 Hz, 1 H), 6.77 (s, 1 H), 6.72 (d, *J*=8.0 Hz, 1 H), 6.21 (s, 1 H), 5.77 (d, *J*=6.3 Hz, 1 H), 4.82 (br. s., 1 H), 3.40 – 3.34 (m, 3H), 2.67 (t, *J*=7.4 Hz, 2 H), 2.35 (t, *J*=7.3 Hz, 2 H), 2.06 (s, 3H), 2.05 (s, 3H), 1.03 (d, *J*=5.1 Hz, 3 H); [α]_D = 53 (c = 1.0, MeOH). Method 1, retention time: 4.943 min. HRMS: *m/z* (M⁺) = 403.1565 (Calculated for C₂₀H₂₅N₃O₃S = 403.1566).

[0149] Compound 70. N-(3,4-dimethylphenyl)-7-(2-hydroxyethylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide

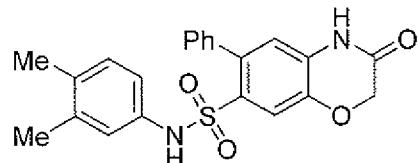

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.06 (br. s., 1 H), 9.85 (br. s., 1 H), 7.32 (s, 1 H), 6.91 (d, *J*=8.0 Hz, 1 H), 6.67 - 6.82 (m, 2 H), 6.18 (s, 1 H), 5.95 (br. s., 1 H), 4.78 (br. s., 1 H), 3.55 (t, *J*=5.4 Hz, 2 H), 3.06 (t, *J*=5.3 Hz, 2 H), 2.67 (t, *J*=7.4 Hz, 2 H), 2.35 (t, *J*=7.3 Hz, 2 H), 2.06 (s, 3 H), 2.05 (s, 3 H); Method 1, retention time: 4.752 min; HRMS: *m/z* (M⁺) = 389.1404 (Calculated for C₁₉H₂₃N₃O₄S = 389.1409).

[0150] Compound 71. (S)-N-(3-chloro-4-methylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide


¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.22 (s, 1 H) 10.08 (s, 1 H) 7.36 (s, 1 H) 7.17 (d, *J*=8.22 Hz, 1 H) 7.02 (d, *J*=1.56 Hz, 1 H) 6.89 (dd, *J*=8.12, 1.66 Hz, 1 H) 6.25 (s, 1 H) 5.79 (d, *J*=5.87 Hz, 1 H) 4.85 (br. s., 1 H) 3.36 (m, 3 H) 2.70 (t, *J*=7.34 Hz, 2 H) 2.38 (t, *J*=7.43 Hz, 2 H) 2.18 (s, 3 H) 1.05 (d, *J*=5.48 Hz, 3 H). Method 1, retention time: 4.996 min. HRMS: *m/z* (M⁺) = 423.1018 (Calculated for C₁₉H₂₂ClN₃O₄S = 423.1020).

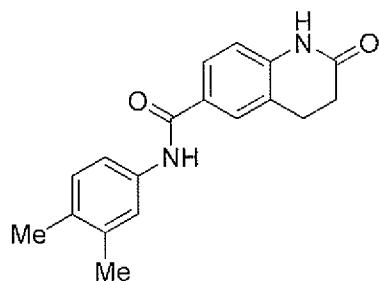
[0151] Compound 72. (S)-N-(4-fluoro-3-methylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.06 (br. s., 1 H) 9.94 (s, 1 H) 7.33 (d, *J*=9.00 Hz, 1 H) 6.73 - 7.04 (m, 3 H) 6.24 (d, *J*=9.19 Hz, 1 H) 5.79 (br. s., 1 H) 4.85 (br. s., 1 H) 3.33 (m, 3 H) 2.69 (t, *J*=7.41 Hz, 2 H) 2.38 (t, *J*=7.43 Hz, 2 H) 2.11 (s, 3 H) 1.03 (d, *J*=5.51 Hz, 3 H). Method 1, retention time: 4.709 min. HRMS: *m/z* (M⁺) = 407.1319 (Calculated for C₁₉H₂₂FN₃O₄S = 407.1315).


[0152] Compound 73. (S)-N-(3-chloro-4-fluorophenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.28 (br. s., 1 H) 10.10 (s, 1 H) 7.35 – 7.28 (m, 3 H) 7.12 – 7.00 (m, 2 H) 6.25 (m, 1 H) 5.90 (br. s., 1 H) 3.20 (m, 3 H) 2.70 (t, *J*=7.41 Hz, 2 H) 2.38 (t, *J*=7.43 Hz, 2 H) 1.04 (d, *J*=5.51 Hz, 3 H). Method 1, retention time: 4.881 min. HRMS: *m/z* (M⁺) = 427.0773 (Calculated for C₁₈H₁₉ClFN₃O₄S = 427.0769).

[0153] *General procedure for the synthesis of compound 40.*


[0154] Compound 40. N-(3,4-dimethylphenyl)-3-oxo-6-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-sulfonamide

To a microwave vial, 6-bromo-N-(3,4-dimethylphenyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-sulfonamide (.03 g, 0.073 mmol), phenylboronic acid (0.018 g, 0.146 mmol), Tetrakis (2.53 mg, 2.188 μmol), sodium carbonate (2.0 M aqueous solution) (0.109 ml, 0.219 mmol) and 1,2-DME (.5 ml) were added. The vessel was sealed and heated under microwave irradiation at 120 °C for 20 minutes. The reaction was cooled to RT, filtered through a thiol-SPE column (Stratospheres) and the column rinsed with methanol (~2 mL). The resultant solution was purified. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 11.01 (br. s., 1 H), 9.57 (br. s., 1 H), 7.46 – 7.58 (m, 1 H), 7.32 (d, *J*=5.3 Hz, 3 H), 7.09 – 7.25 (m, 2 H), 6.91 (d, *J*=8.0 Hz, 1 H), 6.73 (s, 1 H), 6.48 – 6.68 (m, 2 H), 4.66 (s, 2 H), 1.94 – 2.14 (m, 6 H). LC/MS: Method 1, retention time: 5.946 min; HRMS: *m/z* (M⁺) = 408.1141 (Calculated for C₂₂H₂₀N₂O₄S = 408.1144).

