

US 20090202429A1

(19) United States(12) Patent Application Publication

Diacovo et al.

(10) Pub. No.: US 2009/0202429 A1 (43) Pub. Date: Aug. 13, 2009

(54) METHODS FOR TESTING ANTI-THROMBOTIC AGENTS

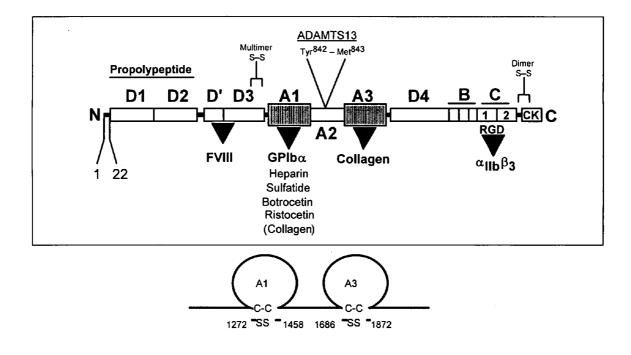
(75) Inventors: **Thomas Diacovo**, Larchmont, NY (US); **Jianchun Chen**, Edgewater, NJ (US)

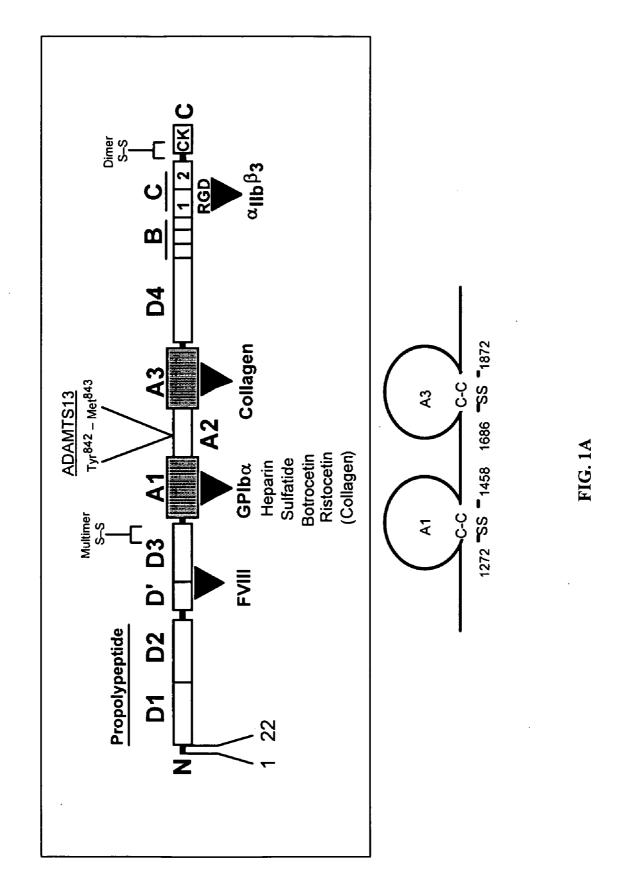
> Correspondence Address: WilmerHale/Columbia University 399 PARK AVENUE NEW YORK, NY 10022 (US)

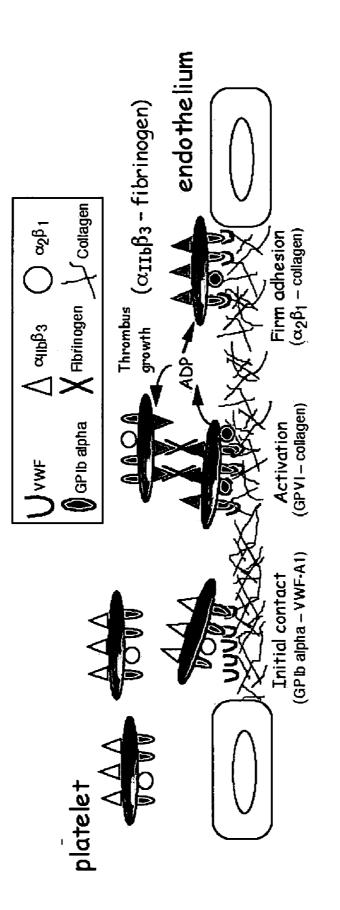
- (73) Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, NEW YORK, NY (US)
- (21) Appl. No.: 12/345,363
- (22) Filed: Dec. 29, 2008

Related U.S. Application Data

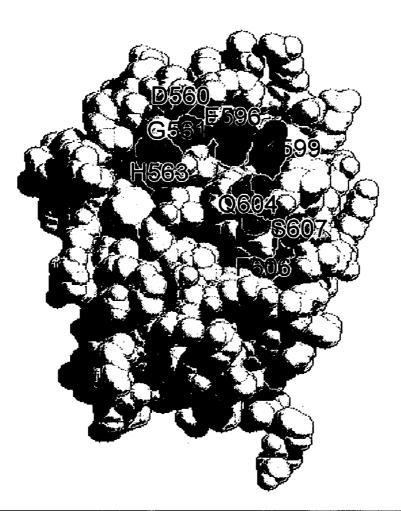
- (63) Continuation-in-part of application No. PCT/US07/ 15043, filed on Jun. 28, 2007.
- (60) Provisional application No. 60/817,600, filed on Jun. 29, 2006.

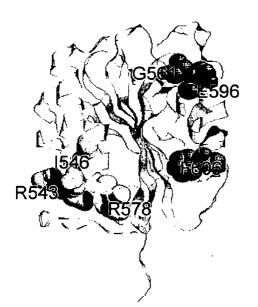

Publication Classification


(51)	Int. Cl.	
	A61K 51/00	(2006.01)
	A61K 49/00	(2006.01)
	C12Q 1/02	(2006.01)
	C12N 15/63	(2006.01)
	C40B 30/00	(2006.01)
	C07K 14/00	(2006.01)
	C07H 21/04	(2006.01)
	A01K 67/00	(2006.01)


(52) **U.S. Cl.** **424/1.11**; 424/9.1; 424/9.3; 435/29; 435/320.1; 506/7; 530/350; 536/23.1; 800/13; 800/14; 800/18

(57) ABSTRACT


The invention provides a transgenic non-human animal expressing von Willebrand Factor A1 protein containing at least one mutation selected from the group consisting of: 1263P>S, 1269N>D, 1274K>R, 1287M>R, 1302G>D, 1308H>R, 1313R>W, 1314I>V, 1326R>H, 1329L>I, 1330E>G, 1333A>D, 1344T>A, 1347I>V, 1350T>A, 1370G>S, 1379H>R, 1381T>A, 1385T>M 1391P>Q, 1394A>S, 1397L>F, 1421S>N, 1439L>V, 1442G>S, 1449R>Q, 1466A>P, 1469Q>L, 1472Q>H, 1473V>M, 1475H>Q, 1479S>G, and any combination thereof.



* standard vWF nomenclature	aa designation in image
D1323	D560
G1324	G561
H1326	H563
E1359	E596
K1362	K599
Q1367	Q604
F1369	F606
S1370	S607

А.

B.

* standard vWF nomenclature	aa designation in image
R1306	R543
11309	1546
G1324	G561
R1341	R578
E1359	E596
F1369	F606

FIG. 3

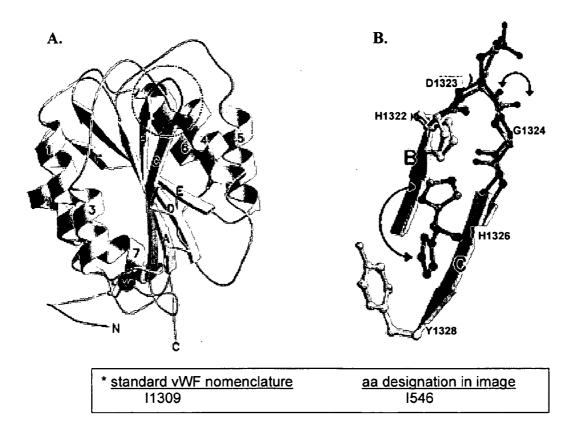
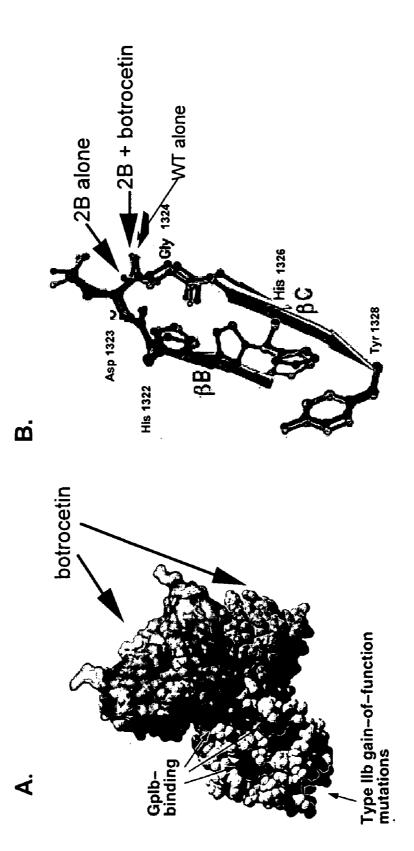
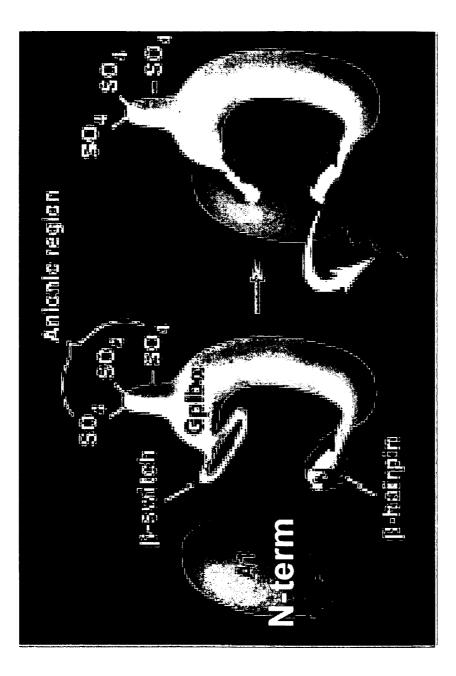
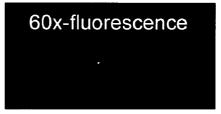
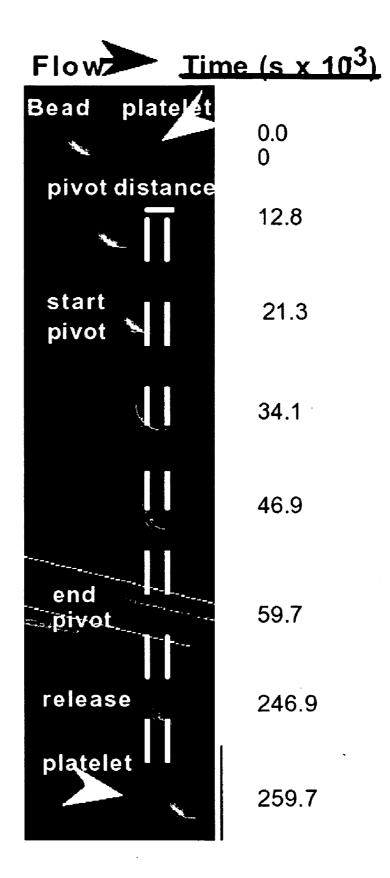




FIG. 4





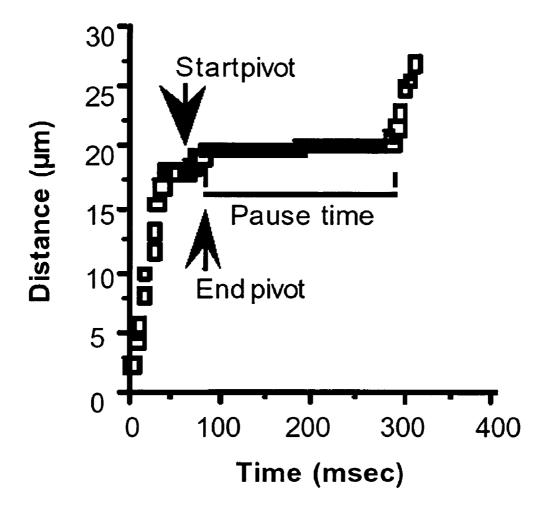


FIG. 7

FIG. 8A

FIG. 8B

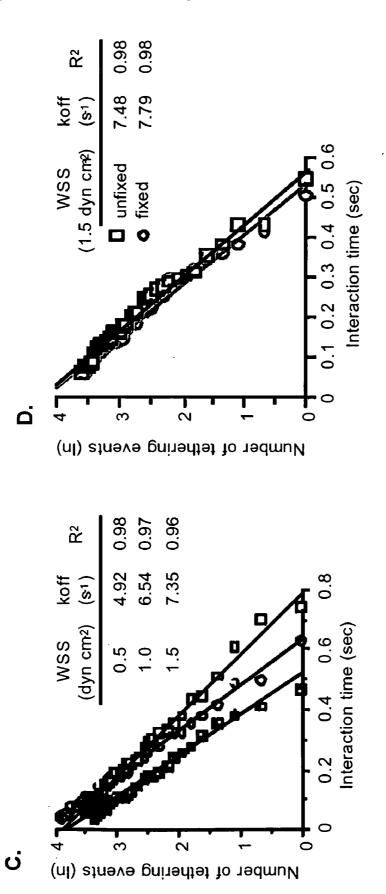
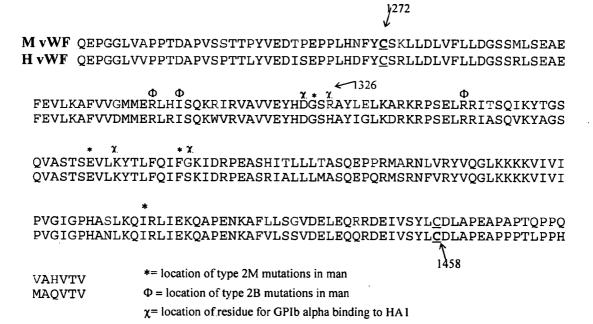
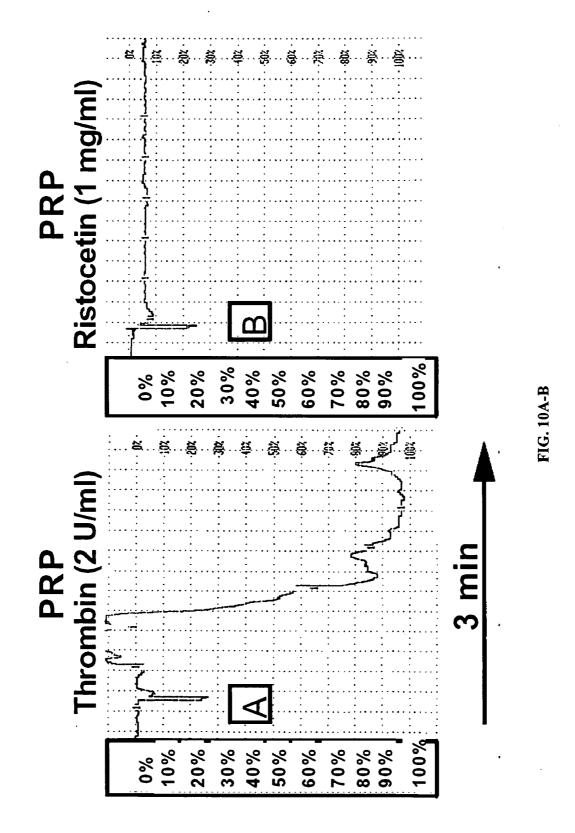
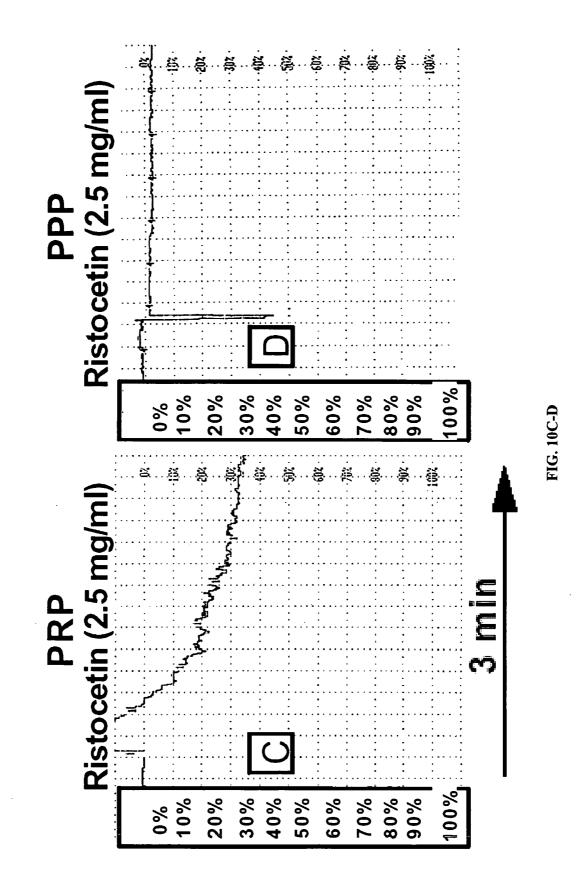
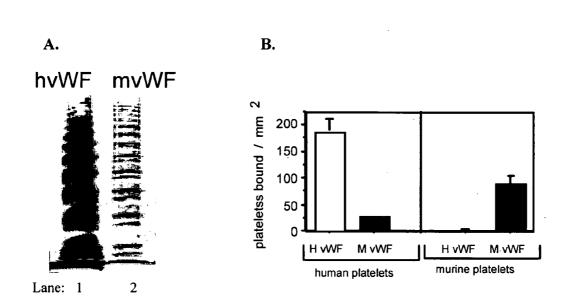
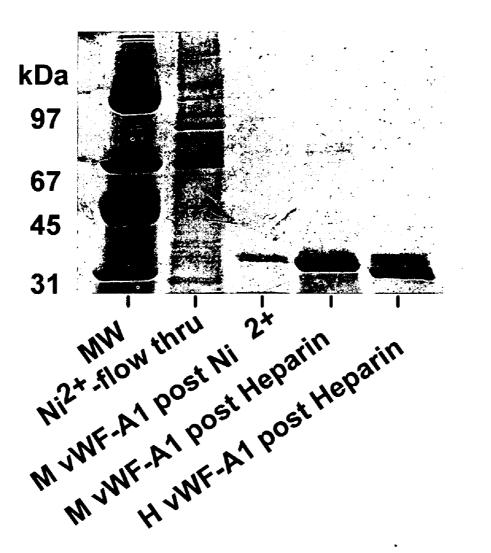
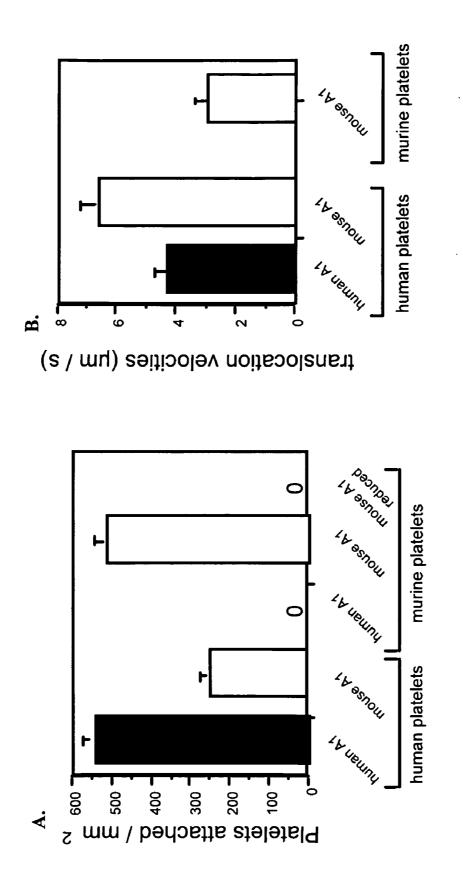






FIG. 8C-D





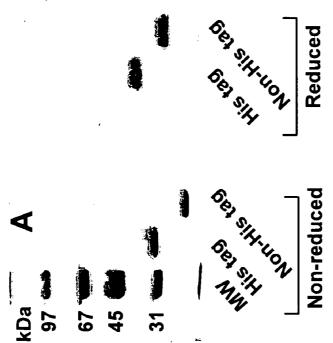
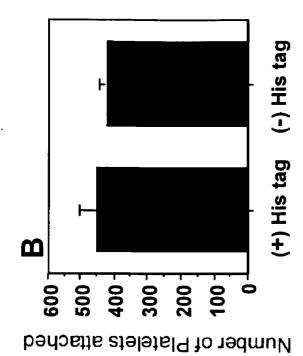


FIG. 11



.

Patent Application Publication

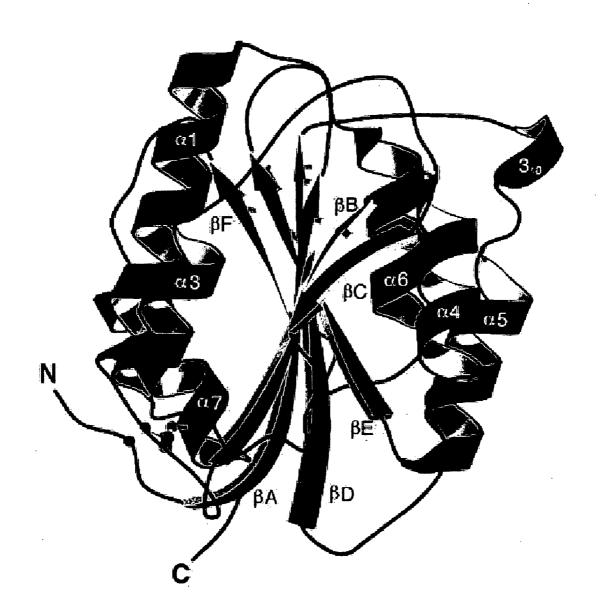


FIG. 15A

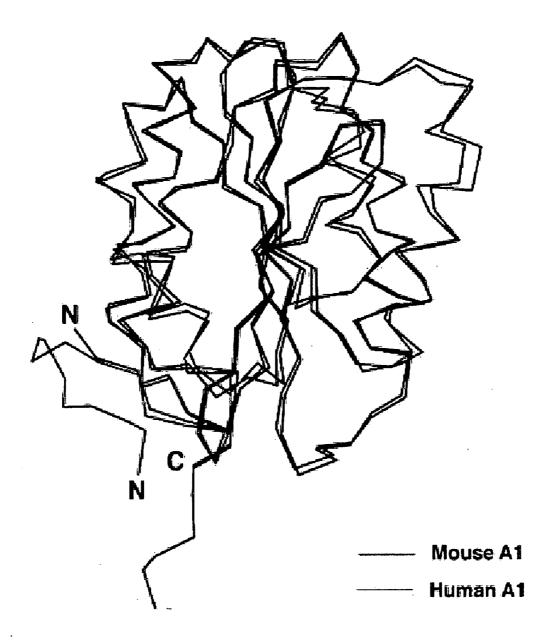
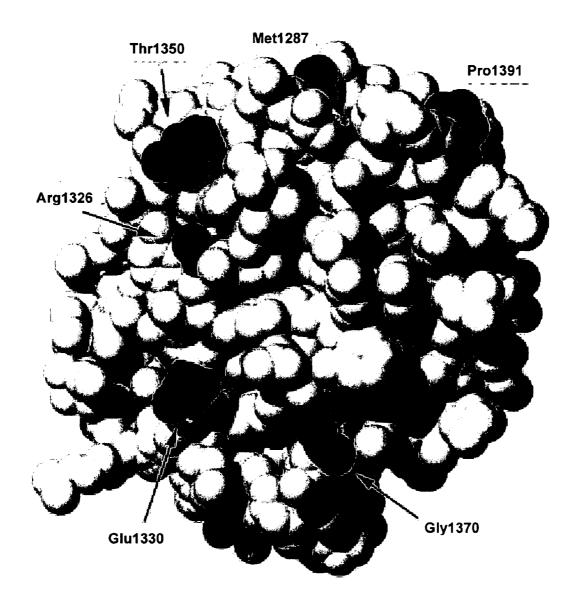
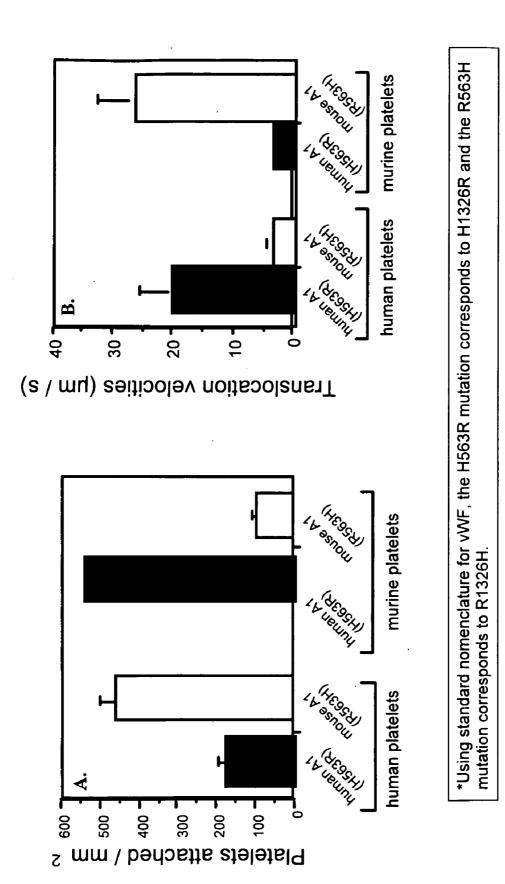
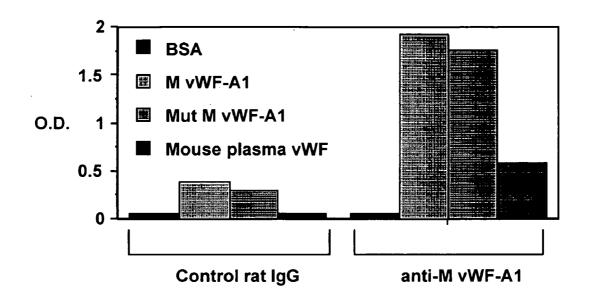
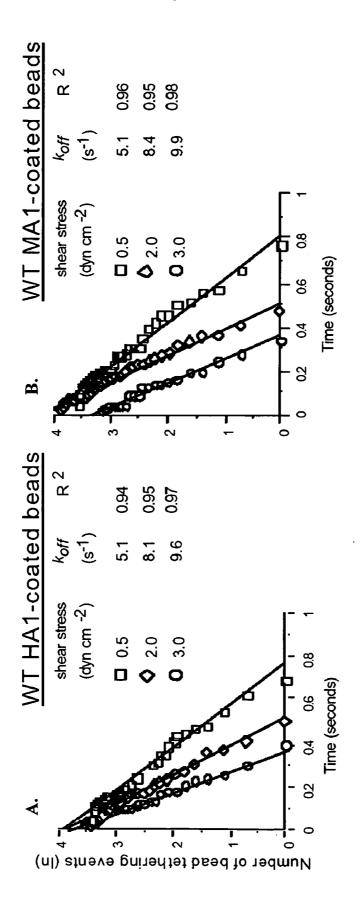
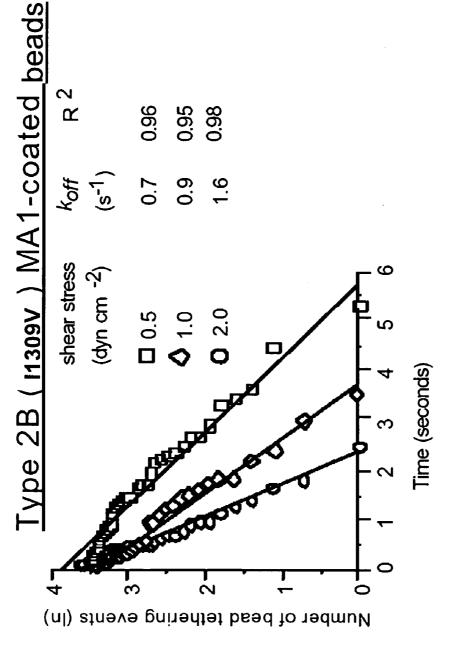
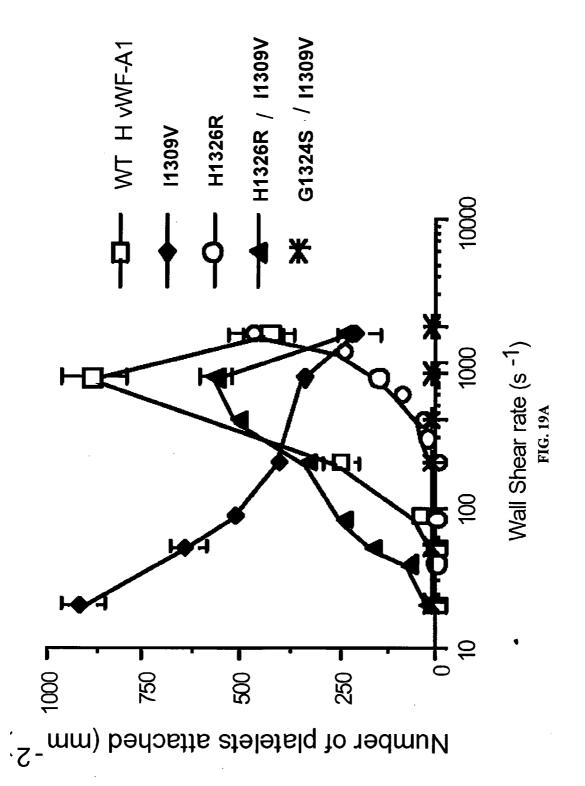
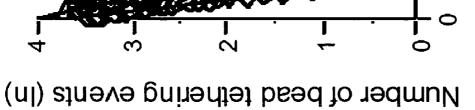
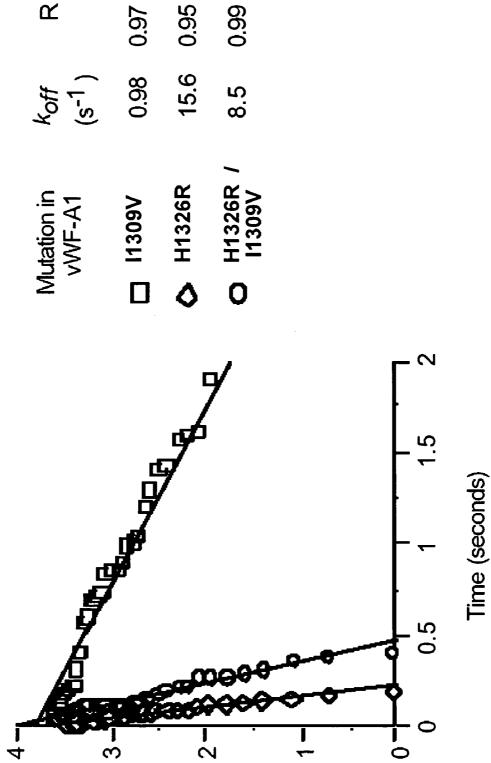
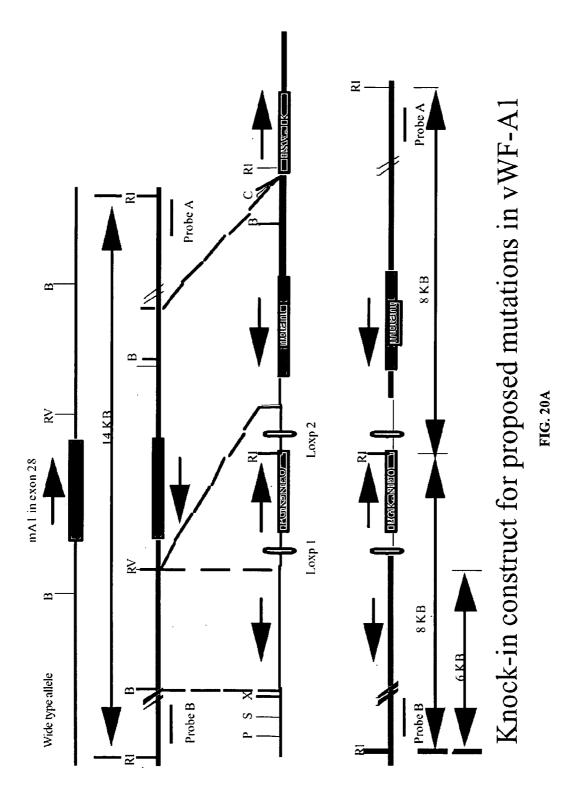





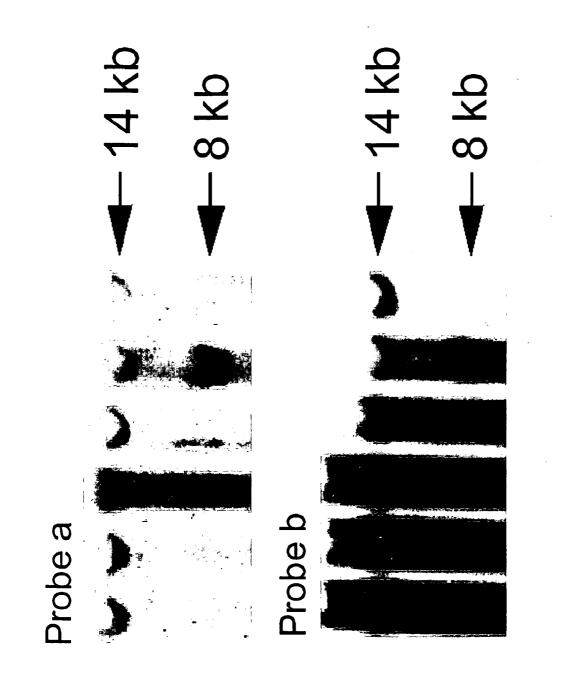
FIG. 15B

FIG. 17


FIG. 18A-B





С 2

FIG. 19B

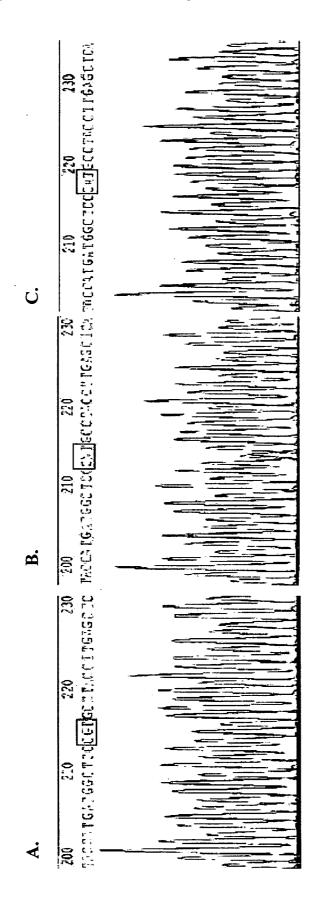


FIG. 20B

Lanes: 2 3 1

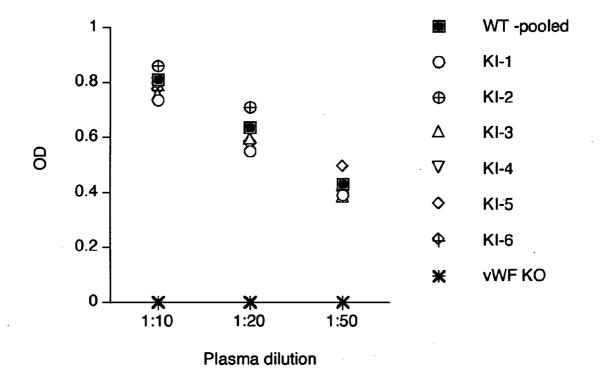


FIG. 23

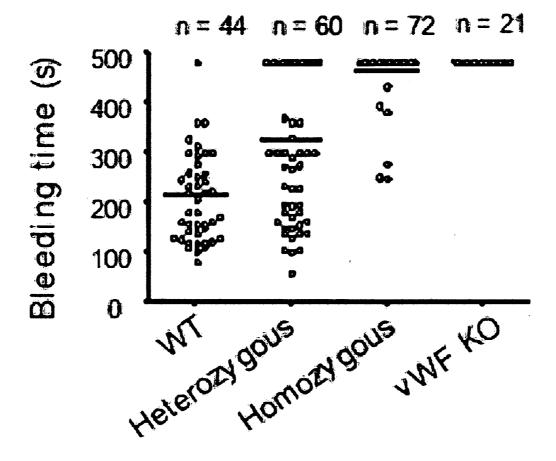


FIG. 25

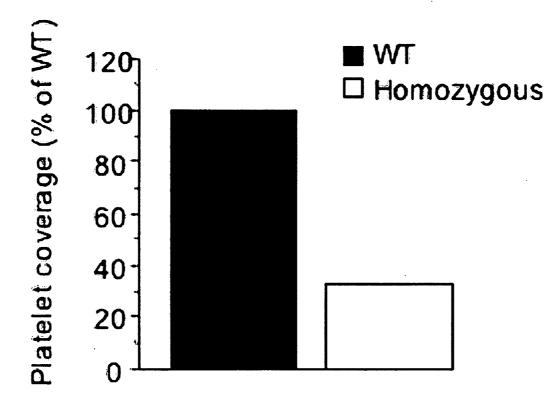
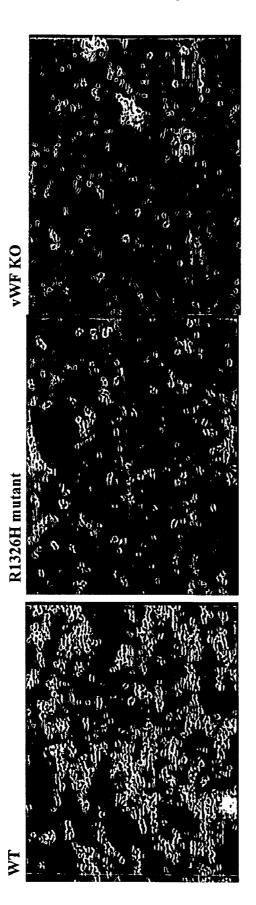
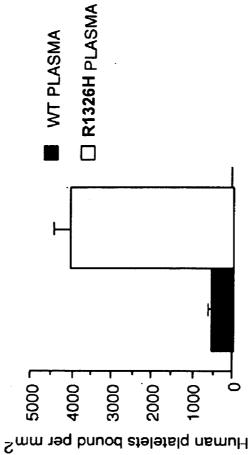
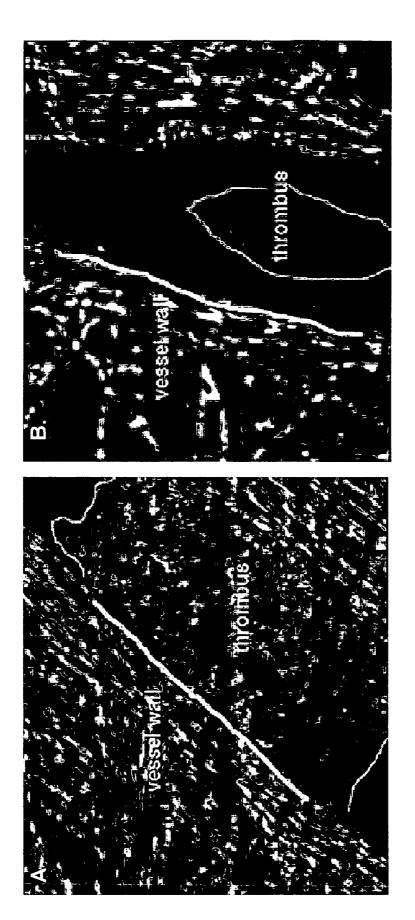
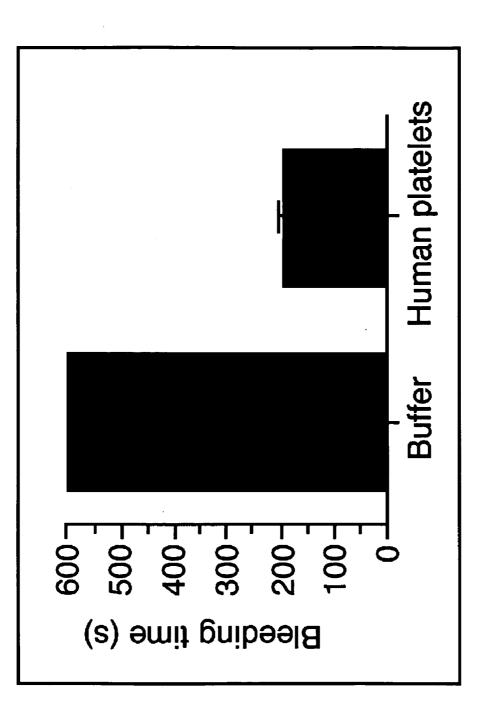
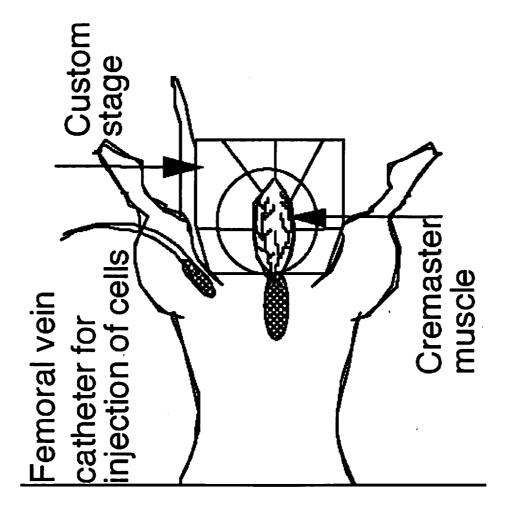




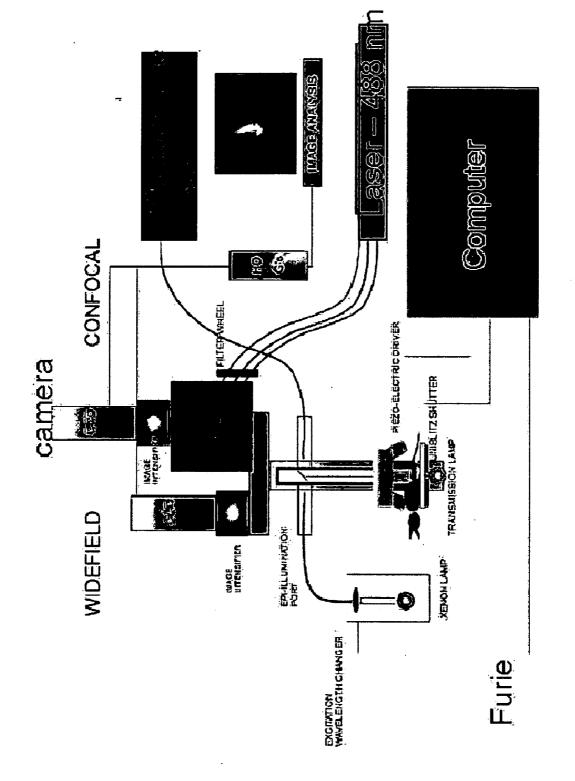
FIG. 26

ä


FIG. 28




<u>S</u>


Human Platelets / R1326H vWF

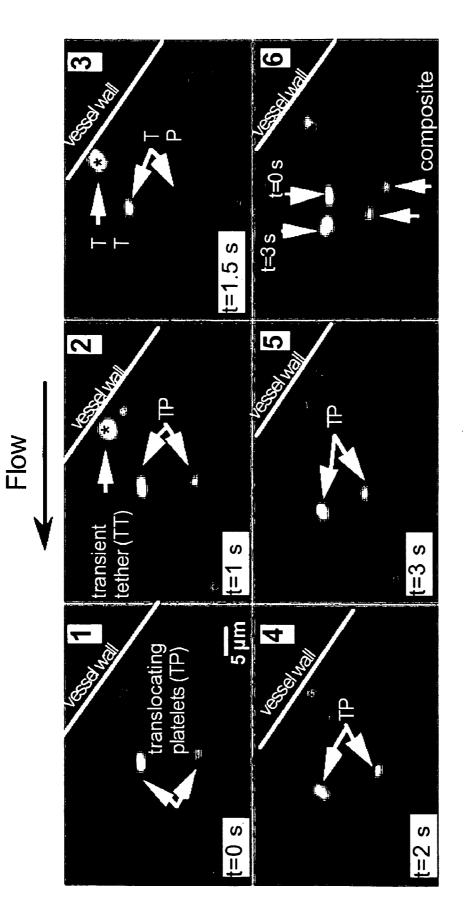
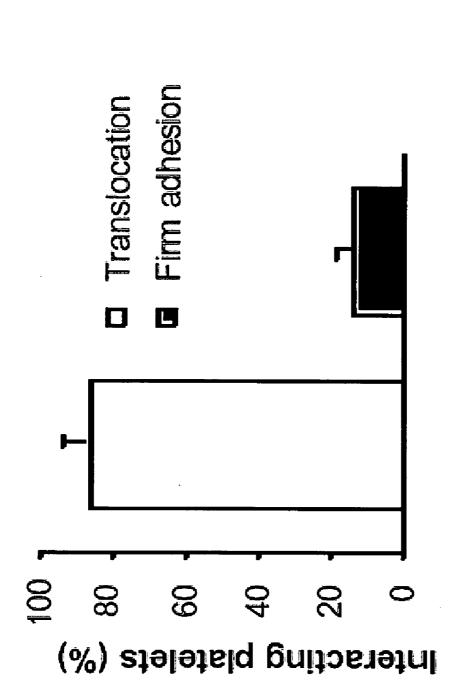



FIG. 33A

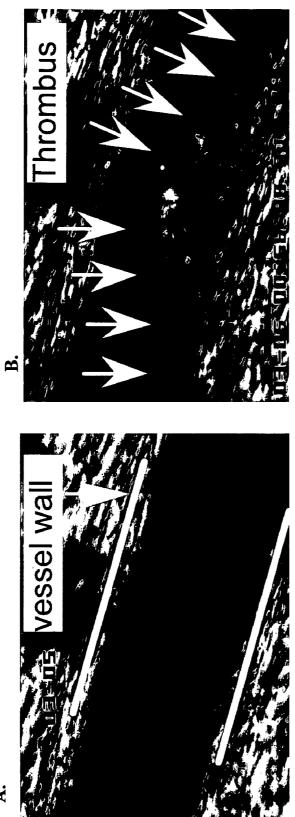
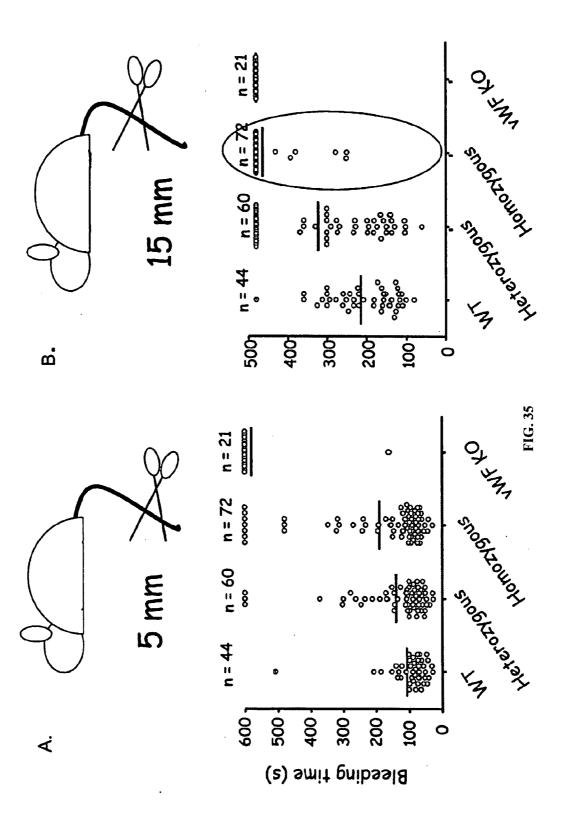
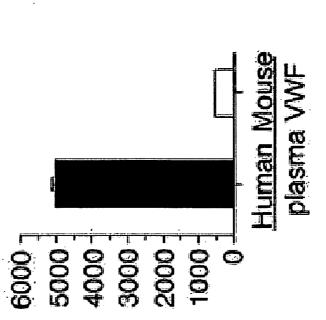
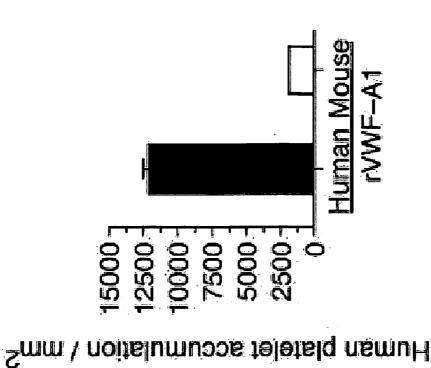
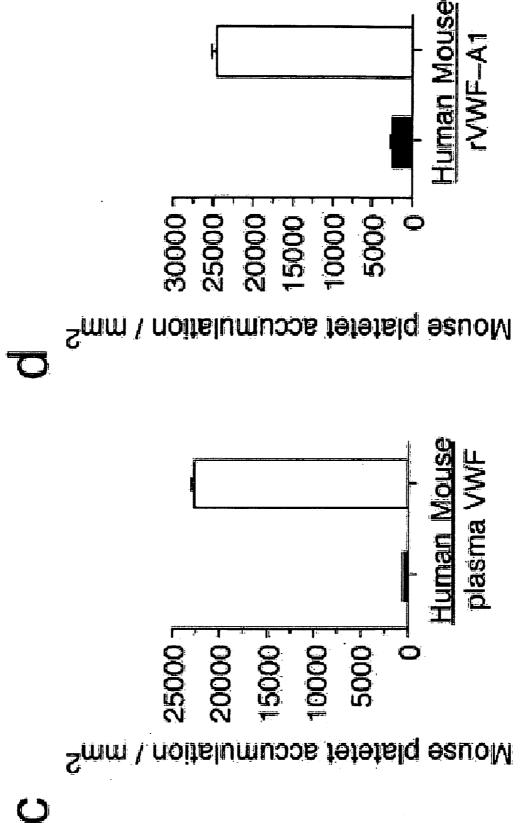
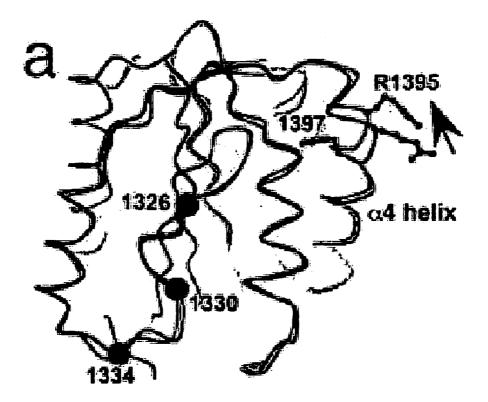
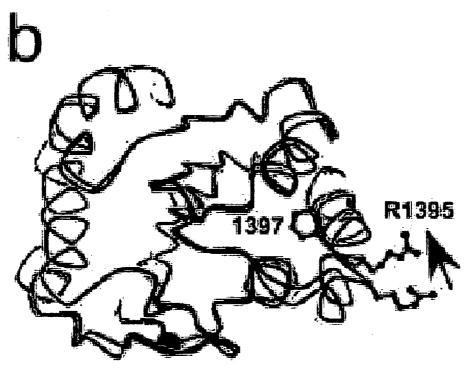




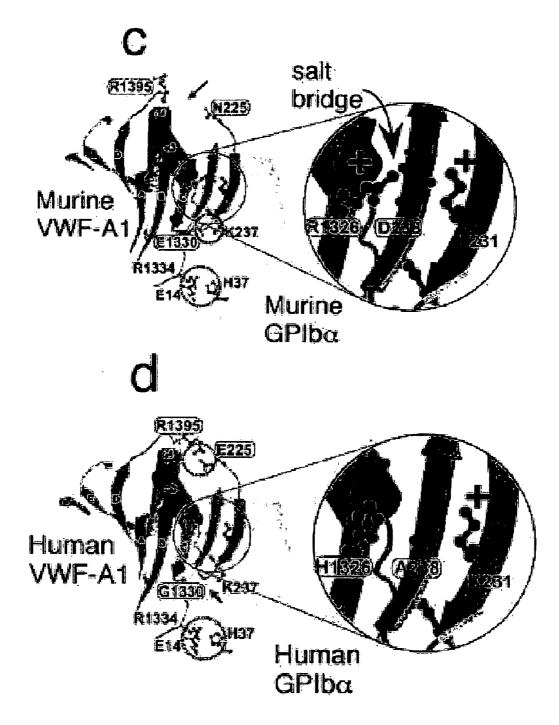
FIG. 34



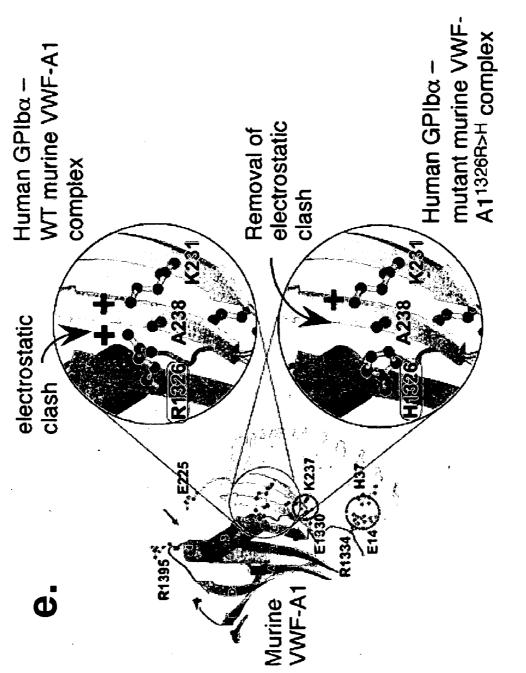


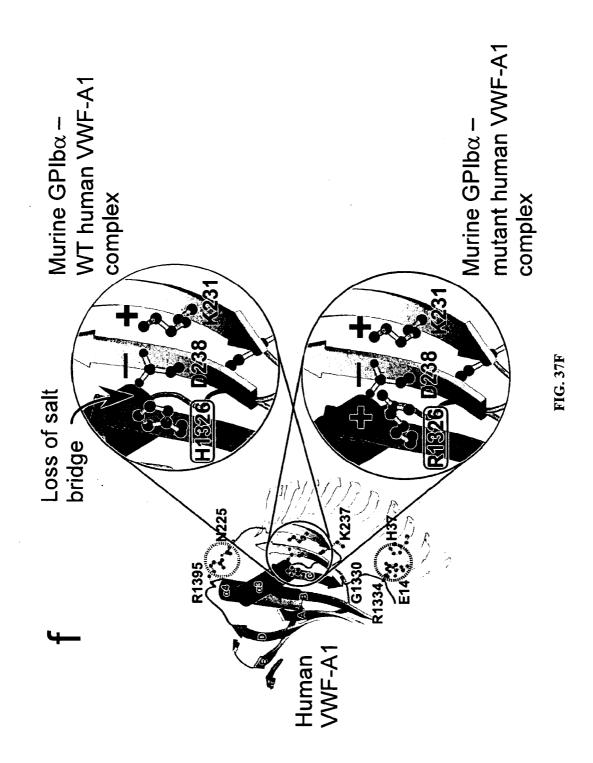


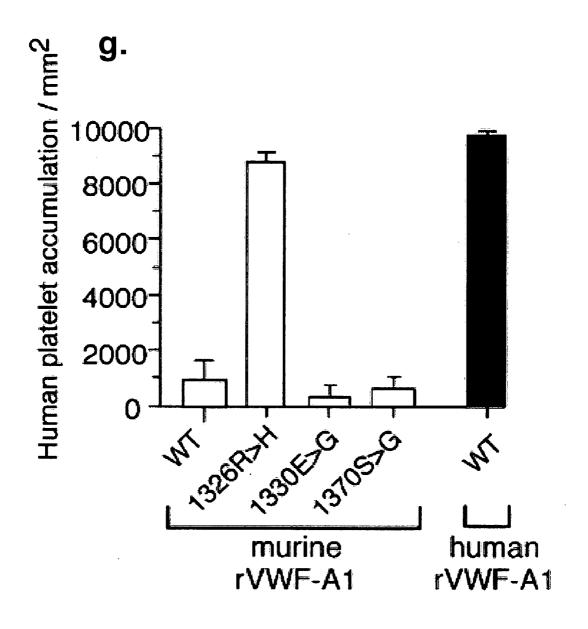




Patent Application Publication Aug. 13, 2009 Sheet 47 of 70


FIG. 36C-D





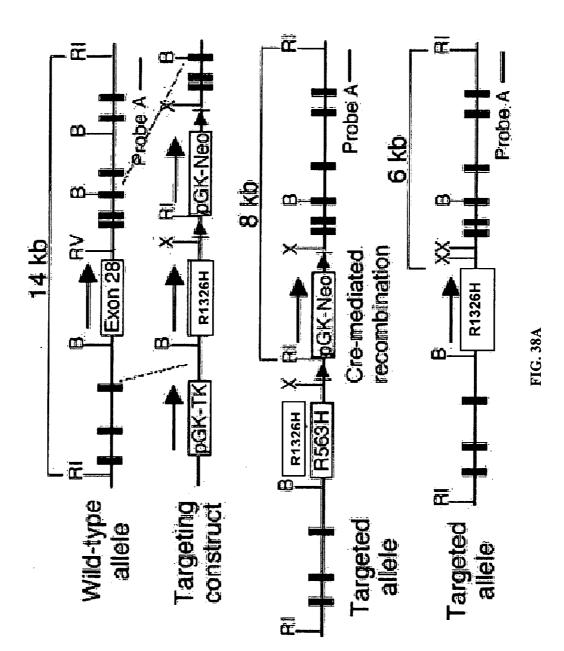


FIG. 37E

FIG. 37G

71<u>0</u>-

2.13

6 34

019 11 346 D- 1533

1:0

¢⊆

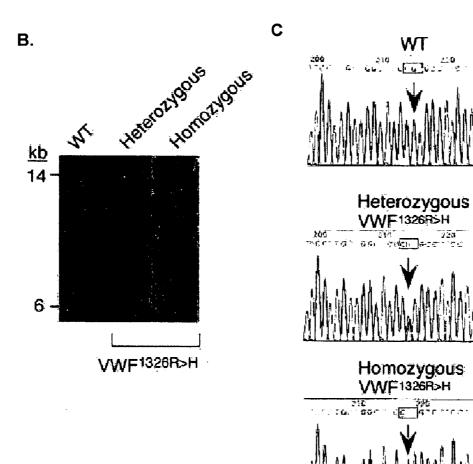
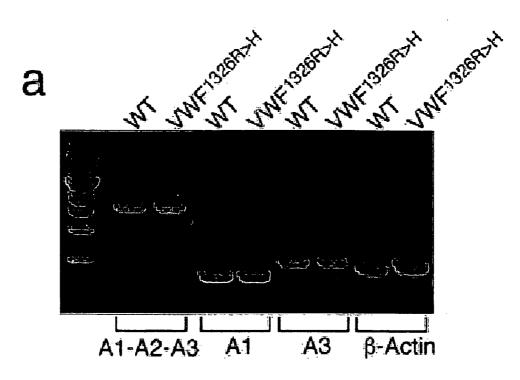
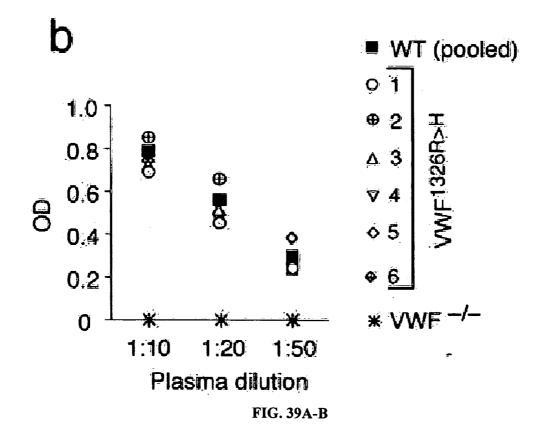
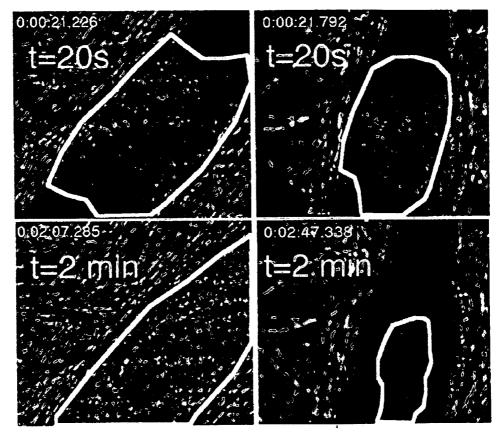
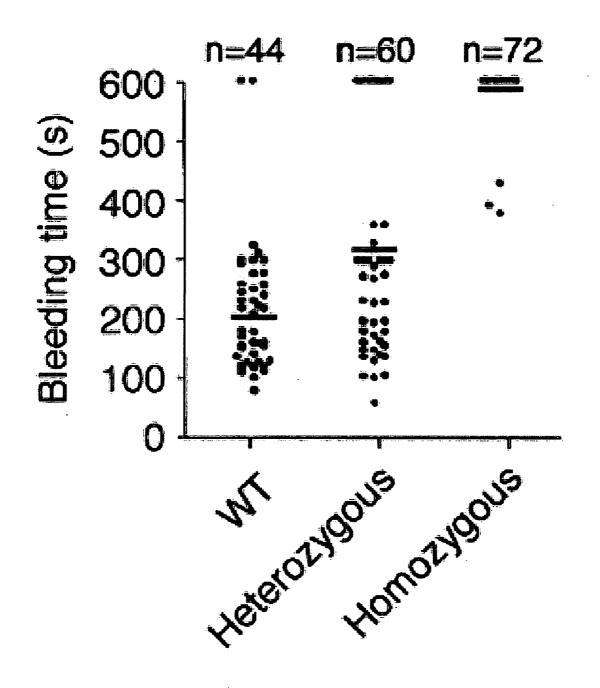
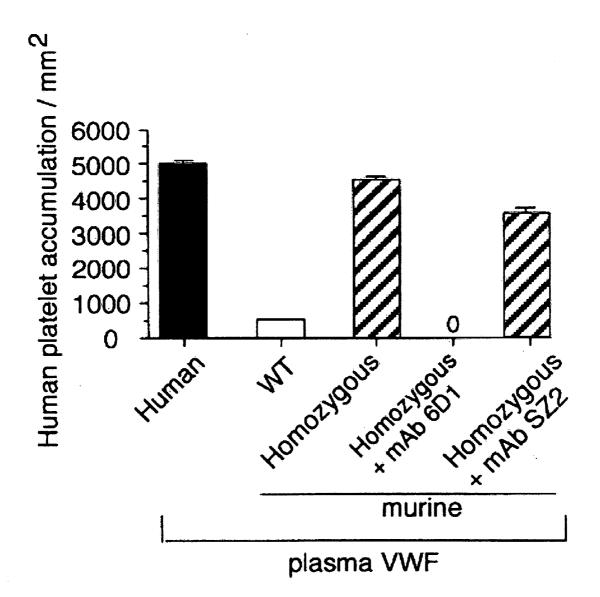




FIG. 38B-C

.







Homozygous

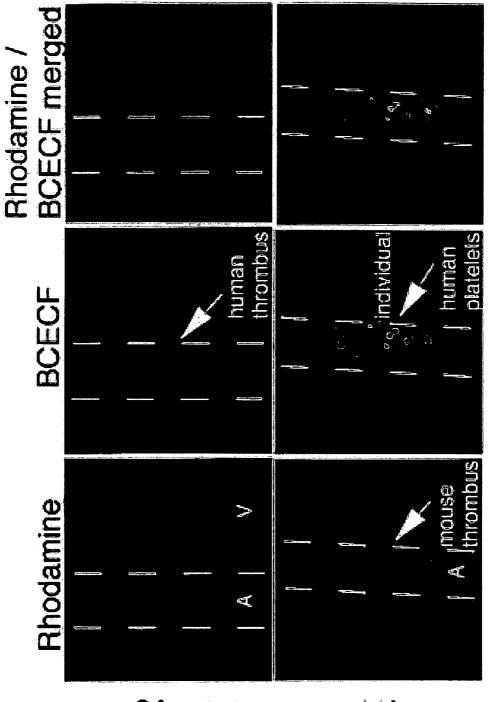
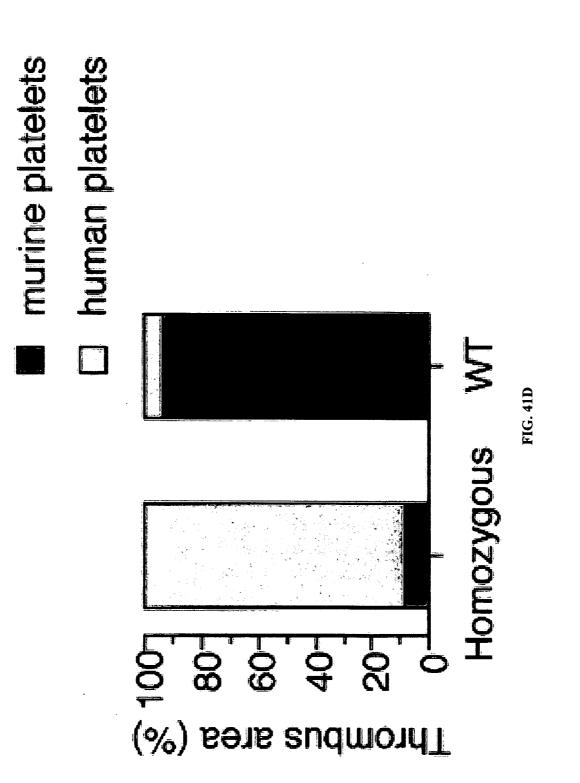
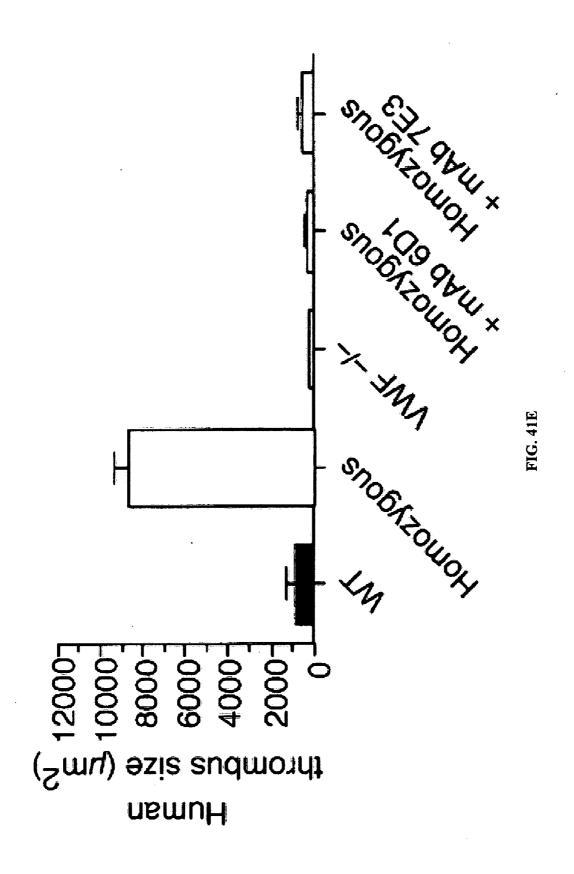
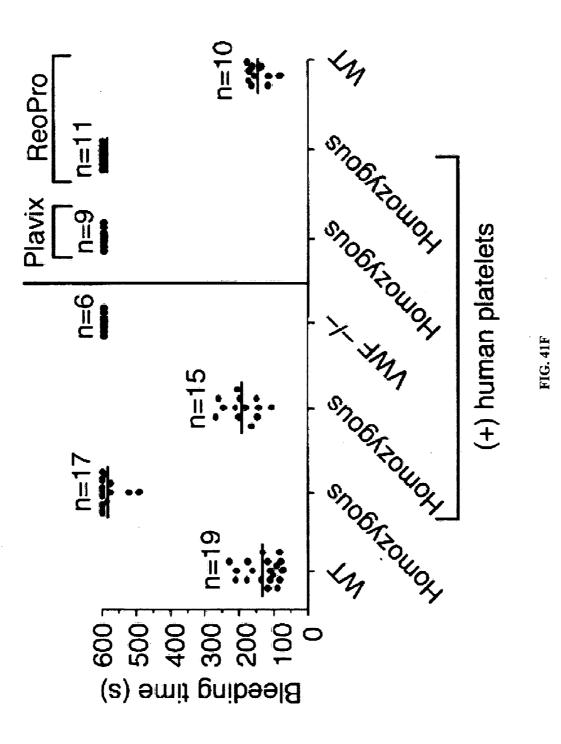
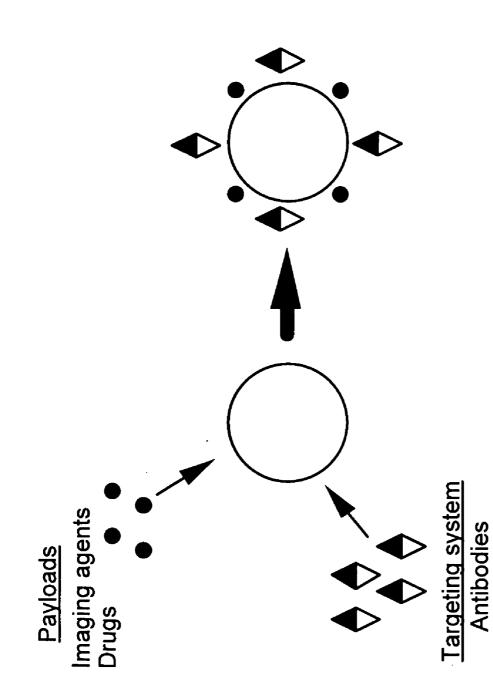


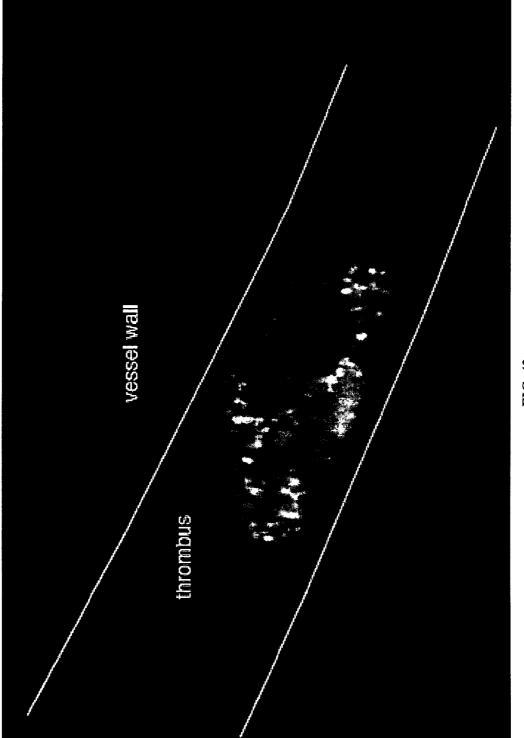
FIG. 41A

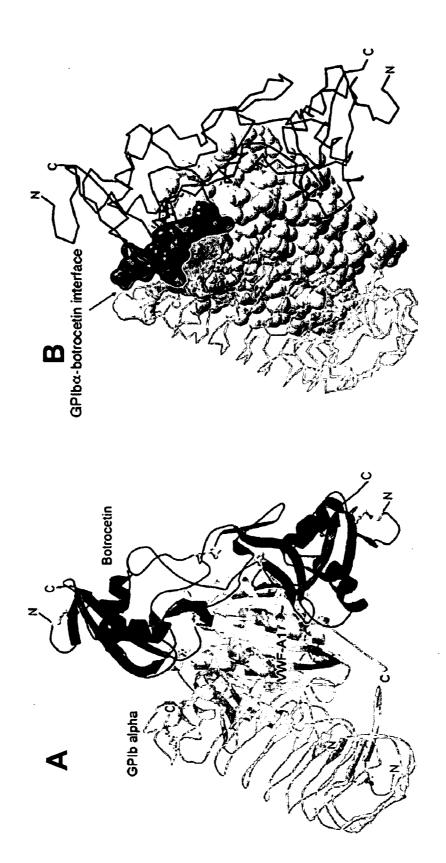



FIG. 41B


Superstand


WL





Patent Application Publication

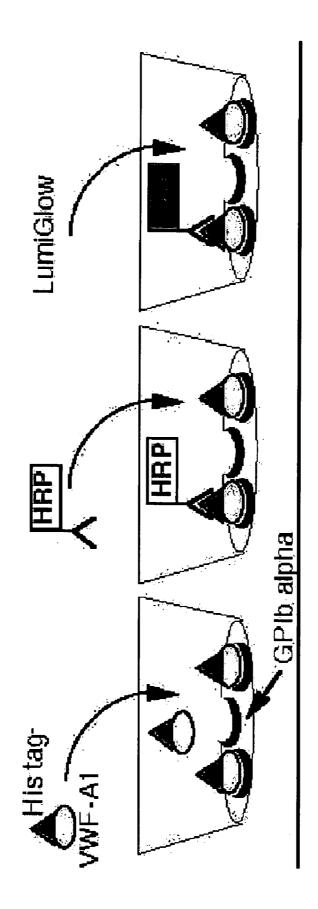
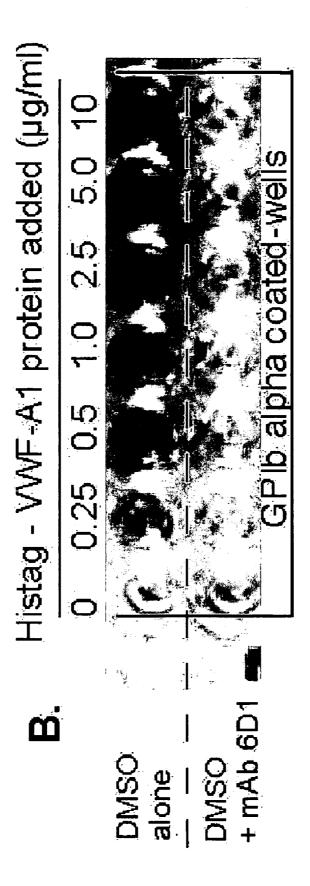
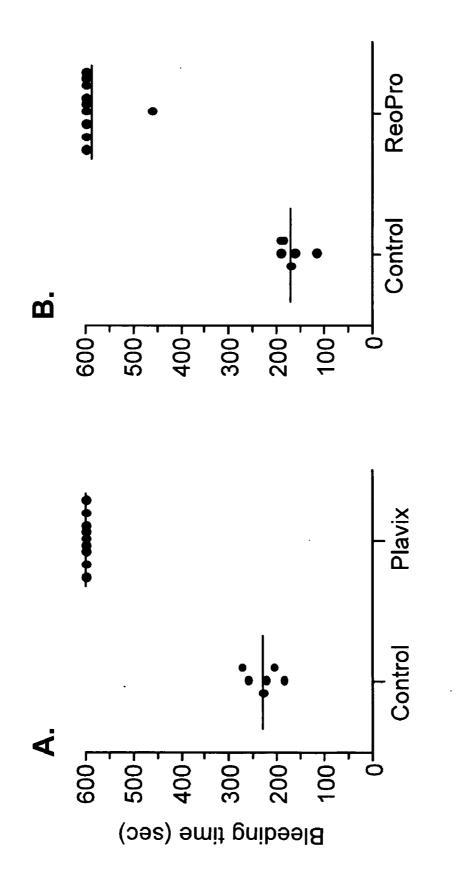
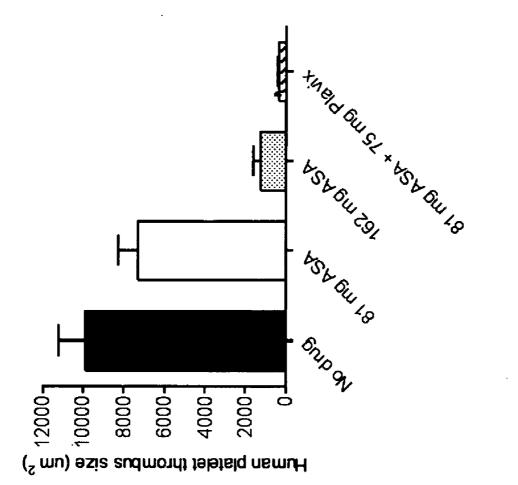





FIG. 45A

FIG. 45B

METHODS FOR TESTING ANTI-THROMBOTIC AGENTS

[0001] This application is a continuation-in-part of International Application No. PCT/US2007/015043 filed on Jun. 28, 2007, which claims the benefit of priority of U.S. Ser. No. 60/817,600 filed on Jun. 29, 2006, the contents of which are hereby incorporated in their entirety.

GOVERNMENT INTERESTS

[0002] This invention was made with support from the U.S. Federal Government under Grant No. 5RO1HL63244-7 awarded by the National Heart, Lung, and Blood Institute (NHLBI). As such, the United States government has certain rights in this invention.

[0003] Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art as known to those skilled therein as of the date of the invention described and claimed herein.

[0004] This patent disclosure contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the U.S. Patent and Trademark Office patent file or records, but otherwise reserves any and all copyright rights.

BACKGROUND OF THE INVENTION

[0005] The ability of platelets to rapidly stick to the damaged wall of arterial blood vessels is critical for preventing blood loss (hemorrhage). Inappropriate deposition of these hemostatic cells in arterial blood vessels due to pathological disease processes such as atherosclerosis can result in lack of blood flow to vital organs such as the heart and brain. Thus a delicate balance exists between providing adequate hemostasis without causing blockage of blood vessels by excessive platelet deposition (a.k.a. thrombus formation).

[0006] von Willebrand Factor (VWF) is a multidomain, plasma glycoprotein of complex multimeric structure which is synthesized by vascular endothelial cells and megakaryocytes (1-3) (FIG. 1A). Its presence in the blood is vital to maintaining the integrity of the vasculature. To accomplish this task, VWF forms a "bridge" between the injured vessel wall and platelets by virtue of its ability to interact with extracellular matrix components, such as collagen, and receptors expressed on platelets, such as glycoprotein Ib alpha (4-9). It also binds to and confers stability to factor VIII (10). The importance of this glycoprotein in hemostasis is underscored by the occurrence of clinical bleeding when the plasma VWF levels fall below 50 IU/dL (type I von Willebrand's disease, VWD), or when functional defects in the protein occur (type 2 VWD) (11,12).

[0007] Upon surface immobilization of VWF at sites of vascular injury, it is the role of the A1 domain of VWF (residues 1260-1480) to initiate the process of platelet deposition at sites of vascular injury and under conditions of high rates of shear flow (>1,000 s⁻¹; Ruggeri, Z. M. et al. *Blood.* 108, 1903-1910 (2006)). The critical nature of this interaction is exemplified by the bleeding disorder, termed type 2M VWD, which results from the incorporation of loss-of-function mutations within this domain that perturb interactions

with GPIb alpha (Sadler, J. E. et al. (2006) *J. Thromb. Haemost.* 4, 2103-2114; Rabinowitz, I. et al. (1992) *Proc. Natl. Acad. Sci. USA* 89, 9846-9849; Cruz et al., (2000) *J. Biol. Chem.* 275, 19098-19105). In addition, recombinant VWF multimers lacking the A1 domain cannot support platelet adhesion at high rates of flow despite retaining the ability to interact with collagen (Sixma et al., (1991) *Eur J Biochem.* 196:369-75).

[0008] The structure of the A1 domain includes the α/β fold with a central β -sheet flanked by α -helices on each side as well as one intra-disulfide bond (Cys1272-Cys 1458), but no MIDAS motif (Emsley et al., (1998) J Biol Chem. 273:10396-401). Its overall shape is cuboid, with the top and bottom faces forming the major and minor binding sites, respectively, that interact with the concave surface of GPIba. The most extensive contact site buries ~1700 Å² of surface area, interacting with LRR five to eight and the C-terminal flank of the GPIb α (Huizinga, E. G. et al. (2002) Science 297, 1176-1179). For this to occur, the β -switch region of this platelet receptor undergoes a conformation change so that it aligns itself with the central beta sheet of the A1 domain. The smaller site (~900 Å²) accommodates the binding of the β -finger and the first LRR of GPIba, an event that appears to require the displacement of the amino-terminal extension of the A1 domain. Based on these findings as well as the preferential localization of mutations in humans within this region, which enhance GPIba binding, it is speculated that the amino-terminal extension regulates the adhesive properties of this domain. This is also supported by the fact that recombinant A1 proteins lacking this extension have a higher affinity for this platelet receptor (Sugimoto et al., (1993) J Biol Chem. 268:12185-92). Despite these observations, the physiological relevance of such structural changes in this receptor-ligand pair remains to be determined as well as the contribution of other domains to this process.

[0009] In addition to its role in hemostasis, VWF also contributes to pathological thrombus formation on the arterial side of the circulation. This may be the consequence of injury to the blood vessel wall from inflammatory disease states and/or medical/surgical interventions. Pathological thrombus formation is the leading cause of death in the Western world. Thus, pharmaceutical companies have committed considerable resources towards the research and design of drugs to prevent or treat thrombosis. However, there remains an urgent need to develop new and improved therapies such as those aimed at reducing platelet and/or VWF interactions with the injured arterial wall. One major hurdle hindering drug development in this field is the lack of an appropriate small animal model of thrombosis to test promising therapies. For instance, differences in the structure or isoform of protein receptors or ligands on mouse vs. human platelets that are critical for the activation and/or binding of these cells to the injured vessel wall preclude testing of drugs developed against human platelets in a mouse model of thrombosis. Moreover, this issue cannot be overcome by simply transfusing mice with human platelets as we have observed that mouse VWF does not support significant interactions with human cells (see below). Thus, the development of a "humanized" mouse model of hemostasis and thrombosis would potentially expedite drug discovery and testing.

[0010] That said, we have discovered that only one amino acid difference between mouse and human VWF-A1 domains accounts for most of the inability of the former to interact with human platelets and vice versa. With this knowledge in hand,

we have genetically altered a mouse to express VWF that contains this amino acid found in human VWF-A1, imparting on it the ability to support adhesion of human platelets to a level observed for its human counterpart. As a result, not only are we uniquely poised to better understand the molecular mechanisms governing human platelet binding at sites of vascular injury in vivo, but now have the capability to perform pre-clinical testing of anti-thrombotic agents and targeted molecular imaging agents directed against human platelet cells in a living animal. The material contained within this document describes the features of this unique biological platform for drug testing the testing of drugs and targeted molecular imaging agents.

BRIEF DESCRIPTION OF THE FIGURES

[0011] FIG. 1A is a schematic representation of the prepro form of VWF. From top to bottom: repeated homologous regions; A1 and A3 disulfide loops and functional domains of the mature VWF subunit.

