发明名称
基于电压谐波dq分量的孤岛检测方法

摘要
本发明公开了一种基于电压谐波dq分量的孤岛检测方法。光伏逆变器采用电网电压定向的矢量控制，从中提取电压信号的dq分量，并通过监测150Hz、250Hz、350Hz的特定频率信号在正常并网运行和孤岛运行时所表现的差异实现了孤岛故障的检测。利用滑动数据窗计算并网逆变器端电压特定次谐波dq分量的变化量。\[\Delta U_{d} \]、\[\Delta U_{q} \]、\[|\Delta U_{d}^{n}| \]、\[|\Delta U_{q}^{n}| \]、\[|\Delta U_{d}^{m}| \]、\[|\Delta U_{q}^{m}| \]；根据变化量来判断是否发生孤岛。本发明无论系统处于何种工作状态，均能在不影响电力系统电能质量的情况下，快速有效地检测出孤岛效应。
1. 基于电压谐波dq分量的孤岛检测方法，其特征在于，包括以下步骤：

步骤1：利用滑动数据窗计算并网逆变器端电压特次谐波dq分量的变化量 |ΔU₃d|、 |ΔU₃q|、 |ΔU₅d|、 |ΔU₅q|、 |ΔU₇d|、 |ΔU₇q|；

步骤2：根据变化量 |ΔU₃d|、 |ΔU₃q|、 |ΔU₅d|、 |ΔU₅q|、 |ΔU₇d|、 |ΔU₇q|来判断是否发生孤岛：

当 |ΔU₃d|、 |ΔU₃q|、 |ΔU₅d|、 |ΔU₅q|、 |ΔU₇d|、 |ΔU₇q|分别小于或等于整定值U₇set₁、U₃set₂、U₃set₃、U₅set₄、U₅set₅、U₇set₆时，则未发生孤岛；

当 |ΔU₃d| > U₃set₁或 |ΔU₃q| > U₃set₂或 |ΔU₅d| > U₃set₃或 |ΔU₅q| > U₃set₄或 |ΔU₇d| > U₅set₅或 |ΔU₇q| > U₇set₆时，则孤岛发生。

2. 根据权利要求1所述的基于电压谐波dq分量的孤岛检测方法，其特征在于，所述滑动数据窗的长度为20毫秒。

3. 根据权利要求1所述的基于电压谐波dq分量的孤岛检测方法，其特征在于，所述整定值的计算公式为：

|ΔU₃d| > U₃set₁ = 0.0025U₁
|ΔU₃q| > U₃set₂ = 0.0025U₁
|ΔU₅d| > U₅set₃ = 0.0006U₁
|ΔU₅q| > U₅set₄ = 0.0006U₁
|ΔU₇d| > U₇set₅ = 0.0006U₁
|ΔU₇q| > U₇set₆ = 0.0006U₁

其中：

U₁为基波相电压有效值；
U₃d为3次谐波相电压d轴分量有效值；
U₃q为3次谐波相电压q轴分量有效值；
U₅d为5次谐波相电压d轴分量有效值；
U₅q为5次谐波相电压q轴分量有效值；
U₇d为7次谐波相电压d轴分量有效值；
U₇q为7次谐波相电压q轴分量有效值；
U₇set₁为3次谐波相电压d轴分量整定值；
U₇set₂为3次谐波相电压q轴分量整定值；
U₇set₃为5次谐波相电压d轴分量整定值；
U₇set₄为5次谐波相电压q轴分量整定值；
U₇set₅为7次谐波相电压d轴分量整定值；
U₇set₆为7次谐波相电压q轴分量整定值。
基于电压谐波dq分量的孤岛检测方法