[0155] *General procedure for the synthesis of compound 42.*

[0156] Compound 42. N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-carboxamide

2-oxo-1,2,3,4-tetrahydroquinoline-6-carboxylic acid (0.075 g, 0.392 mmol) and 3,4-dimethylaniline (0.052 g, 0.432 mmol) were dissolved in DMF (1 ml) and EDC (0.083 g, 0.432 mmol) was added. The reaction was stirred at RT for 4 h, then directly purified by directly injecting to a Waters® reverse phase purification system.

¹H NMR (400 MHz, DMSO-*d*6) δ ppm: 10.29 (s, 1 H), 9.86 (s, 1 H), 7.67 - 7.80 (m, 2 H), 7.38 - 7.53 (m, 2 H), 7.04 (d, *J*=8.2 Hz, 1 H), 6.89 (d, *J*=8.2 Hz, 1 H), 3.13 (s, 3 H), 2.92 (t, *J*=7.6 Hz, 2 H), 2.45 (t, *J*=7.65 Hz, 2 H), 2.16 (m, 6 H). Method 1, retention time: 5.009 min; HRMS: *m/z* (M⁺) = 294.1361 (Calculated for C₁₈H₁₈N₂O₂ = 294.1368).

EXAMPLE 2

[0157] This example illustrates some of the properties of exemplary compounds of the invention.

[0158] Structure active relationship (SAR) explorations were done with 2-oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamides, modifying the core 3,4-dihydroquinolin-2(1H)-one heterocycle with the sulfonamide attachment at the 6 and 7 positions of the ring (see Scheme 1 above, which shows the link at C6). The related 2H-benzo[b][1,4]oxazin-3(4H)-one, 1H-benzo[d]imidazol-2(3H)-one, indolin-2-one, and several 3,4-dihydroquinolin-2(1H)-one analogues with F, Cl, and Br substitutions were also explored. Additional SAR explorations were also performed at the 7 position of the 3,4-dihydroquinolin-2(1H)-one heterocycle. To explore aryl analogues at this position, Suzuki-Miyaura couplings between the 7-bromo-3,4-dihydroquinolin-2(1H)-one moiety and selected aryl-boronic acids (see Scheme 1 above) were pursued. A second method for exploring SAR at the 7-position involved displacement of the aryl fluoride of the 7-fluoro-3,4-dihydroquinolin-2(1H)-one moiety with various amines (see Scheme 1 above).

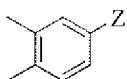
[0159] AC₅₀ values were determined utilizing the luminescent pyruvate kinase-luciferase coupled assay (Inglese, J. et al, Quantitative high-throughput screening: a titration-based

approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 11473–11478).

[0160] *Reagents.* Kinase-Glo was obtained from Promega (Madison, WI, USA). ATP, PEP, LDH and NADH were from Sigma (St. Louis, MO, USA). Reagents and solvents were purchased from Sigma, Alfa Aesar (Ward Hill, MA, USA), Acros (Morris Plains, NJ, USA), Enamine (Monmouth Jct., NJ, USA), Oakwood Products (West Columbia, SC, USA), Matrix Scientific (Columbia, SC, USA) or Chem-Impex International (Wood Dale, IL, USA).

[0161] *Luminescent pyruvate kinase-luciferase coupled assay.* Production of a luminescent signal based on the generation of ATP by pyruvate kinase was determined by using the ATP-dependent enzyme firefly luciferase. Three μ L of substrate mix (at r.t.) in assay buffer (50 mM imidazole pH 7.2, 50 mM KCl, 7 mM MgCl₂, 0.01% tween 20, 0.05% BSA) was dispensed into Kalypsys (San Diego, CA, USA) white solid bottom 1,536 well microtiter plates using a bottle-valve solenoid-based dispenser (Kalypsys). The final concentrations of substrates in the assay were 0.1 mM ADP and 0.5 mM PEP. Twenty-three nL of compound in DMSO were delivered with a 1,536-pin array tool, and 1 μ L of enzyme mix in assay buffer (final concentration, 0.1 nM pyruvate kinase, 50 mM imidazole pH 7.2, 0.05% BSA, 4 °C) was added. Microtiter plates were incubated at r.t. for 1 hour and 2 μ L of luciferase detection mix (Kinase-Glo from Promega, Madison, WI, USA) at 4 °C protected from light, was added and luminescence was read with a ViewLux (Perkin Elmer, Waltham, MA, USA) using a 2 second exposure/plate (with 2X binning). The final concentration of DMSO was 0.5% and found not to affect the assay signal.

[0162] Data was normalized for AC₅₀ values to control columns containing uninhibited enzyme (n), and AC₁₀₀ inhibition (i) according the following equation: Activation (%) = [(c-n)/(n-i)]*100 where c = compound, n = DMSO neutral, i = no enzyme control. A % activity of 100% is approximately a 2-fold increase over basal assay signal (% Activation by FBP was variable but averaged 100%). Monitoring of activation was accomplished using enzyme at 3x the final concentration.


[0163] All compounds were screened using a qHTS approach, where compounds are assayed using at least seven concentrations to generate concentration-response curves for every compounds. Briefly, qHTS uses an inter-plate dilution method where the first plate contains the highest concentration of a set of compounds in DMSO, while subsequent plates contain the same compounds in the same well locations, but at successive lower concentrations. Using the protocol outlined above, the rate was calculated as a plate

throughput of 18 plates/hr or approximately 7 samples/sec on the Kalypsys robotic system which means that a 7 point CRC was obtained every second on the robotic system.

[0164] Three primary structural aspects of the 2-oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamide molecule were pursued, i.e. the two moieties of the 3,4-dimethylaniline and 3,4-dihydroquinolin-2(1H)-one and the sulfonamide linkage. The first SAR examinations surrounded the linkage between the two aromatic moieties (compounds 41 and 42). An N-methyl sulfonamide (compound 41) version of compound 4 had an AC_{50} of 23.09 μM and Max. Res. of 36.00%. An amide (compound 42) version of compound 4 had an AC_{50} of 40 μM and a Max. Res. of 5%.