[0012] FIG. 1B is an illustration depicting the sequential adhesive and activation events that promote platelet deposition at sites of vascular injury.

[0013] FIG. **2** is a model depicting the location of residues in the human VWF-A1 domain that if mutated, diminish GPIb alpha-mediated platelet binding in flow. Type 2M mutations are in red, residues identified by alanine scanning mutagenesis are in blue, and residues identified by crystal structure are in green.

[0014] FIG. **3**, panel A, is a structure model depicting residues associated with type 2M (red) or type 2B (yellow) VWD. Panel B represents a silver stained gel that clinically depicts a type 2B VWD disease state individual, which is characterized by a loss of circulating high molecular weight VWF multimers (HMWM, FIG. **3**B, Lane 2).

[0015] FIG. **4** shows structure models of the human VWF-A1 domain. FIG. **4**A represents the location of the Ile1309 mutation and its proposed effects on residues critical for GPIb binding. FIG. **4**B shows the loss of the isoleucine methyl group allows a water molecule to enter, which ultimately results in changes in orientation of the G1324 peptide plane and the side chain of H1326 as depicted, residues critical for GPIb binding.

[0016] FIG. **5** is a space-filling model of the botrocetin-A1 complex with sites involved in GPIb alpha binding and location of type 2B mutations indicated (panel A), wherein botrocetin does not alter the conformation of VWF-A1. In panel B, minor conformational changes in the A1 domain are represented. Uncomplexed (blue) and complexed (green) mutant domains are superimposed onto the WT structure (red).

[0017] FIG. **6** is schematic wherein the uncomplexed A1 domain, an amino-terminal extension (pink) appears to block a binding site for the amino-terminal β -hairpin (orange arrows) of GPIb alpha. Binding requires the amino-terminal extension of A1 to move, and also induces the β -switch (yellow loop) of GPIb alpha to form a β -strand motif.

[0018] FIG. 7 depicts microscope images wherein the use of platelets in lieu of recombinant proteins or transfected cells as the immobilized substrate enables evaluation of GPIb alpha in its native form (i.e. correct orientation and proper post-translational modification). Platelet coverage of <10% can be bound in this manner and can remain relatively unactivated for up to 30 min as evident by morphology on light microscopic examination (FIG. 7A) and lack of expression of P-selectin by fluorescence microscopy (FIG. 7B).

[0019] FIG. **8** represents quantitations of bead-platelet interactions under flow. FIGS. **8**A and **8**B demonstrates the direct visualization of bead-platelet interaction under flow (60×DIC microscopy). An approaching bead moving at a velocity of 609±97 um/sec (wall shear stress of 1.5 dyn cm⁻²) is captured by a surface-immobilized platelet at (t=12.8 msec), pivots a distance of less than 3 µm in under 40 msec, and is then released after a pause time of $t_p=228.2$ msec into the flow stream (escape velocity=288+/-90.4 µm/sec). FIG. **8**C depicts representative experiments of k_{off} values for WT human VWF-A1 coated beads based on a distribution of interaction (pause) times. FIG. **8**D shows that the kinetics of the GPIb alpha tether bond are identical whether platelets are metabolically inactivated or fixed in paraformaldehyde to prevent activation upon surface-immobilization.

[0020] FIG. **9** represents the deduced single-letter amino acid sequence of mouse VWF-A1 domain (M VWF) compared to its human counterpart (H VWF) from amino acid 1260 to 1480. The locations of cysteines forming the loop structure are numbered (1238 and 1472) and differences in residues are highlighted in red. Conversion of the arginine (R) in the mouse A1 domain to histidine (H) as found in its human counterpart (blue χ) enables mouse VWF to bind human platelets.

[0021] FIG. 10 represents graphs of ristocetin-induced platelet aggregation assays (RIPA). Concentrations of the ristocetin modulator known to cause agglutination of human platelets (~1.0 mg/ml) had no effect using murine platelet rich plasma (FIG. 10B, FIG. 10D). Incubation of murine platelet rich plasma (PRP) with thrombin resulted in >90% platelet aggregation (FIG. 10A). Concentrations of ≥ 2.5 mg/ml of modulator resulted in murine platelet aggregation (30%, FIG. 10C).

[0022] FIG. **11** depicts a multimer gel analysis of purified VWF from human (lane 1, FIG. **11**A) and mouse (lane 2, FIG. **11**A) plasma. The ability of human and mouse VWF to mediate platelet adhesion in flow was determined in order to evaluate platelet interactions between human and murine VWF with GPIb alpha, as depicted in the bar graph of FIG. **11**B. Surface-immobilized murine VWF supports adhesion of syngeneic platelets $(1 \times 10^8/\text{ml})$ at a shear rate encountered in the arterial circulation (1600 s^{-1}) as observed for the human plasma protein (FIG. **11**B, first panel). In contrast, murine VWF did not support significant interactions with human platelets and vice versa.

[0023] FIG. **12** is an image of a gel of mouse and human VWF-A1 highly purified protein, which was dialyzed against 25 mM Tris-HCl, 150 mM NaCl, 0.05% Tween 20, pH 7.8. SDS-PAGE analysis revealed a prominent protein band of 34,000 Da for mouse VWF-A1 under non-reducing conditions.

[0024] FIG. **13** depicts bar graphs of a series of in vitro flow chamber assays performed to assess platelet adhesion, wherein human or murine platelets $(5 \times 10^7/\text{ml})$ were infused through a parallel plate flow chamber containing glass cover slips coated with either human (H) VWF-A1 or murine (M) VWF-A1 protein (100 µg/ml final concentration) at a shear rate of 800 s⁻¹. M VWF-A1 protein supported platelet adhesion as efficiently as its human counterpart under physiological flow conditions (FIG. **13**A). The translocation of mouse platelets occurred to a similar degree as its human counterpart under physiological flow conditions (FIG. **13**B). However, human platelets had a reduced capacity to interact with M

VWF-A1 protein and mouse platelets had a reduced capacity to interact with H VWF-A1 protein in flow.

[0025] FIG. **14**, panel A, represents purified bacterial Histagged VWF-A1 protein and non-His tagged VWF-A1 protein that was analyzed by SDS-PAGE (12.5%) under non-reducing and reducing conditions. FIG. **14**B depicts a bar graph of a human platelet adhesion assay to recombinant VWF proteins with and without the presence of a His-tag at a shear rate of 800 s⁻¹.

[0026] FIG. 15 represents models of the crystal structure of VWF-A1 domains solved using a recombinant protein. The main chain schematic of the mouse VWF-A1 domain, with β -strands (arrows) and helices (coils), is shown in FIG. 15A. The two cysteines involved in the disulfide bridge are shown as yellow spheres. FIG. 15B demonstrates that the C-alpha atoms of human (red) and mouse (blue) VWF-A1 domains closely overlap. FIG. 15C shows the model of the murine VWF-A1 domain and the residues that purportedly interact with GPIb alpha, wherein amino acid residue 1326 of mouse (M) VWF-A1 was mutated to the corresponding amino acid at the identical location in its human counterpart (from Arg to His).

[0027] FIG. **16** shows graphs that depict platelet adhesion assays (FIG. **16**A) and platelet translocation measurements (FIG. **16**B). The ability of murine and human platelets to interact with a mutant protein substrate (human VWF-A1 domain wherein amino acid residue 1326 was mutated from His to Arg and mouse VWF-A1 domain wherein amino acid residue 1326 was mutated from Arg to His) was evaluated at a wall shear rate of 800 s⁻¹.

[0028] FIG. 17 represents data from an ELISA assay. Following several injections of mouse (M) VWF-A1, serum was collected from rats and screened by ELISA for anti-VWF-A1 antibodies. Spleens from animals with the highest antibody titers were harvested and splenocytes fused with Sp2/0 mouse myeloma cells (54). Supernatants of hybridomas were screened for reactivity to murine (M) VWF-A1 by ELISA. Pre-immune rat serum was used as control. Mabs to MVWF-A1 not only reacted with WT and mutant proteins (1324G>S) but also recognized native VWF purified from mouse plasma. [0029] FIG. 18 shows representative graphs depicting the distribution of interaction times for more than 35 individual transient attachment events at various times. Analysis of the distribution of interactions times between human or murine VWF-A1 coated beads and their respective platelet substrates, as measured by high temporal resolution video microscopy, indicate that >95% of all transient tether bonds events fit a straight line, the regressed slope of which corresponded to a single k_{off} , wherein the cellular off-rates of these quantal units of adhesion for the wild type human (H) and murine (M) proteins are found in FIGS. 18A and B and M VWF-A1 protein containing the type 2B mutation I1309V (1309I>V) corresponds to FIG. 18C.

[0030] FIG. **19** shows graphs that represent an assessment of transient tether events (FIG. **19**A) and analysis of the distribution of interactions times (FIG. **19**B) between human VWF-A1 coated microspheres and human immobilized platelets. The type 2B mutation Ile1309 Val (1309I>V) was incorporated into recombinant human (H) VWF-A1 containing either the type 2M mutation Gly1324Ser (1324G>S) or the function reducing mutation His1326Arg (1326H>R).

[0031] FIG. **20** is a scheme for generating transgenic mice with mutant VWF-A1 domains. FIG. **20**A is a diagram of a knock-in construct for proposed mutations in the VWF-A1

domain of mice. FIG. **20**B represents Southern blot hybridization with probe "a" or "b", respectively, to determine if the construct was appropriately targeted.

[0032] FIG. **21** represents Southern blot analysis wherein heterozygous and homozygous mice for the amino acid substitution at residue 1326 (R1326H; 1326R>H) display the Arg1326His mutation (lanes 2 and 3 respectively) while wild-type animals did not (lane 1).

[0033] FIG. **22** represents sequence analysis of purified PCR products of WT, heterozygous, or homozygous VWF-A1 domains wherein the red-boxed area denotes the conversion of Arg to His (CGT in FIG. **22**A wherein the codon corresponds to Arg and CAT in FIG. **22**C wherein the codon corresponds to the amino acid His).

[0034] FIG. **23** is a graph of an ELISA assay which demonstrated that conversion of Arg to His in the mouse A1 domain did not alter plasma protein levels of VWF in mutant mice nor its ability to form multimers. The ELISA assay detected mouse VWF in plasma obtained from WT and homozygous (KI) animals, but not from plasma obtained from animals deficient in VWF (VWF KO).

[0035] FIG. **24** is a gel image of multimer gel analysis of plasma VWF that revealed an identical banding pattern between mouse and human VWF. Incorporation of His at position 1326 in the mouse A1 domain had no effect on multimerization of VWF in mutant mice.

[0036] FIG. **25** is a graphical representation of the bleeding times (s) observed in the mutant VWF-A1 mice that are either heterozygous or homozygous for the 1326R>H mutation. Results are compared to normal counterparts and VWF-deficient mice. Tail cut=1 cm.

[0037] FIG. **26** is a bar graph depicting thrombus formation induced by perfusion of whole blood from either wild type (WT) or homozygous mutant mice over surface-immobilized collagen in vitro wherein an 80% reduction in thrombus formation was observed compared to WT controls.

[0038] FIG. **27** are micrographs that demonstrate reduced thrombus formation occurring when whole blood from either the knock-in animals (homozygous for the R1326H mutation) or WT is perfused over collagen-coated cover slips at a shear rate of 1600 s^{-1} indicating a 70% reduction in thrombi formed on collagen as compared to WT controls.

[0039] FIG. **28** demonstrates a platelet adhesion assay in flow. R1326H mutant mouse VWF promotes interactions with human platelets under physiologic flow conditions, wherein anticoagulated human blood was infused over surface-immobilized WT or mutant mouse plasma VWF at 1600 s⁻¹ as shown in the micrographs of FIG. **28**A. FIG. **28**B is a graph that depicts the amount of human platelets that bound to WT murine VWF or R1326H mutant murine VWF.

[0040] FIG. **29** are transmitted light micrographs demonstrating that homozygous mutant mice infused with human (FIG. **29**A) but not mouse platelets (FIG. **29**B) were able to generate an arterial thrombus that occludes the vessel lumen in response to laser-induced vascular injury as depicted by intravital microscopy.

[0041] FIG. **30** is a bar graph that depicts the average bleeding time for mice receiving blood-banked human platelets (~3 minutes for a 1 cm tail cut) or given an intravenous infusion of a physiological buffered saline solution (10 minutes (end point)).

[0042] FIG. **31** is a schematic representing the isolation of the cremaster muscle and the catheter set-up used in intravital microscopy assays to assess thrombus formation.

[0043] FIG. **32** is a schematic of an intravital microscopy method.

[0044] FIG. 33 demonstrates images of mouse platelet interactions and a bar graph of such interactions in a wild type animal. FIG. 33A are representative intravital photomicrographs that depict the range of platelet interactions that occur at a site of vascular injury (60x). Platelets were observed to either transiently pause (*) or rapidly tether to and translocate (TP) on damaged arterial endothelium. A composite image demonstrates translocation of two platelets over a 3 s interval of time (panel 6). FIG. 33B depicts interacting platelets at the site of arterial injury that were classified as either undergoing translocation or firm adhesion (sticking) during an observation period of 1 min.

[0045] FIG. 34 represents photomicrographs that depict the vessel wall in a wild type mouse in the (A) absence of injury or (B) post-laser-induced injury as visualized under transil-lumination (40x objective). Thrombus is indicated by the arrows.

[0046] FIG. **35** is a graphical representation of the bleeding phenotype observed in the mutant VWF-A1 1326R>H heterozygous or homozygous mouse compared to its WT counterpart when tails were cut either 5 mm (FIG. **35**A) or 15 mm (FIG. **35**B) from the tip of the tail.

[0047] FIGS. 36A-B are graphs that depict ex vivo analysis of human platelet interactions with plasma VWF or recombinant VWF-A1 proteins. Accumulation of human platelets on surface-immobilized plasma human or mouse VWF (FIG. 36A) or recombinant human or mouse A1 domain proteins (FIG. 36B) after 4 min of perfusion with whole blood (shear rate of 1600 s⁻¹) is shown. Data are representative of three separate experiments performed in triplicate (mean±s.e.m.).

[0048] FIGS. 36C-D are graphs that depict ex vivo analysis of mouse platelet interactions with plasma VWF or recombinant VWF-A1 proteins. Accumulation of murine platelets on surface-immobilized human or mouse plasma VWF (FIG. 36C) or recombinant human or mouse A1 domain proteins (FIG. 36D) after 4 min of perfusion with whole blood (shear rate of 1600 s⁻¹) is shown. Data are representative of three separate experiments performed in triplicate (mean±s.e.m.). [0049] FIGS. 37A-B are structural representations of human and murine VWF-A1 domains. FIG. 37A depicts the alignment of $C\alpha$ atoms for human (blue) and murine (red) A1 domains. Key residues described in EXAMPLE 4 are shown as red spheres or as ball-and stick side-chains. FIG. 37B is a 90° rotation about a horizontal axis to reveal the packing of residue 1397 (Phe in human, Leu in mouse) that results in a 3 Å shift (blue arrow) of helix $\alpha 4$.

[0050] FIGS. 37C-D are structural representations of human and murine GPIb α -VWF-A1 complexes. FIG. 37C depicts the model of the murine-murine complex. FIG. 37D depicts the crystal structure of the human-human complex. Salt bridges are circled and key residue differences are boxed. Zooms reveal details of the electrostatic interactions at the β -switch contact region. The region of contact involving helix α 3 of the A1 domain and one face of the LRR repeats of GPIb α is highly conserved between species, except for two residue changes that do not participate in bond formation: GPIba E151K and VWF-A1 G1370S (human:mouse). Thus, minor differences in this region are unlikely to contribute to a reduction in binding between the murine and human proteins. This is also the case with the contact area located at the bottom of the A1 domain, which is invariant in both species and participates in salt-bridge formation (red circle).

[0051] FIG. **37**E is a model of the human GPIb α -murine A1 complex, showing the loss (green arrow) and gain (blue circle) of salt-bridges. The upper zoom shows the interspecies interface at the β -switch region, revealing the electrostatic clash. The lower zoom shows the murine VWF-A1 point mutant 1326R>H, which removes the electrostatic clash and now closely resembles the human-human complex.

[0052] FIG. **37**F is a model of the murine GPIb α -human VWF-A1 complex. Two salt-bridges are lost as compared to the murine complex; murine GPIb α D238 with residue 1326 due to the R>H change in human VWF-A1, and murine GPIb α K237 with residue 1330 owing to the E>G change in the human protein. Moreover, neither the chimeric nor murine complex forms a salt-bridge between residues 225 and 1395 on GPIb α and VWF-A1, respectively, as compared to its human counterpart (green circle). The upper zoom shows the interspecies interface at the β -switch region; there is no electrostatic clash but no salt-bridge can form with H1326. The lower zoom shows the human point mutant 1326H>R, which adds a salt-bridge and now closely resembles the murine-murine complex.

[0053] FIG. **37**G is a graph that shows the accumulation of human platelets on surface-immobilized recombinant WT murine VWF-A1 domain proteins, those containing the selected mutations 1326R>H, 1330E>G and 1370S>G, or WT human VWF-A1 protein (shear rate of 1600 s⁻¹). Data are representative of three separate experiments performed in triplicate (mean \pm s.e.m.).

[0054] FIG. **38**A is schematic for the generation of the VWF^{1326R>H} mouse that represents the targeting strategy for insertion of exon 28 containing adenine in lieu of guanine at position 3977 of the cDNA for murine VWF. R1, EcoRI; RV; EcoRV; B, BamHI; X, XhoI; pGK-TK, pGK-Neo, thymidine kinase/neomycin resistance cassette; ◀ loxP sites.

[0055] FIG. **38**B is a blot of a Southern analysis of tailed DNA digested with EcoR1. Wild-type (WT) allele, 14 kb; mutant allele, 6 kb using Probe A. FIG. **38**C represents the DNA sequencing of the tailed DNA demonstrating successful incorporation of adenine at position 3977 in heterozygous and homozygous animals (CGT>CAT). Sequence analysis of genomic DNA from these animals, 2 kb upstream and 6 kb downstream of exon 28, did not reveal any other alterations in nucleotide base pairs that would affect VWF production and/ or function.

[0056] FIGS. **39**A-B represent the analysis of VWF gene transcription and translation. FIG. **39**A is a gel of RT-PCR of lung tissue from WT or mutant VWF mice to detect for A1, A2, and/or A3 domain message. β -actin analyzed to demonstrate use of equivalent amounts of mRNA. FIG. **39**B is a graph demonstrating VWF antigen levels in plasma obtained from WT littermates (pooled) or six individual mice homozygous for 1326R>H mutation as detected by ELISA. Data are representative of two independent experiments performed in triplicate.

[0057] FIG. **39**C is a gel showing the analysis of VWF multimers in plasma from WT or homozygous mutant animals. Normal human plasma as well as that obtained from a patient with type 2B VWD is shown for comparison.

[0058] FIG. **40** depicts representative photomicrographs showing murine platelet accumulation at sites of laser-induced arteriolar injury in WT or homozygous mutant animals 20 s and 2 min post-injury. White lines demarcate the extent of the thrombus.

[0059] FIG. **41**A is a graphical representation of the tail bleeding times (s) for heterozygous and homozygous $VWF^{1326R>H}$ and WT mice when tails were cut 1 cm from the tip of the tail. Each point represents one individual mouse and experiments were performed on five separate days.

[0060] FIG. **41**B is an ex vivo analysis of human platelet interactions with surface-immobilized plasma $VWF^{1326R>H}$ at a shear rate of $1,600 \text{ s}^{-1}$. A role for GPIb alpha on human platelets is demonstrated by the function-blocking antibody to this platelet receptor (mAb 6D1) to prevent adhesion in flow.

[0061] FIG. **41**C are microscopy images of in vivo analysis of human platelet interactions with murine plasma VWF^{1326R>H} using infused fluorescently labeled human platelets into the vasculature of the cremaster muscle of mice. Human platelet accumulation was examined at sites of laser-induced arteriolar injury in WT (n=10) or homozygous mutant animals (n=12) using 2 channel confocal microscopy with excitation wavelengths of 488 nm (BCECF) and 561 nm (rhodamine 6G). Representative composite images of fluorescent images depicting human thrombus formation in homozygous mutant (upper panels) or WT (lower panels) mice (V=venule; A=arteriole). Rhodamine and BCECF are depicted in red and green, respectively, and merged is presented in yellow.

[0062] FIG. **41**D is a bar graph depicting the composition of thrombi (% of total area) in WT or homozygous mutant animals.

[0063] FIG. **41**E is a bar graph measuring thrombus size during an in vivo study of human platelet interactions with plasma VWF^{1326R>H} to determine the effect of GPIb α or α IIb β 3 blockade on human platelet adhesion in vivo. The requirement for GPIb alpha-mediated adhesion is shown by the ability of a function-blocking antibody (mAB 6D1 or mAb 7E3) to GPIb alpha to prevent human platelet thrombus formation in vivo. Fluorescently labeled human platelet accumulation was examined at sites of laser-induced arteriolar injury in WT (n=6) or homozygous mutant animals (n=8). Data represent the mean±s.e.m.

[0064] FIG. **41**F is a graphical representation of tail bleeding times (s) for homozygous VWF^{1326R>H} that received an infusion of either normal saline or human platelets prior to severing 10 mm of distal tail, wherein the ability of human platelets to restore hemostasis in homozygous VWF^{1326R>H} and the effect of PLAVIX or ReoPro® on this process was examined. Each point represents one individual mouse and experiments were performed on 3 separate days.

[0065] FIG. **42** is a schematic depicting a perfluorocarbon nanoparticle capable of incorporating imaging agents (Gd⁺³, 99m Tc) and chemotherapeutics into the outer layers. Antibodies complexed to the surface of the particle can target the agent to specific sites within the body.

[0066] FIG. **43** is a photographic image depicting the accumulation of fluorescent PNP, coupled to an antibody that recognizes human alphaIIb beta 3 on the surface of human platelets, at a site of vascular injury in homozygous 1326R>H mutant mice infused with human platelets.

[0067] FIG. **44** is a graphical representation of the structure of the VWF-A1-GPIb alpha-botrocetin ternary complex. FIG. **44**A is a ribbon representation; GPIb alpha, green; botrocetin, red; A1, cyan. FIG. **44**B demonstrates the location of the previously unknown interface between GPIb alpha and botrocetin.

[0068] FIG. **45**A is a schematic representation showing that Recombinant GPIb alpha is surface-immobilized in a 96 well format. After blocking potential non-specific binding sites, recombinant VWF-A1 containing a His tag is added to the wells and allowed to interact with GPIb alpha for a specified period of time. The unbound material is removed by washing the wells and the complex formed between the 2 proteins detected by the addition of a HRP-conjugated antibody that binds to the His tag on A1. The amount of bound A1 can then be quantified by either fluorescence (addition of LumiGlow) or by color change.

[0069] FIG. **45**B is an image representing that the specificity of the interaction can be determined by the addition of the GPIb function blocking antibody 6D1 prior to the addition of recombinant VWF-A1. DMSO (0.5%) was added to illustrate that this reagent does not interfere with the assay.

[0070] FIG. **46** are graphs depicting the effect of Plavix (FIG. **46**A) or ReoPro (FIG. **46**B) on human platelet-induced hemostasis in homozygous VWF^{1326R>H} mice.

[0071] FIG. **47** is a graph showing the efficacy of antiplatelet drugs administered to patients by studying the ability of platelets harvested from patients on therapies in the $VWF^{1326R>H}$ mouse.

SUMMARY OF THE INVENTION

[0072] The invention provides for a mouse model for preclinical screening and testing of candidate compounds, wherein the model comprises a mouse expressing plasma von Willebrand Factor protein that contains a mutation or combination of mutations in its A1 domain that change the mouse protein's binding specificity from being specific for mouse platelets to being specific for human platelets. Thus, the mutant A1 domain contained within mouse plasma VWF particularly supports the binding of human platelets in vivo and ex-vivo. In one embodiment, the mouse model is infused with human platelets. In another embodiment, human platelets are labeled ex-vivo or in vivo so as to be detected while in the animal.

[0073] The invention provides for where the mutation in the A1 domain of mouse VWF comprises 1263P>S, 1269N>D, 1274K>R, 1287M>R, 1302G>D, 1308H>R, 1313R>W, 1314I>V, 1326R>H, 1329L>1,1330E>G, 1333A>D, 1344T>A, 1347I>V, 1350T>A, 1370G>S, 1379H>R, 1381T>A, 1385T>M 1391P>Q, 1394A>S, 1397L>F, 1421S>N, 1439L>V, 1442G>S, 1449R>Q, 1466A>P, 1469Q>L, 1472Q>H, 1473V>M, 1475H>Q, 1479S>G, and any combination thereof, wherein the mutation corresponds to an amino acid position of human von Willebrand Factor A1 protein shown in SEQ ID NO: 6. In addition, the mouse VWF A1 domain can be fully or partially replaced with the human VWF A1 domain. In one embodiment, the mutation in mouse VWF-A1 is 1326R>H. In another embodiment, the mouse model comprises a device within a vessel, such as a stent or a graft, or mechanical, chemical, or heat-induced disruption of vascular endothelium in vivo. This model system is useful for testing compounds in an in vivo environment. The compounds can be tested for an effect on the interaction between human platelets and human-like (the mutant VWF-A1, 1326R>H, for example), or the actual human VWF-A1 domain. For example, the animal model can be used for pre-clinical testing of drugs in order to determine whether 1) there is a desired effect on hemostasis and/or thrombus formation or anti-thrombotic effect by the test drug or 2) there is an undesired effect on hemostasis and/or thrombus formation

or anti-thrombotic effect by a test drug not specifically designed to alter hemostasis and/or thrombus formation. In the latter case, many drugs are only identified as having an effect on clotting or bleeding once they are in human clinical trials, this animal model will fill an unmet need, which is to test such effects prior to clinical trials. The invention also permits testing of compounds targeted to the VWF-A1 domain that can correct the bleeding phenotype associated with a loss-of-function mutations (1326R>H, for example) by altering the kinetics of the interaction between GPIb α and VWF-A1 (for example, enhancing the on-rate and/or prolonging the bond lifetime as shown for the snake venom protein botrocetin.

[0074] The invention also provides for an isolated mutant human von Willebrand Factor A1 protein comprising one or more mutations selected from the group consisting of: 1263S>P, 1269D>N, 1274R>K, 1287R>M, 1302D>G, 1308R>H, 1313W>R, 1314V>I, 1326H>R, 1329I>L, 1330G>E, 1333D>A, 1344A>T, 1347V>I, 1350A>T, 1370S>G, 1379R>H, 1381A>T, 1385M>T, 1391Q>P, 1394S>A, 1397F>L, 1421N>S, 1439V>L, 1442S>G, 1449Q>R, 1466P>A, 1469L>Q, 1472H>Q, 1473M>V, 1475Q>H, 1479G>S, wherein each amino acid position corresponds to a position in SEQ ID NO: 6. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1263S>P mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1269D>N mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1274R>K mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1287R>M mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1302D>G mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1308R>H mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1313W>R mutation in an amino acid sequence of SEO ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1314V>I mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1326H>R mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1329I>L mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1330G>E mutation in an amino acid sequence of SEQ ID NO:1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1333D>A mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1344A>T mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1347V>I mutation in an amino acid isolated mutant human von Willebrand Factor A1 protein consisting of a 1350A>T mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1370S>G mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1379R>H mutation in an amino acid sequence of SEO ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1381 A>T mutation in an amino acid sequence of SEQ ID NO:1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1385M>T mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1391Q>P mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1394S>A mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1397F>L mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1421N>S mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1439V>L mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1442S>G mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1449Q>R mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1466P>A mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1469L>Q mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1472H>Q mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1473M>V mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1475Q>H mutation in an amino acid sequence of SEQ ID NO: 1. The invention also provides for an isolated mutant human von Willebrand Factor A1 protein consisting of a 1479G>S mutation in an amino acid sequence of SEQ ID NO: 1.

sequence of SEQ ID NO: 1. The invention also provides for an

[0075] The invention also provides for an isolated mutant human von Willebrand Factor A1 protein having SEQ ID NO: 6, wherein the protein comprises a mutation selected from the group consisting of: 1263S>P, 1269D>N, 1274R>K, 1287R>M, 1302D>G, 1308R>H, 1313W>R, 1314V>I, 1326H>R, 1329I>L, 1330G>E, 1333D>A, 1344A>T, 1347V>I, 1350A>T, 1370S>G, 1379R>H, 1381A>T, 1385M>T, 1391Q>P, 1394S>A, 1397F>L, 1421N>S, 1439V>L, 1442S>G, 1449Q>R, 1466P>A, 1469L>Q, 1472H>Q, 1473M>V, 1475Q>H, or a 1479G>S.

[0076] The invention provides for a transgenic non-human animal expressing von Willebrand Factor A1 protein containing mutation(s) at one of more amino acid position selected from the group consisting of: 1263, 1269, 1274, 1287, 1302, 1308, 1313, 1314, 1326, 1329, 1330, 1333, 1344, 1347, 1350, 1370, 1379, 1381, 1385, 1391, 1394, 1397, 1421, 1439, 1442, 1449, 1466, 1469, 1472, 1473, 1475, and 1479, wherein the position corresponds to an amino acid position of human von Willebrand Factor A1 protein shown in SEO ID NO: 6. In one embodiment, the animal is a murine, a porcine, a canine, a feline, a rabbit, or a primate. In another embodiment, the animal is a mouse, a rat, a dog, a sheep, a goat, a horse, a cow, a cat, a monkey, a primate, a pig, a llama, an alpaca, a chicken, etc. In other embodiments, the protein comprises a single mutation. In further embodiments, the protein comprises two or more mutations. In yet another embodiment, the protein comprises at least one mutation selected from the group consisting of: 1263>S, 1269>D, 1274>R, 1287>R, 1302>D, 1308>R, 1313R>W, 1314>V, 1326>H, 1329>I, 1330>G, 1333>D, 1344>A, 1347>V, 1350>A, 1370>S, 1379>R, 1381>A, 1385>M 1391>Q, 1394>S, 1397>F, 1421>N, 1439>V, 1442>S, 1449>Q, 1466>P, 1469>L, 1472>H, 1473>M, 1475>Q, 1479>G, and any combination thereof. In particular embodiments, the protein comprises a 1326R>H mutation. In other embodiments, the protein comprises a 1314I>V mutation. In yet other embodiments, the protein comprises a 1326R>H mutation, a 1314I>V mutation, or a combination of the two mutations listed previously. In some embodiments of the invention, the animal is a mouse. In further embodiments, the protein comprises SEQ ID NO: 5. In other embodiments, the VWF protein is at least 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100% identical to the A1 domain of human VWF protein as shown in SEQ ID NO: 1. In particular embodiments, the von Willebrand Factor A1 protein of the transgenic animal comprises the human A1 domain shown in SEQ ID NO: 1. In some embodiments, the von Willebrand Factor A1 protein is partially or completely replaced with a human von Willebrand Factor A1 protein comprising SEQ ID NO: 1. In other embodiments, the animal is a model for pre-clinical testing of compounds that expresses a mutant von Willebrand Factor (VWF) A1 protein containing one or more mutations, wherein the binding specificity of the mutant VWF-A1 protein changes from being specific for the animal platelets to being specific for human platelets. In further embodiments the mutant VWF-A1 protein in the animal binds to human platelets.

[0077] The invention is provides a method for identifying a compound that modulates binding of VWF-A1 protein to GPIb-alpha protein. The method comprises: providing an electronic library of test compounds; providing atomic coordinates listed in Table 8 for at least 10 amino acid residues for the A1 domain of the VWF protein, wherein the coordinates have a root mean square deviation therefrom, with respect to at least 50% of C α atoms, of not greater than about 2.5 Å, in a computer readable format; converting the atomic coordinates into electrical signals readable by a computer processor to generate a three dimensional model of the VWF-A1 domain; performing a data processing method, wherein electronic test compounds from the library are superimposed upon the three dimensional model of the VWF-A1 domain; and determining which test compound fits into the binding pocket of the three dimensional model of the VWF-A1 protein, thereby identifying which compound would modulate the binding of VWF-A1 protein to GPIb-alpha protein. Alternatively, the method can comprise: providing an electronic library of test compounds; providing atomic coordinates listed in Table 8 in a computer readable format for at least 10, 15, 20, 25, 30, 35, or 40 amino acid residues for the A1 domain of the VWF protein, wherein the residues comprise two or more of the following residues: Pro1391, Arg1392, Arg1395, Val1398, Arg1399, Gln1402, Lys1406, Lys1423, Gln1424, Leu1427, Lys1430, or Glu1431; converting the atomic coordinates into electrical signals readable by a computer processor to generate a three dimensional model of the VWF-A1 domain; performing a data processing method, wherein electronic test compounds from the library are superimposed upon the three dimensional model of the VWF-A1 domain; and determining which test compound fits into the binding pocket of the three dimensional model of the VWF-A1 protein, thereby identifying which compound would modulate the binding of VWF-A1 protein to GPIb-alpha protein.

[0078] In one embodiment, determining comprises detecting an IC₅₀ of less than about 7.5 μ g/ml for a test compound. In another embodiment, the method can further comprise: obtaining or synthesizing a compound; contacting VWF-A1 protein with the compound under a condition suitable for GPIb-alpha-VWF-A1 binding; and determining whether the compound modulates GPIb-alpha-VWF-A1 protein binding using a diagnostic assay. In a further embodiment, contacting comprises perfusing platelets into a flow chamber at a shear flow rate of at least 100 s⁻¹, wherein mutant murine VWF-A1 protein is immobilized on a bottom surface of the chamber, while in another embodiment contacting comprises perfusing platelets into the transgenic non-human animal described above. In some embodiments, contacting occurs sequentially. In other embodiments, the perfusing of platelets occurs prior to administration of the compound. In one embodiment, the platelets are human platelets, while in other embodiments, the platelets are not murine platelets. In further embodiments, the determining comprises detecting an increase or decrease in the dissociation rate between VWF-A1 protein and GPIbalpha protein by at least two-fold. In other embodiments, the determining comprises detecting an increase or decrease of platelet adhesion to a surface expressing VWF-A1 protein, while in some embodiments the determining comprises detecting an increase or decrease in a stabilization of an interaction between VWF-A1 protein and GPIb-alpha protein. In particular embodiments, the determining comprises detecting thrombosis formation. In some embodiments, the determining comprises identifying an occurrence of an abnormal thrombotic event in the subject. In further embodiments of the invention, an abnormal thrombotic event comprises abnormal bleeding, abnormal clotting, death, or a combination of the events listed. In some embodiments, the determining comprises dynamic force microscopy, a coagulation factor assay, a platelet adhesion assay, thrombus imaging, a bleeding time assay, aggregometry, review of real-time video of blood flow, a Doppler ultrasound vessel occlusion assay, or a combination thereof. In particular embodiments of the invention, perfusing platelets is followed by perfusion of a labeled agent. In some embodiments, the labeled agent comprises one or more of a nanoparticle, a fluorophore, a quantum dot, a microcrystal, a radiolabel, a dye, a gold biolabel, an antibody, or a small molecule ligand. In other embodiments, the agent targets a platelet receptor, a VWF protein, or a portion thereof. In another embodiment, the

animal is injected with nanoparticles, and/or peptides, and/or small molecules, which label the human platelets, at some time prior testing, wherein the nanoparticles, and/or peptides, and/or small molecules are capable of being imaged while in the animal. In another embodiment, the testing comprises tracking of human platelet deposition in the animal. In another embodiment, the compound or agent is an antithrombotic, such as an anti-platelet drug, e.g., PLAVIX, an ADP inhibitor, and/or a humanized antibody and/or small molecule that inhibits human alpha IIb and/or beta 3 integrin function, human alpha2 and/or beta 1 integrin function, human glycoprotein VI (GPVI) function, human thrombin receptors function, and/or intracellular signaling pathways (for example, phosphoinositide 3-kinases (PI3K)) vital to platelet function in hemostasis and thrombosis.

[0079] The invention provides for a method for testing a compound or agent, the method comprising: (a) providing a candidate agent or compound to be tested; (b) administering the agent or compound to an animal in an effective amount, wherein the animal expresses a mutant von Willebrand Factor A1 protein containing a mutation, combination of mutations that change the animal protein's binding specific for human platelets, so that the mutant VWF-A1 protein in the animal binds to human platelets; (c) testing the animal to determine whether the animal experiences any abnormal hemostatic and/or thrombotic events, thereby testing the compound or agent.

[0080] The invention provides for a nucleic acid encoding the mutant von Willebrand Factor A1 protein of the invention. The invention provides for a vector containing such a nucleic acid. The invention provides for an animal expressing such a nucleic acid to express the mutant VWF protein.

[0081] The invention also provides a method for treating von Willebrand Disease (VWD) in a subject in need thereof, the method comprising administering to the subject an effective amount of a compound that promotes platelet adhesion in the subject, wherein the compound increases the dissociation rate between VWF-A1 protein and GPIb-alpha protein by at least two-fold, thereby administration of the compound increases blood coagulation in the subject. In one embodiment, coagulation is measured by a coagulation factor assay, an ex-vivo flow chamber assay, or a combination thereof.

[0082] The invention provides a method for rapidly detecting an internal vascular injury site in a subject. The method comprises: administering to a subject a targeted molecular imaging agent, wherein the molecule circulates for an effective period of time in order to bind to the injury site within the subject; tracking a deposition of the labeled targeted molecular imaging agent in the subject; and identifying the site of a thrombus formation in the subject by imaging the targeted molecular imaging agent, thereby the deposition of the targeted molecular imaging agent at the internal vascular injury site is indicative of internal bleeding within a subject. In one embodiment, the targeted molecular imaging agent is administered by subcutaneous, intra-muscular, intra-peritoneal, or intravenous injection; infusion; by oral, nasal, or topical delivery; or a combination of the routes listed. In another embodiment, the targeted molecular imaging agent comprises a nanoparticle, a fluorophore, a quantum dot, a microcrystal, a radiolabel, a dye, a gold biolabel, an antibody, a peptide, a small molecule ligand, or a combination of the agents listed. In a further embodiment, the nanoparticle comprises a perfluorocarbon, while in particular embodiments, the nanoparticle is coupled to an antibody, a small molecule, a peptide, or a receptor trap. In some embodiments, the targeted molecular imaging agent specifically binds to a platelet receptor, or a VWF protein, or a portion thereof. In other embodiments, the targeted molecular imaging agent has a $T_{1/2}$ of at least 30 minutes. In further embodiments, imaging comprises a PET scan, MRI, IR scan, ultrasound, nuclear imaging, or a combination of the methods listed. In a particular embodiment, the subject is further administered a prothrombotic compound. In a further embodiment, the compound increases the dissociation rate between VWF-A1 protein and GPIb-alpha protein by at least two-fold.

[0083] Considerable emphasis has been placed on elucidating the role of structural changes in the A1 domain of VWF in order to gain insight into mechanism(s) that may regulate its binding to platelet GPIb alpha. This invention concerns the contribution of the biophysical properties of this interaction in governing platelet adhesion under hydrodynamic conditions. It has been demonstrated that flow-dependent adhesion and rapid and force-driven kinetic properties define the GPIb alpha-VWF-A1 bond. The invention provides classification of subtypes of von Willebrand disease (vWD), such as platelet-type, type 2B or type 2M in terms of similarities in the alterations in the biophysical properties of bonds to better understand the clinical phenotypes associated with these bleeding disorders. The invention is directed to understanding the biomechanical and molecular mechanisms by which the VWF-A1 domain mediates adhesive interactions with GPIb alpha both in vitro and in vivo. This invention provides for mice with mutant A1 domains to demonstrate the importance of the intrinsic kinetic and mechanical properties of this receptor-ligand pair in preventing inappropriate platelet aggregation in circulating blood, to facilitate the study of human platelet biology, as well as to generate a humanized animal model of hemostasis and thrombosis. The animal model is also useful for the generation and testing of novel anti-thrombotic therapies designed to inhibit platelet-VWF interactions as well as those designed to correct the bleeding phenotype associated with a reduction in adhesion between this receptor-ligand pair.

[0084] The invention is directed to understanding the effect that alterations in platelet size and shape have on the forcedriven kinetics of the GPIb alpha-VWF-A1 tether bond. Platelets can bind to and translocate on surface-immobilized VWF under shear forces that preclude selectin-dependent adhesion of leukocytes to the vessel wall, due to their small discoid shape and not as a consequence of the unique kinetic properties of the GPIb alpha-VWF-A1 tether bond. The contribution of particle geometry in supporting the interactions between this receptor-ligand pair, we is performed by evaluating the interaction between vWF-A1 coated microspheres, ranging from 4 to 12 µm in diameter (platelet to leukocyte size), with surface-immobilized platelets under physiologic flow conditions. The utility of using polystyrene microspheres with a uniform shape and size to permit determination of the relationship between wall shear stress and the force acting on the GPIb alpha-vWF-A1 tether bond has been demonstrated. Moreover, it has been shown that the "sidedness" of the receptor or ligand does not alter the kinetic properties of this bond. β-tubulin deficient mice have a defect in the cytoskeleton of platelets that changes the shape of these cells from discoid to spherical. Preliminary data demonstrates that the "spherical" platelets have a >60% reduction in attachment at

high shear rates as compare to wild-type (WT) platelets. No differences in the kinetics of the GPIb alpha-vWF-A1 tether bond for WT and mutant platelets have been found using our microsphere assay system. Thus, platelet shape and not alterations in the biophysical properties of the GPIb alpha-vWF-A1 tether bond are responsible for the defect in adhesion. Data generated from these experiments will be use to develop a computational algorithm designed to stimulate the adhesion of platelets to surface-immobilized vWF under various hydrodynamic conditions. Thus, the invention provides an in vivo method to test for defects in hemostasis and thrombus formation that result from abnormalities in platelet shape and size. It also provides for a method to test the ability of synthetic platelet substitutes, which may be of varying shapes and sizes, to support hemostasis.

[0085] The invention provides a method for determining whether platelet function or morphology in a subject is abnormal. The method comprises: affixing a molecule comprising a murine VWF-A1 domain to a surface of a flow chamber, wherein the domain comprises at least one mutation at a position selected from the group consisting of 1263>S, 1269>D, 1274>R, 1287>R, 1302>D, 1308>R, 1313R>W, 1314>V, 1326>H, 1329>I, 1330>G, 1333>D, 1344>A, 1347>V, 1350>A, 1370>S, 1379>R, 1381>A, 1385>M 1391>Q, 1394>S, 1397>F, 1421>N, 1439>V, 1442>S, 1449>Q, 1466>P, 1469>L, 1472>H, 1473>M, 1475>Q, 1479>G, and any combination thereof, where the position corresponds to an amino acid position of human von Willebrand Factor A1 protein shown in SEQ ID NO: 6; perfusing through the flow chamber a volume of blood or plasma from a subject at a shear flow rate of at least about 100 s⁻¹; perfusing a targeted molecular imaging agent into the flow chamber; and comparing the flow rate of the blood or plasma from the subject as compared to a normal flow rate, so as to determine whether the subject's platelet function or morphology is abnormal.

[0086] In one embodiment, affixing comprises (i) affixing an antibody which specifically binds VWF-A1 domain, and (ii) perfusing murine mutant VWF-A1 protein in the flow chamber at a shear flow rate of at least 100 s^{-1} . In another embodiment, the targeted molecular imaging agent comprises a nanoparticle, a fluorophore, a quantum dot, a microcrystal, a radiolabel, a dye, a gold biolabel, an antibody, a peptide, a small molecule ligand, or a combination of the agents listed. In a further embodiment, the targeted molecular imaging agent binds to a platelet receptor, a platelet ligand, or any region of a VWF protein or a portion thereof. In a particular embodiment, the targeted molecular imaging agent comprises horseradish peroxidase (HRP) coupled to an antibody directed at VWF-A1. In other embodiments, the comparing comprises a platelet adhesion assay, fluorescence imaging, a chromogenic indicator assay, a microscopy morphology analysis, or any combination of the listed modes. In some embodiments, platelets bound to VWF-A1 are less than about 500 cells/mm². In particular embodiments, the platelets are substantially spherical. In further embodiments, the subject is a human, a canine, a feline, a murine, a porcine, an equine, or a bovine. In other embodiments, the VWF molecule is an antibody, a peptide, or a Fab fragment directed to a VWF polypeptide or a portion thereof.

[0087] The invention also provides for a method for producing von Willebrand Factor A1 protein that specifically binds human platelets, the method comprising: (a) providing an animal expressing a plasma VWF containing a mutant von Willebrand Factor A1 protein, wherein the mutation causes the animal's von Willebrand Factor A1 protein to bind preferentially to for human platelets; and (b) harvesting the mutant animal von Willebrand Factor A1 so as to produce von Willebrand Factor A1 protein that specifically binds human platelets. In one embodiment, the mutant animal von Willebrand Factor A1 protein comprises at least one mutation comprising 1263P>S, 1269N>D, 1274K>R, 1287M>R, 1302G>D, 1308H>R, 1313R>W, 1314I>V, 1326R>H, 1329L>I, 1330E>G, 1333A>D, 1344T>A, 1347I>V, 1350T>A, 1370G>S, 1379H>R, 1381T>A, 1385T>M 1391P>Q, 1394A>S, 1397L>F, 1421S>N, 1439L>V, 1442G>S, 1449R>Q, 1466A>P, 1469Q>L, 1472Q>H, 1473V>M, 1475H>Q, 1479S>G, or any combination thereof.

[0088] The invention provides a method for testing efficacy and toxicity of a gene therapy vector, wherein the method comprises: (a) introducing a gene therapy vector into the animal of claim 4, allowing sufficient time for expression of the vector; (b) perfusing platelets from a subject into the animal under a condition suitable for GPIb-alpha-VWF-A1 protein binding; and (c) determining whether or not a thrombotic event occurs in the animal. In one embodiment, the vector comprises a nucleic acid encoding a platelet receptor polypeptide, a platelet ligand polypeptide, or a VWF polypeptide, or a portion thereof. In another embodiment, the subject is a human, a dog, a cat, a horse, a pig, or a primate. In a particular embodiment, the platelets are not murine platelets. In a further embodiment, the thrombotic event comprises blood clotting, abnormal bleeding, abnormal clotting, death, or a combination thereof. In some embodiments, the determining comprises dynamic force microscopy, a coagulation factor assay, a platelet adhesion assay, thrombus imaging, a bleeding time assay, aggregometry, review of real-time video of blood flow, a Doppler ultrasound vessel occlusion assay, or a combination thereof. In other embodiments, perfusing platelets is followed by perfusion of a labeled agent. In further embodiments, the labeled agent comprises one or more of a nanoparticle, a fluorophore, a quantum dot, a microcrystal, a radiolabel, a dye, a gold biolabel, an antibody, or a small molecule ligand. In particular embodiments, the agent targets a platelet receptor, a VWF protein, or a portion thereof.

[0089] The invention also provides a method for calibrating an aggregometry device or a device for measuring clot formation or retraction, wherein the method comprises: (a) providing hematologic data obtained from a subject, wherein blood or platelets from the subject is assessed by the device; (b) determining whether or not a thrombotic event occurs in the animal described above, wherein the animal is perfused with a sample of blood or platelets from the subject; and (c) correlating data obtained from (b) with the data obtained in (a) so as to calibrate the device, wherein a certain data obtained from the device is indicative of the corresponding thrombotic outcome determined in the animal described above. In one embodiment, the thrombotic event comprises blood clotting, abnormal bleeding, abnormal clotting, death, or a combination thereof.

[0090] The invention provides for in vivo determination of intrinsic and mechanical properties of the GPIb alpha-vWF-A1 tether bond and to determine if they are indeed critical for regulating the adhesion between platelets and vWF and how they may be manipulated to impair or enhance hemostasis and/or thrombosis. The invention provides determination of whether animals that posses gain-of-function mutations in VWF-A1, for example, those associated with type 2B vWD,

have a defect in platelet deposition at sites of vascular injury and/or a loss of high molecular weight multimers of vWF. The invention provides determination of whether animals that possess loss-of-function mutations in VWF-A1, for example, those associated type 2M vWD, have a defect in platelet deposition at sites of vascular injury. Based on the results obtained herein, mice are genetically engineered with 1) mutant A1 domains that increase or decrease the on- and/or off-rate of this receptor-ligand pair by varying degrees, 2)A1 domains containing both types of mutations to confirm whether specific regions within this domain are essential for the stabilization of GPIb alpha binding, and 3) mutations within the A1 domain that favor binding to human but not murine GPIb alpha to enable the study of human platelet behavior in an animal model of hemostasis or thrombosis.

[0091] The invention provides methods for determining the impact of altering the intrinsic bond kinetics and/or its mechanical properties of the GPIb alpha-VWF-A1 interaction on hemostasis and thrombosis, which comprises: measuring platelet counts, plasma levels of vWF, and bleeding times; performing multimer gel analysis of mutant vWF; measuring the affinity of mutant vWF for platelets using a fluid phase binding assay; evaluating in vitro platelet tethering, rolling, and thrombus formation on surface-immobilized murine plasma vWF containing mutant A1 domains under physiological flow conditions; determining the ability of thrombi to form at sites of vascular injury in vivo in mutant VWF mice using epifluorescent intravital microscopy in; measuring platelet tethering frequency and rolling velocities in vivo.

[0092] In certain embodiments, the subject is a human. In other embodiments, the subject is a non-human animal such as a canine, equine, feline, porcine, murine, bovine, foul, sheep, or any other animal in need of treatment. In certain embodiments, the pharmaceutical composition further comprises another active agent. The additional active agent can be, but is not limited to, an analgesic, an antioxidant, diuretic, or a combination thereof. In certain embodiments, the composition is in a capsule form, a granule form, a powder form, a solution form, a suspension form, a tablet form, or any other form suitable for use by the method of the present invention. In certain embodiments, the composition is administered via oral, sublingual, buccal, parenteral, intravenous, transdermal, inhalation, intranasal, vaginal, intramuscular, rectal administration or any other route of administration that is suitable for delivery of the compound.

DETAILED DESCRIPTION OF THE INVENTION

[0093] The invention provides methods for identifying and evaluating potential anti-thrombotic reagents and compounds. The invention provides methods for testing for undesirable thrombotic or bleeding side effects of reagents in the setting of preclinical testing. The invention provides an in vivo model to test the efficacy of potential anti-thrombotic drugs directed against receptors, ligands, and/or intracellular signaling pathways on or in human platelets prior to FDA approval. To date, in vitro models of thrombosis do not accurately recapitulate the hemodynamic conditions, cell-cell interactions, or cell-protein interactions that occur at sites of vascular injury in a living animal. Thus, the system provided by this invention provides a method to test drugs directed at inhibiting or altering human platelet function other than directly testing them in humans. The invention provides a great advantage of being able to test directly compounds that target human platelets in an in vivo system. The invention provides a method to test contrast agents for imaging of human platelets at sites of thrombosis. For instance, one could test the ability of nanoparticle contrast agents targeted to human platelets to identify areas of thrombosis or occult bleeding. The invention provides a method to test compounds that correct the bleeding phenotype associated with a reduction in interactions between GPIb alpha and VWF-A1. The invention provides a method to test gene therapies directed at correcting genetic mutations associated with von Willebrand disease. The invention provides a method to correlate results obtained with an in vitro assay designed to measure the effects of antithrombotics or markers of platelet activation in patients.

[0094] Terms

[0095] A "pharmaceutical composition" refers to a mixture of one or more of the compounds, or pharmaceutically acceptable salts, hydrates, polymorphs, or pro-drugs thereof, with other chemical components, such as physiologically acceptable carriers and excipients. The purpose of a pharmaceutical composition is to facilitate administration of a compound to an organism.

[0096] As used herein von Willebrand factor is abbreviated "VWF" and, alternatively, "vWF".

[0097] A "pro-drug" refers to an agent which is converted into the parent drug in vivo. Pro-drugs are often useful because, in some situations, they are easier to administer than the parent drug. They are bioavailable, for instance, by oral administration whereas the parent drug is not. The pro-drug also has improved solubility in pharmaceutical compositions over the parent drug. For example, the compound carries protective groups which are split off by hydrolysis in body fluids, e.g., in the bloodstream, thus releasing active compound or is oxidized or reduced in body fluids to release the compound.

[0098] A compound of the present invention also can be formulated as a pharmaceutically acceptable salt, e.g., acid addition salt, and complexes thereof. The preparation of such salts can facilitate the pharmacological use by altering the physical characteristics of the agent without preventing its physiological effect. Examples of useful alterations in physical properties include, but are not limited to, lowering the melting point to facilitate transmucosal administration and increasing the solubility to facilitate administering higher concentrations of the drug.

[0099] The term "pharmaceutically acceptable salt" means a salt, which is suitable for or compatible with the treatment of a patient or a subject such as a human patient or an animal. [0100] The term "pharmaceutically acceptable acid addition salt" as used herein means any non-toxic organic or inorganic salt of any base compounds of the invention or any of their intermediates. Illustrative inorganic acids which form suitable acid addition salts include hydrochloric, hydrobromic, sulfuric and phosphoric acids, as well as metal salts such as sodium monohydrogen orthophosphate and potassium hydrogen sulfate. Illustrative organic acids that form suitable acid addition salts include mono-, di-, and tricarboxylic acids such as glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, benzoic, phenylacetic, cinnamic and salicylic acids, as well as sulfonic acids such as p-toluene sulfonic and methanesulfonic acids. Either the mono or di-acid salts can be formed and such salts exist in either a hydrated, solvated or substantially anhydrous form. In general, the acid addition salts of compounds of the invention are more soluble in water and various hydrophilic organic solvents, and generally demonstrate higher melting points in comparison to their free base forms. The selection of the appropriate salt will be known to one skilled in the art. Other non-pharmaceutically acceptable salts, e.g., oxalates, are used, for example, in the isolation of compounds of the invention for laboratory use or for subsequent conversion to a pharmaceutically acceptable acid addition salt.

[0101] As used herein and as well understood in the art, "treatment" is an approach for obtaining beneficial or desired results, including clinical results. Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state and remission (whether partial or total), whether detectable or undetectable. "Treatment" can also mean prolonging survival as compared to expected survival if not receiving treatment.

[0102] Arterial thrombosis is a pathological consequence of disease states such as atherosclerosis and remains a major cause of morbidity and mortality in the Western world with healthcare cost ranging in the billions of dollars in the USA alone (Circulation 2006; 113:e85). Central to this process is the inappropriate deposition and activation of platelets in diseased vessels that can ultimately occlude the lumen, thus impeding blood flow to vital organ such as the heart and brain. Another key player is VWF, a large plasma glycoprotein of complex multimeric structure, which under normal physiological conditions prevents excessive bleeding by promoting platelet deposition at sites of vascular injury, thus "sealing off" leaky blood vessels. In order for this event to occur, VWF must form a "bridge" between receptors expressed on circulating platelets and exposed components of the injured vessel wall. This is the function of the A1 and A3 domains of this plasma protein, respectively. Each is folded into a disulfidebonded loop structure that is critical for optimal biological activity (FIG. 1A).

[0103] It is the A1 domain that contains residues that compose the binding site for its receptor on platelets known as GPIb alpha, an adhesive event essential for the ability of these cells to rapidly attach to the injured vessel wall. The critical nature of this interaction is exemplified by the bleeding disorder, termed type 2M von Willebrand Disease (VWD), which results from the incorporation of loss-of-function point mutations within this domain that reduce the interaction between VWF-A1 and GPIb alpha (Sadler J E et al.(2006) J. Thromb. Haemost. 4: 2103-14). The A3 domain, on the other hand, is believed to be important in anchoring plasma VWF to sites where extracellular matrix components (i.e. collagen) are exposed as a result of disruption of the overlying vasculature endothelium (Wu D. et al. Blood 2002). Once in contact with exposed elements of the damaged vessel wall, platelets become "activated" through various signaling pathways (i.e. GPVI) enabling other adhesion molecules, such as $\alpha 2\beta 1$ (collagen receptor) and aIIb₃ (fibrinogen and VWF receptor) integrins, to firmly anchor these cells at the site of injury and to each other (FIG. 1B). In addition, ADP released from adherent platelets serves to amplify the activation of integrin receptors as well as other platelets leading to thrombus growth. Considerable emphasis has been placed on understanding the mechanism(s) that govern the interaction between GPIb alpha and the A1 domain of VWF and how it can be perturbed by point mutations associated with von Willebrand Disease, information relevant to the development of anti-thrombotic therapies.

[0104] von Willebrand Factor (VWF), the A1 Domain, and Related Diseases

[0105] During the past two decades, there has been considerable progress in understanding how VWF mediates platelet adhesion. Both the VWF cDNA and gene have been cloned and the primary structure of the VWF subunit (FIG. 1A) has been determined (13-16). It has been reported that ~59% of the mature VWF consists of repeated segments which are 29% to 43% homologous (17). These regions consist of domains that are triplicated (domains "A" and "B"), duplicated (domain "C") or quadruplicated (domain "D"). The triplicated A repeats encode for the central region of each VWF subunit. The A1 and A3 domains contain the sequences that mediate VWF's interaction with receptors on platelets or components of subendothelial extracellular matrix, respectively. Each is folded into a disulfide-bonded loop structure that is critical for optimal biological activity. The sequences of the amino terminal halves of each loop and the location of the cysteines forming the loop structure of each domain are highly conserved. It is the VWF-A1 domain (1260-1480) that contains sequences that provide binding sites for the platelet glycoprotein receptor Ib alpha, an interaction critical for the ability of these cells to rapidly attach and translocate at sites vascular injury (18,19). The role of the A3 domain, however, is believed to be in anchoring plasma VWF at sites where extracellular matrix components (i.e. collagen) are exposed as a result of disruption of the endothelium (20-25).

[0106] With regard to mediating adhesive interactions with platelets, it has become increasingly evident that the VWF-A1 domain plays a crucial role in this process based on molecular genetic studies of individuals with type 2M or 2B VWD (26-31). In the majority of cases, patients with these designated genotypes have single point mutations contained within the disulfide loop (between Cys 1272 and Cys 1458) of this domain. With regard to type 2MVWD, afflicted individuals have significant impairments in hemostasis that appears to result from a lack of or reduced adhesive interactions between GPIb alpha and VWF at sites of vascular injury, and not from an alteration in VWF multimer structure. Structural and functional evidence has been provided in that type 2M mutations, such as 1324G>S, are localized within a region of the A1 domain (FIG. 5B), which is critical for supporting GPIb alpha-mediated platelet adhesion at physiological flow rates. Confirmation that this residue, as well as others predicted by our analysis of the crystal structure of the A1 domain, does contribute to GPIb alpha binding is suggested by studies evaluating the structure of the complex formed between this receptor-ligand pair (32, 33). Thus, it is possible to make accurate predictions about protein function from the threedimensional protein structure and to confirm these postulates by site-specific mutagenesis and analysis under physiologically relevant flow conditions. The localization of some of the residues within the A1 domain that when mutated disrupt GPIb alpha binding is shown below (FIG. 2). The invention provides methods for evaluating the effect that loss-of-function mutations have on hemostasis and thrombus formation. [0107] In contrast type 2M VWD, mutations associated with type 2B VWD are known to enhance the interaction between VWF-A1 and GPIb alpha, that is, they mitigate the requirement for exogenous modulators such as ristocetin or botrocetin to induce platelet agglutination (30). Moreover,

these altered residues are localized in a region remote from the major GPIb alpha binding site that has been identified by mutagenesis (26; FIG. **3**A—yellow). Clinically, this disease state is characterized by a loss of circulating high molecular weight VWF multimers (HMWM, FIG. **3**B) together with a mild to moderate thrombocytopenia, which ultimately results in bleeding but not thrombosis (30, 31). It is the clearance of the HMWM of VWF from plasma that is believed to be responsible for the increased bleeding tendencies in patients with this disorder as they contribute to the majority of the hemostatic function associated with this plasma glycoprotein (34). The invention provides methods for evaluating the effect that gain-of-function mutations have on hemostasis, thrombus formation, and plasma levels of VWF.

[0108] Surface-immobilization of VWF and subsequent exposure to physiologically relevant shear forces appears to be a prerequisite for its ability to support interactions with platelets as this multimeric protein does not bind appreciably to these cells in the circulation. These hydrodynamic conditions are believed to promote structural changes within the A1 domain that in turn increases its affinity for GPIb alpha (35-37). Evidence suggested to support the existence of such an alteration in structure includes the ability of non-physiologic modulators such as the antibiotic ristocetin or the snake venom protein botrocetin to promote platelet agglutination in solution-based assays (38, 39). Moreover, this "on" and "off" conformation is exemplified by type 2B VWD. For instance, it was initially hypothesized that incorporation of type 2B mutations into the A1 domain shifted the equilibrium between two distinct tertiary conformations, analogous to those seen in crystal structures of the integrin I domain in ligand-free and collagen-bound states (40). The location of the type 2B mutants at sites distinct from the GPIb alpha binding site suggest that they disrupt a region responsible for regulation of binding affinity, thus affecting ligand binding allosterically. The crystal structure of a type 2B mutant A1 domain, 1309I>V, was determined and compared to its wildtype counterpart (41). A change was discovered in the structure of a loop, thought to be involved in GPIb alpha binding, lying on the surface distal to the mutation site. A similar finding has been observed for the VWF-A1 crystal structure containing the identical mutation (FIG. 4).

[0109] This altered conformation represents a high affinity binding state of the A1 domain. However, the pathway of allosteric change proposed previously, involving the burial of a water molecule, cannot be a general feature of type 2B mutants, and the structural rearrangements appear too subtle to explain the altered kinetics. Interestingly, complex formation between botrocetin and VWF-A1 in which the type 2B mutation 1309I>V has been incorporated, and has demonstrated that most of these structural differences are reversed including: (1) loss of the buried water molecule at the mutation site; (2) the peptide plan between Asp 1323 and Gly 1324 flips back to a conformation similar to that in the WT structure; and (3) the side chain of His 1326 remains in the "mutant" position, although there is some evidence from electron density of an alternative conformation similar to WT. However, this reversion in structure does not correlate with a loss in the function-enhancing activity associated with the type 2B mutation. In fact, the addition of botrocetin further augments the interaction between the mutant A1 domain and platelets in flow (42). Thus, an alternative mechanism must account for function-enhancing nature of type 2B mutations. Moreover, these subtle alterations in structure did not compare to the large conformational changes in homologous integrin I-type domains that occur on ligand binding.

[0110] Recent findings provide support that type 2B mutations may stabilize the binding of a region of GPIb alpha known as the β -hairpin to an area near the location of these altered residues, distinct from that identified by site-directed mutagenesis. Type 2B mutations have been suggested to destabilize a network of interactions observed between the bottom face of the A1 domain and its terminal peptides in the wild type A1 structure, thereby making the binding site accessible (FIG. 6).

[0111] Progress has been made in understanding the structure of this receptor-ligand pair and potential alterations in conformation that may regulate this interaction. This model is non-limiting. However, the model permits determination of the kinetic and biomechanical basis for 1) the regulation of VWF-A1 domain activity in response to hydrodynamic forces, 2) the alterations in bond kinetics that result from incorporation of type 2B mutations into the VWF-A1 domain, and 3) the susceptibility of the kinetics of the GPIb alpha-VWF-A1 bond to an applied force.

[0112] Transgenic Animals

[0113] The invention provides for transgenic non-human animals that comprise a genome contains a nucleotide sequence (such as a gene) encoding a modified form of the A1 domain of VWF. The modification can be an amino acid residue substitution at a position involved with binding to GPIb alpha or in close proximity to this region such as, but not limited to, positions 1263, 1269, 1274, 1287, 1302, 1308, 1313, 1314, 1326, 1329, 1330, 1333, 1344, 1347, 1350, 1370, 1379, 1381, 1385 1391, 1394, 1397, 1421, 1439, 1442, 1449, 1466, 1469, 1472, 1473, 1475, 1479. It can also comprise a partial or full replacement of the animal A1 domain of VWF with the A1 domain of human VWF. It can also comprise a partial or full replacement of the entire VWF gene in an animal with the human VWF gene. Such non-human animals include vertebrates such as ovines, bovines, rodents, nonhuman primates, porcines, caprines, equines, ruminants, lagomorphs, canines, felines, aves, and the like. In one embodiment, non-human animals are selected from the order Rodentia that includes murines (such as rats and mice). In another embodiment, mice are particularly useful.

[0114] The transgenic non-human animals of the current invention are produced by experimental manipulation of the genome of the germline of the non-human animal (such as those animals described above). These genetically engineered non-human animals may be produced by several methods well known in the art which include the introduction of a "transgene" that comprises a nucleic acid (for example, DNA such as the A1 domain of VWF) integrated into a chromosome of the somatic and/or germ line cells of a non-human animal via methods known to one skilled in the art or into an embryonal target cell. A transgenic animal is an animal whose genome has been altered by the introduction of a transgene.

[0115] The term "transgene" as used herein refers to a foreign gene that is placed into an organism by introducing the foreign gene into newly fertilized eggs, embryonic stem (ES) cells, or early embryos. The term "foreign gene" refers to any nucleic acid (for example, a gene sequence) that is introduced into the genome of an animal by experimental manipulations. These nucleic acids may include gene sequences found in that animal so long as the introduced gene contains some modification (for example, the presence of a

selectable marker gene, a point mutation—such as the base pair substitution mutant that contributes to the amino acid change at amino acid residue 1326 of the A1 domain of VWF—the presence of a loxP site, and the like) relative to the naturally-occurring gene.

[0116] The term "loxP site" refers to a short (34 bp) DNA sequence that is recognized by the Cre recombinase of the *E. coli* bacteriophage P1. In the presence of Cre recombinase, placement of two loxP sites in the same orientation on either side of a DNA segment can result in efficient excision of the intervening DNA segment, leaving behind only a single copy of the loxP site (Sauer and Henderson (1988) *Proc. Natl. Acad. Sci. USA* 85:5166).

[0117] In one embodiment, the invention provides for a targeting construct or vector that comprises a selectable marker gene flanked on either side by a modified A1 domain of VWF. The modification of the A1 domain can comprise an amino acid residue substitution at a position involved with binding to GPIb alpha (such as, but not limited to, positions 1263, 1269, 1274, 1287, 1302, 1308, 1313, 1314, 1326, 1329, 1330, 1333, 1344, 1347, 1350, 1370, 1379, 1381, 1385 1391, 1394, 1397, 1421, 1439, 1442, 1449, 1466, 1469, 1472, 1473, 1475, 1479) or can be a partial or full replacement of an animal (for example, a mouse) A1 domain of VWF with the A1 domain of human VWF. The targeting vector contains the modified A1 domain of VWF gene sequence sufficient to permit the homologous recombination of the targeting vector into at least one allele of the A1 domain of the VWF gene resident in the chromosomes of the target or recipient cell (for example, ES cells). The targeting vector will usually harbor 10 to 15 kb of DNA homologous to the A1 domain of the VWF gene, wherein this 10 to 15 kb of DNA will be divided more or less equally on each side of the selectable marker gene. The targeting vector can contain more than one selectable maker gene and when multiple selectable marker genes are utilized, the targeting vector usually contains a negative selectable marker (for example, the Herpes simplex virus tk (HSV-tk) gene) and a positive selectable marker (such as G418 or the neo gene). The positive selectable marker permits the selection of recipient cells containing an integrated copy of the targeting vector and but does not enable one skilled in the art to determine whether this integration occurred at the target site or at a random site. The presence of the negative selectable marker permits the identification of recipient cells containing the targeting vector at the targeted site (for example, which has integrated by virtue of homologous recombination into the target site). Cells growing in medium that selects against the expression of the negative selectable marker represents that the cells do not contain a copy of the negative selectable marker.

[0118] Targeting vectors can also be of the replacementtype wherein the integration of a replacement-type vector results in the insertion of a selectable marker into the target gene. Replacement-type targeting vectors may be employed to disrupt a gene (such as the VWF gene or the A1 domain of the VWF gene). This can result in the generation of a null allele; for example, an allele not capable of expressing a functional protein wherein the null alleles may be generated by deleting a portion of the coding region, deleting the entire gene, introducing an insertion and/or a frameshift mutation, and the like.

[0119] A selectable marker can include a gene which encodes an enzymatic activity that confers resistance to an antibiotic or drug upon the cell in which the selectable marker is expressed. Selectable markers may be positive. A positive selectable marker is usually a dominant selectable marker wherein the genes encode an enzymatic activity that can be detected in a mammalian cell or a cell line (including ES cells). Some non-limiting examples of dominant selectable markers include the bacterial xanthine-guanine phosphoribosyl transferase gene (also referred to as the gpt gene) which confers the ability to grow in the presence of mycophenolic acid, the bacterial hygromycin G phosphotransferase (hyg) gene which confers resistance to the antibiotic hygromycin, and the bacterial aminoglycoside 3' phosphotransferase gene (also referred to as the neo gene) which confers resistance to the drug G418 in mammalian cells. Selectable markers may also be negative. Negative selectable markers encode an enzymatic activity whose expression is toxic to the cell when grown in an appropriate selective medium. One non-limiting example of a negative selectable marker is the HSV-tk gene wherein HSV-tk expression in cells grown in the presence of gancyclovir or acyclovir is catatonic. Growth of cells in selective medium containing acyclovir or gancyclovir therefore selects against cells capable of expressing a functional HSV TK enzyme.

[0120] The ES cells suitable of the present invention utilized to generate transgenic animals can harbor introduced expression vectors (constructs), such as plasmids and the like. The expression vector constructs can be introduced via transfection, lipofection, transformation, injection, electroporation, or infection. The expression vectors can contain coding sequences, or portions thereof, encoding proteins for expression. Such expression vectors can include the required components for the transcription and translation of the inserted coding sequence. Expression vectors containing sequences encoding the produced proteins and polypeptides, as well as the appropriate transcriptional and translational control elements, can be generated using methods well known to and practiced by those skilled in the art. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination which are described in J. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y. and in F. M. Ausubel et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y. In one embodiment, loxP expressing targeting vectors are used for transfection methods (such as pDNR-1r vector, pACD4K-C vector, and the like). In other embodiments, Cre-recombinase-expressing plasmids are also utilized (for example, crAVE cre recombinase vectors).

[0121] Introducing targeting vectors into embryonic stem (ES) cells can generate the mutant VWF-A1 transgenic animals of the present invention. ES cells are obtained by culturing pre-implantation embryos in vitro under appropriate conditions (Evans, et al. (1981) Nature 292:154-156; Bradley, et al. (1984) Nature 309:255-258; Gossler, et al. (1986) Proc. Acad. Sci. USA 83:9065-9069; and Robertson, et al. (1986) Nature 322:445-448). Using a variety of methods known to those skilled in the art, transgenes can be efficiently introduced into the ES cells via DNA transfection methods, which include (but are not limited to), protoplast or spheroplast fusion, electroporation, retrovirus-mediated transduction, calcium phosphate co-precipitation, lipofection, microinjection, and DEAE-dextran-mediated transfection. Following the introduction into the blastocoel of a blastocyststage embryo, transfected ES cells can thereafter colonize an embryo and contribute to the germ line of the resulting chimeric animal (see Jaenisch, (1988) *Science* 240:1468-1474). Assuming that the transgene provides a means for selection, the transfected ES cells may be subjected to various selection protocols to enrich for ES cells that have integrated the transgene prior to the introduction of transfected ES cells into the blastocoel. Alternatively, the polymerase chain reaction (PCR) may be used to screen for ES cells that have integrated the transfected ES cells under appropriate selective conditions prior to transfer into the blastocoel.

[0122] Alternative methods for the generation of transgenic animals (such as transgenic mice) containing an altered A1 domain of the VWF gene are established in the art. For example, embryonic cells at various stages of development can be used to introduce transgenes for the production of transgenic animals and different methods are used that depend on the stage of embryonic cell development. For microinjection methods, the zygote is best suited. In the mouse, the male pronucleus reaches the size of approximately 20 microns in diameter, which allows for reproducible injection of 1-2 picoliters (pl) of suspended DNA solution. A major advantage in using zygotes as a gene transfer target is that in most cases the injected DNA will be incorporated into the host genome before the first cleavage (Brinster, et al. (1985) Proc. Natl. Acad. Sci. USA 82:4438-4442). Thus, all cells of the transgenic non-human animal (such as a mouse) will carry the incorporated transgene (mutant A1 domain of the VWF gene), which can result in the efficient transmission of the transgene to the offspring of the founder since 50% of the germ cells will harbor the transgene (see U.S. Pat. No. 4,873, 191).

[0123] Another method known in the art that can be used to introduce transgenes into a non-human animal is retroviral infection. The developing non-human embryo can be cultured in vitro to the blastocyst stage wherein during this time, the blastomeres can be targets for retroviral infection (Janenich (1976) Proc. Natl. Acad. Sci. USA 73:1260-1264). Enzymatic treatment to remove the zona pellucida can increase infection efficiency of the blastomeres (Hogan et al. (1986) in Manipulating the Mouse Embryo, Cold Spring Harbor Laboratory Press, Plainview, N.Y.). The viral vector system used by one skilled in the art in order to introduce the transgene is usually a replication-defective retrovirus that harbors the transgene (Jahner, D. et al. (1985) Proc. Natl. Acad. Sci. USA 82:6927-6931; Van der Putten, et al. (1985) Proc. Natl. Acad. Sci. USA 82:6148-6152). Transfection can be easily and efficiently obtained via culturing blastomeres on a monolayer of virus-producing cells (Van der Putten, supra; Stewart, et al. (1987) EMBO J. 6:383-388). Infection can also be performed at a later stage whereby virus or virus-producing cells are injected into the blastocoele (Jahner, D. et al. (1982) Nature 298:623-628). Most of the founder non-human animals will be mosaic for the transgene since incorporation occurs only in a subset of cells that form the transgenic animal and the founder may additionally contain various retroviral insertions of the transgene at different positions in the genome that generally will segregate in the offspring. Additional methods of using retroviruses or retroviral vectors to create transgenic animals known to those skilled in the art involves microinjecting mitomycin C-treated cells or retroviral particles producing retrovirus into the perivitelline space of fertilized eggs or early embryos (see Haskell and Bowen (1995) Mol. Reprod. Dev. 40:386).

[0124] In one embodiment of the invention, non-human transgenic animals can be generated that express a modified A1 domain of the VWF sequence. The modified A1 domain can contain an amino acid residue substitution at a position involved with binding of the VWF protein to GPIb alpha (such as, but not limited to, positions 1263, 1269, 1274, 1287, 1302, 1308, 1313, 1314, 1326, 1329, 1330, 1333, 1344, 1347, 1350, 1370, 1379, 1381, 1385 1391, 1394, 1397, 1421, 1439, 1442, 1449, 1466, 1469, 1472, 1473, 1475, 1479). In some embodiments, the VWF-A1 domain can comprise a single mutation, while in other embodiments, it can comprise 2 or more mutations.

[0125] In one embodiment of the invention, the modification of the A1 domain can be a partial or full replacement of an animal (for example, a mouse) A1 domain of VWF with the A1 domain of human VWF. In other words, the A1 domain in the animal VWF is removed and replaced with the human A1 sequence. In another embodiment, the animal VWF A1 domain may be partially replaced so that some portion of the human A1 domain replaces a portion of the animal A1 domain. For example, human A1 domain sequence could comprises at least 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99%, or 100% of the animal A1 domain. The A1 domain of human VWF protein comprises SEO ID NO: 1. In another embodiment, the animal can be a model for pre-clinical testing of compounds, wherein the animal expresses a mutant von Willebrand Factor (VWF) A1 protein containing one or more mutations, such that the binding specificity of the mutant VWF-A1 protein changes from being specific for the animal platelets to being specific for human platelets. In another embodiment, the mutation occurs in the VWF-A1 domain of a mouse. In particular embodiments, the murine mutant VWF-A1 protein comprises at least one mutation comprising 1263P>S, 1269N>D, 1274K>R, 1287M>R, 1302G>D, 1308H>R, 1313R>W, 1314I>V, 1326R>H, 1329L>I, 1330E>G, 1333A>D, 1344T>A, 1347I>V, 1350T>A, 1370G>S, 1379H>R, 1381T>A, 1385T>M 1391P>Q, 1394A>S, 1397L>F, 1421S>N, 1439L>V, 1442G>S, 1449R>Q, 1466A>P, 1469Q>L, 1472Q>H, 1473V>M, 1475H>Q, 1479S>G, or any combination thereof. In a particularly useful embodiment, the murine mutant VWF-A1 protein comprises a 1326R>H mutation, a 1314I>V mutation, or a combination thereof.

[0126] The modification of the A1 domain can be an amino acid substitution at residue 1326 (for example Arg for His in the mouse). In some embodiments, the non-human transgenic animal harbors a mutant construct wherein an amino acid residue substitution at a position involved affects binding to GPIb alpha (such as, but not limited to, positions 1263, 1269, 1274, 1287, 1302, 1308, 1313, 1314, 1326, 1329, 1330, 1333, 1344, 1347, 1350, 1370, 1379, 1381, 1385 1391, 1394, 1397, 1421, 1439, 1442, 1449, 1466, 1469, 1472, 1473, 1475, 1479). In yet other embodiments, non-human transgenic animals can successfully harbor a type 2B (Ile1309Val; 1309I>V) mutation and/or an Arg1326His (1326R>H) mutant construct. In another embodiment, the non-human transgenic animal expresses an Arg1326His (1326R>H) mutation wherein the mutant VWF-A1 domain comprises SEQID NO: 5, which corresponds to the His amino acid at the same position in humans, canines, chimpanzees, rat, porcine, felines, equines, bovine, and the like (Jenkins et al., (1998) Blood 91(6): 2032-44). In further embodiments of the invention, the non-human transgenic animal is a mouse. Example 3 below describes the transgenic animal of the current invention.

[0127] Molecular Manipulations of VWF-A1 and its Corresponding Mutants

[0128] The present invention utilizes conventional molecular biology, microbiology, and recombinant DNA techniques available to one of ordinary skill in the art. Such techniques are well known to the skilled worker and are explained fully in the literature. See, e.g., Maniatis, Fritsch & Sambrook, "*Molecular Cloning: A Laboratory Manual*" (1982): "*DNA Cloning: A Practical Approach*," Volumes I and II (D. N. Glover, ed., 1985); "Oligonucleotide Synthesis" (M. J. Gait, ed., 1984); "*Nucleic Acid Hybridization*" (B. D. Hames & S. J. Higgins, eds., 1985); "*Transcription and Translation*" (B. D. Hames & S. J. Higgins, eds., 1986); "*Immobilized Cells and Enzymes*" (IRL Press, 1986): B. Perbal, "*A Practical Guide to Molecular Cloning*" (1984), and Sambrook, et al., "*Molecular Cloning*; a Laboratory Manual" (1989).

[0129] The VWF sequences from mouse, human, have been aligned as shown in Jenkins et al. (1998) "Molecular Modeling of Ligand and Mutation Sites of the Type A Domains of Human von Willebrand Factor and Their Relevance to von Willebrand's Disease" Vol. 91, No. 6, *Blood*, *pp.* 2032-2044.

[0130] The DNA and polypeptide sequences of human VWF are readily available to those skilled in the art, under Genbank Accession No. X04385. The polypeptide sequence of the A1 domain of human VWF, which runs from amino acid residue number 1260 to amino acid residue number 1480 of the nucleotide sequence of SEQ ID NO:6, is shown in SEQ ID NO: 1. The polypeptide sequence of the A1 domain of mouse VWF, which runs from amino acid residue number 1260 to amino acid residue number 1480 of the of SEQ ID NO:8, is shown in SEQ ID NO: 2.

[0131] SEQ ID NO: 1 is the human wild type amino acid sequence corresponding to the A1 domain of VWF. The residues shown in SEQ ID NO: 1 are residues 1260-1480, the A1 domain, of SEQ ID NO: 6.

SEQ ID NO:1:

EDISEPPLHDFYCSRLLDLVFLLDGSSRLSEAEFEVLKAFVVDMMERLRI SQKWVRVAVVEYHDGS**H**AYIGLKDRKRPSELRRIASQVKYAGSQVASTSE VLKYTLFQIFSKIDRPEASRIALLLMASQEPQRMSRNFVRYVQGLKKKKV

IVIPVGIGPHANLKOIRLIEKOAPENKAFVLSSVDELEOORDEIVSYLCD

LAPEAPPPTLPPHMAQVTVGP

[0132] SEQ ID NO: 2 is the mouse wild type amino acid sequence corresponding to the A1 domain of VWF. The residues shown in SEQ ID NO:2 are residue numbers 1260-1480 from the full length mouse VWF shown in SEQ ID NO: 8.

SEQ ID NO:2:

 ${\tt EDTPEPPLHNFYCSKLLDLVFLLDGSSMLSEAEFEVLKAFVVGMMERLHI}$

SQKRIRVAVVEYHDGS R AYLELKARKRPSELRRITSQIKYTGSQVASTSE

-continued VLKYTLFQIFGKIDRPEASHITLLLTASQEPPRMARNLVRYVQGLKKKKV

IVIPVGIGPHASLKQIRLIEKQAPENKAFLLSGVDELEQRRDEIVSYLCD

LAPEAPAPTQPPQVAHVTVSP

[0133] The nucleotide sequence of the A1 domain of human VWF corresponding to amino acid residues 1260-1480 is shown in SEQ ID NO: 3 and of mouse VWF is shown in SEQ ID NO: 4 below.