技术领域
[0001] 本发明属于新能源并网与控制技术领域，具体涉及到一种基于电压谐波dq分量的孤岛检测方法。

背景技术
[0002] 孤岛效应是由于分布式发电系统中，由于停电维修或者故障事故使得电网无法供电时，各个用户端的分布式并网发电系统未能及时检测出停电状态从而将自身切离电网，最终形成由分布电站并网发电系统和其相连的本地负载组成了一个自给供电的孤岛发电系统。
[0003] 孤岛效应可能会导致故障不能切除，从而导致相应的电气设备损坏，并干扰电网正常供电系统的自动或者手动恢复。
[0004] 孤岛效应可能会使一些被认为已经与所有电源断开的线路带电，这会给工作人员或者用户带来触电的危险。因此，快速且有效地检测出孤岛并且将故障切除是很有必要的。
[0005] 孤岛效应可能会使电压以及频率失去控制，如果分布式发电系统没有调节电压和频率的能力，并且没有电压和频率保护继电器来限制电压和频率的偏移，那么孤岛系统中的电压和频率势必会产生较大的波动，从而对电网和用户设备造成危害。
[0006] 在从孤岛运行状态变为并网运行状态时，由于重合闸系统当中的分布式发电装置可能与电网不同步从而导致电路断路器装置发生损坏，还可能产生较大的冲击电流，从而危害孤岛系统中的各个设备，甚至导致电网重新跳闸。
[0007] 目前而言，孤岛检测方法主要可以分成两大类，即局部孤岛检测方法和基于通信的孤岛检测方法。第一类局部孤岛检测方法主要是通过监控并网发电装置的端电压或者端电流信号来实现的。局部孤岛检测方法又可以进一步分为被动式和主动式两种：被动式方法根据并网逆变器输出的电压或频率的异常来判断孤岛的发生，通常被动式方法存在相对较大的检测盲区；主动式方法则通过向电网不断注入扰动，并利用该扰动信号引起的系统电压、频率以及阻抗等的相应变化来判断孤岛的发生，此方法虽然能够有效地减少检测盲区，但是会对电能质量产生或多或少的影响。
[0008] 第二类基于通信的孤岛检测方法，主要是利用无线电通信来检测孤岛效应，此方法能够减小检测盲区，但设计复杂，未能得到广泛应用。

发明内容
[0009] 针对上述背景技术中所提到的目前孤岛检测方法的优劣，本发明提出了一种基于电压谐波dq分量的孤岛检测方法。其目的在于，无论系统处于何种工作状态，均能在不影响电力系统电能质量的情况下，快速有效地检测出孤岛效应。
[0010] 本发明的技术方案是，基于电压谐波dq分量的孤岛检测方法，包括以下步骤：
[0011] 步骤1：利用滑动数据窗计算并网逆变器端电压特征值变化量 |Δ U₅|， |Δ U₆|， |Δ U₇|， |Δ U₈|， |Δ U₉|， |Δ U₆|， |Δ U₇|， |Δ U₈|， |Δ U₉|。
步骤2：根据变化量 $|\Delta U_{3d}|, |\Delta U_{3q}|, |\Delta U_{5d}|, |\Delta U_{5q}|, |\Delta U_{7d}|, |\Delta U_{7q}|$ 来判断是否发生孤岛。

当 $|\Delta U_{3d}| > |U_{set1}|$ 或 $|\Delta U_{3q}| > |U_{set2}|$ 或 $|\Delta U_{5d}| > |U_{set3}|$ 或 $|\Delta U_{5q}| > |U_{set4}|$ 或 $|\Delta U_{7d}| > |U_{set5}|$ 或 $|\Delta U_{7q}| > |U_{set6}|$ 时，则孤岛发生。