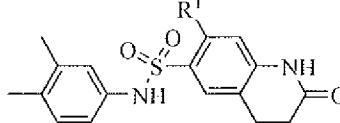
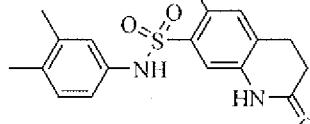
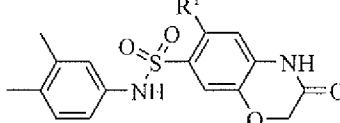
[0165] The second examination involved the modification of the core 3,4-dihydroquinolin-2(1H)-one heterocycle. Numerous, related heterocyclic sulfonyl chlorides were examined after coupling to 3,4-dimethylaniline to maintain uniformity with the lead from the primary screen. Results detailed in Table 1 demonstrate that the 3,4-dihydroquinolin-2(1H)-one heterocycle retains the best combination of potency and maximum response. Other heterocycles included the related 4-methyl-2H-benzo[b][1,4]oxazin-3(4H)-one and the modestly divergent 1,3-dimethyl-1H-benzo[d]imidazol-2(3H)-one and 1-(indolin-1-yl)ethanone heterocycles.

Table 1. SAR of selected *N*-(3,4-dimethylphenyl)arylsulfonamides

	#	Z^1	$hPK, M2$ $AC_{50} (\mu M)$	$hPK, M2$ Max. Res. ^a
 4-12	4	3,4-dihydroquinolin-2(1H)-one-6-sulfonamide	0.65	104%
	5	indolin-2-one-6-sulfonamide	14.5	130%
	6	4,5-dihydro-1H-benzo[b]azepin-2(3H)-one-7-sulfonamide	18.0	66%
	7	2H-benzo[b][1,4]oxazin-3(4H)-one-6-sulfonamide	20.0	93%
	8	4-methyl-2H-benzo[b][1,4]oxazin-3(4H)-one-6-sulfonamide	0.92	120%
	9	1H-benzo[d]imidazol-2(3H)-one-5-sulfonamide	21.0	59%
	10	1,3-dimethyl-1H-benzo[d]imidazol-2(3H)-one-5-sulfonamide	1.8	100%
	11	1-(indolin-1-yl)ethanone-5-sulfonamide	1.8	65%
	12	1-methyl-1H-indole-5-sulfonamide	20.0	40%

^aMax. Res. value represents the % activation at 57 μM of compound. Each value is the mean with standard deviation from three replicate experiments.

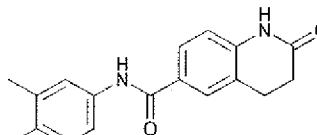
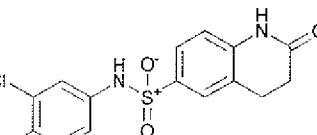
[0166] The next examination involved alterations to the 3,4-dimethylaniline moiety and are detailed in Table 2. While the 3,4-dimethylaniline moiety was among the most potent analogues, the 3-chlorophenyl derivative (compound 13) possessed an equal degree of potency and maximum response. Selected SAR trends were noticed in this series including the positive effect of substitutions at the meta position relative to the ortho and para positions (for instance, see the values for fluoro substitution within compounds 16, 23 and 26).

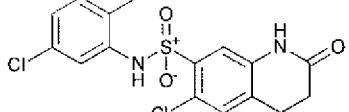
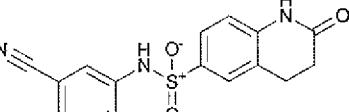
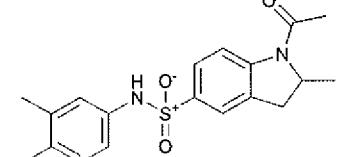
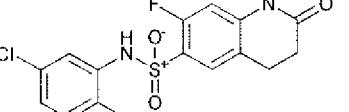
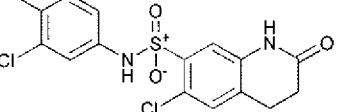
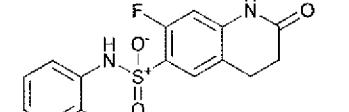
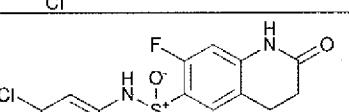
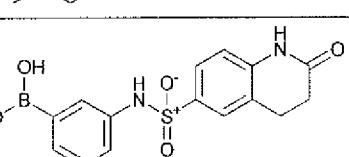
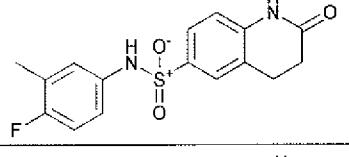
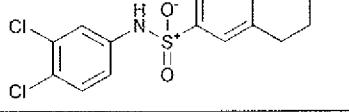



Table 2. SAR of selected 2-oxo-*N*-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamide

#	R ⁱⁱ	<i>hPK, M2</i>	
		<i>AC₅₀ (μM)</i>	<i>Max. Res.^a</i>
	4	3,4-dimethylphenyl	0.65
	13	3-chlorophenyl	0.65
	14	meta-tolyl	1.2
	15	3-methoxyphenyl	3.2
	16	3-fluorophenyl	1.8
	17	3-trifluoromethylphenyl	13
	18	biphenyl-3-yl	14
	19	pyridin-3-yl	23
	20	4-chlorophenyl	3.2
	21	para-tolyl	4.1
	22	4-methoxyphenyl	36
	23	4-fluorophenyl	10
	24	ortho-tolyl	3.9
	25	2-methoxyphenyl	21
	26	2-fluorophenyl	7.3
4, 13-30	27	naphthalen-2-yl	2.9
	28	naphthalen-1-yl	10
	29	2,3-dihydrobenzo[<i>b</i>][1,4]dioxin-6-yl	16
	30	benzyl	14

^aMax. Res. value represents the % activation at 57 μM of compound. Each value is the mean with standard deviation from three replicate experiments.