[0134] SEQ ID NO: 3 is the human wild type nucleotide sequence corresponding to the A1 domain of VWF:

[0135] SEQ ID NO: 4 is the mouse wild type nucleotide sequence corresponding to the A1 domain of VWF:

GAGGATACCCCCGAGCCCCCCTGCACAACTTCTACTGCAGCAAGCTGCT GGATCTTGTCTTCCTGCTGGATGGCTGCCTCTATGTTGTCCGAGGCTGAGT TTGAAGTGCTCAAAGCTTTTGTGGGGGGCATGATGGAGAGAGGTTACACATC TCTCAGAAGCGCATCCGCGTGGCAGTGGTAGAGTACCATGATGGCTCCCG TGCCTACCTTGAGCTCAAGGCCCGGAAGCGACCCTCAGAGCTTCGGCGCA TCACCAGCCAGATTAAGTATACAGGCAGCCAGGTGGCCTCTACCAGTGAG GTTTTGAAGTACACACTGTTCCAGATCTTTGGCAAAATTGACCGCCCTGA AGCCTCCCATATCACTCTGCTCCTGACTGCTAGCCAGGAGCCCCCACGGA TGGCTAGGAATTTGGTCCGCTATGTCCAAGGTCTGAAGAAGAAGAAGAAGAT ATCGTGATCCCTGTGGGCATTGGGCCCCACGCCAGCCTCAAACAAGATCCG CCTCATCGAGAAGCAGGCCCCTGAAAACAAGGCTTTTCTGCTCAGTGGGG TGGATGAGCTGGAGCAGGAGAAGAAGAAGAAGAAGATGACACTCTGGTCCCGAGGCCCCAGGCCCCACGCCACGCTCACACTGTGGCCCCACGT CTTGCTCCCGAGGCCCCCAGCCCCAACTCAGCCTCCACAGGTAGCCCCACGT CCCGTGAGTCCA 16

[0136] Human mRNA for pre-pro-von Willebrand factor:

SEQ ID NO: 6: Amino Acid Sequence Human VWF-(residue 1 to residue 2813) 1 MIPARFAGVL LALALILPGT LCAEGTRGRS STARCSLFGS DFVNTFDGSM YSFAGYCSYL 61 LAGGCQKRSF SIIGDFQNGK RVSLSVYLGE FFDIHLFVNG TVTQGDQRVS MPYASKGLYL 121 ETEAGYYKLS GEAYGFVARI DGSGNFQVLL SDRYFNKTCG LCGNFNIFAE DDFMTQEGTL 181 TSDPYDFANS WALSSGEQWC ERASPPSSSC NISSGEMQKG LWEQCQLLKS TSVFARCHPL 241 VDPEPFVALC EKTLCECAGG LECACPALLE YARTCAQEGM VLYGWTDHSA CSPVCPAGME 301 YRQCVSPCAR TCQSLHINEM CQERCVDGCS CPEGQLLDEG LCVESTECPC VHSGKRYPPG 361 TSLSRDCNTC ICRNSQWICS NEECPGECLV TGQSHFKSFD NRYFTFSGIC QYLLARDCQD 421 HSFSIVIETV OCADDRDAVC TRSVTVRLPG LHNSLVKLKH GAGVAMDGOD IOLPLLKGDL 481 RIOHTVTASV RLSYGEDLOM DWDGRGRLLV KLSPVYAGKT CGLCGNYNGN OGDDFLTPSG 541 LAEPRVEDFG NAWKLHGDCO DLOKOHSDPC ALNPRMTRFS EEACAVLTSP TFEACHRAVS 601 PLPYLRNCRY DVCSCSDGRE CLCGALASYA AACAGRGVRV AWREPGRCEL NCPKGOVYLO 661 CGTPCNLTCR SLSYPDEECN EACLEGCFCP PGLYMDERGD CVPKAOCPCY YDGEIFOPED 721 IFSDHHTMCY CEDGFMHCTM SGVPGSLLPD AVLSSPLSHR SKRSLSCRPP MVKLVCPADN 781 LRAEGLECTK TCONYDLECM SMGCVSGCLC PPGMVRHENR CVALERCPCF HOGKEYAPGE 841 TVKIGCNTCV CRDRKWNCTD HVCDATCSTI GMAHYLTFDG LKYLFPGECQ YVLVQDYCGS 901 NPGTFRILVG NKGCSHPSVK CKKRVTILVE GGEIELFDGE VNVKRPMKDE THFEVVESGR 961 YIILLLGKAL SVVWDRHLSI SVVLKQTYQE KVCGLCGNFD GIQNNDLTSS NLQVEEDPVD 1021 FGNSWKVSSQ CADTRKVPLD SSPATCHNNI MKQTMVDSSC RILTSDVFQD CNKLVDPEPY 1081 LDVCIYDTCS CESIGDCACF CDTIAAYAHV CAQHGKVVTW RTATLCPQSC EERNLRENGY 1141 ECEWRYNSCA PACQVTCQHP EPLACPVQCV EGCHAHCPPG KILDELLQTC VDPEDCPVCE 1201 VAGRRFASGK KVTLNPSDPE HCOICHCDVV NLTCEACOEP GGLVVPPTDA PVSPTTLYVE 1261 DISEPPLHDF YCSRLLDLVF LLDGSSRLSE AEFEVLKAFV VDMMERLRIS QKWVRVAVVE 1321 YHDGSHAYIG LKDRKRPSEL RRIASQVKYA GSQVASTSEV LKYTLFQIFS KIDRPEASRI 1381 ALLLMASQEP QRMSRNFVRY VQGLKKKKVI VIPVGIGPHA NLKQIRLIEK QAPENKAFVL 1441 SSVDELEQQR DEIVSYLCDL APEAPPPTLP PHMAQVTVGP GLLGVSTLGP KRNSMVLDVA 1501 FVLEGSDKIG EADFNRSKEF MEEVIQRMDV GQDSIHVTVL QYSYMVTVEY PFSEAQSKGD 1561 ILQRVREIRY QGGNRTNTGL ALRYLSDHSF LVSQGDREQA PNLVYMVTGN PASDEIKRLP 1621 GDIQVVPIGV GPNANVQELE RIGWPNAPIL IQDFETLPRE APDLVLQRCC SGEGLQIPTL 1681 SPAPDCSOPL DVILLLDGSS SFPASYFDEM KSFAKAFISK ANIGPRLTOV SVLOYGSITT 1741 IDVPWNVVPE KAHLLSLVDV MQREGGPSQI GDALGFAVRY LTSEMHGARP GASKAVVILV 1801 TDVSVDSVDA AADAARSNRV TVFPIGIGDR YDAAOLRILA GPAGDSNVVK LORIEDLPTM 1861 VTLGNSFLHK LCSGFVRICM DEDGNEKRPG DVWTLPDOCH TVTCOPDGOT LLKSHRVNCD 1921 RGLRPSCPNS OSPVKVEETC GCRWTCPCVC TGSSTRHIVT FDGONFKLTG SCSYVLFONK 1981 FODLEVILHN GACSPGAROG CMKSIEVKHS ALSVELHSDM EVTVNGRLVS VPYVGGNMEV 2041 NVYGAIMHEV RFNHLGHIFT FTPONNEFOL OLSPKTFASK TYGLCGICDE NGANDFMLRD 2101 GTVTTDWKTL VQEWTVQRPG QTCQPILEEQ CLVPDSSHCQ VLLLPLFAEC HKVLAPATFY 2161 AICQQDSCHQ EQVCEVIASY AHLCRTNGVC VDWRTPDFCA MSCPPSLVYN HCEHGCPRHC

-continued

2221 DGNVSSCGDH PSEGCFCPPD KVMLEGSCVP EEACTQCIGE DGVQHQFLEA WVPDHQPCQI 2281 CTCLSGRKVN CTTQPCPTAK APTCGLCEVA RLRQNADQCC PEYECVCDPV SCDLPPVPHC 2341 ERGLQPTLTN PGECRPNFTC ACRKEECKRV SPPSCPPHRL PTLRKTQCCD EYECACNCVN 2401 STVSCPLGYL ASTATNDCGC TTTTCLPDKV CVHRSTIYPV GQFWEEGCDV CTCTDMEDAV 2461 MGLRVAQCSQ KPCEDSCRSG FTYVLHEGEC CGRCLPSACE VVTGSPRGDS QSSWKSVGSQ 2521 WASPENPCLI NECVRVKEEV FIQQRNVSCP QLEVPVCPSG FQLSCKTSAC CPSCRCERME 2581 ACMLNGTVIG PGKTVMIDVC TTCRCMVQVG VISGFKLECR KTTCNPCPLG YKEENNTGEC 2641 CGRCLPTACT IQLRGQQIMT LKRDETLQDG CDTHFCKVNE RGEYFWEKRV TGCPPFDEHK 2701 CLAEGGKIMK IPGTCCDTCE EPECNDITAR LQYVKVGSCK SEVEVDIHYC QGKCASKAMY 2761 SIDINDVQDQ CSCCSPTRTE PMQVALHCTN GSVVYHEVLN AMECKCSPRK CSK VWF mature peptide (AA 763-2790)

SEQ ID NO: 7 Nucleic acid sequence-human VWF

1 ageteacage tattgtggtg ggaaagggag ggtggttggt ggatgteaca gettgggett 61 tateteecce ageagtgggg acteeacage ceetgggeta cataacagea agacagteeg 121 gagetgtage agaeetgatt gageetttge ageagetgag ageatggeet agggtgggeg 181 gcaccattgt ccagcagctg agtttcccag ggaccttgga gatagccgca gccctcattt 241 gcaggggaag gcaccattgt ccagcagctg agtttcccag ggaccttgga gatagccgca 301 gccctcattt atgattcctg ccagatttgc cggggtgctg cttgctctgg ccctcattt 361 gccagggacc ctttgtgcag aaggaactcg cggcaggtca tccacggccc gatgcagcct 421 tttcggaagt gacttcgtca acacctttga tgggagcatg tacagctttg cgggatactg 481 cagttacctc ctggcagggg gctgccagaa acgctccttc tcgattattg gggacttcca 541 gaatggcaag agagtgagcc tctccgtgta tcttggggaa ttttttgaca tccatttgtt 601 tgtcaatggt accgtgacac agggggacca aagagtctcc atgccctatg cctccaaagg 661 gctgtatcta gaaactgagg ctgggtacta caagctgtcc ggtgaggcct atggctttgt 721 ggccaggatc gatggcagcg gcaactttca agtcctgctg tcagacagat acttcaacaa 781 gacctgcggg ctgtgtggca actttaacat ctttgctgaa gatgacttta tgacccaaga 841 agggacettg aceteggace ettatgactt tgecaactea tgggetetga geagtggaga 901 acagtggtgt gaacgggcat ctcctcccag cagctcatgc aacatctcct ctggggaaat 961 gcagaagggc ctgtgggagc agtgccagct tctgaagagc acctcggtgt ttgcccgctg 1021 ccaccetetg gtggaceeeg ageettttgt ggeeetgtgt gagaagaett tgtgtgagtg 1081 tgctgggggg ctggagtgcg cctgccctgc cctcctggag tacgcccgga cctgtgccca 1141 ggagggaatg gtgctgtacg gctggaccga ccacagcgcg tgcagcccag tgtgccctgc 1201 tggtatggag tataggcagt gtgtgtcccc ttgcgccagg acctgccaga gcctgcacat 1261 caatgaaatg tgtcaggagc gatgcgtgga tggctgcagc tgccctgagg gacagctcct 1321 ggatgaagge etetgegtgg agageacega gtgteeetge gtgeatteeg gaaagegeta 1381 ccctcccggc acctccctct ctcgagactg caacacctgc atttgccgaa acagccagtg 1441 gatetgeage aatgaagaat gteeagggga gtgeettgte aetggteaat eeeactteaa 1501 gagetttgac aacagatact teacetteag tgggatetge eagtacetge tggeeegga

-continued 1561 ttgccaggac cacteettet ceattgteat tgagactgte cagtgtgetg atgacegega 1621 cgctgtgtgc acccgctccg tcaccgtccg gctgcctggc ctgcacaaca gccttgtgaa 1681 actgaagcat ggggcaggag ttgccatgga tggccaggac atccagctcc ccctcctgaa 1741 aggtgacete egeateeage atacagtgae ggeeteegtg egeeteaget aeggggagga 1801 cctgcagatg gactgggatg gccgcgggag gctgctggtg aagctgtccc ccgtctacgc 1861 cgggaagacc tgcggcctgt gtgggaatta caatggcaac cagggcgacg acttecttac 1921 cccctctggg ctggcagagc cccgggtgga ggacttcggg aacgcctgga agctgcacgg 1981 ggactgccag gacctgcaga agcagcacag cgatccctgc gccctcaacc cgcgcatgac 2041 caggttetee gaggaggegt gegeggteet gaegteeeee acattegagg eetgecateg 2101 tgccgtcagc ccgctgccct acctgcggaa ctgccgctac gacgtgtgct cctgctcgga 2161 cggccgcgag tgcctgtgcg gcgccctggc cagctatgcc gcggcctgcg cggggagagg 2221 cgtgcgcgtc gcgtggcgcg agccaggccg ctgtgagctg aactgcccga aaggccaggt 2281 gtacctgcag tgcgggaccc cctgcaacct gacctgccgc tctctcttt acccggatga 2341 ggaatgcaat gaggcctgcc tggagggctg cttctgcccc ccagggctct acatggatga 2401 gagggggggac tgcgtgccca aggcccagtg cccctgttac tatgacggtg agatettcca 2461 gccagaagac atetteteag accateacae catgtgetae tgtgaggatg getteatgea 2521 ctgtaccatg agtggagtcc ccggaagctt gctgcctgac gctgtcctca gcagtcccct 2581 gtctcatcgc agcaaaagga gcctatcctg tcggcccccc atggtcaagc tggtgtgtcc 2641 cgctgacaac ctgcgggctg aagggctcga gtgtaccaaa acgtgccaga actatgacct 2701 ggagtgcatg agcatgggct gtgtctctgg ctgcctctgc cccccgggca tggtccggca 2761 tgagaacaga tgtgtggccc tggaaaggtg tccctgcttc catcagggca aggagtatgc 2821 ccctqqaqaa acaqtqaaqa ttqqctqcaa cacttqtqtc tqtcqqqacc qqaaqtqqaa 2881 ctgcacagac catgtgtgtg atgccacgtg ctccacgatc ggcatggccc actacctcac 2941 cttcgacggg ctcaaatacc tgttccccgg ggagtgccag tacgttctgg tgcaggatta 3001 ctgcggcagt aaccctggga cctttcggat cctagtgggg aataagggat gcagccaccc 3061 ctcagtgaaa tgcaagaaac gggtcaccat cctggtggag ggaggagaga ttgagctgtt 3121 tgacggggag gtgaatgtga agaggcccat gaaggatgag actcactttg aggtggtgga 3181 gtctggccgg tacatcattc tgctgctggg caaagccctc tccgtggtct gggaccgcca 3241 cctgagcatc tccgtggtcc tgaagcagac ataccaggag aaagtgtgtg gcctgtgtgg 3301 gaattttgat ggcatccaga acaatgacct caccagcagc aacctccaag tggaggaaga 3361 ccctgtggac tttgggaact cctggaaagt gagctcgcag tgtgctgaca ccagaaaagt 3421 gcctctggac tcatcccctg ccacctgcca taacaacatc atgaagcaga cgatggtgga 3481 ttcctcctgt agaatcctta ccagtgacgt cttccaggac tgcaacaagc tggtggaccc 3541 cgagccatat ctggatgtct gcatttacga cacctgctcc tgtgagtcca ttggggactg 3601 cgcctgcttc tgcgacacca ttgctgccta tgcccacgtg tgtgcccagc atggcaaggt 3721 gaacgggtat gagtgtgagt ggcgctataa cagctgtgca cctgcctgtc aagtcacgtg 3781 tragcaccet gagecactgg cetgecetgt geagtgtgtg gagggetgee atgeceactg

US 2009/0202429 A1

18

-continued 3841 ccctccaggg aaaatcctgg atgagctttt gcagacctgc gttgaccctg aagactgtcc 3901 agtgtgtgag gtggctggcc ggcgttttgc ctcaggaaag aaagtcacct tgaatcccag 3961 tgaccctgag cactgccaga tttgccactg tgatgttgtc aacctcacct gtgaagcctg 4021 ccaggagccg ggaggcctgg tggtgcctcc cacagatgcc ccggtgagcc ccaccactct 4081 gtatgtggag gacatetegg aacegeegtt geacgattte taetgeagea ggetaetgga 4141 cctggtcttc ctgctggatg gctcctccag gctgtccgag gctgagtttg aagtgctgaa 4201 ggcctttgtg gtggacatga tggagcggct gcgcatctcc cagaagtggg tccgcgtggc 4261 cgtggtggag taccacgacg gctcccacgc ctacatcggg ctcaaggacc ggaagcgacc 4321 gtcagagetg eggegeattg ceageeaggt gaagtatgeg ggeageeagg tggeeteeae 4381 cagegaggte ttgaaataca cactgtteea aatetteage aagategaee geeetgaage 4441 ctcccgcatc gccctgctcc tgatggccag ccaggagccc caacggatgt cccggaactt 4501 tgtccgctac gtccagggcc tgaagaagaa gaaggtcatt gtgatcccgg tgggcattgg 4561 gccccatgcc aacctcaagc agatccgcct catcgagaag caggcccctg agaacaaggc 4621 cttcgtgctg agcagtgtgg atgagctgga gcagcaaagg gacgagatcg ttagctacct 4681 ctgtgacett geeeetgaag ecceteetee tactetgeee eeccacatgg cacaagteae 4741 tgtgggcccg gggctcttgg gggtttcgac cctggggccc aagaggaact ccatggttct 4801 ggatgtggcg ttcgtcctgg aaggatcgga caaaattggt gaagccgact tcaacaggag 4861 caaggagttc atggaggagg tgattcagcg gatggatgtg ggccaggaca gcatccacgt 4921 cacggtgctg cagtactcct acatggtgac cgtggagtac cccttcagcg aggcacagtc 4981 caaaggggac atcctgcagc gggtgcgaga gatccgctac cagggcggca acaggaccaa 5041 cactgggetg geeetgeggt acetetetga ceacagette ttggteagee agggtgaeeg 5101 ggagcaggcg cccaacctgg tctacatggt caccggaaat cctgcctctg atgagatcaa 5161 gaggetgeet ggagacatee aggtggtgee cattggagtg ggeeetaatg ecaaegtgea 5221 ggagetggag aggattgget ggeecaatge cectateete ateeaggaet ttgagaeget 5281 cccccgagag gctcctgacc tggtgctgca gaggtgctgc tccggagagg ggctgcagat 5341 ccccaccctc tcccctgcac ctgactgcag ccagcccctg gacgtgatcc ttctcctgga 5401 tggctcctcc agtttcccag cttcttattt tgatgaaatg aagagtttcg ccaaggcttt 5461 catttcaaaa gccaatatag ggcctcgtct cactcaggtg tcagtgctgc agtatggaag 5521 catcaccacc attgacgtgc catggaacgt ggtcccggag aaagcccatt tgctgagcct 5581 tgtggacgtc atgcagcggg agggaggccc cagccaaatc ggggatgcct tgggctttgc 5641 tgtgcgatac ttgacttcag aaatgcatgg tgccaggccg ggagcctcaa aggcggtggt 5701 catcctggtc acggacgtct ctgtggattc agtggatgca gcagctgatg ccgccaggtc 5761 caacagagtg acagtgttcc ctattggaat tggagatcgc tacgatgcag cccagctacg 5821 gatettggca ggeccagcag gegaetecaa egtggtgaag etecagegaa tegaagaeet 5881 ccctaccatg gtcaccttgg gcaatteett cctccacaaa ctgtgetetg gatttgttag 5941 gatttgcatg gatgaggatg ggaatgagaa gaggcccggg gacgtctgga ccttgccaga 6001 ccagtgccac accgtgactt gccagccaga tggccagacc ttgctgaaga gtcatcgggt 6061 caactgtgac cgggggctga ggccttcgtg ccctaacagc cagtcccctg ttaaagtgga 6121 agagacetgt ggetgeeget ggacetgeee etgegtgtge acaggeaget ceaeteggea

20

6241 tcaaaacaag gagcaggacc tggaggtgat tctccataat ggtgcctgca gccctggagc 6301 aaggcagggc tgcatgaaat ccatcgaggt gaagcacagt gccctctccg tcgagctgca 6361 cagtgacatg gaggtgacgg tgaatgggag actggtctct gttccttacg tgggtgggaa 6421 catggaagtc aacgtttatg gtgccatcat gcatgaggtc agattcaatc accttggtca 6481 catcttcaca ttcactccac aaaacaatga gttccaactg cagctcagcc ccaagacttt 6541 tgcttcaaag acgtatggtc tgtgtggggat ctgtgatgag aacggagcca atgacttcat 6601 gctgagggat ggcacagtca ccacagactg gaaaacactt gttcaggaat ggactgtgca 6661 gcggccaggg cagacgtgcc agcccatcct ggaggagcag tgtcttgtcc ccgacagctc 6721 ccactgccag gtcctcctct taccactgtt tgctgaatgc cacaaggtcc tggctccagc 6781 cacattetat gecatetgee ageaggaeag ttgecaeeag gageaagtgt gtgaggtgat 6841 cgcctcttat gcccacctct gtcggaccaa cggggtctgc gttgactgga ggacacctga 6901 tttctgtgct atgtcatgcc caccatctct ggtctacaac cactgtgagc atggctgtcc 6961 ccggcactgt gatggcaacg tgagctcctg tggggaccat ccctccgaag gctgtttctg 7021 ccctccagat aaagtcatgt tggaaggcag ctgtgtccct gaagaggcct gcactcagtg 7081 cattggtgag gatggagtcc agcaccagtt cctggaagcc tgggtcccgg accaccagcc 7141 ctgtcagatc tgcacatgcc tcagcgggcg gaaggtcaac tgcacaacgc agccctgccc 7201 cacqqccaaa gctcccacqt gtqqcctqtg tgaaqtaqcc cgcctccqcc aqaatgcaqa 7261 ccagtgctgc cccgagtatg agtgtgtgt tgacccagtg agctgtgacc tgcccccagt 7321 gcctcactgt gaacgtggcc tccagcccac actgaccaac cctggcgagt gcagacccaa 7381 cttcacctgc gcctgcagga aggaggagtg caaaagagtg tccccaccct cctgcccccc 7441 gcaccgtttg cccacccttc ggaagaccca gtgctgtgat gagtatgagt gtgcctgcaa 7501 ctgtgtcaac tccacagtga gctgtcccct tgggtacttg gcctcaaccg ccaccaatga 7561 ctgtggctgt accacaacca cctgccttcc cgacaaggtg tgtgtccacc gaagcaccat 7621 ctaccctgtg ggccagttct gggaggaggg ctgcgatgtg tgcacctgca ccgacatgga 7681 ggatgccgtg atgggcctcc gcgtggccca gtgctcccag aagccctgtg aggacagctg 7741 tcggtcgggc ttcacttacg ttctgcatga aggcgagtgc tgtggaaggt gcctgccatc 7801 tgcctgtgag gtggtgactg gctcaccgcg gggggactcc cagtcttcct ggaagagtgt 7861 cggctcccag tgggcctccc cggagaaccc ctgcctcatc aatgagtgtg tccgagtgaa 7921 ggaggaggtc tttatacaac aaaggaacgt ctcctgcccc cagctggagg tccctgtctg 7981 cccctcgggc tttcagctga gctgtaagac ctcagcgtgc tgcccaagct gtcgctgtga 8041 gcgcatggag gcctgcatgc tcaatggcac tgtcattggg cccgggaaga ctgtgatgat 8101 cgatgtgtgc acgacctgcc gctgcatggt gcaggtgggg gtcatctctg gattcaagct 8161 ggagtgcagg aagaccacct gcaacccctg ccccctgggt tacaaggaag aaaataacac 8221 aggtgaatgt tgtgggagat gtttgcctac ggcttgcacc attcagctaa gaggaggaca 8281 gatcatgaca ctgaagcgtg atgagacgct ccaggatggc tgtgatactc acttctgcaa 8341 ggtcaatgag agaggagagt acttctggga gaagagggtc acaggctgcc caccctttga 8401 tgaacacaag tgtctggctg agggaggtaa aattatgaaa attccaggca cctgctgtga

-continued 6181 categtgace tttgatggge agaattteaa getgactgge agetgttett atgteetatt

1 MNPFRYEICL LVLALTWPGT LCTEKPRDRP STARCSLFGD DFINTFDETM YSFAGGCSYL 61 LAGDCQKRSF SILGNFQDGK RMSLSVYLGE FFDIHLFANG TVTQGDQSIS MPYASQGLYL 121 EREAGYYKLS SETFGFAARI DGNGNFQVLM SDRHFNKTCG LCGDFNIFAE DDFRTQEGTL 181 TSDPYDFANS WALSSEEORC KRASPPSRNC ESSSGDMHQA MWEQCOLLKT ASVFARCHPL 241 VDPESFVALC EKILCTCATG PECACPVLLE YARTCAQEGM VLYGWTDHSA CRPACPAGME 301 YKECVSPCPR TCQSLSINEV CQQQCVDGCS CPEGELLDED RCVQSSDCPC VHAGKRYPPG 361 TSLSQDCNTC ICRNSLWICS NEECPGECLV TGQSHFKSFD NRYFTFSGIC QYLLARDCED 421 HTFSIVIETM QCADDPDAVC TRSVSVRLSA LHNSLVKLKH GGAVGIDGQD VQLPFLQGDL 481 RIQHTVMASV RLSYAEDLQM DWDGRGRLLV KLSPVYSGKT CGLCGNYNGN KGDDFLTPAG 541 LVEPLVVDFG NAWKLQGDCS DLRRQHSDPC SLNPRLTRFA EEACALLTSS KFEACHHAVS 601 PLPYLQNCRY DVCSCSDSRD CLCNAVANYA AECARKGVHI GWREPGFCAL GCPQGQVYLQ 661 CGNSCNLTCR SLSLPDEECS EVCLEGCYCP PGLYQDERGD CVPKAQCPCY YDGELFQPAD 721 IFSDHHTMCY CEDGFMHCTT SGTLGSLLPD TVLSSPLSHR SKRSLSCRPP MVKLVCPADN 781 PRAOGLECAK TCONYDLECM SLGCVSGCLC PPGMVRHENK CVALERCPCF HOGAEYAPGD 841 TVKIGCNTCV CRERKWNCTN HVCDATCSAI GMAHYLTEDG LKYLEPGECO YVLVODYCGS 901 NPGTFQILVG NEGCSYPSVK CRKRVTILVD GGELELFDGE VNVKRPLRDE SHFEVVESGR 961 YVILLLGOAL SVVWDHHLSI SVVLKHTYOE OVCGLCGNFD GIONNDFTTS SLOVEEDPVN 1021 FGNSWKVSSQ CADTRKLSLD VSPATCHNNI MKQTMVDSAC RILTSDVFQG CNRLVDPEPY 1081 LDICIYDTCS CESIGDCACF CDTIAAYAHV CAQHGQVVAW RTPTLCPQSC EEKNVRENGY 1141 ECEWRYNSCA PACPVTCOHP EPLACPVOCV EGCHAHCPPG RILDELLOTC VDPODCPVCE 1201 VAGRRLAPGK KITLSPDDPA HCQNCHCDGV NLTCEACQEP GGLVAPPTDA PVSSTTPYVE 1261 DTPEPPLHNF YCSKLLDLVF LLDGSSMLSE AEFEVLKAFV VGMMERLHIS QKRIRVAVVE 1321 YHDGSRAYLE LKARKRPSEL RRITSQIKYT GSQVASTSEV LKYTLFQIFG KIDRPEASHI 1381 TLLLTASQEP PRMARNLVRY VQGLKKKKVI VIPVGIGPHA SLKQIRLIEK QAPENKAFLL 1441 SGVDELEQRR DETVSYLCDL APEAPAPTQP PQVAHVTVSP GIAGISSPGP KRKSMVLDVV 1501 FVLEGSDEVG EANFNKSKEF VEEVIQRMDV SPDATRISVL QYSYTVTMEY AFNGAQSKEE 1561 VLRHVREIRY QGGNRTNTGQ ALQYLSEHSF SPSQGDRVEA PNLVYMVTGN PASDEIKRLP 1621 GDIQVVPIGV GPHANMQELE RISRPIAPIF IRDFETLPRE APDLVLQTCC SKEGLQLPTL 1681 PPLPDCSQPL DVVLLLDGSS SLPESSFDKM KSFAKAFISK ANIGPHLTQV SVIQYGSINT

Mus musculus strain CASA/RkJ VWF (Vwf) mRNA SEQ ID NO: 8-Amino Acid Sequence of Mouse VWF (residue no. 1 to residue no. 2813)

21

22

- continued 1741 IDVPWNVVQE KAHLQSLVDL MQQEGGPSQI GDALAFAVRY VTSQIHGARP GASKAVVIII 1801 MDTSLDPVDT AADAARSNRV AVFPVGVGDR YDEAOLRILA GPGASSNVVK LOOVEDLSTM 1861 ATLGNSFFHK LCSGFSGVCV DEDGNEKRPG DVWTLPDQCH TVTCLANGQT LLQSHRVNCD 1921 HGPRPSCANS QSPVRVEETC GCRWTCPCVC TGSSTRHIVT FDGQNFKLTG SCSYVIFQNK 1981 EODLEVLLHN GACSPGAKOA CMKSIEIKHA GVSAELHSNM EMAVDGRLVL APYVGENMEV 2041 SIYGAIMYEV RFTHLGHILT YTPONNEFOL OLSPKTFASK MHGLCGICDE NGANDFTLRD 2101 GTVTTDWKRL VQEWTVQQPG YTCQAVPEEQ CPVSDSSHCQ VLLSASFAEC HKVIAPATFH 2161 TICOODSCHO ERVCEVIASY AHLCRTSGVC VDWRTTDFCA MSCPPSLVYN HCERGCPRHC 2221 DGNTSFCGDH PSEGCFCPQH QVFLEGSCVP EEACTQCVGE DGVRHQFLET WVPDHQPCQI 2281 CMCLSGRKIN CTAQPCPTAR APTCGPCEVA RLKQSTNLCC PEYECVCDLF NCNLPPVPPC 2341 EGGLQPTLTN PGECRPTFTC ACRKEECKRV SPPSCPPHRT PTLRKTQCCD EYECACSCVN 2401 STLSCPLGYL ASATTNDCGC TTTTCLPDKV CVHRGTVYPV GQFWEEGCDT CTCTDMEDTV 2461 VGLRVVQCSQ RPCEDSCQPG FSYVLHEGEC CGRCLPSACK VVAGSLRGDS HSSWKSVGSR 2521 WAVPENPCLV NECVRVEDAV FVQQRNISCP QLAVPTCPTG FQLNCETSEC CPSCHCEPVE 2581 ACLLNGTIIG PGKSVMVDLC TTCRCIVQTD AISRFKLECR KTTCEACPMG YREEKSQGEC 2641 CGRCLPTACT IQLRGGRIMT LKQDETFQDG CDSHLCRVNE RGEYIWEKRV TGCPPFDEHK 2701 CLAEGGKIVK IPGTCCDTCE EPDCKDITAK VQYIKVGDCK SQEEVDIHYC QGKCASKAVY 2761 SIDIEDVQEQ CSCCLPSRTE PMRVPLHCTN GSVVYHEVIN AMQCRCSPRN CSK SEQ ID NO: 9-Nucleic Acid Sequence of Mouse VWF 1 agtagegget gggttteete aagggaeett ggagataeag eeetgtttg tatgggeaag

61 atgaaccett teaggtatga gatetgeetg ettgttetgg eceteacetg geeagggaee 121 ctctgcacag aaaagccccg tgacaggccg tcgacggccc gatgcagcct ctttggggac 181 gacttcatca acacgtttga tgagaccatg tacagctttg caggggggctg cagttatctc 241 ctggctgggg actgccagaa acgttccttc tccattctcg ggaacttcca agatggcaag 301 agaatgagcc tgtctgtgta tcttggggag ttttttgaca tccatttgtt tgccaatggc 361 accgtaacgc agggtgacca aagcatetee atgeeetacg eeteecaagg actetaceta 421 gaacgcgagg ctgggtacta taagctctcc agtgagacct ttggctttgc ggccagaatc 481 gatggcaatg gcaacttcca agtcctgatg tcagacagac acttcaacaa gacctgtggg 541 ctgtgcggtg attttaacat cttcgcggaa gatgatttta ggacgcagga ggggaccttg 601 acctcagacc cctatgattt tgccaactcc tgggccctga gcagtgagga acagcggtgt 661 aaacgggcat ctcctcccag caggaactgc gagagctctt ctgggggacat gcatcaggcc 721 atgtgggagc aatgccagct actgaagacg gcatcggtgt ttgcccgctg ccaccctctg 781 gtggatcccg agtcctttgt ggctctgtgt gagaagattt tgtgtacgtg tgctacgggg 841 ccagagtgcg catgtcctgt actccttgag tatgcccgaa cctgcgccca ggaagggatg 901 gtgctgtacg gctggactga ccacagtgcc tgtcgtccag cttgcccagc tggcatggaa 961 tataaggagt gtgtgtctcc ttgccccaga acctgccaga gcctgtctat caatgaagtg 1021 tgtcagcagc aatgtgtaga cggctgtagc tgccctgagg gagagctctt ggatgaagac 1081 cgatgtgtgc agageteega etgteettge gtgeaegetg ggaageggta eeeteetgge 1141 acctecetet etcaggaetg caacaettgt atetgeagaa acageetatg gatetgeage

-continued 1201 aatgaggaat gcccagggga gtgtcttgtc acaggccaat cgcacttcaa gagcttcgac 1261 aacaggtact tcaccttcag tgggatctgc caatatctgc tggcccggga ctgcgaggat 1321 cacactttct ccattgtcat agagaccatg cagtgtgccg atgaccctga tgctgtctgc 1381 accegetegg teagtgtgeg getetetgee etgeacaaca geetggtgaa actgaageae 1441 gggggagcag tgggcatcga tggtcaggat gtccagctcc ccttcctgca aggtgacctc 1501 cgcatccagc acacagtgat ggcttctgta cgcctcagct atgcggagga cctgcagatg 1561 gactgggatg gccgtggggcg gctactggtt aagctgtccc cagtctattc tgggaagacc 1621 tgtggcttgt gtgggaatta caacggcaac aagggagacg acttecteac geeggeegge 1681 ttggtggagc ccctggtggt agacttcgga aacgcctgga agcttcaagg ggactgttcg 1741 gacctgcgca ggcaacacag cgacccctgc agcctgaatc cacgcttgac caggtttgca 1801 gaggaggett gtgegeteet gaegteetee aagttegagg eetgeeacea egeagteage 1861 cctctgccct atctgcagaa ctgccgttat gatgtttgct cctgctccga cagccgggat 1921 tgcctgtgta acgcagtagc taactatgct gccgagtgtg cccgaaaagg cgtgcacatc 1981 gggtggcggg ageetggett etgtgetetg ggetgteeae agggeeaggt gtaeetgeag 2041 tgtgggaatt cetgeaacet gaeetgeege teeeteece teeeggatga agaatgeagt 2101 gaagtetgte ttgaaggetg etactgeeca ceagggetet accaggatga aagaggggae 2161 tgtgtgccca aggcccagtg cccctgctac tacgatggtg agctcttcca gcctgcggac 2221 attttctcag accaccatac catgtgttac tgtgaagatg gcttcatgca ctgtaccaca 2281 agtggcaccc tggggagcct gttgcctgac actgtcctca gcagtcccct gtctcaccgt 2341 agcaaaagga gcctttcctg ccggccaccc atggtcaagc tggtgtgtcc tgctgacaac 2401 ccacgggctc aagggctgga gtgtgctaag acgtgccaga actacgacct ggagtgtatg 2461 agcotgggot gtgtgtotgg otgoototgt ococcaggoa tggtooggoa ogaaaacaag 2521 tgtgtggcct tggagcggtg tccctgcttc catcagggtg cagagtacgc cccgggagac 2581 acagtgaaga ttggctgcaa cacctgtgtc tgccgggagc ggaagtggaa ctgcacgaac 2641 catgtgtgtg acgccacttg ctctgccatt ggtatggccc actacctcac cttcgatgga 2701 ctcaagtacc tgttcccggg ggagtgccag tatgttctgg tgcaggatta ctgtggcagt 2761 aaccctggga cctttcagat cctggtggga aatgagggtt gcagctatcc ctcggtgaag 2821 tgcaggaagc gggtgaccat cctggtggat ggaggggagc ttgaactgtt tgacggagag 2881 gtgaacgtta agaggcccct gagagatgaa tctcactttg aggtggtgga gtcgggccgg 2941 tacgtcatcc tgctgctggg tcaggccctt tctgtggtct gggaccacca cctcagcatc 3001 tctgtggtcc tgaagcacac ataccaggaa caggtgtgtg gcctctgcgg gaactttgat 3061 ggcatccaga acaatgactt caccactagc agcctccagg tggaggaaga ccccgtcaac 3121 tttgggaact cctggaaagt gagctcacag tgtgctgaca cgagaaagct gtcactagat 3181 gtttcccctg ccacttgcca caacaacatc atgaaacaga cgatggtgga ctcagcctgc 3241 agaateetta eeagtgaegt etteeaggge tgeaacagge tggtggaeee tgageeatae 3301 ctggacatct gtatttatga cacttgctcc tgtgagtcca tcgggggactg cgcctgtttc 3361 tgtgacacca ttgctgccta tgcccacgtg tgtgcccagc atggccaggt ggtagcctgg 3421 aggacaccca cactgtgccc ccagagctgt gaagaaaaga atgttcggga aaatggctat 3481 gagtgtgagt ggcgttataa cagctgtgcg cctgcttgcc cagtcacgtg tcagcaccct

-continued

3541 gagcetetgg ettgecetgt geagtgtgtg gagggttgte atgeacattg eceteraggg 3601 agaateetgg atgaacttet geagaeetge gtagaeeece aagaetgeee egtgtgtgag 3661 gtggctggtc ggcgcttggc tcctggaaag aaaatcacct tgagtcctga tgaccctgca 3721 cactgtcaga attgtcactg tgatggtgtg aaccttacgt gtgaagcctg ccaagagccc 3781 ggaggcctgg tggcaccccc aactgatgcc ccagtcagct ctaccacccc atatgttgag 3841 gatacccccg agccccccct gcacaacttc tactgcagca agctgctgga tcttgtcttc 3901 ctgctggatg gctcctctat gttgtccgag gctgagtttg aagtgctcaa agcttttgtg 3961 gtgggcatga tggagaggtt acacatetet cagaagegea teegegtgge agtggtagag 4021 taccatgatg gctcccgtgc ctaccttgag ctcaaggccc ggaagcgacc ctcagagctt 4081 cggcgcatca ccagccagat taagtataca ggcagccagg tggcctctac cagtgaggtt 4141 ttgaagtaca cactgttcca gatctttggc aaaattgacc gccctgaagc ctcccatatc 4201 actctgctcc tgactgctag ccaggagccc ccacggatgg ctaggaattt ggtccgctat 4261 gtccaaggtc tgaagaagaa gaaggttatc gtgatccctg tgggcattgg gccccacgcc 4321 agecteaaac agateegeet categagaag caggeeeetg aaaacaagge ttttetgete 4381 agtggggtgg atgagctgga gcagagaaga gatgagatag tcagctacct ctgtgacctt 4441 gctcccgagg ccccagcccc aactcagcct ccacaggtag cccacgtcac cgtgagtcca 4501 gggatcgctg ggatctcgtc accgggacca aaacggaagt ccatggttct ggatgtggtg 4561 tttgtcctgg aggggtcaga cgaagttggt gaagccaact tcaataagag caaggagttc 4621 gtggaggagg taatccagcg catggacgtg agcccggatg caacgcgcat ctcagtactg 4681 cagtatteet acaeggtaac catggagtat geetteaatg gggeecagte caaggaggag 4741 gtgctgcggc acgtgcgaga gatccgctac cagggcggca ataggacaaa cactgggcag 4801 gccctgcagt acctttctga gcacagette teteccagee aaggggaeeg ggtagaggea 4861 cctaacctgg tctacatggt cacggggaac cccgcctctg atgagatcaa gaggttgcct 4921 ggagacatcc aggtggtacc cattggggtg ggcccccatg ccaacatgca ggaactggag 4981 aggatcagca ggcccatcgc tcccatcttc atccgggact ttgagacact tccccgagag 5041 geteetgace tggteetgea gacatgttge tecaaggagg gtetgeaact geceacete 5101 ccccctctcc ctgactgcag ccaacccctg gatgtggtcc tgctcctgga tggctcctct 5161 agettgecag agtetteett tgataaaatg aagagttttg ceaaggettt cattteaaag 5221 gccaacattg ggccccacct cacacaggtg tccgtgatac agtatggaag catcaatacc 5281 attgatgtac catggaatgt ggttcaggag aaagcccatc tacagagttt ggtggacctc 5341 atgcagcagg agggtggccc cagccagatt ggggatgctc tggcctttgc cgtgcgctat 5401 gtaacttcac aaatccacgg agccaggcct ggggcctcca aagcagtggt catcatcatc 5461 atggatacct ccttggatcc cgtggacaca gcagcagatg ctgccagatc caaccgagtg 5521 gcagtgtttc ccgttggggt tggggatcgg tatgatgaag cccagctgag gatcttggca 5581 ggccctgggg ccagctccaa tgtggtaaag ctccagcaag ttgaagacct ctccaccatg 5641 gccaccctgg gcaactcctt cttccacaaa ctgtgttctg ggttttctgg agtttgtgtg 5701 gatgaagatg ggaatgagaa gaggcctggg gatgtctgga ccttgccgga tcagtgccac 5761 acagtgactt gettggeaaa tggeeagaee ttgetgeaga gteategtgt eaattgtgae

24

-continued 5821 catggacccc ggccttcatg tgccaacagc cagtctcctg ttcgggtgga ggagacgtgt 5881 ggctgccgct ggacctgccc ttgtgtgtgc acgggcagtt ccactcggca catcgtcacc 5941 ttcqatqqqc aqaatttcaa qcttactqqt aqctqctcct atqtcatctt tcaaaacaaq 6001 gagcaggacc tggaagtgct cctccacaat ggggcctgca gccccggggc aaaacaagcc 6061 tgcatgaagt ccattgagat taagcatgct ggcgtctctg ctgagctgca cagtaacatg 6121 gagatggcag tggatgggag actggtcctt gccccgtacg ttggtgaaaa catggaagtc 6181 agcatctacg gcgctatcat gtatgaagtc aggtttaccc atcttggcca catcctcaca 6241 tacacgccac aaaacaacga gttccaactg cagcttagcc ccaagacctt tgcttcgaag 6301 atgcatggtc tttgcggaat ctgtgatgaa aacgggggcca atgacttcac gttgcgagat 6361 ggcacggtca ccacagactg gaaaaggctt gtccaggaat ggacggtgca gcagccaggg 6421 tacacatgcc aggetgttcc cgaggagcag tgtcccgtct ctgacagetc ccactgccag 6481 gtcctcctct cagcgtcgtt tgctgaatgc cacaaggtca tcgctccagc cacattccat 6541 accatctgcc agcaagacag ttgccaccag gagcgagtgt gtgaggtgat tgcttcttac 6601 gcccatctct gtcggaccag tggggtctgt gttgattgga ggacaactga tttctgtgct 6661 atgtcatgcc caccgtccct ggtgtataac cactgtgagc gtggctgccc tcggcactgc 6721 gatgggaaca ctagettetg tggggaecat eeetcagaag getgettetg teeecaacae 6781 caagtttttc tggaaggcag ctgtgtcccc gaggaggcct gcactcagtg tgttggcgag 6841 gatggagttc gacatcagtt cctggagacc tgggtcccag accatcagcc ctgtcagatc 6901 tgtatgtgcc tcagtgggag aaagattaac tgcactgccc agccgtgtcc cacagcccga 6961 gctcccacgt gtggcccatg tgaagtggct cgcctcaagc agagcacaaa cctgtgctgc 7021 ccagagtatg agtgtgtgtg tgacctgttc aactgcaact tgcctccagt gcctccgtgt 7081 gaaggagggc tccagccaac cctgaccaac cctggagaat gcagacccac ctttacctgt 7141 geetgeagga aagaagagtg caaaagagtg teeccaceet cetgeeeeee teaceggaca 7201 cccactetee qqaaqaeeca qtqctqtqat qaataeqaqt qtqcttqeaq etqtqtcaae 7261 tecaegetga getgeceaet tggetaeetg geeteageea etaecaatga etgtggetge 7321 accacgacca cctgtctccc tgacaaggtt tgtgtccacc gaggcaccgt ctaccctgtg 7381 ggccagttct gggaggaggg ctgtgacacg tgcacctgta cggacatgga ggatactgtc 7441 gtgggcctgc gtgtggtcca gtgctctcaa aggccctgtg aagacagctg tcagccaggt 7501 ttttcttatg ttctccacga aggcgagtgc tgtggaaggt gcctgccctc tgcttgcaag 7561 gtggtggctg gctcactgcg gggcgattcc cactcttcct ggaaaagtgt tggatctcgg 7621 tgggctgttc ctgagaaccc ctgcctcgtc aacgagtgtg tccgcgtgga ggatgcagtg 7681 tttgtgcagc agaggaacat ctcctgccca cagctggctg tccctacctg tcccacaggc 7741 ttccaactga actgtgagac ctcagagtgc tgtcctagct gccactgtga gcctgtggag 7801 gcctgcctgc tcaatggcac catcattggg cccgggaaga gtgtgatggt tgacctatgc 7861 acgacctgcc gctgcatcgt gcagacagac gccatctcca gattcaagct ggagtgcagg 7921 aagactacct gtgaggcctg ccccatgggc tatcgggaag agaagagcca gggtgaatgc 7981 tgtgggagat gcttgcctac agcttgcact attcagctaa gaggaggacg gatcatgacc 8041 ctgaagcaag atgagacatt ccaggatggc tgtgacagtc atttgtgcag ggtcaacgag 8101 agaggagagt acatctggga gaagagggtc acgggctgcc caccatttga tgaacacaag

-continued

8161 tgtctggctg aaggaggcaa aatcgtgaaa attccaggca cctgctgtga cacatgtgag
8221 gagcctgatt gcaaagacat cacagccaag gtgcagtaca tcaaagtggg agattgtaag
8281 tcccaagagg aagtggacat tcattactgc cagggaaagt gtgccagcaa agctgtgtac
8341 tccattgaca tcgaggatgt gcaggagcaa tgctcctgct gcctgccct gaggacggag
8401 cccatgcgg tgcccttgca ctgcaccaat ggctctgtcg tgtaccacga ggtcatcaac
8461 gccatgcagt gcaggtgttc tccccggaac tgcagcaagt gaggcctgtg cagctacagc
8521 ggattcctac tgatacc

[0137] DNA sequences or oligonucleotides having specific sequences can be synthesized chemically or isolated by one of several approaches established in art. The basic strategies for identifying, amplifying, and isolated desired DNA sequences as well as assembling them into larger DNA molecules containing the desired sequence domains in the desired order, are well known to those of ordinary skill in the art. See, e.g., Sambrook, et al., (1989) Nature November 16; 342(6247):224-5; Perbal, B. et al., (1983) J Virol. March; 45(3):925-40. DNA segments corresponding to all or a portion of the VWF sequence may be isolated individually using the polymerase chain reaction (M. A. Innis, et al., "PCR Protocols: A Guide To Methods and Applications," Academic Press, 1990). A complete sequence may be assembled from overlapping oligonucleotides prepared by standard methods and assembled into a complete coding sequence. See, e.g., Edge (1981), Nature, 292:756; Nambiar, et al. (1984), Science, 223:1299; Jay et al. (1984), J. Biol. Chem., 259:6311.

[0138] The assembled nucleotide sequence can be cloned into a suitable vector or replicon and maintained in said carrier in a composition that is substantially free of vectors that do not contain the assembled sequence, thus providing a reservoir of the assembled sequence wherein the entire sequence can be extracted from the reservoir via excising it from DNA material with restriction enzymes or by PCR amplification. Those of ordinary skill in the art are familiar with numerous cloning vectors, and the selection of an appropriate cloning vector is a matter of choice. The construction of vectors containing desired nucleotide sequences linked by appropriate DNA sequences is accomplished by discussed above. These vectors may be constructed to contain additional DNA sequences, such as bacterial origins of replication to make shuttle vectors in order to shuttle between prokaryotic hosts and mammalian hosts.

[0139] Procedures for construction and expression of mutant proteins of defined sequence are well known in the art. A DNA sequence encoding a mutant form of VWF or a fragment thereof can be synthesized chemically or prepared from the wild-type sequence by one of several approaches, including primer extension, linker insertion and PCR (see, e.g., Sambrook, et al., (1989) *Nature* November 16; 342(6247):224-5; Maniatis, Fritsch & Sambrook, "Molecular Cloning: A Laboratory Manual" (1982): "DNA Cloning: A Practical Approach," Volumes I and II (D. N. Glover, ed., 1985); "Oligonucleotide Synthesis" (M. J. Gait, ed., 1984); "Nucleic Acid Hybridization" (B. D. Hames & S. J. Higgins, eds., 1984); "Animal Cell Culture" (R. I. Freshney, ed., 1986); "Immobilized Cells and Enzymes" (IRL

Press, 1986): B. Perbal, "A Practical Guide to Molecular Cloning" (1984), and Sambrook, et al., "Molecular Cloning: a Laboratory Manual" (1989)). Mutants can be prepared by these techniques having additions, deletions, and substitutions in the wild-type sequence (for example, the mouse VWF-A1 1326R>H mutant of SEQ ID NO: 5). To confirm that the mutant contains the desired changes, one skilled in the art can confirm the changes of interest via sequence-bysequence analysis and/or by methods available to one skilled in the art.

[0140] In one embodiment, modification of the A1 domain can contain an amino acid residue substitution at a position involved with binding to GPIb alpha (such as, but not limited to, positions 1263, 1269, 1274, 1287, 1302, 1308, 1313, 1314, 1326, 1329, 1330, 1333, 1344, 1347, 1350, 1370, 1379, 1381, 1385 1391, 1394, 1397, 1421, 1439, 1442, 1449, 1466, 1469, 1472, 1473, 1475, 1479). In further embodiments, the modification of the A1 domain can be a partial or full replacement of an animal (such as a mouse) A1 domain of VWF with the A1 domain of human VWF. In other embodiments of the invention, the modification of the A1 domain can be an amino acid substitution at residue 1326 (for example HIS for ARG) such as depicted in SEQ ID NO: 5.

[0141] SEQ ID NO: 5 is the sequence for the mouse VWF-A1 1326 R>H mutant, wherein the modified amino acid sequence corresponds to the A1 domain of mouse VWF (residues 1260-1480) having an amino acid substitution at residue 1326 of HIS for ARG (in Bold):

 $edtpepplhnfycsklldlvflldgssmlseaefevlkafvvgmmerlhisqkrirvavveyhdgs \underline{\mathbf{m}}$ aylelkarkrpselrritsqikytgsqvastsevlkytlfqifgkidrpeashitllltasqepprmarnlvryvqglkkkkvisvipvgigphaslkqirliekqapenkafllsgvdeleqrrdeivsylcd

LAPEAPAPTQPPQVAHVTVSP

[0142] An expression vector containing a nucleotide sequence encoding a protein of interest, such as a mutant VWF-A1 molecule described above, is transfected into a host cell, either eukaryotic (for example, yeast, mammalian, or insect cells) or prokaryotic, by conventional techniques well established in the art. Transfection techniques carried out depend on the host cell used. For example, mammalian cell transfection can be accomplished using lipofection, protoplast fusion, DEAE-dextran mediated transfection, CaPO₄ co-precipitation, electroporation, direct microinjection, as well as other methods known in the art which can comprise: scraping, direct uptake, osmotic or sucrose shock, lysozyme

fusion or erythrocyte fusion, indirect microinjection such as via erythrocyte-mediated techniques, and/or by subjecting host cells to electric currents. Some of the techniques mentioned above are also applicable to unicellular organisms, such as bacteria or yeast. As other techniques for introducing genetic information into host cells will be developed, the above-mentioned list of transfection methods is not considered to be exhaustive. The transfected cells are then cultured by conventional techniques to produce a mutant VWF-A1 molecule harboring at least one of the mutations previously described.

[0143] One skilled in the art understands that expression of desired protein products in prokaryotes is most often carried out in E. coli with vectors that contain constitutive or inducible promoters. Some non-limiting examples of bacterial cells for transformation include the bacterial cell line E. coli strains DH5a or MC1061/p3 (Invitrogen Corp., San Diego, Calif.), which can be transformed using standard procedures practiced in the art, and colonies can then be screened for the appropriate plasmid expression. Some E. coli expression vectors (also known in the art as fusion-vectors) are designed to add a number of amino acid residues, usually to the N-terminus of the expressed recombinant protein. Such fusion vectors can serve three functions: 1) to increase the solubility of the desired recombinant protein; 2) to increase expression of the recombinant protein of interest; and 3) to aid in recombinant protein purification by acting as a ligand in affinity purification. In some instances, vectors, which direct the expression of high levels of fusion protein products that are readily purified, may also be used. Some non-limiting examples of fusion expression vectors include pGEX, which fuse glutathione S-tranferase to desired protein; pcDNA 3.1V5-His AB & C (Invitrogen Corp, Carlsbad, Calif.) which fuse 6×-His to the recombinant proteins of interest; pMAL (New England Biolabs, MA) which fuse maltose E binding protein to the target recombinant protein; the E. coli expression vector pUR278 (Ruther et al., (1983) EMBO 12:1791), wherein the coding sequence may be ligated individually into the vector in frame with the lac Z coding region in order to generate a fusion protein; and pIN vectors (Inouye et al., (1985) Nucleic Acids Res. 13:3101-3109; Van Heeke et al., (1989) J. Biol. Chem. 24:5503-5509. Fusion proteins generated by the likes of the above-mentioned vectors are generally soluble and can be purified easily from lysed cells via adsorption and binding to matrix glutathione agarose beads subsequently followed by elution in the presence of free glutathione. For example, the pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target can be released from the GST moiety.

[0144] Other suitable cell lines, in addition to microorganisms such as bacteria (e.g., *E. coli* and *B. subtilis*) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing coding sequences for a mutant VWF-A1 molecule described above, may alternatively be used to produce the molecule of interest. Non-limiting examples include plant cell systems infected with recombinant virus expression vectors (for example, tobacco mosaic virus, TMV; cauliflower mosaic virus, CaMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing coding sequences for a mutant VWF-A1 molecule described above; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing coding sequences for a mutant VWF-A1 molecule described above; yeast (for example, *Sac*- *charomyces* sp., *Pichia* sp.) transformed with recombinant yeast expression vectors containing coding sequences for a mutant VWF-A1 molecule described above; or mammalian cell lines harboring a vector that contains coding sequences for a mutant VWF-A1 molecule described above.

[0145] Mammalian cells (such as BHK cells, VERO cells, CHO cells and the like) can also contain an expression vector (for example, one that harbors a nucleotide sequence encoding a mutant VWF-A1 molecule described above) for expression of a desired product. Expression vectors containing such a nucleic acid sequence linked to at least one regulatory sequence in a manner that allows expression of the nucleotide sequence in a host cell can be introduced via methods known in the art, as described above. To those skilled in the art, regulatory sequences are well known and can be selected to direct the expression of a protein of interest in an appropriate host cell as described in Goeddel, Gene Expression Technology (1990) Methods in Enzymology 185, Academic Press, San Diego, Calif.). Regulatory sequences can comprise the following: enhancers, promoters, polyadenylation signals, and other expression control elements. Practitioners in the art understand that designing an expression vector can depend on factors, such as the choice of host cell to be transfected and/or the type and/or amount of desired protein to be expressed.

[0146] Animal or mammalian host cells capable of harboring, expressing, and secreting large quantities of a mutant VWF-A1 molecule (described above) of interest into the culture medium for subsequent isolation and/or purification include, but are not limited to, Chinese hamster ovary cells (CHO), such as CHO-K1 (ATCC CCL-61), DG44 (Chasin et al., (1986) Som. Cell Molec. Genet, 12:555-556; Kolkekar et al., (1997) Biochemistry, 36:10901-10909; and WO 01/92337 A2), dihydrofolate reductase negative CHO cells (CHO/ dhfr-, Urlaub et al., (1980) Proc. Natl. Acad. Sci. U.S.A., 77:4216), and dp12.CHO cells (U.S. Pat. No. 5,721,121); monkey kidney CV1 cells transformed by SV40 (COS cells, COS-7, ATCC CRL-1651); human embryonic kidney cells (e.g., 293 cells, or 293 cells subcloned for growth in suspension culture, Graham et al., (1977) J. Gen. Virol., 36:59); baby hamster kidney cells (BHK, ATCC CCL-10); monkey kidney cells (CV1, ATCC CCL-70); African green monkey kidney cells (VERO-76, ATCC CRL-1587; VERO, ATCC CCL-81); mouse sertoli cells (TM4; Mather (1980) Biol. Reprod., 23:243-251); human cervical carcinoma cells (HELA, ATCC CCL-2); canine kidney cells (MDCK, ATCC CCL-34); human lung cells (W138, ATCC CCL-75); human hepatoma cells (HEP-G2, HB 8065); mouse mammary tumor cells (MMT 060562, ATCC CCL-51); buffalo rat liver cells (BRL 3A, ATCC CRL-1442); TRI cells (Mather (1982) Annals NY Acad. Sci., 383:44-68); MCR 5 cells; FS4 cells. A cell line transformed to produce a mutant VWF-A1 molecule described above can also be an immortalized mammalian cell line of lymphoid origin, which include but are not limited to, a myeloma, hybridoma, trioma or quadroma cell line. The cell line can also comprise a normal lymphoid cell, such as a B cell, which has been immortalized by transformation with a virus, such as the Epstein Barr virus (such as a myeloma cell line or a derivative thereof).

[0147] A host cell strain, which modulates the expression of the inserted sequences, or modifies and processes the nucleic acid in a specific fashion desired also may be chosen. Such modifications (for example, glycosylation and other post-translational modifications) and processing (for example, cleavage) of protein products may be important for the function of the protein. Different host cell strains have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. As such, appropriate host systems or cell lines can be chosen to ensure the correct modification and processing of the foreign protein expressed, such as a mutant VWF-A1 molecule described above. Thus, eukaryotic host cells possessing the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Non-limiting examples of mammalian host cells include 3T3, W138, BT483, Hs578T, CHO, VERY, BHK, Hela, COS, BT2O, T47D, NS0 (a murine myeloma cell line that does not endogenously produce any immunoglobulin chains), CRL7O3O, MDCK, 293, HTB2, and HsS78Bst cells.

[0148] For protein recovery, isolation and/or purification, the cell culture medium or cell lysate is centrifuged to remove particulate cells and cell debris. The desired polypeptide molecule (for example, a mutant VWF-A1 protein) is isolated or purified away from contaminating soluble proteins and polypeptides by suitable purification techniques. Non-limiting purification methods for proteins include: separation or fractionation on immunoaffinity or ion-exchange columns; ethanol precipitation; reverse phase HPLC; chromatography on a resin, such as silica, or cation exchange resin, e.g., DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, e.g., Sephadex G-75, Sepharose; protein A sepharose chromatography for removal of immunoglobulin contaminants; and the like. Other additives, such as protease inhibitors (e.g., PMSF or proteinase K) can be used to inhibit proteolytic degradation during purification. Purification procedures that can select for carbohydrates can also be used, e.g., ion-exchange soft gel chromatography, or HPLC using cation- or anion-exchange resins, in which the more acidic fraction(s) is/are collected.

[0149] In one embodiment, the protein isolated is a mutant human von Willebrand Factor A1 protein comprising one or more of the following mutations: 1263S>P, 1269D>N, 1274R>K, 1287R>M, 1302D>G, 1308R>H, 1313W>R, 1314V>I, 1326H>R, 1329I>L, 1330G>E, 1333D>A, 1344A>T, 1347V>I, 1350A>T, 1370S>G, 1379R>H, 1381A>T, 1385M>T 1391Q>P, 1394S>A, 1397F>L, 1421N>S, 1439V>L, 1442S>G, 1449Q>R, 1466P>A, 1469L>Q, 1472H>Q, 1473M>V, 1475Q>H, or 1479G>S. In another embodiment, the protein isolated is a mutant human von Willebrand Factor A1 protein comprising a 1263S>P, 1269D>N, 1274R>K, 1287R>M, 1302D>G, 1308R>H, 1313W>R, 1314V>I, 1326H>R, 1329I>L, 1330G>E, 1333D>A, 1344A>T, 1347V>I, 1350A>T, 1370S>G, 1379R>H, 1381A>T, 1385M>T, 1391Q>P, 1394S>A, 1397F>L, 1421N>S, 1439V>L, 1442S>G, 1449Q>R, 1466P>A, 1469L>Q, 1472H>Q, 1473M>V, 1475Q>H, or a 1479G>S mutation. In a particular embodiment, the protein isolated is a mutant human von Willebrand Factor A1 protein comprising a 1326H>R mutation.

[0150] The invention also provides a method for producing mutant von Willebrand Factor A1 protein that specifically binds human platelets. For example, an animal expressing a mutant von Willebrand Factor A1 (VWF-A1) protein can be provided, wherein the mutation causes the platelet binding specificity of the animal VWF-A1 protein to change to be specific for human platelets. VWF plasma protein containing the mutant A1 domain from an animal (such as from a mouse) can then be subsequently harvested. In one embodiment, the

animal von Willebrand Factor A1 protein contains at least one mutation at amino acid position 1263, 1269, 1274, 1287, 1302, 1308, 1313, 1314, 1326, 1329, 1330, 1333, 1344, 1347, 1350, 1370, 1379, 1381, 1385, 1391, 1394, 1397, 1421, 1439, 1442, 1449, 1466, 1469, 1472, 1473, 1475, or 1479. In another embodiment, the mutations occur in a murine VWF-A1 protein. In particular embodiments, the mutant murine von Willebrand Factor A1 protein comprises at least one mutation comprising 1263P>S, 1269N>D, 1274K>R, 1287M>R, 1302G>D, 1308H>R, 1313R>W, 1314I>V, 1326R>H, 1329L>I, 1330E>G, 1333A>D, 1344T>A, 1347I>V, 1350T>A, 1370G>S, 1379H>R, 1381T>A, 1385T>M 1391P>Q, 1394A>S, 1397L>F, 1421S>N, 1439L>V, 1442G>S, 1449R>Q, 1466A>P, 1469Q>L, 1472Q>H, 1473V>M, 1475H>Q, 1479S>G, or any combination thereof.

[0151] Pre-Screening Evaluation of Anti-Thrombotics and Associated Diseases

[0152] Diversity libraries, such as random or combinatorial peptide or non-peptide libraries can be screened for small molecules and compounds that specifically bind to a VWF-A1 protein. Many libraries are known in the art that can be used such as, e.g., chemically synthesized libraries, recombinant (e.g., phage display) libraries, and in vitro translation-based libraries.

[0153] Any screening technique known in the art can be used to screen for agonist (i.e., compounds that promote platelet adhesion) or antagonist molecules (such as anti-thrombotics) directed at a target of interest (e.g. VWF-A1). The present invention contemplates screens for small molecule ligands or ligand analogs and mimics, as well as screens for natural ligands that bind to and modulate VWF-A1 bind-ing to GPIb-alpha, such as via examining the degree of thrombus formation, platelet adhesion, coagulation, blood flow, vessel occlusion, or bleeding times. For example, natural products libraries can be screened using assays of the invention for molecules that modulate the activity of a molecule of interest, such as a VWF-A1 binding to GPIb-alpha.

[0154] Knowledge of the primary sequence of a molecule of interest, such as a VWF-A1, can provide an initial clue as to proteins that can modulate VWF-A1 binding to GPIbalpha. Identification and screening of modulators is further facilitated by determining structural features of the protein, e.g., using X-ray crystallography, neutron diffraction, nuclear magnetic resonance spectrometry, and other techniques for structure determination. These techniques provide for the rational design or identification of such modulators.

[0155] Test compounds, such as test modulators of VWF-A1 binding to GPIb-alpha, are screened from large libraries of synthetic or natural compounds. Numerous means are currently used for random and directed synthesis of saccharide, peptide, and nucleic acid based compounds. Synthetic compound libraries are commercially available from Maybridge Chemical Co. (Trevillet, Cornwall, UK), Comgenex (Princeton, N.J.), Brandon Associates (Merrimack, N.H.), and Microsource (New Milford, Conn.). A rare chemical library is available from Aldrich (Milwaukee, Wis.). Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available from e.g. Pan Laboratories (Bothell, Wash.) or MycoSearch (N.C.), or are readily producible. Additionally, natural and synthetically produced libraries and compounds are readily modified through conventional chemical, physical, and biochemical means (Blondelle et al., (1996) Tib Tech 14:60).

[0156] Methods for preparing libraries of molecules are well known in the art and many libraries are commercially available. Libraries of interest in the invention include peptide libraries, randomized oligonucleotide libraries, synthetic organic combinatorial libraries, and the like. Degenerate peptide libraries can be readily prepared in solution, in immobilized form as bacterial flagella peptide display libraries or as phage display libraries. Peptide ligands can be selected from combinatorial libraries of peptides containing at least one amino acid. Libraries can be synthesized of peptoids and non-peptide synthetic moieties. Such libraries can further be synthesized which contain non-peptide synthetic moieties, which are less subject to enzymatic degradation compared to their naturally-occurring counterparts. Libraries are also meant to include for example but are not limited to peptideon-plasmid libraries, polysome libraries, aptamer libraries, synthetic peptide libraries, synthetic small molecule libraries and chemical libraries. The libraries can also comprise cyclic carbon or heterocyclic structure and/or aromatic or polyaromatic structures substituted with one or more of the aboveidentified functional groups. Screening compound libraries listed above [also see EXAMPLE 6 and U.S. Patent Application Publication No. 2005/0009163, which is hereby incorporated by reference], in combination with dynamic force microscopy, a coagulation factor assay, a platelet adhesion assay, thrombus imaging, a bleeding time assay, aggregometry, review of real-time video of blood flow, a Doppler ultrasound vessel occlusion assay, or a combination of these assays (for example, those assays described in EXAMPLES 1-4) can be used to identify modulators of VWF-A1 binding to GPIb-alpha, wherein the compound abbreviates or increases off-rate (koff) binding kinetics between VWF-A1 and GPIb-alpha by at least two-fold (Lew et al., (2000) Curr. Med. Chem. 7(6):663-72; Werner et al., (2006) Brief Funct. Genomic Proteomic 5(1):32-6).

[0157] Small molecule combinatorial libraries may also be generated. A combinatorial library of small organic compounds is a collection of closely related analogs that differ from each other in one or more points of diversity and are synthesized by organic techniques using multi-step processes. Combinatorial libraries include a vast number of small organic compounds. One type of combinatorial library is prepared by means of parallel synthesis methods to produce a compound array. A compound array can be a collection of compounds identifiable by their spatial addresses in Cartesian coordinates and arranged such that each compound has a common molecular core and one or more variable structural diversity elements. The compounds in such a compound array are produced in parallel in separate reaction vessels, with each compound identified and tracked by its spatial address. Examples of parallel synthesis mixtures and parallel synthesis methods are provided in U.S. Ser. No. 08/177,497, filed Jan. 5, 1994 and its corresponding PCT published patent application WO95/18972, published Jul. 13, 1995 and U.S. Pat. No. 5,712,171 granted Jan. 27, 1998 and its corresponding PCT published patent application WO96/22529, which are hereby incorporated by reference.

[0158] Examples of chemically synthesized libraries are described in Fodor et al., (1991) *Science* 251:767-773; Houghten et al., (1991) *Nature* 354:84-86; Lam et al., (1991) *Nature* 354:82-84; Medynski, (1994) *BioTechnology* 12:709-710; Gallop et al., (1994) *J. Medicinal Chemistry* 37(9):1233-1251; Ohlmeyer et al., (1993) *Proc. Natl. Acad. Sci. USA* 90:10922-10926; Erb et al., (1994) *Proc. Natl. Acad. Sci.*

USA 91:11422-11426; Houghten et al., (1992) *Biotechniques* 13:412; Jayawickreme et al., (1994) *Proc. Natl. Acad. Sci.* USA 91:1614-1618; Salmon et al., (1993) *Proc. Natl. Acad. Sci. USA* 90:11708-11712; PCT Publication No. WO 93/20242, dated Oct. 14, 1993; and Brenner et al., (1992) *Proc. Natl. Acad. Sci. USA* 89:5381-5383.

[0159] Screening methods of the invention allowed for the identification of potential compounds that modulate VWF-A1 binding to GPIb-alpha. In some embodiments of the invention, the compound comprises one or more compounds having a structure depicted in Table 8 below.

[0160] Examples of phage display libraries are described in Scott et al., (1990) *Science* 249:386-390; Devlin et al., (1990) *Science*, 249:404-406; Christian, et al., (1992) *J. Mol. Biol.* 227:711-718; Lenstra, (1992) *J. Immunol. Meth.* 152:149-157; Kay et al., (1993) *Gene* 128:59-65; and PCT Publication No. WO 94/18318.

[0161] In vitro translation-based libraries include but are not limited to those described in PCT Publication No. WO 91/05058; and Mattheakis et al., (1994) *Proc. Natl. Acad. Sci. USA* 91:9022-9026.

[0162] In one non-limiting example, non-peptide libraries, such as a benzodiazepine library (see e.g., Bunin et al., (1994) *Proc. Natl. Acad. Sci. USA* 91:4708-4712), can be screened. Peptoid libraries, such as that described by Simon et al., (1992) *Proc. Natl. Acad. Sci. USA* 89:9367-9371, can also be used. Another example of a library that can be used, in which the amide functionalities in peptides have been permethylated to generate a chemically transformed combinatorial library, is described by Ostresh et al. (1994), *Proc. Natl. Acad. Sci. USA* 91:11138-11142.

[0163] Screening the libraries can be accomplished by any variety of commonly known methods. See, for example, the following references, which disclose screening of peptide libraries: Parmley and Smith, (1989) *Adv. Exp. Med. Biol.* 251:215-218; Scott and Smith, (1990) *Science* 249:386-390; Fowlkes et al., (1992) *Bio Techniques* 13:422-427; Oldenburg et al., (1992) *Proc. Natl. Acad. Sci. USA* 89:5393-5397; Yu et al., (1994) *Cell* 76:933-945; Staudt et al., (1988) *Science* 241:577-580; Bock et al., (1992) *Nature* 355:564-566; Tuerk et al., (1992) *Proc. Natl. Acad. Sci. USA* 89:6988-6992; Ellington et al., (1992) *Nature* 355:850-852; U.S. Pat. Nos. 5,096,815; 5,223,409; and 5,198,346, all to Ladner et al.; Rebar et al., (1993) *Science* 263:671-673; and PCT Pub. WO 94/18318.

[0164] The invention provides a method for identifying a compound that modulates VWF-A1 binding to GPIb-alpha. In one embodiment, the method can comprise providing an electronic library of test compounds stored on a computer (such as those libraries described above); providing atomic coordinates for at least 10 amino acid residues of the A1 domain of the VWF protein listed in Table 8, where the coordinates having a root mean square deviation therefrom, with respect to at least 50% of the C α atoms, of not greater than about 2.5 Å, in a computer readable format; converting the atomic coordinates into electrical signals readable by a computer processor to generate a three dimensional model of the VWF-A1 domain; performing a data processing method, wherein electronic test compounds from the library are superimposed upon the three dimensional model of the A1 domain of VWF; and determining which test compound fits within the binding pocket of the three dimensional model of the VWF-A1 protein. Thus, compounds can be identified that would modulate the binding of VWF-A1 to GPIb-alpha.

[0165] In another embodiment, the method can comprise providing an electronic library of test compounds stored on a computer; and providing atomic coordinates listed in Table 8 in a computer readable format for at least 10, 15, 20, 25, 30, 35, or 40 amino acid residues of the A1 domain of the VWF protein, wherein the residues can comprise 2 or more of the following residues: Pro1391, Arg1392, Arg1395, Val1398, Arg1399, Gln1402, Lys1406, Lys1423, Gln1424, Leu1427, Lys1430, or Glu1431; converting the atomic coordinates into electrical signals readable by a computer processor to generate a three dimensional model of the A1 domain of the VWF protein; performing a data processing method, wherein electronic test compounds from the library are superimposed upon the three dimensional model of the A1 domain of the VWF protein; and determining which test compound fits within the binding pocket of the three dimensional model of the VWF-A1 protein. Thus, compounds can be identified that would modulate the binding of VWF-A1 to GPIb-alpha.

[0166] In a further embodiment, the method can comprise providing an electronic library of test compounds stored on a computer (such as those libraries described above); providing atomic coordinates for at least 10 amino acid residues of the Botrocetin-VWF-A1 complex listed in accession entry 11JK (http://www.rcsb.org/pdb/explore.do?structureId=11JK),

where coordinates having a root mean square deviation therefrom, with respect to at least 50% of the C α atoms, not more than about 3 Å, in a computer readable format; converting the atomic coordinates into electrical signals readable by a computer processor to generate a three dimensional model of the Botrocetin-VWF-A1 complex; performing a data processing method, wherein electronic test compounds from the library are superimposed upon Botrocetin within the three dimensional model of the Botrocetin-VWF-A1 complex; and determining which test compound fits within the binding pocket of the three dimensional model of the VWF-A1 protein and best overlays the three-dimensional model generated above. Thus, compounds can be identified that would modulate the binding of VWF-A1 to GPIb-alpha.

[0167] In other embodiments, the method can comprise providing an electronic library of test compounds stored on a computer; providing atomic coordinates listed in accession entry 1IJK (http://www.rcsb.org/pdb/explore. do?structureId=1IJK) in a computer readable format for at least 10, 15, 20, 25, 30, 35, or 40 amino acid residues of the Botrocetin-murine VWF-A1 complex, wherein the residues comprise 2 or more of the following residues: Pro 1391, Arg1392, Arg1395, Val1398, Arg1399, Gln1402, Lys1406, Lys1423, Gln1424, Leu1427, Lys1430, or Glu1431; converting the atomic coordinates into electrical signals readable by a computer processor to generate a three dimensional model of the Botrocetin-VWF-A1 complex; performing a data processing method, wherein electronic test compounds from the library are superimposed upon Botrocetin within the three dimensional model of the Botrocetin-VWF-A1 complex; and determining which test compound fits within the binding pocket of the three dimensional model of the VWF-A1 protein and best overlays the three-dimensional model generated above. Thus, compounds can be identified that would modulate the binding of VWF-A1 to GPIb-alpha.

[0168] The invention also provides for a compound identified by the method described above. In one embodiment, the compound inhibits thrombosis formation or promotes platelet adhesion.

[0169] The present invention provides methods for evaluating potential anti-thrombotic reagents in pre-clinical testing using a non-human transgenic animal (for example, nonhuman animals include, but are not limited to, vertebrates such as ovines, bovines, rodents, non-human primates, porcines, caprines, equines, ruminants, lagomorphs, canines, felines, aves, and the like). There are three main classes of antithrombotic drugs that can be screened using the transgenic mouse model of the invention: Anticoagulant drugs (such as Heparins; Vitamin K antagonists, which are currently the only anticoagulants that can be administered orally; and direct thrombin inhibitors), Antiplatelet drugs (such as cyclooxygenase inhibitors like aspirin; phosphodiesterase inhibitors like ticlopidine (Ticlid); adenosine diphosphate receptor inhibitors like clopidogrel (Plavix); tirofiban (Aggrastat); adenosine reuptake inhibitors, and inhibitors of integrins on platelets (for example, alpha IIb Beta3) like eptifibatide (Integrilin)), and Thrombolytic or fibrinolytic drugs (such as t-PA (alteplase Activase); reteplase (Retavase); urokinase (Abbokinase); streptokinase (Kabikinase, Streptase); tenectaplase; lanoteplase; and anistreplase (Eminase)).

[0170] The invention provides an in vivo model to test the efficacy of potential anti-thrombotic drugs against human platelets prior to FDA approval. To date, in vitro models of thrombosis do not accurately recapitulate the hemodynamic conditions, cell-cell interactions, or cell-protein interactions that occur at sites of vascular injury in a living animal. Thus, anti-thrombotics can be identified and their potential therapeutic effects can be assessed for treatment of abnormal thrombotic events associated with atherothrombotic arterial diseases and venous thrombotic diseases (such as abnormal bleeding and/or abnormal clotting).

[0171] Atherothrombotic arterial diseases can include, but is not limited to, coronary artery disease, (for example, acute myocardial infarction, acute coronary syndromes (such as unstable angina pectoris) and stable angina pectoris); mesenteric ischemia, "abdominal angina," and mesenteric infarction; cerebral vascular disease, including acute stroke and transient ischemic attack; mesenteric arterial disease; as well as peripheral arterial disease, including acute peripheral arterial occlusion and intermittent claudication. Anti-thrombotic compounds identified by the pre-clinical testing method of the present invention can also be useful for the treatment of coronary artery disease (which includes, but is not limited to anti-thrombotic therapy during coronary angioplasty, antithrombotic therapy during cardiopulmonary bypass, and limiting of platelet activation during ischemia reperfusion) as well as venous thrombotic diseases (which include, but are not limited to deep venous thrombosis and pulmonary thromboembolism). Anti-thrombotic compounds identified by the pre-clinical testing method of the present invention can also be useful in anti-thrombotic therapy for pulmonary hypertension.

[0172] The invention provides a method for testing a compound that modulates VWF-A1 binding to GPIb-alpha. The method can entail obtaining or synthesizing a compound identified in the screens previously described above; contacting VWF-A1 with the compound under a condition suitable for GPIb-alpha-VWF-A1 binding; and determining whether the compound can modulate GPIb-alpha-VWF-A1 binding using a diagnostic assay. In one embodiment, contacting can comprises perfusing platelets into a flow chamber at a shear flow rate of at least 100 s⁻¹, wherein mutant murine VWF-A1

protein is immobilized on a bottom surface of the chamber. In another embodiment, contacting can comprise perfusing platelets into a transgenic non-human, for example the transgenic mouse described in EXAMPLE 3. In some embodiments, of the invention, contacting first occurs in vitro by way of the flow chamber described above, subsequently followed by in vivo testing of the compound's efficiency to modulate GPIb-alpha binding to VWF-A1 after the compound was determined to have a purported effect in modulating such binding in vitro. Thus, the invention provides a great advantage of being able to test directly compounds that target human platelets in an in vivo system. The transgenic mouse (which, for example, can harbor the 1326R>H mutation in the A1 domain of VWF of SEQ ID NO: 5) displays a bleeding phenotype, thus serves as a model for screening potential anti-thrombotic compounds useful for humans when the mouse is perfused with human platelets. Since the 1326R>H mutation in VWF-A1 in the mouse model (SEQ ID NO: 5) has been shown to support human platelet binding and it corresponds to the His amino acid at the same position in human VWF-A1 (as well as in canines, chimpanzees, rat, porcine, felines, equines, bovine, and the like (Jenkins et al., (1998) Blood 91(6): 2032-44)), the test compounds screened using this mouse model (while subject to perfusion with platelets from human, dog, cat, or other relevant organism) will be applicable to multiple species.

[0173] After perfusion with human platelets, a test compound (such as a purported anti-thrombotic that would minimize blood clotting or a compound that could promote platelet adhesion) can be administered to the animal subsequent to vessel injury in order to determine whether blood clotting is minimized or if it is enhanced. In one embodiment, the platelets infused are human platelets while in other embodiments the platelets infused are not murine platelets. In some embodiments, the compound can slow the on-rate, and/or increase the off-rate (koff) binding kinetics, and/or reduce bond strength of the interaction between VWF-A1 and GPIbalpha by at least two-fold, thus resulting in a decreased lifetime of the bond(s). Such compounds could reduce thrombosis formation. In other embodiments, the compound can abbreviate off-rate (k_{off}) binding kinetics between VWF-A1 and GPIb-alpha by at least two-fold, thus resulting in a prolongation in the lifetime of the bond(s). Such compounds could promote platelet adhesion due to the compound stabilizing an interaction between VWF-A1 and GPIb-alpha. To assess binding efficiency between VWF-A1 and GPIb-alpha, binding kinetics can be determined by measuring translocation velocity, tethering frequency, and bond strength (Fukuda, K., et al., (2005) Nat. Struct. Mol. Biol. 12:152-159; Doggett, et al., (2003) Blood 102(10): 152-60; Doggett, T. A. et al. (2002) Biophys. J. 83, 194-205; Schmidtke and Diamond (2000) J Cell Bio 149(3): 719-29; Mody et al., (2005) Biophys. J. 88: 1432-43, all of which are incorporated by reference in their entirety).

[0174] The compound identified and tested using the methods described above can be an anti-platelet drug. In one embodiment, the anti-platelet drug can be a cyclooxygenase inhibitor, a phosphodiesterase inhibitor, an adenosine diphosphate receptor inhibitor, a PI3K inhibitor, an adenosine reuptake inhibitors, thrombin receptor inhibitor or inhibitor of any intracellular signaling pathway in platelets, an alphaIIb beta3 inhibitor, an alpha2 beta1 inhibitor, a glycoprotein V inhibitor, a glycoprotein VI inhibitor, a PECAM-1 inhibitor or any adhesion molecule and/or activation pathway critical for human platelet function

[0175] The diagnostic assay used in this method for testing a compound that modulates VWF-A1 binding to GPIb-alpha can assess whether an abnormal thrombotic event occurred in the subject. An abnormal thrombotic event can comprise abnormal bleeding, abnormal clotting, death, or a combination thereof. The assay can comprise dynamic force microscopy, a coagulation factor assay, a platelet adhesion assay, thrombus imaging, a bleeding time assay, aggregometry, review of real-time video of blood flow, a Doppler ultrasound vessel occlusion assay, or a combination thereof.

[0176] After perfusion with a purported anti-thrombotic or a compound that could promote platelet adhesion, a labeled agent can subsequently be perfused either into the flow chamber or to the animal. Such an agent would enable the visualization of either the presence or absence of a thrombus. In one embodiment, the labeled agent can comprise one or more of a nanoparticle, a fluorophore, a quantum dot, a microcrystal, a radiolabel, a dye, a gold biolabel, an antibody, or a small molecule ligand. In some embodiments, the agent can target a platelet receptor, a VWF protein, or a portion thereof.

[0177] Methods for Assessing Thrombotic Events In Vivo [0178] The invention provides methods for detecting an internal vascular injury site (occult bleeding) in a subject. This could be useful in ER settings or on the battlefield in order to quickly identify sites of internal bleeding. For instance, the method can entail: administering to a subject a targeted molecular imaging agent, wherein the molecule circulates for an effective period of time in order to bind to the injury site within the subject; tracking a deposition of the labeled thrombosis-indicating-molecule in the subject; and identifying the site of a thrombus formation in the subject by imaging the labeled targeted molecular imaging agent. Thus, the deposition of the targeted molecular imaging agent at the internal vascular injury site can be indicative of internal bleeding within a subject. For example, a targeted molecular imaging agent can recognize constituents of thrombi that comprise a lipid, a protein, a cellular molecule, or a combination thereof. In one embodiment, the targeted molecular imaging agent is administered by subcutaneous, intra-muscular, intra-peritoneal, or intravenous injection; infusion; by oral, nasal, or topical delivery; or a combination of the listed routes of administration. In other embodiments, the targeted molecular imaging agent has a $T_{1/2}$ of at least 30 min. In some embodiments, the targeted molecular imaging agent can comprise an antibody, peptide, or Fab fragment directed to a platelet receptor, a VWF protein, or a portion thereof. In particular embodiments, the targeted molecular imaging agent can comprise a VWF-A1 or GPIb-alpha receptor trap. For example, a receptor trap is a decoy receptor that can comprise fusions between two distinct receptor components and the Fc region of an antibody molecule, which can result in the generation of a molecule with an increased affinity over single component reagents. This technology is available from Regeneron (Tarrytown, N.Y.) and is described in Wachsberger et al., (2007) Int J Radiat Oncol Biol Phys. 67(5):1526-37; Holash et al., (2002) Proc Natl Acad Sci U S A. 2002 99(17):11393-8; Davis et al., (1996) Cell. 87(7):1161-9; U.S. Pat. No. 7,087,411; and in United States Publication Applications 2004/0014667, 2005/0175610, 2005/0260203, 2006/ 0030529, 2006/0058234, which are all hereby incorporated by reference in their entirety.