所述滑动数据窗的长度为20毫秒。

所述整定值的计算公式为：

$|\Delta U_{3d}| > |U_{set1}| = 0.0025U_{1}$

$|\Delta U_{3q}| > |U_{set2}| = 0.0025U_{1}$

$|\Delta U_{5d}| > |U_{set3}| = 0.0006U_{1}$

$|\Delta U_{5q}| > |U_{set4}| = 0.0006U_{1}$

$|\Delta U_{7d}| > |U_{set5}| = 0.0006U_{1}$

$|\Delta U_{7q}| > |U_{set6}| = 0.0006U_{1}$

其中：

U_{1} 为基波相电压有效值；

U_{3d} 为3次谐波相电压d轴分量有效值；

U_{3q} 为3次谐波相电压q轴分量有效值；

U_{5d} 为5次谐波相电压d轴分量有效值；

U_{5q} 为5次谐波相电压q轴分量有效值；

U_{7d} 为7次谐波相电压d轴分量有效值；

U_{7q} 为7次谐波相电压q轴分量有效值；

U_{set1} 为3次谐波相电压d轴分量整定值；

U_{set2} 为3次谐波相电压q轴分量整定值；

U_{set3} 为5次谐波相电压d轴分量整定值；

U_{set4} 为5次谐波相电压q轴分量整定值；

U_{set5} 为7次谐波相电压d轴分量整定值；

U_{set6} 为7次谐波相电压q轴分量整定值。

本发明基于电压谐波dq分量的孤岛检测方法，主要有以下优点：

（1）无论系统处于何种工作状态，均能在不影响电力系统电能质量的情况下，快速有效地检测出孤岛效应，且不会干扰系统的暂态响应；

（2）能够在IEEE Std. 1547.1标准中所定义的孤岛最严重的情况下快速并且有效地检测出孤岛效应；

（3）不仅适用于三相断路的孤岛检测情况，对于单相断路、两相短路情况同样适用；

（4）由于进行了坐标变换，原有电压信号的频率相应降低，采样频率同步降低，更易于硬件实现。

此方法原理较为简单，适用范围广，在各种断路以及孤岛最严重的情况下均能够快速有效地检测出孤岛效应。
附图说明
[0043] 图1为分布式发电系统的示意图；
[0044] 图2为光伏逆变器控制策略框图；
[0045] 图3为并网光伏发电系统结构示意图；
[0046] 图4为并网光伏发电系统运行参数图；
[0047] 图4(a)为逆变器输出电压波形图；
[0048] 图4(b)为逆变器输出电流波形图；
[0049] 图5为三相断路对称故障下发生孤岛检测各特征量波形图；
[0050] 图5(a)为150Hz电压dq故障分量波形图；
[0051] 图5(b)为250Hz电压dq故障分量波形图；
[0052] 图5(c)为350Hz电压dq故障分量波形图；
[0053] 图6为单相断路故障情况下，应用本发明的孤岛检测各特征量波形图；
[0054] 图6(a)为150Hz电压dq故障分量波形图；
[0055] 图6(b)为250Hz电压dq故障分量波形图；
[0056] 图6(c)为350Hz电压dq故障分量波形图；
[0057] 图7为两相断路故障情况下，应用本发明的孤岛检测各特征量波形图；
[0058] 图7(a)为150Hz电压dq故障分量波形图；
[0059] 图7(b)为250Hz电压dq故障分量波形图；
[0060] 图7(c)为350Hz电压dq故障分量波形图。

具体实施方式
[0061] 下面结合附图对本发明作进一步详细说明。
[0062] 当分布式电源和电网相连时，电网可以看作是一个容量很大的电压源，并网逆变器所发出的谐波电流将会流入阻抗较低的电网中，这些较小的谐波电流与低电压电阻抗在并网逆变器输出端点的电压响应uₜₐ只含有少量谐波，即电压畸变率趋近于零。
[0063] 由于停电维修或者故障事故使得电网断开时，将有两个原因使得谐波的含量将有所增加：
[0064] 谐波电流流入阻抗远远大于电网阻抗的负载中，使uₜₐ产生较大的失真。
[0065] 假如并网开关位于变压器的原边侧，并网逆变器输出的电流将流过变压器的副边，由于变压器的非线性特性及磁滞现象，从而导致变压器的电压响应产生失真。
[0066] 光伏逆变器采用电网电压定向的矢量控制，从中提取电压信号的dq分量，并通过监测150Hz、250Hz、350Hz的特定频率信号在正常并网运行和孤岛运行时所表现的差异实现了孤岛故障的检测。具体步骤如下：
[0067] 首先，利用滑动数据窗计算并网逆变器端电压特定次谐波dq分量的变化量 | Δ U₃d |，| Δ U₃q |，| Δ U₅d |，| Δ U₅q |，| Δ U₇d |，| Δ U₇q |；
[0068] 设定的整定值U₇1、U₇2、U₇3、U₇4、U₇5、U₇6分别取为0.0025U₁、0.0025U₁、0.0006U₁、0.0006U₁、0.0006U₁。
[0069] 根据变化量 | Δ U₃d |，| Δ U₃q |，| Δ U₅d |，| Δ U₅q |，| Δ U₇₁ |，| Δ U₇₄ |来判断是否发生孤
岛），判据如下：

【0070】（1）当 \(| \Delta U_{3d} |, | \Delta U_{3q} |, | \Delta U_{5d} |, | \Delta U_{5q} |, | \Delta U_{7d} |, | \Delta U_{7q} | \) 分别小于或等于整定值 \(U_{set1}, U_{set2}, U_{set3}, U_{set4}, U_{set5}, U_{set6} \) 时，则未发生孤岛；（2）当 \(| \Delta U_{3d} | > U_{set1} \) 或 \(| \Delta U_{3q} | > U_{set2} \) 或 \(| \Delta U_{5d} | > U_{set3} \) 或 \(| \Delta U_{5q} | > U_{set4} \) 或 \(| \Delta U_{7d} | > U_{set5} \) 或 \(| \Delta U_{7q} | > U_{set6} \) 时，则孤岛发生。

【0071】所述滑动数据库的长度为20毫秒。

【0072】所述整定值的计算公式为：

\[
| \Delta U_{3d} | > U_{set1} = 0.0025U_1 \\
| \Delta U_{3q} | > U_{set2} = 0.0025U_1 \\
| \Delta U_{5d} | > U_{set3} = 0.0006U_1 \\
| \Delta U_{5q} | > U_{set4} = 0.0006U_1 \\
| \Delta U_{7d} | > U_{set5} = 0.0006U_1 \\
| \Delta U_{7q} | > U_{set6} = 0.0006U_1
\]