[0167] The 6-position (by IUPAC nomenclature rules) in the 2H-benzo[*b*][1,4]oxazin-3(4H)-one heterocycle was examined (compounds 37-40). In general, this related position resulted in analogues with good potency and maximum response values (see Table 3). Increased size, however, was less effective as demonstrated by the piperidine analogue 34 and the aryl substituted analogue 40. Amine substitutions provided several analogues with good potency including the NHMe-containing derivative compound 33. The N(Me)₂-containing compounds 32 and 36 were both potent and fully activated the enzyme.




Table 3. SAR of selected *N*-(3,4-dimethylphenyl)arylsulfonamides











	#	R ¹	hPK, M2 AC ₅₀ (μM)	hPK, M2 Max. Res. ^a
	4	H	0.65	104%
	31	F	0.92	115%
	32	N(Me) ₂	0.52	106%
	33	NHMe	0.16	53%
	34	1-piperidine	15	57%
	35	Cl	0.26	104%
	36	N(Me) ₂	0.46	110%
	37	Cl	0.58	95%
	38	Br	18	103%
	39	Me	1.2	106%
	40	phenyl	20.6	36%

^aMax. Res. value represents the % activation at 57 μM of compound. Each value is the mean with standard deviation from three replicate experiments.

[0168] Compounds 41-73 were also tested. The results are in Table 4.

[0169] Table 4

Compound	Structure	AC ₅₀ (μM)	Max. Res.
41		23.09	36.00
42		40	5
43		0.26	122.38
44		2.59	126.17

Compound	Structure	AC ₅₀ (μM)	Max. Res.
45		2.91	108.88
46		9.19	97.00
47		18.34	111.76
48		4.61	94.62
49		0.65	111.72
50		2.59	117.55
51		0.12	102.49
52		0.82	99.32
53		0.37	121.19
54		3.66	108.94

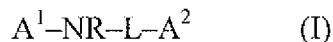
Compound	Structure	AC ₅₀ (μM)	Max. Res.
55		0.46	131.37
56		0.82	94.23
57		0.92	107.73
58		0.41	96.45
59		1.16	109.46
60		10.31	117.30
61		5.84	70.48
62		0.46	124.25
63		8.19	102.12

Compound	Structure	AC ₅₀ (μM)	Max. Res.
64		1.83	100.38
65		0.32	105.86
66		7.24	110.76
67		0.11	110.43
68		0.09	131.05
69		0.37	87.70
70		0.09	110.67

Compound	Structure	AC ₅₀ (μM)	Max. Res.
71		0.08	124
72		0.27	99
73		0.14	95

[0170] The same assay system was utilized to examine the activity of compound 4 and all related analogs versus PKL, PKM1 and PKR pyruvate kinase isoforms. No activity for any of the compounds were found against PKL, PKM1, or PKR.

[0171] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.


[0172] The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or

clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

[0173] Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

CLAIM(S):

1. A compound of formula (I):

wherein A^1 and A^2 are each individually R' or R'' ;

wherein R is H or C_1 - C_4 alkyl;

wherein L is SO_2 or CO;

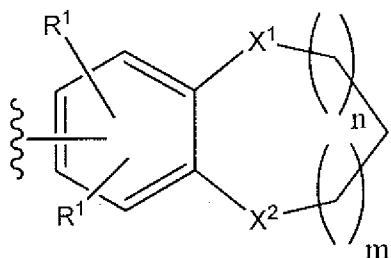
wherein R' is a fused bicyclic ring, wherein one ring of the bicyclic ring is phenyl which is linked to the NR-L moiety at the nitrogen atom or the sulfur atom when L is SO_2 or the carbon atom when L is CO and the other ring of the bicyclic ring is an aryl, a heteroaryl, a cyclyl, or a heterocyclyl, wherein R' is optionally substituted on one or both rings with one or more substituents selected from the group consisting of aryl, heteroaryl, cyclyl, alkyl, alkoxy, halogen, NH_2 , $NH-(C_1-C_4)alkyl$, $N-(C_1-C_4)alkyl-(C_1-C_4)alkyl$, $(C_1-C_4)alkyl-CO-$, and heterocyclyl, each of which other than halogen and NH_2 is further optionally substituted with one or more substituents selected from the group consisting of NH_2 , OH, $NH-(C_1-C_4)alkyl$ and $N-(C_1-C_4)alkyl-(C_1-C_4)alkyl$; and

wherein R'' is phenyl, benzyl, or heteroaryl, which is optionally substituted with one or more substituents selected from the group consisting of halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, cyano, alkylenedioxy, aryl, heteroaryl, benzyl, $B(OH)_2$, and C_1 - C_4 alkyl substituted with one or more halogens, or is phenyl optionally fused with an aryl, a heteroaryl, a cyclyl, or a heterocyclyl, each of which is optionally substituted with one or more substituents selected from the group consisting of halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, alkylenedioxy, aryl, heteroaryl, benzyl, and C_1 - C_4 alkyl substituted with one or more halogens;

or a pharmaceutically acceptable salt thereof.

2. The compound or salt of claim 1, wherein A^1 is R'' and A^2 is R' .

3. The compound or salt of claim 1 or 2, wherein the phenyl ring of the bicyclic ring of R' is fused with an aryl, a heteroaryl, a cyclyl, or a heterocyclyl, each of which is optionally substituted with one or more substituents selected from the group consisting of aryl, heteroaryl, cyclyl, alkyl, alkoxy, halogen, NH_2 , $NH-(C_1-C_4)alkyl$, $N-(C_1-C_4)alkyl-(C_1-C_4)alkyl$, $(C_1-C_4)alkyl-CO-$, and heterocyclyl, each of which other than halogen and NH_2 is


further optionally substituted with one or more substituents selected from the group consisting of NH₂, OH, NH-(C₁-C₄)alkyl and N-(C₁-C₄)alkyl-(C₁-C₄)alkyl.