[0179] To aid in the visualization of a site of thrombus formation, the targeted molecular imaging agent can further comprise a label. In one embodiment, the labeled thrombosisindicating-molecule comprises a nanoparticle, a fluorophore, a quantum dot, a microcrystal, a radiolabel, a dye, a gold biolabel, an antibody, a peptide, a small molecule ligand, or a combination thereof. A fluorophore, for example green fluorescent protein, (such as GFP, RFP, YFP and the like; see Johnson and Johnson, (2007) ACS Chem. Biol. 2(1):31-8) can be used as a biomarker. A quantum dot is a semiconductor nanocrystal, that can be as small as 2 to 10 nm or can 15-20 nm (for example, Q-dot nanocrystals; also see Kaji et al., (2007) Anal Sci. 23(1):21-4). Quantum dot fluorescence can be induced by exposure to ultraviolet light. Both a fluorescent protein and a quantum dot can be obtained commercially (for example, Molecular Probes-Invitrogen, Carlsbad, Calif. or Evident Technologies, Troy N.Y.). A fluorophore can also be generated in the laboratory according to molecular biology methods practiced in the art. A radiolabel is a radioactive isotope that can be used as a tracer. Non-limiting examples of radiolabels include: Technetium-99m, Iodine-123 and 131, Thallium-201, Gallium-67, Fluorine-18, -19, Indium-111, Xenon-I 33, and Krypton-81m. Radiolabels can be obtained commercially, for example, from SRI International (Menlo Park, Calif.). In one embodiment, the nanoparticle can comprise a perfluorocarbon (PFC). Non-limiting examples of perfluorocarbons include perfluorobutane, perfluorohexane, perfluorooctane, perfluorodecalin, perfluoromethyldecalin, and perfluoroperhydrophenanthrene. These can be synthesized according to the method described in EXAMPLE 5 or according to Partlow et al. (FASEB J (2007) February 6 on-line publication, fj.06-6505com). The perfluorocarbon molecules can also be obtained commercially (F2 Chemicals Ltd.; Lancashire, UK). In another embodiment, the PFC nanoparticle can be coupled to a platelet receptor antibody (such as platelet receptor alpha-IIb beta₃). In some embodiments, imaging can comprise a PET scan, a CT scan, an MRI, an IR scan, an ultrasound, nuclear imaging, or a combination thereof.

[0180] Since the usefulness of the method pertains to the swiftness in identifying sites of internal bleeding (for example in an ER setting or on the battlefield), the subject can be further administered a compound aid in the cessation of such bleeding. In one embodiment, the subject is further administered a thrombotic compound (for example, a compound identified in the screens described above or a compound comprising a structure depicted in Table 8). In some embodiments, the compound can abbreviate off-rate (k_{off}) binding kinetics, and/or slow the on-rate, and/or reduce the bond strength between VWF-A1 and GPIb-alpha by at least two-fold.

[0181] The invention also provides a method to test contrast agents for imaging of human platelets at sites of thrombosis. For instance, one could test the ability of nanoparticle contrast agents targeted to human platelets to identify areas of thrombosis or occult bleeding. In some embodiments, the prevention or reduction of thrombus formation at site of injury upon administration of a compound can be visually examined via tracking the localization of labeled platelets (such as with high resolution in vivo microscopy or MRI). In further embodiments, the platelets can be labeled with a nanoparticle, fluorophore, quantum dot, microcrystal, radiolabel, dye, or gold biolabel. The prevention or reduction of thrombus formation also can be readily determined by methods known to one skilled in the art, which include but are not

limited to aggregometry, review of real-time video of blood flow in the animal, and determination of vessel occlusion, as well as by the examples provided below.

[0182] Additionally, the transgenic mouse's bleeding phenotype can be exploited to screen potential prothrombotic compounds, in addition to anti-thrombotics discussed above. A test compound (such as an alleged thrombotic that would induce and/or stimulate blood clotting) can be administered to the animal perfused with human platelets subsequent to vessel injury in order to determine whether blood clotting occurs. In some embodiments, the induction or stimulation of thrombus formation at site of injury upon administration of a compound can be visually examined via tracking the localization of labeled platelets (such as with high resolution in vivo microscopy or MRI). In further embodiments, the platelets can be labeled with a nanoparticle, fluorophore, quantum dot, microcrystal, radiolabel, dye, or gold biolabel. The prevention or reduction of thrombus formation also can be readily determined by methods known to one skilled in the art, which include but are not limited to aggregometry, exvivo flow chamber studies, review of real-time video of blood flow in the animal, and determination of vessel occlusion.

[0183] One of ordinary skill in the art can assess that the VWF-A1 mutants of this invention have the required properties of competitive binding to the GPIb platelet receptor in a manner that competes with the native VWF. Suitable assays are set forth in detail in the examples below, including ristocetin-induced platelet aggregation, platelet aggregation induced by ADP, thrombin, collagen, and platelet adhesion in a flow model.

[0184] In one embodiment of the invention, the non-human transgenic animal that expresses a modified A1 domain of the VWF sequence (for example, an amino acid residue substitution at a position involved with binding to GPIb alpha, such as, but not limited to, positions 1263, 1269, 1274, 1287, 1302, 1308, 1313, 1314, 1326, 1329, 1330, 1333, 1344, 1347, 1350, 1370, 1379, 1381, 1385 1391, 1394, 1397, 1421, 1439, 1442, 1449, 1466, 1469, 1472, 1473, 1475, 1479) can be used to validate new devices aimed at determining the effectiveness of antithrombotics in humans.

[0185] The non-human transgenic animal may also be used for determining the effectiveness of gene therapy (for example, assessing whether VWF-A1 protein targeting and protein expression was successful). Gene therapy refers to the insertion of genes into an individual's cells and tissues to treat a disease. For example, in a hereditary disease, a defective mutant allele is replaced with a functional one. The efficiency of VWF-A1 gene transfer by nonviral methodologies (i.e. lipofection) or viral methodologies (such as adenovirus infection described in U.S. Pat. No. 6,927,278 or United States Application publication No. 2005/0169899) can be assessed using the non-transgenic mouse model described above via examining whether replacement of a portion or the whole VWF gene in a subject (such as a mutant VWF mouse of the invention) affects clot formation in vivo. Results obtained from such a mouse model can then be correlated with the likely effect to be observed in human subjects. For gene therapy reviews, see Zuckerbraun et al., (2002) Arch Surg. 137(7):854-61; Melo et al., (2004) Arterioscler Thromb Vasc Biol. 24(10): 1761-74; and Dulak et al., (2006) Cell Biochem Biophys. 44(1):31-42, which are incorporated by reference in their entirety.

[0186] The invention provides a method for testing the efficiency of gene therapy in regulating thrombus formation

in a subject. It also provides a method to test gene therapies directed at correcting genetic mutations associated with von Willebrand disease. The method can comprise the following steps: introducing a vector into the non-human transgenic animal of the invention described above, wherein the vector comprises a nucleic acid encoding a platelet receptor polypeptide, a platelet ligand polypeptide, or a VWF polypeptide, or a portion thereof; allowing sufficient time for expression of the polypeptide; perfusing platelets into the non-human transgenic animal that has one or more mutations in the VWF-A1 domain as previously described under a condition suitable for GPIb-alpha-VWF-A1 protein binding; and identifying an occurrence of a thrombotic event in the animal. For example, the vector introduced into the subject can be an adenovirus or DNA vector described in earlier sections utilizing methods discussed previously (see also Zuckerbraun et al., (2002) Arch Surg. 137(7):854-61; Melo et al., (2004) Arterioscler Thromb Vasc Biol. 24(10): 1761-74; and Dulak et al., (2006) Cell Biochem Biophys. 44(1):31-42). For example, the non-human animal that has one or more mutations in the VWF-A1 domain can be the murine model homozygous for the VWF-A1^{1326R>H} mutation.

[0187] In one embodiment of the invention, the platelets can be human platelets. In particular, the platelets are not murine platelets. In some embodiments, the thrombotic event comprises blood clotting, abnormal bleeding, abnormal clotting, death, or a combination thereof. Such an event can be identified using dynamic force microscopy, a coagulation factor assay, a platelet adhesion assay, thrombus imaging, a bleeding time assay, aggregometry, review of real-time video of blood flow, a Doppler ultrasound vessel occlusion assay, or a combination of the techniques previously described. In a further embodiment, perfusing platelets can be followed by a perfusion of a labeled agent. Non-limiting examples of a labeled agent comprises one or more of a nanoparticle, a fluorophore, a quantum dot, a micro crystal, a radiolabel, a dye, a gold biolabel, an antibody, or a small molecule ligand. In some embodiments, the agent targets a platelet receptor, a VWF protein, or a portion thereof.

[0188] The invention also provides a method to correlate results obtained with an in vitro assay designed to measure the effects of antithrombotics or biomarkers of platelet activation in patients. For example, a biomarker is an indicator of a particular disease state or a particular state of an organism, such as when the subject experiences vascular vessel wall injury. Upon injury to the vessel wall and subsequent damage to the endothelial lining, exposure of the subendothelial matrix to blood flow results in deposition of platelets at the site of injury via binding to the collagen with the surface collagen-specific glycoprotein Ia/IIa receptor. This adhesion is strengthened further by the large multimeric circulating protein VWF, which forms links between the platelet glycoprotein Ib/IX/V and collagen fibrils. The platelets are then activated and release the contents of their granules into the plasma, in turn activating other platelets. For example, Glycoprotein VI (GP6) is a 58-kD platelet membrane glycoprotein that plays a crucial role in the collagen-induced activation and aggregation of platelets. The shedding of GP6 can act as a marker representing that a person is at risk of myocardial infarction. In one embodiment, platelets obtained from a subject determined to have an elevated biomarker level (for example, GP6) can be infused into the non-human transgenic animal described above according to previously described methods, wherein the occurrence of a thrombotic event can be evaluated. In another embodiment, platelets obtained from a subject undergoing an anti-thrombotic treatment can be infused into the non-human transgenic animal described above according to previously described methods, wherein the occurrence of a thrombotic event can then be evaluated.

[0189] Method of Screening and Treating Subjects with Abnormalities of Platelet Function

[0190] The invention provides methods for treating subject with platelet function abnormalities, such as Von Willebrand disease (VWD), Bernard-Soulier syndrome, May-Hegglin anomaly, Chediak Higashi syndrome, and the like. In addition, the invention also provides methods for detecting abnormal platelet function or morphology in a subject.

[0191] VWD is a common hereditary coagulation abnormality that arises from a quantitative or qualitative deficiency of VWF). VWD affects humans, in addition to dogs and cats. There are three types of VWD: type 1, type 2, and type 3. Type 1 VWD is a quantitative defect, wherein decreased levels of VWF are detected but subjects may not have clearly impaired clotting, Type 2 VWD is a qualitative defect, wherein subjects have normal VWF levels but VWF multimers are structurally abnormal, or subgroups of large or small multimers are absent. Four subtypes exist: Type 2A, Type 2B, Type 2M, and Type 2N. Type 3 is rare and the most severe form of VWD (homozygous for the defective gene). (Braunwald et al., *Harrison's Principle of Internal Medicine*, 15 th ed., (Chapter 116) 2001, McGraw Hill, Columbus, Ohio).

[0192] Bernard-Soulier Syndrome is a rare disorder caused by a deficiency of the surface platelet receptor GPIb alpha. As a result, platelets fail to stick and clump together at the site of the injury. Functional abnormalities have also been observed in some hereditary platelet disorders wherein the platelets are of abnormal size or shape, such as in May-Hegglin Anomaly and Chediak Higashi syndrome. (Braunwald et al., *Harrison's Principle of Internal Medicine*, 15th ed. (Chapter 116) 2001, McGraw Hill, Columbus, Ohio).

[0193] According to the invention, abnormal platelet function or morphology can be screened in a subject. The method can comprise the following steps: affixing a VWF-A1 molecule to a bottom surface of a flow chamber, or chip (such as a BIAcore chip), wherein the VWF-A1 molecule comprises at least one mutation at a position selected from the group consisting of 1263>S, 1269>D, 1274>R, 1287>R, 1302>D, 1308>R, 1313R>W, 1314>V, 1326>H, 1329>I, 1330>G, 1333>D, 1344>A, 1347>V, 1350>A, 1370>S, 1379>R, 1381>A, 1385>M 1391>Q, 1394>S, 1397>F, 1421>N, 1439>V, 1442>S, 1449>Q, 1466>P, 1469>L, 1472>H, 1473>M, 1475>Q, 1479>G, and any combination thereof, where the position corresponds to an amino acid position of human von Willebrand Factor A1 protein shown in SEQ ID NO: 6; perfusing a volume of whole blood or plasma over the surface-immobilized VWF-A1 molecule complexed to the murine mutant VWF-A1 protein in the flow chamber at a shear flow rate of at least 100 s^{-1} ; perfusing a targeted molecular imaging agent into the flow chamber at a shear flow rate of at least 100 s⁻¹; determining whether platelets bind to the surface-immobilized-mutant-murine-VWF-A1 using a diagnostic assay; and comparing diagnostic assay results to a standard control, wherein the standard control sample was subjected to the steps described above. For example, the VWF molecule can be an antibody, a peptide, or a Fab fragment directed to a VWF polypeptide or a portion thereof. In one

embodiment, the molecule can comprise a native or mutant VWF-A1 molecule, a purified native VWF or a mutant plasma VWF.

[0194] In one embodiment, whole blood or plasma sample can be perfused into the chamber or onto the chip, wherein the sample is obtained from the subject. For example, approximately 50 μ l of whole blood can be perfused according to the method, or about 100 μ l to about 150 μ l of plasma can be perfused. As a standard control, the steps of the method described above can be performed using lyophilized non-self platelets, and can be subsequently compared to results obtained using the subjects' platelets. Here, the subject can be a human, a canine, a feline, a murine, a porcine, an equine, or a bovine.

[0195] In one embodiment, the targeted molecular imaging agent can comprise a nanoparticle, a fluorophore, a quantum dot, a microcrystal, a radiolabel, a dye, a gold biolabel, an antibody, a peptide, a small molecule ligand, or a combination thereof. In another embodiment, the targeted molecular imaging agent can bind to a platelet receptor, a platelet ligand, or any region of a VWF protein or a portion thereof. In a further embodiment, the targeted molecular imaging agent can comprise horseradish peroxidase (HRP) coupled to an antibody directed at VWF-A1. Following binding to VWF-A1, a reaction with diaminobenzidine (DAB) can be performed where DAB is reduced by HRP to produce a brown precipitate at the site of binding. This technique allows for enzymatic, calorimetric detection of binding that can be visualized by transmitted light microscopy. For example, if the antibody is directed at a platelet receptor, and calorimetric detection represents whether the antibody bound to the platelet-VWF-A1 complex, the absence of color would denote the lack of a complex formation, thus suggesting that platelets were unable to bind to VWF-A1. The lack of platelet binding could suggest functional defects in the subject's platelets. In one embodiment, platelets bound to VWF-A1 are less than about 500 cells/mm^2 .

[0196] The normal platelet morphology is discoid with some spherical shaping. In one embodiment of the invention, the platelets obtained from the subject and that are subsequently screened are substantially spherical in shape. To further analyze platelet morphology, gross platelet histology can be assessed via light microscopy or electron microscopy. In another embodiment, platelets having an abnormal morphology are greater than about 2 μ m in diameter. (Ross M H, *Histology: A text and atlas 3rd edition*, Williams and Wilkins, 1995: Chapter 9). Various assays can be used to assess whether platelet function is normal, such as a platelet adhesion assay, fluorescence imaging, a chromogenic indication, microscopy morphology analysis, or those listed in *Harrison's Principle of Internal Medicine*, 15th ed. ((Chapter 116) 2001, McGraw Hill, Columbus, Ohio), which are hereby incorporated by reference.

[0197] The invention also provides a method of treating abnormalities in clotting due to a defect in the interaction between GPIb alpha and the A1 domain of VWF as occurs in certain types of von Willebrand Disease (VWD), where the method entails administering to the subject an effective amount of a compound that promotes platelet adhesion in the subject, wherein the compound abbreviates off-rate (k_{off}) and/ or enhances the on-rate binding kinetics, and or strengthens the bond between VWF-A1 and GPIb-alpha by at least two-fold. Thus, administration of the compound increases blood coagulation in the subject, for example, subjects diagnosed

with VWD. In one embodiment, VWD is Type 1 or Type 2. In another embodiment, the compound is one identified by the screening methods described above. Coagulation can be measured by a coagulation factor assay, an ex-vivo flow chamber assay, a platelet adhesion [see EXAMPLES section] or those assays listed in *Harrison's Principle of Internal Medicine*, 15th ed. ((Chapter 116) 2001, McGraw Hill, Columbus, Ohio).

[0198] Therapeutic Formulations

[0199] Therapeutic compounds according to this invention are formulated in pharmaceutical compositions containing the compound and a pharmaceutically acceptable carrier. The pharmaceutical composition may contain other components so long as the other components do not reduce the effectiveness of the compound according to this invention so much that the therapy is negated. Some other components may have independent therapeutic effects. Pharmaceutically acceptable carriers are well known, and one skilled in the pharmaceutical art can easily select carriers suitable for particular routes of administration (see, e.g., *Remington's Pharmaceutical Sciences*, Mack Publishing Co., Easton, Pa., 1985).

[0200] The pharmaceutical compositions containing any of the compounds of this invention may be administered by a topical, oral, rectal, parenteral (such as subcutaneously, intramuscularly, intravenously, intraperitoneally, intrapleurally, intravesicularly or intrathecally), or nasal route, as compelled by the choice of drug and disease. One skilled in the pharmaceutical art can discern the optimal route of administration.

[0201] These compounds may also be applied topically or locally, in liposomes, solutions, gels, ointments, biodegradable microcapsules, or impregnated bandages. Compositions or dosage forms for topical application may include suspensions, dusting powder, solutions, lotions, suppositories, sprays, aerosols, biodegradable polymers, ointments, creams, gels, impregnated bandages and dressings, liposomes, and artificial skin.

[0202] Pharmaceutical carriers utilized by one skilled in the art which make up the foregoing compositions include petrolatum, polyethylene glycol, alginates, carboxymethylcellulose, methylcellulose, agarose, pectins, gelatins, collagen, vegetable oils, phospholipids, stearic acid, stearyl alcohol, polysorbate, mineral oils, polylactate, polyglycolate, polyanhydrides, polyvinylpyrrolidone, and the like.

[0203] Therapy dose and duration will depend on a variety of factors, such as the disease type, patient age, therapeutic index of the drugs, patient weight, and tolerance of toxicity. Initial dose levels will be selected based on their ability to achieve ambient concentrations shown to be effective in in vitro models (for example, a dose level used to determine therapeutic index), in vivo models, and in clinical trials. The skilled clinician using standard pharmacological approaches can determine the dose of a particular drug and duration of therapy for a particular patient in view of the above stated factors. The response to treatment can be monitored by analysis of body fluid or blood levels of the compound and the skilled clinician will adjust the dose and duration of therapy based on the response to treatment revealed by these measurements.

EXAMPLES

[0204] A number of Examples are provided below to facilitate a more complete understanding of the present invention.

However, the scope of the invention is not limited to specific embodiments disclosed in these Examples, which are for purposes of illustration only.

[0205] Biophysical and molecular approaches are essential for understanding the structure: function relationship between a receptor and its ligand. Thus, the ability to study such interactions in an appropriate physiological and/or pathological setting is desirable. To do so, one requires an animal model that is amenable to genetic manipulation and has receptorligand interactions that closely resemble those found in humans. Thrombosis models in hamsters and guinea pigs have proven useful in pharmacological studies, but a mouse model would prove to be more beneficial based on the ability to insert or delete genes of interest, accessibility of tissues for study, and cost and ease of handling (49, 50). Regarding GPIb alpha-VWF interactions, two groups have significantly advanced the understanding of the importance of these interactions in mediating thrombosis by generating mice deficient in these proteins (51, 52). Yet, no information regarding the role of the biophysical properties of the GPIb alpha-VWF-A 1 in regulating the processes of thrombosis and hemostasis will be obtained. Thus, the next logical approach is to generate animals with mutations within the VWF-A1 domain that change its kinetic properties in a desired manner and to correlate these biophysical alterations with the ability of these mice to maintain adequate hemostasis and to develop thrombi in response to vascular injury. Such information will be useful in designing therapies that reduce or enhance these processes.

Example 1

VWF Characterization

[0206] VWF Microsphere Studies

[0207] The association and dissociation kinetics of the GPIb alpha-VWF-A1 bond and the impact of fluid shear and particle size on these parameters can be determined by measuring the frequency and duration of transient adhesive events, known as transient tethers, that represent the smallest unit of interaction observable in a parallel-platelet flow chamber.

[0208] Production of recombinant VWF-A1 protein and coating of microspheres. The generation of recombinant VWF-A1 protein (residues 1238 to 1472 of the mature, recombinant VWF) and its subsequent coupling to microspheres is performed as previously described (Doggett, T. A. et al. (2002) *Biophys. J.* 83, 194-205). Proper size, purity, and disulfide bonding of all proteins is assessed by Coomasie-blue staining of SDS-PAGE gels run under reducing and non-reducing conditions. Mass spectrometry is also employed to evaluate size and disulfide bonding pattern.

[0209] The resulting recombinant proteins are bound to polystyrene microspheres (goat anti-mouse IgG (FC); Bangs Lab, Inc., Fishers, Ind.) that were initially coated with a saturating concentration of mouse anti-6-HIS antibody as previously described in our publications. We have found this coating method to be superior to direct covalent coupling of the VWF-A1 to the beads as it prevents significant loss in protein function. Estimation of the amount of VWF-A1 bound to the beads is determined using a monoclonal antibody generated in our lab against the human and murine A1 domains, mAb AMD-1 and mAb AMD-2, respectively, and a calibrated microbead system (Quantum Simply Cellular; Flow Cytometry Standards Corp., San Juan, P.R.) following the manufacturer's instructions.

[0210] Laminar flow assays. In flow assays involving protein-coated microspheres, human or murine platelets purified by gel filtration are incubated with 10 mM sodium azide (NaN₃), 50 ng/ml prostaglandin E_1 , and 10 µm indomethacin (Sigma Immunochemicals, St. Louis, Mo.) to reduce the possibility of activation and potential alterations in expression and/or distribution of GPIb alpha on their surface. Platelets are subsequently allowed to settle in stasis on Fab fragments of monoclonal antibodies that recognize either human (i.e., mAb 7E3) or murine (i.e., mAb NAD-1) alpha IIb/ β_3 in order to form a reactive substrate. The use of platelets in lieu of recombinant proteins or transfected cells as the immobilized substrate enables evaluation of GPIb alpha in its native form (i.e. correct orientation and proper post-translational modification). Platelet coverage of <10% will be bound in this manner can remain relatively unactivated for up to 30 min as evident by morphology on light microscopic examination (FIG. 7A) and lack of expression of P-selectin by fluorescence microscopy (FIG. 7B).

[0211] To reduce the possibility of multiple bond formation that would result in a prolongation in interaction times between the beads and immobilized platelets, the lowest site densities of VWF-A1 capable of supporting these brief interactions is used, a value we found to correspond to ~30 molecules μm^2 . At this site density, we have shown that the formation of transient tethers between this receptor-ligand pair has distribution of bond lifetimes that obey first order dissociation kinetics. The duration of these interactions are measured by recording images from a Nikon X60 DIC objective (oil immersion) viewed at a frame rate of 235 fps (Speed Vision Technologies, San Diego, Calif.) and subjected to wall shear stresses (WSS) ranging from 0.5 to 3.0 dyn cm⁻². The cellular off-rates are determined by plotting the natural log of the number of VWF-A1 coated microspheres that interacted as a function of time after the initiation of tethering, the slope of the line= $-k_{off}(s^{-1})$ which is the inverse of the bond lifetime. The force acting on the tether bond was calculated from force balance equations as stated above and k_{off} plotted as a function of these forces. An example of the measurement of the duration of a transient tether and estimation of off-rates as a function of WSS is demonstrated below for WT human VWF-A1 (FIG. 8, A-C). To demonstrate that our method for surface immobilization of platelets does not result in an alteration in the kinetics of the GPIb alpha-VWF-A1 tether bond, resting platelets were first fixed in paraformaldehyde prior to immobilization. As these platelets cannot activate, the kinetics should be reflective of GPIb alpha in the resting state. Indeed, analysis of the koff for this interaction using fixed platelets was identical to that observed for platelets treated with metabolic inhibitors (FIG. 8D).

[0212] The Structure-Function of Murine VWF-A1

[0213] To determine the structure and function of murine VWF-A1, its adhesive interactions with murine and human GPIb alpha, and whether the kinetics of this interaction mimic those reported in studies of its human counterpart, the domain was initially cloned by PCR from purified mouse genomic DNA. For the purpose of generating a mouse with a genetically modified VWF-A1 domain, a100-kb P1 clone was obtained from screening a 129/Svj DNA genomic library (Genomic Systems, St. Louis, Mo.) by polymerase chain reaction (PCR) using primers directed against a 200 bp region of exon 28. Sequence analysis of flanking regions (10 kb in size) as well as the A1 domain itself was performed and compared to those obtained from a BLAST search to confirm

the fidelity of the clone. The deduced single-letter amino acid sequence of mouse VWF-A1 domain (M VWF) is shown compared to its human counterpart (H VWF) and encompasses amino acids 1260 to 1480 (FIG. 9). The locations of cysteines forming the loop structure are numbered (1272 and 1458) and differences in residues are highlighted in red. Conversion of the arginine (R) in the mouse A1 domain to histidine (H) as found in its human counterpart (blue χ) has been shown to enable mouse VWF to bind human platelets and simultaneously reduce the binding of mouse platelets. Locations of some, but not all, mutations known to affect human VWF-A1 function are also depicted.

[0214] Although the amino acid sequence homology is ~85%, and preliminary studies suggest that functional differences do exist between human and murine VWF-A1 domains. In a Ristocetin-induced platelet aggregation assays, platelet GPIb alpha binding to wild type human VWF or mouse VWF was analyzed in the absence or presence of ristocetin as described by Inbal, et al. (1993, Thromb. Haemost., 70:1058-1062). In this method, platelet rich plasma (PRP) is placed in a clear cuvette containing a stir bar and inserted into the aggregometer. Platelet aggregation is induced by the addition of ristocetin. In this ristocetin-induced platelet aggregation assay (RIPA), we observe that concentrations of this modulator that are known to cause agglutination of human platelets (~1.0 mg/ml) had no such effect using murine PRP (FIG. 10B). In fact, only at concentrations of \geq 2.5 mg/ml was there any evidence of murine platelet aggregation observed (~30%, FIG. 10C). In comparison, incubation of murine PRP with thrombin resulted in >90% platelet aggregation (FIG. 10A).

[0215] To better evaluate the above interactions and to compare functional relationships between human and murine VWF with GPIb alpha, VWF from human and mouse plasma was purified and its ability to mediate platelet adhesion in flow was determined. Multimer gel analysis did not reveal any differences between the two species, especially with regard to high molecular weight components (FIG. 11A). Moreover, surface-immobilized murine VWF could support adhesion of syngeneic platelets $(1 \times 10^8/ml)$ at a shear rate encountered in the arterial circulation (1600 s^{-1}) as observed for the human plasma protein (FIG. 11B). In contrast, murine VWF did not support significant interactions with human platelets and vice versa. These results suggest that functional and possibly significant structural differences do exist between the A1 domains of murine and human VWF as primary attachment of platelets at this wall shear rate is dependent on its function. Thus, generation of a recombinant murine VWF-A1 domain is required to fully evaluate similarities and/or differences from its human counterpart.

[0216] Recombinant protein was expressed using a bacterial expression vector under the control of an inducible promoter (pQE9, Qiagen). Insertion of the murine fragment containing the majority of the VWF A1-domain (encoding for amino acids 1233 to 1471) into pQE9 produces an aminoterminal fusion protein containing 10 amino acids (including $6 \times$ histidine) contributed by the vector. After induction, inclusion bodies were harvested, washed, and solubilized according to previously published methods (32). The solubilized protein was diluted 40-fold in 50 mM Tris-HCl, 500 mM NaCl, 0.2% Tween 20, pH 7.8 and initially purified over a Ni²⁺-chelated Sepharose (Pharmacia) column. To increase the yield of functional protein, the material purified from the Ni²⁺ column was absorbed to and eluted from a Heparin-Sepharose column (Amersham Pharmacia Biotech).

[0217] The highly purified protein was dialyzed against 25 mM Tris-HCl, 150 mM NaCl, 0.05% Tween 20, pH 7.8. SDS-PAGE analysis revealed a prominent protein band of \sim 34,000 Da under non-reducing conditions (FIG. 12). The overall yield of protein obtained using the purification methods described above is \sim 2 mg/l of bacterial cells.

[0218] The protein was subsequently used in a series of in vitro flow chamber assays to assess function. Washed human or murine platelets $(5 \times 10^7/\text{ml})$ were infused through a parallel plate flow chamber containing glass cover slips coated with either human VWF-A1 or mouse VWF-A1 protein (100 µg/ml final concentration) at a shear rate of 800 s⁻¹. After 5 min of continuous flow, adherent platelets were quantified.

[0219] As shown in FIG. 13A, mouse VWF-A1 protein supported platelet adhesion as efficiently as its human counterpart under physiological flow conditions. To demonstrate the importance of the single disulfide bond formed by C1272 and C1458, reduced (DTT) and alkylated (iodoacetamide) mouse VWF-A1 was prepared and tested in flow. Reduction and alkylation of the protein abrogated attachment of murine platelets in flow. In addition, the limited ability of the native form of the protein to mediate adhesion of human platelets and lack of interaction between human VWF-A1 and mouse platelets suggests that structural/conformational differences exist between the species. However, this does not preclude the study of GPIb alpha-VWF-A1 interactions in mice as both proteins must share common kinetic attributes as they support rapid attachment and translocation of platelets to a similar degree under physiological flow conditions (FIG. 13B).

[0220] To demonstrate that the presence of the N-terminus His tag does not appear to affect the function of the recombinant protein, we compared the ability of a tagged vs. a non-tagged MVWF-A1 to support mouse platelet adhesion in flow. In the case of the latter, the murine A1 fragment was inserted into pET-11b (Stratagene) and purified as previously described (53). The purified bacterial non-His tag protein was analyzed by SDS-PAGE (12.5%) and found to migrate in an analogous manner to its tagged counterpart under non-reducing and reducing conditions (FIG. 14A). In addition, no differences were observed in the number of platelets that adhered to and translocated on either protein (449±53 platelets/mm² His-tag vs. 423±17 platelets/mm² non-His tag) at a shear rate of 800 s⁻¹ (FIG. 14B).

[0221] Characterization of the MVWF-A1 Domain.

[0222] The A1 domains of human and mouse serve an identical purpose: to mediate primary attachment and translocation of platelets in flow. The crystal structure of the mouse A1 domain was solved using recombinant proteins (Fukuda, K., et al., (2005) Nat. Struct. Mol. Biol. 12:152-159). The main chain schematic of this domain, with β -strands (arrows) and helices (coils), is shown in FIG. 15A. The model was built from residues 1270 to 1463 of the murine VWF-A1 crystal. The two cysteines involved in the disulfide bridge are shown as yellow spheres (involving residues 1272 and 1458). The mouse and human A1 domains appear to overlap very closely, which suggests that only minor structural differences may account for the preferential binding of platelets from mice or man to their respective VWF-A1 proteins (FIG. 15B). In fact the β -sheets of both species are identical within experimental error (a root mean square difference of 0.33 Å for C α atoms). Thus, minor differences in residues, but not structure, most probably account for the inability of human platelets to interact with mouse VWF-A1 and vice versa.

[0223] Support for this hypothesis is provided by mutagenesis studies. By analyzing the data obtained from the crystal structure of the murine VWF-A1 domain, we have identified several residues that may participate in interactions with GPIb alpha (FIG. 15C). Residue 1326 was initially chosen for study and was mutated to the corresponding amino acid at the identical location in its human counterpart (from Arg to His). Subsequently, the ability of murine and human platelets to interact with this mutant protein substrate was evaluated at a wall shear rate of 800 s⁻¹. Incorporation of a histidine for arginine at position 1326 in murine VWF-A1 reduced murine platelet adhesion by ~5-fold and increased translocation velocities of cells by ~7-fold as compared to the WT mouse protein (FIGS. 13 and 16). Interestingly, human platelet interactions with the mutated murine protein were comparable to that of WT human VWF-A1. Conversely, substitution of Arg function blocking capabilities to use in both in vitro and in vivo assays. Antibodies will also be used for epitope mapping.

[0228] Analysis of the distribution of interactions times between human or murine VWF-A1 coated beads and their respective platelet substrates, as measured by high temporal resolution videomicroscopy, indicate that >95% of all transient tether bonds events fit a straight line, the regressed slope of which corresponded to a single k_{off} (FIGS. **18**A-C). Notably, the cellular off-rates of these quantal units of adhesion for the WT human and mouse proteins (FIGS. **18**A and B) were quite similar, but were significantly higher than those observed for the murine VWF-A1 containing the type 2B mutation 11309V (1309I>V) (FIG. **18**C). This is consistent with previous results obtained using the same mutation in the human protein (Table 1).

TABLE 1

SINGLE	H1326R*	G1330E*	R1287M*	Q1391P*	A1350T*	S1370G*	D1333A*

for His in the human VWF-A1 protein resulted in an increased ability of murine platelets to attach and translocate in a manner similar to that observed for WT murine VWF-A1. These studies support the hypothesis that from a structural and functional standpoint, mouse and human VWF-A1 are very similar.

[0224] Thus, all that remains is to demonstrate that the kinetics of the interaction between the murine GPIb alpha and murine VWF-A1 are similar to its human counterpart and that mutations in man that cause functional alterations in platelet adhesion with VWF have the identical impact on the biophysical properties of the murine receptor-ligand pair.

[0225] The Kinetics of Murine VWF-A1

[0226] To determine whether the kinetics of the murine GPIb alpha interactions with the murine VWF-A1 domain is similar to that of the human receptor-ligand pair, we measured the dissociation of transient tethering events using VWF-A1 coated beads (7 µm diameter) interacting with surface-immobilized platelets. The use of beads with one uniform size and shape permits determination of the relationship between wall shear stress and the force directly acting on the GPIb alpha-VWF-A1 tether bond (F_b), a parameter difficult to estimate for discoid-shaped objects such as platelets. A coating concentration of VWF-A1 was chosen (5 µg/ml corresponding to 30 molecules/µm²) that supported tether bond formation at wall shear stresses ranging from 0.5 to 3 dyn cm⁻². Estimation of the site density of murine VWF-A1 on beads was performed using a monoclonal antibody generated in our laboratory designated as AMD-2. This antibody was made by immunizing Fischer 344 rats (3-4 months old) with recombinant WT protein. Following several injections of murine VWF-A1, serum was collected and screened by ELISA for anti-VWF-A1 antibodies. Spleens from animals with the highest antibody titers were harvested and splenocytes fused with Sp2/0 mouse myeloma cells (54).

[0227] Supernatants of hybridomas were screened for reactivity to mouse VWF-A1 by ELISA (FIG. **17**). Pre-immune rat serum was used as control. Monoclonal antibodies (Mabs) to murine VWF-A1 not only reacted with WT and mutant proteins (1324G>S) but also recognized native VWF purified from mouse plasma. Antibodies are currently being tested for **[0229]** Based on these preliminary results, it appears that the dissociation kinetics of murine GPIb alpha interactions with murine VWF-A1 are nearly identical to its human counterpart and that type 2B mutations also prolongs the bond lifetime of this interaction as seen in man. A complete biophysical analysis is underway and in order to determine values for the intrinsic k_{off} and susceptibility of the bond to force drive dissociation as performed previously for its human counterpart.

Example 2

VWF-A1 Mutagenesis

[0230] Preliminary results indicate that minor differences may exist between murine and human VWF that would preclude one from studying human platelet behavior in a mouse model of thrombosis. However, our findings that the estimated off-rate values and structure of these domains are similar suggest that one can investigate the role of the biophysical properties of the GPIb alpha-VWF-A1 bond in regulating platelet-VWF interactions in vivo using a mouse model. However, neither a delineation of the binding region for GPIb alpha within the murine VWF-A1 domain nor determination of the impact of mutations on the kinetics of this interaction has been performed to date. Thus, both murine and human A1 crystal structures can be exploited to 1) identify candidate residues involved in the binding site for murine GPIb alpha and to determine their impact on the kinetic properties of this receptor-ligand pair, 2) identify residues that confer species specificity, and 3) ascertain whether insertion of known point mutations that cause type 2M and 2B VWD in man alter the kinetic properties of the murine A1 domain in a similar manner. Critical residues can be classified in terms of their impact on the cellular association and dissociation rate constants. Information obtained from these studies can be used to generate mice with mutant A1 domains in order to establish the degree in alteration in the kinetics of the GPIb alpha-VWF-A1 bond that is necessary to perturb hemostasis.

[0231] Similar critical structural elements exist in murine A1 domain to those identified in its human counter-part that contribute to the biophysical properties of the bond formed with GPIb alpha. Thus, to identify structural elements within

the murine VWF-A1 domain that impact on the kinetics of interaction with GPIb alpha, the hypothesis that only minor structural alterations in this domain are responsible for its reduced ability to support interactions with GPIb alpha receptor on human platelets will be tested.

[0232] Site-Specific Mutagenesis of Murine VWF-A1 Domain

[0233] Site-specific mutagenesis of murine VWF-A1 domain will be performed to define residues that contribute to GPIb alpha binding as well as those in that regulate this interaction. Studies will initially focus on amino acids that differ between human and mouse A1 that lie within the vicinity of the proposed GPIb alpha binding pocket.

[0234] To better define residues within murine VWF-A1 that are critical for binding of GPIb alpha on mouse platelets, mutations into VWF-A1 cDNA using a PCR-based strategy will be introduced and the resulting DNA will be sequenced to confirm the presence of the desired mutation(s). Mutations will be based on the murine A1 crystal structure and amino acid substitutions known to affect human VWF function such as those associated with Type 2M or 2B vWD (Tables 2-4). Several surface exposed residues have been identified within the murine A1 domain likely to participate in GPIb alpha binding. These are non-conserved residues in comparison to the human domain. Thus, we will convert these residues at first singly (then doubly and triply), into the murine VWF-A1 to those found in human VWF-A1*. Residues are chosen based on surface-exposure on the front and upper surfaces of the domain as understood by modeling and crystal structure analysis.

by venopuncture from healthy donors and cells obtained from centrifugation of PRP. All platelets will be used within 2 hours of purification.

[0238] To evaluate the impact of mutations on platelet adhesion, both human and murine platelets are perfused over high concentrations of murine VWF-A1 proteins (100 µg per ml) absorbed to glass cover slips in a parallel plate flow chamber at wall shear rates ranging from 20 to 1600 s^{-1} . An enzyme-linked immunosorbent assay is utilized to ensure that an equivalent amount of recombinant WT or mutant protein is immobilized. The number of platelets that attach per unit area per min and their velocity of forward motion (µm/s), termed translocation, is recorded on Hi-8 videotape using an inverted Nikon microscope with a plan 10× or 40× objective, respectively. In addition, whether the incorporated mutations alter the requirement for a critical level of hydrodynamic flow, termed the shear threshold phenomenon, to support interactions of platelets with the reactive substrate can be determined. It has been previously demonstrated that human attachment to immobilized VWF-A1 requires a minimum of $>85 \text{ s}^{-1}$ of WSR to initiate and sustain this interaction. This phenomenon has also been well described for selectin-dependent adhesion and is believed to rely on a balance between the number of times a receptor encounters it ligand over a defined period of time and the rate at which a bond can form, parameters affected by shear rate, association rate constant, and receptor-ligand concentrations (59, 60). Once attached, however, the bond lifetime influences the velocity at which the cell will move on the reactive substrate in response to shearinduced force (61). Thus, it is likely that several mutations

TABLE 2

SINGLE R132	6 H* E1350G	* M1287R* P 1391 Q* T1350A*	G1370S*	A1333D*
DOUBLE		R 1287 M* + Q 1391 P*		
TRIPLE		H 1326 R* + G 1350 E* + A1333E)*	

		TABLE 3	i		
SINGLE	S1289R*	D1323R*	K1348E*	R1392E*	

Residues that perturb but do not abrogate platelet binding in the human VWF-A1 protein (Table 3, FIG. **5**B).

TABLE 4	
---------	--

TYPE 2M TYPE 2B	G1324S* R1306L*	Q1367R* I1309V*	I1369F* V1316M*	I1425F* R1341L*	

Residues chosen based on their ability to abrogate or enhance interactions between human VWF and GPIb alpha (Table 4). [0235] Type 2B mutations will also be combined with those that dramatically shorten the bond lifetime to determine (in-

crease k_{off} if these function-enhancing mutations can restore adhesion to that observed for WT VWF-A1.

[0236] Laminar flow assays will be performed to assess the impact of various mutations on platelet adhesion as well as the degree in alteration in the kinetic properties of the GPIb alpha-VWF-A1 bond.

[0237] Murine platelets will be purified as described above and stored in Tyrode's buffer containing 0.25% BSA, pH 7.4. For studies requiring human platelets, blood will be collected may perturb platelet accumulation on surface-bound VWF-A1 by altering the level of shear flow required to promote platelet attachment as well as the translocation velocities of these cells. For example, it has been shown that the type 2B mutation, Ile1309Val (1309I>V), promotes greater platelet attachment at low shear rates and reduces their translocation velocities as compared to the WT substrate. Similar results were observed upon incorporation of the identical mutation into murine VWF-A1. Demonstration that GPIb alpha on murine platelets is responsible for mediating interactions with recombinant A1 domains can be confirmed by antibody blocking experiments.

[0239] Determination of Tethering Frequencies, Translocation Velocities, Detachment Profiles, and Dissociation Rate Constants Using VWF-A1 Coated Microspheres.

[0240] To better ascertain the alteration in kinetics associated with the proposed mutations, the tethering frequency, translocation velocities, detachment profile, and off-rates of VWF-A1 coated beads (7 μ m diameter) interacting with surface-immobilized platelets can be measured. As stated before, the use of beads with one uniform size and shape will permit determination of the relationship between wall shear stress and the force directly acting on the GPIb alpha-VWF-A1 tether bond (F_b), a parameter difficult to estimate for discoid shaped objects such as platelets. Platelet coverage >90% of the glass surface area is used in determining the

tethering frequency (on rate driven phenomenon), translocation velocities (correlates with off-rate) and resistance to detachment forces (measure of bond strength) of VWF-A1 coated beads in flow. Recently, we have demonstrated that comparison of cellular on-rates and apparent bond strengths between WT and mutant forms of VWF-A1 can be achieved by limiting the concentration of these molecules as to prevent multiple bond formation, a process that can mimic an enhancement in either of these kinetic parameters. By using a similar strategy, we can determine whether the proposed mutations will alter the apparent on-rate of the GPIb alpha-VWF-A1 bond by evaluating the frequency of transient tethering events between microspheres coated with low site densities of VWF-A1 proteins and a platelet substrate. Results are expressed as the percentage of beads (per 10× field) that paused, but did not translocate, on over a range of wall shear rates that support such interactions (20 to $400 \,\mathrm{s}^{-1}$). Tethers per minute are divided by the flux of beads near the wall per minute to obtain the frequency of this adhesive interaction. Only one tethering event per bead is counted during the observation period.

[0241] For determining translocation velocities, beads $(1 \times 10^6/\text{ml})$, coated with a saturating concentration of VWF-A1 protein are infused into the parallel-plate flow chamber at 1.0 dyn cm⁻² and allowed to accumulate for 5 min. Subsequently, the wall shear stress is increased every 10 s to a maximum 36 dyn cm⁻² and the velocities of the beads determined.

[0242] For detachment assays, beads $(1 \times 10^6/\text{ml})$, coated with the minimum but equal amounts of VWF-A1 required to support translocation, are infused into the parallel-plate flow chamber at 1.0 dyn cm^{-2} and allowed to accumulate for 5 min. Subsequently, the wall shear stress is increased every 10 s to a maximum 36 dyn cm⁻². The number of beads remaining bound at the end of each incremental increase in wall shear stress is determined and expressed as the percentage of the total number of beads originally bound. Using this strategy we were able to support our claim that type 2B mutations do not strengthen, and in fact may even weaken the interaction between GPIb alpha and VWF-A1 as suggested by the increase in reactive compliance as compared to the native complex (Table 1). In all studies, video images are recorded using a Hi8 VCR (Sony, Boston, Mass.) and analysis of performed using a PC-based image analysis system (Image Pro Plus).

[0243] For determining the kinetics of dissociation, we measure the duration of transient tethers between murine VWF-A1 coated microspheres and immobilized murine platelets as described herein. MC simulations are run and estimates of k_{off} fit to the Bell model by standard linear regression to obtain the intrinsic off-rate (k^{0}_{off}) and the reactive compliance σ . Results are compared for all mutations to determine their impact on the these kinetic parameters (i.e.—increase or shorten the bond lifetime (k^{0}_{off}) and/or increase or decrease the susceptibility of the bond to hydrodynamic forces (σ).

[0244] These experiments complement recent work on identifying residues in human VWF-A1 domain critical for interacting with the GPIb alpha. Moreover, they allow for delineation of its binding site in murine VWF-A1. We believe this to be important, as this work will be essential for elucidating the role of the biophysical properties of this receptor-ligand pair in regulating platelet-VWF interactions in vivo. Furthermore, it will pave the way for the generation of mice

with comparable types of human vWD (i.e. type 2B) and may even permit the study of human platelets in a mouse model of thrombosis.

[0245] Although our approach to mapping the GPIb alpha binding site is reasonable based on our previous studies, there is no guarantee that the introduction of mutations will not significantly perturb protein structure and thus function. The ability of murine VWF-A1 specific mAbs to recognize mutant proteins should clarify this matter. Similarly, our proposed gain/loss of function experiments involving swapping of residues between human and mouse VWF-A1 will also prove useful in avoiding this pitfall.

[0246] It is important to know whether the regions flanking the mouse A1 domain are important in mediating interactions with GPIb alpha. To this end, we plan to express full-length mouse VWF by inserting it into a mammalian expression vector and transfecting it into COS-7 cells (62). Mutations found to be critical for binding, will be inserted into the full-length construct. As we are in the process of generating the full-length cDNA, we will initially attempt to generate a recombinant protein containing the A1-A2-A3 domains to use in our studies. This will be accomplished using a baculovirus expression system as demonstrated for GPIb alpha.

[0247] The Relationship Between the Major and Minor Binding Sites for GPIb Alpha.

[0248] The recent results on the structure of GPIb alpha and its complex with VWF-A1 domain has not only confirmed our work as well as others with regard to the major binding site for this platelet receptor, but has shed new light into the mechanism by which type 2B mutations may enhance this critical interaction. As shown in FIG. 6, the concave face of GPIb alpha embraces the A1 domain in two distinct regions. The C-terminal loop of this receptor binds near the top of the domain (major binding site) and the N-terminal region known as the β -finger, at the bottom face (minor binding site) adjacent to the site where type 2B mutations are clustered. Based on these results that type 2B mutations appear to enhance the on-rate (reduced shear rate needed for formation of transient tethers in flow) and prolong the lifetime (5-6 fold) of the interaction between VWF-A1 and GPIb alpha, it is interesting to speculate whether similar alterations in bond kinetics would be observed with type 2B mutations if one interfered with the primary site. For instance, would inclusion of a type 2B with a type 2M mutation reconstitute adhesion, or is some finite interaction time required in the primary binding pocket for GPIb alpha before the effects of these mutations can be observed? These are important questions as they will guide the development of reagents that can either enhance or reduce the interaction between GPIb alpha and VWF-A1.

[0249] The type 2B mutation 1309I>V was incorporated into recombinant human VWF-A1 containing either the type 2M mutation Gly1324Ser (1324G>S) that completely abolishes adhesion or the function reducing mutation His1326Arg (1326H>R) and determined the ability of these doubly mutated proteins to support human platelet adhesion in flow. In comparison to WT, a ~3-fold increase in wall shear rate is required to promote platelet attachment to human VWF-A1 containing Arg at 1326 (FIG. **19**A). Incorporation of the type 2B mutation, however, appeared to enhance the on-rate of this interaction as manifested by an increase in platelet binding at lower levels of shear flow, but not to levels observed for the type 2B mutation alone.

[0250] To determine whether the 1309 mutation would also prolong the lifetime of the interaction with GPIb alpha, the

distribution of interactions times was analyzed between VWF-A1 coated beads and surface-immobilized platelets at a wall shear stress of 1 dyn cm⁻². Remarkably, a 2-fold reduction in k_{off} was noted (from 15.6 to 8.5 s⁻¹) as compared to the single, function-diminishing mutation (FIG. 19B). This value is similar to that of the native receptor-ligand interaction with a k_{off} of 6.5 s⁻¹ under identical flow conditions. By contrast, incorporation of Val for Ile at residue 1309 in an A1 domain containing the type 2M mutation 1324G>S did not reconstitute platelet adhesion. Thus, these results suggest that it is essential for bond formation to occur in the primary GPIb alpha binding site (top face of the A1 domain). Moreover, the region of the A1 domain where type 2B mutations are clustered appears to be critical for stabilizing interactions with GPIb alpha. Similar findings were observed for murine VWF-A1 containing the identical type 2B mutation but with a change in Arg to His at residue 1326. A complete biophysical analysis is underway and in order to determine the full extent of the 1326 mutation on the intrinsic koff, the susceptibility of the bond to force drive dissociation, and whether type 2B mutations can restore these parameters to levels obtained for the native receptor-ligand bond. In addition, it would be interesting to determine in vivo whether the enhancement in binding and increase in bond lifetime imparted by the type 2B mutation would correct any perturbation in hemostasis that may occur as a result of impacting on the function of the primary binding site for GPIb alpha.

Example 3

Genetically Modified VWF-A1 Mice

[0251] Recent kinetic evaluation of mutations associated with type 2B and platelet-type vWD suggests that the intrinsic properties of the GPIb alpha-VWF-A1 tether bond contribute to the regulation of platelet interactions with VWF. This is also supported by our preliminary studies investigating the impact of botrocetin on the biophysical properties of this receptor-ligand pair. Thus, by using the information obtained in Example 2, mutations can be incorporated into the murine A1 domain of the VWF gene that increase or decrease the intrinsic on- and off-rates by varying degrees in order to truly understand the importance of these kinetic parameters in controlling platelet adhesion. Moreover, the role of the minor binding site, where the majority of type 2B mutations have been identified, can be further delineated by combining such mutations with those that significantly shorten the lifetime of interaction between GPIb alpha and VWF-A1. Results indicate that substitution of the murine residue Arg at position 1326 for His at the same location in the human A1 domain results in a diminished on-rate as manifested by the increased requirement for shear flow to promote attachment and a significant increase in koff (shortening of bond lifetime). Subsequent incorporation of the type 2B mutation 1309I>V into this mutant domain significantly reverses the functional defect in adhesion and returns the off-rate closer to that observed for the WT domain. Similar results have been obtained with murine VWF-A1 in which Arg was replaced by His at residue 1326. Thus, introduction of these two mutations separately and then together into the mouse VWF gene will be the initial focus. This single amino acid substitution enables the mouse VWF-A1 domain to bind platelets at levels equivalent to its human counterpart. Thus, introduction of the two mutations separately (1326R>H or 1309I>V) and then together into the mouse VWF gene has been the target of recent studies. In addition, replacing >90% of the entire mouse A1 domain with its human counterpart is also central to current investigations. This model will enable one to test all potential therapies directed against this human domain in a mouse model of thrombosis.

[0252] Generation of mice that incorporate mutations into their A1 domain that significantly shorten the bond lifetime will be present with prolonged bleeding times and will be resistant to thrombus formation, while the additional incorporation of a type 2B mutation will correct these abnormalities by prolonging the tether bond lifetime to that observed for the WT domain. This should allow for sufficient time to form multiple bonds between platelets and VWF deposited at sites of vascular injury. Moreover, mice possessing the 1326R>H mutation should be able to support human platelet adhesion at sites of vascular injury. Thus, it will be demonstrated in vivo that the intrinsic properties of the GPIb alpha-VWF-A1 tether bond are indeed critical for regulating the interactions between platelets and VWF at sites of vascular injury.

[0253] By performing a detailed kinetic analysis of mutant VWF-A1 domains prior to the generation of animals with the identical substitutions in amino acids, we have greatly increased the likelihood of altering the interaction between platelets and VWF in a similar manner. We will be able to study the role of the intrinsic properties of the bonds formed between this receptor-ligand pair under complex hemodynamic conditions (i.e. in vivo). The initial choice of the 1326R>H mutation will be of benefit in two ways. First, it allows us to test our hypothesis that a critical interaction time between platelets and VWF is essential to maintaining adequate hemostasis. Secondly, the ability of this mutation to enhance human platelet adhesion will permit us to study their behavior in a mouse model of thrombosis. This is an intriguing concept as it may pave the way to test the impact of various pharmacological agents on human platelet adhesion at sites of vascular injury. For example, a substitution in which a single mutation in murine VWF-A1 (1260 to 1480) can be made in order to achieve human platelet bonding. In addition, a combination of two or more mutations that further perturb the kinetics of the interaction to achieve human platelet binding can also be made. In some instances, the entire mouse A1 domain in the mouse VWF gene with the human A1 domain found in the human VWF gene can be replaced.

[0254] Generation and Characterization of Mice Expressing a Mutant VWF-A1 Domain

[0255] Mutant mouse. As mentioned previously, a 100-kb P1 clone containing the majority of the VWF gene (Genomic Systems, St. Louis, Mo.) was obtained. Digestion with Bam H1 resulted in a ~5.3 kb fragment containing part of intron 28 (including the splice sites), all of exon 28 and part of intron 29 which was the inserted into the pSP72 vector (Promega, WI). This was subsequently digested with Bam H1 and Eco R5 to yield a 2.9 kb (including exon 28) and a 2.4 kb fragment, designated Arm 1 and 2, respectively, both of which were subcloned back into pSP72 vector. This facilitated site-directed mutagenesis of the A1 domain contained within Arm 1. In addition, the 3' end of Arm 1 was extended 2 kb by PCR. Subsequently, Arms 1 and 2 were inserted into a lox P-targeting vector as shown below (FIG. 20). The fidelity of three constructs containing either the 1309I>V or 1326R>H substitutions or both mutations was confirmed by sequence analysis.

[0256] R1 embryonic stem cells derived from a 129/Sv X 129/Sv-CP F1 3.5-day blastocysts were electroporated with

25 µg of linearized targeting construct and selected in both G418 (26 µmol/L) and gancyclovir (0.2 µmol/L). Genomic DNA from resistant clones were digested with EcoR1 or KpnI, and analyzed by Southern blot hybridization with probe "a" or "b", respectively, to determine if the construct was appropriately targeted (FIG. 20B). Targeting both the type 2B (Ile1309Val or 1309I>V) mutation and the Arg1326His (1326R>H) mutant constructs, have been successful. In a second step, embryonic stem cell clones that had undergone homologous recombination were transfected with 25 µg of Cre-recombinase-expressing plasmid and selected for G418. Clones in which the neo-cassette was deleted were identified by PCR and injected into C57BL/6 blastocysts (The Siteman Cancer Center Core Facility, Washington University). Male chimeric mice were bred to C57BL/6 Crerecombinase (+) females to obtain heterozygous animals. Heterozygous mice lacking the neocassette, but containing the 1326R>H mutation, were interbred to obtain wild-type, heterozygous, and homozygous animals. Animals were identified by both Southern analysis (FIG. 21) and by PCR of the A1 domain (FIG. 22; red boxed area denotes the conversion of Arg to His).

[0257] Determination of the multimeric composition of murine VWF. For platelet counts, whole blood will be collected into heparinized tubes and 100 µl volumes will be analyzed on a Hemavet (CBC Tech, Oxford, Conn., USA) Coulter Counter. The multimeric structure of murine VWF will be assayed by using the Pharmacia Phast Gel System (Pharmacia LKB Biotechnology). Briefly, samples diluted in 10 mmol/L Tris/HCl, 1 mmol/L EDTA, 2% SDS, 8 mol/L urea, and 0.05% bromophenol blue, pH 8.0, will be applied to a 1.7% agarose gel (LE, Seakem, FMC Bioproducts) in 0.5 mol/L Tris/HCl, pH 8.8, and 0.1% SDS with a stacking gel consisting of 0.8% agarose (HGT, Seakem) in 0.125 mol/L Tris/HCl, pH 6.8, and 0.1% SDS. After electrophoresis the protein will be transferred to a polyvinylidene fluoride membrane (Immobilon P, Millipore) by diffusion blotting for 1 hour at 60° C. The membrane will be blocked with 5% nonfat dry milk protein solution for 1 hour at room temperature. After washing with PBS/T, pH 7.4, the blot will be incubated with a polyclonal antibody raised in rabbits against murine VWF at a dilution of 1:500, washed, and incubated with a goat anti-rabbit horseradish peroxidase (Sigma) diluted 1:2000 in PBS/T. After three washes with PBS/T, the membrane will be incubated with the substrate solution (25 mg 3,3'-diaminobenzidine tetrahydrochloride (Sigma) in 50 mL PBS with 10 μ L 30% H₂O₂). The enzyme reaction will be stopped by washing the membrane with distilled water.

[0258] To demonstrate that conversion of Arg to His in the mouse A1 domain at position 1326 did not alter plasma protein levels of VWF nor its ability to form multimers, we performed an ELISA to detect mouse VWF in plasma obtained from WT and homozygous animals (FIG. 23). As shown in FIG. 23, plasma levels of VWF from homozygous mice (KI) were comparable to WT at all dilutions tested. Moreover, multimer gel analysis of plasma VWF revealed an identical banding pattern between mouse and human VWF. Incorporation of His at position 1326 in the mouse A1 domain had no effect on multimerization of VWF (FIG. 24). Thus, we are the first to successfully introduce a point mutation into mouse VWF A1 domain.

[0259] Bleeding time for human platelet-induced hemostasis: This assay provides an indirect measure of the ability of platelets and VWF to support hemostasis by interacting with

the injured vessel wall. It also indirectly determines the function of multiple receptors and ligands on platelets that are required to form a hemostatic plug. That said, it provides direct evidence that the bleeding defect in our animals can be corrected by the administration of human platelets (FIG. **12**). It is performed by immersing the severed tip (10 mm) of the animal's tail in isotonic saline at 37° C. and monitoring the length of time required for bleeding to cease. Homozygous mutant mice will be infused with an equal volume of either saline or purified human platelets. Platelet specific antibodies or drugs will be administered as described above and their ability to prolong bleeding time evaluated. All experiments will be stopped at 10 min by cauterizing the tail (51).

[0260] Although homozygous mice bearing the 1326R>H mutation are viable, they demonstrate a bleeding phenotype similar to that of animals deficient in VWF (KO) only when 10 mm of the tail is cut (FIG. 25 and FIG. 35B). Over 90% of these mice bled for a minimum of 8 minutes (end point) in contrast to 3.5 minutes for WT animals as measured by severing 1 cm of their tail. Moreover, thrombus formation induced by perfusion of whole blood from mutant mice over surface-immobilized collagen in vitro was reduced by ~80% as compared to WT controls (FIG. 26). To further characterize the bleeding phenotype depicted in FIG. 35, standard techniques known in the art were employed, which involves removal of a minimal amount of the animal's tail (~5 mm). A slight, but statistically significant (P<0.01), increase in bleeding was observed in the homozygous 1326R>H mutant mice as compared to WT littermates, but not to the extent of the VWF knockout mouse (a mouse model that bleeds profusely due to complete lack of this plasma glycoprotein). In the homozygous 1326R>H mutant mouse, a larger cut (~10 mm) is needed in order to see a bleeding phenotype comparable to the VWF deficient mouse. Since these mice continue to bleed, the experiment is stopped at 8 min in order to prevent death. This phenotype observed in the 1326R>H mutant mouse is similar to the bleeding observed in human patients who have type 2MVWF disease. As not all type 2M mutations result in a complete loss of interaction between GPIb alpha and VWF-A1, but resemble the adhesion defects outlined for the 1326R>H mutant mouse, this genetically modified mouse model will be useful for directing therapies aimed at patients that have a partial but not complete defect in binding between GPIb alpha and VWF-A1.

[0261] Platelet Adhesion Studies in Mice Expressing a Mutant VWF-A1 Domain

[0262] One goal of the work is generate mice with mutant A1 domains that alter the kinetics of its interactions with GPIb alpha on mouse platelets. The first mutation we chose to introduce was the substitution of histidine for arginine at position 1326. This mutation was chosen based on our crystal structure analysis of the mouse and human A1 domains, which suggested that the location of this amino acid is central to GPIb alpha binding. Mice bearing this mutation are viable and demonstrate a bleeding phenotype, albeit not as severe as those lacking VWF (VWF KO) (FIG. 35). This was not unexpected as VWF is still present, but has a reduced ability to interact with platelets at high shear rates (>1600 s⁻¹). FIG. 27 demonstrates reduced thrombus formation that occurs when whole blood from these knock-in animals is perfused over collagen-coated cover slips at a shear rate of 1600 s⁻¹. Results thus far indicate a 70% reduction in thrombi formed on collagen as compared to WT controls.

[0263] To demonstrate that the 1326R>H mutant in the A1 domain of mouse VWF (wherein the mutant VWF-A1 domain comprises SEQ ID NO: 5) is far superior to promoting interactions with human platelets under physiologic flow conditions, anticoagulated human blood was infused over surface-immobilized WT or mutant mouse plasma VWF at 1600 s⁻¹ (FIG. 28). Results indicate that the mutant form of mouse VWF can support human platelet attachment to levels observed for its human counterpart, thus making it an ideal system to evaluate human platelet behavior and the impact of novel anti-thrombotic drugs in an animal model. Moreover, this observation was not limited to ex vivo studies, as homozygous mutant mice infused with human (FIG. 29A) but not mouse platelets (FIG. 29B) were able to generate an arterial thrombus that occludes the vessel lumen in response to laser-induced vascular injury as depicted by intravital microscopy (transmitted light). Preliminary results indicate that mouse and human A1 domains are structurally similar and serve an identical functional role in the initiation of thrombus formation. Moreover, the ability of the "humanized" mouse A1 domain to support human platelet adhesion to the same degree as its human VWF-A1 counterpart exvivo, as well as its preferential binding of human platelets in vivo (FIG. 29A), suggests that our animal model will be an ideal system for preclinical screening of therapies directed at limiting the interactions between GPIb alpha and the VWF-A1 domain. Moreover, as both hemostasis and thrombosis also rely other key adhesion receptors on human platelets, such as those that interact with collagen OR fibrinogen FIG. 1B), this model can also be used for testing therapies directed against other human platelet receptors and ligands critical for these processes.

[0264] To assess the biological significance of this finding in terms of its effect on hemostasis, homozygous mutant animals received an infusion of blood-banked human platelets and bleeding time was subsequently measured by severing 1 cm of their tail. Average bleeding time for mice that received human platelets was ~3 minutes vs. 10 minutes (end point) for animals given an intravenous infusion of a physiological buffered saline solution (FIG. **30**). Results indicate that not only can the mutant form of mouse VWF support human platelet adhesion both ex-vivo and in vivo assays, but it can also perform its biological function; supporting hemostasis in the context of vascular injury.

[0265] Evaluation of platelet-VWF behavior in flow. Blood will be collected by cardiac puncture from anesthetized mice and thrombin-mediated activation prevented by the addition of hirudin (160 U/ml, Sigma) (68). Platelet adhesion to a glass cover slip coated with 100 µg/ml of equine tendon collagen (Helena Laboratories, Beaumont, Tex.) will be assessed in a parallel-plate flow chamber apparatus. Whole blood will be infused through the chamber at a wall shear rate of 1600 s^{-1} for 3 minutes. As platelet adhesion under these homodynamic conditions requires VWF deposition and subsequent interactions between its A1 domain and GPIb alpha, the extent of platelet coverage should provide a gross estimate of the degree in impairment between this receptor-ligand pair. In addition, plasma VWF will be purified from these animals to evaluate platelet attachment to this immobilized substrate in flow. The surface area covered by adherent platelets at the end of each experiment will be determined (Image Pro Plus software) and expressed as a percentage of platelet coverage using blood from WT littermates. To better isolate GPIb alpha-VWF A1 interactions, identical experiments can be performed using platelets isolated from alphaIIb beta 3 deficient animals and reconstituting them in platelet poor plasma from our mutant A1 knock-in mice.

[0266] Evaluation of platelet-VWF behavior in vivo. In addition to the proposed in vitro work, platelet-VWF interactions in vivo will also be studied using intravital microscopy (Falati et al. (2002) *Nature Medicine* 8(10): 1175-80). This is accomplished by using a murine model of thrombosis that involves laser-induced injury to micro-vessels contained within the mouse cremaster muscle. The surgical preparation of animals, insertion of lines for administration of cells and anesthesia, will be performed as previously described (69). Human platelets will be collected and prepared, fluorescently labeled, perfused into a mouse model (such as the transgenic mouse of the current invention) via an intravenous injection (Pozgajova et al., (2006) *Blood* 108(2):510-4).

[0267] Surgical preparation of animals: Insertion of lines for administration of cells and anesthesia. Briefly, the skin covering the scrotum will be incised and the intact cremaster muscle dissected free from the connections to the subcutis. The mouse will be placed on a custom-built plexiglass board, and the exposed muscle positioned on a heated circular glass coverslip (25 mm) for viewing. The muscle will be slit along the ventral surface (using a thermal cautery), the testis excised, and the muscle spread across the coverslip with attached sutures (6/0 silk) (FIG. 31). The cremaster muscle will be kept continuously moistened by superfusion throughout the experiment with sterile, bicarbonate-buffered (pH 7.4), saline solution (37° C.) that is pregased with a 5% CO₂, 95% N₂ mixture for O₂ depletion. All parts of the setup in contact with the superfusion buffer will be presoaked with 1% Etoxaclean (Sigma Chemical Co., St. Louis, Mo.) overnight followed by extensive rinsing in 70% ethanol and endotoxinfree distilled water. The number of mice used for these experiments will be kept to the minimum necessary to establish statistically significant observations. Anesthetized animals will be euthanized after each experiment by CO₂ inhalation. [0268] Vascular trauma will be generated as follows: The segment of an arteriole will be visualized and recorded as "pre-injury". Subsequently, endothelial damage will be induced via a pulsed nitrogen dye laser at 440 nm applied through the microscope objective using the Micropoint laser system (Photonics Instruments, St. Charles, Ill.). The duration of exposure of the endothelium to the laser light will be varied to produce either a mild injury that supports the formation of a platelet monolayer or significant injury resulting in thrombus formation. The region of interest will then be videotaped and analyzed as described below.

[0269] For example, vascular damage can subsequently be induced in arterioles contained within the cremaster muscle of mice by either 1) pulsed nitrogen dye laser applied through the objective of an intravital microscope (FIG. **32**) or 2) standard application of a ferric chloride solution (Furie et al. *J. Clin. Invest.* 2005; 115:3355). The latter method has the advantage of exposing significant more subendothelial collagen, which will be beneficial for testing the role of the collagen receptors $\alpha 2\beta 1$ in thrombus formation.

[0270] For studies analyzing the dynamic interactions between individual platelets and the injured vessel wall (attachment, translocation, and sticking), cells purified from genetically altered mice will be labeled ex-vivo with a derivative of carboxyfluorescein (BCECF, Molecular Probes) (Diacovo et al. *Science.* 1996). A human thrombus generated in the mutant mouse can also be visualized by this technique,

thus allowing to distinguish human platelets from endogenous circulating mouse platelets upon illumination with an appropriate laser light source (see FIG. 40). Cells $(1 \times 10^7/\text{g of})$ BWT) will be subsequently injected intravenously into mice bearing WT mouse (control) or the "humanized" A1 domains and their behavior visualized in the microcirculation using an intravital microscope (Zeiss, Axiotech Vario; IV500, Mikron Instruments, San Diego, Calif.; and the like) equipped with an iXON EM camera or a silicon-intensified camera (VE1000SIT; Dage mti, Michigan City, Ind.), a Yokogawa CSU22confocal head, and a 488 nm laser line (Andor Technology, Revolution series). A Xenon arc stroboscope (Chadwick Helmuth, El Monte, Calif.) will serve as the light source and fluorescent cells will be viewed through 60x or 100x water immersion objectives (Acroplan, Carl Zeiss Inc.). A tethered platelet will be defined as a cell establishing initial contact with the vessel wall (FIG. 33A, panel 2-3; FIG. 33B). The translocating fraction will be defined as number of tethered platelets that move at a velocity significantly lower than the centerline velocity for >1 s. The sticking fraction will be defined as the number of translocating cells that become stationary for >30 s post-tethering. Second order arterioles (up to 50 µm in diameter) will be evaluated for platelet interactions before and after the injury. Evaluation of platelet circulation in larger arterioles may be less accurate secondary to hemoglobin-mediated quenching of fluorescence emitted from platelets traveling in an area of the blood stream distal to the focal plane of the objective. Epi-illumination will only be used during video recordings to minimize possible phototoxic effects on tissue.

[0271] A role for GPIb alpha as well as the collagen ($\alpha 2\beta 1$) and the fibrinogen ($\alpha IIb \beta 3$) receptors can be evaluated by using function-blocking antibodies to these proteins. Moreover, FDA approved anti-thrombotics (such as clopidogrel and tirofiban) can be examined as to whether the drugs inhibit human platelets from forming a thrombus in vivo, validating the mouse model for use in pre-clinical screening. The effect that antibodies and drugs have on altering the interaction between GPIb alpha-VWF-A1 interaction is determined by evaluating whether thrombus formation in the proposed mice is reduced or augmented upon arteriolar injury (FIG. **34**).

[0272] For all experiments, the centerline erythrocyte velocity (Vrbc) is measured using an optical doppler velocimeter (Microcirculation Research Institute, Texas A&M College of Medicine, College Station, Tex.) prior to and after inducing the injury. Shear rate (SR) is then calculated based on Poiseulle's law for a Newtonian fluid: SR=8(Vmean/Dv), where Dv is the diameter of the vessel and Vmean is estimated from the measured Vrbc (Vmean=Vrbc/1.6).

[0273] Characterization of thrombus formation: Thrombus formation can be characterized as follows: (1) Early individual platelet interactions with the damaged vessel wall (number of fluorescently labeled human platelets that attach during the first minute post-injury); (2) time required for thrombus generation of >20 μ m diameter; (3) the ability of thrombi to remain at the initial site of vascular injury and not break free (measure of stability); (4) time until vessel occlusion; and (5) site of vessel occlusion, that is, at the site of injury or downstream from it. Platelet-vessel wall interactions can be viewed through 40× or 60× water immersion objectives. To standardize in vivo conditions, the velocity of flowing blood (shear rate) pre-injury is determined by measuring the centerline erythrocyte velocity (Vrbc) using an optical doppler velocimeter. Shear rate (SR) can then be cal-

culated based on Poiseulle's law for a Newtonian fluid: SR=8×(Vmean/Dv), where Dv is the diameter of the vessel and Vmean is estimated from the measured Vrbc (Vmean=Vrbc/1.6). Vessel and thrombus diameters are measured using imaging software (ImagePro Plus).

[0274] Administration of antibodies: Function-blocking monoclonal antibodies 6D1 (anti-human GPIb alpha), 6F1 (anti-human $\alpha 2\beta 1$) and 7E3 (anti-human $\alpha IIb\beta 3$) have been generously provided by Dr. Barry Coller (Rockefeller University, NY). All antibodies are converted to F(ab')2 fragments to limit Fc receptor interactions in vivo. An intravenous dose of 10 µg/g body weight is given approximately 10 minutes after the injection of human platelets but 30 minutes prior to inducing vascular injury. Non-function blocking antibodies to these receptors is used as negative controls and administered under identical conditions. To ensure optimal ligand availability for the collagen and fibrinogen receptors on human platelet, mice possessing the A1 domain mutation have been bred with animals genetically deficient in $\alpha 2\beta 1$ or α IIb β 3. Thus, endogenous platelets in these animals not only have a reduced ability to interact with the VWF-A1 domain, but also are incapable of binding to collagen or fibrinogen, respectively. Although human platelets have been shown to circulate in mice for a maximum of 24 hours, we can ensure that an equivalent percentage of human platelets are present at the time of vascular injury under each experimental condition (Xu et al. J. Clin. Invest. 2006; 116: 769). Thus, 50 µl is obtained from an inserted venous catheter and flow cytometric analysis will be performed to determine the percentage of circulating fluorescently-labeled human platelets.

[0275] Administration of drugs: In comparison to aspirin, clopidogrel (Plavix) is the second most commonly used antithrombotic drug that targets one of the ADP receptors (P2Y12) on platelets, causing irreversible inhibition (Hankey et al. Med. J. Aust. 2003; 178:568). ADP is a potent mediator of platelet activation and aggregate formation, and thus considerable effort and funds have been devoted to inhibiting this activation pathway in platelets. Clopidogrel was approved by the FDA in 1997 for clinical use and was found to be of benefit in the secondary prevention of major vascular events in patients with a history of cerebrovascular and coronary artery diseases and major cardiac events post coronary artery stent placement (Gachet et al. Semin. Thromb. Hemost. 2005; 31:162). Disadvantages of this drug are: 1) It must be metabolized in the liver to generate an active metabolite, thus limiting its effectiveness in acute settings, and 2) irreversible inhibition that results in a marked prolongation of bleeding time.

[0276] Clopidogrel has been shown to reduce thrombus size and delay its formation in mice with a maximal effective dose of 50 mg/kg given the day before and 2 hours prior to experimentation (Lenain et al. J. Throm. Haemost. 2003; 1:1133). This drug will be obtained from the hospital pharmacy and tablets will be dissolved in sterile water for oral administration. Control animals will receive water in lieu of drug. The effectiveness of this treatment regime will be confirmed by first measuring the responsiveness of platelets isolated from drug-treated WT animals to ADP-induced aggregation using an optical aggregometer (Chrono-Log Corp.) as previously described (Leon et al. J. Clin. Invest. 1999; 104: 1731). As our mutant VWF-A1 domain mice also have a defect in platelet aggregation, these animals cannot be used for the purpose of testing to ADP-induced aggregation exvivo. However, this additional phenotype will be advantageous for us as it limits potential competition between human

and mouse platelets for binding to ligands exposed at sites of vascular injury. Human platelets will be administered 30 minutes prior to vascular injury and 50 μ l of blood drawn to determine the percentage of circulating cells as described above. Platelet rich plasma will also be purified from control and drug treated animals that receive human platelets to evaluate the effectiveness of clopidogrel on preventing ADP-induced aggregation of these cells ex-vivo.

[0277] Tirofiban (Aggrastat) is a non-peptide inhibitor of the fibrinogen receptor α IIb β 3 that limits the ability of platelets to form aggregates, an event required for thrombus progression. It has a plasma half-life of approximately 2 hours but only remains bound to platelets for seconds, thus necessitating continuous intravenous administration. It is currently approved for short-term treatment of patients with acute coronary syndrome that require interventional catheterization. Thus, the animals will be dosed based on that given for interventional procedures such as angioplasty, which consists of a 25 µg/kg bolus over 3 minutes followed by a continuous maintenance infusion of 0.15 µg/kg/min until the completion of the experiment (Valgimigli et al. JAMA. 2005; 293:2109). Human platelets will be administered 30 minutes prior to vascular injury and 50 µl of blood drawn to determine the percentage of circulating cells as described above.

[0278] Platelet donors. Mice are used as platelet donors. A means to evaluate murine platelet interactions with wild type and mutant VWF-A1 proteins is via in vitro flow chamber assays. Blood from ~10 mice are required to purify adequate numbers of platelets per assay. Blood from donor animals is obtained from the retro-orbital plexus using a heparinized glass pipette. Mice will be anesthetized with Ketamine and Xylazine prior to the procedure and are euthanized by CO_2 inhalation upon completion.

[0279] Bleeding time for human platelet induced hemostasis. This assay is carried out as described above.

[0280] Solution-phase binding assay. For type 2B mutant VWF, its capacity to bind to platelet GPIb alpha in solution can be determined. Plasma is harvested from these mice and VWF purified. Various concentrations of the plasma glycoprotein will be indirectly labeled using a non-function blocking, ¹²⁵I-labeled mAb to its A1 domain as previously described (67). After a 30 min. incubation, a quantity of this mixture will be incubated with platelets purified from beta 3 deficient mice so to prevent integrin-mediated binding to VWF. After incubation period of 1 hour, an aliquot of this mixture will be added to a sucrose gradient and centrifuged to pellet the platelets. Radioactivity associated with the pellet vs. supernatant will be determined in a γ -scintillation counter, and the binding estimated as the percent of total radioactivity.

Example 4

Defining the In Vivo Role of the von Willebrand Factor A1 Domain by Modifying a Species-Divergent Bond

[0281] Proteins containing von Willebrand Factor (VWF) A domains contribute to human health and disease by promoting adhesive interactions between cells (Whittaker, C. A., & Hynes, R O. *Mol. Biol. Cell.* 13, 3369-3387 (2002)). The VWF-A1 domain is thought to play a critical role in hemostasis by initiating the rapid deposition of platelets at sites of vascular damage by binding to the platelet receptor glycoprotein Ib alpha (GPIb α) at high shear rates (Roth, G. J. *Blood* 77, 5-19 (1991); Cruz, M. A., et al., *J. Biol. Chem.* 268, 21238-

21245 (1993); Sugimoto, M. et al., *Biochemistry* 30, 5202-5209 (1991); Pietu, G. et al., *Biochem. Biophys. Res. Commun.* 164, 1339-1347 (1989)). Although congenital absence of VWF in humans has established a role for this plasma glycoprotein in hemostasis (Sadler, J. E. et al. *J. Thromb. Haemost.* 4, 2103-2114 (2006)), the contribution of its A1 domain in clot formation has been questioned in a mouse model of vascular injury (Denis, C. et al. *Proc. Natl. Acad. Sci. USA* 95, 9524-9529 (1998)).

[0282] In this example, murine plasma VWF or its A1 domain fails to support significant interactions with human platelets (and likewise human VWF with murine platelets) under flow conditions. Atomic models of GPIba-VWF-A1 complexes suggest that the structural basis for this behavior arises primarily from an electrostatic "hot-spot" at the binding interface. Introduction of a single point mutation within this region of murine VWF-A1 is sufficient to switch its binding specificity from murine to human platelets. In addition, introduction of a single point mutation within the electrostatic "hot-spot" region of human VWF-A1 is sufficient to switch its binding specificity from human to murine platelets. Moreover, mice possessing the 1326R>H mutation in their VWF have a bleeding phenotype distinct from VWF-deficient animals, and can be corrected by the administration of human platelets. Mechanistically, mutant animals can generate but not maintain thrombi at sites of vascular injury, whereas those infused with human platelets can form stable thrombi, a process that relies on GPIb α -VWF-A1 interaction. Thus, interspecies differences at protein interfaces can provide insight into the biological importance of a receptorligand bond, and aid in the development of an animal model to study human platelet behavior and drug therapies.

[0283] Methods

[0284] Generation of $VWF^{1326R>H}$ mice. The $VWF^{1326R>H}$ targeting vector (FIG. 38A) was prepared from a 129/SvJ mouse genomic library. The clone was identified by PCR using primers specific for exon 28 of the mouse VWF gene and sequence fidelity of the region to be targeted validated by comparison to published sequence for chromosome 6 (Gen-Bank accession number NW_001030811). The targeting vector is identical to the corresponding region in the mouse genome, except the 1326R>H mutation was created in exon 28 and the Neo cassette flanked by loxP sites was inserted into intron 28. This resulted in the loss of an EcoRV site and the introduction of a new EcoR1 and two new XhoI sites. The construct was electroporated into an embryonic stem (ES) cell line, and potential clones identified by continued growth of cells in G418 and Gancyclovir supplemented media. DNA was isolated from surviving colonies, digested with EcoRI, and screened by Southern analysis using a 1.5 kb probe (A) corresponding to a DNA sequence downstream of the targeting construct. Chimeric mice generated from VWF^{1326R>H} targeted ES cell lines were subsequently bred to a Cre transgenic mouse (C57BL/6 background) and animals containing the 1326R>H mutation, but without the Neo cassette, subsequently identified by both PCR and Southern analysis. WT and homozygous animals were the product of matings between heterozygous mice.

[0285] Analysis of VWF transcripts, antigen levels, multimers, and collagen binding. Detection of transcripts from the A1-A2-A3 domains of murine VWF was performed by RT-PCR. Briefly, mRNA was isolated from lung tissue harvested from either homozygous VWF-A1^{1326R>H} mice or aged-mated WT littermate controls (Oligotex®, Qiagen). Genera-

tion of cDNA and PCR-amplification of desired transcripts was performed using SuperScript[™] One-Step RT-PCR (Invitrogen) and oligos specific for the A domains of VWF.

[0286] Functional factor VIII levels were determined by a mechanical clot detection method using the STA automated coagulation analyzer (Diagnostica Stago, Parsippany, N.J.). A log-log calibration curve was established by measuring the activated partial Thromboplastin time (aPTT) of varying dilutions of reference plasma. The aPTT of a 1:10 dilution of sample plasma mixed with factor VIII deficient plasma was determined, compared to the calibration curve, and the activity expressed as a percent of normal.

[0287] Evaluation of VWF antigen levels was performed as previously described (Denis, C. et al. Proc. Natl. Acad. Sci. USA 95, 9524-9529 (1998)). For multimer analysis, plasma from sodium citrate treated whole blood was diluted 1:5 in electrophoresis sample buffer (final concentration 10 mM Tris-HCl pH 8.0, 2% SDS, 1 mM EDTA) and heated at 56° C. for 30 minutes. Electrophoresis was carried out overnight (64 volts, 15° C.) through a horizontal SDS-agarose gel in 1.2% agarose (Ruggeri, Z. M. & Zimmerman, T. S. Blood 57, 1140-1143 (1981)). The gel was then electrophoretically transferred (150 mA, 90 minutes) to Immobilon (Millipore) followed by blocking (2 h) with 5% powdered milk in TBST (Tris HCl pH 8.0, 0.15M NaCl, 0.05% Tween-20). The membrane was incubated with a 1:500 dilution of rabbit antihuman VWF antiserum (DAKO) for 1 h, washed in TBST, and then incubated with a 1:10,000 dilution of HRP-conjugated mouse anti-rabbit IgG (Calbiochem). Bands were subsequently detected by chemiluminescence system (GE Healthcare). For comparison, a sample containing pooled human plasma from normals or patients with type 2B VWD was also loaded on the gel. Binding of VWF to surfaceimmobilized collagen was performed as previously described (Smith, C. et al. (2000) J. Biol. Chem. 275, 4205-4209). Briefly, 100 µg/ml of acid soluble type I collagen from human placenta (Sigma) was added to a 96 well microtiter plate and allowed to incubate overnight (4° C.). After washing and blocking with TBS containing 3% BSA and 0.05% Tween 20, varying concentration of platelet poor plasma harvested and pooled from WT, homozygous $VWF^{1326R>H}$, and VWF deficient mice was added to the wells and incubated for 1 h (37° C.). Wells were then washed and bound VWF detected by an ELISA as described above.