【0073】其中：

【0080】\(U_1 \) 为基波相电压有效值；

【0081】\(U_{3d} \) 为3次谐波相电压d轴分量有效值；

【0082】\(U_{3q} \) 为3次谐波相电压q轴分量有效值；

【0083】\(U_{5d} \) 为5次谐波相电压d轴分量有效值；

【0084】\(U_{5q} \) 为5次谐波相电压q轴分量有效值；

【0085】\(U_{7d} \) 为7次谐波相电压d轴分量有效值；

【0086】\(U_{7q} \) 为7次谐波相电压q轴分量有效值；

【0087】\(U_{set1} \) 为3次谐波相电压d轴分量整定值；

【0088】\(U_{set2} \) 为3次谐波相电压q轴分量整定值；

【0089】\(U_{set3} \) 为5次谐波相电压d轴分量整定值；

【0090】\(U_{set4} \) 为5次谐波相电压q轴分量整定值；

【0091】\(U_{set5} \) 为7次谐波相电压d轴分量整定值；

【0092】\(U_{set6} \) 为7次谐波相电压q轴分量整定值。

【0093】参照图1.图2.图3，PV阵列输出电压为600V，逆变装置选取IGBT三相全桥逆变电路，输出线电压为270V，输出电流为1000A，输出功率为470kW。本地负载选取三角形接法的RLC并联电路进行仿真（此时处于孤岛最严重的情况），品质因数取为1.5，R=0.465Ω，L=0.00123H，C=821μF。经由两级升压变流器将电压等级升至110kV馈送至电网。

【0094】如图4两个框图分别代表光伏并网逆变器输出电压（kV）、输出电流（kA）。系统运行时间为1.1s，孤岛故障发生在t=1s时刻。由图4可知，在正常运行以及孤岛运行时，系统的运行参数基本上没有改变，说明此时处于孤岛最严重的情况。应用本发明进行检测，其中采样频率为4.8kHz，采样时间为0.2s（0.9-1.1s），图5为三相断路故障情况下，应用本发明的孤岛检测各特征量波形图：图5(a)为150Hz电压dq故障分量波形图；图5(b)为250Hz电压dq故障分量波形图，图5(c)为350Hz电压dq故障分量波形图。在正常并行运行时，各次谐波电压的dq故障分量基本为0，当发生孤岛故障时（采样点数为480），各次谐波电压dq故障分量没有发生变化，经过两个周波（40毫秒，采样点数为672）后，150Hz、250Hz、350Hz电压dq故障分量中dq分量均大于整定值，与设定的条件一致，孤岛检测成功。
图6为单相断路故障情况下，应用本发明的孤岛检测各特征量波形图：图6(a)为150Hz电压dq故障分量波形图；图6(b)为250Hz电压dq故障分量波形图；图6(c)为350Hz电压dq故障分量波形图。在正常并网运行时，各次谐波电压的dq故障分量基本为0，当发生孤岛故障时(采样点数为480)，各次谐波dq故障分量没有发生变化，经过两个周波(40毫秒，采样点数为672)后，150Hz、250Hz电压dq故障分量中d分量均大于整定值，350Hz电压dq故障分量中d分量大于整定值与设定的条件一致，孤岛检测成功。

图7为两相断路故障情况下，应用本发明的孤岛检测各特征量波形图：图7(a)为150Hz电压dq故障分量波形图；图7(b)为250Hz电压dq故障分量波形图；图7(c)为350Hz电压dq故障分量波形图。在正常并网运行时，各次谐波电压的dq故障分量基本为0，当发生孤岛故障时(采样点数为480)，各次谐波dq故障分量没有发生变化，经过两个周波(40毫秒，采样点数为672)后，150Hz、250Hz、350Hz电压dq故障分量中d分量均大于整定值，与设定的条件一致，孤岛检测成功。

图5、图6、图7表明所提供的基于电压谐波dq分量的孤岛检测方法无论系统处于何种工作状态，均能在不影响电力系统电能质量的情况下，快速有效地检测出孤岛效应。

在并网开关单相和两相断开情况下仍然能够进行判别，能够实现无盲区孤岛检测，此方法的原理简单，适用范围广。

以上所述，仅为本发明较佳的具体实施方式，但本发明的保护范围并不局限于此，本发明的保护范围应该以权利要求的保护范围为准。
图4
图5
图6
图7