4. The compound or salt of any one of claims 1-3, wherein the cyclyl or heterocyclyl of R' or R'' is a five-membered, six-membered, or seven-membered ring.

5. The compound or salt of any one of claims 1-4, wherein the heterocyclyl contains one or two heteroatoms.

6. The compound or salt of any one of claims 1-5, wherein R is methyl or H.

7. The compound or salt of any one of claims 1-6, wherein R' is

wherein X¹ and X² are each individually O, NR⁶, or CR⁷R⁸;

wherein any CH₂-CH₂ moiety within the ring containing X¹ and X² is optionally replaced with a CH=CH moiety;

wherein any NH-CH₂ moiety within the ring containing X¹ and X² is optionally replaced with a N=CH moiety;

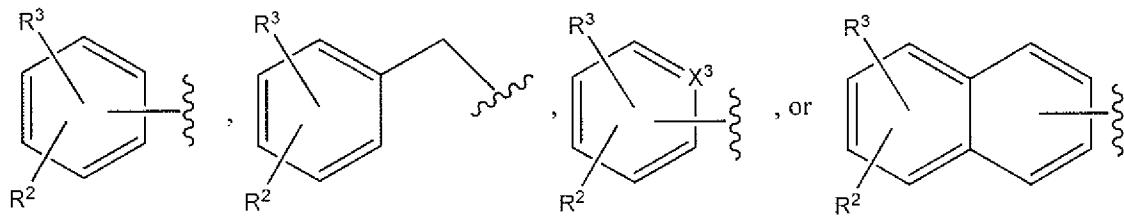
wherein any methylene of the ring containing X¹ and X² is optionally replaced by a carbonyl;

wherein n and m are each individually 0, 1, or 2, and wherein n + m is 0 to 2;

wherein each R¹ is individually H, halogen, alkyl, alkoxy, NH₂, NH-(C₁-C₄)alkyl, N-(C₁-C₄)alkyl-(C₁-C₄)alkyl, aryl, heteroaryl, cyclyl, or heterocyclyl, each of which other than halogen and NH₂ is further optionally substituted with one or more substituents selected from the group consisting of NH₂, OH, NH-(C₁-C₄)alkyl and N-(C₁-C₄)alkyl-(C₁-C₄)alkyl;

wherein R⁶ is H, alkyl, alkylcarboxy, aryl, heteroaryl, cyclyl, or heterocyclyl, each of which is further optionally substituted with one or more substituents selected from the group consisting of NH₂, OH, NH-(C₁-C₄)alkyl and N-(C₁-C₄)alkyl-(C₁-C₄)alkyl; and

wherein R⁷ and R⁸ are each individually H, halogen, alkyl, alkoxy, NH₂, NH-(C₁-C₄)alkyl, N-(C₁-C₄)alkyl-(C₁-C₄)alkyl, aryl, heteroaryl, cyclyl, or heterocyclyl, each of which other than halogen and NH₂ is further optionally substituted with one or more substituents selected from the group consisting of NH₂, OH, NH-(C₁-C₄)alkyl and N-(C₁-C₄)alkyl-(C₁-C₄)alkyl.

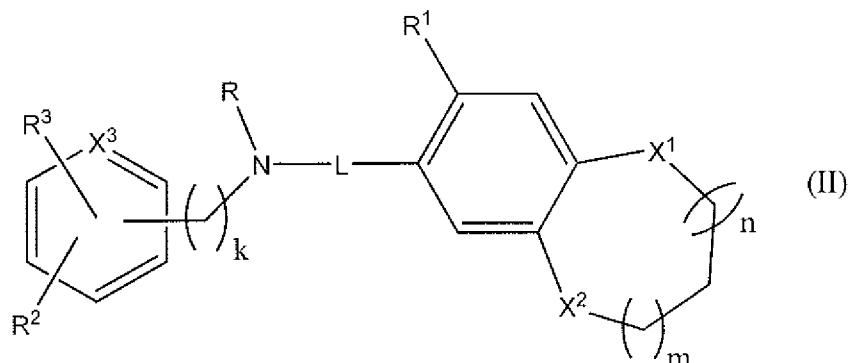

8. The compound or salt of any of claims 1-7, wherein one R¹ is at the ortho position relative to the carbon attached to the NR-L moiety.

9. The compound or salt of any one of claims 1-8, wherein one R¹ is H, F, Cl, Br, methyl, N(Me)₂, NHMe, 1-piperidinyl, 2-(dimethylamino)ethyl)(methyl)amino, pyrrolidin-1-yl, 3-(dimethylamino)pyrrolidin-1-yl, 2-hydroxy-2-methylpropylamino, isopropylamino, diethylamino, 1-hydroxypropan-2-ylamino, 2-hydroxyethylamino, or phenyl.

10. The compound or salt of any one of claims 1-8, wherein R' is optionally substituted with one or more substituents selected from the group consisting of methyl and acetyl.

11. The compound or salt of any one of claims 1-10, wherein R' is 3,4-dihydroquinolin-2(1H)-onyl, indolin-2-onyl, 4,5-dihydro-1H-benzo[b]azepin-2(3H)-onyl, 2H-benzo[b][1,4]oxazin-3(4H)-onyl, 4-methyl-2H-benzo[b][1,4]oxazin-3(4H)-onyl, 1H-benzo[d]imidazol-2(3H)-onyl, 1,3-dimethyl-1H-benzo[d]imidazol-2(3H)-onyl, 1-(indolin-1-yl)ethanonyl, 1-methyl-1H-indolyl, 1-acetyl-2-methylindolinyl, 6-chloro-2-oxoindolinyl, 3,3-dichloro-2-oxoindolinyl, 7-((2-(dimethylamino)ethyl)(methyl)amino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 2-oxo-7-(pyrrolidin-1-yl)-1,2,3,4-tetrahydroquinolinyl, 7-(3-(dimethylamino)pyrrolidin-1-yl)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(2-hydroxy-2-methylpropylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(isopropylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(diethylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(2-hydroxyethylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, (S)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, or (R)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl.