[0288] Ex vivo platelet adhesion studies. Experiments were performed in a parallel-plate flow chamber as previously described (Offermanns, S. (2006) Circ. Res. 99, 1293-1304). For studies involving plasma VWF, a polyclonal anti-VWF antibody (Dako) was absorbed overnight (4° C.) to a six well tissue culture plate. Subsequently, the plate was washed and non-specific interactions blocked by the addition of TBS containing 3% BSA, pH 7.4 (1 h, 37° C.). Human or murine plasma obtained from heparinized whole blood was added and the plates placed at 37° C. for an additional 2 h. Generation, purification, and surface-immobilization of recombinant VWF-A1 proteins was performed as previously described (Doggett, T. A. et al. Biophys. J. 83, 194-205 (2002)). Both human and murine VWF-A1 constructs consist of amino acid residues 1238 to 1471, with a single intradisulfide bond formed between residues 1272 and 1458 and were generated in bacteria. Citrated whole blood (150 µl) collected via cardiac puncture from anesthetized homozygous VWF^{1326R>H} or WT mice or from venopuncture from human volunteers was perfused over the immobilized substrates at a wall shear rate of 1600 s^{-1} for 4 min, followed by washing with Tyrode's buffer under the identical flow conditions. The number of platelets attached per unit area (0.07 mm²) and translocation velocities were determined by off-line analysis (Image-Pro Plus, Media Cybernetics). For GPIb α inhibition studies, the function-blocking mAb 6D1 (20 µg/ml) or mAb SZ2 (20 µg/ml; Beckman Coulter) was added to anticoagulated human blood for 30 min prior to use. Experiments were performed in triplicate on two separate days. An ELISA was used to ensure equivalent coating concentration of plasma and recombinant proteins (Denis, C. et al. (1998) *Proc. Natl. Acad. Sci. USA* 95, 9524-9529).

[0289] In vivo thrombus formation. Administration of anesthesia, insertion of venous and arterial catheters, fluorescent labeling and administration of human platelets (5×10^8) ml), and surgical preparation of the cremaster muscle in mice have been previously described (Doggett, T. A. et al. Biophys. J. 83, 194-205 (2002); Diacovo, T. G., et al., Science 273, 252-255 (1996)). Injury to the vessel wall of arterioles (~40-65 µm diameter) was performed using a pulsed nitrogen dye laser (440 nm, Photonic Instruments) applied through a 20× water-immersion Olympus objective (LUMPlanFl, 0.5 NA) of a Zeiss Axiotech vario microscope. Mouse platelet- and human platelet-vessel wall interactions were visualized using either bright field or fluorescence microscopy. The latter utilized a fluorescent microscope system equipped with a Yokogawa CSU-22 spinning disk confocal scanner and 488 nm laser line (Revolution XD, Andor™ Technology). The extent of thrombus formation was assessed for 2 min post injury and the area (μm^2) of coverage determined (Image IQ, AndorTM Technology). For GPIb α or α IIb β 3 inhibition studies, the function-blocking mAb 6D1 or 7E3 (20 µg/ml), respectively (from B. Coller, Rockefeller University), was added to purified human platelets for 30 min prior to administration.

[0290] Tail bleeding assay. Bleeding times were measured in 7-week old mice after amputating 1 cm of the tail tip as previously described (Denis, C. et al. (1998) Proc. Natl. Acad. Sci. USA 95, 9524-9529). In studies involving human platelets, platelet concentrates were obtained from Columbia Presbyterian Hospital Blood Bank, washed and resuspended in normal saline $(1.5 \times 10^9/300 \,\mu)$ before administering through a catheter inserted into the right internal jugular vein. Tail cuts were performed 5 min after completion of the infusion of platelets. PLAVIX and ReoPro® were obtained from the research pharmacy at CUMC. For studies involving PLAVIX, animals received a 50 mg/kg oral dose of the drug the day before and 2 h prior to the administration of human platelets. ReoPro® was given initially as an intravenous bolus (0.25 mg/kg) 5 min after the administration of human platelets, followed by a continuous infusion (0.125 µg/kg/min) as per the manufacturer's recommendations.

[0291] Structural Modeling. There are three crystal structures of the GPIb α -VWF-A1 complex: two are WT except for mutated N-glycosylation sites in GPIb α (Fukuda, K. et al., (2005) *Nat. Struct. Mol. Biol.* 12, 152-159; Dumas, J. J. et al. (2004) *J. Biol. Chem.* 279, 23327-23334), and one is a gain-of-function mutant (Huizinga, E. G. et al. (2002) *Science* 297, 1176-1179). The structures have only small differences that are not the result of the presence of mutations or botrocetin binding (Fukuda, K., et al., (2005) *Nat. Struct. Mol. Biol.* 12, 152-159). Both N-glycosylation sites in human GPIb α lie on the well-ordered upper ridge of the LRR, 18 Å and 27 Å (C α -C α) from the nearest VWF-A1 residue, so their absence

is unlikely to affect the structure of the complex. Murine GPIb α has no predicted N-glycosylation sites.

[0292] Human GPIba contains sulfated tyrosines implicated in binding VWF within an acidic loop just C-terminal to the sequence included in the crystal structures. Murine GPIb α has a predicted sulfation site in the same loop, so that the differential binding of human vs. murine GPIba to VWF-A1 is also likely to be small. The interfacial regions are otherwise highly conserved between species, with the exception of three salt bridges (See FIGS. 37C-G). The conformation of the β -switch region is highly constrained, as noted in the main text. The only change to a buried interfacial residue is M239T (human to mouse), which lies in an invariant pocket. Notably, the crystal structure of the human "gain-offunction" mutant, M239V, shows no perturbations in this region, and given that valine is isosteric with threonine, this species difference is unlikely to affect either the complex structure or interspecies binding.

[0293] We used a consensus model of the human complex to build the murine model. We first overlaid murine A1 onto human A1 by fitting the central β -sheets (RMSD 0.3 Å; within experimental error); the only notable difference is the location of helix $\alpha 4$, which is shifted by 2-3 Å away from the GPIb α interface in the mouse owing to a larger residue on the buried face of this helix. For the GPIba model, only the side-chains were altered, since the human and murine LRRs have identical lengths. Consensus rotamers with minimal steric clashes were chosen, followed by manual adjustment where necessary to create sensible van der waals interactions and H-bonding, using TURBOFRODO (Bio-Graphics, Marseille, France). Molecular overlays were optimized using LSQKAB (Collaborative Computational Project, No. 4. Acta Crystallogr. D50, 760-763 (1994)); molecular figures were created using MOLSCRIPT (Esnouf, R. M. J. Mol. Graph. Model. 15, 132-136 (1997)) and OPENGL (http://www. rush3d.com/reference/opengl-bluebook-1.0)

[0294] Statistics. An unpaired, two-tailed Student t test was used for multiple comparisons.

[0295] Results and Discussion

[0296] As the interaction between GPIb α and VWF-A1 is a prerequisite for effective thrombus formation in the arterial circulation, we first tested the ex vivo ability of surface-bound murine plasma VWF or its recombinant A1 domain (rVWF-A1) to support human platelet adhesion under physiologically relevant flow conditions: that is at a shear rate exceeding 1000 s^{-1} using a parallel-plate flow chamber (Ruggeri, Z. M. et al., (2006) Blood. 108, 1903-1910). The adhesive properties of VWF are tightly regulated such that it preferentially binds to platelets only when immobilized to sites of vascular injury and under hydrodynamic conditions encountered on the arterial side of the circulation (Sakariassen et al., (1979) Nature 279, 636-638; Ruggeri, Z. M. et al., (2006) Blood. 108, 1903-1910). Perfusion of human whole blood over murine plasma VWF or rVWF-A1 resulted in limited platelet deposition (10 to 25%, respectively) as compared with samespecies controls (FIG. 36A-B). Similarly, human VWF proteins had a diminished capacity to support murine platelet accumulation under identical conditions (FIGS. 36C-D). This interspecies incompatibility would seem to preclude the study of human platelet behavior in a mouse model of arterial thrombosis.

[0297] In order to gain insight into the structural origins of this species incompatibility, we built models of murine-murine and human-murine GPIbα-VWF-A1 complexes based on the crystal structures of the human complex (Fukuda, K., et al., *Nat. Struct. Mol. Biol.* 12, 152-159 (2005); Dumas, J. J. et al., *J. Biol. Chem.* 279, 23327-23334 (2004); Huizinga, E. G. et al., *Science* 297, 1176-1179 (2002)) and human and murine VWF-A1 (Fukuda, K., et al., *Nat. Struct. Mol. Biol.* 12, 152-159 (2005)) (FIG. **37**A-E; see Methods).

[0298] The A1 domain comprises a Rossmann-like fold with a central, mostly parallel β -sheet flanked on both sides by α-helices (Fukuda, K., et al., Nat. Struct. Mol. Biol. 12, 152-159 (2005)). Human and murine VWF-A1 share considerable sequence (86% identity) and structure homology; in fact, the β -sheets of both species are identical within experimental error (a root mean square difference of 0.33 Å for C α -atoms). The only major difference is the location of helix α 4 (nomenclature as previously described in Dumas, J. J. et al., J. Biol. Chem. 279, 23327-23334 (2004)), which is shifted 2-3 Å away from the GPIba binding site in the mouse, owing to a difference in a buried hydrophobic residue (FIG. 37 A-B). Although neither the structure of murine GPIba nor its complex with the VWF-A1 domain are known, the high sequence similarity of the murine and human proteins (including the complex interface), as well as the rigid architecture of the leucine-rich repeats (LRR) of GPIba, provide high confidence that their 3D structures will be highly homologous.

[0299] In the complexes, the major contact region involves the " β -switch" region (residues 227 to 241 in the C-terminal flank of GPIb alpha), which forms a β -hairpin that augments the β -sheet of the VWF-A1 domain. On its other side, this region of GPIba packs tightly against the concave face of the LRR, which highly constrains it movement. Residues in mouse and human are mostly invariant on both sides of this interface. Notable exceptions are at position 1326 in VWF-A1, which is histidine (H) in humans versus an arginine (R) in mouse, and at position 238 in GPIb alpha, which is alanine (A) in humans versus an aspartic acid (D) in mouse (FIGS. 37C and 37D). A model of the murine complex suggests that these changes are complementary, since D238 can form an intermolecular salt-bridge with R1326; D238 in murine GPIb alpha also shields the positively charged flanking lysine (K) at position 231 (a conserved residue in both species) from unfavorable interactions with R1326 in murine VWF-A1. This salt-bridge cannot form in the human complex due to the presence of a histidine at 1326. However, an intermolecular salt-bridge can occur between R1395 and E225 located at the top of the human complex, which may compensate for this loss (FIG. 37D). No such interaction can occur in the murine complex (FIG. 37C).

[0300] In the human GPIb alpha-murine VWF-A1 interspecies complex, we predict that the two positively charged residues (GPIb alpha K231 and VWF-A1 R1326) create an electrostatic clash that impedes binding, owing to the lack of a negatively charged group at position 238 (FIG. **37**E). In the murine GPIb alpha-human VWF-A1 interspecies complex, however, no such electrostatic clash occurs despite the absence of the salt-bridge. There is, however, an overall change in net charge in the binding interface compared with the murine GPIb alpha-murine VWF-A1 complex (FIG. **37**F). This, together with the loss of critical salt-bridges, most likely accounts for the reduced interaction between mouse platelets and human VWF (See Tables 5 and 6).

TABLE 5

			n residues on the human rspecies complex.
mVWF-A1	hGPIb-alpha partner	hGPIb alpha- mVWF-A1	
R1326	A238	(-)	Permits electrostatic clash of R1326 with K231 in GPIb alpha
E1330	K237	(+)	New salt-bridge E1330-K237
G1370	none	0	No interactions
R1395 (shifts position)	E225	(-)	Loss of salt-bridge

(+) = net positive,

(-) =net negative,

0 = minimal effect compared with syngeneic complexes.

TABLE 6

	ect of species di alpha-human VV		esidues on the murine GPIb ecies complex.
hVWF-A1	mGPIb-alpha partner	hGPIb- alpha- mVWF-A1	Reason
H1326	D238	(-)	Loss of R1326-D238 salt-
G1330	K237	(-)	bridge Loss of E1330-K237 salt- bridge
S1370 R1395 (shifts position)	none N225	0 (+)	No interactions New polar interactions with R1395

(+) = net positive,

(-) = net negative,

0 = minimal effect compared with syngeneic complexes.

[0301] To explore the importance of the electrostatic mismatches in destabilizing the interspecies complexes, we substituted human residues into murine rVWF-A1 at positions 1326 (R>H), 1330 (E>G), and 1370 (S>G), and analyzed the ability of the mutant proteins to support human platelet accumulation under flow. As expected, amino acid substitutions at positions 1330 (predicted to remove a salt-bridge) and 1370 (predicted to have no effect) failed to promote the interaction between murine rVWF-A1 and human GPIb α . However, the 1326R>H mutation, which eliminates the electrostatic clash with K231, rendered murine A1 capable of supporting interactions at a level comparable to its wild-type (WT) human counterpart (FIG. 37G). Similarly, conversion of 1326H>R in the human rVWF-A1 protein promoted the binding of mouse platelets, while the reverse substitution in its murine counterpart reduced adhesion by 75%. That a single residue change is sufficient for shifting the binding preferences across species supports the notion that this contact region is a "hot-spot" in the protein interface (Bogan, A. A. & Thorn, K. S. J. Mol. Biol. 280, 1-9 (1998)).

[0302] In order to determine the ability of full-length murine VWF containing the 1326R>H mutation (VWF^{1326R>H}) to support human platelet interactions and ultimately thrombus formation in vivo, we genetically modified mice to express VWF^{1326R>H} (FIG. **38**B-C). Both homozygous and heterozygous animals were viable, fertile, born at the expected Mendelian ratio, and had platelet counts comparable to WT littermate controls. Moreover, reverse transcription-PCR(RT-PCR) of lung tissue from mutant mice

with primers specific for the A1, A2, and/or A3 domains of VWF amplified cDNAs of the correct size and of similar intensity as compared to WT littermate controls (FIG. **39**A). VWF antigen levels, Factor VIII function, as well as VWF multimer pattern in homozygous mutant plasma were found to be equivalent to WT controls (FIG. **39**B-C). These results indicate that VWF gene translation, transcription, and post-translational modifications were not perturbed by our targeting strategy. The ability of plasma VWF to bind to collagen was also not affected by the introduction of the point mutation.

[0303] Hemostasis relies on platelet adhesion and activation at sites of vascular injury, which ultimately results in the formation of a hemostatic plug. To demonstrate the importance of VWF-A1 in this process, we measured bleeding times for mice possessing the 1326R>H mutation by removing 1 cm of distal tail (FIG. **41**A). In contrast to their WT counterparts, the vast majority of homozygous VWF^{1326R>H} mice were incapable of forming an effective hemostatic plug, as they continued to bleed profusely throughout the duration of the experiment (10 min). Moreover, a smaller but statistically significant increase in bleeding time was noted for heterozygous animals (1.9-fold compared with WT; P=0.0055). Thus, disruption of a single salt bridge between murine VWF-A1 and GPIb\alpha is sufficient to impair hemostasis.

[0304] To gain insight into how the 1326R>H mutation alterations hemostasis, we evaluated murine platelet adhesion at sites of vascular damage in vivo. A laser-induced vascular injury model was utilized to initiate platelet deposition in arterioles located in the microcirculation of the cremaster muscle of WT and homozygous mutant mice (Furie, B. & Furie., B. C. (2005) *J. Clin. Invest.* 115, 3355-3362). Although VWF^{1326R>H} animals can initially form thrombi that fill the vessel lumen, they rapidly dissipated under the prevailing hydrodynamic conditions (FIG. **40**). By contrast, thrombi in WT mice continue to enlarge and eventually occlude blood flow under identical conditions.

[0305] To demonstrate that the removal of the electrostatic clash between residues 1326 and 231 in murine VWF-A1 and human GPIb alpha, respectively, promotes substantial interactions between this chimeric receptor-ligand pair, we perfused human whole blood over surface-immobilized plasma VWF obtained from mice homozygous for VWF^{1326R>H} Remarkably, mutant murine VWF bound human platelets at levels comparable with its human counterpart (FIG. **41**B). Moreover, a function-blocking antibody 6D1, which binds exclusively to human GPIb α at the fourth LRR (Shen, Y. et al. (2000) *Blood.* 95, 903-910), inhibited platelet adhesion, demonstrating a key role for the platelet receptor in adhesion to VWF^{1326R>H}.

[0306] By contrast, the antibody SZ2 that recognizes the anionic-sulfated tyrosine sequence of GPIb α (residues 276 to 282) had a minimal affect on platelet accumulation, results consistent with a previous report (Fredrickson et al., (1998) *Blood.* 92, 3684-3693). The A1 domain also possesses the ability to support the movement of attached platelets in the direction of the prevailing hydrodynamic force owing to rapid and reversible interactions with GPIb α (Savage et al., (1996) *Cell* 84, 289-297; Doggett, T. A. et al. (2002) *Biophys. J.* 83, 194-205). We therefore compared translocation velocities of human platelets on either human or mutant murine VWF. Translocation velocities of human platelets on either homozygous mutant murine or native human plasma VWF were also similar (3.5±0.1 µm/sec vs. 3.2±0.1 µm/sec, respec-

tively; mean \pm s.e.m, n=4), demonstrating that VWF^{1326R->H} functions in a manner indistinguishable from its human counterpart.

[0307] We next tested the ability of murine $VWF^{1326R>H}$ to support human platelet adhesion in vivo. The ability of human platelets to preferentially support thrombus formation was monitored simultaneously by labeling purified human cells with BCECF ex-vivo, and mouse platelets with rhodamine 6G by intravenous administration. Fluorescently-labeled human platelets were infused continuously via a catheter inserted into the femoral artery, resulting in a high local concentration of these cells within the microcirculation of the cremaster muscle. Their behavior in response to laser-induced vascular injury was monitored in real-time using confocal intravital microscopy (Furie, B. & Furie., B. C. (2005) J. Clin. Invest. 115, 3355-3362). Upon induction of laser damage to the vessel wall of arterioles in mice homozygous for $VWF^{1326R>H}$ human platelets rapidly adhered to the site of injury, forming large thrombi composed mainly of human cells (91.7±1.2%; mean±s.e.m) (FIG. 41C-D); average thrombus size was 8,950±1,620 µm² (mean±s.e.m.). In WT mice, by contrast, human platelets had only a limited capacity to bind to the damaged vessel wall, accounting for only 5.7±0. 4% of total thrombus area (mean±s.e.m.) (FIG. 41C-D).

[0308] Consistent with the critical role of platelet GPIb alpha in mediating interactions with VWF-A1, pre-treatment of human platelets with mAb 6D1 greatly reduced thrombus size in the vasculature of VWF^{1326R>H} mice ($265\pm125 \ \mu m^2$; mean±s.e.m.) (FIG. **41**E). This was also validated by our observations that human platelet deposition at sites of arterial injury is limited in VWF-deficient mice ($185\pm35 \ \mu m^2$; mean±s.e.m.), demonstrating that the A1 domain of this plasma protein serves as the major ligand for GPIb α in our humanized animal model of thrombosis.

[0309] Although GPIba initiates platelet deposition at arterial shear rates, it is ultimately the platelet integrin α IIb β 3 that supports thrombus growth by promoting platelet-platelet interactions. The contribution of human aIIb₃ in this process is demonstrated by the ability of the function blocking antibody 7E3 to also limit thrombus size (529±150 µm²) (FIG. 41E). Confirmation that the interaction formed between human platelets and murine VWF^{1326R>H} is sufficient to promote effective hemostasis is provided by the ability of infused human cells to restore bleeding times in mutant mice to a level observed for their WT counterparts (182±14.5 s vs. 131. 5±11.2 s, respectively; mean±s.e.m.) (FIG. 41F). Importantly, human platelet-induced hemostatic clot formation can be completely disrupted in these animals by the preadministration of either clopidogrel (PLAVIX), an inhibitor of ADPinduced platelet activation, or abciximab (ReoPro®), a Fab fragment of the chimeric human-mouse monoclonal antibody 7E3, which blocks the function of α IIb β 3 on human but not murine platelets (Hankey, G. J. & Eikelboom, J. W. Antiplatelet drugs. Med. J. Aust. 178, 568-574; Bennett, J. S. (2001) Annu. Rev. Med. 52, 161-184) (FIG. 41F).

[0310] In summary, these studies demonstrate how one can effectively utilize atomic models of interspecies complexes to identify a binding hot spot where a disproportionate amount of the binding free energy is localized, such that a single amino acid substitution significantly affects the interaction (Bogan, A. A. & Thorn, K. S. (1998) *J. Mol. Biol.* 280, 1-9), and in this case switches species specificity. Moreover, a subtle and localized change of this nature limits the possibility of inducing structural perturbations that impact on the

function of other domains contained within VWF. These show that human platelet adhesion to $VWF^{1326R>H}$ is dependent on GPIba binding to VWF-A1, with other potential ligands for this receptor playing a subservient role in this process (Bergmeier, W. et al. (2006) Proc. Natl. Acad. Sci. USA. 103, 16900-16905). The reliance of human thrombus formation on the integrin α IIb β 3, as well as the ability of the FDA approved drugs PLAVIX and ReoPro® to impair human platelet-mediated hemostasis indicate that downstream adhesive and activation events known to be critical for clot formation and stability are intact in the mutant VWF animals. Thus, we anticipate that the VWF^{1326R>H} knock-in mice will prove useful in the preclinical evaluation of new antithrombotic therapeutics designed ultimately for human use. These results also have implications for advancing both knowledge of human platelet biology and in preclinical testing of antithrombotic therapies in vivo.

Example 5

Use of "Humanized" VWF-A1 Animal for Developing Technologies to Image Sites of Occult Bleeding or Thrombus Formation in Humans

[0311] Perfluorocarbon Nanoparticle based imaging platform. The ability of a VWF-A1 mutant animal, such as our 1326R>H mutant mouse, to generate thrombi composed of human platelets at sites of vascular injury in vivo, provides a means for developing imaging technologies designed to detect sites of occult bleeding or thrombus formation in humans. For example, such technologies may prove useful expediting the discovery of sites of internal bleeding in humans as a result of injuries obtained form a motor vehicle accident. Similarly, it may be useful in detecting injuries obtained in a military battle. Suitable probes include antibodies, small molecules, peptides that recognize molecules expressed on human platelets or the various domains of VWF. However, coupling contrast agents directly to antibodies is cumbersome and insufficient for detection of such complexes in the body by various imaging modalities (i.e. MRI) due to low signal to noise output. Thus, an ideal candidate for detection would not only preserve the specificity associated with monoclonal antibodies, small molecules, or peptides but also have the following properties: 1) high signal-to-noise ratio, 2) long circulating half-life, 3) acceptable toxicity profile, 4) ease of use and production, and 5) compatibility with standard commercially available imaging modalities. Perfluorocarbon Nanoparticle (PNP) may provide the answer. This proposal will take advantage of a novel nanoparticle contrast agent that can be imaged by ultrasound, magnetic resonance, and nuclear imaging (Lanza et al., (2000) Invest Radiol, 35: 227-234; Lanza et al., (1997) Ultrasound Med Biol, 23: 863-870; Yu et al., (2000) Magn Reson Med. 44(6):867-72). This agent is a small (~150-250 nanometer diameter), lipid encapsulated, perfluorocarbon emulsion that can be administered by vein. Importantly, monoclonal antibodies as well as small molecules and peptides that recognize platelets and/or VWF can be covalently coupled to PNPs. Moreover, PNPs can also be potentially used for targeted drug delivery (FIG. 42).

[0312] PNPs have been shown to remain stable in the circulation with a half-life of >1 hour, which permits rapid binding and local contrast enhancement sufficient for diagnostic imaging within 30-60 minutes. PNPs are cleared by the liver and spleen, and are similar to "artificial blood" formulations used to enhance oxygen, which have acceptable safety

profiles for clinical use at 10 times greater dose than would be required for targeted contrast enhancement. In addition, perfluorocarbon to be used in this study (perfluorooctylbromide) has an extensive tract record for human safety in clinical trials (i.e. Oxygent, Alliance Pharmaceuticals). Thus, this nanoparticle platform provides an ideal opportunity to prove that contrast agents can be targeted specifically to sites of human thrombus formation.

[0313] Preparation of Fluorescently-Labeled Antibody Targeted Nanoparticles.

[0314] The basic method for formulating perfluorocarbon nanoparticles comprised of perfluorocctyl bromide (40% w/v), a surfactant co-mixture (2.0%, w/v) and glycerin 9(1. 7%, w/v) has been well described (Lanza et al., (2000) *Invest Radiol*, 35: 227-234; Lanza et al., (1997) *Ultrasound Med Biol*, 23: 863-870).

[0315] Briefly, the surfactant co-mixture is dissolved in chloroform/methanol, evaporated under reduced pressure, dried in a 50° C. vacuum oven, and finally dispersed into water by sonication. The suspension is combined with perfluorocarbon and then emulsified at 20,000 PSI. Fluorescent nanoparticles are manufactured by including in the lipid mixture 0.1 mole % Fluorescence-FITC or PE prior to the emulsification step. Coupling of monoclonal antibodies involves the introduction of a sulflhydrl group onto the protein by modification of amines with N-succinimidyl S-acetylthioacetate (SATA), which then is reacted with nanoparticles containing activated maleimide. We coupled an antibody that recognizes the human, but not mouse, platelet receptor alphaIIb beta, and determined the ability of FITC-labeled PNPs to detect a thrombus composed of human platelets at a site of laser-induced vascular injury in the cremaster muscle of a mouse homozygous for the 1326R>H mutation. These antibody-coupled PNPs rapidly and selectively accumulated at the site of the developing human thrombus (FIG. 43).

Example 6

Identification of Small Molecules that Mitigate Binding Between GPIb Alpha and the VWF-A1 Domain

[0316] Small molecules, often with molecular weights of 500 or below, have proven to be extremely important to researchers to explore function at the molecular, cellular, and in vivo level. Such compounds have also been proven to be valuable as drugs to treat diseases, and most medicines marketed today are from this class (i.e. Aggrastat—see above). As the interaction between GPIb alpha and VWF-A1 is essential for the platelet deposition in damaged arterioles, it is a reasonable to assume that disruption of this adhesive event will inhibit or ameliorate thrombus formation. Moreover, we speculate that only partial inhibition is required to achieve

this goal based on the phenotype of our mutant A1 domain mice, the inability to form stable thrombi in vivo.

[0317] Computational design based on the structure of the binary complex. Traditional approaches to small molecule discovery typically rely on a step-wise synthesis and screening program for large numbers of compounds to optimize activity profiles. Over the past decade, scientists have used computer models to aid in the development of new chemical agonists or antagonists as well as to better define activity profiles and binding affinities of such compounds. In particular, these tools are being successfully used, in conjunction with traditional research techniques, to examine the structural properties of existing compounds in order to predict their ability to alter the function of biologically relevant proteins. For this approach to be successful, one must have high quality crystal structures of the biological molecule(s) in order to generate an accurate 3-dimensional model so that it can then be used to identify binding regions for small molecules.

[0318] The structure of the binary complex formed when GPIb alpha binds to the A1 domain of VWF can be determined using such methods. For example, a mechanism by which the snake venom protein botrocetin enhances the interaction between GPIb alpha and the VWF-A1 in order to promote spontaneous platelet aggregation, resulting in death has been elucidated. Botrocetin was known to bind with high affinity to the A1 domain [see Table 7 for the crystallization data summary and Table 8 for atomic coordinate data], but was not thought to interact directly with GPIb alpha. This snake venom has the capacity to form a small, but distinct interface with this platelet receptor so to prevent its release from the A1 domain, thus facilitating platelet aggregation (FIG. 44). In a sense, nature has created a molecule that modifies the behavior of a known biological interaction, suggesting that one may be able to target man-made structures to this domain as well.

TABLE 7

Summary of Crystallization data (fr J Biol Chem (1998) 273	
Structure	Free enzyme (see Table 8)
Space Group	P6
Maximum resolution (Å)	2.3
Resolution range for refinement	10-2.3
Number of reflections	11,849
Completeness (%)	85.4
R factor ² (%)	18.6
Free R factor ² (%)	23.8
rms deviation in bond lengths (Å)	0.011
rms deviation in bond angles (°)	1.43

TABLE 8

Atomic Coordinates for Residues of a Crystal of murine VWF-A1 (SEQ
ID NO: 10).

CRYST1	8	36.395	86.3	95 68	.125 90	.00 90	0.00 120.0	00 P 6	1	6
ATOM	1	Ν	ASP	498	22.142	52.453	-14.520	1.00	83.59	Ν
ATOM	2	CA	ASP	498	20.770	52.768	-14.026	1.00	83.86	С
ATOM	3	С	ASP	498	20.803	53.068	-12.522	1.00	81.16	С
ATOM	4	0	ASP	498	20.978	52.165	-11.696	1.00	81.93	0
ATOM	5	CB	ASP	498	19.821	51.597	-14.327	1.00	87.23	С
ATOM	6	CG	ASP	498	18.352	51.961	-14.133	1.00	88.94	С
ATOM	7	OD1	ASP	498	18.022	53.171	-14.084	1.00	88.91	0

TABLE 8-continued

	Atom	ic Coor	dinates :	for Resid	lues of a C ID NO: 1		murine VW	F-A1	(SEQ	
ATOM	8	OD2	ASP	498	17.521	51.027	-14.033	1.00	90.11	0
ATOM	9	Ν	ILE	499	20.620	54.343	-12.190	1.00	76.43	Ν
ATOM	10	CA	ILE	499	20.649	54.829	-10.809	1.00	70.82	С
ATOM	11	С	ILE	499	19.237	55.126	-10.255	1.00	64.40	С
ATOM	12	0	ILE	499	18.888	56.265	-9.941	1.00	62.53	0
ATOM	13	CB	ILE	499	21.596	56.076	-10.724	1.00	75.17	С
ATOM	14	CG1	ILE	499	21.872	56.476	-9.278	1.00	77.18	С
ATOM	15	CG2	ILE	499	21.030	57.256	-11.527	1.00	77.54	С
ATOM	16	CD1	ILE	499	23.010	57.485	-9.141	1.00	79.34	C
ATOM	17	N CA	SER SER	500 500	18.445 17.073	54.071	-10.111	1.00	58.81 52.67	N
ATOM ATOM	18 19	CA	SER	500	16.771	54.170 52.914	-9.616 -8.797	$1.00 \\ 1.00$	46.03	C C
ATOM	20	õ	SER	500	17.477	51.915	-8.928	1.00	46.10	ŏ
ATOM	20	CB	SER	500	16.085	54.306	-10.779	1.00	55.03	č
ATOM	22	OG	SER	500	14.814	54.747	-10.320	1.00	55.43	ŏ
ATOM	23	N	GLU	501	15.690	52.946	-8.017	1.00	39.21	Ň
ATOM	24	CA	GLU	501	15.341	51.839	-7.124	1.00	33.62	C
ATOM	25	С	GLU	501	13.826	51.632	-6.967	1.00	33.73	Ċ
ATOM	26	0	GLU	501	13.055	52.575	-7.148	1.00	35.42	0
ATOM	27	CB	GLU	501	16.025	52.088	-5.772	1.00	27.09	С
ATOM	28	CG	GLU	501	15.928	53.517	-5.328	1.00	23.81	С
ATOM	29	CD	GLU	501	17.036	53.971	-4.394	1.00	22.26	С
ATOM	30	OE1	GLU	501	18.150	53.442	-4.407	1.00	23.46	0
ATOM	31	OE2	GLU	501	16.790	54.912	-3.645	1.00	19.78	0
ATOM	32	Ν	PRO	502	13.390	50.408	-6.585	1.00	32.77	Ν
ATOM	33	CA	PRO	502	11.980	50.038	-6.406	1.00	33.37	С
ATOM	34	С	PRO	502	11.257	50.886	-5.377	1.00	36.76	С
ATOM	35	0	PRO	502	11.881	51.657	-4.655	1.00	40.35	0
ATOM	36	CB	PRO	502	12.056	48.588	-5.911	1.00	32.84	С
ATOM	37	CG	PRO	502	13.426	48.154	-6.188	1.00	30.80	С
ATOM ATOM	38 39	CD N	PRO PRO	502	14.248	49.372 50.743	-5.994	$1.00 \\ 1.00$	33.53 38.50	C N
ATOM	39 40	N CA	PRO	503 503	9.921 9.095	51.495	-5.283 -4.332	1.00	36.00	C
ATOM	41	C	PRO	503	9.217	50.861	-2.962	1.00	33.78	c
ATOM	42	õ	PRO	503	9.351	49.642	-2.870	1.00	33.98	ŏ
ATOM	43	ČВ	PRO	503	7.670	51.270	-4.844	1.00	35.94	č
ATOM	44	CG	PRO	503	7.844	50.708	-6.240	1.00	36.76	Č
ATOM	45	CD	PRO	503	9.074	49.889	-6.137	1.00	37.21	Č
ATOM	46	Ν	LEU	504	9.225	51.670	-1.910	1.00	32.48	Ν
ATOM	47	CA	LEU	504	9.284	51.120	-0.562	1.00	31.29	С
ATOM	48	С	LEU	504	7.869	50.821	-0.120	1.00	31.74	С
ATOM	49	0	LEU	504	7.663	50.104	0.847	1.00	34.42	0
ATOM	50	CB	LEU	504	9.857	52.133	0.427	1.00	27.31	С
ATOM	51	CG	LEU	504	11.346	52.216	0.633	1.00	20.47	С
ATOM	52	CD1	LEU	504	11.608	53.354	1.577	1.00	16.31	С
ATOM	53	CD2	LEU	504	11.865	50.886	1.213	1.00	22.70	С
ATOM	54	N	HIS	505	6.892	51.433	-0.779	1.00	32.33	N
ATOM	55	CA	HIS	505	5.508	51.234	-0.382	1.00	33.59	С
ATOM	56	C O	HIS	505	4.574	50.872	-1.506	1.00	37.41	C
ATOM ATOM	57 58	СВ	HIS HIS	505 505	4.980 4.977	50.817 52.504	-2.669 0.277	$1.00 \\ 1.00$	38.66 30.39	O C
ATOM	59	CG	HIS	505	5.799	52.956	1.432	1.00	24.50	c
ATOM	60	ND1	HIS	505	6.533	54.118	1.432	1.00	26.88	N
ATOM	61	CD2	HIS	505	6.041	52.377	2.628	1.00	22.75	C
ATOM	62	CE1	HIS	505	7.195	54.235	2.543	1.00	22.86	č
ATOM	63	NE2	HIS	505	6.915	53.193	3.297	1.00	23.78	Ň
ATOM	64	Ν	ASP	506	3.323	50.612	-1.125	1.00	39.57	Ν
ATOM	65	CA	ASP	506	2.254	50.291	-2.072	1.00	41.22	С
ATOM	66	С	ASP	506	1.600	51.614	-2.482	1.00	39.47	С
ATOM	67	0	ASP	506	1.306	51.826	-3.651	1.00	42.48	0
ATOM	68	CB	ASP	506	1.231	49.325	-1.443	1.00	44.20	С
ATOM	69	CG	ASP	506	1.831	47.941	-1.106	1.00	47.68	С
ATOM	70	OD1	ASP	506	2.837	47.508	-1.730	1.00	48.34	Ο
ATOM	71	OD2	ASP	506	1.276	47.272	-0.209	1.00	49.92	0
ATOM	72	N	PHE	507	1.367	52.497	-1.507	1.00	38.50	N
ATOM	73	CA	PHE	507	0.800	53.830	-1.756	1.00	35.03	C
ATOM	74	С	PHE	507	2.016	54.527	-2.406	1.00	36.00	С
ATOM	75	O CD	PHE	507	3.086	54.637	-1.780	1.00	35.29	0
ATOM	76 77	CB	PHE	507	0.408	54.471	-0.418	1.00	32.75	C
ATOM	77	CG	PHE PHE	507 507	-0.252 -1.605	55.810 55.915	-0.552 -0.866	$1.00 \\ 1.00$	32.71 33.60	C C
	70									
ATOM ATOM	78 79	CD1 CD2	PHE	507	0.471	56.969	-0.343	1.00	29.61	c

TABLE 8-continued

	Atomi	c Coor	dinates f	or Resid	lues of a C ID NO: 1		murine VW	F-A1	(SEQ	
атом	81	CE2	PHE	507	-0.132	58.205	-0.437	1.00	29.32	С
ATOM	82	CZ	PHE	507	-1.477	58.298	-0.750	1.00	33.05	С
ATOM	83	Ν	TYR	508	1.839	55.032	-3.624	1.00	35.32	Ν
ATOM	84	CA	TYR	508	2.955	55.578	-4.396	1.00	32.82	С
ATOM	85	С	TYR	508	2.445	56.499	-5.515	1.00	33.01	С
ATOM	86	0	TYR	508	1.484	56.154	-6.200	1.00	39.06	0
ATOM	87	CB	TYR	508	3.612	54.364	-5.053	1.00	27.12	C
ATOM	88	CG	TYR	508	5.027	54.464	-5.529	1.00	31.57	С
ATOM	89	CD1 CD2	TYR	508	6.041	54.922	-4.680	1.00	35.35	C
ATOM ATOM	90 91	CD2 CE1	TYR TYR	508 508	5.389 7.397	53.946 54.848	-6.771 -5.054	$1.00 \\ 1.00$	28.70 36.51	C C
ATOM	92	CE1 CE2	TYR	508	6.730	53.862	-7.154	1.00	33.58	c
ATOM	93	CZ	TYR	508	7.735	54.309	-6.294	1.00	36.83	č
ATOM	94	OH	TYR	508	9.075	54.176	-6.649	1.00	40.00	ŏ
ATOM	95	N	CYS	509	3.046	57.662	-5.717	1.00	28.11	Ň
ATOM	96	CA	CYS	509	2.593	58.516	-6.822	1.00	27.15	C
ATOM	97	С	CYS	509	3.509	58.310	-8.009	1.00	25.32	Ē
ATOM	98	õ	CYS	509	4.717	58.512	-7.909	1.00	30.67	ŏ
ATOM	99	CB	CYS	509	2.572	59.997	-6.464	1.00	25.77	С
ATOM	100	SG	CYS	509	1.888	61.004	-7.834	1.00	21.50	S
ATOM	101	Ν	SER	510	2.939	57.837	-9.102	1.00	23.50	Ν
ATOM	102	CA	SER	510	3.686	57.590	-10.321	1.00	25.91	С
ATOM	103	С	SER	510	3.052	58.414	-11.475	1.00	25.38	С
ATOM	104	0	SER	510	2.384	57.882	-12.364	1.00	32.01	0
ATOM	105	CB	SER	510	3.687	56.087	-10.612	1.00	24.85	С
ATOM	106	OG	SER	510	4.275	55.783	-11.867	1.00	29.60	0
A TOM	107	Ν	ARG	511	3.236	59.726	-11.434	1.00	19.35	Ν
ATOM	108	CA	ARG	511	2.689	60.596	-12.451	1.00	16.16	С
ATOM	109	С	ARG	511	3.757	61.589	-12.810	1.00	20.03	С
TOM	110	0	ARG	511	4.825	61.584	-12.191	1.00	24.48	0
TOM	111	CB	ARG	511	1.439	61.310	-11.952	1.00	13.51	C
TOM	112	CG	ARG	511	0.300	60.358	-11.708	1.00	13.74	С
ATOM	113	CD	ARG	511	-0.994	61.084	-11.674	1.00	12.03	C
ATOM	114	NE	ARG	511	-2.111	60.169	-11.505	1.00	12.96	N
ATOM	115	CZ NIII1	ARG	511	-3.388	60.547	-11.582	1.00	16.84	C
ATOM ATOM	116 117	NH1 NH2	ARG ARG	511 511	-3.700 -4.361	61.814 59.680	-11.841 -11.342	$1.00 \\ 1.00$	18.71 18.41	N N
ATOM	118	N	LEU	512	3.482	62.427	-13.810	1.00	16.95	N
ATOM	119	CA	LEU	512	4.457	63.400	-14.279	1.00	17.28	C
ATOM	120	C	LEU	512	4.337	64.645	-13.434	1.00	16.82	č
ATOM	120	õ	LEU	512	3.544	65.534	-13.715	1.00	18.14	ŏ
ATOM	122	ČВ	LEU	512	4.220	63.668	-15.756	1.00	18.43	č
TOM	123	CG	LEU	512	4.357	62.372	-16.556	1.00	17.02	Ĉ
ATOM	124	CD1	LEU	512	3.947	62.602	-17.993	1.00	15.13	С
ATOM	125	CD2	LEU	512	5.796	61.865	-16.461	1.00	16.19	Č
ATOM	126	Ν	LEU	513	5.226	64.748	-12.458	1.00	19.32	Ν
ATOM	127	CA	LEU	513	5.162	65.827	-11.501	1.00	18.08	С
ATOM	128	С	LEU	513	6.506	66.390	-11.089	1.00	15.12	С
ATOM	129	0	LEU	513	7.477	65.655	-10.948	1.00	14.11	0
ATOM	130	CB	LEU	513	4.454	65.273	-10.257	1.00	19.36	С
ATOM	131	CG	LEU	513	4.260	66.123	-9.012	1.00	20.52	С
ATOM	132	CD1	LEU	513	3.338	67.259	-9.353	1.00	18.37	С
TOM	133	CD2	LEU	513	3.698	65.270	-7.902	1.00	12.16	С
TOM	134	Ν	ASP	514	6.534	67.699	-10.853	1.00	16.07	Ν
ATOM	135	CA	ASP	514	7.735	68.384	-10.383	1.00	16.17	С
ATOM	136	С	ASP	514	7.257	68.946	-9.041	1.00	15.61	С
ATOM	137	O	ASP	514	6.480	69.890	-9.014	1.00	16.76	0
ATOM	138	CB	ASP	514	8.136	69.530	-11.327	1.00	15.99	С
ATOM	139	CG	ASP	514	9.016	69.076 67.874	-12.511 -12.736	1.00	18.33	С
ATOM ATOM	140 141	OD1 OD2	ASP ASP	514 514	9.255 9.492		-12.736 -13.240	$1.00 \\ 1.00$	17.22 25.18	0
TOM	141	N N	ASP LEU	514 515	9.492 7.660	69.961 68.338	-13.240 -7.929	1.00	25.18 15.44	N
ATOM	142	IN CA	LEU LEU	515	7.205	68.808	-6.623	1.00	13.44 14.64	C
ATOM	145	CA C	LEU LEU	515	8.282	69.524	-5.802	1.00	14.04	c
ATOM	144	ŏ	LEU	515	9.382	68.995	-5.603	1.00	8.40	ŏ
ATOM	145	CB	LEU	515	9.382 6.613	67.625	-5.853	1.00	8.40 14.99	c
ATOM	147	CG	LEU	515	6.168	67.788	-4.396	1.00	9.59	c
ATOM	148	CD1	LEU	515	5.054	68.775	-4.249	1.00	5.58	c
ATOM	148	CD1	LEU	515	5.714	66.455	-3.924	1.00	8.85	c
ATOM	150	N N	VAL	516	7.975	70.743	-5.355	1.00	10.50	N
	150	CA	VAL	516	8.927	71.514	-4.566	1.00	13.88	Ĉ
ALOM -		the second se		~ × V	~~~~			2.00		~
АТОМ АТОМ	152	С	VAL	516	8.504	71.601	-3.100	1.00	14.19	С

TABLE 8-continued

	Atomic	Coord	linates f		ues of a C ID NO: 1		nurine VV	VF-A1	(SEQ	
АТОМ	154 (СВ	VAL	516	9.103	72.966	-5.111	1.00	15.97	С
ATOM	155 0	CG1	VAL	516	10.134	73.711	-4.278	1.00	14.88	С
ATOM		CG2	VAL	516	9.580	72.947	-6.570	1.00	14.16	С
ATOM		N	PHE	517	9.359	71.127	-2.191	1.00	17.00	Ν
TOM		CA	PHE	517	9.072	71.205	-0.747	1.00	13.51	С
TOM		Ç	PHE	517	9.776	72.469	-0.179	1.00	12.08	C
TOM		C	PHE	517	11.009	72.587	-0.233	1.00	10.17	0
ATOM		CB	PHE	517	9.602	69.968	-0.024	1.00	15.54	C
ATOM		CG CD1	PHE PHE	517	8.940	68.662	-0.426	1.00	11.63	C C
атом атом		CD1	PHE	517 517	7.805 9.517	68.200 67.852	0.230 -1.400	$1.00 \\ 1.00$	13.47 9.53	c
ATOM		CE1	PHE	517	7.256	66.952	-0.075	1.00	10.36	c
TOM		CE2	PHE	517	8.989	66.625	-1.703	1.00	8.49	č
TOM		CZ	PHE	517	7.847	66.164	-1.036	1.00	10.76	č
TOM		N	LEU	518	9.005	73.405	0.378	1.00	12.33	Ň
ATOM		CA	LEU	518	9.574	74.643	0.926	1.00	12.65	С
ATOM		С	LEU	518	9.420	74.659	2.453	1.00	11.22	С
ATOM	171 (С	LEU	518	8.333	74.940	2.959	1.00	15.25	Ο
ATOM	172 (СВ	LEU	518	8.884	75.865	0.287	1.00	9.93	С
ATOM	173 (CG	LEU	518	8.791	75.956	-1.244	1.00	8.05	С
ATOM		CD1	LEU	518	7.840	77.076	-1.640	1.00	3.79	С
ATOM		CD2	LEU	518	10.166	76.182	-1.857	1.00	10.27	С
ATOM		N	LEU	519	10.514	74.399	3.168	1.00	7.04	Ν
ATOM		CA	LEU	519	10.518	74.319	4.635	1.00	7.57	С
ATOM		2	LEU	519	10.795	75.567	5.440	1.00	4.28	С
ATOM		C	LEU	519	11.867	76.131	5.339	1.00	10.10	0
ATOM		CB	LEU	519	11.544	73.283	5.090	1.00	6.92	C
ATOM		CG	LEU	519	11.188	71.821	4.925 3.470	1.00	10.92	С
ATOM ATOM		CD1 CD2	LEU LEU	519 519	11.011 12.295	71.550 70.951	5.470 5.489	$1.00 \\ 1.00$	8.66 7.00	C C
ATOM		N N	ASP	520	9.891	75.908	6.352	1.00	11.69	N
ATOM		CA	ASP	520	10.051	77.081	7.217	1.00	13.58	C
ATOM		0	ASP	520	11.330	76.914	8.057	1.00	14.38	č
ATOM		õ	ASP	520	11.469	75.933	8.775	1.00	18.86	ŏ
ATOM		CB	ASP	520	8.813	77.201	8.116	1.00	15.76	Č
ATOM		CG	ASP	520	8.737	78.528	8.839	1.00	14.91	С
ATOM	190 0	OD1	ASP	520	9.744	78.970	9.394	1.00	15.53	0
ATOM	191 (OD2	ASP	520	7.671	79.143	8.870	1.00	15.00	0
ATOM	192 I	N	GLY	521	12.272	77.847	7.958	1.00	12.62	Ν
ATOM		CA	GLY	521	13.514	77.720	8.713	1.00	12.88	С
ATOM		C	GLY	521	13.617	78.637	9.919	1.00	17.26	С
ATOM		Э	GLY	521	14.690	78.785	10.508	1.00	16.89	0
ATOM		N	SER	522	12.500	79.256	10.291	1.00	16.08	N
ATOM		CA	SER	522	12.452	80.168	11.420	1.00	17.98	C
ATOM		0	SER	522	12.484	79.424 78.197	12.750	1.00	18.91 17.50	C
ATOM ATOM		O CB	SER SER	522 522	12.359 11.158	80.967	12.792 11.371	$1.00 \\ 1.00$	17.30	O C
ATOM		сь ЭG	SER	522	10.069	80.907	11.708	1.00	12.60	ō
ATOM		N	SER	523	12.547	80.206	13.828	1.00	17.68	N
ATOM		CA	SER	523	12.558	79.701	15.187	1.00	20.71	C
ATOM		0	SER	523	11.141	79.389	15.694	1.00	20.97	č
ATOM		ō	SER	523	10.971	78.999	16.833	1.00	27.46	ō
ATOM		СВ	SER	523	13.253	80.693	16.111	1.00	21.32	С
ATOM		ЭG	SER	523	12.701	81.986	15.933	1.00	26.32	Ο
ATOM		N	ARG	524	10.117	79.590	14.872	1.00	18.19	Ν
ATOM		CA	ARG	524	8.765	79.240	15.278	1.00	19.04	С
ATOM		2	ARG	524	8.655	77.734	15.460	1.00	20.87	С
ATOM		C	ARG	524	7.724	77.235	16.106	1.00	22.79	0
ATOM		CB	ARG	524	7.758	79.709	14.246	1.00	20.78	С
ATOM		CG	ARG	524	7.654	81.183	14.225	1.00	22.74	С
ATOM		CD	ARG	524	7.449	81.671	15.627	1.00	23.78	C
ATOM		NE	ARG	524	7.265	83.107	15.661	1.00	29.27	N
ATOM ATOM			ARG ARG	524 524	7.116	83.815	16.774	1.00	29.96	C
ATOM ATOM		NH1 NH2		524 524	7.140 6.899	83.218 85.118	17.959 16.686	1.00	25.48 26.64	N N
		NH2 N	ARG	524 525	6.899 9.561	85.118 77.014		1.00	26.64 19.12	N N
ATOM ATOM		n CA	LEU LEU	525 525	9.561 9.645	75.571	14.804 14.915	$1.00 \\ 1.00$	19.12	N C
ATOM		C A C	LEU	525 525	9.643 10.942	75.381	14.913	1.00	22.24	c
ATOM		S	LEU	525	11.950	76.041	15.374	1.00	22.24	ō
ATOM		СВ	LEU	525	9.817	74.913	13.546	1.00	19.88	c
										č
	224 0	CG	LEU	2/2	0.095	/4.842	12.262	1.00	10.97	· · ·
ATOM ATOM		CG CD1	LEU LEU	525 525	8.695 9.236	74.845 74.241	12.523 11.253	$1.00 \\ 1.00$	15.92 11.38	c

TABLE 8-continued

	Atomic Coor	dinates f	or Resid	lues of a C ID NO: 1		nurine VV	/F-A1	(SEQ	
атом	227 N	SER	526	10.912	74.519	16.682	1.00	23.55	Ν
ATOM	228 CA	SER	526	12.113	74.240	17.460	1.00	24.19	Ċ
ATOM	229 C	SER	526	12.873	73.147	16.725	1.00	25.31	С
TOM	230 O	SER	526	12.342	72.534	15.797	1.00	26.87	0
TOM	231 CB	SER	526	11.737	73.746	18.855	1.00	22.27	С
ATOM	232 OG	SER	526	10.926	72.579	18.785	1.00	18.28	0
TOM	233 N	GLU	527	14.093	72.868	17.160	1.00	26.48	Ν
TOM	234 CA	GLU	527	14.900	71.829	16.539	1.00	26.18	С
TOM	235 C	GLU	527	14.144	70.514	16.449	1.00	25.55	C
ATOM	236 O	GLU GLU	527	14.134	69.859 71.620	15.406	1.00	30.55 28.26	O C
ATOM ATOM	237 CB 238 CG	GLU	527 527	16.172 17.025	71.620 70.471	17.349 16.880	$1.00 \\ 1.00$	28.20 37.14	С
TOM	230 CO 239 CD	GLU	527	18.417	70.909	16.459	1.00	44.14	č
ATOM	240 OE1	GLU	527	19.082	71.637	17.238	1.00	44.73	ŏ
TOM	241 OE2	GLU	527	18.853	70.506	15.351	1.00	47.92	ō
ATOM	242 N	ALA	528	13.458	70.159	17.526	1.00	23.12	Ν
ATOM	243 CA	ALA	528	12.733	68.901	17.580	1.00	19.11	С
ATOM	244 C	ALA	528	11.547	68.875	16.650	1.00	19.81	С
ATOM	245 O	ALA	528	11.237	67.834	16.078	1.00	24.34	0
TOM	246 CB	ALA	528	12.301	68.609	18.992	1.00	11.67	С
TOM	247 N	GLU	529	10.873	70.015	16.518	1.00	19.26	Ν
TOM	248 CA	GLU	529	9.697	70.126	15.659	1.00	19.04	С
ATOM	249 C	GLU	529	10.146	70.132	14.212 13.358	$1.00 \\ 1.00$	21.14	С
ATOM ATOM	250 O 251 CB	GLU GLU	529 529	9.491 8.908	69.543 71.403	15.558	1.00	26.65 17.25	O C
ATOM	251 CB 252 CG	GLU	529	8.908 8.144	71.355	17.292	1.00	12.54	c
ATOM	252 CO 253 CD	GLU	529	7.447	72.663	17.624	1.00	18.73	č
ATOM	255 OE1	GLU	529	8.120	73.725	17.576	1.00	16.59	ŏ
TOM	255 OE2	GLU	529	6.236	72.623	17.966	1.00	18.64	ŏ
ATOM	256 N	PHE	530	11.292	70.750	13.945	1.00	17.88	Ν
ATOM	257 CA	PHE	530	11.828	70.807	12.600	1.00	18.23	С
ATOM	258 C	PHE	530	12.139	69.383	12.147	1.00	21.70	С
ATOM	259 O	PHE	530	11.848	69.007	11.003	1.00	28.22	0
ATOM	260 CB	PHE	530	13.083	71.658	12.571	1.00	17.84	С
ATOM	261 CG	PHE	530	13.534	72.028	11.196	1.00	19.34	С
ATOM	262 CD1	PHE	530	12.696	72.758	10.342	1.00	17.07	С
ATOM	263 CD2	PHE	530	14.806	71.685	10.759	1.00	16.08	C
ATOM ATOM	264 CE1 265 CE2	PHE PHE	530 530	13.127 15.248	73.139 72.066	9.089 9.492	$1.00 \\ 1.00$	12.46 13.83	C C
ATOM	265 CE2 266 CZ	PHE	530	13.248	72.789	9.492 8.664	1.00	11.80	c
ATOM	260 CL 267 N	GLU	531	12.650	68.563	13.052	1.00	18.89	Ň
ATOM	268 CA	GLU	531	12.932	67.182	12.695	1.00	21.46	C
ATOM	269 C	GLU	531	11.660	66.478	12.263	1.00	17.63	С
ATOM	270 O	GLU	531	11.711	65.606	11.397	1.00	22.80	0
ATOM	271 CB	GLU	531	13.556	66.414	13.862	1.00	19.16	С
ATOM	272 CG	GLU	531	14.885	66.955	14.274	1.00	24.82	С
ATOM	273 CD	GLU	531	15.827	67.120	13.105	1.00	28.99	С
ATOM	274 OE1	GLU	531	16.177	66.101	12.469	1.00	24.87	0
ATOM	275 OE2	GLU	531	16.211	68.282	12.831	1.00	35.27	O
ATOM ATOM	276 N 277 CA	VAL VAL	532 532	10.529	66.840	12.864	1.00	15.71	N
ATOM ATOM	277 CA 278 C	VAL VAL	532 532	9.257 8.820	66.211 66.691	12.509 11.133	$1.00 \\ 1.00$	15.96 18.38	C C
TOM	278 C 279 O	VAL	532	8.234	65.921	10.357	1.00	22.15	ō
TOM	279 O 280 CB	VAL	532	8.149	66.493	13.551	1.00	15.96	c
TOM	280 CG1	VAL	532	6.825	65.847	13.117	1.00	6.01	č
TOM	281 CG2	VAL	532	8.575	65.950	14.908	1.00	13.74	č
TOM	283 N	LEU	533	9.150	67.943	10.821	1.00	14.73	Ň
ATOM	284 CA	LEU	533	8.826	68.530	9.536	1.00	14.97	С
ATOM	285 C	LEU	533	9.602	67.771	8.476	1.00	16.19	С
ATOM	286 O	LEU	533	9.044	67.348	7.458	1.00	18.03	Ο
TOM	287 CB	LEU	533	9.243	70.008	9.496	1.00	14.45	С
ATOM	288 CG	LEU	533	8.780	70.717	8.220	1.00	12.15	С
ATOM	289 CD1	LEU	533	7.283	70.472	8.038	1.00	14.73	С
ATOM	290 CD2	LEU	533	9.060	72.183	8.282	1.00	8.85	C
ATOM ATOM	291 N	LYS	534 534	10.899	67.640	8.704	1.00	12.22 13.88	N
ATOM ATOM	292 CA 293 C	LYS LYS	534 534	11.766 11.337	66.936 65.492	7.785 7.592	$1.00 \\ 1.00$	13.88	C C
ATOM	293 C 294 O	LYS	534 534	11.357	63.492 64.974	6.478	1.00	19.68	ŏ
ATOM	294 O 295 CB	LYS	534	13.210	67.016	8.282	1.00	19.08	c
ATOM	295 CD 296 CG	LYS	534	13.819	68.393	8.100	1.00	13.24	č
ATOM	297 CD	LYS	534	15.002	68.635	9.036	1.00	18.41	č
11 OIVI									
ATOM	298 CE	LYS	534	15.936	67.455	9.114	1.00	20.81	С

TABLE 8-continued

	Atomic	c Cooi	dinates f	or Resid	lues of a C ID NO: 1		murine VV	VF-A1	(SEQ	
ATOM	300	N	ALA	535	10.871	64.858	8.656	1.00	13.06	Ν
ATOM	301	CA	ALA	535	10.442	63.472	8.563	1.00	9.85	С
ATOM		С	ALA	535	9.164	63.382	7.745	1.00	13.30	С
ATOM		0	ALA	535	8.911	62.361	7.082	1.00	15.28	0
ATOM		CB	ALA	535	10.254	62.901	9.923	1.00	8.53	С
ATOM		N	PHE	536	8.348	64.428	7.797	1.00	13.50	N
ATOM	306	CA C	PHE	536	7.117	64.490	6.996	1.00	11.73	С
ATOM ATOM		0	PHE PHE	536 536	7.537 6.962	64.558	5.521 4.654	$1.00 \\ 1.00$	14.75 17.83	C O
ATOM		СВ	PHE	536	6.369	63.887 65.756	7.350	1.00	6.75	c
ATOM		CG	PHE	536	5.252	66.076	6.419	1.00	12.43	c
ATOM		CD1	PHE	536	4.113	65.288	6.388	1.00	13.94	c
ATOM		CD2	PHE	536	5.314	67.191	5.585	1.00	10.83	č
ATOM		CE1	PHE	536	3.040	65.604	5.534	1.00	15.05	С
ATOM	314	CE2	PHE	536	4.260	67.511	4.736	1.00	11.68	С
ATOM	315	CZ	PHE	536	3.114	66.720	4.711	1.00	9.74	С
ATOM		Ν	VAL	537	8.550	65.375	5.250	1.00	13.66	Ν
A TOM		CA	VAL	537	9.068	65.549	3.903	1.00	14.58	С
ATOM		С	VAL	537	9.593	64.209	3.418	1.00	16.40	С
ATOM		0	VAL	537	9.176	63.735	2.376	1.00	21.04	0
ATOM		CB	VAL	537	10.143	66.684	3.858	1.00	12.13	С
ATOM		CG1	VAL	537	10.864	66.706	2.527	$1.00 \\ 1.00$	7.80 2.11	С
ATOM		CG2 N	VAL	537	9.459 10.397	68.040	4.070		2.11 17.90	C
ATOM ATOM		CA	VAL VAL	538 538	10.397	63.541 62.228	4.231 3.867	$1.00 \\ 1.00$	17.90	N C
ATOM		C	VAL	538	9.842	61.187	3.559	1.00	17.55	c
ATOM		õ	VAL	538	9.946	60.491	2.538	1.00	15.35	ŏ
ATOM		ČВ	VAL	538	11.893	61.693	4.948	1.00	17.65	č
ATOM		CG1	VAL	538	12.129	60.169	4.791	1.00	9.43	č
ATOM		CG2	VAL	538	13.200	62.447	4.849	1.00	9.34	Ċ
ATOM	330	Ν	ASP	539	8.818	61.040	4.410	1.00	17.17	Ν
ATOM	331	CA	ASP	539	7.798	60.050	4.068	1.00	21.22	С
ATOM	332	С	ASP	539	6.892	60.418	2.919	1.00	17.63	С
ATOM		0	ASP	539	6.313	59.526	2.305	1.00	20.04	Ο
ATOM		CB	ASP	539	7.048	59.412	5.257	1.00	29.14	С
ATOM		CG	ASP	539	6.836	60.345	6.384	1.00	35.47	С
ATOM		OD1	ASP	539	6.283	61.428	6.128	1.00	44.75	0
ATOM		OD2	ASP	539	7.219	59.993	7.523	1.00	36.63	O N
ATOM		N CA	MET	540 540	6.810	61.709	2.601	1.00	16.39	N
ATOM ATOM		CA C	MET MET	540 540	6.063 6.857	62.172 61.593	1.428 0.269	$1.00 \\ 1.00$	13.96 10.86	C C
ATOM		õ	MET	540	6.333	60.862	-0.539	1.00	14.71	ŏ
ATOM		CB	MET	540	6.159	63.688	1.294	1.00	22.58	č
ATOM		CG	MET	540	5.149	64.497	2.065	1.00	31.44	č
ATOM		SD	MET	540	3.503	64.541	1.326	1.00	45.37	Š
ATOM		CE	MET	540	3.679	65.729	0.060	1.00	31.22	С
ATOM	346	Ν	MET	541	8.163	61.870	0.261	1.00	13.18	Ν
ATOM	347	CA	MET	541	9.116	61.398	-0.751	1.00	10.35	С
ATOM		С	MET	541	9.107	59.895	-0.969	1.00	16.49	С
ATOM		0	MET	541	9.225	59.438	-2.111	1.00	20.40	Ο
ATOM		CB	MET	541	10.537	61.813	-0.370	1.00	9.58	С
ATOM		CG	MET	541	10.820	63.276	-0.620	1.00	11.21	С
ATOM	352	SD	MET	541	12.434	63.842	-0.058	1.00	12.89	S
ATOM		CE	MET	541 542	13.392	63.835	-1.500	1.00	15.28	C
ATOM		N	GLU	542 542	8.985	59.119	0.107	1.00	16.56	N
ATOM ATOM		CA C	GLU GLU	542 542	8.971 7.759	57.657 57.174	-0.008 -0.818	$1.00 \\ 1.00$	13.92	C C
ATOM		0	GLU GLU	542 542	7.789	57.174 56.104	-0.818 -1.430	1.00	14.26 15.31	o
ATOM		СВ	GLU	542	8.925	57.018	1.382	1.00	12.65	c
ATOM		CG	GLU	542	10.175	57.228	2.230	1.00	15.01	c
ATOM		CD	GLU	542	10.155	56.422	3.528	1.00	13.47	c
ATOM		OE1	GLU	542	9.181	55.694	3.785	1.00	18.27	ŏ
ATOM		OE2	GLU	542	11.109	56.518	4.308	1.00	15.89	ŏ
ATOM		N	ARG	543	6.688	57.961	-0.789	1.00	12.61	N
ATOM		CA	ARG	543	5.451	57.633	-1.473	1.00	10.82	С
ATOM		С	ARG	543	5.388	58.327	-2.827	1.00	11.37	С
ATOM		0	ARG	543	4.310	58.574	-3.373	1.00	13.23	0
ATOM		CB	ARG	543	4.285	58.069	-0.593	1.00	9.75	С
	368	CG	ARG	543	4.168	57.203	0.632	1.00	8.93	С
ATOM		CD	ARG	543	3.353	57.841	1.737	1.00	9.66	С
ATOM										
ATOM ATOM	370	NE	ARG	543	3.241	56.878	2.835	1.00	17.05	N
	370 371					56.878 56.652 57.332	2.835 3.737 3.697	$1.00 \\ 1.00 \\ 1.00$	17.05 12.00 9.90	N C N

TABLE 8-continued

	Atomi	ic Coor	dinates f	or Resid	lues of a C ID NO: 1		murine VW	F-A1	(SEQ	
ATOM	373	NH2	ARG	543	4.044	55.681	4.634	1.00	15.47	Ν
ATOM	374	Ν	LEU	544	6.554	58.559	-3.401	1.00	13.34	Ν
ATOM	375	CA	LEU	544	6.676	59.214	-4.688	1.00	15.24	С
ATOM	376	С	LEU	544	7.606	58.388	-5.574	1.00	16.79	С
ATOM	377	0	LEU	544	8.633	57.871	-5.103	1.00	17.01	0
ATOM	378	CB	LEU	544	7.318	60.578	-4.465	1.00	12.06	C
ATOM	379	CG	LEU	544	6.539	61.886	-4.546	1.00	11.78	C
ATOM	380	CD1 CD2	LEU	544	5.138	61.769	-4.046	1.00	11.41	С
ATOM ATOM	381 382	N N	LEU ARG	544 545	7.315 7.283	62.896 58.269	-3.751 -6.855	$1.00 \\ 1.00$	8.97 15.28	C N
ATOM	383	CA	ARG	545	8.187	57.551	-7.740	1.00	15.08	C
ATOM	384	C	ARG	545	9.110	58.627	-8.278	1.00	17.33	c
ATOM	385	õ	ARG	545	8.794	59.266	-9.283	1.00	19.41	ŏ
ATOM	386	ČВ	ARG	545	7.431	56.887	-8.875	1.00	16.99	č
ATOM	387	CG	ARG	545	8.327	56.142	-9.837	1.00	20.50	č
ATOM	388	CD	ARG	545	7.453	55.493	-10.868	1.00	26.46	С
ATOM	389	NE	ARG	545	8.195	54.796	-11.903	1.00	28.51	Ν
ATOM	390	CZ	ARG	545	7.644	53.877	-12.690	1.00	33.26	С
ATOM	391	NH1	ARG	545	6.357	53.572	-12.541	1.00	31.05	Ν
ATOM	392	NH2	ARG	545	8.368	53.259	-13.617	1.00	30.37	Ν
ATOM	393	Ν	ILE	546	10.205	58.879	-7.556	1.00	18.27	Ν
ATOM	394	CA	ILE	546	11.177	59.909	-7.919	1.00	18.03	С
ATOM	395	С	ILE	546	12.039	59.480	-9.084	1.00	19.30	С
ATOM	396	0	ILE	546	12.750	58.477	-9.014	1.00	20.66	0
ATOM	397	CB	ILE	546	12.065	60.290	-6.714	1.00	13.91	С
ATOM	398	CG1	ILE	546	11.234	60.956	-5.622	1.00	10.37	С
ATOM	399	CG2 CD1	ILE	546 546	13.134	61.243	-7.134 -4.306	1.00	10.93	C
ATOM ATOM	400 401	N	ILE SER	540 547	11.981 11.986	61.088 60.270	-4.306 -10.152	$1.00 \\ 1.00$	8.23 20.13	C N
ATOM	401	CA	SER	547	12.725	59.968	-10.132 -11.360	1.00	18.38	C
ATOM	402	C	SER	547	12.723	61.108	-12.348	1.00	20.11	c
ATOM	404	õ	SER	547	11.443	61.710	-12.407	1.00	19.86	ŏ
ATOM	405	СВ	SER	547	12.191	58.664	-11.956	1.00	19.67	č
ATOM	406	ŌĞ	SER	547	12.939	58.238	-13.078	1.00	24.56	ŏ
ATOM	407	N	GLN	548	13.542	61.364	-13.156	1.00	21.04	Ň
ATOM	408	CA	GLN	548	13.527	62.426	-14.159	1.00	22.05	С
ATOM	409	С	GLN	548	12.335	62.253	-15.121	1.00	23.36	С
ATOM	410	0	GLN	548	11.802	63.236	-15.645	1.00	26.68	0
ATOM	411	CB	GLN	548	14.869	62.399	-14.905	1.00	23.09	С
ATOM	412	CG	GLN	548	15.601	63.727	-15.086	1.00	25.87	С
ATOM	413	CD	GLN	548	15.738	64.560	-13.825	1.00	27.98	С
ATOM	414	OE1	GLN	548	15.630	65.783	-13.890	1.00	34.12	0
ATOM	415	NE2	GLN	548	15.977	63.925	-12.684	1.00	25.55	N
ATOM	416	N	LYS	549	11.894	61.009	-15.304	1.00	21.82	N
ATOM	417 418	CA	LYS	549 549	10.766	60.701	-16.182	1.00	21.44	C
ATOM ATOM	418	C O	LYS LYS	549 549	9.453 8.374	60.554 60.330	-15.390 -15.971	$1.00 \\ 1.00$	22.62 18.28	C O
ATOM	420	CB	LYS	549	11.041	59.406	-16.955	1.00	24.39	c
ATOM	421	CG	LYS	549	12.431	59.320	-17.575	1.00	34.15	c
ATOM	422	CD	LYS	549	12.762	60.573	-18.390	1.00	44.91	č
ATOM	423	CE	LYS	549	14.154	60.513	-19.044	1.00	51.62	Ċ
ATOM	424	NZ	LYS	549	15.302	60.529	-18.076	1.00	53.07	N
ATOM	425	N	TRP	550	9.535	60.665	-14.064	1.00	19.15	Ν
ATOM	426	CA	TRP	550	8.350	60.544	-13.241	1.00	18.15	С
ATOM	427	С	TRP	550	8.178	61.740	-12.313	1.00	17.14	С
ATOM	428	0	TRP	550	7.755	62.808	-12.759	1.00	17.54	Ο
ATOM	429	CB	TRP	550	8.383	59.219	-12.473	1.00	22.31	С
ATOM	430	CG	TRP	550	8.360	58.034	-13.381	1.00	24.07	С
ATOM	431	CD1	TRP	550	9.420	57.250	-13.752	1.00	25.74	С
ATOM	432	CD2	TRP	550	7.228	57.533	-14.096	1.00	23.63	C
ATOM	433	NE1	TRP	550	9.016	56.302	-14.667	1.00	25.59	N
ATOM	434	CE2	TRP	550	7.665	56.461	-14.894	1.00	25.02	С
ATOM	435	CE3	TRP	550 550	5.875	57.905 55 743	-14.136	$1.00 \\ 1.00$	23.56	C
ATOM ATOM	436 437	CZ2 CZ3	TRP TRP	550 550	6.807 5.017	55.743 57.196	-15.734 -14.970	1.00	25.72 25.40	C C
ATOM	437	CZ3 CH2	TRP	550	5.487	56.125	-14.970 -15.758	1.00	23.40	c
ATOM	438	N N	VAL	550	3.487 8.465	61.572	-15.738 -11.022	1.00	24.34 18.80	N
ATOM	439 440	N CA	VAL VAL	551	8.321	62.674	-11.022 -10.069	1.00	16.63	C
ATOM	440	C	VAL	551	9.695	63.240	-9.739	1.00	14.99	c
	442	õ	VAL	551	10.599	62.501	-9.362	1.00	15.74	ŏ
ATOM –	174							1.00		c
	443	CB	VAL	221	/.614	02.214	-0.7.51	1.00	10.18	<u> </u>
ATOM ATOM ATOM	443 444	CB CG1	VAL VAL	551 551	7.614 7.477	62.214 63.406	-8.731 -7.761	1.00	$16.18 \\ 10.00$	c

TABLE 8-continued

	Atomi	ic Cooi	dinates f	or Resid	lues of a C ID NO: 1		murine VW	F-A1	(SEQ	
АТОМ	446	Ν	ARG	552	9.876	64.536	-9.950	1.00	14.51	Ν
ATOM	447	CA	ARG	552	11.142	65.180	-9.612	1.00	14.95	С
ATOM	448	С	ARG	552	10.860	66.010	-8.358	1.00	14.50	С
ATOM	449	0	ARG	552	9.756	66.543	-8.188	1.00	12.82	0
ATOM	450	CB	ARG	552	11.639	66.066	-10.757	1.00	13.60	С
ATOM	451	CG	ARG	552	11.890	65.318	-12.052	1.00	14.38	С
ATOM	452	CD	ARG	552	12.686	66.146	-13.018	1.00	14.42	С
ATOM	453	NE	ARG	552	11.980	67.368	-13.388	1.00	22.75	N
ATOM	454	CZ	ARG	552	12.544	68.383	-14.035	1.00	19.53	C
ATOM	455	NH1	ARG	552	13.824	68.318	-14.381	1.00	24.67	N
ATOM	456	NH2	ARG	552	11.823	69.436	-14.383	1.00	12.20	N
ATOM	457	N	VAL	553	11.844	66.108	-7.469	1.00	18.50	N
ATOM	458 459	CA C	VAL VAL	553 553	11.654 12.740	66.840 67.861	-6.209 -5.972	$1.00 \\ 1.00$	19.75 19.66	C C
ATOM ATOM	459	0	VAL VAL	553	12.740	67.695	-6.406	1.00	22.27	0
ATOM	461	СВ	VAL	553	11.677	65.886	-4.956	1.00	18.81	c
ATOM	462	CG1	VAL	553	10.441	64.952	-4.920	1.00	7.54	c
ATOM	463	CG2	VAL	553	12.966	65.070	-4.942	1.00	19.00	c
ATOM	464	N	ALA	554	12.385	68.930	-5.279	1.00	17.64	Ň
ATOM	465	CA	ALA	554	13.356	69.958	-4.924	1.00	16.45	C
ATOM	466	С	ALA	554	13.038	70.208	-3.450	1.00	14.99	Č
ATOM	467	õ	ALA	554	11.882	70.006	-3.030	1.00	12.08	õ
ATOM	468	CB	ALA	554	13.153	71.224	-5.764	1.00	6.96	Ĉ
ATOM	469	Ν	VAL	555	14.063	70.516	-2.651	1.00	13.54	Ν
ATOM	470	CA	VAL	555	13.879	70.778	-1.220	1.00	14.53	С
ATOM	471	С	VAL	555	14.590	72.068	-0.892	1.00	11.41	С
ATOM	472	0	VAL	555	15.769	72.191	-1.175	1.00	10.57	0
ATOM	473	CB	VAL	555	14.402	69.594	-0.318	1.00	14.50	С
ATOM	474	CG1	VAL	555	14.355	69.980	1.182	1.00	10.37	С
ATOM	475	CG2	VAL	555	13.491	68.358	-0.515	1.00	11.88	С
ATOM	476	Ν	VAL	556	13.857	73.044	-0.359	1.00	11.91	Ν
ATOM	477	CA	VAL	556	14.424	74.337	-0.026	1.00	14.48	С
ATOM	478	С	VAL	556	13.996	74.729	1.394	1.00	18.03	С
ATOM	479	0	VAL	556	12.807	74.771	1.717	1.00	18.24	0
ATOM	480	CB	VAL	556	13.929	75.435	-0.999	1.00	16.63	С
ATOM	481	CG1	VAL	556	14.721	76.700	-0.812	1.00	12.12	С
ATOM	482	CG2	VAL	556	14.022	74.948	-2.450	1.00	17.97	С
ATOM	483	N	GLU	557	14.977	75.023	2.228	1.00	15.76	N
ATOM	484	CA	GLU	557	14.750	75.431	3.594	1.00	16.18	С
ATOM	485	С	GLU	557	14.810	76.937	3.456	1.00	19.44	C
ATOM	486	O	GLU	557	15.751	77.448	2.847	1.00	20.78	0
ATOM	487	CB	GLU	557	15.922	74.921	4.451	1.00	21.73	C
ATOM	488	CG	GLU	557	16.042	75.479	5.890	1.00	22.98	С
ATOM	489 490	CD OE1	GLU GLU	557	17.093	76.581	6.011	$1.00 \\ 1.00$	26.66	C O
ATOM ATOM	490	OE1 OE2	GLU	557 557	18.322	76.271 77.755	6.047 6.075	1.00	27.04 18.13	0
ATOM	491	N N	TYR	558	16.666 13.823	77.668	3.964	1.00	16.82	N
ATOM	493	CA	TYR	558	13.878	79.117	3.826	1.00	19.30	C
ATOM	494	C	TYR	558	13.894	79.898	5.123	1.00	21.56	č
ATOM	494	õ	TYR	558	13.367	79.450	6.146	1.00	18.80	ŏ
ATOM	496	СВ	TYR	558	12.769	79.638	2.903	1.00	18.20	č
ATOM	497	CG	TYR	558	11.350	79.457	3.414	1.00	21.51	č
ATOM	498	CD1	TYR	558	10.681	78.250	3.251	1.00	19.46	č
ATOM	499	CD2	TYR	558	10.662	80.511	4.037	1.00	17.80	č
ATOM	500	CE1	TYR	558	9.360	78.101	3.689	1.00	17.32	С
ATOM	501	CE2	TYR	558	9.361	80.361	4.462	1.00	11.71	С
ATOM	502	CZ	TYR	558	8.727	79.158	4.289	1.00	14.15	С
ATOM	503	OH	TYR	558	7.443	78.997	4.727	1.00	21.33	0
ATOM	504	Ν	HIS	559	14.548	81.054	5.077	1.00	22.82	Ν
ATOM	505	CA	HIS	559	14.659	81.942	6.228	1.00	22.57	С
ATOM	506	С	HIS	559	14.761	83.343	5.632	1.00	24.28	С
ATOM	507	0	HIS	559	13.803	83.820	5.035	1.00	24.51	0
ATOM	508	CB	HIS	559	15.877	81.580	7.084	1.00	23.05	С
ATOM	509	CG	HIS	559	17.138	81.409	6.295	1.00	31.12	С
ATOM	510	ND1	HIS	559	17.327	80.384	5.400	1.00	35.63	Ν
ATOM	511	CD2	HIS	559	18.274	82.154	6.254	1.00	35.29	С
ATOM	512	CE1	HIS	559	18.512	80.499	4.841	1.00	34.53	С
ATOM	513	NE2	HIS	559	19.109	81.564	5.342	1.00	33.84	Ν
	514	Ν	ASP	560	15.895	84.013	5.788	1.00	29.85	Ν
ATOM		0.4	ASP	560	16.077	85.336	5.194	1.00	37.48	С
ATOM ATOM	515	CA								
ATOM ATOM ATOM	516	С	ASP	560	16.114	85.132	3.676	1.00	36.28	С
ATOM						85.132 85.892 85.957	3.676 2.912 5.686	$1.00 \\ 1.00 \\ 1.00$	36.28 39.28 46.15	

TABLE 8-continued

	Atomic	Coordina	tes for Resi	dues of a C ID NO: 1		murine VW	/F-A1	(SEQ	
ATOM	519 C	G A	SP 560	17.242	87.430	6.059	1.00	55.52	С
ATOM	520 C	DD1 As	SP 560	16.086	87.905	6.195	1.00	60.53	0
ATOM	521 0	DD2 As	SP 560	18.286	88.112	6.218	1.00	59.22	Ο
ATOM	522 N			16.849	84.101	3.271	1.00	34.51	Ν
ATOM			LY 561	16.973	83.729	1.879	1.00	29.45	С
ATOM	524 C		Y 561	16.599	82.261	1.769	1.00	28.57	С
ATOM	525 0		LY 561	15.991	81.698	2.689	1.00	25.19	0
ATOM	526 N			17.044	81.614	0.700	1.00	27.35	N
ATOM		CA SE		16.730	80.216	0.502	1.00	26.74	C
АТОМ АТОМ	528 C 529 C			17.984 18.981	79.376 79.803	0.408 -0.164	$1.00 \\ 1.00$	28.35 29.74	C O
ATOM		CB SE		15.903	80.028	-0.770	1.00	25.65	c
ATOM		DG SH		14.733	80.834	-0.746	1.00	25.69	ŏ
ATOM	532 N			17.952	78.221	1.058	1.00	26.61	Ň
ATOM		CA HI		19.052	77.273	1.016	1.00	28.05	C
ATOM	534 C			18.452	76.026	0.354	1.00	25.45	Ĉ
ATOM	535 C			17.662	75.317	0.977	1.00	26.54	0
ATOM		СВ Н		19.565	76.923	2.425	1.00	33.01	С
ATOM	537 C	G H		20.592	77.879	2.971	1.00	42.56	С
ATOM	538 N	ND1 H	S 563	21.368	77.586	4.081	1.00	41.44	Ν
ATOM	539 C	CD2 HI	S 563	20.950	79.129	2.588	1.00	41.45	С
ATOM		CE1 HI		22.148	78.615	4.351	1.00	39.61	С
ATOM		VE2 HI		21.919	79.566	3.466	1.00	38.40	Ν
ATOM	542 N		LA 564	18.736	75.824	-0.929	1.00	22.09	Ν
ATOM			LA 564	18.220	74.671	-1.653	1.00	20.28	С
ATOM	544 (LA 564	19.183	73.513	-1.505	1.00	18.53	С
ATOM	545 (546 (LA 564	20.359	73.650	-1.785	1.00	21.05	0
ATOM ATOM	540 C		LA 564 YR 565	18.040 18.675	75.005 72.384	-3.108 -1.028	$1.00 \\ 1.00$	16.92 18.56	C N
ATOM			YR 565	19.463	71.183	-0.840	1.00	15.69	C
ATOM	549 (rR 565	19.236	70.245	-2.021	1.00	16.43	č
ATOM	550 0		rR 565	20.096	69.461	-2.376	1.00	14.38	ŏ
ATOM			YR 565	19.035	70.473	0.434	1.00	18.28	Č
ATOM			YR 565	19.373	71.214	1.691	1.00	20.29	С
ATOM	553 C		YR 565	18.609	72.296	2.105	1.00	19.07	С
ATOM	554 C	DD2 T	YR 565	20.450	70.816	2.485	1.00	24.63	С
ATOM	555 C	CE1 T	YR 565	18.899	72.966	3.277	1.00	23.97	С
ATOM			ľR 565	20.752	71.476	3.670	1.00	25.91	С
ATOM			YR 565	19.971	72.552	4.061	1.00	24.70	С
ATOM			YR 565	20.247	73.212	5.240	1.00	28.07	0
ATOM	559 N			18.050	70.302	-2.599	1.00	16.43	N
ATOM		CA IL		17.720	69.445	-3.721	1.00	16.83	С
ATOM	561 0			17.121	70.236	-4.876	1.00	14.70	C
ATOM ATOM		D IL CB IL		16.222 16.690	71.044 68.368	-4.662 -3.301	$1.00 \\ 1.00$	16.54 15.97	O C
ATOM		G1 IL		17.187	67.570	-2.097	1.00	13.97	c
ATOM		G1 IL		16.392	67.432	-4.446	1.00	16.90	c
ATOM		DOL IL		18.416	66.752	-2.370	1.00	28.29	č
ATOM	567 N		LY 567	17.667	70.052	-6.075	1.00	14.70	Ň
ATOM		CA G		17.123	70.694	-7.261	1.00	14.69	C
ATOM	569 C		LY 567	16.372	69.660	-8.106	1.00	15.85	С
ATOM	570 C		LY 567	16.730	68.469	-8.109	1.00	16.56	0
ATOM	571 N		EU 568	15.392	70.097	-8.892	1.00	17.74	Ν
ATOM		CA LI		14.622	69.174	-9.722	1.00	16.77	С
ATOM	573 C		EU 568	15.471	68.292	-10.628	1.00	18.54	С
ATOM	574 C		EU 568	15.177	67.117	-10.807	1.00	24.33	0
ATOM			EU 568	13.591	69.935	-10.559	1.00	11.30	С
ATOM		CG LI		12.456	70.603	-9.767	1.00	11.42	С
ATOM		CD1 LH		11.744	71.638	-10.640	1.00	6.22	С
ATOM		CD2 LH		11.508	69.583	-9.227	$1.00 \\ 1.00$	3.91	C
ATOM ATOM	579 N 580 C	N LY DA LY		16.512 17.393	68.864 68.123	-11.212 -12.124	1.00	23.19 23.15	N C
ATOM	581 0			17.393	67.248	-12.124 -11.458	1.00	23.15	c
ATOM	582 0			19.272	66.623	-12.149	1.00	21.55	ŏ
ATOM		CB LY		18.087	69.098	-13.067	1.00	23.83	č
ATOM		G LY		17.154	69.828	-14.027	1.00	29.42	č
ATOM		D LY		17.882	71.015	-14.638	1.00	32.89	č
ATOM		CE LY		16.994	71.782	-15.588	1.00	36.32	Ē
ATOM		NZ LY		17.497	71.604	-16.981	1.00	42.82	N
ATOM	588 N			18.477	67.207	-10.128	1.00	24.14	Ν
	589 C	CA AS	SP 570	19.476	66.409	-9.435	1.00	26.34	С
ATOM ATOM ATOM	590 C 591 C	C AS	SP 570	19.300 18.335	64.950 64.336	-9.749 -9.314	$\begin{array}{c} 1.00 \\ 1.00 \end{array}$	31.25 34.28	C O