12. The compound or salt of any one of claims 1-11, wherein R'' is


wherein X³ is N or CH wherein when X³ is N, the NR-L moiety is linked to a C of the ring containing X³;

wherein R² and R³ are each individually H, halogen, C₁-C₄ alkyl, C₁-C₄ alkoxy, cyano, B(OH)₂, phenyl, C₁-C₄ alkyl substituted with one or more halogens, or taken together form alkylenedioxyl.

13. The compound or salt of claim 12, wherein R² and R³ are each individually H, F, Cl, Br, methyl, methoxy, cyano, trifluoromethyl, phenyl, B(OH)₂, or taken together form alkylenedioxyl.

14. The compound or salt of any one of claims 1-13, wherein R'' is 3,4-dimethylphenyl, 3-chlorophenyl, meta-tolyl, 3-methoxyphenyl, 3-fluorophenyl, 3-trifluoromethylphenyl, biphenyl-3-yl, pyridine-3-yl, 4-chlorophenyl, para-tolyl, 4-methoxyphenyl, 4-fluorophenyl, ortho-tolyl, 2-methoxyphenyl, 2-fluorophenyl, naphthalen-2-yl, naphthalen-1-yl, 2,3-dihydrobenzo[b][1,4]dioxin-6-yl, benzyl, 3-chloro-4-methylphenyl, 3,4-dichlorophenyl, 5-chloro-2-methylphenyl, 3-cyanophenyl, 3-chloro-2-methylphenyl, 3-phenylboronic acid, 4-fluoro-3-methylphenyl, 3-fluoro-4-methylphenyl, 4-chloro-3-methylphenyl, or 3-chloro-4-fluorophenyl.

15. The compound or salt of any one of claims 1-14, wherein the compound of formula (I) is a compound of formula (II):

wherein X^1 and X^2 are each individually O, NR^6 , or CR^7R^8 ;

wherein X^3 is N or CH wherein when X^3 is N, the $NR-L$ moiety is linked to a C of the ring containing X^3 ;

wherein any CH_2-CH_2 moiety within the ring containing X^1 and X^2 is optionally replaced with a $CH=CH$ moiety;

wherein any $NH-CH_2$ moiety within the ring containing X^1 and X^2 is optionally replaced with a $N=CH$ moiety;

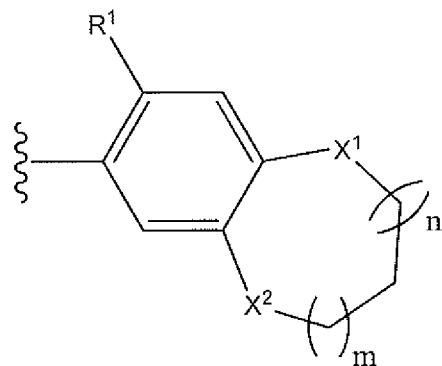
wherein any methylene of the ring containing X^1 and X^2 is optionally replaced by a carbonyl;

wherein n and m are each individually 0, 1, or 2, and wherein $n + m$ is 0 to 2;

wherein k is 0 or 1;

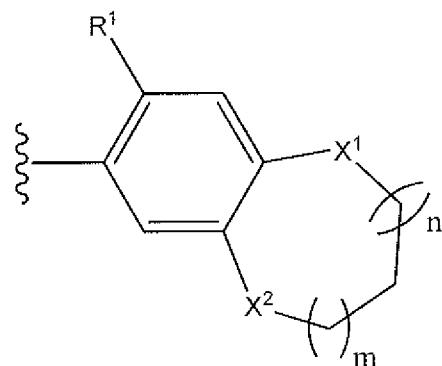
wherein R^1 is H, halogen, alkyl, alkoxy, NH_2 , $NH-(C_1-C_4)alkyl$, $N-(C_1-C_4)alkyl-(C_1-C_4)alkyl$, aryl, heteroaryl, cyclyl, or heterocyclyl, each of which other than halogen and NH_2 is further optionally substituted with one or more substituents selected from the group consisting of NH_2 , OH, $NH-(C_1-C_4)alkyl$ and $N-(C_1-C_4)alkyl-(C_1-C_4)alkyl$;

wherein R^2 and R^3 are each individually H, halogen, C_1-C_4 alkyl, C_1-C_4 alkoxy, cyano, $B(OH)_2$, phenyl, C_1-C_4 alkyl substituted with one or more halogens, or taken together form alkylenedioxy or phenyl fused to a $CH:CH$ moiety of the ring containing X^3 ;


wherein R^6 is H, alkyl, alkylcarboxy, aryl, heteroaryl, cyclyl, or heterocyclyl, each of which is further optionally substituted with one or more substituents selected from the group consisting of NH_2 , OH, $NH-(C_1-C_4)alkyl$ and $N-(C_1-C_4)alkyl-(C_1-C_4)alkyl$; and

wherein R^7 and R^8 are each individually H, halogen, alkyl, alkoxy, NH_2 , $NH-(C_1-C_4)alkyl$, $N-(C_1-C_4)alkyl-(C_1-C_4)alkyl$, aryl, heteroaryl, cyclyl, or heterocyclyl, each of which other than halogen and NH_2 is further optionally substituted with one or more substituents

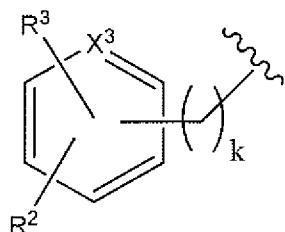
selected from the group consisting of NH₂, OH, NH-(C₁-C₄)alkyl and N-(C₁-C₄)alkyl-(C₁-C₄)alkyl.


16. The compound or salt of claim 15, wherein R¹ is H, F, Cl, Br, methyl, N(Me)₂, NHMe, 1-piperidinyl, 2-(dimethylamino)ethyl(methyl)amino, pyrrolidin-1-yl, 3-(dimethylamino)pyrrolidin-1-yl, 2-hydroxy-2-methylpropylamino, isopropylamino, diethylamino, 1-hydroxypropan-2-ylamino, 2-hydroxyethylamino, or phenyl.