TABLE 8-continued

	Atomi	ic Coor	dinates f	or Resid	lues of a C ID NO: 1		murine VW	F-A1	(SEQ	
ATOM	592	СВ	ASP	570	19.389	66.624	-7.930	1.00	23.64	С
ATOM	593	CG	ASP	570	20.081	67.890	-7.493	1.00	24.59	С
ATOM	594	OD1	ASP	570	20.678	68.575	-8.352	1.00	27.05	0
ATOM	595	OD2	ASP	570	20.041	68.200	-6.289	1.00	24.49	0
ATOM	596	Ν	ARG	571	20.223	64.390	-10.523	1.00	34.80	Ν
ATOM	597	CA	ARG	571	20.126	62.983	-10.869	1.00	35.48	С
ATOM	598	С	ARG	571	20.829	62.155	-9.817	1.00	30.97	C
ATOM	599	O	ARG	571	22.025	61.861	-9.922	1.00	29.82	0
ATOM	600	CB	ARG	571	20.710	62.721	-12.246	1.00	46.16	C
АТОМ АТОМ	601 602	CG CD	ARG ARG	571 571	20.453 21.501	61.315 60.929	-12.743 -13.762	$1.00 \\ 1.00$	60.41 70.06	C C
ATOM	603	NE	ARG	571	21.301	59.540	-13.702 -14.198	1.00	76.92	N
ATOM	604	CZ	ARG	571	22.061	59.032	-15.218	1.00	82.89	C
ATOM	605	NH1	ARG	571	22.910	59.802	-15.892	1.00	86.30	Ň
ATOM	606	NH2	ARG	571	21.877	57.770	-15.579	1.00	85.49	Ν
ATOM	607	Ν	LYS	572	20.093	61.876	-8.750	1.00	23.93	Ν
ATOM	608	CA	LYS	572	20.588	61.086	-7.634	1.00	20.81	С
ATOM	609	С	LYS	572	19.511	60.067	-7.365	1.00	16.06	С
ATOM	610	0	LYS	572	18.381	60.237	-7.789	1.00	17.31	0
ATOM	611	CB	LYS	572	20.843	61.966	-6.393	1.00	18.06	С
ATOM	612	CG	LYS	572	22.004	62.929	-6.578	1.00	20.31	С
ATOM	613	CD	LYS	572	22.138	63.949	-5.468	1.00	23.14	C
ATOM	614	CE	LYS	572	23.202	64.988	-5.836	1.00	24.18	C
ATOM	615	NZ	LYS	572	23.545	65.977	-4.755	$1.00 \\ 1.00$	20.57	N
ATOM ATOM	616 617	N CA	ARG ARG	573 573	19.857 18.834	58.956 57.949	-6.750 -6.475	1.00	20.74 22.56	N
ATOM	618	CA	ARG	573	17.883	58.457	-5.379	1.00	22.30	C C
ATOM	619	õ	ARG	573	18.280	59.311	-4.565	1.00	23.29	ŏ
ATOM	620	СВ	ARG	573	19.498	56.617	-6.138	1.00	27.37	č
ATOM	621	CG	ARG	573	20.682	56.741	-5.228	1.00	35.56	č
ATOM	622	CD	ARG	573	21.369	55.399	-5.040	1.00	44.36	Č
ATOM	623	NE	ARG	573	22.340	55.095	-6.087	1.00	49.02	Ν
ATOM	624	CZ	ARG	573	22.261	54.052	-6.916	1.00	54.28	С
ATOM	625	NH1	ARG	573	21.240	53.191	-6.847	1.00	56.03	Ν
ATOM	626	NH2	ARG	573	23.226	53.851	-7.805	1.00	52.89	Ν
ATOM	627	Ν	PRO	574	16.610	57.997	-5.375	1.00	17.46	Ν
ATOM	628	CA	PRO	574	15.610	58.412	-4.392	1.00	12.01	С
ATOM	629	С	PRO	574	16.092	58.327	-2.953	1.00	14.44	С
ATOM	630	0	PRO	574	15.816	59.220	-2.163	1.00	17.36	0
ATOM	631	CB	PRO	574	14.472	57.442	-4.650	1.00	16.28	C
ATOM	632	CG CD	PRO	574	14.547	57.219	-6.088	1.00	11.38	С
ATOM ATOM	633 634	N	PRO SER	574 575	16.024 16.880	57.002 57.305	-6.291 -2.639	$1.00 \\ 1.00$	18.26 13.89	C N
ATOM	635	CA	SER	575	17.394	57.104	-1.289	1.00	15.54	C
ATOM	636	C	SER	575	17.394	58.170	-0.880	1.00	18.01	c
ATOM	637	õ	SER	575	18.394	58.619	0.269	1.00	19.91	ŏ
ATOM	638	ČВ	SER	575	18.052	55.742	-1.163	1.00	11.08	č
ATOM	639	OG	SER	575	19.038	55.601	-2.157	1.00	15.54	õ
ATOM	640	N	GLU	576	19.221	58.599	-1.810	1.00	19.82	Ň
ATOM	641	CA	GLU	576	20.180	59.616	-1.445	1.00	19.22	С
ATOM	642	С	GLU	576	19.456	60.923	-1.244	1.00	19.69	С
ATOM	643	0	GLU	576	19.754	61.678	-0.322	1.00	21.30	Ο
ATOM	644	CB	GLU	576	21.287	59.774	-2.483	1.00	24.50	С
ATOM	645	CG	GLU	576	22.414	60.647	-1.930	1.00	34.07	С
ATOM	646	CD	GLU	576	23.375	61.108	-2.979	1.00	44.16	С
ATOM	647	OE1	GLU	576	23.681	60.305	-3.893	1.00	48.95	0
ATOM ATOM	648 640	OE2	GLU	576	23.816	62.283	-2.891	1.00	50.40	O N
ATOM ATOM	649 650	N CA	LEU LEU	577 577	18.495 17.734	61.191 62.419	-2.106 -1.993	$1.00 \\ 1.00$	18.39 18.06	N C
ATOM ATOM	650	CA C	LEU LEU	577	17.734	62.419 62.469	-1.993 -0.640	1.00 1.00	18.06	c
ATOM	652	o	LEU LEU	577	17.042	63.482	0.056	1.00	16.14	ō
ATOM	653	СВ	LEU	577	16.715	62.518	-3.141	1.00	14.46	c
ATOM	654	CG	LEU	577	17.362	62.681	-4.522	1.00	13.01	c
ATOM	655	CD1	LEU	577	16.309	62.686	-5.592	1.00	12.16	c
ATOM	656	CD2	LEU	577	18.182	63.963	-4.564	1.00	10.44	č
ATOM	657	N	ARG	578	16.431	61.356	-0.258	1.00	18.03	Ň
ATOM	658	CA	ARG	578	15.721	61.282	1.013	1.00	16.42	С
ATOM	659	С	ARG	578	16.656	61.533	2.177	1.00	18.59	С
ATOM	660	0	ARG	578	16.276	62.207	3.136	1.00	23.30	0
ATOM	661	CB	ARG	578	15.005	59.939	1.169	1.00	14.49	С
		00	ADC	578	13.822	59.783	0.220	1.00	9.10	С
ATOM	662	CG	ARG							
	662 663 664	CG CD NE	ARG ARG ARG	578 578	12.924 13.668	58.631 57.391	0.583	1.00	7.18 13.10	C N

TABLE 8-continued

	Atomi	c Coor	dinates f	or Resid	lues of a C ID NO: 1		nurine VW	/F-A1	(SEQ	
ATOM	665	CZ	ARG	578	13.780	56.455	-0.164	1.00	11.87	С
ATOM	666	NH1	ARG	578	13.191	56.622	-1.340	1.00	9.76	Ν
ATOM	667	NH2	ARG	578	14.501	55.368	0.083	1.00	14.50	Ν
ATOM	668	Ν	ARG	579	17.889	61.046	2.070	1.00	17.36	Ν
ATOM	669	CA	ARG	579	18.879	61.248	3.119	1.00	17.76	С
ATOM	670	С	ARG	579	19.246	62.719	3.237	1.00	18.99	С
атом	671	0	ARG	579	19.372	63.252	4.341	1.00	21.54	0
TOM	672	CB	ARG	579	20.132	60.414	2.833	1.00	18.77	С
ATOM	673	CG	ARG	579	21.347	60.787	3.684	1.00	24.17	C
ATOM	674	CD	ARG	579	22.532	59.857	3.461	1.00	26.24	C
ATOM ATOM	675 676	NE CZ	ARG ARG	579 579	22.856 22.428	59.678 58.654	2.045 1.296	$1.00 \\ 1.00$	36.84 39.67	N C
ATOM	677	NH1	ARG	579	22.428	57.703	1.290	1.00	37.99	N
ATOM	678	NH2	ARG	579	22.861	58.521	0.052	1.00	40.49	N
ATOM	679	N	ILE	580	19.433	63.377	2.101	1.00	18.54	N
ATOM	680	CA	ILE	580	19.784	64.790	2.098	1.00	14.36	C
ATOM	681	C	ILE	580	18.681	65.556	2.800	1.00	14.39	č
TOM	682	õ	ILE	580	18.956	66.396	3.643	1.00	15.74	ŏ
ATOM	683	CB	ILE	580	19.969	65.315	0.673	1.00	10.89	С
ATOM	684	CG1	ILE	580	21.209	64.682	0.067	1.00	16.10	С
ATOM	685	CG2	ILE	580	20.087	66.835	0.663	1.00	13.34	С
ATOM	686	CD1	ILE	580	21.457	65.030	-1.408	1.00	15.50	С
ATOM	687	Ν	ALA	581	17.432	65.208	2.508	1.00	16.77	Ν
ATOM	688	CA	ALA	581	16.294	65.881	3.121	1.00	16.31	С
ATOM	689	С	ALA	581	16.252	65.723	4.646	1.00	17.47	С
ATOM	690	0	ALA	581	15.942	66.670	5.350	1.00	18.94	0
ATOM	691	CB	ALA	581	14.991	65.386	2.487	1.00	12.38	C
ATOM	692	N	SER	582	16.559	64.539	5.167	1.00	21.47	N
ATOM	693	CA	SER	582	16.516	64.344	6.617	1.00	22.46	С
ATOM ATOM	694 695	C O	SER SER	582 582	17.700 17.673	64.984	7.295 8.497	$1.00 \\ 1.00$	23.44 29.23	C O
ATOM	696	CB	SER	582	16.469	65.229 62.867	6.974	1.00	29.25	c
ATOM	697	OG	SER	582	17.659	62.228	6.577	1.00	25.04	ŏ
ATOM	698	N	GLN	583	18.728	65.293	6.522	1.00	22.77	Ň
ATOM	699	ĊA	GLN	583	19.919	65.910	7.077	1.00	23.36	Ĉ
ATOM	700	С	GLN	583	19.874	67.425	6.981	1.00	21.29	Ċ
ATOM	701	Ō	GLN	583	20.812	68.117	7.416	1.00	20.02	Ō
ATOM	702	CB	GLN	583	21.177	65.369	6.398	1.00	30.71	С
ATOM	703	CG	GLN	583	21.524	63.939	6.797	1.00	42.85	С
ATOM	704	CD	GLN	583	22.843	63.455	6.192	1.00	55.80	С
ATOM	705	OE1	GLN	583	23.589	62.715	6.839	1.00	62.99	0
ATOM	706	NE2	GLN	583	23.141	63.873	4.950	1.00	59.38	Ν
ATOM	707	Ν	VAL	584	18.804	67.940	6.389	1.00	15.51	Ν
ATOM	708	CA	VAL	584	18.622	69.371	6.255	1.00	21.88	C
ATOM	709	С	VAL	584	18.891	70.018	7.615	1.00	26.42	С
ATOM ATOM	710	O CB	VAL	584	18.367	69.585	8.643 5.768	1.00	26.77	0
	711 712	CG1	VAL VAL	584 584	17.194	69.706 71.100		1.00	25.45	C C
атом атом	712	CG2	VAL	584	16.944 17.013	71.199 69.269	5.861 4.333	$1.00 \\ 1.00$	30.17 27.33	c
ATOM	714	N N	LYS	585	19.690	71.073	7.597	1.00	30.58	Ň
ATOM	715	CA	LYS	585	20.108	71.788	8.798	1.00	33.89	C
ATOM	716	C	LYS	585	19.091	72.734	9.417	1.00	32.68	č
TOM	717	õ	LYS	585	18.570	73.641	8.747	1.00	33.70	ŏ
TOM	718	ĊВ	LYS	585	21.398	72.551	8.497	1.00	41.79	Ĉ
ATOM	719	CG	LYS	585	22.643	71.977	9.165	1.00	52.09	С
ATOM	720	CD	LYS	585	22.693	72.340	10.657	1.00	63.92	С
ATOM	721	CE	LYS	585	22.857	73.859	10.873	1.00	70.35	С
ATOM	722	NZ	LYS	585	22.735	74.271	12.316	1.00	74.91	Ν
ATOM	723	Ν	TYR	586	18.859	72.557	10.718	1.00	30.31	Ν
TOM	724	CA	TYR	586	17.928	73.416	11.454	1.00	29.54	С
ATOM	725	С	TYR	586	18.583	74.776	11.564	1.00	29.75	С
ATOM	726	O	TYR	586	19.696	74.885	12.079	1.00	30.67	0
ATOM	727	CB	TYR	586	17.619	72.856	12.861	1.00	27.95	С
ATOM	728	CG CD1	TYR	586	16.772	73.793	13.721	1.00	26.56	С
ATOM	729	CD1 CD2	TYR TVP	586	15.389	73.906	13.522	1.00	24.59	С
ATOM ATOM	730	CD2 CE1	TYR TVP	586	17.361	74.604	14.699	1.00	21.69	С
ATOM ATOM	731 732	CE1 CE2	TYR TYR	586 586	14.616	74.806 75.508	14.265	$1.00 \\ 1.00$	20.84 17.53	С
ATOM	732	CE2 CZ	TYR	586 586	16.590 15.222	75.508 75.601	15.457 15.233	1.00 1.00	23.50	C C
ATOM	734	OH	TYR	580 586	13.222	76.482	15.255	1.00	23.30 21.84	ō
	735	Ол N	ALA	580	17.932	75.788	10.994	1.00	21.84	N
31111/1			1 1112	201	11.104	10.100	エン・ノノイ	1.00	20.00	1.4
ATOM ATOM	736	CA	ALA	587	18.433	77.150	11.016	1.00	27.73	С

TABLE 8-continued

	Atomi	c Coo1	dinates f	or Resid	lues of a C ID NO: 1		nurine VV	VF-A1	(SEQ	
атом	738	0	ALA	587	18.735	78.601	12.870	1.00	26.39	0
ATOM	739	CB	ALA	587	18.056	77.882	9.719	1.00	29.03	С
ATOM	740	Ν	GLY	588	16.643	77.880	12.490	1.00	25.16	Ν
ATOM	741	CA	GLY	588	16.093	78.606	13.619	1.00	24.35	С
ATOM	742	С	GLY	588	16.224	80.115	13.484	1.00	26.00	С
ATOM	743	0	GLY	588	16.582	80.806	14.429	1.00	27.67	0
ATOM	744	Ν	SER	589	15.891	80.626	12.309	1.00	25.60	Ν
ATOM	745	CA	SER	589	15.985	82.044	12.009	1.00	25.91	С
ATOM	746	С	SER	589	14.916	82.905	12.679	1.00	27.91	С
ATOM	747	0	SER	589	13.849	82.426	13.050	1.00	23.56	0
A TOM	748	CB	SER	589	15.879	82.228	10.495	1.00	26.02	С
ATOM	749	OG	SER	589	16.935	83.028	9.992	1.00	41.28	Ο
ATOM	750	Ν	GLN	590	15.212	84.193	12.811	1.00	32.43	Ν
ATOM	751	CA	GLN	590	14.256	85.130	13.373	1.00	37.48	С
ATOM	752	С	GLN	590	13.253	85.476	12.296	1.00	35.55	С
ATOM	753	0	GLN	590	12.160	85.937	12.588	1.00	38.88	0
ATOM	754	CB	GLN	590	14.955	86.415	13.821	1.00	39.80	С
ATOM	755	CG	GLN	590	15.288	86.435	15.295	1.00	56.15	С
TOM	756	CD	GLN	590	16.155	87.622	15.686	1.00	65.66	С
ATOM	757	OE1	GLN	590	15.649	88.723	15.932	1.00	71.38	0
ATOM	758	NE2	GLN	590	17.473	87.403	15.742	1.00	67.58	N
ATOM	759	N	VAL	591	13.647	85.246	11.047	1.00	34.29	N
ATOM	760	CA	VAL	591	12.832	85.570	9.880	1.00	30.91	С
ATOM	761	С	VAL	591	12.827	84.471	8.809	1.00	26.09	С
ATOM	762	O	VAL	591	13.885	84.022	8.392	1.00	23.24	0
ATOM	763	CB	VAL	591	13.359	86.907	9.243	1.00	30.16	С
ATOM	764	CG1	VAL	591	13.067	86.983	7.758	1.00	33.78	С
ATOM	765	CG2	VAL	591	12.750	88.102	9.949	1.00	29.76	C
ATOM	766	N	ALA	592	11.636	84.000	8.437	1.00	24.70	N
ATOM	767 768	CA C	ALA ALA	592 502	11.462 10.529	83.007	7.372 6.375	1.00	20.42 23.74	С
ATOM	769	õ	ALA	592 592	9.320	83.712 83.852	6.629	$1.00 \\ 1.00$	19.55	C O
ATOM	709	CB			9.320 10.829		7.893			c
ATOM ATOM	771	N	ALA SER	592 593	10.829	81.750 84.209	5.277	$1.00 \\ 1.00$	14.37 22.94	N
ATOM	772	CA	SER	593	10.349	84.951	4.270	1.00	23.81	C
	773	C	SER	593		84.093	3.224	1.00	22.81	c
ATOM ATOM	774	õ	SER	593	9.677 10.336	84.093 83.470	3.224 2.401	1.00	22.80	ŏ
	775	CB	SER	593	11.232	85.974	3.569	1.00	22.82	c
ATOM ATOM	776	OG	SER	593 593	10.496	86.636	2.556	1.00	14.43	ō
ATOM	777	N	THR	594	8.354	80.050 84.150	3.212	1.00	22.76	N
ATOM	778	CA	THR	594	7.568	83.380	2.263	1.00	22.25	C
ATOM	779	C	THR	594	7.608	84.069	0.898	1.00	21.75	č
ATOM	780	õ	THR	594	7.593	83.411	-0.143	1.00	21.45	ŏ
ATOM	781	CB	THR	594	6.122	83.217	2.768	1.00	19.99	č
ATOM	782	OG1	THR	594	5.593	84.505	3.106	1.00	18.50	ŏ
ATOM	783	CG2	THR	594	6.110	82.375	4.021	1.00	15.10	č
ATOM	784	N	SER	595	7.663	85.400	0.901	1.00	21.20	Ň
ATOM	785	CA	SER	595	7.738	86.164	-0.334	1.00	18.60	C
ATOM	786	C	SER	595	9.032	85.850	-1.040	1.00	19.69	č
ATOM	787	ŏ	SER	595	9.044	85.513	-2.228	1.00	22.57	ŏ
ATOM	788	ČВ	SER	595	7.661	87.653	-0.037	1.00	11.10	č
ATOM	789	OG	SER	595	6.344	87.985	0.326	1.00	19.37	ŏ
ATOM	790	N	GLU	596	10.122	85.922	-0.294	1.00	21.05	Ň
ATOM	791	CA	GLU	596	11.418	85.638	-0.863	1.00	23.66	С
ATOM	792	С	GLU	596	11.591	84.184	-1.299	1.00	22.27	С
ATOM	793	0	GLU	596	12.302	83.905	-2.260	1.00	24.61	0
ATOM	794	CB	GLU	596	12.543	86.151	0.043	1.00	30.29	С
ATOM	795	CG	GLU	596	13.058	87.575	-0.366	1.00	39.81	С
ATOM	796	CD	GLU	596	11.948	88.663	-0.449	1.00	45.46	С
ATOM	797	OE1	GLU	596	11.391	89.067	0.602	1.00	52.14	0
ATOM	798	OE2	GLU	596	11.648	89.142	-1.565	1.00	47.05	Ο
ATOM	799	Ν	VAL	597	10.886	83.257	-0.661	1.00	19.54	Ν
ATOM	800	CA	VAL	597	10.993	81.869	-1.079	1.00	14.34	С
ATOM	801	С	VAL	597	10.056	81.566	-2.257	1.00	14.34	С
ATOM	802	0	VAL	597	10.322	80.677	-3.047	1.00	15.50	0
ATOM	803	CB	VAL	597	10.768	80.893	0.077	1.00	10.95	С
ATOM	804	CG1	VAL	597	9.297	80.603	0.266	1.00	9.01	С
ATOM	805	CG2	VAL	597	11.555	79.624	-0.172	1.00	10.66	С
ATOM	806	Ν	LEU	598	8.951	82.287	-2.372	1.00	12.70	Ν
ATOM	807	CA	LEU	598	8.067	82.083	-3.502	1.00	12.15	С
	808	С	LEU	598	8.749	82.749	-4.699	1.00	17.31	С
ATOM										
ATOM ATOM	809	0	LEU	598	8.579	82.324	-5.840	1.00	18.32	0

TABLE 8-continued

	Atomic	: Coor	dinates f	or Resid	lues of a C ID NO: 1		murine VW	F-A1	(SEQ	
ATOM	811	CG	LEU	598	5.728	81.891	-2.363	1.00	9.60	С
ATOM	812	CD1	LEU	598	4.467	82.716	-2.154	1.00	9.06	С
ATOM	813	CD2	LEU	598	5.370	80.522	-2.975	1.00	7.06	С
ATOM		Ν	LYS	599	9.552	83.777	-4.432	1.00	18.09	Ν
ATOM		CA	LYS	599	10.288	84.442	-5.492	1.00	20.39	С
ATOM		С	LYS	599	11.328	83.475	-6.055	1.00	20.58	C
ATOM		0	LYS	599	11.552	83.432	-7.260	1.00	23.57	0
ATOM		CB	LYS	599	11.001	85.693	-4.982	1.00	21.30	C
ATOM		CG CD	LYS	599 599	11.836	86.366	-6.063 -5.633	$1.00 \\ 1.00$	20.62	C
АТОМ АТОМ		CE	LYS LYS	599	12.331 13.674	87.732 87.677	-3.033 -4.914	1.00	28.26 28.15	C C
ATOM		NZ	LYS	599	14.463	88.927	-5.268	1.00	36.90	N
ATOM		N	TYR	600	11.972	82.712	-5.184	1.00	15.33	N
ATOM		CA	TYR	600	12.975	81.739	-5.605	1.00	14.72	C
ATOM		С	TYR	600	12.380	80.614	-6.470	1.00	15.26	Ċ
ATOM		0	TYR	600	13.031	80.110	-7.394	1.00	14.23	0
ATOM	827	CB	TYR	600	13.659	81.159	-4.369	1.00	10.22	С
ATOM	828	CG	TYR	600	14.763	80.168	-4.658	1.00	13.36	С
ATOM		CD1	TYR	600	16.091	80.594	-4.820	1.00	9.42	С
ATOM		CD2	TYR	600	14.488	78.791	-4.745	1.00	9.40	С
ATOM		CE1	TYR	600	17.123	79.670	-5.066	1.00	8.00	С
ATOM		CE2	TYR	600	15.502	77.874	-4.987	1.00	11.12	C
ATOM		CZ	TYR	600	16.812	78.320	-5.154	1.00	13.46	C
ATOM		OH	TYR	600	17.796	77.412	-5.477	1.00	18.52	O N
ATOM ATOM		N CA	THR THR	601 601	11.144 10.449	80.228 79.163	-6.167 -6.887	$1.00 \\ 1.00$	15.74 16.26	N C
ATOM		CA C	THR	601	10.449	79.658	-8.291	1.00	18.06	c
ATOM		õ	THR	601	10.189	78.942	-9.297	1.00	20.51	ŏ
ATOM		СВ	THR	601	9.184	78.724	-6.074	1.00	13.62	c
ATOM		OG1	THR	601	9.583	78.361	-4.745	1.00	14.88	ŏ
ATOM		CG2	THR	601	8.493	77.517	-6.690	1.00	8.81	Ċ
ATOM	842	Ν	LEU	602	9.660	80.914	-8.358	1.00	18.80	Ν
ATOM	843	CA	LEU	602	9.239	81.517	-9.594	1.00	12.28	С
ATOM	844	С	LEU	602	10.394	81.808	-10.528	1.00	12.80	С
ATOM		0	LEU	602	10.365	81.445	-11.686	1.00	15.88	0
ATOM		CB	LEU	602	8.497	82.800	-9.259	1.00	7.41	С
ATOM		CG	LEU	602	7.971	83.645	-10.410	1.00	4.81	C
ATOM		CD1	LEU	602	7.137	82.788	-11.305	1.00	11.16	C
ATOM		CD2	LEU	602	7.163	84.783	-9.881	1.00	3.73	C
ATOM		N	PHE	603	11.409	82.496	-10.031	1.00	17.52	N
ATOM ATOM		CA C	PHE PHE	603 603	12.537 13.743	82.883 81.966	-10.862 -10.844	$1.00 \\ 1.00$	18.59 21.46	C C
ATOM		ŏ	PHE	603	14.577	82.022	-10.844 -11.746	1.00	21.40	ō
ATOM		CB	PHE	603	12.954	84.322	-10.533	1.00	13.06	c
ATOM		CG	PHE	603	11.860	85.333	-10.758	1.00	13.57	c
ATOM		CD1	PHE	603	11.257	85.469	-12.006	1.00	13.30	Č
ATOM		CD2	PHE	603	11.422	86.138	-9.722	1.00	11.61	Ċ
ATOM		CE1	PHE	603	10.232	86.385	-12.212	1.00	8.39	С
ATOM	859	CE2	PHE	603	10.403	87.054	-9.916	1.00	14.44	С
ATOM	860	CZ	PHE	603	9.804	87.180	-11.160	1.00	14.78	С
ATOM		Ν	GLN	604	13.828	81.087	-9.856	1.00	24.28	Ν
ATOM		CA	GLN	604	14.983	80.205	-9.787	1.00	27.12	С
ATOM		С	GLN	604	14.687	78.739	-10.058	1.00	24.50	C
ATOM		O	GLN	604	15.512	78.040	-10.605	1.00	24.04	0
ATOM		CB	GLN	604	15.689	80.368	-8.440	1.00	31.32	C
ATOM		CG	GLN	604	16.522	81.621	-8.287	1.00	35.80	C
ATOM ATOM		CD OE1	GLN GLN	604 604	17.861 18.784	81.469 80.859	-8.960 -8.418	$1.00 \\ 1.00$	45.50 49.26	C O
ATOM		NE2	GLN GLN	604 604	18.784 17.973	80.859 81.999	-8.418 -10.166	1.00	49.26 54.22	N
ATOM		NE2	ILE	604 605	17.973	78.260	-10.166	1.00	54.22 23.49	N
ATOM		CA	ILE	605	13.196	76.859	-9.881	1.00	23.49	C
ATOM		C	ILE	605	12.418	76.627	-11.163	1.00	25.79	c
ATOM		õ	ILE	605	12.635	75.633	-11.861	1.00	28.80	ŏ
ATOM		СВ	ILE	605	12.425	76.243	-8.678	1.00	18.12	č
ATOM		CG1	ILE	605	13.356	76.119	-7.470	1.00	16.09	č
ATOM		CG2	ILE	605	11.862	74.874	-9.035	1.00	15.46	Č
ATOM		CD1	ILE	605	12.661	75.604	-6.225	1.00	12.12	Ċ
ATOM		Ν	PHE	606	11.444	77.484	-11.431	1.00	21.94	Ν
ATOM		CA	PHE	606	10.670	77.333	-12.645	1.00	22.03	С
ATOM	880	С	PHE	606	10.903	78.556	-13.533	1.00	22.92	С
ATOM		0	PHE	606	9.965	79.130	-14.083	1.00	19.90	0
	0.00	OD	DITE	606	0.100	77.149	12 210	1.00	10.20	0
ATOM ATOM		CB CG	PHE PHE	606 606	9.188 8.899	75.943	-12.310 -11.442	$1.00 \\ 1.00$	19.38 24.03	C C

TABLE 8-continued

	Atomi	c Cooi	dinates f	or Resid	lues of a C ID NO: 1		murine VW	F-A1	(SEQ	
ATOM	884	CD1	PHE	606	8.941	74.656	-11.969	1.00	21.11	С
ATOM	885	CD2	PHE	606	8.498	76.107	-10.108	1.00	23.28	С
ATOM	886	CE1	PHE	606	8.582	73.560	-11.178	1.00	22.09	С
ATOM	887	CE2	PHE	606	8.141	75.025	-9.319	1.00	19.77	С
ATOM	888	CZ	PHE	606	8.175	73.749	-9.850	1.00	22.92	С
ATOM	889	Ν	SER	607	12.165	78.971	-13.641	1.00	27.16	Ν
ATOM	890	CA	SER	607	12.505	80.127	-14.456	1.00	34.01	С
ATOM	891	С	SER	607	11.927	79.863	-15.832	1.00	41.74	С
ATOM	892	0	SER	607	11.276	80.737	-16.421	1.00	49.40	0
ATOM	893	CB	SER	607	13.997	80.342	-14.543	1.00	29.88	С
ATOM	894	OG	SER	607	14.209	81.653	-15.023	1.00	31.36	0
ATOM	895	Ν	LYS	608	12.279	78.717	-16.404	1.00	43.35	Ν
ATOM	896	CA	LYS	608	11.647	78.316	-17.648	1.00	46.17	С
ATOM	897	С	LYS	608	11.480	76.817	-17.716	1.00	42.64	С
ŧТОМ	898	0	LYS	608	12.365	76.029	-17.390	1.00	40.78	0
ATOM	899	CB	LYS	608	12.195	78.939	-18.935	1.00	54.48	С
ATOM	900	CG	LYS	608	11.035	79.221	-19.979	1.00	55.51	С
ATOM	901	CD	LYS	608	9.997	80.303	-19.504	1.00	54.84	С
ATOM	902	CE	LYS	608	8.628	79.732	-19.088	1.00	53.13	С
ŧтом	903	NZ	LYS	608	7.777	79.171	-20.196	1.00	50.29	Ν
ATOM	904	Ν	ILE	609	10.244	76.475	-18.018	1.00	38.42	Ν
ATOM	905	CA	ILE	609	9.753	75.134	-18.077	1.00	32.87	С
ATOM	906	С	ILE	609	10.437	74.185	-19.038	1.00	30.65	С
ATOM	907	0	ILE	609	10.108	74.152	-20.208	1.00	34.42	0
ATOM	908	CB	ILE	609	8.235	75.198	-18.302	1.00	31.16	С
ATOM	909	CG1	ILE	609	7.626	76.217	-17.324	1.00	30.77	С
ATOM	910	CG2	ILE	609	7.595	73.836	-18.148	1.00	32.93	С
ATOM	911	CD1	ILE	609	8.177	76.152	-15.893	1.00	27.01	С
ATOM	912	Ν	ASP	610	11.382	73.407	-18.512	1.00	29.30	Ν
ATOM	913	CA	ASP	610	12.115	72.397	-19.278	1.00	26.65	С
ATOM	914	С	ASP	610	11.296	71.090	-19.348	1.00	24.52	С
ATOM	915	0	ASP	610	11.667	70.160	-20.061	1.00	22.38	0
ATOM	916	CB	ASP	610	13.472	72.100	-18.610	1.00	31.38	С
ATOM	917	CG	ASP	610	13.326	71.445	-17.208	1.00	40.16	С
ATOM	918	OD1	ASP	610	12.777	72.111	-16.296	1.00	44.05	0
ATOM	919	OD2	ASP	610	13.781	70.280	-17.006	1.00	37.91	0
ATOM	920	Ν	ARG	611	10.207	71.023	-18.586	1.00	20.53	Ν
ATOM	921	CA	ARG	611	9.338	69.847	-18.523	1.00	17.10	С
ATOM	922	С	ARG	611	7.882	70.318	-18.565	1.00	18.14	С
ATOM	923	0	ARG	611	7.147	70.151	-17.579	1.00	17.77	0
ATOM	924	CB	ARG	611	9.555	69.117	-17.188	1.00	15.35	С
ATOM	925	CG	ARG	611	10.090	67.715	-17.279	1.00	19.43	C
ATOM	926	CD	ARG	611	9.053	66.659	-16.878	1.00	17.95	С
ATOM	927	NE	ARG	611	9.225	66.220	-15.507	1.00	15.53	Ν
ATOM	928	CZ	ARG	611	8.787	65.070	-15.009	1.00	15.73	С
ATOM	929	NH1	ARG	611	8.143	64.187	-15.746	1.00	14.15	Ν
ATOM	930	NH2	ARG	611	8.950	64.830	-13.726	1.00	20.70	N
ATOM	931	N	PRO	612	7.410	70.799	-19.734	1.00	18.33	N
ATOM	932	CA	PRO	612	6.023	71.278	-19.846	1.00	18.14	С
ATOM	933	С	PRO	612	4.985	70.176	-19.746	1.00	16.54	С
ATOM	934	O	PRO	612	3.800	70.458	-19.694	1.00	18.83	0
ATOM	935	CB	PRO	612	6.003	71.928	-21.226	1.00	20.27	С
ATOM	936	CG	PRO	612	6.909	70.998	-22.015	1.00	21.20	С
ATOM	937	CD N	PRO	612	8.066	70.757	-21.054	1.00	19.55	C
ATOM	938	N	GLU	613	5.439	68.926	-19.694	1.00	17.56	N
ATOM	939	CA	GLU	613	4.539	67.780 67.341	-19.590	1.00	18.04	С
ATOM	940	С	GLU	613	4.265	67.341	-18.137	1.00	20.09	С
ATOM	941	O CP	GLU GLU	613 613	3.525	66.376	-17.895	1.00	19.26	0
ATOM	942	CB	GLU GLU	613 613	5.088	66.593 65.930	-20.380 -19.764	1.00	17.32	С
ATOM	943	CG CD	GLU GLU	613 613	6.320 7.622	65.939 66.575		1.00	16.50	С
ATOM	944	CD OF1	GLU GLU	613 613	7.622	66.575	-20.203	1.00	17.75	С
ATOM	945	OE1	GLU	613	7.609	67.682	-20.775	1.00	21.13	0
ATOM	946	OE2 N	GLU	613	8.680	65.949	-19.979	1.00	18.68	O N
ATOM	947	N	ALA	614	4.896	67.997	-17.172	1.00	17.80	N
ATOM	948	CA	ALA	614 614	4.645	67.643	-15.782	1.00	17.35	С
ATOM	949	С	ALA	614	3.998	68.805	-15.068	1.00	17.82	С
ATOM	950	O	ALA	614	4.245	69.962	-15.422	1.00	18.03	0
ATOM	951	CB	ALA	614	5.929	67.302	-15.103	1.00	14.29	C
ATOM	952	N	SER	615	3.143	68.502	-14.088	1.00	14.90	N
	953	CA	SER	615	2.532	69.553	-13.297	1.00	13.08	С
ATOM		~					1 2 2 4 7	1.00		
ATOM ATOM	954	С	SER	615	3.622	70.036	-12.347	1.00	14.27	С
		C O CB	SER SER SER	615 615 615	3.622 4.577 1.362	69.304 69.029	-12.056 -12.491	1.00	14.27 17.25 10.01	0 C

TABLE 8-continued

	Atomic Coor	dinates f		lues of a C ID NO: 1		murine VW	F-A1	(SEQ	
ATOM	957 OG	SER	615	0.379	68.502	-13.348	1.00	13.32	0
ATOM	958 N	ARG	616	3.505	71.290	-11.929	1.00	13.79	Ν
ATOM	959 CA	ARG	616	4.441	71.923	-11.021	1.00	10.29	С
атом	960 C	ARG	616	3.696	72.218	-9.722	1.00	8.30	С
ATOM	961 O	ARG	616	2.638	72.841	-9.721	1.00	8.31	0
ATOM	962 CB	ARG	616	4.966	73.188	-11.671	1.00	10.60	C
ATOM	963 CG	ARG	616	5.580	72.883	-13.020	1.00	11.29	C
ATOM	964 CD	ARG	616	5.648	74.101	-13.902	1.00	18.79	C
ATOM	965 NE	ARG	616	5.380	73.740	-15.286	1.00	25.65	N
ATOM	966 CZ	ARG	616	4.217	73.955	-15.877	1.00	28.89	C
атом атом	967 NH1 968 NH2	ARG	616	3.238	74.543 73.463	-15.223	1.00	36.05	N
ATOM	968 NH2 969 N	ARG ILE	616 617	3.977 4.187	71.673	-17.075 -8.616	$1.00 \\ 1.00$	37.22 10.46	N N
ATOM	909 N 970 CA	ILE	617	3.532	71.893	-7.341	1.00	8.09	C
ATOM	971 C	ILE	617	4.549	72.311	-6.289	1.00	9.44	c
ATOM	972 O	ILE	617	5.625	71.717	-6.176	1.00	13.23	ŏ
ATOM	973 CB	ILE	617	2.790	70.616	-6.898	1.00	13.19	č
ATOM	974 CG1	ILE	617	1.747	70.212	-7.951	1.00	12.54	č
ATOM	975 CG2	ILE	617	2.102	70.832	-5.549	1.00	17.10	Ĉ
ATOM	976 CD1	ILE	617	0.818	69.049	-7.489	1.00	9.40	С
ATOM	977 N	ALA	618	4.241	73.396	-5.587	1.00	11.26	Ν
ATOM	978 CA	ALA	618	5.092	73.932	-4.523	1.00	9.88	С
ATOM	979 C	ALA	618	4.319	73.708	-3.221	1.00	13.13	С
ATOM	980 O	ALA	618	3.164	74.135	-3.084	1.00	13.87	Ο
ATOM	981 CB	ALA	618	5.332	75.403	-4.747	1.00	6.93	С
ATOM	982 N	LEU	619	4.920	72.964	-2.304	1.00	11.48	Ν
ATOM	983 CA	LEU	619	4.286	72.655	-1.029	1.00	14.03	С
ATOM	984 C	LEU	619	4.900	73.622	-0.022	1.00	12.75	С
ATOM	985 O	LEU	619	6.035	73.447	0.395	1.00	9.90	0
ATOM	986 CB	LEU	619	4.604	71.206	-0.675	1.00	14.36	С
ATOM	987 CG	LEU	619	3.800	70.416	0.353	1.00	19.68	C
ATOM	988 CD1	LEU	619	2.311	70.465	0.078	1.00	19.00	С
ATOM	989 CD2	LEU	619	4.319	68.989	0.289	1.00	14.02	C
ATOM	990 N 991 CA	LEU	620	4.186	74.700	0.281	1.00	11.45	N
ATOM		LEU	620	4.706	75.711	1.201	1.00	14.00	С
ATOM ATOM	992 C 993 O	LEU LEU	620 620	4.397 3.271	75.384 75.581	2.663 3.123	$1.00 \\ 1.00$	13.84 10.40	C O
ATOM	993 O 994 CB	LEU LEU	620 620	3.271 4.156	77.095	0.823	1.00	10.40	C
ATOM	994 CB 995 CG	LEU	620	4.779	78.300	1.525	1.00	10.11	c
ATOM	996 CD1	LEU	620	6.276	78.366	1.250	1.00	10.11	c
ATOM	997 CD2	LEU	620	4.089	79.568	1.058	1.00	11.71	č
ATOM	998 N	LEU	621	5.397	74.880	3.380	1.00	12.67	Ň
ATOM	999 CA	LEU	621	5.226	74.528	4.785	1.00	15.42	C
ATOM	1000 C	LEU	621	5.536	75.770	5.639	1.00	15.14	Ĉ
ATOM	1001 O	LEU	621	6.697	76.117	5.882	1.00	17.05	0
ATOM	1002 CB	LEU	621	6.117	73.327	5.100	1.00	11.95	С
ATOM	1003 CG	LEU	621	5.761	72.185	4.115	1.00	11.75	С
ATOM	1004 CD1	LEU	621	6.957	71.338	3.727	1.00	7.16	С
ATOM	1005 CD2	LEU	621	4.678	71.351	4.702	1.00	7.13	С
ATOM	1006 N	MET	622	4.467	76.390	6.131	1.00	13.49	Ν
A TOM	1007 CA	MET	622	4.538	77.624	6.899	1.00	17.11	С
ATOM	1008 C	MET	622	4.273	77.505	8.396	1.00	17.35	С
ATOM	1009 O	MET	622	3.211	77.062	8.803	1.00	18.55	0
ATOM	1010 CB	MET	622	3.499	78.593	6.341	1.00	19.32	С
ATOM	1011 CG	MET	622	3.634	78.898	4.878	1.00	19.64	C
ATOM	1012 SD	MET	622	2.174	79.715	4.255	1.00	22.75	S
ATOM	1013 CE	MET	622	2.302	81.305	4.988	1.00	20.32	C
ATOM ATOM	1014 N 1015 CA	ALA	623 623	5.199 5.057	78.003 78.000	9.204	$1.00 \\ 1.00$	16.59 14.97	N C
ATOM ATOM	1015 CA 1016 C	ALA	623 623	5.057	78.000	10.654 11.201	$1.00 \\ 1.00$	14.97	c
ATOM	1016 C 1017 O	ALA ALA	623 623	5.115 4.952	79.425 79.648	12.405	1.00	18.32	ō
ATOM	1017 O 1018 CB	ALA	623	4.932 6.167	77.173	12.403	1.00	15.96	c
ATOM	1018 CB 1019 N	SER	624	5.300	80.397	10.323	1.00	19.46	N
ATOM	1019 R 1020 CA	SER	624	5.433	81.772	10.323	1.00	21.55	C
ATOM	1020 CA 1021 C	SER	624	4.869	82.812	9.799	1.00	22.83	c
ATOM	1022 O	SER	624	4.108	82.483	8.855	1.00	18.76	ŏ
ATOM	1022 CB	SER	624	6.921	82.065	11.026	1.00	18.76	č
ATOM	1024 OG	SER	624	7.721	81.753	9.896	1.00	22.42	ŏ
ATOM	1025 N	GLN	625	5.152	84.075	10.122	1.00	22.23	Ň
ATOM	1026 CA	GLN	625	4.776	85.204	9.282	1.00	27.39	C
	1027 C	GLN	625	5.948	86.161	9.222	1.00	27.09	Č
ATOM	1027 0								
ATOM ATOM	1027 C 1028 O	GLN	625	6.583	86.445	10.227	1.00	27.21	0

TABLE 8-continued

	Atomic Coor	dinates f	or Resid	lues of a C ID NO: 1		nurine VV	/F-A1	(SEQ	
ATOM	1030 CG	GLN	625	3.294	86.097	11.206	1.00	33.26	С
ATOM	1031 CD	GLN	625	1.881	86.577	11.507	1.00	32.60	С
ATOM	1032 OE1	GLN	625	1.168	85.979	12.305	1.00	41.09	0
ATOM	1033 NE2	GLN	625	1.471	87.647	10.854	1.00	32.88	Ν
ATOM	1034 N	GLU	626	6.326	86.519	8.004	1.00	28.00	N
ATOM	1035 CA 1036 C	GLU	626	7.434	87.437	7.771 8.071	$1.00 \\ 1.00$	28.38 29.02	C
АТОМ АТОМ	1030 C 1037 O	GLU GLU	626 626	7.013 5.813	88.885 89.221	8.071 8.041	1.00	29.02	C O
ATOM	1037 CB	GLU	626	7.852	87.355	6.304	1.00	25.02	c
ATOM	1030 CG	GLU	626	6.807	87.963	5.378	1.00	23.18	č
ATOM	1040 CD	GLU	626	7.062	87.693	3.915	1.00	24.81	č
ATOM	1041 OE1	GLU	626	8.171	87.208	3.580	1.00	20.13	0
ATOM	1042 OE2	GLU	626	6.129	87.946	3.116	1.00	17.26	0
ATOM	1043 N	PRO	627	7.995	89.762	8.367	1.00	29.70	Ν
ATOM	1044 CA	PRO	627	7.708	91.173	8.653	1.00	31.82	С
ATOM	1045 C	PRO	627	7.050	91.835	7.441	1.00	33.52	С
ATOM	1046 O	PRO	627	7.505	91.662	6.310	1.00	33.48	0
ATOM	1047 CB	PRO	627	9.096	91.759	8.947	1.00	28.98	С
ATOM ATOM	1048 CG 1049 CD	PRO PRO	627 627	10.037 9.420	90.803 89.477	8.297 8.587	$1.00 \\ 1.00$	31.86 29.78	C C
ATOM	1049 CD 1050 N	GLN	628	9.420 6.000	92.609	8.387 7.702	1.00	36.73	N
ATOM	1051 CA	GLN	628	5.208	93.302	6.679	1.00	38.04	C
ATOM	1052 C	GLN	628	6.026	93.896	5.542	1.00	35.21	č
ATOM	1053 O	GLN	628	5.629	93.832	4.375	1.00	34.60	0
ATOM	1054 CB	GLN	628	4.353	94.406	7.332	1.00	44.33	С
ATOM	1055 CG	GLN	628	2.922	94.535	6.808	1.00	52.77	С
ATOM	1056 CD	GLN	628	1.885	94.095	7.834	1.00	60.03	С
ATOM	1057 OE1	GLN	628	1.070	94.899	8.302	1.00	61.34	0
ATOM	1058 NE2	GLN	628	1.923	92.814	8.206	1.00	63.65	Ν
ATOM	1059 N	ARG	629	7.180	94.448	5.884	1.00	32.79	N
ATOM ATOM	1060 CA	ARG	629	8.051	95.067	4.898	$1.00 \\ 1.00$	34.31	C
ATOM	1061 C 1062 O	ARG ARG	629 629	8.588 8.919	94.118 94.556	3.822 2.723	1.00	30.81 36.74	C O
ATOM	1062 CB	ARG	629	9.209	94.330 95.784	5.592	1.00	38.79	c
ATOM	1064 CG	ARG	629	10.042	94.861	6.431	1.00	47.03	č
ATOM	1065 CD	ARG	629	11.399	95.422	6.687	1.00	49.94	Ĉ
ATOM	1066 NE	ARG	629	12.324	94.336	6.978	1.00	58.97	Ν
ATOM	1067 CZ	ARG	629	13.603	94.339	6.633	1.00	65.16	С
ATOM	1068 NH1	ARG	629	14.109	95.379	5.985	1.00	70.46	Ν
ATOM	1069 NH2	ARG	629	14.378	93.314	6.952	1.00	68.49	Ν
ATOM	1070 N	MET	630	8.655	92.828	4.110	1.00	25.21	N
ATOM	1071 CA	MET	630	9.171	91.879	3.134	1.00	23.72	C
ATOM	1072 C 1073 O	MET	630 620	8.061 8.346	91.297	2.268	$1.00 \\ 1.00$	24.23	C
ATOM ATOM	1073 O 1074 CB	MET MET	630 630	8.340 9.905	90.631 90.735	1.270 3.828	1.00	25.88 25.55	O C
ATOM	1074 CB 1075 CG	MET	630	11.078	91.153	4.687	1.00	28.67	c
ATOM	1076 SD	MET	630	11.844	89.733	5.470	1.00	30.08	s
ATOM	1077 CE	MET	630	13.015	89.228	4.233	1.00	33.64	Ĉ
ATOM	1078 N	SER	631	6.811	91.617	2.606	1.00	23.98	Ν
ATOM	1079 CA	SER	631	5.634	91.098	1.906	1.00	24.27	С
ATOM	1080 C	SER	631	5.076	91.919	0.751	1.00	26.26	С
ATOM	1081 O	SER	631	4.010	91.584	0.210	1.00	21.34	0
ATOM	1082 CB	SER	631	4.504	90.879	2.911	1.00	22.54	С
ATOM	1083 OG	SER	631	4.923	90.050	3.983	1.00	24.17	O N
ATOM	1084 N	ARG	632	5.797	92.967	0.357	1.00	29.47	N
АТОМ АТОМ	1085 CA 1086 C	ARG ARG	632 632	5.348 4.990	93.865 93.255	-0.711 -2.075	$1.00 \\ 1.00$	27.92 24.00	C C
ATOM	1080 C 1087 O	ARG	632	4.990	93.233 93.653	-2.698	1.00	24.00 19.20	ō
ATOM	1087 CB	ARG	632	6.350	95.003 95.003	-0.869	1.00	32.62	c
ATOM	1080 CD 1089 CG	ARG	632	6.093	96.167	0.064	1.00	38.66	c
ATOM	1090 CD	ARG	632	7.198	97.197	-0.041	1.00	48.62	č
ATOM	1091 NE	ARG	632	8.267	96.958	0.932	1.00	58.66	N
ATOM	1092 CZ	ARG	632	9.535	97.343	0.786	1.00	61.73	С
ATOM	1093 NH1	ARG	632	9.927	97.984	-0.317	1.00	62.36	Ν
ATOM	1094 NH2	ARG	632	10.396	97.139	1.779	1.00	60.51	Ν
ATOM	1095 N	ASN	633	5.754	92.267	-2.520	1.00	22.34	Ν
ATOM	1096 CA	ASN	633	5.501	91.630	-3.812	1.00	23.39	C
ATOM	1097 C	ASN	633	4.823	90.274	-3.673	1.00	22.81	C
ATOM	1098 O	ASN	633	4.613	89.592	-4.665	1.00	20.30	0
ATOM ATOM	1099 CB	ASN	633	6.815 7.352	91.430	-4.583	1.00	19.08	C
ALLUN	1100 CG	ASN	633	7.352	92.708	-5.169	1.00	17.97	С
ATOM	1101 OD1	ASN	633	6.663	93.724	-5.197	1.00	12.49	0

TABLE 8-continued

	Atomic Coor	dinates	for Resid	lues of a C ID NO: 1		murine VW	F-A1	(SEQ	
ATOM	1103 N	PHE	634	4.494	89.889	-2.445	1.00	22.28	Ν
ATOM	1104 CA	PHE	634	3.878	88.603	-2.182	1.00	19.74	С
ATOM	1105 C	PHE	634	2.821	88.172	-3.190	1.00	18.80	С
ATOM	1106 O 1107 CB	PHE PHE	634 634	2.994 3.303	87.142 88.536	-3.849 -0.756	$1.00 \\ 1.00$	19.49 14.84	O C
ATOM ATOM	1107 CB 1108 CG	PHE	634	2.736	87.184	-0.736	1.00	14.84	c
ATOM	1100 CD1	PHE	634	3.583	86.149	-0.048	1.00	4.10	č
ATOM	1110 CD2	PHE	634	1.373	86.920	-0.576	1.00	11.23	Č
ATOM	1111 CE1	PHE	634	3.095	84.880	0.136	1.00	5.83	С
ATOM	1112 CE2	PHE	634	0.858	85.645	-0.393	1.00	10.88	С
ATOM	1113 CZ	PHE	634	1.719	84.617	-0.040	1.00	9.89	С
ATOM	1114 N	VAL	635	1.751	88.942	-3.365	$1.00 \\ 1.00$	18.69	N
ATOM ATOM	1115 CA 1116 C	VAL VAL	635 635	0.707 1.214	88.514 88.374	-4.314 -5.751	1.00	21.28 21.28	C C
ATOM	1110 C 1117 O	VAL	635	0.803	87.478	-6.480	1.00	22.82	õ
ATOM	1118 CB	VAL	635	-0.500	89.440	-4.280	1.00	20.51	č
ATOM	1119 CG1	VAL	635	-1.510	89.022	-5.316	1.00	25.23	С
ATOM	1120 CG2	VAL	635	-1.129	89.383	-2.922	1.00	23.14	С
ATOM	1121 N	ARG	636	2.160	89.227	-6.111	1.00	18.25	Ν
ATOM	1122 CA	ARG	636	2.778	89.239	-7.420	1.00	13.92	С
ATOM	1123 C 1124 O	ARG	636	3.522	87.936 87.366	-7.677	1.00	15.53	С
ATOM ATOM	1124 O 1125 CB	ARG ARG	636 636	3.419 3.719	87.366 90.446	-8.760 -7.480	$1.00 \\ 1.00$	19.16 13.52	O C
ATOM	1125 CB 1126 CG	ARG	636	2.923	90.440 91.760	-7.492	1.00	21.06	c
ATOM	1120 CO	ARG	636	3.742	92.986	-7.115	1.00	31.89	č
ATOM	1128 NE	ARG	636	3.059	94.231	-7.497	1.00	34.04	Ν
ATOM	1129 CZ	ARG	636	2.973	95.330	-6.747	1.00	33.28	С
ATOM	1130 NH1	ARG	636	3.523	95.373	-5.545	1.00	32.30	Ν
ATOM	1131 NH2	ARG	636	2.396	96.421	-7.233	1.00	35.94	Ν
ATOM	1132 N	TYR	637	4.249	87.439	-6.683	1.00	12.24	N
ATOM	1133 CA	TYR	637	4.969	86.187	-6.837	1.00	13.29	C
ATOM ATOM	1134 C 1135 O	TYR TYR	637 637	3.984 4.176	85.046 84.141	-6.970 -7.789	$1.00 \\ 1.00$	15.41 17.67	C O
ATOM	1135 CB	TYR	637	5.912	85.942	-5.654	1.00	16.02	č
ATOM	1137 CG	TYR	637	7.003	86.987	-5.572	1.00	17.66	č
ATOM	1138 CD1	TYR	637	7.556	87.512	-6.726	1.00	23.47	С
ATOM	1139 CD2	TYR	637	7.438	87.486	-4.356	1.00	23.35	С
ATOM	1140 CE1	TYR	637	8.507	88.512	-6.684	1.00	24.21	С
ATOM	1141 CE2	TYR	637	8.398	88.493	-4.296	1.00	25.27	С
ATOM	1142 CZ	TYR	637	8.929	89.000	-5.471	1.00	27.11	С
ATOM ATOM	1143 OH 1144 N	TYR VAL	637 638	9.897 2.892	89.989 85.114	-5.446 -6.212	$1.00 \\ 1.00$	27.67 17.90	O N
ATOM	1144 N 1145 CA	VAL	638	1.866	84.073	-6.264	1.00	15.71	C
ATOM	1146 C	VAL	638	1.110	84.107	-7.591	1.00	16.42	č
ATOM	1147 O	VAL	638	0.730	83.057	-8.121	1.00	13.74	Ō
ATOM	1148 CB	VAL	638	0.879	84.189	-5.070	1.00	14.51	С
ATOM	1149 CG1	VAL	638	-0.224	83.196	-5.201	1.00	10.64	С
ATOM	1150 CG2	VAL	638	1.623	83.907	-3.762	1.00	15.68	С
ATOM	1151 N	GLN	639	0.858	85.306	-8.122	1.00	17.70	N
ATOM ATOM	1152 CA 1153 C	GLN GLN	639 639	0.173 1.132	85.418 84.973	-9.401 -10.494	$1.00 \\ 1.00$	19.16 20.06	C C
ATOM	1153 C 1154 O	GLN	639	0.705	84.381	-10.494 -11.500	1.00	20.00	ŏ
ATOM	1155 CB	GLN	639	-0.280	86.842	-9.661	1.00	24.29	č
ATOM	1156 CG	GLN	639	-1.377	87.339	-8.758	1.00	33.20	č
ATOM	1157 CD	GLN	639	-1.509	88.855	-8.824	1.00	42.75	С
ATOM	1158 OE1	GLN	639	-0.534	89.573	-9.095	1.00	47.34	0
ATOM	1159 NE2	GLN	639	-2.709	89.353	-8.572	1.00	47.82	Ν
ATOM	1160 N	GLY	640	2.428	85.212	-10.272	1.00	19.08	N
ATOM ATOM	1161 CA 1162 C	GLY GLY	640 640	3.465 3.515	84.789 83.268	-11.212 -11.342	$1.00 \\ 1.00$	16.51 16.94	C C
ATOM	1162 C 1163 O	GLI	640 640	3.492	83.208 82.740	-11.342 -12.454	1.00	10.94 19.48	ŏ
ATOM	1165 O 1164 N	LEU	641	3.553	82.551	-10.221	1.00	16.74	N
ATOM	1165 CA	LEU	641	3.579	81.088	-10.252	1.00	13.10	Ċ
ATOM	1166 C	LEU	641	2.269	80.555	-10.792	1.00	13.33	С
ATOM	1167 O	LEU	641	2.206	79.465	-11.355	1.00	18.15	0
ATOM	1168 CB	LEU	641	3.802	80.530	-8.852	1.00	14.38	С
ATOM	1169 CG	LEU	641	5.198	80.681	-8.238	1.00	16.65	С
ATOM	1170 CD1	LEU	641	5.139	80.462	-6.733	1.00	18.86	C
	1171 CD2	LEU	641	6.206	79.737 81.311	-8.886 -10.605	$1.00 \\ 1.00$	6.08 14.11	C N
	1170 NT	IVC							IN
ATOM ATOM ATOM	1172 N 1173 CA	LYS LYS	642 642	1.205 -0.101					
	1172 N 1173 CA 1174 C	LYS LYS LYS	642 642 642	-0.101 -0.150	80.898 80.870	-11.096 -12.623	$1.00 \\ 1.00$	16.06 16.97	C C

TABLE 8-continued

	Atomic Coor	dinates	for Resid	lues of a C ID NO: 1		murine VW	F-A1	(SEQ	
ATOM	1176 CB	LYS	642	-1.169	81.847	-10.555	1.00	16.72	С
ATOM	1177 CG	LYS	642	-2.558	81.585	-11.078	1.00	18.86	С
ATOM	1178 CD	LYS	642	-3.085	82.761	-11.881	1.00	14.53	С
ATOM	1179 CE	LYS	642	-4.522	82.498	-12.267	1.00	25.13	С
ATOM	1180 NZ	LYS	642	-5.053	83.581	-13.128	1.00	33.85	N
ATOM ATOM	1181 N 1182 CA	LYS LYS	643 643	0.517 0.554	81.829 81.933	-13.256 -14.714	$1.00 \\ 1.00$	17.23 15.33	N C
ATOM	1182 CA 1183 C	LYS	643	1.409	80.845	-14.714 -15.322	1.00	14.03	c
ATOM	1184 O	LYS	643	1.183	80.439	-16.464	1.00	13.60	õ
ATOM	1185 CB	LYS	643	1.127	83.281	-15.127	1.00	16.90	С
ATOM	1186 CG	LYS	643	0.301	84.453	-14.692	1.00	23.60	С
ATOM	1187 CD	LYS	643	0.990	85.751	-15.080	1.00	29.59	С
ATOM	1188 CE	LYS	643	0.321	86.922	-14.390	1.00	34.30	C
ATOM ATOM	1189 NZ 1190 N	LYS LYS	643 644	1.216 2.442	88.106 80.431	-14.326 -14.598	$1.00 \\ 1.00$	35.59 15.71	N N
ATOM	1190 N 1191 CA	LYS	644	3.321	79.373	-14.398 -15.059	1.00	15.56	C
ATOM	1192 C	LYS	644	2.720	78.041	-14.644	1.00	13.62	č
ATOM	1193 O	LYS	644	3.351	77.009	-14.825	1.00	16.26	ō
ATOM	1194 CB	LYS	644	4.737	79.517	-14.466	1.00	19.22	С
ATOM	1195 CG	LYS	644	5.710	80.398	-15.264	1.00	22.27	С
ATOM	1196 CD	LYS	644	7.123	80.272	-14.690	1.00	24.71	С
ATOM	1197 CE	LYS	644	8.123	81.299	-15.260	1.00	31.85	С
ATOM	1198 NZ	LYS	644	9.118	81.871	-14.243	1.00	23.70	N
ATOM ATOM	1199 N 1200 CA	LYS LYS	645 645	1.502 0.761	78.076 76.876	-14.098 -13.644	$1.00 \\ 1.00$	10.95 14.53	N C
ATOM	1200 CA 1201 C	LYS	645	1.425	76.068	-12.527	1.00	14.55	č
ATOM	1201 C	LYS	645	1.324	74.833	-12.481	1.00	10.70	ŏ
ATOM	1203 CB	LYS	645	0.397	75.957	-14.803	1.00	14.90	č
ATOM	1204 CG	LYS	645	-1.087	75.949	-15.174	1.00	16.56	С
ATOM	1205 CD	LYS	645	-1.866	75.078	-14.228	1.00	19.52	С
ATOM	1206 CE	LYS	645	-3.242	75.666	-13.949	1.00	28.98	С
ATOM	1207 NZ	LYS	645	-4.386	74.911	-14.522	1.00	29.12	Ν
ATOM	1208 N	VAL	646	2.095	76.784	-11.630	1.00	13.98	N
ATOM ATOM	1209 CA 1210 C	VAL VAL	646 646	2.745 1.723	76.182 76.303	-10.481 -9.379	$1.00 \\ 1.00$	$17.17 \\ 17.08$	C C
ATOM	1210 C 1211 O	VAL	646	1.333	77.413	-9.028	1.00	15.83	ŏ
ATOM	1211 CB	VAL	646	4.004	76.952	-10.065	1.00	15.22	č
ATOM	1213 CG1	VAL	646	4.628	76.308	-8.805	1.00	14.08	Č
ATOM	1214 CG2	VAL	646	4.980	76.955	-11.204	1.00	10.59	С
ATOM	1215 N	ILE	647	1.247	75.160	-8.895	1.00	17.86	Ν
ATOM	1216 CA	ILE	647	0.235	75.107	-7.852	1.00	15.74	С
ATOM	1217 C	ILE	647	0.858	75.303	-6.464	1.00	15.68	С
ATOM ATOM	1218 O 1219 CB	ILE ILE	647 647	1.785 -0.514	74.592 73.765	-6.086 -7.947	$1.00 \\ 1.00$	17.61 14.07	O C
ATOM	1219 CB 1220 CG1	ILE	647	-1.094	73.600	-9.364	1.00	14.07	c
ATOM	1220 CG1	ILE	647	-1.620	73.665	-6.896	1.00	12.37	č
ATOM	1222 CD1	ILE	647	-1.913	74.795	-9.865	1.00	11.46	č
ATOM	1223 N	VAL	648	0.400	76.298	-5.722	1.00	16.62	Ν
ATOM	1224 CA	VAL	648	0.969	76.519	-4.387	1.00	16.18	С
ATOM	1225 C	VAL	648	0.004	75.932	-3.365	1.00	15.96	С
ATOM	1226 O	VAL	648	-1.158	76.338	-3.284	1.00	14.76	0
ATOM	1227 CB	VAL	648	1.258	78.035	-4.079	1.00	12.13	С
ATOM ATOM	1228 CG1 1229 CG2	VAL VAL	648 648	2.023 2.078	78.179 78.678	-2.775 -5.223	$1.00 \\ 1.00$	9.31 11.58	C C
ATOM	1229 CG2 1230 N	VAL ILE	648 649	2.078 0.456	7 8. 678 74.906	-5.223 -2.659	$1.00 \\ 1.00$	11.58	N
ATOM	1230 N 1231 CA	ILE	649	-0.369	74.276	-1.644	1.00	16.78	C
ATOM	1231 CA	ILE	649	0.222	74.671	-0.306	1.00	17.79	č
ATOM	1233 O	ILE	649	1.223	74.095	0.124	1.00	18.08	ō
ATOM	1234 CB	ILE	649	-0.376	72.747	-1.769	1.00	14.88	С
ATOM	1235 CG1	ILE	649	-0.873	72.352	-3.159	1.00	16.15	С
ATOM	1236 CG2	ILE	649	-1.297	72.142	-0.708	1.00	16.62	С
ATOM	1237 CD1	ILE	649	-0.925	70.873	-3.418	1.00	17.42	C
ATOM ATOM	1238 N 1239 CA	PRO	650 650	-0.351	75.709 76.238	0.334	$1.00 \\ 1.00$	16.08	N
ATOM ATOM	1239 CA 1240 C	PRO PRO	650 650	0.076 -0.300	75.238	1.627 2.775	1.00	12.67 15.98	C C
ATOM	1240 C 1241 O	PRO	650	-0.300	74.921	2.773	1.00	13.98	ŏ
ATOM	1241 O 1242 CB	PRO	650	-0.737	77.512	1.764	1.00	9.54	č
ATOM	1243 CG	PRO	650	-1.475	77.687	0.465	1.00	13.54	č
ATOM	1244 CD	PRO	650	-1.626	76.326	-0.068	1.00	16.46	С
ATOM	1245 N	VAL	651	0.693	74.893	3.553	1.00	14.32	Ν
ATOM	1246 CA	VAL	651	0.422	74.040	4.697	1.00	14.36	С
ATOM	1247 C	VAL	651	0.728	74.922	5.911	1.00	12.69	С
ATOM	1248 O	VAL	651	1.871	75.307	6.129	1.00	15.37	ŏ

TABLE 8-continued

	Atomic Coor	dinates :	for Resid	lues of a C ID NO: 1		nurine VV	VF-A1	(SEQ	
АТОМ	1249 CB	VAL	651	1.293	72.782	4.691	1.00	14.81	С
ATOM	1250 CG1	VAL	651	0.942	71.918	5.884	1.00	15.50	С
ATOM	1251 CG2	VAL	651	1.075	72.004	3.392	1.00	10.07	С
A TOM	1252 N	GLY	652	-0.307	75.355	6.617	1.00	9.84	Ν
ATOM	1253 CA	GLY	652	-0.102	76.201	7.776	1.00	12.11	С
атом	1254 C	GLY	652	0.074	75.324	8.991	1.00	11.33	С
ATOM	1255 O	GLY	652	-0.778	74.503	9.244	1.00	17.62	0
ATOM	1256 N	ILE	653	1.150	75.492	9.742	1.00	13.97	Ν
ATOM	1257 CA	ILE	653	1.397	74.679	10.931	1.00	18.24	С
ATOM	1258 C	ILE	653	1.481	75.547	12.197	1.00	21.88	C
ATOM	1259 O	ILE	653	2.468	76.273	12.417	1.00	19.90	0
ATOM	1260 CB	ILE	653	2.728	73.937	10.804	1.00	22.12	C
ATOM	1261 CG1	ILE	653	2.805	73.167	9.478	1.00	18.02	С
ATOM	1262 CG2	ILE	653	2.957	73.057	12.034	1.00	18.87	С
ATOM	1263 CD1	ILE	653	4.217	72.868	9.064	1.00	14.43	C
ATOM	1264 N	GLY	654	0.445	75.491 76.279	13.023	1.00	17.34	N
ATOM	1265 CA	GLY	654	0.480		14.245	1.00	18.39	C C
ATOM ATOM	1266 C 1267 O	GLY GLY	654 654	-0.111 -0.373	77.682 78.214	14.187 13.102	$1.00 \\ 1.00$	20.92 24.39	ō
ATOM	1267 O 1268 N	PRO	655	-0.373 -0.264	78.337	15.363	1.00	24.39	N
ATOM	1269 CA	PRO	655	-0.806	79.684	15.601	1.00	15.28	C
ATOM	1209 CA 1270 C	PRO	655	-0.034	80.794	14.911	1.00	16.41	c
ATOM	1270 C 1271 O	PRO	655	-0.588	81.825	14.552	1.00	18.28	ŏ
ATOM	1272 CB	PRO	655	-0.642	79.852	17.116	1.00	12.24	č
ATOM	1272 CD	PRO	655	-0.672	78.460	17.630	1.00	13.05	č
ATOM	1274 CD	PRO	655	0.153	77.719	16.635	1.00	14.07	č
ATOM	1275 N	HIS	656	1.272	80.622	14.794	1.00	16.41	Ň
ATOM	1276 CA	HIS	656	2.082	81.667	14.194	1.00	18.52	Ĉ
ATOM	1277 C	HIS	656	2.109	81.703	12.664	1.00	17.35	Ċ
ATOM	1278 O	HIS	656	2.603	82.672	12.084	1.00	17.65	Ō
ATOM	1279 CB	HIS	656	3.492	81.676	14.815	1.00	16.60	Č
ATOM	1280 CG	HIS	656	3.498	82.026	16.283	1.00	18.39	С
ATOM	1281 ND1	HIS	656	3.392	81.077	17.277	1.00	18.56	Ν
ATOM	1282 CD2	HIS	656	3.554	83.224	16.915	1.00	16.46	С
ATOM	1283 CE1	HIS	656	3.376	81.672	18.451	1.00	13.19	С
ATOM	1284 NE2	HIS	656	3.474	82.972	18.258	1.00	16.12	Ν
ATOM	1285 N	ALA	657	1.504	80.703	12.027	1.00	17.30	Ν
ATOM	1286 CA	ALA	657	1.459	80.616	10.564	1.00	18.06	С
ATOM	1287 C	ALA	657	0.729	81.810	9.961	1.00	16.82	С
ATOM	1288 O	ALA	657	-0.300	82.248	10.464	1.00	19.76	0
ATOM	1289 CB	ALA	657	0.808	79.297	10.121	1.00	13.90	С
ATOM	1290 N	ASN	658	1.277	82.340	8.877	1.00	19.53	Ν
ATOM	1291 CA	ASN	658	0.699	83.502	8.226	1.00	16.37	С
A TOM	1292 C	ASN	658	-0.569	83.144	7.494	1.00	18.85	С
ATOM	1293 O	ASN	658	-0.575	82.964	6.284	1.00	20.50	0
ATOM	1294 CB	ASN	658	1.704	84.142	7.276	1.00	11.24	С
ATOM	1295 CG	ASN	658	1.282	85.534	6.844	1.00	11.66	С
ATOM	1296 OD1	ASN	658	0.098	85.829	6.766	1.00	14.75	0
ATOM	1297 ND2	ASN	658	2.251	86.396	6.563	1.00	16.32	N
ATOM	1298 N	LEU	659	-1.648	83.035	8.251	1.00	20.82	N
ATOM	1299 CA	LEU	659	-2.943	82.704	7.700	1.00	19.30	С
ATOM	1300 C	LEU LEU	659 650	-3.460	83.699	6.664	1.00	20.85	С
ATOM ATOM	1301 O 1302 CB		659 659	-4.230 -3.950	83.317	5.782 8 8 2 4	1.00	22.69	0
ATOM ATOM	1302 CB 1303 CG	LEU LEU	659 659	-3.930 -4.579	82.569 81.198	8.824 8.897	$1.00 \\ 1.00$	17.74 21.02	C C
ATOM	1303 CG 1304 CD1	LEU LEU	659	-4.379	81.198	8.897 9.248	1.00	21.02 24.59	c
ATOM	1304 CD1 1305 CD2	LEU LEU	659	-5.665	81.212	9.248 9.935	1.00	24.39	c
ATOM	1305 CD2 1306 N	LYS	660	-3.003	81.212 84.968	9.933 6.782	1.00	27.00	N
ATOM	1300 N 1307 CA	LYS	660	-3.520	85.982	5.822	1.00	22.30	C
ATOM	1307 CA 1308 C	LYS	660	-2.945	85.639	4.452	1.00	24.26	c
ATOM	1309 O	LYS	660	-3.663	85.697	3.448	1.00	27.91	ŏ
ATOM	1310 CB	LYS	660	-3.068	87.361	6.251	1.00	21.43	č
ATOM	1311 N	GLN	661	-1.667	85.240	4.420	1.00	21.76	Ň
ATOM	1312 CA	GLN	661	-0.991	84.844	3.183	1.00	17.85	C
ATOM	1312 CA 1313 C	GLN	661	-1.570	83.531	2.688	1.00	18.55	c
ATOM	1314 O	GLN	661	-1.828	83.372	1.499	1.00	23.06	ŏ
ATOM	1314 O 1315 CB	GLN	661	0.525	84.730	3.377	1.00	12.86	c
ATOM	1316 CG	GLN	661	1.237	86.102	3.366	1.00	10.63	c
ATOM	1317 CD	GLN	661	2.755	86.013	3.544	1.00	14.73	č
ATOM	1318 OE1	GLN	661	3.287	84.965	3.905	1.00	17.21	ŏ
	1319 NE2	GLN	661	3.451	87.118	3.305	1.00	15.89	N
ATOM -						0.000	A		~ •
АТОМ АТОМ	1320 N	ILE	662	-1.850	82.613	3.607	1.00	17.78	Ν

TABLE 8-continued

Atomic Coordinates for Residues of a Crystal of murine VWF-A1 (SEQ ID NO: 10).											
АТОМ	1322 C	ILE	662	-3.775	81.610	2.537	1.00	19.04	С		
ATOM	1323 O	ILE	662	-4.050	81.031	1.487	1.00	21.90	0		
ATOM	1324 CB	ILE	662	-2.580	80.411	4.489	1.00	11.85	С		
ATOM	1325 CG1	ILE	662	-1.196	80.040	4.995	1.00	11.79	С		
ATOM	1326 CG2	ILE	662	-3.337	79.126	4.196	1.00	7.88	С		
ATOM	1327 CD1	ILE	662	-1.191	79.084	6.171	1.00	13.32	С		
ATOM	1328 N	ARG	663	-4.558	82.560	3.047	1.00	20.47	N		
ATOM	1329 CA	ARG	663	-5.850	82.874	2.436	1.00	20.44	С		
ATOM	1330 C 1331 O	ARG	663	-5.704	83.569	1.078	1.00	19.11	С		
атом атом	1331 O 1332 CB	ARG ARG	663 663	-6.548 -6.733	83.416 83.701	0.195 3.390	$1.00 \\ 1.00$	19.37 23.96	O C		
ATOM	1332 CB 1333 CG	ARG	663	-7.123	82.987	4.686	1.00	32.86	c		
ATOM	1334 CD	ARG	663	-7.800	81.612	4.456	1.00	41.17	c		
ATOM	1335 NE	ARG	663	-7.818	80.785	5.672	1.00	43.59	Ň		
ATOM	1336 CZ	ARG	663	-8.042	79.471	5.708	1.00	44.43	С		
ATOM	1337 NH1	ARG	663	-8.287	78.791	4.604	1.00	40.35	Ν		
ATOM	1338 NH2	ARG	663	-7.942	78.818	6.853	1.00	47.33	Ν		
ATOM	1339 N	LEU	664	-4.641	84.338	0.911	1.00	20.67	Ν		
ATOM	1340 CA	LEU	664	-4.400	85.016	-0.351	1.00	23.77	С		
атом	1341 C	LEU	664	-4.006	83.990	-1.425	1.00	24.53	С		
ATOM	1342 O	LEU	664	-4.470	84.066	-2.570	1.00	25.26	0		
ATOM	1343 CB	LEU	664	-3.287	86.048	-0.200	1.00	22.42	С		
ATOM	1344 CG	LEU	664	-3.695	87.458	0.188	1.00	23.55	C		
ATOM	1345 CD1	LEU	664	-2.434	88.240	0.463	1.00	22.20	С		
ATOM ATOM	1346 CD2 1347 N	LEU ILE	664 665	-4.517 -3.147	88.113 83.040	-0.910 -1.053	$1.00 \\ 1.00$	21.42 23.53	C N		
ATOM	1347 N 1348 CA	ILE	665	-2.697	82.009	-1.970	1.00	23.33	C		
ATOM	1348 CA 1349 C	ILE	665	-3.895	81.209	-2.462	1.00	22.09	c		
ATOM	1350 O	ILE	665	-4.064	81.029	-3.659	1.00	24.56	ŏ		
ATOM	1351 CB	ILE	665	-1.680	81.078	-1.316	1.00	17.66	č		
ATOM	1352 CG1	ILE	665	-0.391	81.841	-1.015	1.00	15.92	Ċ		
ATOM	1353 CG2	ILE	665	-1.375	79.913	-2.234	1.00	18.28	С		
ATOM	1354 CD1	ILE	665	0.629	81.031	-0.194	1.00	6.96	С		
ATOM	1355 N	GLU	666	-4.732	80.747	-1.549	1.00	23.35	Ν		
ATOM	1356 CA	GLU	666	-5.917	79.983	-1.918	1.00	19.08	С		
ATOM	1357 C	GLU	666	-6.813	80.616	-2.967	1.00	19.61	С		
ATOM	1358 O	GLU	666	-7.341	79.920	-3.827	1.00	18.02	0		
ATOM	1359 CB	GLU	666	-6.784	79.754	-0.704	1.00	17.71	C		
ATOM	1360 CG	GLU	666	-6.367	78.618	0.172	1.00	26.16	C		
ATOM	1361 CD	GLU	666	-7.515	78.164	1.049	1.00	28.97	С		
ATOM	1362 OE1 1363 OE2	GLU	666	-7.910	78.950	1.944	1.00	22.27	0		
ATOM ATOM	1363 OE2 1364 N	GLU LYS	666 667	-8.030 -7.009	77.036 81.928	0.815 -2.878	$1.00 \\ 1.00$	30.15 21.77	O N		
ATOM	1365 CA	LYS	667	-7.908	82.604	-3.800	1.00	27.64	C		
ATOM	1366 C	LYS	667	-7.336	83.042	-5.140	1.00	28.79	č		
ATOM	1367 O	LYS	667	-8.067	83.548	-5.999	1.00	33.07	ŏ		
ATOM	1368 CB	LYS	667	-8.613	83.773	-3.108	1.00	29.02	č		
ATOM	1369 CG	LYS	667	-7.764	84.976	-2.848	1.00	34.25	Č		
ATOM	1370 CD	LYS	667	-8.600	86.097	-2.236	1.00	45.36	Ċ		
ATOM	1371 CE	LYS	667	-7.746	87.344	-1.955	1.00	55.46	С		
ATOM	1372 NZ	LYS	667	-8.130	88.070	-0.688	1.00	58.49	Ν		
ATOM	1373 N	GLN	668	-6.042	82.833	-5.329	1.00	29.18	Ν		
ATOM	1374 CA	GLN	668	-5.370	83.189	-6.570	1.00	27.43	С		
TOM	1375 C	GLN	668	-5.720	82.143	-7.648	1.00	27.44	С		
ATOM	1376 O	GLN	668	-5.795	82.459	-8.834	1.00	29.48	0		
ATOM	1377 CB	GLN	668	-3.856	83.236	-6.324	1.00	24.44	С		
ATOM	1378 CG	GLN	668	-3.199	84.560 85.764	-6.643	1.00	31.15	С		
АТОМ АТОМ	1379 CD 1380 OE1	GLN GLN	668 668	-3.934 -4.353	85.764 86.659	-6.071 -6.818	$1.00 \\ 1.00$	33.50 32.99	C O		
ATOM ATOM	1380 OE1 1381 NE2		008 668	-4.353 -4.054	86.659 85.819	-0.818 -4.747	1.00 1.00	32.99 30.05	N		
ATOM	1381 NE2 1382 N	GLN ALA	669	-5.930	80.895	-7.231	1.00	23.35	N		
ATOM	1382 N 1383 CA	ALA	669	-6.275	79.816	-8.153	1.00	21.93	C		
ATOM	1385 CA 1384 C	ALA	669	-6.968	78.683	-7.379	1.00	20.53	c		
ATOM	1385 O	ALA	669	-6.590	78.375	-6.267	1.00	22.44	ŏ		
ATOM	1386 CB	ALA	669	-5.010	79.303	-8.854	1.00	21.51	č		
ATOM	1387 N	PRO	670	-7.983	78.041	-7.977	1.00	22.07	Ň		
ATOM	1388 CA	PRO	670	-8.697	76.959	-7.300	1.00	19.32	C		
ATOM	1389 C	PRO	670	-7.916	75.769	-6.744	1.00	24.31	Č		
ATOM	1390 O	PRO	670	-8.338	75.182	-5.735	1.00	22.85	Ō		
ATOM	1391 CB	PRO	670	-9.740	76.517	-8.344	1.00	19.25	С		
ATOM	1392 CG	PRO	670	-9.251	77.058	-9.633	1.00	18.97	С		
ATOM ATOM	1393 CD 1394 N	PRO GLU	670 671	-8.649 -6.765	78.372 75.444	-9.251 -7.332	$1.00 \\ 1.00$	22.64 21.90	C N		