17. The compound or salt of claim 15 or 16, wherein

is optionally substituted with one or more substituents selected from the group consisting of methyl and acetyl.

18. The compound or salt of any one of claims 15-17, wherein



is 3,4-dihydroquinolin-2(1H)-onyl, indolin-2-onyl, 4,5-dihydro-1H-benzo[b]azepin-2(3H)-onyl, 2H-benzo[b][1,4]oxazin-3(4H)-onyl, 4-methyl-2H-benzo[b][1,4]oxazin-3(4H)-onyl, 1H-benzo[d]imidazol-2(3H)-onyl, 1,3-dimethyl-1H-benzo[d]imidazol-2(3H)-onyl, 1-(indolin-1-yl)ethanonyl, 1-methyl-1H-indolyl, 1-acetyl-2-methylindolinyl, 6-chloro-2-oxoindoline, 3,3-dichloro-2-oxoindolinyl, 7-((2-(dimethylamino)ethyl)(methyl)amino)-2-

oxo-1,2,3,4-tetrahydroquinolinyl, 2-oxo-7-(pyrrolidin-1-yl)-1,2,3,4-tetrahydroquinolinyl, 7-(3-(dimethylamino)pyrrolidin-1-yl)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(2-hydroxy-2-methylpropylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(isopropylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(diethylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(2-hydroxyethylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, 7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, (S)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl, or (R)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinolinyl.

19. The compound or salt of any one of claims 15-18, wherein R² and R³ are each individually H, F, Cl, Br, methyl, methoxy, cyano, trifluoromethyl, phenyl, B(OH)₂, or taken together form alkyleneoxy or phenyl fused to a CH:CH moiety of the ring containing X³.

20. The compound or salt of any one of claims 15-19, wherein

is 3,4-dimethylphenyl, 3-chlorophenyl, meta-tolyl, 3-methoxyphenyl, 3-fluorophenyl, 3-trifluoromethylphenyl, biphenyl-3-yl, pyridin-3-yl, 4-chlorophenyl, para-tolyl, 4-methoxyphenyl, 4-fluorophenyl, ortho-tolyl, 2-methoxyphenyl, 2-fluorophenyl, naphthalen-2-yl, naphthalen-1-yl, 2,3-dihydrobenzo[b][1,4]dioxin-6-yl, benzyl, 3-chloro-4-methylphenyl, 3,4-dichlorophenyl, 5-chloro-2-methylphenyl, 3-cyanophenyl, 3-chloro-2-methylphenyl, 3-phenylboronic acid, 4-fluoro-3-methylphenyl, 3-fluoro-4-methylphenyl, 4-chloro-3-methylphenyl, or 3-chloro-4-fluorophenyl.

21. The compound or salt of any one of claims 1-19, wherein the compound is N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide, N-(3,4-dimethylphenyl)-2-oxoindoline-5-sulfonamide, N-(3,4-dimethylphenyl)-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-7-sulfonamide, N-(3,4-dimethylphenyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-6-sulfonamide,

N-(3,4-dimethylphenyl)-4-methyl-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-6-sulfonamide,

N-(3,4-dimethylphenyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-5-sulfonamide,

N-(3,4-dimethylphenyl)-1,3-dimethyl-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-5-sulfonamide,

1-acetyl-N-(3,4-dimethylphenyl)indoline-5-sulfonamide,

N-(3,4-dimethylphenyl)-1-methyl-1H-indole-5-sulfonamide,

N-(3-chlorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

2-oxo-N-m-tolyl-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3-fluorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

2-oxo-N-(3-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(biphenyl-3-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

2-oxo-N-(pyridin-3-yl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(4-chlorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

2-oxo-N-p-tolyl-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(4-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(4-fluorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

2-oxo-N-o-tolyl-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(2-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(2-fluorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(naphthalen-2-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(naphthalen-1-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-benzyl-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dimethylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

7-(dimethylamino)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dimethylphenyl)-7-(methylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

N-(3,4-dimethylphenyl)-2-oxo-7-(piperidin-1-yl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide,

6-chloro-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-sulfonamide,
6-(dimethylamino)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-
sulfonamide,
6-chloro-N-(3,4-dimethylphenyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-
sulfonamide,
6-bromo-N-(3,4-dimethylphenyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-
sulfonamide,
N-(3,4-dimethylphenyl)-6-methyl-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-
sulfonamide,
N-(3,4-dimethylphenyl)-3-oxo-6-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-
sulfonamide,
N-(3,4-dimethylphenyl)-N-methyl-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-carboxamide,
N-(3-chloro-4-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
N-(3,4-dichlorophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
6-chloro-N-(5-chloro-2-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-
sulfonamide,
N-(3-cyanophenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
1-acetyl-N-(3,4-dimethylphenyl)-2-methylindoline-5-sulfonamide,
N-(5-chloro-2-methylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-
sulfonamide,
6-chloro-N-(3-chloro-4-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-
sulfonamide,
N-(3-chloro-2-methylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-
sulfonamide,
N-(3-chloro-4-methylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-
sulfonamide,
3-(2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamido)phenylboronic acid,
N-(4-fluoro-3-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
N-(3,4-dichlorophenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
N-(3-fluoro-4-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
N-(4-chloro-3-methylphenyl)-7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-
sulfonamide,

6-chloro-N-(3,4-dimethylphenyl)-2-oxoindoline-5-sulfonamide,
N-(4-chloro-3-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
6-chloro-N-(3-chloro-2-methylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-7-sulfonamide,
3,3-dichloro-N-(3,4-dimethylphenyl)-2-oxoindoline-5-sulfonamide,
7-((2-(dimethylamino)ethyl)(methyl)amino)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
N-(3,4-dimethylphenyl)-2-oxo-7-(pyrrolidin-1-yl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
7-(3-(dimethylamino)pyrrolidin-1-yl)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
N-(3,4-dimethylphenyl)-7-(2-hydroxy-2-methylpropylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
N-(3,4-dimethylphenyl)-7-(isopropylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
7-(diethylamino)-N-(3,4-dimethylphenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
N-(3,4-dimethylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
(S)-N-(3,4-dimethylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
(R)-N-(3,4-dimethylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
N-(3,4-dimethylphenyl)-7-(2-hydroxyethylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
(S)-N-(3-chloro-4-methylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide,
(S)-N-(4-fluoro-3-methylphenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide, or
(S)-N-(3-chloro-4-fluorophenyl)-7-(1-hydroxypropan-2-ylamino)-2-oxo-1,2,3,4-tetrahydroquinoline-6-sulfonamide.