TABLE 8-continued

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1395 CA 1396 C 1397 O 1398 CB 1399 CG 1400 CD 1401 OE1 1402 OE2 1403 N 1404 CA 1405 C 1406 O 1407 CB 1408 CG 1409 OD1 1410 ND2 1411 N 1412 CA 1413 C	GLU GLU GLU GLU GLU GLU GLU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	671 671 671 671 671 671 671 671 671 672 672 672 672 672 672 672 672	$\begin{array}{r} -6.037\\ -5.121\\ -4.526\\ -5.237\\ -6.053\\ -6.052\\ -5.922\\ -6.181\\ -4.915\\ -4.035\\ -4.755\\ -5.136\\ -3.751\end{array}$	74.282 74.573 73.648 73.622 73.156 74.163 75.389 73.718 75.849 76.229 75.885 76.780	$\begin{array}{r} -6.872\\ -5.724\\ -5.152\\ -7.996\\ -9.167\\ -10.295\\ -10.033\\ -11.456\\ -5.440\\ -4.324\\ -3.007\end{array}$	$\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ \end{array}$	21.53 18.85 17.02 28.16 30.85 40.33 37.89 49.39 16.70 20.34	C C C C C C C C C O N C C
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1397 O 1398 CB 1399 CG 1400 CD 1401 OE1 1402 OE2 1403 N 1404 CA 1405 C 1406 O 1407 CB 1408 CG 1409 OD1 1410 ND2 1411 N 1412 CA	GLU GLU GLU GLU GLU ASN ASN ASN ASN ASN ASN ASN ASN	671 671 671 671 671 672 672 672 672 672 672 672 672	-4.526 -5.237 -6.053 -6.052 -5.922 -6.181 -4.915 -4.035 -4.755 -5.136 -3.751	73.648 73.622 73.156 74.163 75.389 73.718 75.849 76.229 75.885	-5.152 -7.996 -9.167 -10.295 -10.033 -11.456 -5.440 -4.324 -3.007	$\begin{array}{c} 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	17.02 28.16 30.85 40.33 37.89 49.39 16.70 20.34	0 C C O 0 N C
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1398 CB 1399 CG 1400 CD 1401 OE1 1402 OE2 1403 N 1404 CA 1405 C 1406 O 1407 CB 1408 CG 1409 OD1 1410 ND2 1411 N 1412 CA	GLU GLU GLU GLU ASN ASN ASN ASN ASN ASN ASN ASN	671 671 671 671 672 672 672 672 672 672 672	$\begin{array}{r} -5.237\\ -6.053\\ -6.052\\ -5.922\\ -6.181\\ -4.915\\ -4.035\\ -4.755\\ -5.136\\ -3.751\end{array}$	73.622 73.156 74.163 75.389 73.718 75.849 76.229 75.885	-7.996 -9.167 -10.295 -10.033 -11.456 -5.440 -4.324 -3.007	1.00 1.00 1.00 1.00 1.00 1.00 1.00	28.16 30.85 40.33 37.89 49.39 16.70 20.34	C C C O O N C
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1399 CG 1400 CD 1401 OE1 1402 OE2 1403 N 1404 CA 1405 C 1406 O 1407 CB 1408 CG 1409 OD1 1410 ND2 1411 N 1412 CA	GLU GLU GLU ASN ASN ASN ASN ASN ASN ASN	671 671 671 672 672 672 672 672 672 672	-6.053 -6.052 -5.922 -6.181 -4.915 -4.035 -4.755 -5.136 -3.751	73.156 74.163 75.389 73.718 75.849 76.229 75.885	-9.167 -10.295 -10.033 -11.456 -5.440 -4.324 -3.007	1.00 1.00 1.00 1.00 1.00 1.00	30.85 40.33 37.89 49.39 16.70 20.34	C C O N C
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1400 CD 1401 OE1 1402 OE2 1403 N 1404 CA 1405 C 1406 O 1407 CB 1408 CG 1409 OD1 1410 ND2 1411 N 1412 CA	GLU GLU ASN ASN ASN ASN ASN ASN ASN ASN	671 671 672 672 672 672 672 672 672	-6.052 -5.922 -6.181 -4.915 -4.035 -4.755 -5.136 -3.751	74.163 75.389 73.718 75.849 76.229 75.885	-10.295 -10.033 -11.456 -5.440 -4.324 -3.007	$1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00$	40.33 37.89 49.39 16.70 20.34	C O O N C
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1401 OE1 1402 OE2 1403 N 1404 CA 1405 C 1406 O 1407 CB 1408 CG 1409 OD1 1410 ND2 1411 N 1412 CA	GLU GLU ASN ASN ASN ASN ASN ASN ASN	671 671 672 672 672 672 672 672 672	-5.922 -6.181 -4.915 -4.035 -4.755 -5.136 -3.751	75.389 73.718 75.849 76.229 75.885	-10.033 -11.456 -5.440 -4.324 -3.007	1.00 1.00 1.00 1.00	37.89 49.39 16.70 20.34	O O N C
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1402 OE2 1403 N 1404 CA 1405 C 1406 O 1407 CB 1408 CG 1409 OD1 1410 ND2 1411 N 1412 CA	GLU ASN ASN ASN ASN ASN ASN ASN	671 672 672 672 672 672 672 672	-6.181 -4.915 -4.035 -4.755 -5.136 -3.751	73.718 75.849 76.229 75.885	-11.456 -5.440 -4.324 -3.007	$1.00 \\ 1.00 \\ 1.00$	49.39 16.70 20.34	O N C
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1403 N 1404 CA 1405 C 1406 O 1407 CB 1408 CG 1409 OD1 1410 ND2 1411 N 1412 CA	ASN ASN ASN ASN ASN ASN ASN ASN	672 672 672 672 672 672 672	-4.915 -4.035 -4.755 -5.136 -3.751	75.849 76.229 75.885	-5.440 -4.324 -3.007	$\begin{array}{c} 1.00\\ 1.00\end{array}$	16.70 20.34	N C
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1404 CA 1405 C 1406 O 1407 CB 1408 CG 1409 OD1 1410 ND2 1411 N 1412 CA	ASN ASN ASN ASN ASN ASN ASN	672 672 672 672 672	-4.035 -4.755 -5.136 -3.751	76.229 75.885	-4.324 -3.007	1.00	20.34	С
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1405 C 1406 O 1407 CB 1408 CG 1409 OD1 1410 ND2 1411 N 1412 CA	ASN ASN ASN ASN ASN ASN	672 672 672 672	-4.755 -5.136 -3.751	75.885	-3.007			
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1406 O 1407 CB 1408 CG 1409 OD1 1410 ND2 1411 N 1412 CA	ASN ASN ASN ASN ASN	672 672 672	-5.136 -3.751			1.00	18.55	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1408 CG 1409 OD1 1410 ND2 1411 N 1412 CA	ASN ASN ASN ASN	672 672	-3.751		-2.248	1.00	18.65	ŏ
ATOM ATOM ATOM ATOM ATOM	1409 OD1 1410 ND2 1411 N 1412 CA	ASN ASN	672		77.739	-4.359	1.00	19.53	С
ATOM ATOM ATOM ATOM	1410 ND2 1411 N 1412 CA	ASN	672	-2.994	78.186	-5.601	1.00	15.33	С
ATOM ATOM ATOM	1411 N 1412 CA			-2.466	77.384	-6.369	1.00	12.87	Ο
ATOM ATOM	1412 CA	TVC	672	-2.914	79.494	-5.778	1.00	17.27	Ν
ATOM			673	-4.986	74.601	-2.761	1.00	17.76	Ν
	1413 C	LYS	673	-5.708	74.178	-1.568	1.00	21.07	С
41 OM		LYS	673	-4.820	74.299	-0.335	1.00	20.99	С
	1414 O	LYS	673	-3.655	73.896	-0.360	1.00	26.08	0
ATOM	1415 CB	LYS	673	-6.222	72.732	-1.710	1.00	19.00	С
ATOM ATOM	1416 CG 1417 CD	LYS LYS	673 673	-7.480 -7.457	72.469 71.176	-0.858 -0.047	$1.00 \\ 1.00$	30.07 30.38	C C
ATOM	1417 CD 1418 CE	LYS	673	-7.751	69.983	-0.913	1.00	36.80	č
ATOM	1419 NZ	LYS	673	-7.645	68.682	-0.181	1.00	45.16	Ň
ATOM	1419 NZ 1420 N	ALA	674	-5.357	74.891	0.727	1.00	18.75	N
ATOM	1421 CA	ALA	674	-4.613	75.043	1.959	1.00	15.72	ĉ
ATOM	1422 C	ALA	674	-4.928	73.914	2.916	1.00	18.41	Č
ATOM	1423 O	ALA	674	-6.047	73.370	2.935	1.00	12.37	0
ATOM	1424 CB	ALA	674	-4.938	76.362	2.607	1.00	14.82	С
ATOM	1425 N	PHE	675	-3.916	73.577	3.716	1.00	20.72	Ν
ATOM	1426 CA	PHE	675	-4.021	72.560	4.751	1.00	17.35	С
ATOM	1427 C	PHE	675	-3.565	73.235	6.032	1.00	13.94	С
ATOM	1428 O	PHE	675	-2.414	73.594	6.162	1.00	16.79	0
ATOM	1429 CB	PHE	675	-3.148	71.357	4.421	1.00	17.30	С
ATOM	1430 CG	PHE	675	-3.667	70.547	3.276	1.00	16.73	С
ATOM	1431 CD1	PHE	675	-3.357	70.890	1.961	1.00	18.39	С
ATOM	1432 CD2 1433 CE1	PHE	675 675	-4.502 -3.880	69.469	3.501	1.00	11.98	C C
ATOM ATOM	1433 CE1 1434 CE2	PHE PHE	675	-5.031	70.177 68.746	0.880 2.416	$1.00 \\ 1.00$	11.40 15.53	c
ATOM	1434 CE2 1435 CZ	PHE	675	-4.717	69.111	1.108	1.00	13.44	c
ATOM	1435 CZ 1436 N	VAL	676	-4.509	73.561	6.899	1.00	17.73	N
ATOM	1437 CA	VAL	676	-4.176	74.211	8.163	1.00	19.36	Ċ
ATOM	1438 C	VAL	676	-4.128	73.145	9.260	1.00	20.91	Ĉ
ATOM	1439 O	VAL	676	-5.035	72.324	9.395	1.00	19.66	Ō
ATOM	1440 CB	VAL	676	-5.175	75.326	8.489	1.00	17.55	С
ATOM	1441 CG1	VAL	676	-4.779	76.031	9.769	1.00	18.65	С
ATOM	1442 CG2	VAL	676	-5.219	76.328	7.325	1.00	19.14	С
ATOM	1443 N	LEU	677	-2.994	73.100	9.952	1.00	23.37	Ν
ATOM	1444 CA	LEU	677	-2.740	72.122	11.003	1.00	21.69	С
ATOM	1445 C	LEU	677	-2.362	72.830	12.284	1.00	17.44	С
ATOM	1446 O	LEU	677	-1.870	73.965	12.263	1.00	11.94	0
ATOM ATOM	1447 CB	LEU	677 677	-1.597	71.184 70.099	10.603	1.00	25.46 25.42	С
ATOM ATOM	1448 CG 1449 CD1	LEU LEU	677 677	-1.766 -2.269	70.099 70.624	9.540 8.236	$1.00 \\ 1.00$	25.42 23.58	C C
ATOM	1449 CD1 1450 CD2	LEU LEU	677	-2.209	70.824 69.495	8.230 9.346	1.00	23.38 30.67	С
ATOM	1450 CD2 1451 N	SER	678	-0.422 -2.591	72.153	9.340 13.403	1.00	15.75	N
ATOM	1451 IN 1452 CA	SER	678	-2.279	72.728	14.704	1.00	18.74	C
ATOM	1453 C	SER	678	-0.805	72.690	15.096	1.00	15.98	č
ATOM	1454 O	SER	678	-0.305	73.594	15.775	1.00	16.52	ŏ
ATOM	1455 CB	SER	678	-3.143	72.085	15.783	1.00	17.24	Ĉ
ATOM	1456 OG	SER	678	-4.495	72.476	15.621	1.00	23.02	0
ATOM	1457 N	SER	679	-0.095	71.679	14.621	1.00	15.13	Ν
ATOM	1458 CA	SER	679	1.305	71.550	14.954	1.00	16.64	С
ATOM	1459 C	SER	679	1.891	70.526	13.993	1.00	16.28	С
ATOM	1460 O	SER	679	1.152	69.830	13.284	1.00	16.75	0
ATOM	1461 CB	SER	679	1.424	71.025	16.389	1.00	20.41	С
ATOM	1462 OG	SER	679	0.924	69.683	16.472	1.00	15.18	0
ATOM	1463 N	VAL	680	3.212	70.389	14.023	1.00	14.70	N
ATOM	1464 CA	VAL	680	3.881	69.426	13.165	1.00	18.08	С
ATOM	1465 C	VAL	680	3.441	67.999	13.506	1.00	21.23	С
ATOM ATOM	1466 O 1467 CB	VAL VAL	680 680	3.598 5.421	67.092 69.505	12.692 13.291	$1.00 \\ 1.00$	22.59 15.16	O C

TABLE 8-continued

Atomic Coordinates for Residues of a Crystal of murine VWF-A1 (SEQ ID NO: 10).											
ТОМ	1468 CG1	VAL	680	5.953	70.852	12.792	1.00	14.14	С		
ATOM	1469 CG2	VAL	680	5.844	69.260	14.728	1.00	15.78	С		
ATOM	1470 N	ASP	681	2.845	67.803	14.680	1.00	23.61	Ν		
TOM	1471 CA	ASP	681	2.431	66.465	15.090	1.00	20.29	С		
TOM	1472 C	ASP	681	1.267	65.967	14.292	1.00	17.46	С		
MOT	1473 O	ASP	681	1.021	64.758	14.254	1.00	19.43	0		
TOM	1474 CB	ASP	681	2.118	66.404	16.586	1.00	22.71	С		
TOM	1475 CG	ASP	681	3.360	66.605	17.455	1.00	27.60	С		
TOM	1476 OD1	ASP	681	4.485	66.251	17.021	1.00	31.79	0		
TOM	1477 OD2	ASP	681	3.205	67.117	18.585	1.00	30.83	0		
TOM	1478 N	GLU	682	0.559	66.891	13.648	1.00	19.92	Ν		
TOM	1479 CA	GLU	682	-0.593	66.532	12.823	1.00	19.43	С		
TOM	1480 C	GLU	682	-0.246	66.200	11.373	1.00	16.94	С		
TOM	1481 O	GLU	682	-1.031	65.593	10.678	1.00	20.34	0		
TOM	1482 CB	GLU	682	-1.664	67.616	12.904	1.00	19.71	С		
TOM	1483 CG	GLU	682	-2.031	67.903	14.337	1.00	27.72	С		
TOM	1484 CD	GLU	682	-3.385	68.541	14.516	1.00	32.65	С		
TOM	1485 OE1	GLU	682	-3.806	69.338	13.643	1.00	32.50	0		
TOM	1486 OE2	GLU	682	-4.013	68.250	15.567	1.00	36.39	0		
TOM	1487 N	LEU	683	0.968	66.533	10.953	1.00	19.46	Ν		
TOM	1488 CA	LEU	683	1.430	66.270	9.591	1.00	18.53	С		
TOM	1489 C	LEU	683	1.230	64.820	9.159	1.00	19.54	С		
TOM	1490 O	LEU	683	0.759	64.567	8.050	1.00	21.33	0		
TOM	1491 CB	LEU	683	2.913	66.629	9.458	1.00	9.01	С		
TOM	1492 CG	LEU	683	3.212	68.119	9.485	1.00	11.07	Ċ		
TOM	1493 CD1	LEU	683	4.725	68.380	9.521	1.00	6.20	С		
MOT	1494 CD2	LEU	683	2.581	68.729	8.268	1.00	9.94	С		
MOT	1495 N	GLU	684	1.577	63.879	10.027	1.00	17.82	Ν		
TOM	1496 CA	GLU	684	1.449	62.470	9.701	1.00	21.58	С		
MOT	1497 C	GLU	684	0.026	62.043	9.404	1.00	20.80	С		
TOM	1498 O	GLU	684	-0.204	61.216	8.521	1.00	21.28	0		
TOM	1499 CB	GLU	684	2.022	61.614	10.826	1.00	27.44	Č		
TOM	1500 CG	GLU	684	1.799	60.112	10.601	1.00	42.61	Ĉ		
TOM	1501 CD	GLU	684	2.605	59.219	11.539	1.00	48.25	č		
TOM	1502 OE1	GLU	684	2.910	59.655	12.683	1.00	46.17	ŏ		
TOM	1503 OE2	GLU	684	2.915	58.071	11.116	1.00	50.28	ŏ		
TOM	1504 N	GLN	685	-0.914	62.632	10.133	1.00	22.35	Ň		
TOM	1505 CA	GLN	685	-2.349	62.353	10.005	1.00	25.85	Ĉ		
TOM	1506 C	GLN	685	-2.958	62.892	8.709	1.00	22.14	č		
TOM	1507 O	GLN	685	-4.089	62.579	8.381	1.00	25.03	ŏ		
TOM	1508 CB	GLN	685	-3.117	63.008	11.162	1.00	25.71	č		
TOM	1509 CG	GLN	685	-2.414	62.982	12.509	1.00	34.50	č		
TOM	1510 CD	GLN	685	-3.192	63.753	13.571	1.00	41.31	č		
TOM	1511 OE1	GLN	685	-4.338	64.167	13.356	1.00	40.86	ŏ		
TOM	1512 NE2	GLN	685	-2.565	63.957	14.726	1.00	45.33	N		
TOM	1512 NE2 1513 N	GLN	686	-2.245	63.789	8.044	1.00	20.96	N		
TOM	1514 CA	GLN	686	-2.715	64.404	6.813	1.00	23.16	C		
TOM	1514 CA 1515 C	GLN	686	-1.882	64.075	5.583	1.00	19.32	c		
TOM	1515 C 1516 O	GLN	686	-1.882 -2.328	64.073 64.299	3.383 4.456	1.00	22.21	ō		
TOM	1510 O 1517 CB	GLN	686	-2.328 -2.709	65.912	6.982	1.00	26.35	c		
TOM	1517 CB 1518 CG	GLN	686	-3.709	66.416	0.982 7.948	1.00	35.22	c		
TOM	1518 CG 1519 CD	GLN	686	-3.709 -4.816	67.142	7.241	1.00	42.30	c		
TOM	1519 CD 1520 OE1	GLN	686	-4.810 -4.941	67.142 68.365	7.350	1.00	42.50	ō		
TOM	1520 OE1 1521 NE2		686	-4.941 -5.616	66.400	6.478	1.00	43.34 44.88	N		
TOM	1521 NE2 1522 N	GLN ARG	687	-0.683	63.557	5.803	1.00	44.88 14.84	N		
	1522 N 1523 CA	ARG									
TOM			687	0.238	63.225	4.731	1.00	17.34	С		
TOM	1524 C 1525 O	ARG	687	-0.364	62.511	3.524 2.402	1.00	17.95 18.16	С		
TOM		ARG	687	-0.248	62.982		1.00		0		
TOM	1526 CB	ARG	687	1.405	62.429	5.303	1.00	12.76	С		
TOM	1527 CG	ARG	687	2.512	62.076	4.320	1.00	12.31	С		
TOM	1528 CD	ARG	687	2.812	60.589	4.398	1.00	15.47	C		
TOM	1529 NE	ARG	687	2.836	60.134	5.786	1.00	27.33	N		
TOM	1530 CZ	ARG	687	2.343	58.985	6.234	1.00	25.36	C		
TOM	1531 NH1	ARG	687	1.783	58.118	5.416	1.00	25.62	N		
TOM	1532 NH2	ARG	687	2.342	58.744	7.535	1.00	34.14	Ν		
TOM	1533 N	ASP	688	-1.044	61.397	3.749	1.00	22.35	Ν		
TOM	1534 CA	ASP	688	-1.603	60.649	2.632	1.00	20.59	С		
TOM	1535 C	ASP	688	-2.651	61.418	1.872	1.00	23.19	С		
TOM	1536 O	ASP	688	-2.732	61.326	0.653	1.00	23.82	0		
TOM	1537 CB	ASP	688	-2.128	59.301	3.096	1.00	21.54	С		
TOM	1538 CG	ASP	688	-1.008	58.365	3.518	1.00	24.25	С		
TOM	1539 OD1	ASP	688	0.172	58.697	3.266	1.00	31.52	0		
ATOM	1559 001	AOL	000	0.172	50.077	5.200	1.00	51.54	0		

TABLE 8-continued

	Atomic Coor	dinates f	or Resid	lues of a C ID NO: 1		murine VW	/F-A1	(SEQ	
ATOM	1541 N	GLU	689	-3.395	62.253	2.575	1.00	23.99	Ν
ATOM	1542 CA	GLU	689	-4.419	63.045	1.927	1.00	26.49	С
ATOM	1543 C	GLU	689	-3.796	64.142	1.054	1.00	25.62	С
ATOM	1544 O	GLU	689	-4.376	64.536	0.034	1.00	26.10	0
ATOM	1545 CB	GLU	689	-5.334	63.663	2.981	1.00	34.19	С
ATOM ATOM	1546 CG 1547 CD	GLU GLU	689 689	-6.456 -7.358	64.543	2.429 3.527	$1.00 \\ 1.00$	36.12 42.19	C C
ATOM	1547 CD 1548 OE1	GLU	689	-7.538	65.061 64.327	4.532	1.00	42.19 50.63	õ
ATOM	1549 OE1	GLU	689	-7.895	66.189	3.385	1.00	42.61	ŏ
ATOM	1550 N	ILE	690	-2.645	64.665	1.478	1.00	21.08	Ň
ATOM	1551 CA	ILE	690	-1.951	65.705	0.726	1.00	19.71	С
ATOM	1552 C	ILE	690	-1.312	65.124	-0.514	1.00	20.60	С
ATOM	1553 O	ILE	690	-1.368	65.722	-1.567	1.00	23.29	Ο
ATOM	1554 CB	ILE	690	-0.881	66.388	1.572	1.00	20.01	С
ATOM	1555 CG1	ILE	690	-1.550	67.130	2.737	1.00	18.80	С
ATOM	1556 CG2	ILE	690	-0.054	67.322	0.713	1.00	19.33	С
ATOM	1557 CD1	ILE	690	-0.610	67.889	3.623	1.00	13.89	С
ATOM	1558 N	VAL	691	-0.694	63.958	-0.394	1.00	22.47	N
ATOM	1559 CA 1560 C	VAL	691	-0.083	63.301	-1.543	1.00	21.73	C C
ATOM ATOM	1561 O	VAL VAL	691 691	-1.144 -0.923	62.902 63.076	-2.579 -3.767	$1.00 \\ 1.00$	20.40 22.98	ō
ATOM	1562 CB	VAL	691	0.750	62.083	-1.110	1.00	22.98	c
ATOM	1563 CG1	VAL	691	1.147	61.263	-2.296	1.00	29.43	č
ATOM	1564 CG2	VAL	691	1.988	62.555	-0.431	1.00	23.51	č
TOM	1565 N	SER	692	-2.296	62.407	-2.139	1.00	17.46	N
ATOM	1566 CA	SER	692	-3.371	62.031	-3.054	1.00	15.69	С
ATOM	1567 C	SER	692	-3.894	63.216	-3.856	1.00	16.29	С
ATOM	1568 O	SER	692	-4.106	63.117	-5.060	1.00	19.86	Ο
TOM	1569 CB	SER	692	-4.532	61.435	-2.283	1.00	15.65	С
TOM	1570 OG	SER	692	-4.134	60.230	-1.674	1.00	28.15	О
TOM	1571 N	TYR	693	-4.129	64.319	-3.168	1.00	16.74	Ν
TOM	1572 CA	TYR	693	-4.632	65.536	-3.768	1.00	15.99	С
TOM	1573 C	TYR	693	-3.654	65.960	-4.833	1.00	18.79	С
TOM	1574 O 1575 CB	TYR	693	-3.983	66.084	-6.006	1.00	21.36	0
АТОМ АТОМ	1575 CB 1576 CG	TYR TYR	693 693	-4.725	66.619	-2.702 -3.259	$1.00 \\ 1.00$	11.55 19.55	C C
TOM	1570 CO 1577 CD1	TYR	693	-5.078 -6.374	67.969 68.238	-3.748	1.00	20.06	c
TOM	1578 CD2	TYR	693	-4.102	68.960	-3.394	1.00	13.67	č
TOM	1579 CE1	TYR	693	-6.665	69.458	-4.365	1.00	14.61	č
TOM	1580 CE2	TYR	693	-4.394	70.165	-4.002	1.00	14.06	Ĉ
ATOM	1581 CZ	TYR	693	-5.664	70.402	-4.489	1.00	14.63	С
TOM	1582 OH	TYR	693	-5.911	71.592	-5.123	1.00	17.27	0
TOM	1583 N	LEU	694	-2.416	66.070	-4.401	1.00	21.64	Ν
ATOM	1584 CA	LEU	694	-1.287	66.480	-5.216	1.00	22.01	С
TOM	1585 C	LEU	694	-1.001	65.549	-6.414	1.00	24.72	С
TOM	1586 O	LEU	694	-0.819	66.007	-7.560	1.00	21.88	0
TOM	1587 CB	LEU	694	-0.131	66.631	-4.229	1.00	19.20	С
ATOM ATOM	1588 CG	LEU	694	1.365	66.561	-4.388	1.00	23.50	С
TOM	1589 CD1 1590 CD2	LEU LEU	694 694	1.939 1.840	67.326 65.126	-3.227 -4.387	$1.00 \\ 1.00$	20.23 21.48	C C
TOM	1590 CD2 1591 N	CYS	695	-1.033	64.243	-6.178	1.00	24.01	N
TOM	1591 IN 1592 CA	CYS	695	-0.805	63.264	-7.230	1.00	23.59	C
TOM	1593 C	CYS	695	-1.913	63.363	-8.266	1.00	23.92	č
TOM	1594 O	CYS	695	-1.662	63.443	-9.476	1.00	20.77	ō
TOM	1595 CB	CYS	695	-0.785	61.851	-6.639	1.00	21.84	С
TOM	1596 SG	CYS	695	-0.122	60.600	-7.770	1.00	25.31	\mathbf{S}
TOM	1597 N	ASP	696	-3.141	63.401	-7.775	1.00	25.04	Ν
TOM	1598 CA	ASP	696	-4.312	63.463	-8.634	1.00	30.16	С
TOM	1599 C	ASP	696	-4.295	64.617	-9.630	1.00	29.12	С
TOM	1600 O	ASP	696	-4.933	64.557	-10.678	1.00	33.49	0
TOM	1601 CB	ASP	696	-5.569	63.536	-7.775	1.00	33.29	С
TOM	1602 CG	ASP	696	-6.827	63.645	-8.598	1.00	40.85	С
TOM	1603 OD1	ASP	696	-7.215	62.641	-9.244	1.00	44.44	0
TOM	1604 OD2	ASP	696 607	-7.416	64.749	-8.613	1.00	45.63	O N
ATOM	1605 N 1606 CA	LEU	697 697	-3.544	65.655	-9.296	1.00	27.97	N
АТОМ АТОМ	1606 CA 1607 C	LEU LEU	697 697	-3.421 -2.498	66.863 66.673	-10.108 -11.297	$1.00 \\ 1.00$	23.65 21.19	C C
ATOM	1607 C 1608 O	LEU	697	-2.498 -2.676	67.307	-12.337	1.00	23.84	ŏ
TOM	1609 CB	LEU	697	-2.863	67.990	-9.227	1.00	19.78	c
ATOM	1610 CG	LEU	697	-3.679	69.216	-8.812	1.00	19.78	č
ATOM	1611 CD1	LEU	697	-5.186	68.949	-8.767	1.00	12.42	č
ATOM	1612 CD2	LEU	697	-3.128	69.715	-7.478	1.00	11.15	č

TABLE 8-continued

	Atomic Coordinates for Residues of a Crystal of murine VWF-A1 (SEQ ID NO: 10).										
ATOM	1614 CA	ALA	698	-0.472	65.597	-12.128	1.00	18.13	С		
ATOM	1615 C	ALA	698	-0.972	64.732	-13.286	1.00	18.60	С		
ATOM	1616 O	ALA	698	-1.904	63.935	-13.128	1.00	20.41	0		
ATOM	1617 CB	ALA	698	0.746	64.965	-11.481	1.00	16.85	С		
ATOM	1618 N	PRO	699	-0.362	64.887	-14.479	1.00	15.84	Ν		
ATOM	1619 CA	PRO	699	-0.802	64.081	-15.622	1.00	14.86	С		
ATOM	1620 C	PRO	699	-0.313	62.649	-15.472	1.00	17.66	С		
ATOM	1621 O	PRO	699	0.687	62.397	-14.808	1.00	18.33	0		
ATOM	1622 CB	PRO	699	-0.131	64.763	-16.817	1.00	10.16	С		
ATOM	1623 CG	PRO	699	0.224	66.151	-16.293	1.00	11.52	С		
ATOM	1624 CD	PRO	699	0.636	65.888	-14.889	1.00	12.64	С		
ATOM	1625 N	GLU	700	-1.029	61.702	-16.058	1.00	18.23	Ν		
ATOM	1626 CA	GLU	700	-0.585	60.329	-15.996	1.00	21.35	С		
ATOM	1627 C	GLU	700	0.318	60.141	-17.171	1.00	24.65	Ċ		
ATOM	1628 O	GLU	700	0.213	60.873	-18.137	1.00	29.66	ŏ		
ATOM	1629 CB	GLU	700	-1.730	59.377	-16.176	1.00	19.18	Č		
ATOM	1630 CG	GLU	700	-2.640	59.327	-15.036	1.00	27.76	c		
ATOM	1631 CD	GLU	700	-3.623	58.221	-15.210	1.00	30.98	c		
ATOM	1632 OE1	GLU	700	-3.184	57.061	-15.339	1.00	35.58	ŏ		
ATOM	1633 OE2	GLU	700	-4.833	58.511	-15.269	1.00	39.02	ŏ		
ATOM	1634 N	ALA	701	1.223	59.173	-17.083	1.00	33.25	N		
ATOM	1634 N 1635 CA	ALA	701	2.109	58.864	-17.083 -18.203	1.00	34.46	C		
ATOM	1635 CA 1636 C		701	1.251	58.146	-18.203 -19.254	1.00	36.32	c		
ATOM	1630 C 1637 O	ALA	701	0.277	57.456	-19.234 -18.916	1.00		ŏ		
	1637 O 1638 CB	ALA ALA	701	3.251	57.962	-17.739		30.64 32.72			
ATOM	1638 CB 1639 N	PRO	701				$1.00 \\ 1.00$	42.71	C N		
ATOM				1.537	58.370	-20.545					
ATOM	1640 CA	PRO	702	0.790	57.732	-21.634	1.00	47.12	С		
ATOM	1641 C	PRO	702	1.089	56.237	-21.591	1.00	49.56	С		
ATOM	1642 O	PRO	702	2.244	55.851	-21.342	1.00	48.33	0		
ATOM	1643 CB	PRO	702	1.402	58.353	-22.886	1.00	45.52	С		
ATOM	1644 CG	PRO	702	1.918	59.687	-22.387	1.00	48.78	С		
ATOM	1645 CD	PRO	702	2.530	59.322	-21.073	1.00	44.35	С		
ATOM	1646 N	PRO	703	0.080	55.383	-21.849	1.00	51.95	N		
ATOM	1647 CA	PRO	703	0.189	53.922	-21.841	1.00	54.88	С		
ATOM	1648 C	PRO	703	1.480	53.458	-22.521	1.00	59.06	С		
ATOM	1649 O	PRO	703	1.819	53.929	-23.616	1.00	56.81	0		
ATOM	1650 CB	PRO	703	-1.057	53.477	-22.606	1.00	53.66	С		
ATOM	1651 CG	PRO	703	-2.041	54.516	-22.235	1.00	53.29	С		
ATOM	1652 CD	PRO	703	-1.240	55.790	-22.379	1.00	53.11	С		
ATOM	1653 N	PRO	704	2.271	52.622	-21.816	1.00	64.17	Ν		
ATOM	1654 CA	PRO	704	3.533	52.117	-22.370	1.00	66.20	С		
ATOM	1655 C	PRO	704	3.250	51.526	-23.741	1.00	67.33	С		
ATOM	1656 O	PRO	704	2.480	50.565	-23.877	1.00	66.63	0		
ATOM	1657 CB	PRO	704	3.946	51.050	-21.356	1.00	66.86	С		
ATOM	1658 CG	PRO	704	3.457	51.639	-20.067	1.00	65.74	С		
ATOM	1659 CD	PRO	704	2.065	52.108	-20.449	1.00	64.51	С		
ATOM	1660 N	THR	705	3.885	52.118	-24.741	1.00	67.88	Ν		
ATOM	1661 CA	THR	705	3.712	51.735	-26.130	1.00	68.43	С		
ATOM	1662 C	THR	705	5.009	51.114	-26.688	1.00	68.19	С		
ATOM	1663 O	THR	705	4.932	50.046	-27.340	1.00	66.67	0		
ATOM	1664 CB	THR	705	3.231	52.998	-26.933	1.00	69.60	С		
ATOM	1665 OG1	THR	705	2.672	52.619	-28.198	1.00	70.05	ō		
ATOM	1666 CG2	THR	705	4.357	54.013	-27.124	1.00	68.20	č		
ATOM	1667 OXT	THR	705	6.102	51.650	-26.404	1.00	67.96	ŏ		

[0319] To demonstrate the feasibility of identifying potential small molecule inhibitors in silico, computational modeling software was utilized in conjunction with high-resolution crystal structure results to screen databases for existing compounds that would bind to the A1 domain where it interfaces with botrocetin (exogenous ligand binding site). Several small molecules predicted to bind with sub-micromolar IC₅₀s (concentration of drug required to inhibit the activity by 50%) and that could also severely disrupt binding of this snake venom protein were identified. Thus, potential candidate small molecules can be identified that may interfere with the interaction between GPIb alpha and the A1 domain of VWF. **[0320]** Screening small molecule library for inhibitors. Although the use of computational modeling is a state-of-the-

art method for identifying lead compounds, it is not without its limitations. Thus, we will also screen an actual library of 20,000 small molecules manufactured by the Chembridge Corporation (San Diego, Calif.). The library consists of handcrafted drug-like organic molecules with molecular weights in a range of 25-550, which are soluble in DMSO at concentrations ranging from 10-20 mM. The structure and purity (>95%) of these compounds have been validated by NMR. The library is formatted in a 96 well plate for high throughput screening using instrumentation made available through the OCCC (under supervision of the Landry laboratory) and includes a robot plate reader (FLexStation II 384, Molecular Devices, Sunnyvale, Calif.), an 8-tip robotic pipettor (Multiprobe II Plus, Perkin Elmer, Shelton, Conn.), a 96-tip robotic pipettor (Mintrak, Perkin Elmer), and an automated 96 well plate washer (Perkin Elmer).

[0321] An ELISA based system will be used to screen for compounds that may inhibit the interaction between GPIb alpha and the VWF-A1 domain. Enzyme-Linked Immunosorbent Assay (ELISA) methods are immunoassay techniques used for detection or quantification of a substance. An example of this assay is demonstrated in FIG. **45**A, where an antibody conjugated with horseradish peroxidase (HRP) was used to identify the presence of VWF. Depending on the substrate added, HRP enzyme activity can be detected by either a change in color (chromogenic product) or fluorescence (most sensitive indicator). Schematic representation of the proposed assay system to be used for screening is shown in FIG. **45**A.

[0322] Assav system: Recombinant GPIb alpha and VWF-A1 proteins will be generated and purified as described in the attached articles, with the latter containing a 6×His tag. Purified GPIb alpha will be absorbed overnight (4° C.) to PRO-BIND polystyrene 96-well assay plates (Falcon) at 10 µg/ml per well. Plates will be washed and non-specific binding sites blocked by the addition of TENTC buffer (50 mM Tris, 1 mM EDTA, 0.15 M NaCl, 0.2% casein, 0.05% Tween 20, pH 8.0) for 1 hour at room temperature. Subsequently, plates will be washed with and resuspended in TBS buffer (50 mM Tris, 150 mM NaCl, pH 8.0) and 1 test compound per well added at a final concentration of 10 µM (final DMSO concentration 0.5%). After 30 min, recombinant His tagged VWF-A1 protein will be added at a 1:1 Molar ratio to that of GPIb alpha and left to incubate for 1 hour before washing with TBS buffer. VWF-A1 bound to surface-immobilized GPIb alpha will be determined by the addition of HRP-conjugated anti-His tag antibody and the A1-antibody conjugate detected by the addition of LumiGlow reagent (KPL, Gaithersburg, Md.). The resulting fluorescence will be quantified by of the number of luminescence emissions per second using a FLexStation II 384 plate reader. A sample will be considered positive when the luminescence (in counts per second) is more than 2 standard deviations above the mean value for negative-controls.

[0323] Negative controls: Addition of mAb 6D1 to certain wells to prevent VWF-A1 binding to GPIb alpha or no addition of VWF-A1 protein (FIG. **45**B). In either case, no significant fluorescence should be detected. Once compounds of interest have been identified, solubility of these molecules will be confirmed to rule out precipitation as the etiology for blocking interactions between GPIb alpha and VWF-A1. In addition, a dose effect curve will also be generated (1 nM to 100 μ M) to obtain preliminary information regarding the IC50 of the inhibitor. Lead molecules will then be tested for their ability to limit human platelet interactions with plasma VWF in aggregometry and flow chamber assays as described in preliminary results. Ultimately, the most promising compound will be tested in our humanized mouse model of thrombosis.

Example 7

Effect of Plavix or ReoPro on Human Platelet-Induced Hemostasis in Homozygous VWF^{1326R>H} Mice

[0324] To demonstrate the feasibility of our $VWF^{1326R>H}$ mice to identify anti-thrombotic drugs capable of perturbing

human platelet function in vivo, we tested the ability of 2 FDA approved drugs, Plavix and ReoPro, to prevent human platelet-induced hemostasis. Plavix is the second most commonly used anti-thrombotic drug that targets one of the ADP receptors (P2Y12) on platelets, causing irreversible inhibition (Hankey et al. Med. J. Aust. 2003; 178:568). ADP is a potent mediator of platelet activation and aggregate formation, and thus considerable effort and funds have been devoted to inhibiting this activation pathway in platelets. Clopidogrel was approved by the FDA in 1997 for clinical use and was found to be of benefit in the secondary prevention of major vascular events in patients with a history of cerebrovascular and coronary artery diseases and major cardiac events post coronary artery stent placement (Gachet et al. Semin. Thromb. Hemost. 2005; 31:162). Disadvantages of this drug are: 1) It must be metabolized in the liver to generate an active metabolite, thus limiting its effectiveness in acute settings, and 2) irreversible inhibition that results in a marked prolongation of bleeding time. Clopidogrel has been shown to reduce thrombus size and delay its formation in mice with a maximal effective dose of 50 mg/kg given the day before and 2 hours prior to experimentation. Homozygous VWF^{1326R>H} mice that received this dosing schema, were unable to produce a hemostatic clot when administered human platelets in contrast to homozygous $VWF^{1326R>H}$ mice that received saline in lieu of drug. [0325] As Plavix can also block the function of the ADP receptor on murine platelets (see FIG. 46A), we also tested

the ability of ReoPro to prevent the formation of a hemostatic plug in homozygous VWF^{1326R>H} mice. ReoPro is a Fab fragment of a human-murine chimeric monoclonal antibody that blocks fibrinogen binding to the platelet integrin receptor α IIb β 3, thus limiting thrombus growth (Bennett, J. S. Novel platelet inhibitors. Annu. Rev. Med. 52, 161-184 (2001)). It is currently approved for short-term treatment of patients with acute coronary syndrome that require interventional catheterization. It is administered by intravenously bolus (0.25 mg/kg), followed by an infusion of 0.125 µg/kg/min. This results in >80% aIIb 3 occupancy, and disrupts platelet function for 24-36 h. It does not bind or disrupt the function of murine aIIb_{β3}. Administration of ReoPro to homozygous $VWF^{1326R>H}$ mice 5 minutes after the infusion of human platelets, prevented the formation of a hemostatic plug (mean bleeding time 579 sec) (FIG. 46B). By contrast, animals that received a non-function blocking antibody to human α IIb β 3 were able to form a hemostatic plug (mean bleeding 175 sec).

REFERENCES

- [0326] 1) Jaffe E A, Hoyer L W and Nachman R L Synthesis of antihemophilic factor antigen by cultured human endothelial cells. 1973. J Clin Invest. 52, 2757-2764.
- [0327] 2) Nachman R L., Levine R, Jaffe E A. Synthesis of factor VIII antigen by cultured guinea-pig megakaryocytes 1977. J Clin Invest. 60, 914-921.
- [0328] 3) Sporn L A, Chavin S I, Marder V J and Wagner, D D. Biosynthesis of von Willebrand protein by human megakaryocytes. 1985. J Clin Invest. 76, 1102-1106.
- **[0329]** 4) Sakariassen K S, Bolhuis P A and Sixma J J. human platelet adhesion to artery subendothelium is mediated by Factor VIII-von Willebrand factor bound to the subendothelium. 1979. Nature 279:636-638.
- **[0330]** 5) Meyer D, Baumgartner H R. Role of von Willebrand factor in platelet adhesion to subendothelium. 1983. Br J Haematol. 54:1-9.

- [0331] 6) Cruz M A, Yuan H, Lee J R, et al. Interaction of von Willebrand factor (vWF) with collagen. 1995. J Biol Chem. 270, 10822-10827.
- **[0332]** 7) Handa M, Titani K, Holland L Z, et al. The von Willebrand factor-binding domain of platelet membrane glycoprotein Ib. Characterization by monoclonal antibodies and partial amino acid sequence analysis of proteolytic fragments. 1986. J Biol Chem. 26, 12579-12585.
- [0333] 8) Murata M, Ware J, and Ruggeri Z M. Site-directed mutagenesis of a soluble recombinant fragment of platelet glycoprotein Ib alpha demonstrating negatively charged residues involved in von Willebrand factor binding. 1991. J Biol Chem. 266, 8149-8155.
- [0334] 9) Fressinaud E, Baruch, D, Girma J P, et al.: von Willebrand factor-mediate platelet adhesion to collagen involves platelet glycoprotein IIb/IIIa as well as glycoprotein Ib. 1988. J Lab Clin Med 112, 58-67.
- [0335] 10) Weiss H J, Sussman I I, Hoyer L W. Stabilization of factor VIII in plasma by the von Willebrand factor. 1977. J Clin Invest. 60, 390-404.
- [0336] 11) Ewenstein B M. von Willebrand's disease. 1997. Ann Rev Med 48, 525-542.
- [0337] 12) Sadler J E, Matsushita T, Dong Z, Tuley E A, Westfield L A. Molecular mechanism and classification of von Willebrand disease. 1995. Thromb and Haemost 74, 161-166.
- **[0338]** 13. Bonthron D T, Handin R I, Kaufman R J et al. Structure of pre-pro-von Willebrand factor and its expression in heterologous cells. Nature 1986; 324:270-273.
- **[0339]** 14. Shelton-Inloes B B, Titani K, Sadler E. cDNA sequences for human von Willebrand factor reveal five types of repeated domains and five possible protein sequence polymorphisms. Biochemistry 1986; 25:3164-3171.
- **[0340]** 15. Verweij, C L, Diergaarde P J, Hart, M, et al. Full length von Willebrand factor (vWF) cDNA encodes a highly repetitive protein considerably larger than the mature vWF subunit. EMBO J. 1986; 5:1839-1863.
- **[0341]** 16. Mancuso D J, Tuley E A, Westfield L A et al. Structure of the gene for human von Willebrand factor. J Biol Chem. 1989; 264:19514-19527.
- **[0342]** 17. Sadler J E, Shelton-Inloes B B, Sorace J M, Harlan J et al. Cloning and characterization of two cDNAs coding for human von Willebrand factor. Proc Natl Acad Sci USA 1985; 82:6394-6398.
- [0343] 18) CRUZ M A, DIACOVO T G, EMSLEY J, LID-DINGTON R, HANDIN R I. 2000. MAPPING THE GPIB BINDING SITE IN THE VON WILLEBRAND FACTOR A1 DOMAIN. J BIOL CHEM. 275, 19098-19105.
- [0344] 19) Savage B, Saldivar E, Ruggeri Z M. 1996. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell. 84, 289-297.
- **[0345]** 20) Kalafatis M, Takahashi Y, Girma J P, et al. Localization of the collagen-interactive domain of human von Willebrand factor between amino acid residues Gly 911 and Glu 1365. Blood 1987; 70:1577-1583.
- **[0346]** 21) Pareti F T, Niiya K, McPherson J M, et al. Isolation and characterization of two domains of human von Willebrand factor that interact with fibillar collagen types I and III. J Biol Chem. 1987; 262:13835-13841.
- [0347] 22) Roth G J, Titani K, Hoyer L W, et al. Localization of binding sites within human von Willebrand factor for monomeric type III collagen. Biochemistry 1986; 25:8357-8361.

- [0348] 23) Lankhof H, van Hoeij M, Schiphorst M E, Bracke M et al. A3 domain is essential for interaction of von Willebrand factor with collagen type III. Thromb Haemost. 1996; 75:950-958.
- **[0349]** 24) Pareti F T, Fujimura Y, Dent J A, et al. Isolation and characterization of a collagen binding domain in human von Willebrand factor. J Biol Chem. 1986; 261: 15310-15315.
- **[0350]** 25) Pietu G, Meulien P, Cherel G, et al. Production in *Escherichia coli* of a biologically active subfragment of von Willebrand factor corresponding to the platelet glycoprotein Ib, collagen, and heparin binding domains. Biochem. Biophys. Res. Comm. 1989; 164:1339-1347.
- **[0351]** 26) Meyer D, Fressinaud E, Gaucher C, Lavergne J-M, Hilbert L, Ribba A S et al. Gene defects in 150 unrelated French cases with type 2 von Willebrand disease: from patient to gene. Thromb and Haemost. 1997; 78:451-456.
- [0352] 27) Ginsburg, D., and J. E. Sadler. 1993. von Willebrand disease: a database of point mutations, insertions, and deletions. For the Consortium on von Willebrand Factor Mutations and Polymorphisms, and the Subcommittee on von Willebrand Factor of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb. Haemost. 69:177-184.
- [0353] 28) Hillery C A, Mancuso D J, Sadler J E, Ponder J W et al. Type 2M von Willebrand disease: F606I and I662F mutations in the glycoprotein Ib binding domain selectively impair ristocetin- but not botrocetin-mediated binding of von Willebrand factor to platelets. Blood 1998; 91:1572-15781.
- [0354] 29) Mancuso D J, Kroner P A, Christopherson P A et al. Type 2M: Milwaukee-1 von Willebrand disease: an in-frame deletion in the Cys509-Cys695 loop of von Willebrand factor A1 domain causes deficient binding of von Willebrand factor to platelets. Blood 1996; 88: 2559-2568.
- [0355] 30) Ruggeri, Z. M., F. I. Pareti, P. M. Mannucci, N., Ciavarella, and T. S. Zimmerman. 1980. Heightened interaction between platelets and factor VIII/von Willebrand factor in a new subtype of von Willebrand's disease. N. Engl. J. Med. 302:1047-1051.
- **[0356]** 31) Cooney, K. A., and D. Ginsburg. 1996. Comparative analysis of type 2B von Willebrand disease mutations: implications for the mechanism of von Willebrand factor binding to platelets. Blood 87:2322-2328.
- [0357] 32) Cruz, M. A., T. G. Diacovo, J. Emsley, R. Liddington, and R. I. Handin. 2000. Mapping the glycoprotein Ib-binding site in the von willebrand factor A1 domain. J Biol Chem. 275:19098-19105.
- **[0358]** 33) Huizinga E G, Tsuji S, Romijn R A P, et al. Structures of Glycoprotein Ibα and its complex with von Willebrand Factor A1 domain. Science. 2002; 297:1176-1179.
- **[0359]** 34) Federici A B, Bader R, Pagani S, Colibretti M L, De Marco L, and Mannucci P M. Binding of von Willebrand factor to glycoproteins Ib and IIb/IIIa complex: affinity is related to multimeric size. Br J Haematol. 1989; 73:93-99.
- **[0360]** 35) Roth G J. Developing relationships: arterial platelet adhesion, glycoprotein Ib, and leucine-rich glycoproteins. Blood. 1991; 77:5-19.
- [0361] 36) Siedlecki C A, Lestini B J, Kottke-Marchant K K, Eppell S J, Wilson D L, and Marchant R E. Shear-

dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 1996; 88:2939-2950.

- [0362] 37) Ruggeri Z M, and Ware J. The structure and function of von Willebrand factor. Thromb Haemost. 1992; 67:594-599.
- **[0363]** 38) Howard M A, and Firkin B G. Ristocetin—a new tool in the investigation of platelet aggregation. Thromb Diath Haemorrh. 1971; 26:362-369.
- [0364] 39) Read M S, Smith S V, Lamb, M A, and Brinkhous K M. Role of botrocetin in platelet agglutination: formation of an activated complex of botrocetin and von Willebrand factor. Blood 1989; 74:1031-1035
- [0365] 40) Emsley J, Knight C G, Farndale R W, Barnes M J, and Liddington R C. Structural basis of collagen recognition by integrin alpha2 beta1. Cell 2000; 101:47-56.
- [0366] 41) CELIKEL R, RUGGERI Z M, AND VARUGH-ESE K I. VON WILLEBRAND FACTOR CONFORMA-TION AND ADHESIVE FUNCTION IS MODULATED BY AN INTERNALIZED WATER MOLECULE. NAT STRUCT BIOL. 2000; 7:881-884.
- [0367] 42) Fukuda K, Doggett T A, Bankston L A, Cruz M A, Diacovo T G, Liddington R C. Structural basis of von Willebrand factor activation by the snake toxin botrocetin. Structure. 2002; 10:943-950.
- [0368] 43) Sen U, Vasudevan S, Subbarao G, McClintock R A, Celikel R, Ruggeri Z M, Varughese K I. Crystal structure of the von Willebrand factor modulator botrocetin. Biochemistry. 2001; 40:345-352.
- [0369] 44) Andrews R K, Booth W J, Gorman J J, Castaldi P A, Berndt M C. Purification of botrocetin from Bothrops jararaca venom. Analysis of the botrocetin-mediated interaction between von Willebrand factor and the human platelet membrane glycoprotein Ib-IX complex. Biochemistry. 1989; 28:8317-8326.
- [0370] 45) Yoshida E, Fujimura Y, Miura S, Sugimoto M, Fukui H, Narita N, Usami Y, Suzuki M, Titani K. Alboaggregin-B and botrocetin, two snake venom proteins with highly homologous amino acid sequences but totally distinct functions on von Willebrand factor binding to platelets. Biochem Biophys Res Commun. 1993; 19: 1386-1392.
- [0371] 46) Italiano J E Jr, Bergmeier W, Tiwari S, Falet H, Hartwig J H, Hoffmeister K M, Andre P, Wagner D D, Shivdasani R A. Mechanisms and implications of platelet discoid shape. Blood. 2003 Jun. 15; 101(12):4789-96. Epub 2003 Feb. 13.
- **[0372]** 47) Yoon, B. J., and S. Kim. 1990. A boundary collocation method for the motion of two spheroids in Stokes flow: Hydrodynamic and colloidal interactions. Int. J. Multiphase Flow. 16:639-649.
- [0373] 48) Chesla S E, Selvaraj P, Zhu C. Measuring twodimensional receptor-ligand binding kinetics by micropipette. Biophys J. 1998; 75:1553-1572.
- [0374] 49)Yamamoto H, Vreys I, Stassen J M et al. Antagonism of vWF inhibits both injury induced arterial and venous thrombosis in the hamster. Thromb Haemost 1998: 79:202-210.
- [0375] 50) Azzam K, Garfinkel L I, Bal dit Sollier C et al. Antithrombotic effect of a recombinant von Willebrand factor, VCL, on nitrogen laser-induced thrombus formation in guinea pig mesenteric arteries. Thromb Haemost 1995: 73:318-323.

- [0376] 51) Denis C, Methia N, Frenette P S, et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci, USA. 1998; 95:9524-9529.
- [0377] 52) Ware J, Russell S, Ruggeri Z M. Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc Natl Acad Sci USA. 2000 Mar. 14; 97(6):2803-8.
- [0378] 53) Miura, S., C. Q. Li, Z. Cao, H. Wang, M. R. Wardell, and J. E. Sadler. 2000. Interaction of von Willebrand factor domain A1 with platelet glycoprotein Ib alpha-(1-289). Slow intrinsic binding kinetics mediate rapid platelet adhesion. J. Biol. Chem. 275:7539-7546.
- [0379] 54) KOHLER G, MILSTEIN C: CONTINUOUS CULTURES OF FUSED CELLS SECRETING ANTI-BODY OF PREDEFINED SPECIFICITY. NATURE 1975; 256:495-497.
- [0380] 55) Alon R, Chen S, Fuhlbrigge R, Puri K D, Springer TA. The kinetics and shear threshold of transient and rolling interactions of L-selectin with its ligand on leukocytes. Proc Natl Acad Sci USA. 1998; 95:11631-1166.
- [0381] 56) Gillespie, D. T. 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22:403-434.
- [0382] 57) Tees, D. F. J., and H. L. Goldsmith. 1996. Kinetics and locus of failure of receptor-ligand-mediated adhesion between latex spheres. I. Protein-carbohydrate bond. Biophys. J. 71:1102-1114.
- [0383] 58) Marshall B T, Long M, *Piper J W*, Yago T, McEver R P, Zhu C. Direct observation of catch bonds involving cell-adhesion molecules. Nature. 2003; 423:190-193.
- [0384] 59) CHEN S, SPRINGER T A. SELECTIN RECEPTOR-LIGAND BONDS: FORMATION LIM-ITED BY SHEAR RATE AND DISSOCIATION GOV-ERNED BY THE BELL MODEL. PROC NATL ACAD SCI USA. 2001; 98:950-955.
- **[0385]** 60) Greenberg A W, Brunk D K, Hammer D A. Cell-free rolling mediated by L-selectin and sialyl Lewis (x) reveals the shear threshold effect. Biophys J. 2002; 79:2391-2402.
- **[0386]** 61) Chen S and Springer T A. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. 1999. J. Cell Biol. 144: 185-200.
- [0387] 62) Cooney K A, Ginsburg D. Comparative analysis of type 2b von Willebrand disease mutations: implications for the mechanism of von Willebrand factor binding to platelets. Blood. 1996; 87:2322-2328.
- [0388] 63) Merkel R, Nassoy P, Leung A, Ritchie K, Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan. 7; 397(6714):50-3.
- [0389] 64) Evans E, Leung A, Hammer D, Simon S. Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force. Proc Natl Acad Sci USA. 2001 Mar. 27; 98(7):3784-9. Epub 2001 March 13.
- [0390] 65) Simson D A, Ziemann F, Strigl M, Merkel R. Micropipet-based pico force transducer: in depth analysis and experimental verification. Biophys J. 1998 April; 74(4):2080-8.

- [0391] 66) Evans E, Berk D, Leung A. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments, Biophys J. 1991 April; 59(4):838-48.
- [0392] 67) Ribba A S, Voorberg J, Meyer D, Pannekoek H, Pietu G. Related Articles, Links Free Full Text Characterization of recombinant von Willebrand factor corresponding to mutations in type IIA and type IIB von Willebrand disease. J Biol Chem. 1992; 267:23209-23215.
- [0393] 68) Andre P, Prasad K S, Denis C V, He M, Papalia J M, Hynes R O, Phillips D R, Wagner D D. CD40L stabilizes arterial thrombi by a beta3 integrin-dependent mechanism. Nat Med. 2002 March; 8(3):247-52.
- [0394] 69) Coxon, A., P. Rieu, F. J. Barkalow, S. Askari, A. H. Sharpe, U. H. von Andrian, M. A. Arnaout, and T. N. Mayadas. 1996. A novel role for the beta 2 integrin CD11b/ CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity. 5:653-666.
- [0395] 70) Ni H, Ramakrishnan V, Ruggeri Z M, Papalia J M, Phillips D R, Wagner D D. Increased thrombogenesis and embolus formation in mice lacking glycoprotein V Blood. 2001 Jul. 15; 98(2):368-73

[0396] 71) King M R, Hammer D A. Multiparticle adhesive dynamics: hydrodynamic recruitment of rolling leukocytes. Proc Natl Acad Sci USA. 2001 Dec. 18; 98(26): 14919-24.

Example 8

Determining the Efficacy of Anti-Platelet Drugs Administered to Patients by Studying the Ability of Platelets Harvested from Patients on Therapies in the VWF^{1326R>H} Mouse