22. A pharmaceutical composition comprising a compound or salt according to any one of claims 1-21, and a pharmaceutically acceptable carrier.

23. A compound or salt according to any one of claims 1-21 for use in treating a disease responsive to activation of human PK-M2.

24. The compound or salt according to claim 23, wherein the disease responsive to activation of human PK-M2 is cancer.

25. The compound or salt according to claim 24, wherein the cancer is leukemia, polycythemia vera, lymphoma, Waldenstrom's macroglobulinemia, multiple myeloma, heavy chain disease, sarcoma, or carcinoma.

26. The compound or salt according to claim 24, wherein the cancer is acute leukemia, acute lymphocytic leukemia, acute myeloid leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute monocytic leukemia, acute erythroleukemia, chronic leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia, Hodgkin's disease, non-Hodgkin's disease, fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, malignant mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, alveolar rhabdomyosarcoma, colon cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, intrahepatic bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, uterine cancer, testicular cancer, lung cancer, small cell lung carcinoma, urinary bladder cancer, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendrogloma, schwannoma, meningioma, melanoma, neuroblastoma, and retinoblastoma, bone cancer, brain cancer, cancer of the anus, cancer of the anal canal, cancer of the anorectum, cancer of the eye, cancer of the joints, cancer of the neck, cancer of the gallbladder, cancer of the pleura, cancer of the nose, cancer

of the nasal cavity, cancer of the middle ear, cancer of the oral cavity, cancer of the vulva, esophageal cancer, gastrointestinal carcinoid tumor, hypopharynx cancer, kidney cancer, larynx cancer, liver cancer, nasopharynx cancer, non-small cell lung cancer, peritoneum cancer, omentum cancer, mesentery cancer, pharynx cancer, rectal cancer, renal cancer, small intestine cancer, soft tissue cancer, stomach cancer, thyroid cancer, or ureter cancer.

27. The compound or salt according to claim 26, wherein the cancer is liver cancer.

28. A method of treating a disease responsive to activation of human PK-M2 comprising administering to a patient in need thereof a therapeutically effective amount of a compound or salt according to any one of claims 1-21.

29. The method according to claim 28, wherein the disease responsive to activation of human PK-M2 is cancer.

30. The method according to claim 29, wherein the cancer is leukemia, polycythemia vera, lymphoma, Waldenstrom's macroglobulinemia, multiple myeloma, heavy chain disease, sarcoma, or carcinoma.

31. The method according to claim 29, wherein the cancer is acute leukemia, acute lymphocytic leukemia, acute myeloid leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute monocytic leukemia, acute erythroleukemia, chronic leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia, Hodgkin's disease, non-Hodgkin's disease, fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, malignant mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, alveolar rhabdomyosarcoma, colon cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, intrahepatic bile duct carcinoma, choriocarcinoma,

seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, uterine cancer, testicular cancer, lung cancer, small cell lung carcinoma, urinary bladder cancer, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendrolioma, schwannoma, meningioma, melanoma, neuroblastoma, and retinoblastoma, bone cancer, brain cancer, cancer of the anus, cancer of the anal canal, cancer of the anorectum, cancer of the eye, cancer of the joints, cancer of the neck, cancer of the gallbladder, cancer of the pleura, cancer of the nose, cancer of the nasal cavity, cancer of the middle ear, cancer of the oral cavity, cancer of the vulva, esophageal cancer, gastrointestinal carcinoid tumor, hypopharynx cancer, kidney cancer, larynx cancer, liver cancer, nasopharynx cancer, non-small cell lung cancer, peritoneum cancer, omentum cancer, mesentery cancer, pharynx cancer, rectal cancer, renal cancer, small intestine cancer, soft tissue cancer, stomach cancer, thyroid cancer, or ureter cancer.

32. The method according to claim 31, wherein the cancer is liver cancer.

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2011/033852

A. CLASSIFICATION OF SUBJECT MATTER				
INV.	C07D209/30	C07D215/36	C07D223/16	C07D265/36
	A61K31/4704	A61K31/538	A61K31/55	A61P35/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2010/042867 A2 (US HEALTH [US]; THOMAS CRAIG J [US]; AULD DOUGLAS S [US]; INGLESE JAME) 15 April 2010 (2010-04-15) cited in the application page 21 - page 22 page 78; table 8; compound 150 claims 39-43 ----- X	1-32
X	Matthew Boxer ET AL: "Identification of activators for the M2 isoform of human pyruvate kinase", 1 September 2009 (2009-09-01), XP55003711, Retrieved from the Internet: URL: http://www.ncbi.nlm.nih.gov/books/NBK56225/pdf/m1170.pdf [retrieved on 2011-07-27] compounds CID-4547230 ----- -/-	1-32

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
27 July 2011	03/08/2011
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Megido, Benigno

INTERNATIONAL SEARCH REPORTInternational application No
PCT/US2011/033852

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	MATTHEW B. BOXER ET AL: "Evaluation of Substituted N , N '-Diarylsulfonamides as Activators of the Tumor Cell Specific M2 Isoform of Pyruvate Kinase", JOURNAL OF MEDICINAL CHEMISTRY, vol. 53, no. 3, 17 December 2009 (2009-12-17), pages 1048-1055, XP55003691, ISSN: 0022-2623, DOI: 10.1021/jm901577g the whole document -----	1-32

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2011/033852

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 2010042867	A2 15-04-2010	AU 2009303335 A1 CA 2740148 A1 EP 2344453 A2	15-04-2010 15-04-2010 20-07-2011