[0397] Intravital microscopic study was carried out to evaluate the ability of the VWF^{1326R>H} mouse to determine the efficacy of anti-platelet therapies given to patients at risk or with active cardiovascular disease. The typical prophylactic dose of aspirin (ASA) of 81 mg did not prevent laser-injury induced human platelet thrombus formation in the genetically modified animal while increasing the daily dose to 162 mg was preventative (FIG. **47**). Similarly, platelets administered from a patient on 81 mg of ASA and 75 mg Plavix also prevented thrombus formation.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 10
<210> SEQ ID NO 1
<211> LENGTH: 221
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 1
Glu Asp Ile Ser Glu Pro Pro Leu His Asp Phe Tyr Cys Ser Arg Leu
                              10
            5
1
                                    15
Leu Asp Leu Val Phe Leu Leu Asp Gly Ser Ser Arg Leu Ser Glu Ala
                25
          20
                                              30
Glu Phe Glu Val Leu Lys Ala Phe Val Val Asp Met Met Glu Arg Leu
                       40
Arg Ile Ser Gln Lys Trp Val Arg Val Ala Val Val Glu Tyr His Asp
                     55
Gly Ser His Ala Tyr Ile Gly Leu Lys Asp Arg Lys Arg Pro Ser Glu
                70
65
                                                     80
Leu Arg Arg Ile Ala Ser Gln Val Lys Tyr Ala Gly Ser Gln Val Ala
             85
                                90
Ser Thr Ser Glu Val Leu Lys Tyr Thr Leu Phe Gln Ile Phe Ser Lys
                            105
                                              110
          100
Ile Asp Arg Pro Glu Ala Ser Arg Ile Ala Leu Leu Met Ala Ser
                                           125
       115
                        120
Gln Glu Pro Gln Arg Met Ser Arg Asn Phe Val Arg Tyr Val Gln Gly
          135
   130
                             140
Leu Lys Lys Lys Val Ile Val Ile Pro Val Gly Ile Gly Pro His
145
                  150
                                    155
Ala Asn Leu Lys Gln Ile Arg Leu Ile Glu Lys Gln Ala Pro Glu Asn
              165
                                170
                                                  175
Lys Ala Phe Val Leu Ser Ser Val Asp Glu Leu Glu Gln Gln Arg Asp
         180
              185
                                      190
```

60

120

180

240

300

360

Glu Ile Val Ser Tyr Leu Cys Asp Leu Ala Pro Glu Ala Pro Pro Pro 195 200 205 Thr Leu Pro Pro His Met Ala Gln Val Thr Val Gly Pro 210 215 220 <210> SEQ ID NO 2 <211> LENGTH: 221 <212> TYPE: PRT <213> ORGANISM: Mus musculus <400> SEQUENCE: 2 Glu Asp Thr Pro Glu Pro Pro Leu His Asn Phe Tyr Cys Ser Lys Leu 5 10 1 Leu Asp Leu Val Phe Leu Leu Asp Gly Ser Ser Met Leu Ser Glu Ala 25 20 30 Glu Phe Glu Val Leu Lys Ala Phe Val Val Gly Met Met Glu Arg Leu 40 35 45 His Ile Ser Gln Lys Arg Ile Arg Val Ala Val Val Glu Tyr His Asp 55 50 60 Gly Ser Arg Ala Tyr Leu Glu Leu Lys Ala Arg Lys Arg Pro Ser Glu 65 70 75 Leu Arg Arg Ile Thr Ser Gln Ile Lys Tyr Thr Gly Ser Gln Val Ala 85 90 95 Ser Thr Ser Glu Val Leu Lys Tyr Thr Leu Phe Gln Ile Phe Gly Lys 100 105 110 Ile Asp Arg Pro Glu Ala Ser His Ile Thr Leu Leu Leu Thr Ala Ser 115 120 125 Gln Glu Pro Pro Arg Met Ala Arg Asn Leu Val Arg Tyr Val Gln Gly 135 130 140 Leu Lys Lys Lys Val Ile Val Ile Pro Val Gly Ile Gly Pro His 155 150 145 160 Ala Ser Leu Lys Gln Ile Arg Leu Ile Glu Lys Gln Ala Pro Glu Asn 165 170 175 Lys Ala Phe Leu Leu Ser Gly Val Asp Glu Leu Glu Gln Arg Asp 180 185 190 Glu Ile Val Ser Tyr Leu Cys Asp Leu Ala Pro Glu Ala Pro Ala Pro 195 200 205 Thr Gln Pro Pro Gln Val Ala His Val Thr Val Ser Pro 210 215 220 <210> SEQ ID NO 3 <211> LENGTH: 663 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 3 gaggacatet eggaacegee gttgeacgat ttetaetgea geaggetaet ggacetggte tteetgetgg atggeteete caggetgtee gaggetgagt ttgaagtget gaaggeettt gtggtggaca tgatggagcg gctgcgcatc tcccagaagt gggtccgcgt ggccgtggtg gagtaccacg acggeteeca egectacate gggeteaagg aceggaageg acegteagag ctgcggcgca ttgccagcca ggtgaagtat gcgggcagcc aggtggcctc caccagcgag gtottgaaat acacactgtt ccaaatottc agcaagatog accgcootga agcotcoogc

atcgccctgc tcctgatggc cagccaggag ccccaacgga tgtcccggaa ctttgtccgc	420
tacgtccagg gcctgaagaa gaagaaggtc attgtgatcc cggtgggcat tgggccccat	480
gccaacctca agcagatccg cctcatcgag aagcaggccc ctgagaacaa ggccttcgtg	540
ctgagcagtg tggatgagct ggagcagcaa agggacgaga tcgttagcta cctctgtgac	600
cttgcccctg aagcccctcc tcctactctg ccccccaca tggcacaagt cactgtgggc	660
ccg	663
<210> SEQ ID NO 4 <211> LENGTH: 663 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 4	
gaggataccc ccgagccccc cctgcacaac ttctactgca gcaagctgct ggatcttgtc	60
tteetgetgg atggeteete tatgttgtee gaggetgagt ttgaagtget eaaagetttt	120
gtggtgggca tgatggagag gttacacatc tctcagaagc gcatccgcgt ggcagtggta	180
gagtaccatg atggctcccg tgcctacctt gagctcaagg cccggaagcg accctcagag	240
cttcggcgca tcaccagcca gattaagtat acaggcagcc aggtggcctc taccagtgag	300
gttttgaagt acacactgtt ccagatettt ggeaaaattg acegeeetga ageeteeeat	360
atcactctgc teetgactge tagecaggag ecceeaegga tggetaggaa tttggteege	420
tatgtccaag gtctgaagaa gaagaaggtt atcgtgatcc ctgtgggcat tgggccccac	480
gccagcctca aacagatccg cctcatcgag aagcaggccc ctgaaaacaa ggcttttctg	540
ctcagtgggg tggatgagct ggagcagaga agagatgaga tagtcagcta cctctgtgac	600
cttgeteeeg aggeeecage eccaacteag eeteeacagg tageeeacgt eacegtgagt	660
cca	663
<210> SEQ ID NO 5 <211> LENGTH: 221 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synther polypeptide	tic
<400> SEQUENCE: 5	
Glu Asp Thr Pro Glu Pro Pro Leu His Asn Phe Tyr Cys Ser Lys Leu 1 5 10 15	
Leu Asp Leu Val Phe Leu Leu Asp Gly Ser Ser Met Leu Ser Glu Ala 20 25 30	
Glu Phe Glu Val Leu Lys Ala Phe Val Val Gly Met Met Glu Arg Leu 35 40 45	
His Ile Ser Gln Lys Arg Ile Arg Val Ala Val Val Glu Tyr His Asp 50 55 60	
Gly Ser His Ala Tyr Leu Glu Leu Lys Ala Arg Lys Arg Pro Ser Glu 65 70 75 80	
Leu Arg Arg Ile Thr Ser Gln Ile Lys Tyr Thr Gly Ser Gln Val Ala 85 90 95	
Ser Thr Ser Glu Val Leu Lys Tyr Thr Leu Phe Gln Ile Phe Gly Lys 100 105 110	

-continued

Ile Asp Arg Pro Glu Ala Ser His Ile Thr Leu Leu Leu Thr Ala Ser Gln Glu Pro Pro Arg Met Ala Arg Asn Leu Val Arg Tyr Val Gln Gly Leu Lys Lys Lys Val Ile Val Ile Pro Val Gly Ile Gly Pro His Ala Ser Leu Lys Gln Ile Arg Leu Ile Glu Lys Gln Ala Pro Glu Asn Lys Ala Phe Leu Leu Ser Gly Val Asp Glu Leu Glu Gln Arg Asp Glu Ile Val Ser Tyr Leu Cys Asp Leu Ala Pro Glu Ala Pro Ala Pro Thr Gln Pro Pro Gln Val Ala His Val Thr Val Ser Pro <210> SEQ ID NO 6 <211> LENGTH: 2813 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 6 Met Ile Pro Ala Arg Phe Ala Gly Val Leu Leu Ala Leu Ala Leu Ile Leu Pro Gly Thr Leu Cys Ala Glu Gly Thr Arg Gly Arg Ser Ser Thr 20 25 30 Ala Arg Cys Ser Leu Phe Gly Ser Asp Phe Val Asn Thr Phe Asp Gly 35 40 45 Ser Met Tyr Ser Phe Ala Gly Tyr Cys Ser Tyr Leu Leu Ala Gly Gly Cys Gln Lys Arg Ser Phe Ser Ile Ile Gly Asp Phe Gln Asn Gly Lys 65 70 75 80 Arg Val Ser Leu Ser Val Tyr Leu Gly Glu Phe Phe Asp Ile His Leu Phe Val Asn Gly Thr Val Thr Gln Gly Asp Gln Arg Val Ser Met Pro Tyr Ala Ser Lys Gly Leu Tyr Leu Glu Thr Glu Ala Gly Tyr Tyr Lys Leu Ser Gly Glu Ala Tyr Gly Phe Val Ala Arg Ile Asp Gly Ser Gly Asn Phe Gln Val Leu Leu Ser Asp Arg Tyr Phe Asn Lys Thr Cys Gly Leu Cys Gly Asn Phe Asn Ile Phe Ala Glu Asp Asp Phe Met Thr Gln Glu Gly Thr Leu Thr Ser Asp Pro Tyr Asp Phe Ala Asn Ser Trp Ala Leu Ser Ser Gly Glu Gln Trp Cys Glu Arg Ala Ser Pro Pro Ser Ser Ser Cys Asn Ile Ser Ser Gly Glu Met Gln Lys Gly Leu Trp Glu Gln 210 215 220 Cys Gln Leu Leu Lys Ser Thr Ser Val Phe Ala Arg Cys His Pro Leu Val Asp Pro Glu Pro Phe Val Ala Leu Cys Glu Lys Thr Leu Cys Glu

-continued

											-	con	tin	ued	
				245					250					255	
Сүз	Ala	Gly	Gly 260		Glu	Суз	Ala	Сув 265	Pro	Ala	Leu	Leu	Glu 270	Tyr	Ala
Arg	Thr	Cys 275	Ala	Gln	Glu	Gly	Met 280		Leu	Tyr	Gly	Trp 285	Thr	Asp	His
Ser	Ala 290	-	Ser	Pro	Val	Cys 295	Pro	Ala	Gly	Met	Glu 300	Tyr	Arg	Gln	Сув
Val 305	Ser	Pro	Cys	Ala	Arg 310	Thr	Суз	Gln	Ser	Leu 315	His	Ile	Asn	Glu	Met 320
Суз	Gln	Glu	Arg	Cys 325	Val	Asp	Gly	Сув	Ser 330	Суз	Pro	Glu	Gly	Gln 335	Leu
Leu	Asp	Glu	Gly 340	Leu	Суз	Val	Glu	Ser 345	Thr	Glu	Суа	Pro	Cys 350	Val	His
Ser	Gly	Lys 355	Arg	Tyr	Pro	Pro	Gly 360		Ser	Leu	Ser	Arg 365	Asp	Сүз	Asn
Thr	Cys 370	Ile	Сүз	Arg	Asn	Ser 375	Gln	Trp	Ile	Суз	Ser 380	Asn	Glu	Glu	Сув
Pro 385	Gly	Glu	Cys	Leu	Val 390	Thr	Gly	Gln	Ser	His 395	Phe	Lys	Ser	Phe	Asp 400
Asn	Arg	Tyr	Phe	Thr 405	Phe	Ser	Gly	Ile	Cys 410	Gln	Tyr	Leu	Leu	Ala 415	Arg
Asp	Суз	Gln	Asp 420	His	Ser	Phe	Ser	Ile 425	Val	Ile	Glu	Thr	Val 430	Gln	Cys
Ala	Asp	Asp 435	Arg	Asp	Ala	Val	Cys 440	Thr	Arg	Ser	Val	Thr 445	Val	Arg	Leu
Pro	Gly 450	Leu	His	Asn	Ser	Leu 455	Val	Lya	Leu	Lya	His 460	Gly	Ala	Gly	Val
Ala 465	Met	Asp	Gly	Gln	Asp 470	Ile	Gln	Leu	Pro	Leu 475	Leu	Lys	Gly	Asp	Leu 480
Arg	Ile	Gln	His	Thr 485	Val	Thr	Ala	Ser	Val 490	Arg	Leu	Ser	Tyr	Gly 495	Glu
Asp	Leu	Gln	Met 500	Asp	Trp	Asp	Gly	Arg 505	Gly	Arg	Leu	Leu	Val 510	Lys	Leu
Ser	Pro	Val 515	Tyr	Ala	Gly	Lys	Thr 520	Cys	Gly	Leu	Cys	Gly 525	Asn	Tyr	Asn
Gly	Asn 530	Gln	Gly	Asp	Asp	Phe 535		Thr	Pro	Ser	Gly 540	Leu	Ala	Glu	Pro
Arg 545	Val	Glu	Asp	Phe	Gly 550	Asn	Ala	Trp	Lys	Leu 555	His	Gly	Asp	Cys	Gln 560
Asp	Leu	Gln	Lys	Gln 565	His	Ser	Asp	Pro	Cys 570	Ala	Leu	Asn	Pro	Arg 575	Met
Thr	Arg	Phe	Ser 580	Glu	Glu	Ala	Cys	Ala 585	Val	Leu	Thr	Ser	Pro 590	Thr	Phe
Glu	Ala	Сув 595	His	Arg	Ala	Val	Ser 600		Leu	Pro	Tyr	Leu 605	Arg	Asn	Суз
Arg	Tyr 610	Asp	Val	Суз	Ser	Cys 615	Ser	Asp	Gly	Arg	Glu 620	Суз	Leu	Суз	Gly
Ala 625	Leu	Ala	Ser	Tyr	Ala 630	Ala	Ala	Суз	Ala	Gly 635	Arg	Gly	Val	Arg	Val 640
Ala	Trp	Arg	Glu	Pro 645	Gly	Arg	Суз	Glu	Leu 650	Asn	САа	Pro	Lys	Gly 655	Gln

Val	Tyr	Leu	Gln 660	СЛа	Gly	Thr	Pro	Cys 665	Asn	Leu	Thr	Суз	Arg 670	Ser	Leu
Ser	Tyr	Pro 675	Asp	Glu	Glu	Сүз	Asn 680	Glu	Ala	Cys	Leu	Glu 685	Gly	Суз	Phe
Сув	Pro 690	Pro	Gly	Leu	Tyr	Met 695	Aab	Glu	Arg	Gly	Asp 700	Сув	Val	Pro	Lys
Ala 705	Gln	Cys	Pro	Сүз	Tyr 710	Tyr	Aab	Gly	Glu	Ile 715	Phe	Gln	Pro	Glu	Asp 720
Ile	Phe	Ser	Asp	His 725	His	Thr	Met	Сув	Tyr 730	Сүз	Glu	Asp	Gly	Phe 735	Met
His	Cys	Thr	Met 740	Ser	Gly	Val	Pro	Gly 745	Ser	Leu	Leu	Pro	Asp 750	Ala	Val
Leu	Ser	Ser 755	Pro	Leu	Ser	His	Arg 760	Ser	Lys	Arg	Ser	Leu 765	Ser	Суз	Arg
Pro	Pro 770	Met	Val	Lys	Leu	Val 775	Суз	Pro	Ala	Asp	Asn 780	Leu	Arg	Ala	Glu
Gly 785	Leu	Glu	Суз	Thr	Lys 790	Thr	Суз	Gln	Asn	Tyr 795	Asp	Leu	Glu	Суз	Met 800
Ser	Met	Gly	Суз	Val 805	Ser	Gly	Суз	Leu	Cys 810	Pro	Pro	Gly	Met	Val 815	Arg
His	Glu	Asn	Arg 820	Суз	Val	Ala	Leu	Glu 825	Arg	Суз	Pro	Суз	Phe 830	His	Gln
Gly	Lys	Glu 835	Tyr	Ala	Pro	Gly	Glu 840	Thr	Val	ГÀа	Ile	Gly 845	Суз	Asn	Thr
Сүз	Val 850	Суз	Arg	Asp	Arg	Lys 855	Trp	Asn	Суз	Thr	Asp 860	His	Val	Суз	Asp
Ala 865	Thr	Суз	Ser	Thr	Ile 870	Gly	Met	Ala	His	Tyr 875	Leu	Thr	Phe	Asp	Gly 880
Leu	Lys	Tyr	Leu	Phe 885	Pro	Gly	Glu	Сув	Gln 890	Tyr	Val	Leu	Val	Gln 895	Asp
Tyr	Суз	Gly	Ser 900	Asn	Pro	Gly	Thr	Phe 905	Arg	Ile	Leu	Val	Gly 910	Asn	Гла
Gly	Cys	Ser 915	His	Pro	Ser	Val	Lys 920	Сув	Lys	Lys	Arg	Val 925	Thr	Ile	Leu
Val	Glu 930	Gly	Gly	Glu	Ile	Glu 935	Leu	Phe	Asp	Gly	Glu 940	Val	Asn	Val	Lys
Arg 945	Pro	Met	ГЛа	Asp	Glu 950	Thr	His	Phe	Glu	Val 955	Val	Glu	Ser	Gly	Arg 960
Tyr	Ile	Ile	Leu	Leu 965	Leu	Gly	Lys	Ala	Leu 970	Ser	Val	Val	Trp	Asp 975	Arg
His	Leu	Ser	Ile 980	Ser	Val	Val	Leu	Lys 985	Gln	Thr	Tyr	Gln	Glu 990	ГЛа	Val
Суз	Gly	Leu 995	Сүз	Gly	Asn	Phe	Asp 1000	-	/ Ile	e Glı	n Ası	n Ası 100		ар Ге	eu Thr
Ser	Ser 1010		ı Leı	ı Glı	n Val	l Glu 101		Lu As	sp Pi	ro Va		ap 1 020	Phe (Gly A	Asn
Ser	Trp 1025	-	s Va	L Sei	r Sei	r Gl1 103		/s A	la A:	ap Tl		rg 1 035	Lys V	/al 1	Pro
Leu	Asp 1040		r Se:	r Pro	o Ala	a Thi 104		/s H:	is A:	an Ai		le 1 050	Met 1	jàa (3ln

-continued

											- COI	101r	iuec	1	 	 	 	 _
Thr	Met 1055		Asp	Ser	Ser	Cys 1060	-	Ile	Leu	Thr	Ser 1065	Asp	Val	Phe				
Gln	Asp 1070					Val 1075			Glu	Pro	Tyr 1080	Leu	Asp	Val				
Суз	Ile 1085					Ser 1090				Ile	Gly 1095	Asp	Cys	Ala				
Суа	Phe 1100					Ala 1105					Val 1110	Суз	Ala	Gln				
His	Gly 1115	-	Val	Val	Thr	Trp 1120				Thr	Leu 1125	Сув	Pro	Gln				
Ser	Cys 1130			Arg		Leu 1135	-			-	Tyr 1140	Glu	Суз	Glu				
Trp	Arg 1145					Ala 1150		Ala	-		Val 1155	Thr	Суз	Gln				
His	Pro 1160	Glu				Cys 1165					Val 1170	Glu	Gly	Сүз				
His	Ala 1175				Pro						Glu 1185	Leu	Leu	Gln				
Thr	Cys 1190	Val			Glu	Asp	Суз	Pro	Val	Суз		Val	Ala	Gly				
Arg	Arg 1205	Phe			-		Lys	Val	Thr	Leu		Pro	Ser	Aap				
Pro	Glu 1220	His					His	Cys	Asp	Val	Val	Asn	Leu	Thr				
CÀa	Glu 1235	Ala	Cys	Gln	Glu		Gly	Gly	Leu	Val		Pro	Pro	Thr				
Asp	Ala 1250	Pro			Pro		Thr		Tyr	Val	Glu	Asp	Ile	Ser				
Glu	Pro 1265	Pro			Asp	Phe	Tyr	Cys	Ser	Arg		Leu	Asp	Leu				
Val	Phe 1280	Leu		Asp			Ser		Leu	Ser		Ala	Glu	Phe				
Glu	Val	Leu	Lys	Ala	Phe		Val		Met	Met	Glu	Arg	Leu	Arg				
Ile	1295 Ser			Trp		Arg	Val				Glu	Tyr	His	Asp				
Gly	1310 Ser		Ala	Tyr	Ile		Leu	Lys	Asp	Arg		Arg	Pro	Ser				
Glu	1325 Leu	Arg	Arg	Ile	Ala		Gln	Val	Lys	Tyr		Gly	Ser	Gln				
Val	1340 Ala	Ser	Thr	Ser	Glu		Leu	Lys	Tyr	Thr		Phe	Gln	Ile				
Phe	1355 Ser	Lys	Ile	Asp			Glu	Ala	Ser	-		Ala	Leu	Leu				
Leu	1370 Met		Ser	Gln			Gln	Arg	Met		-	Asn	Phe	Val				
Arg	1385 Tyr	Val	Gln	Gly	Leu		Lys	Lys	Lys			Val	Ile	Pro				
Val	1400 Gly	Ile	Gly	Pro	His		Asn	Leu	Гла	Gln		Arg	Leu	Ile				
Glu	1415 Lys	Gln	Ala	Pro	Glu	1420 Asn		Ala	Phe		1425 Leu	Ser	Ser	Val				

-continued

											-coi	nt 1 r	luec	1
	1430					1435					1440			
Asp	Glu 1445		Glu	Gln	Gln	Arg 1450		Glu	Ile	Val	Ser 1455	-	Leu	САа
Asp	Leu 1460		Pro	Glu	Ala	Pro 1465		Pro	Thr	Leu	Pro 1470	Pro	His	Met
Ala	Gln 1475	Val	Thr	Val	Gly	Pro 1480		Leu	Leu	Gly	Val 1485	Ser	Thr	Leu
Gly	Pro 1490		Arg	Asn	Ser	Met 1495		Leu	Asp	Val	Ala 1500	Phe	Val	Leu
Glu	Gly 1505		Asp	Lys	Ile	Gly 1510		Ala	Asp	Phe	Asn 1515	Arg	Ser	Гла
Glu	Phe 1520	Met	Glu	Glu	Val	Ile 1525		Arg	Met	Asp	Val 1530	Gly	Gln	Asp
Ser	Ile 1535		Val	Thr	Val	Leu 1540	Gln	Tyr	Ser	Tyr	Met 1545	Val	Thr	Val
Glu	Tyr 1550		Phe	Ser	Glu	Ala 1555		Ser	Lys	Gly	Asp 1560	Ile	Leu	Gln
Arg	Val 1565		Glu	Ile	Arg	Tyr 1570		Gly	Gly	Asn	Arg 1575	Thr	Asn	Thr
Gly	Leu 1580	Ala	Leu	Arg	Tyr	Leu 1585		Asp	His	Ser	Phe 1590	Leu	Val	Ser
Gln	Gly 1595	_	Arg	Glu	Gln	Ala 1600		Asn	Leu	Val	Tyr 1605	Met	Val	Thr
Gly	Asn 1610	Pro	Ala	Ser	Asp	Glu 1615		ГЛа	Arg	Leu	Pro 1620	Gly	Asp	Ile
Gln	Val 1625	Val	Pro	Ile	Gly	Val 1630		Pro	Asn	Ala	Asn 1635	Val	Gln	Glu
Leu	Glu 1640	Arg	Ile	Gly	Trp	Pro 1645		Ala	Pro	Ile	Leu 1650	Ile	Gln	Asp
Phe	Glu 1655	Thr	Leu	Pro	Arg	Glu 1660		Pro	Asp	Leu	Val 1665	Leu	Gln	Arg
Суз	Cys 1670		Gly	Glu	Gly	Leu 1675		Ile	Pro	Thr	Leu 1680	Ser	Pro	Ala
Pro	Asp 1685	Суз	Ser	Gln	Pro		Asp	Val	Ile	Leu		Leu	Asp	Gly
Ser	Ser 1700	Ser	Phe				Tyr					-	Ser	Phe
Ala	Lys 1715	Ala	Phe				Ala					Arg	Leu	Thr
Gln	Val 1730	Ser	Val	Leu	Gln		Gly	Ser	Ile	Thr		Ile	Asp	Val
Pro	1730 Trp 1745	Asn	Val	Val	Pro		Lys	Ala	His	Leu		Ser	Leu	Val
Asp	Val	Met	Gln	Arg	Glu	Gly	Gly	Pro	Ser	Gln	Ile	Gly	Asp	Ala
Leu	1760 Gly		Ala	Val	Arg	-	Leu	Thr	Ser	Glu		His	Gly	Ala
Arg	1775 Pro	Gly	Ala	Ser	Lys		Val	Val	Ile	Leu		Thr	Asp	Val
Ser	1790 Val	_	Ser	Val	Asp		Ala	Ala	Asp	Ala			Ser	Asn
	1805					1810					1815			

-continued

Arg	Val 1820	Thr	Val	Phe	Pro	Ile 1825	Gly	Ile	Gly	Asp	Arg 1830	Tyr	Asp	Ala
Ala	Gln 1835	Leu	Arg	Ile	Leu	Ala 1840	Gly	Pro	Ala	Gly	Asp 1845	Ser	Asn	Val
Val	Lys 1850	Leu	Gln	Arg	Ile	Glu 1855	Asp	Leu	Pro	Thr	Met 1860	Val	Thr	Leu
Gly	Asn 1865	Ser	Phe	Leu	His	Lys 1870	Leu	Сув	Ser	Gly	Phe 1875	Val	Arg	Ile
Сүз	Met 1880	Asp	Glu	Asp	Gly	Asn 1885	Glu	Lys	Arg	Pro	Gly 1890	Asp	Val	Trp
Thr	Leu 1895	Pro	Asp	Gln	Сув	His 1900	Thr	Val	Thr	Сүз	Gln 1905	Pro	Asp	Gly
Gln	Thr 1910	Leu	Leu	Lys	Ser	His 1915	Arg	Val	Asn	Сүз	Asp 1920	Arg	Gly	Leu
Arg	Pro 1925	Ser	Суз	Pro	Asn	Ser 1930	Gln	Ser	Pro	Val	Lys 1935	Val	Glu	Glu
Thr	Cys 1940	Gly	Суз	Arg	Trp	Thr 1945	Суз	Pro	Суз	Val	Cys 1950	Thr	Gly	Ser
Ser	Thr 1955	Arg	His	Ile	Val	Thr 1960	Phe	Asp	Gly	Gln	Asn 1965	Phe	Lys	Leu
Thr	Gly 1970	Ser	Суз	Ser	Tyr	Val 1975	Leu	Phe	Gln	Asn	Lys 1980	Glu	Gln	Asp
Leu	Glu 1985	Val	Ile	Leu	His	Asn 1990	Gly	Ala	Суз	Ser	Pro 1995	Gly	Ala	Arg
Gln	Gly 2000	Сүз	Met	Lys	Ser	Ile 2005	Glu	Val	Lys	His	Ser 2010	Ala	Leu	Ser
Val	Glu 2015	Leu	His	Ser	Asp	Met 2020	Glu	Val	Thr	Val	Asn 2025	Gly	Arg	Leu
Val	Ser 2030	Val	Pro	Tyr	Val	Gly 2035	Gly	Asn	Met	Glu	Val 2040	Asn	Val	Tyr
Gly	Ala 2045	Ile	Met	His	Glu	Val 2050	Arg	Phe	Asn	His	Leu 2055	Gly	His	Ile
Phe	Thr 2060	Phe	Thr	Pro	Gln	Asn 2065	Asn	Glu	Phe	Gln	Leu 2070	Gln	Leu	Ser
Pro	Lys 2075	Thr	Phe	Ala	Ser	Lys 2080	Thr	Tyr	Gly	Leu	Суя 2085	Gly	Ile	Сүз
Asp	Glu 2090	Asn	Gly	Ala	Asn	Asp 2095	Phe	Met	Leu	Arg	Asp 2100	Gly	Thr	Val
Thr	Thr 2105	Asp	Trp	Lys	Thr	Leu 2110	Val	Gln	Glu	Trp	Thr 2115	Val	Gln	Arg
Pro	Gly 2120	Gln	Thr	Сүз	Gln	Pro 2125	Ile	Leu	Glu	Glu	Gln 2130	Сүз	Leu	Val
Pro	Asp 2135	Ser	Ser	His	Суз	Gln 2140	Val	Leu	Leu	Leu	Pro 2145	Leu	Phe	Ala
Glu	Cys 2150	His	ГЛа	Val	Leu	Ala 2155	Pro	Ala	Thr	Phe	Tyr 2160	Ala	Ile	Сүз
Gln	Gln 2165	Asp	Ser	Суз	His	Gln 2170	Glu	Gln	Val	Сүз	Glu 2175	Val	Ile	Ala
Ser	Tyr 2180	Ala	His	Leu	Cys	Arg 2185	Thr	Asn	Gly	Val	Cys 2190	Val	Asp	Trp

-continued

											- COI	<u>ntir</u>	iuec	1	
Arg	Thr 2195	Pro	Asp	Phe	Суз	Ala 2200		Ser	Суз	Pro	Pro 2205	Ser	Leu	Val	
Tyr	Asn 2210		Суз	Glu	His	Gly 2215	-		Arg		Cys 2220	Asp	Gly	Asn	
Val	Ser 2225			Gly		His 2230		Ser	Glu	Gly	Cys 2235	Phe	Cya	Pro	
Pro	Asp 2240		Val	Met	Leu	Glu 2245					Pro 2250	Glu	Glu	Ala	
Суз	Thr 2255			Ile		Glu 2260					His 2265	Gln	Phe	Leu	
Glu	Ala 2270			Pro	Asp	His 2275		Pro		Gln	Ile 2280	Сүз	Thr	СЛа	
Leu	Ser 2285			Lys		Asn 2290					Pro 2295	Cys	Pro	Thr	
Ala	Lys 2300		Pro	Thr	Суз	Gly 2305				Val	Ala 2310	Arg	Leu	Arg	
Gln	Asn 2315			Gln		Cys 2320				Glu		Val	Cys	Asp	
Pro	Val 2330			Asp		Pro 2335					-	Glu	Arg	Gly	
Leu	Gln 2345		Thr	Leu	Thr	Asn 2350		Gly		-	Arg 2355	Pro	Asn	Phe	
Thr	Cys 2360					Glu 2365					Val 2370	Ser	Pro	Pro	
Ser	Cys 2375					Leu 2380						Thr	Gln	Сүз	
Сүз	Asp 2390			Glu		Ala 2395					Asn 2400	Ser	Thr	Val	
Ser	Cys 2405			Gly		Leu 2410					Thr 2415	Asn	Asp	СЛа	
Gly	Сув 2420		Thr	Thr	Thr	Сув 2425						Суз	Val	His	
Arg	Ser 2435					Val 2440					Glu 2445	Glu	Gly	Сүз	
Aap	Val 2450	Сүв		Сув		Asp 2455		Glu			Val 2460	Met	Gly	Leu	
Arg	Val 2465		Gln	Сув	Ser	Gln 2470	Lys	Pro	Сув	Glu	Asp 2475	Ser	Суз	Arg	
Ser	Gly 2480		Thr	Tyr	Val	Leu 2485		Glu	Gly	Glu	Cys 2490	Суз	Gly	Arg	
Суз	Leu 2495		Ser	Ala	Суз	Glu 2500		Val	Thr	Gly	Ser 2505	Pro	Arg	Gly	
Asp	Ser 2510		Ser	Ser	Trp	Lys 2515		Val	Gly	Ser	Gln 2520	Trp	Ala	Ser	
Pro	Glu 2525	Asn	Pro	Суз	Leu	Ile 2530		Glu	Суз	Val	Arg 2535	Val	Lys	Glu	
Glu	Val 2540	Phe	Ile	Gln	Gln	Arg 2545		Val	Ser	Суз	Pro 2550	Gln	Leu	Glu	
Val	Pro 2555		Суа	Pro	Ser	Gly 2560	Phe	Gln	Leu	Ser	Cys 2565	Гла	Thr	Ser	
Ala	Cys	Сүз	Pro	Ser	Суз	Arg	Cys	Glu	Arg	Met	Glu	Ala	Суз	Met	

-continued

											- COI	ntir	nue	11
	2570					2575					2580			
Leu	Asn 2585	Gly	Thr	Val	Ile	Gly 2590		Gly	Lys	Thr	Val 2595	Met	Ile	Asp
Val	Cys 2600	Thr	Thr	Cys	Arg	Суя 2605		Val	Gln	Val	Gly 2610	Val	Ile	Ser
Gly	Phe 2615	Lys	Leu	Glu	Cys	Arg 2620		Thr	Thr	Cys	Asn 2625	Pro	Сүз	Pro
Leu	Gly 2630	Tyr	Lys	Glu	Glu	Asn 2635		Thr	Gly	Glu	Cys 2640	Суа	Gly	Arg
Cya	Leu 2645	Pro	Thr	Ala	Суз	Thr 2650		Gln	Leu	Arg	Gly 2655	Gly	Gln	Ile
Met	Thr 2660	Leu	Lys	Arg	Asp	Glu 2665		Leu	Gln	Asp	Gly 2670		Asp	Thr
His	Phe 2675	СЛа	Lys	Val	Asn	Glu 2680	-	Gly	Glu	Tyr	Phe 2685	-	Glu	Гүз
Arg	Val 2690	Thr	Gly	Суз	Pro	Pro 2695		Asp	Glu	His	Lys 2700	-	Leu	Ala
Glu	Gly 2705	Gly	Lys	Ile	Met	Lys 2710		Pro	Gly	Thr	Cys 2715	-	Asp	Thr
Суз	Glu 2720	Glu	Pro	Glu	Cys	Asn 2725	_	Ile	Thr	Ala	Arg 2730	Leu	Gln	Tyr
Val	Lys 2735	Val	Gly	Ser	Cys	Lys 2740		Glu	Val	Glu	Val 2745	-	Ile	His
Tyr	Cys 2750	Gln	Gly	Lys	Cys	Ala 2755		Lys	Ala	Met	Tyr 2760	Ser	Ile	Asp
Ile	Asn 2765	Asp	Val	Gln	Asp	Gln 2770	-	Ser	Суз	Суз	Ser 2775	Pro	Thr	Arg
Thr	Glu 2780	Pro	Met	Gln	Val	Ala 2785		His	Суз	Thr	Asn 2790	Gly	Ser	Val
Val	Tyr 2795	His	Glu	Val	Leu	Asn 2800		Met	Glu	Cys	Lys 2805		Ser	Pro
Arg	Lys 2810	Суз	Ser	Lys										
<211 <212 <213	0> SE(1> LEN 2> TYH 3> OR(0> SE(GTH PE: I SANI:	: 892 DNA SM: 1	23 Homo	sap:	iens								
agct	tcacaç	gc t	attg	tggt	a aa	aaagg	gag (ggtg	gttg	gt g	gatgt	caca	gcti	tgggci
tato	ctccc	cc a	gcag	tggg	g ac	tccac	agc (ccct	gggci	ta c	ataac	agca	aga	cagtco
gago	ctgta	gc a	gacc	tgat	t ga	gcctt	tgc a	agca	gctga	ag a	gcatg	gcct	agg	gtggg
gcad	ccatto	gt c	cage	aget	g ag	tttcc	cag g	ggaco	sttg	ga g	atage	cgca	gcc	ctcat
				-			-	-			gaccti		-	
											ttgct			
											ccacg			
											acagci cgatti			
Jugi	- cace		-990	999	3 90	- good					-9400	y	999,	

	-continued	
_ gaatggcaag agagtgagcc tctccgtgta tct	tggggaa ttttttgaca tccatttgtt	600
tgtcaatggt accgtgacac aggggggacca aag	jagtetee atgeeetatg eeteeaaagg	660
gctgtatcta gaaactgagg ctgggtacta caa	agetgtee ggtgaggeet atggetttgt	720
ggccaggatc gatggcagcg gcaactttca agt	cctgctg tcagacagat acttcaacaa	780
gacctgcggg ctgtgtggca actttaacat ctt	tgctgaa gatgacttta tgacccaaga	840
agggacettg aceteggace ettatgaett tge	ccaactca tgggctctga gcagtggaga	900
acagtggtgt gaacgggcat ctcctcccag cag	geteatge aacateteet etggggaaat	960
gcagaagggc ctgtgggagc agtgccagct tct	gaagagc acctcggtgt ttgcccgctg	1020
ccaccetetg gtggaceeeg ageettttgt gge	cctgtgt gagaagactt tgtgtgagtg	1080
tgctggggggg ctggagtgcg cctgccctgc cct	cetggag taegeeegga eetgtgeeea	1140
ggagggaatg gtgctgtacg gctggaccga cca	acagegeg tgeageeeag tgtgeeetge	1200
tggtatggag tataggcagt gtgtgtcccc ttg	gegeeagg acetgeeaga geetgeacat	1260
caatgaaatg tgtcaggagc gatgcgtgga tgg	getgeage tgeeetgagg gaeageteet	1320
ggatgaagge etetgegtgg agageaeega gte	steerige gigeatieeg gaaagegeta	1380
ccctcccggc acctccctct ctcgagactg caa	acacctgc atttgccgaa acagccagtg	1440
gatetgeage aatgaagaat gteeagggga gte	geettgte actggteaat eecaetteaa	1500
gagetttgae aacagataet teacetteag tge	gatetge cagtacetge tggeeeggga	1560
ttgccaggac cactccttct ccattgtcat tga	agactgtc cagtgtgctg atgaccgcga	1620
cgctgtgtgc accogctoog teacogtoog get	geetgge etgeacaaca geettgtgaa	1680
actgaagcat ggggcaggag ttgccatgga tgg	gecaggae atceagetee eesteetgaa	1740
aggtgacete egeateeage atacagtgae gge	ceteegtg egeeteaget aeggggagga	1800
cctgcagatg gactgggatg gccgcgggag gct	gctggtg aagctgtccc ccgtctacgc	1860
cgggaagacc tgcggcctgt gtgggaatta caa	atggcaac cagggcgacg actteettac	1920
cccctctggg ctggcagagc cccgggtgga gga	actteggg aaegeetgga agetgeaegg	1980
ggactgccag gacctgcaga agcagcacag cga	atecetge geceteaace egegeatgae	2040
caggttetee gaggaggegt gegeggteet gae	gtccccc acattcgagg cctgccatcg	2100
tgeegteage eegetgeeet acetgeggaa ete	geegetae gaegtgtget eetgetegga	2160
cggccgcgag tgcctgtgcg gcgccctggc cac	gctatgcc gcggcctgcg cggggagagg	2220
cgtgcgcgtc gcgtggcgcg agccaggccg ctc	ytgagctg aactgcccga aaggccaggt	2280
gtacctgcag tgcgggaccc cctgcaacct gac	cctgccgc tctctctt acccggatga	2340
ggaatgcaat gaggcctgcc tggagggctg ctt	ctgcccc ccagggctct acatggatga	2400
gagggggggac tgcgtgccca aggcccagtg ccc	cctgttac tatgacggtg agatcttcca	2460
gccagaagac atcttctcag accatcacac cat	gtgctac tgtgaggatg gcttcatgca	2520
ctgtaccatg agtggagtcc ccggaagctt gct	geetgae getgteetea geagteeeet	2580
gteteatege ageaaaagga geetateetg tee	gececce atggtcaage tggtgtgtee	2640
cgctgacaac ctgcgggctg aagggctcga gtg	ytaccaaa acgtgccaga actatgacct	2700
ggagtgcatg agcatgggct gtgtctctgg ctg	geetetge eeccegggea tggteeggea	2760
tgagaacaga tgtgtggccc tggaaaggtg tcc	cctgcttc catcagggca aggagtatgc	2820

		-continue	ed	
ccctggagaa acagtgaaga	ttggctgcaa cacttgtgtc	tgtcgggacc gg	gaagtggaa	2880
ctgcacagac catgtgtgtg	atgccacgtg ctccacgatc	ggcatggccc ac	ctacctcac	2940
cttcgacggg ctcaaatacc	tgttccccgg ggagtgccag	tacgttctgg tg	gcaggatta	3000
ctgcggcagt aaccctggga	cctttcggat cctagtgggg	aataagggat go	cagccaccc	3060
ctcagtgaaa tgcaagaaac	gggtcaccat cctggtggag	ı ggaggagaga tt	tgagctgtt	3120
tgacggggag gtgaatgtga	agaggcccat gaaggatgag	actcactttg ag	ggtggtgga	3180
gtctggccgg tacatcattc	tgctgctggg caaagccctc	teegtggtet gg	ggaccgcca	3240
cctgagcatc tccgtggtcc	tgaagcagac ataccaggag	ı aaagtgtgtg go	cctgtgtgg	3300
gaattttgat ggcatccaga	acaatgacct caccagcagc	aacctccaag tg	ggaggaaga	3360
ccctgtggac tttgggaact	cctggaaagt gagctcgcag	tgtgctgaca co	cagaaaagt	3420
gcctctggac tcatcccctg	ccacctgcca taacaacatc	atgaagcaga cg	gatggtgga	3480
tteeteetgt agaateetta	ccagtgacgt cttccaggac	tgcaacaagc tg	ggtggaccc	3540
cgagccatat ctggatgtct	gcatttacga cacctgctcc	tgtgagtcca tt	tggggactg	3600
cgcctgcttc tgcgacacca	ttgctgccta tgcccacgtg	tgtgcccagc at	tggcaaggt	3660
ggtgacctgg aggacggcca	cattgtgccc ccagagctgc	gaggagagga at	teteeggga	3720
gaacgggtat gagtgtgagt	ggcgctataa cagctgtgca	cctgcctgtc aa	agtcacgtg	3780
tcagcaccct gagccactgg	cctgccctgt gcagtgtgtg	gagggetgee at	tgcccactg	3840
ccctccaggg aaaatcctgg	atgagetttt geagaeetge	gttgaccctg aa	agactgtcc	3900
agtgtgtgag gtggctggcc	ggcgttttgc ctcaggaaag	aaagtcacct tg	gaatcccag	3960
tgaccctgag cactgccaga	tttgccactg tgatgttgtc	aacctcacct gt	tgaagcctg	4020
ccaggagccg ggaggcctgg	tggtgcctcc cacagatgcc	ccggtgagee ee	caccactct	4080
gtatgtggag gacatctcgg	aaccgccgtt gcacgatttc	tactgcagca gg	gctactgga	4140
cctggtcttc ctgctggatg	gctcctccag gctgtccgag	gctgagtttg aa	agtgctgaa	4200
ggcctttgtg gtggacatga	tggagcggct gcgcatctcc	cagaagtggg to	ccgcgtggc	4260
cgtggtggag taccacgacg	gctcccacgc ctacatcggg	r ctcaaggacc gg	gaagcgacc	4320
gtcagagctg cggcgcattg	ccagccaggt gaagtatgcg	ggcagccagg tg	ggcctccac	4380
cagcgaggtc ttgaaataca	cactgttcca aatcttcagc	aagatcgacc go	ccctgaagc	4440
ctcccgcatc gccctgctcc	tgatggccag ccaggagccc	caacggatgt co	ccggaactt	4500
tgtccgctac gtccagggcc	tgaagaagaa gaaggtcatt	gtgatcccgg tg	gggcattgg	4560
gccccatgcc aacctcaagc	agatccgcct catcgagaag	caggcccctg ag	gaacaaggc	4620
cttcgtgctg agcagtgtgg	atgagctgga gcagcaaagg	gacgagatcg tt	tagctacct	4680
ctgtgacctt gcccctgaag	cccctcctcc tactctgccc	ccccacatgg ca	acaagtcac	4740
tgtgggcccg gggctcttgg	gggtttcgac cctggggccc	aagaggaact co	catggttct	4800
ggatgtggcg ttcgtcctgg	aaggatcgga caaaattggt	gaagccgact to	caacaggag	4860
caaggagttc atggaggagg	tgattcagcg gatggatgtg	ggccaggaca gc	catecaegt	4920
cacggtgctg cagtactcct	acatggtgac cgtggagtac	ccetteageg ag	ggcacagtc	4980
caaaggggac atcctgcagc	gggtgcgaga gatccgctac	cagggcggca ac	caggaccaa	5040
cactgggetg geeetgeggt	acctctctga ccacagcttc	ttggtcagcc ag	gggtgaccg	5100

gagacagegececaacceqtetacagegicacegopaatcecagoteqgagacteqcategopategegacteqcacegopaatcecaacgeqgegacteqgegacteqcategopategegacteqcacegopatececaatgeqgegacteqcategopatececaatgeqgegacteqcategopatececaatgeqgegacteqcategopategegacteqcategopategegacteqcategopategegacteqcategopatececaatgeqgegacteqcategopatecategopategegacteqcategopategegacteqcategopategegacteq <th< th=""><th></th><th></th><th>-continued</th><th></th></th<>			-continued	
sayactaya agattaya agattaya agattaya catabata acatagat tagaaqat (220) caccaqaaga gattaya tayaqata catagata acataga agattaya agattaya agattaya tagattaya gattaya catagataya catagataya agagtaya (220) tagattaya gattaya agattaya gagtaya (220) catabasa gaattaya gagaaga (220) catabasa gagatta (230) catabasa gaattaya gagaaga (220) catabasa gagatta (230) catabasa gagattaya (230) catabasa gagataya (230) catabasa (230) catabasa gagataya (230) catabasa (230) catabasa gagataya (230) catabasa (230) c	ggagcaggcg cccaacctgg	tctacatggt caccggaaat	cctgcctctg atgagatcaa	5160
by b	gaggctgcct ggagacatcc	aggtggtgcc cattggagtg	ggccctaatg ccaacgtgca	5220
secanosti tecetiqee etgantigen eegeneen setting angelates tetterega 5400 tiggeteete ngetteeng ettetti tigtanang angelettig eegagetig setteeneen setting angeletti tigtanang angelettig eegagetig setteeneen setting angelettig eegeneen setting angelettig eegagetig setteeneen setting angeletti eegeneen setting angelettig eegagetig setteeneen setting angeletti eegeneeneeneeneeneeneeneeneeneeneeneenee	ggagctggag aggattggct	ggcccaatgc ccctatcctc	atccaggact ttgagacgct	5280
tggtctctc agtttccag tttttt tgatgaafg aggtttg caaggtt 540 cattcacac atgacgtg catggaagg ggtccgga saggccat gggggggt 550 catcaccac atgacgtg catggaagg ggtccgga gaggcca aggcgggt 550 tgggacgt atgcagogg aggggggc cagcaat gggggggt tggggggg 570 catcaccac atgacgtg catggaagg ggtccgga gagccaa aggcgggg 570 catcaccac atgacgtg catggaagg ggtccgg ggggctca aggcgggg 570 catcatgg aggcggg agggggg gggggg gggggg ggggggg gggggg	cccccgagag gctcctgacc	tggtgctgca gaggtgctgc	tccggagagg ggctgcagat	5340
CattCaaa gocaatatag gocactget cactcaggt tagtgetge agtegtaga CattCacaa gocaatatag gocactget cagcaaat ggggageta figeaggg tgggaget atgagggg agggagget cagcaggg ggggetca aggegggg catcacga atgaggg agggagget cagcagg ggggetca aggegggg catcatget aggaggt tigetgggat ggggggg catcatggt acggagtet tigetggat ggggggg catcatgg cagggggg ggaateaa aggegtgg cocaggtag 5700 catcatggt acggaggt ggaateaa aggeggg gggetcaa aggeggtgg 5700 catcatggt acggaggt ggaateaa aggeggg ggggetca aggegggg 5700 catcatggt acggaggt ggaateaa aggeggt gcocagga begaatge cocaggtag 5700 catcatggt aggecagga ggaateaa aggegg aggettgg cocaggag bega attggagg ggacaggg ggaateaa aggegg gaateaa aggeggt gg cattgag ggaaggag ggaateaa aggegag acget agga cotagaga bega aggaggagg ggacagga ggaateaa aggegagg acget agga cotagagg cocagsgeca acegtaat gccaacega tggcagae tugcagag taggagg be caatgga cagggget ggacatga ggcacaga tggcagae tugcagag taggagg catggagg tgatgggg aggettegt gecaaceg tugcagag tagtcagg be caatgga caggggat ggacage tuggaggta tuctca catgegg agcattgg be caatggag tgatgggg ggaaggta tucta getgatgg agcatcag be caatggag tgatgggg tgaaggga aggetgg aggettega accatggga catggaggt tagagga tugaggga aggetgg aggetgg agcattgg be caatggagg tgatgggg tgaaggga aggetgg gaagacag accatgg agcatggg catggaagt aggggagg tgatggg gaaggag tuctaa getgagg agcatgga be cattgaa tuctaca aaaaatg agtcacag aggagaga agattea actggga aggegagg aggetgg aggegga aggetgg agacagt ggatgag agatgga be by thaa aggtagg agacgtga by tgatggg ba aggag tgatgga agatgga be by thaa aggtagg agacgta by tgatggag agatgga by to tug to caa agatg be aaattea ba acataga gt to caa agaca ggaggag tuctag agacagt by agagaga be by thaa aggt be by tgatgga by tgatgga by the by by by caatggag by agaggag ba agatgga by tgatgga by agacagga by tgatgga by caatggag by agagga by agagga by tgatgga by by by by by thaa by	ccccaccctc tcccctgcac	ctgactgcag ccagcccctg	gacgtgatcc ttctcctgga	5400
actaceaca atgaqqqq atgqqqq atgqqqqq ggqccaq aqqcaatt tqctqqqct 5580 tgtgqqqqt atgqqqqq ggqqqqc aqqcaate ggqqqqq caqctqtq cqqqqqqt 5700 catcetggt acgqqta tgqqqqq gqqqtca qaqqqqq caqctqtq cqcaqctqq 5820 gatttgqa ggccaqaa gqqatca ctgqqqta gacqctqaa tcqaqqaa tcqaqqaa 5800 catcetggt acqqtatt ctgtqqatt agtgqqatqa ctcqqcqaa tcqaqqaac 5880 catcaqaqt gacqaqaq gqqatcaa cqtgqtqaa ctcqqqaa tcqaqqaa 5800 catcaqaqt gacqaqaq gqqatcaa cqtgqtqaa ctcqqqaa tcqaqqaa 5800 catcaqaqt gacqaqaq gqqatcaa cqtgqtqaa tcqaqqqa gtcqattqaa 5800 catcaqaqt gacqaqaq gqaatcaa cqtgqtqaa tcqaqqaa tcqaqqaa 5800 catacqaq ggccaqaa gqaattqaa gaqgccqgg gacgtctgaa cttqaqqa 6000 caatqqaa cqqgqqat gccatcaa cqtgqtqaa tqtqatqaa gtcatcqqga 6100 caatqqaa cqqgqqat gccaqcaq tgcaqaqa tgqccqqa tgatqaa gtcatcqqg aqaqtqaa cqqgqqa ggacttqaa gaqgccqga cqtqctqa caagtqaa 6120 caatqqaa cqqgqqat gccaqcaq gqactqaa tgqcaqat cqaagqact taatqqaa 6120 caatqqaa cqqgqqa ggactqaa gqcatcqaa tgqccqaa agtcactq taatqqaa 6120 caatqqaa cqqqqqa gqaqqq gaqqaqg qaqqcqa qacqtqaa qacqtqqa 6200 caatqqqaa tqqqqqa gqaqqq gqaqqq qaqqaa gqcqctqa aqctqqaa agccqqa 6300 aagqaactg gaqqqaa tqqaqqg qaaqqaa gqqqact gactctaa gcctqqqaa 6420 catqqqaa tqqaqqaa tqqqqq gaqqaa gqqqqqa tqcqtcaat gacqqqaa agcqqqq agaqtqaa 6420 catqqqaa aqqqaa tqqqqq gaqqq gaaqacag gactctag caqqqaa agqcqqa agaqtqaa 6420 catqqqaa qqqaaq tgqqqq tqqaqg tqaaqqqa acqqqqaa aqcqqqaa aqqqqqaa aqqqqqaa aqqqqqaa aqqqqaa aqqqqaa aqqqqqaa aqqqqaa aqqqqqaa aqqqqaa aqqqqaa aqqqqaa aqqqqaa aqqqaa aqqqaa aqqqqaa aqqqqaa aqqqqaa aqqqqaa aqqqqaa tqatqqaa aqqqaa aqqqaa aqqqaa aqqqaa aqqqaa aqqqaa tqatqqaa aqqaa aqqqaa aqqqaa atqqatqa tqatqqaa aqqqaa aqqqaa aqqqaa aqqqaa tqatqqaa aqqaa aqqatqqaa aqqqaa aqqqaa aqqqaa aqqqaa aqqqaa atqqaqaa tqatqqaa aqqatqaa aqqatqaa aqqatqqaa aqqatqaa aqqatqaa aqqatqaa aqqatqaa aqqatqaa aqqatqaa aqqtqaa aqqatqaa aqqatqaa aqqqaa aqqqaa aqqtqtqa aqqatqaa aqqatqaa aqqtqtqaa aqqatqaa aqqatqaa aqqatqaa aqqatqaa aqqatqaa aqqatqaa aqqatqaa aqqatqaa aqqatqaa aqqatqa aqqatqaa aqqatqa aqqatqaa aqqatqa aqqatqaa aqqatqaa aqqatq	tggeteetee agttteeeag	cttcttattt tgatgaaatg	aagagtttcg ccaaggcttt	5460
tytgyagete atgoagegy aggagece eagecaate ggyagetet taggetytte 5640 tytgyagete atgoagegy aggageter egecagee ggageteta aggegytyte 5760 cateetige aegecagea gegeteea egygyatege tagategea georegage 5760 cateetige aegecagea gegeteea egygyaaeg eteesagae eegaagete 5760 cateetige aggeeteea egygyatege tagategea georegaa tegaageet 5800 coetareatig georegea gegeteea egygyaaeg eteesaga eegaagete 5800 coetareatig georegea gegeteea egygyagae etegaagee gaagetegga etegaageet 5800 coetareatig georegea gegeeteea egygygaaeg etegaag eetegaa etegaageet 5800 coetareatig georegea gegeeteea egygygaage etegaag eetegaa etegaageet 5800 coetareatig georegea gegeeteea egygygaage etegaag eetegaa etegaageet 5800 coetareatig georegea gegeeteea egygg gaegetegga eettegaa georegea 6000 coateggae egygygetig ggeeteege eetaaege egytege aeageeget eetegeag 6100 caateggae egyggyetig ggeeteege eetaaege egytegetege eetegeag 6100 caateggae egyggyetig ggeeteege eetegeg egytegeteg eeteege georeggage 6100 caateggae tigaaggae gegagetge tigaaggeage egetegea georeggage 6100 caateggaa etigagge tigaatgag egetagege gagetetee ategetige ageetegea eeteges 6100 caateggae tigaatgag tigaatgag egetage georetege ageetegea eeteggage 6100 caateggaa eggagetage tigaaggae aetiggete egeteega georeggaa 6420 categgaage tagaagtaag tigaatgaga etigatete georeage eeteges 6400 categtae tigaatgae gigaegae tigategga etigatga aeeggagee ageetegaa etiggetige 6400 categteaa aeegttatig geocatea geatgage gaacaeagt geagetagea etigategaa 6400 categteaa gedatege egecaaete gaagaacaagt georeage eigaegtega 6400 categteaa georeagee egecaaete gaagaacaagt georagaat ageetegaa 6700 categteag geocaaete eetaaetgi tigetagate egaacaege tigeteega 6700 categteag geocaetee eetaett tigetgaage tigeteega eggeteega eigaetegga 6400 caeatetea georeadee eacaete gigeteede tigetgaag agegategi tigeteega 6700 caeatetea georeadee eetaette gedeeaea georege eigaetegga 6400 caeatetea georeadee eetaete gedeeaea georege eigaetegga 6400 caeatetea georeade eetaetet gedeeaea tigeteega gigeadegi gigeteee	catttcaaaa gccaatatag	ggcctcgtct cactcaggtg	tcagtgctgc agtatggaag	5520
tatgegatat tigarttaag aaatgeatgg tgecaageeg gaageeteaa aggegatgat 5700 caacagagtg acagtgtte etgtagatte agtggatgea geagetgatg eegecaagtaeg 5700 caacagagtg acagtgtte etgtagat eggaagteg taegaageag eecagetaeg 520 gatettggea ggeecageag gegaeteeaa eggaggateg taegaagaeet 5800 coetacoatg geocaecag gegaeteeaa eggaggaeg etggaag eecagetaeg 5940 gatttgeat gatgaggatg ggaatgagaa gaggeeegg gaegtetgga eetgeeaga efgaagaeet 5800 coetacoatg geocaecag gegeeteegt geocagee tigetggaa getgeegg eetgeeg 6000 ceagtgeea acegtgaett geeageeag eggeeteegg eetgege eetgeeggeegg 6000 caactgtgae eggggeetg ggaeeteegt geeetaacag eageteetg taaagtgga 6120 agagaeetg geetgeeet ggaeetgee etgegetge acaggeaget eeaeteggea 6180 categtgae titgatggg aggeettegg geetgeeg eagetgeeg acegtgeeg 6300 aaaggeagge tgeatgaat eeaegagg gaegteet ggeetgee aggeegge 6300 aaaggeagge tgeatgaat eeaegagg gaagtead geeeteeg eeggeegge 6300 aaaggeagge tgeatgaat eeaegagg gaagtaeag geeetegge 6300 catetgaa aegtttag gtgeeatea geatggeeg agatteat acttggtea 6400 catetteaa titeaeteea aaaacaatg gteeaaetg eagetaege eeaagteete 6540 tgettoaaa aegttag gtgeeatea geaggagee tgetaggee agatteat 6600 geegeaegg eggeeage eggeeateet ggaggaege tgetagga gaagtgeg 660 geegeaegg eggeeage ageeateet ggaggaega tgetagaa ggaeagte 660 geegeaegg eggeeage ageeateet ggaggaega tgetagea gaeeagte 670 caaetteea titeaeteea aaacaatg gteeeaeg agaageae tgetagee 670 caaetteea geeaette geaggaega tgetagea gageaegg fgaageag 690 tittetget atgeeaete gegageea eggeeagg egaeagteg 690 tittetget atgeeaeg tgegeeae tgeggeeae caeeagge 6900 tittetget atgeeaeg tgegeeea tgeggeeae tgeeeagg gageaeetg 700 ceeteeaga aagteeag tgegeeea tgeggeeae tgeeeagg 700 ceeteeaga aagteeag tgegeeea tgeggeeae tgeeeagg 700 ceeteeaga aagteeag tgegeeea tgeggeeea geeetgeeg 700 ceeteeaga aagteeag tgeggeeea tgeggeeea geeetgeeg 700 ceeteeaga aagteeag tgeggeeeg tgeggeeea eggeeegg 200 ceeteeaga aagteeag tgeggeeeg tgeggeeea eggeeegg 200 ceeteeaga gaegeeag tgeggeeeg tgeggeegg 200 ceeteeaga gaegeeag tgeggeeeg tgeggeeee tgegeeegg 700 ceeteeaga aagteeag tgegeeeg tgeggeeeg egge	catcaccacc attgacgtgc	catggaacgt ggtcccggag	aaagcccatt tgctgagcct	5580
catoctigti a oggacgiti citgigaiti agtigatgaa geactigti coccactada caacagagi acagtitico cittiggaat tigaqatoo tacagtoga cocactado gattitgaa geocarcag gegatteaa etiggaqategi tacagtogaa tegaagaeet gattigaa gi caetitigi geaatteett oeteeaaaa etigipeteti gattigtaa gattigaat gatagagat gegatteaa etigipeteti gattigtaa gattigaat gatagagat gegatteaa etigipeteti gattigtaa gagaeetig geocarcag geocarcaga tegacagae tigetigaa etigeeaga etigeeaga eaegigeeaa acegtgaett geocageeag tegeeagae tigetigaa geteteegig aagagaeetig gootgeoon ggaceteee etigetigipe acageeage ecactogeaa alagagaegig tigetigee agaetteaa getgaetige agatteeta tigteetat e240 teaaaacaag gageaggae tigaggaga acegtgaga acectore taageeage aaggeagge tigetigaat ceacagaga gacetee etigetigipe acageeage gootee gaageeae aaggaagaetig agagtaegi tigaaggaga acegtgee geeetie ageegigga aaggeagge tigetigaat ceacegaga gacetee etigetigipe agatteaat getoetegi gegegigga aaggeagge tigetigaat ceacegaga gacetaegi geeetie aggeegige aaggeagge tigetigaat eetigaggag acegtore gi geetigetige agatteaate acetiggaa aaggeagge tigetigaat gegetiget gategaga etigetiget agateaate acetiggea aaggaagga gegacgge tigaatgaga etigtigetige agateaate acetiggea tigeticaaa teactee aaaacaatga getecaacti getigetigee ceagaagtee figetigaagga gegacegige ageeetaeti gegagagea tigetigee ceagaagtee fieldi gegeeaggg agacegige ageeetaeti gegagagea tigetigee ceaaagtee fieldi gegeeaggg agaeetae ageeageet tegeaacae gageagetig tigaagtaga gi gedeetagg gedeetee ageeageeti tegeaacae qaeetagaa agaeetaga fieldi acaetteeta geeeteeti dicaacteet tigeeeeaa gaeetae tigeaageagige gi aagaeetig gageaegi tigaagea tigeetaeae acaetgaageetigea fieldi aceatteeta geeeteeti geagaeet tigeeaecaa gaeetagea tigeatgea fieldi aceatteeta geeeteeti geegaeea tigeeteetig tigaaetga agaeetiga fieldi ceategeea gateeteeti tigeaacae egegietige digaeetige fieldi aagaegaeetig agageeagi tegaateetig tigeaeteeti gaagaegee fieldi ceategeeag gageaegi tigaaeteetig tiggaeetig tigaeetiga aceacaegi ageeticee fieldi aceateeti geeeaeeti tigegaeeagi tegegieee tiggeeeaegi agee	tgtggacgtc atgcagcggg	agggaggccc cagccaaatc	ggggatgcct tgggctttgc	5640
acacagagig acagigtic c'tattiggaat iggagatog 'acquicing accagictaog 5820 gatottiggo goccagoa gogactocae ogiggigaag otocaogoga togaagaoot 5880 occatactaig gtocacting goaattoot concorana otiggotogg acquicing gattigtag gattigoat gogogotig gogactocae otigogigaag cattigaga gicatogigg 6000 occapingoda acongigatt gocagoda tigoogagaoo tigotgaaga ottogogig aqagacotig gogocigo gigactocigo cigotgiga agotociga catocoigo 6180 occapingoda acongigat gogactoci cigotgiga agotgitoti atgicotat 6240 tocaatigtiga gagagaga gagattoa gengatiga gocotocig togagotiga 6300 aaggocagga tigotagga tigaaggagi gaaggaga coctocig togagatiga 6300 aaggocagga tigotagga tigotagaga tococagi gocotocig togagotiga 6300 aaggocagga tigotagaa tocatogagi gaacaagi gocotocig togagotiga 6300 aaggocagga tigotagaa tocatogagi gaagacagi gocotocig togagotiga 6420 cattigaa acgittatig gigocacto gocagaga atggitot gitocitae acongigaga 6420 cattigaa acgittatig gigocacto gocagaac tigotagagi agotgitad actorigaa 6600 goggocaggi ogacagica cacacagadi gaacaadi gocacacig cagagotiga 6600 goggocaggi cagacgito agocacacto gigagagaa tigotaga agogagoca atgactiga 6600 goggocaggi cogacagica cacacagadi gaaaacati gitocagaa tigocacaga 6700 cacattota gocacotot taccactig tigotgaag tigotaga gacacagi gigocaceiga 6600 goggocaggi cocaccic tigogagaa tigocacagi gagacacagi gigocaceiga 6600 goggocaggi cocaccic tigogagaa tigocacagi gigocaceiga Gigotoci 6720 cacatgocag gococactot taccactig tigotgaag tigotaga gacacotig 6700 cacattota gocacotot taccactig tigotgaaca cacagagot gigacagotig 6900 tittotigoti atgocacei cacacaga tigocacagi gagacagi gigagaga atgorigi 6900 tittotigi atgocaci tigogacaa cigaggaca tigogaga tigotiga 6600 coggocatig gatogadi tigoacaca cigaggoca togocacagi cigotoci 6700 cacattota tigocacatot gigagacae tigogaaca tigocacagi agotgitot 6900 tittotiga agocacit tigagaaga cigagaga citigoga cicicoga agotgitot 6900 cicicocaat aagotagi tigocacato cicigagag tigotgiga cicicoga atgorigi 6900 catatgaga agatogi tigoacaa cicicogag cigatoci gicicocagi 7020 cocaccaata aagotagi tigoacaati cotogaago tigo	tgtgcgatac ttgacttcag	aaatgcatgg tgccaggccg	ggagcctcaa aggcggtggt	5700
Batchige: geoceageag gegeateceae egiggitaga etceagegaa tegaagaeet 5880 Batchige: geoceageag gegeateceae egiggitaga exigencegig gaattettat Solo Constructing generation generation entropy of the set	cateetggte acggaegtet	ctgtggattc agtggatgca	gcagctgatg ccgccaggtc	5760
coctaccatg glocacttgg goaattoott octocacaa otgtgototg gattigtag 5940 gattigotag gatgagatg ggaatgaga gagocoggg gaogtotgga octigocaga 6000 coagtgoca acogtgact gocagoaga tggocagac tigotgaag gloateggga 6120 aagagacotg ggotgogg ggactgoco cigogtgig acagogaga ocacoggga 6120 aagagacotg ggotgogg ggactgoco cigogtgig acagogagat ocacogga 6180 catogtgac titgatggga gaattoaa gotgactgg acgotgott atagtoga 6120 aagagacotg ggotgogg ggactgoco cigogtgig acagocago cactogoga 6180 catogtgac tigatggga gaattoaa gotgactgg acgotgott atgotcata 6240 teaaaaaag gacgaggac tggaggtga totocataa ggocotog ggotgotga 6300 aaggaaggat gadgagac tggaggga actgotoc gtocotog tgaggtgga 6420 catggaad ta gattgag gaagaag gaagaag goottogg ggotgotga 6420 catggaad ta catcgagg gaagaag goottocag tggggggaa 6420 catggaag gaggaga tgataggg actgotgot gattaata acettggta 6420 catggaag gaggaga ggocaga ggotgat gatgagga acggotaca tgattaat acettggta 6420 catggaagg ggaagaag tgataggg actgagga acggotag cagotagac 6660 gegocagg cagagtac accacgact gaagaaga tgotaga aggagaca tgattaat 6600 gegogagg goaagtgo agacagt gootacac gaagagac atgattaa 6660 gegocagg cagagtac accacgact gaagaaca tgotagga tgotgotaga 6720 cacatgoca gocotoct taccactg tgogaga tgotaga gagaagat fgotaga 6790 cacattota gootactoc gaagagaa ttgotaga gagaacat ggotagtga 6700 cacatcta gootactoc gagagaa tgotacac gaggacag tgotaga 6900 tttotgto agacaga tgogaca ggogtotg gttaatga gagaacatg 6900 tttotgto agacaga tgogaca tgotgoca cacagga ggaaacatga 6900 tttotgtag gatgaag tggaaga tggotaga cacacaga ggotgttog 700 cacatcaa aagtcatg tggaagaa tggotaca cactgaag atggetgto 7020 cactocaa aagtcatg tggaagaa tggotaca cactgaag atggetgto 7020 cactocaa aagtcatg tggaagaa tggotaga tgotocag agaccaag 7020 cactocaa aagtcatg tggagga agacaag tggaacaa tgaacaac 7100 cacaggaa agtcaag tggoctga gaagaca tgacaaga agaccaag 7260 cacatgaa gotagtag cacacag gtggotaga agaccaag 7260 cacatgaa gotagtag 7220	caacagagtg acagtgttcc	ctattggaat tggagatcgc	tacgatgcag cccagctacg	5820
gattgaatg gagagatg gaatgaga gagaccag gacgtag gacgtaga cattgacaga food caatgtgaa cagggactg gacatgaa tgagacaga tgagacagt caaggagat caatgagag gattgaa ggagacatg gacatgaa tagacaga caggagaa caatgagaga faatagaga gagaacatg ggaggaga gaattaaa gatgagaga caaggagaat caatgagaga faatagagaga catagtgaa fatgaggaa gaattaaa gatgagaga acaggagaat caatgagaga faataga gagaacatg gacgagaa tagaggaga totocaaa ggagagaa gacgagaga gacgagaga caaggaagaa gagaggaga gaattaaa gatgaaga gaccag gaccaga gaccagaga gacatgagaga caaggaagatg gaaggaga tagaggaga totocaaa ggagacag gaccatag gagagagaa aaggaagga gagagaa caaggagga gaagaaag gaccag gaccaaga gaccaga gaattaa caaggaagat gaagtagag gaagaaga gaagaaa gagaacaa gaccaga gaattaata acattggaga faa gagaacatg gagagaga tggaggaga tagatgaga aaggagaca atgaattaa faattaa acattag gtacaacaa gaacaac gaagagaca atgaattaa faattaa tacatcaa aaaaaaga gtacaacg gagagaca tggatgaa gagacagg caaagtag caagaaga tggtatga aaggagaca atgaattaa faattaa tacatcaa aaaaaaga gtacaacg gagagaca tggatgaa gagacagg caaagtaa caacaaga gtacaaca gaaggagaa tggatgaa gagacagg caaagtaa caacagaa gtacaacaa gaacaat gtacaaca caagatta faa gacgacagg caaagtaa caacaaga gtacaacaa gagagaaga tggatgaa gagacagg caaagtaa caacagaa gtacaacaa gagagaaga tggatgaa gagacagg caaagtaa caacagaa ttacaacaaga gtacaacaaga gaaaaat gacaagga faa gagacagg caacatca gaagagaa tggacaag tgaaaaat ggaaagaa tggatgaa caatgacag gtacaacta tacaacaga gtacaacaa gagaaagga tggaagaca gaaaadag gacaagta caacaaga gtacaacaa gagaaagga tggaagaa gagacatta gaaaaaga gtagagaa tggacaaca gagaaagga tggaaaacaa gacaattaa gacaatega gaagaaa tggacaaca caaggaa aggaacaatga gaaaaaatga gaaaaaa caacaa gagaaaaa gagaaaaaaaaaa	gatettggea ggeecageag	gcgactccaa cgtggtgaag	ctccagcgaa tcgaagacct	5880
ccagtgocac accgtgact gccagcaga tggccagac ttgctgagac ttgctagaga gtcatcgggt 6060 caactgtgac cgggggctga ggccttogg cctaacage cagtocctg ttaaagtgga 6120 aggagactgt ggctgocget ggacetgee etggagtge acaggcaget ecaeteggaa 6180 catcgtgae tttgatggge agaatteaa getgaetgge agetgtett atgteetatt 6240 teaaaacaag gagcaggae tggaggtgat tetecataat ggtgoetgea geeetggage 6300 aaggcagge tgcatgaat ecaetgaggt gaageacagt geeeteeteeteeteeteeteeteeteeteeteeteetee	ccctaccatg gtcaccttgg	gcaatteett eeteeaaaa	ctgtgctctg gatttgttag	5940
caactgtgac cgggggctga ggocttogtg coctaacagc cagtococtg ttaaagtgga 6120 agagacctgt ggotgocgot ggacotgoco ctoogtgtga acaggoaget coactoggaa 6180 catogtgace ttigatggge agaatteaa getgactgge aceggeaget coactoggea 6300 aaggeaggge tgoatgaat coacagagg gaageacagt gocottoog togagetgea 6300 cadggaagte acegttatg gtgocacat coactagagg gaageacagt gocottoog togagetgea 6420 catggaagte acegttatg gtgocacat goatgggea actggteet gttoetta coettggtea 6480 catottoaca ttoactocae aaaacaatga gttocaactg cagetcage coagaaett 6540 tgottoaca ttoactocae aaaacaatga gttocaactg cagetcage coagaaett 6540 tgottoaaag acgtatggte tgtggggat etgtgatgag aceggagaga atggateate acettggtea 6660 geggacaggg cagaegtge agocateet goagaggag tgetetteet gtoetgage 6720 coactgocag gtoeteet taccaetgt tgotagag tgatagag aggagaga tggatege 6780 cacatteat gocaacte gagagaag ttgoeacag gagaaggte ggagagag 6440 cacatteta gecaacteg cageaggae tgotgaeag gagaaaggg gagaaaaggg gagaacaetg 6900 tttetgget atgtoage tgogacag tgoggaea tggetee ggagagae 6990 tttetggga aggagaag tggagaag tggtgtoet gagetggae 6900 coctacagat aaagteatg tggaacag tggggeea coegaaggee gagetgge 6900 ctttetgga aggagade tggagaeag tggggaea tocectegaag gacaagtg 7020 coctocagat aaagteatg tggaaggea ctgtgteet gaagaggee tgoetteeg 7020 coctocagat aaagteatg tggaagge ctgtgteee gaagaggee fgoetteeg 7020 cactaggaa gaggagate aaagtagt etgegaage tggateceg 7200 cattggtagg gatggagte agecegge gaaggeea tggeteeg 7200 cattggtagg gatggagte tgegeetg tggageg gaaggee tgeeteega 7200 cattggtaga gatggagte tgegeetg tgaagtea tgeeteg agaecega 7200 caceggeaaa geteceeg tgggeeegg gaaggtea tgeeteega agaecega 7200 caeeggeaaa geteceegg tgggeetg tgaagtea tgeecega agaecega 7200	gatttgcatg gatgaggatg	ggaatgagaa gaggcccggg	gacgtctgga ccttgccaga	6000
aggagacctg ggetgeeget ggacctgee etgegtge acaggeaget ecceptgage file aggagacctg ggetgeeget ggacttee etgegtge acaggeaget contents for teaaaacaag gageaggae tgegggg acattee getgegetge gaageacagt geeetgeg geetggege aaggeaggge tgeatgaat ecategagg gaageacagt geeettee gggetgega file categgaagt acattetat getgeettee getteet atgeteette file categgaagt acattetat getgeetteet getgegetgea file categgaagte acagttetat getgeetteet getteette geggetgea file catetteaca tteacteea aaaacaatga gtteeaactg eagetegee coagaaette file getgaaggae ggeetgeet gaageacet gegggegae atggetet gteetteet file getgaaggae ggeetgeet gegagetge gaaacaet gteetgagag acaggteet gegaetgea file getgaaggae ggeetgeet gegeetteet gegaggee atggeteet gegeetgee geggeetagg gegeetgee acaeagaetg gaaaacaett gteetgagae atggetgee gegeetagg teeteette taecaetget gaggagae tgeettegee cogaeagette file geetgaegge gegaeggee ageeetteet gegaggae tgeettegee cogaeagete file geetgeetagg teeteette taecaetget tgetgaage cacaaggtee tgegeteeage file acaettett geeeactet geegageea tgeeeacae gaggaeae tggeaeaetga file file titetgete atgeeacet geggeeea acgeggeet geggeeeag acaecega file geegeeatg gatggeaaeg tgegeeed tegggaeea teeesga geeetteg file caecaetge gatggeaaeg tgegeeed tegggaeea ceesgag geeetteg file file ceeceetge gatggeaaeg tgegeeeg tegggaeea teeesgag geeetteg file file ceeceetge gatggeaaeg tgegeeeg saaggeee gaeeeeg file ceetgeaatg agatggaag edgageee deggeeeeg acaecege file ceetgeaatg agatggagee ageaceetge tegggaeeae tgeaeceeg file ceetgeaaag geeege gaaggeee gaaggeee geeeteeg file caacggeaaa geteecaegt gegeeeg gaaggee geeeteeg agaageea file caacggeaaa geteecaegt gegeetge gaaggeee geeeteeg file caacggeaaa geteecaeg gegeetge gaaggee geeeteeg agaaggea file caacggeaaa geteecaeg gegeetge gaaggee geeeteeg agaaggea file caacggeaaa geteecaeg gegeetge gaaggeee geeeteeg agaaggea file caacgeeaaa geteecaeg gegeetge gaaggeee geeeteeg agaageeag acceecaeg file caacgeeaaa geteecaeg gegeetge gaaggeee geeeteecea gaaatgeag file caacgeeaa geteecaeg gegeetge gaaggeee geeetee	ccagtgccac accgtgactt	gccagccaga tggccagacc	ttgctgaaga gtcatcgggt	6060
categggaee tigatggge agaatteaa getgaetgge agetgteet atgeeetgage 6300 aaggeaggge tgeatgaaat eeategaggt gaageaeagt geeeteegg eggeggggag 6300 cagtggaegt tgeatgaaat eeategggg gaageaeagt geeeteegg eggeggggag 6420 catggaagte aaegttatg gtgeeteet getgetete gteettaeg tgggggggaa 6420 categgaagte acegttatg gtgeeteet getgeteet geteettaeg tgggtgggaa 6420 categgaagte acegttatg gtgeeteet getgetete geteettaeg tegggtgggaa 6420 categgaagte acegttatg gtgeeteet getgeteet geteettaeg tegggtgggaa 6420 categgaagte acegttatg teggtgggga etggteete gateetaate acettggtea 6480 catetteaea tecaeteea aaaacaatga gteetaaetg eagetegge egaetegae 6600 getgaaggga ggeeaggee ageeeateet ggaggagga tegtettgee eeagaetee 6600 getgaeggg eagaeggee ageeeateet ggaggageag tgtettgee eegaetege 6780 caeatteat geeeteet taeeategt tgetgaag eegagaegg tgtettgee tggeggegga 6780 caeatteat geeeateg eggegaeag ttgeeaeag gageaagtg tgtaggggat 6840 cgeetetta geeeateg eggegeeag eggeeteet gggggaeeat eeeteggag efgeetteg 7020 ceeeteegga tagteage tagedeete tgggggaeeat eeeteggag etggetegg aggeeaeteg 7080 ceeeteegga tagteage tggaegeag tgggteeteet gaagaggee geeeteegg 7080 caettgggag gatggagte ageeeagt eeggggeeg egggeeegg aceaceage 7140 etgteegate tgeeaeage teggegge gaagteaae tgeaeaaege ageeetgee 7200 caeeggeeaa geteeege teggeggeg gaagteaae tgeaeaaege ageeetgee 7200 caeeggeeaa geteeege teggeggeg gaagteaee tgeaeaaege ageeetgee 7200 caeeggeeaa geteeege teggeggeg gaagteaae tgeaeaaege ageeetgee 7200	caactgtgac cggggggctga	ggccttcgtg ccctaacagc	cagtcccctg ttaaagtgga	6120
tcaaacaag gagcaggacc tggaggtgat tctccaata ggtgcctgca gccctggagc 6300 aaggcaggg tgcatgaaat ccatcgaggt gaagcacagt gccctctcg tcgagctgca 6360 cagtggacatg gaggtgacgg tgaatgggga actggtctct gttccttacg tgggtgggaa 6420 catggaagte acgtttatg gtgccatcat gcatgaggte agattcaate acettggtea 6480 catcttcaca ttcaetecae aaacaatga gttccaaetg cagetcagee ccaagaettt 6540 tgetteaaag acgtatggte tgtgtgggat etgtgatgag aaeggageca atgaetteat 6600 geggacaggg eagaegtgee ageceateet ggaggageag tgtetgtee cegaeagete 6720 ceaetgecag gteeteete taecaetgt tgeetgaatge cacaaggete tggeteegge 6780 cacattetat geeateete gteggaceaa eggggteeg gtgaeaggte ggaeaagtgt gtgaggtgat 6840 cgeeteetta geeateete ggaggacag ttgeeacae ggteggag aggeacaetg 6900 tttetgtget atgteatge caceaetet ggtgggacae ceeteggag aggeaggte 6900 tttetgtget atgteatge caceaetet gggggaceat ceeteggag gageacetg 6960 ceeggeaetg gatgaeag tggaeteet tgetggggacea ceeteggag gageateetgg 7020 ceetecaga aagteatgt tggaaggeag etgtgteete gaaggageet geaeteagg 7020 ceetecaga aagteatgt tggaaggeag etgtgteete gaaggagee tgeetecage 7140 cattggtag gatgagtee ageaceagt cetggaagee tgeeteegg acceacege 7200 caeeggeeaa geteceaegt gtggeetgg tgaagtage cgeeteege ageaetge 7200 caeeggeeaa geteceaegt gtggeetgg tgaagtage cgeeteege ageetgeeg 7200	agagacctgt ggctgccgct	ggacctgccc ctgcgtgtgc	acaggcagct ccactcggca	6180
aaggcaggg tgcatgaaa ccatcgagt gaagcacgt gccctccg tcgagctgca 6360 cagtgaatg gaggtgacg tgaatgggag actggtct gttcttacg tggggggaa 6420 catggaagte aacgtttatg gtgccatcat gcatgaggte agatteaate acettggtea 6480 catetteaca tteaeteeae aaaacaatga gtteeaaetg cageteage ecaagaett 6540 tgettaaag acgtatggte tgtggggat etgtgatgag aacggaggea atgaetgaa 6660 geggecaggg cagaegtge ageceatet ggaggageag tgtettgee egaacage 6720 ecaetgecag gteeteet taceaetgt tgetgaaga ecaaggte tggetege 6780 caatatet geeatege ageaggaeg ttgeeaeag gageaagtg gtgaggtgat 6840 eceetetta geeatetge ageaggaeg ttgeeaeag gageaagtg ggagaeet tggetgag 6900 tttetgget atgteatge caecatet gggggaeea eceetegag ggaaceetga 6900 eceetegeag gaggagaeg tggetetg tggggaeea ceetegaag geetgttee 7020 ceeteeteg agaggaeg tggetetg tggggaeea eceetegaa ggetgttee 7020 eceetegea gageagg egagetee ageetege ggggaeea eceetegaa ggeetgttee 7020 eceetegaa aagteatg tggageeg tggggaeea eceetegaa ggeetgttee 7020 eceetegaa aagteatg tggaggeeg tggggaeea eceetegaa geetgttee 7020 eceteeta ageagaeg tgggeteet ggggaeee eceetegaa geetgttee 7020 eceteeta aagteatg tggaaggeag etgtgeee gaagaggee gaeetega 7140 ecgteetaa egeaetege tegeggeeg gaaggteaa tgeetege ageaetega 7260 eaeggeeaaa geteecaeg gtggeettg tgaagtage cgeeteece agaatgeag 7260	catcgtgacc tttgatgggc	agaatttcaa gctgactggc	agctgttctt atgtcctatt	6240
cagtgacatg gaggtgacgg tgaatgggag actggtetet gtteettacg tgggtgggaa 6420 catggaagte aacgtttatg gtgeeateat geatgaggte agatteaate acettggtea 6480 catetteaea tteaeteea aaaacaatga gtteeaaetg cageteagee ceaagaettt 6540 tgetteaaag aegtatggte tgtgtgggat etgtgatgag aaeggageea atgaetteat 6600 geggeeaggg eagaegtgee ageeeatee ggaggageag tgtettgtee eegaeagee 6780 caeatetta geeateete taeeaetgt tgetgagateg eacaaggtee tggeteeage 6780 caeatetta geeateete gtegggaeaa egggtetge gttgaetgga ggaeaeetga 6840 eegeetetta geeateete gteggaeeaa eggggtetge gttgaetgga ggaeaeetga 6900 tttetgtget atgeeateet gteggaeeaa eggggtetge gttgaetgga gageaeetga 6900 tttetgtget atgeeateet ggeggeeaa eegggtetge gttgaetgga gaegetgtee 6960 eeggeaetgt gatggeaaeg tggeetete ggeggaeeat eeeteegag getgtteteg 7020 eeeteeta gaeggaeg tggeeteet gteggaeeaa eeetee gaagaggeet geaeteagg 7080 eattggtgag gatggagtee ageeeagt eeetggaagee tggeteegg aceaecagee 7140 etgteagate tgeeatgee teageggge gaaggteae tgeeeega aceeeage 7200 eeeggeeaaa geteeeagt gtggeetgt tgaeeggg agetgtgeee agaatgeag 7260 eeeggeeaaa geteeeagt gtggeetgt tgaeeeagt ageetgtgaee tgeeeeaga 7320	tcaaaacaag gagcaggacc	tggaggtgat tctccataat	ggtgcctgca gccctggagc	6300
catggaagte aaegttatg gtgecateat geatgaggte agatteaate acettggtea 6480 catetteaea tteaeteeaa aaaeaatga gtteeaaetg eageteagee eeaagaett 6540 tgetteaaag aegtatggte tgtgtgggat etgtgatgag aaeggageea atgaetteat 6600 getgagggat ggeacagtea eeaeagaetg gaaaaeett gtteaggaat ggaetgtgea 6660 geggeeaggg eagaeegtgee ageeeatee ggaggageag tgtettgtee eegaeagee 6780 eeaetgeeag gteeteete taeeaetgt tgeegaatge eaeaaggtee tggeteeage 6780 eeaetteta geeateete gteggaeeaa eggggtetge gtgaetgga ggaeaetga 6840 eegeetetta geeaeete gteggaeeaa eggggtetge gtgaetgga ggaeaeetga 6900 tttetgtget atgteatgee eaeeateet ggtggaeea eeeetegaag geegetgee 6960 eeggeeaetgt gatgeaaeg tggeteetg tggggaeeat eeeeegag geegttetg 7020 eeeeteeaga aaagteatgt tggaaggeag etgtgteeet gaagaggee geesteagg 7080 eaettggtag gatggagte ageeeagt eetggaeee tggeteegg aceaeeage 7140 etgteagate tgeeaetge tegggeetgg tgaagtee eggeteegg aceaeeage 7200 eeeggeeaaa geteeeaegt gtggeetgt tgaagtage egeeteegg aceaeeage 7200 eaetggeaa geteeeaegt gtggeetgt tgaagtage egeeteegg aceaeeage 7200 eaetggeaaa geteeeaegt gtggeetgt tgaagtage egeeteegg aceaeeage 7200 eaetggeeaaa geteeeaegt gtggeetgt tgaagtagee egeeteegg aceaeeage 7200 eaetggeeaaa geteeeaegt gtggeetgt tgaagtagee egeeteegg aceaeeage 7200	aaggcagggc tgcatgaaat	ccatcgaggt gaagcacagt	geceteteeg tegagetgea	6360
catetteaca tteaeteeaa aaacaatga gtteeaaetg eageteagee eeaagaette 6540 tgetteaaag aegtatggte tgtgtgggat etgtgatgag aaeggageea atgaetteat 6600 getgagggat ggeacagtea eeaeagaetg gaaaacaett gtteaggaat ggaetgtgea 6660 geggeeeaggg eagaegtgee ageeeateet ggaggageag tgtettgtee eegaeagete 6720 eeaetgeeag gteeteete taecaetgtt tgetgaatge eacaaggtee tggeteeage 6780 eaeatteeta geeeateet gteggaeeag tgeeeaeg ggaeaagtgt gtgaggtgat 6840 egeetettat geeeaetee gteggaeeaa eggggtetge gttgaetgga ggaeaeetga 6900 tttetgtget atgteatgee eaeeateet ggeggaeeae eaetggage atggetgtee 6960 eeggeeetgt gatgeeaeg tggeeetg tggegaeea eeetggaggee geegtteetg 7020 eeetgeeagat aaagteatgt tggaaggeag etgtgteeet gaagaggeet geeeteagt 7020 eeetteggag gatggagtee ageeeegt etggegaeee tggeteeegg aceeeege 7140 etgteeagate tgeeeatge teagegggeg gaaggteae tgeeeege ageeetgee 7200 eeeggeeeaa geteeeeeg gtggeetgt tgaagtage egeettege 7200 eeeggeeeaa geteeeeeg gtggeetgt tgaagtage egeettege 7200	cagtgacatg gaggtgacgg	tgaatgggag actggtctct	gttccttacg tgggtgggaa	6420
tgetteaaag acgtatggte tgtgtgggat etgtgatgag aaeggageea atgaetteat 6600 getgagggat ggeacagtea eeacagaetg gaaacaett gtteaggaat ggaetgtgea 6660 geggeeaggg eagaegtgee ageeeateet ggaggageag tgtettgtee eegaeagete 6720 eeaetgeeag gteeteett taeeaetgtt tgetgaatge eacaaggtee tggeteeage 6780 eacattetat geeatetgee ageaggaeag ttgeeaceag gageaagtgt gtgaggtgat 6840 eegeetetta geeeaetet gteggaeeaa eggggtetge gttgaetgga ggaeaeetga 6900 ttteetgtget atgeeaege tgggeteetg tggeggaeeat eeeteegag geegetteeg 7020 eeeteegag gatggeaaeg tgggeteetg tggggaeeat eeeteegag geegetteeg 7020 eeeteegag gatggagtee ageaeeagtt eetggaagee tgegteeegg aceaeeage 7140 etgteagate tgeeaetge teageggeeg gaaggteae tgeeaeeage ageeetgee 7200 eaeggeeaaa geteeeaeg gtggeetgt tgaagtagee egeeteegea 7200 eaeggeeaaa geteeeaeg gtggeetgt tgaagtagee ageetgee 7200 eaeggeeaaa geteeeaeg gtggeetgt tgaagtagee 7260	catggaagtc aacgtttatg	gtgccatcat gcatgaggtc	agattcaatc accttggtca	6480
getgagggat ggeacagtea eccacagaetg gaaaacaett gtteaggaat ggaetgtgea 6660 geggeeaggg eagaegtgee ageeeateet ggaggageag tgtettgtee eegaeagete 6720 eeaettgeeag gteeteett taeeaetgtt tgetgaatge eacaaggtee tggeteeage 6780 eaeattetat geeaeeteg ageaggaeag ttgeeaeeag gageaagtgt gtgaggtgat 6840 egeetettat geeaeetet gteggaeeaa eggggtetge gttgaetgga ggaeaeetga 6900 ttteetgtget atgteatgee eaceateet ggeteaeaa eaetgtgage atggetgtee 6960 eeggeaeetg gatggeaaeg tggeteetg tggggaeeat eeeteegaag geegtteetg 7020 eeeteeagaa aaagteatgt tggaaggeag etggtgeeet gaagaggeet geaeteagt 7020 eattggtgag gatggagtee ageaeeagt eetggaeeet gggteeegg aceaeeage 7140 etgteagate tgeaeatgee teageggeg gaaggteaae tgeaeaaege ageeetgeee 7200 eaeggeeaaa geteeeegt gtggeeetgt tgaagtagee egeetegee 7200 eaeggeeaaa geteeeegt gtggeeetgt tgaagtagee geetegee 7200	catcttcaca ttcactccac	aaaacaatga gttccaactg	cageteagee ceaagaettt	6540
<pre>gcggccaggg cagacgtgcc agcccatcct ggaggagcag tgtcttgtcc ccgacagctc 6720 ccactgccag gtcctcctct taccactgtt tgctgaatgc cacaaggtcc tggctccagc 6780 cacattctat gccacctcg agcaggacag ttgccaccag gagcaagtgt gtgaggtgat 6840 cgcctcttat gccacctct gtcggaccaa cggggtctgc gttgactgga ggacacctga 6900 tttctgtgct atgtcatgcc caccatcct ggtctacaac cactgtgagc atggctgtcc 6960 ccggcactgt gatggcaacg tgagctcctg tggggaccat ccctccgaag gctgtttctg 7020 ccctccagat aaagtcatgt tggaaggcag ctgtgtccc gaagaggcct gcactcagtg 7080 cattggtgag gatggagtc agcaccagtt cctggaagcc tgggtcccg accaccagcc 7140 ctgtcagatc tgcacatgc tcagcgggcg gaaggtcaac tgcacaacgc agccctgcc 7200 cacggccaa gctcccagt gtggcctgt tgaagtagc cgcctccgc agaatgcaga 7260 ccagtgctgc cccgagtatg agtgtgtgt tgacccagtg agctgtgacc tgcccccagt 7320</pre>	tgcttcaaag acgtatggtc	tgtgtgggat ctgtgatgag	aacggagcca atgacttcat	6600
ccactgccag gtcctcctct taccactgtt tgctgaatgc cacaaggtcc tggctccagc 6780 cacattctat gccatctgcc agcaggacag ttgccaccag gagcaagtgt gtgaggtgat 6840 cgcctcttat gccacctct gtcggaccaa cggggtctgc gttgactgga ggacacctga 6900 tttctgtgct atgtcatgcc caccatctct ggtctacaac cactgtgagc atggctgtcc 6960 ccggcactgt gatggcaacg tgagctcctg tggggaccat ccctccgaag gctgtttctg 7020 ccctccagat aaagtcatgt tggaaggcag ctgtgtccct gaagaggcct gcactcagtg 7080 cattggtgag gatggagtcc agcaccagtt cctggaagcc tgggtcccgg accaccagcc 7140 ctgtcagatc tgcacatgcc tcagcgggcg gaaggtcaac tgcaccaacg agccctgcc 7200 cacggccaaa gctcccacgt gtggcctgtg tgaagtagcc cgcctccgc agaatgcaga 7260 ccagtgctgc cccgagtatg agtgtgtgtg tgacccagtg agctgtgacc tgcccccagt 7320	gctgagggat ggcacagtca	ccacagactg gaaaacactt	gttcaggaat ggactgtgca	6660
cacattetatgecatetgeeageaggacagttgecaceaggagcaagtgtgtgaggtgat6840cgeetettatgeceacetetgteggaceaaeggggtetgegttgaetggaggacacetga6900tttetgtgetatgteatgeecaceatetetggtetacaaeeaetgtgageatggetgtee6960ceggeacetgtgatggeaacgtggggaceatceeteegaaggetgtttetg7020cecteegaataaagteatgttggaaggeagetgtgteeegaagaggeegeacaceage7140ctgteagatetgegeetgeggaaggteagtgeagtagetgeacaage3200caeggeetaageteecaegtgtggeetgtgtgaagtageegeetgeace7260caeggeetgeecegagtatgagtgtgtgtgtgacecagtgagetgtgae7320	gcggccaggg cagacgtgcc	agcccatcct ggaggagcag	tgtcttgtcc ccgacagctc	6720
cgcctcttat gcccacctct gtcggaccaa cggggtctgc gttgactgga ggacacctga 6900 tttctgtgct atgtcatgcc caccatctct ggtctacaac cactgtgagc atggctgtcc 6960 ccggcactgt gatggcaacg tgagctcctg tggggaccat ccctccgaag gctgttctg 7020 ccctccagat aaagtcatgt tggaaggcag ctgtgtccct gaagaggcct gcactcagtg 7080 cattggtgag gatggagtcc agcaccagtt cctggaagcc tgggtcccgg accaccagcc 7140 ctgtcagatc tgcacatgcc tcagcgggcg gaaggtcaac tgcaccacgc agcacctgcc 7200 cacggccaaa gctcccacgt gtggcctgtg tgaagtagcc cgcctccgcc agaatgcaga 7260 ccagtgctgc cccgagtatg agtgtgtgt tgacccagtg agctgtgacc tgcccccagt 7320	ccactgccag gtcctcctct	taccactgtt tgctgaatgc	cacaaggtcc tggctccagc	6780
tttctgtgct atgtcatgcc caccatctt ggtctacaac cactgtgagc atggctgtcc 6960 ccggcactgt gatggcaacg tgagctcctg tggggaccat ccctccgaag gctgttctg 7020 ccctccagat aaagtcatgt tggaaggcag ctgtgtccct gaagagggcct gcactcagtg 7080 cattggtgag gatggagtcc agcaccagtt cctggaagcc tgggtcccgg accaccagcc 7140 ctgtcagatc tgcacatgcc tcagcggggcg gaaggtcaac tgcaccaacgc agccctgccc 7200 cacggccaaa gctcccacgt gtggcctgt tgaagtagcc cgcctccgc agaatgcaga 7260 ccagtgctgc cccgagtatg agtgtgtgtg tgacccagtg agctgtgacc tgcccccagt 7320	cacattctat gccatctgcc	agcaggacag ttgccaccag	gagcaagtgt gtgaggtgat	6840
ccggcactgt gatggcaacg tgagcteetg tggggaceat eeteegaag getgttetg 7020 eeeteegaa aaagteatgt tggaaggeag etgtgteeet gaagaggeet geaeteagtg 7080 eattggtgag gatggagtee ageaceagtt eetggaagee tgggteeegg accaeeagee 7140 etgteagate tgeaeatgee teagegggeg gaaggteaae tgeaeeaege ageeetgeee 7200 eaeggeeaaa geteeeaegt gtggeetgtg tgaagtagee egeeteegee agaatgeaga 7260 eeagtgetge eeegagtatg agtgtgtgt tgaeeeagtg agetgtgaee tgeeeeagt 7320	cgcctcttat gcccacctct	gtcggaccaa cggggtctgc	gttgactgga ggacacctga	6900
ccctccagat aaagtcatgt tggaaggcag ctgtgtccct gaagaggcct gcactcagtg 7080 cattggtgag gatggagtcc agcaccagtt cctggaagcc tgggtcccgg accaccagcc 7140 ctgtcagatc tgcacatgcc tcagcgggcg gaaggtcaac tgcaccacgc agccctgccc 7200 cacgggccaaa gctcccacgt gtggcctgtg tgaagtagcc cgcctccgcc agaatgcaga 7260 ccagtgctgc cccgagtatg agtgtgtgtg tgacccagtg agctgtgacc tgcccccagt 7320	tttctgtgct atgtcatgcc	caccatctct ggtctacaac	cactgtgagc atggctgtcc	6960
cattggtgag gatggagtce ageaceagtt eetggaagee tgggteeegg aceaeeagee 7140 etgteagate tgeaeatgee teagegggeg gaaggteaae tgeaeaaege ageeetgeee 7200 eaegggeeaaa geteeeaegt gtggeetgtg tgaagtagee egeeteegee agaatgeaga 7260 eeagtgetge eeegagtatg agtgtgtgtg tgaeeeagtg agetgtgaee tgeeeeagt 7320	ccggcactgt gatggcaacg	tgagctcctg tggggaccat	ccctccgaag gctgtttctg	7020
ctgtcagate tgeacatgee teagegggeg gaaggteaae tgeacaaege ageeetgeee 7200 caeggeeaaa geteeeaegt gtggeetgtg tgaagtagee egeeteegee agaatgeaga 7260 ceagtgetge eeegagtatg agtgtgtgtg tgaeceagtg agetgtgaee tgeeeeeagt 7320	ccctccagat aaagtcatgt	tggaaggcag ctgtgtccct	gaagaggcct gcactcagtg	7080
cacggecaaa geteecacgt gtggeetgtg tgaagtagee egeeteegee agaatgeaga 7260 ecagtgetge eeegagtatg agtgtgtgtg tgaeecagtg agetgtgaee tgeeeceagt 7320	cattggtgag gatggagtcc	agcaccagtt cctggaagcc	tgggtcccgg accaccagcc	7140
ccagtgctgc cccgagtatg agtgtgtgtg tgacccagtg agctgtgacc tgcccccagt 7320	ctgtcagatc tgcacatgcc	tcagcgggcg gaaggtcaac	tgcacaacgc agccctgccc	7200
	cacggccaaa gctcccacgt	gtggcctgtg tgaagtagcc	cgcctccgcc agaatgcaga	7260
geeteactgt gaaegtggee teeageeeae actgaeeaae eetggegagt geagaeeeaa 7380	ccagtgctgc cccgagtatg	agtgtgtgtg tgacccagtg	agetgtgaee tgeeeceagt	7320
	gcctcactgt gaacgtggcc	tccagcccac actgaccaac	cctggcgagt gcagacccaa	7380

-continued	
cttcacctgc gcctgcagga aggaggagtg caaaagagtg tccccaccct cctgcccccc	7440
gcaccgtttg cccacccttc ggaagaccca gtgctgtgat gagtatgagt gtgcctgcaa	7500
ctgtgtcaac tccacagtga gctgtcccct tgggtacttg gcctcaaccg ccaccaatga	7560
ctgtggctgt accacaacca cctgccttcc cgacaaggtg tgtgtccacc gaagcaccat	7620
ctaccctgtg ggccagttct gggaggaggg ctgcgatgtg tgcacctgca ccgacatgga	7680
ggatgccgtg atgggcctcc gcgtggccca gtgctcccag aagccctgtg aggacagctg	7740
tcggtcgggc ttcacttacg ttctgcatga aggcgagtgc tgtggaaggt gcctgccatc	7800
tgcctgtgag gtggtgactg gctcaccgcg gggggactcc cagtcttcct ggaagagtgt	7860
cggctcccag tgggcctccc cggagaaccc ctgcctcatc aatgagtgtg tccgagtgaa	7920
ggaggaggtc tttatacaac aaaggaacgt ctcctgcccc cagctggagg tccctgtctg	7980
cccctcgggc tttcagctga gctgtaagac ctcagcgtgc tgcccaagct gtcgctgtga	8040
gcgcatggag gcctgcatgc tcaatggcac tgtcattggg cccgggaaga ctgtgatgat	8100
cgatgtgtgc acgacctgcc gctgcatggt gcaggtgggg gtcatctctg gattcaagct	8160
ggagtgcagg aagaccacct gcaacccctg ccccctgggt tacaaggaag aaaataacac	8220
aggtgaatgt tgtgggagat gtttgcctac ggcttgcacc attcagctaa gaggaggaca	8280
gatcatgaca ctgaagcgtg atgagacgct ccaggatggc tgtgatactc acttctgcaa	8340
ggtcaatgag agaggagagt acttctggga gaagagggtc acaggctgcc caccctttga	8400
tgaacacaag tgtctggctg agggaggtaa aattatgaaa attccaggca cctgctgtga	8460
cacatgtgag gageetgagt geaacgaeat caetgeeagg etgeagtatg teaaggtggg	8520
aagetgtaag tetgaagtag aggtggatat eeactaetge cagggeaaat gtgeeageaa	8580
agccatgtac tccattgaca tcaacgatgt gcaggaccag tgctcctgct gctctccgac	8640
acggacggag cccatgcagg tggccctgca ctgcaccaat ggctctgttg tgtaccatga	8700
ggtteteaat gecatggagt geaaatgete eeccaggaag tgeageaagt gaggetgetg	8760
cagetgeatg ggtgeetget getgeetgee ttggeetgat ggeeaggeea	8820
agteetetge atgttetget ettgtgeeet tetgageeea caataaagge tgagetetta	8880
tettgetgea tgttetgete ttgtgeeett etgageeeae aat	8923
<210> SEQ ID NO 8 <211> LENGTH: 2813 <212> TYPE: PRT <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 8	
Met Asn Pro Phe Arg Tyr Glu Ile Cys Leu Leu Val Leu Ala Leu Thr 1 5 10 15	
Trp Pro Gly Thr Leu Cys Thr Glu Lys Pro Arg Asp Arg Pro Ser Thr 20 25 30	
Ala Arg Cys Ser Leu Phe Gly Asp Asp Phe Ile Asn Thr Phe Asp Glu 35 40 45	
Thr Met Tyr Ser Phe Ala Gly Gly Cys Ser Tyr Leu Leu Ala Gly Asp505560	
Cys Gln Lys Arg Ser Phe Ser Ile Leu Gly Asn Phe Gln Asp Gly Lys 65 70 75 80	
Arg Met Ser Leu Ser Val Tyr Leu Gly Glu Phe Phe Asp Ile His Leu	

-continued

											-	con	tin	ued	
				85					90					95	
Phe	Ala	Asn	Gly 100	Thr	Val	Thr	Gln	Gly 105	Asp	Gln	Ser	Ile	Ser 110	Met	Pro
Tyr	Ala	Ser 115	Gln	Gly	Leu	Tyr	Leu 120	Glu	Arg	Glu	Ala	Gly 125	Tyr	Tyr	Lys
Leu	Ser 130	Ser	Glu	Thr	Phe	Gly 135	Phe	Ala	Ala	Arg	Ile 140	Asp	Gly	Asn	Gly
Asn 145	Phe	Gln	Val	Leu	Met 150	Ser	Asp	Arg	His	Phe 155	Asn	Lys	Thr	Суз	Gly 160
Leu	Сув	Gly	Asp	Phe 165	Asn	Ile	Phe	Ala	Glu 170	Asp	Asp	Phe	Arg	Thr 175	Gln
Glu	Gly	Thr	Leu 180	Thr	Ser	Asp	Pro	Tyr 185	Asp	Phe	Ala	Asn	Ser 190	Trp	Ala
Leu	Ser	Ser 195	Glu	Glu	Gln	Arg	Cys 200	Lys	Arg	Ala	Ser	Pro 205	Pro	Ser	Arg
Asn	Cys 210	Glu	Ser	Ser	Ser	Gly 215	Asp	Met	His	Gln	Ala 220	Met	Trp	Glu	Gln
Cys 225	Gln	Leu	Leu	Lys	Thr 230	Ala	Ser	Val	Phe	Ala 235	Arg	Суз	His	Pro	Leu 240
Val	Asp	Pro	Glu	Ser 245	Phe	Val	Ala	Leu	Cys 250	Glu	ГЛа	Ile	Leu	Суз 255	Thr
Суз	Ala	Thr	Gly 260	Pro	Glu	Суз	Ala	Суз 265	Pro	Val	Leu	Leu	Glu 270	Tyr	Ala
Arg	Thr	Cys 275	Ala	Gln	Glu	Gly	Met 280	Val	Leu	Tyr	Gly	Trp 285	Thr	Asp	His
Ser	Ala 290	Суз	Arg	Pro	Ala	Cys 295	Pro	Ala	Gly	Met	Glu 300	Tyr	Lys	Glu	Cya
Val 305	Ser	Pro	Cys	Pro	Arg 310	Thr	Суз	Gln	Ser	Leu 315	Ser	Ile	Asn	Glu	Val 320
Суз	Gln	Gln	Gln	Cys 325	Val	Asp	Gly	Сув	Ser 330	Сув	Pro	Glu	Gly	Glu 335	Leu
Leu	Asp	Glu	Asp 340	Arg	Сүз	Val	Gln	Ser 345	Ser	Asp	Суа	Pro	Суз 350	Val	His
Ala	Gly	Lys 355	Arg	Tyr	Pro	Pro	Gly 360	Thr	Ser	Leu	Ser	Gln 365	Asp	Суз	Asn
Thr	Cys 370		Суз	Arg	Asn	Ser 375		Trp	Ile	Сув	Ser 380		Glu	Glu	Cys
Pro 385		Glu	Cys	Leu	Val 390	Thr	Gly	Gln	Ser	His 395		Lys	Ser	Phe	Asp 400
	Arg	Tyr	Phe	Thr 405		Ser	Gly	Ile	Cys 410		Tyr	Leu	Leu	Ala 415	
Asp	Cys	Glu	Asp 420		Thr	Phe	Ser	Ile 425		Ile	Glu	Thr	Met 430		Cys
Ala	Asp	Asp 435		Asp	Ala	Val	Cys 440		Arg	Ser	Val	Ser 445		Arg	Leu
Ser	Ala 450		His	Asn	Ser	Leu 455		Lys	Leu	Lys	His 460		Gly	Ala	Val
Gly 465		Asp	Gly	Gln	Asp 470	Val	Gln	Leu	Pro	Phe 475		Gln	Gly	Asp	Leu 480
	Ile	Gln	His			Met	Ala	Ser			Leu	Ser	Tyr		
				485					490					495	

Asp	Leu	Gln	Met 500	Asp	Trp	Asp	Gly	Arg 505	Gly	Arg	Leu	Leu	Val 510	Lys	Leu
Ser	Pro	Val 515	Tyr	Ser	Gly	Lys	Thr 520	Cys	Gly	Leu	Сүз	Gly 525	Asn	Tyr	Asn
Gly	Asn 530	Lys	Gly	Asp	Asp	Phe 535	Leu	Thr	Pro	Ala	Gly 540	Leu	Val	Glu	Pro
Leu 545	Val	Val	Asp	Phe	Gly 550	Asn	Ala	Trp	Lys	Leu 555	Gln	Gly	Asp	Сув	Ser 560
Asp	Leu	Arg	Arg	Gln 565	His	Ser	Asp	Pro	Cys 570	Ser	Leu	Asn	Pro	Arg 575	Leu
Thr	Arg	Phe	Ala 580	Glu	Glu	Ala	Суз	Ala 585	Leu	Leu	Thr	Ser	Ser 590	Lys	Phe
Glu	Ala	Cys 595	His	His	Ala	Val	Ser 600	Pro	Leu	Pro	Tyr	Leu 605	Gln	Asn	Сув
Arg	Tyr 610	Asp	Val	Суз	Ser	Cys 615	Ser	Asp	Ser	Arg	Asp 620	Суз	Leu	Суз	Asn
Ala 625	Val	Ala	Asn	Tyr	Ala 630	Ala	Glu	Cys	Ala	Arg 635	Lys	Gly	Val	His	Ile 640
Gly	Trp	Arg	Glu	Pro 645	Gly	Phe	Cys	Ala	Leu 650	Gly	Суз	Pro	Gln	Gly 655	Gln
Val	Tyr	Leu	Gln 660	Cys	Gly	Asn	Ser	Cys 665	Asn	Leu	Thr	Суз	Arg 670	Ser	Leu
Ser	Leu	Pro 675	Asp	Glu	Glu	Сүз	Ser 680	Glu	Val	Cys	Leu	Glu 685	Gly	Cys	Tyr
СЛа	Pro 690	Pro	Gly	Leu	Tyr	Gln 695	Asp	Glu	Arg	Gly	Asp 700	Суз	Val	Pro	Гла
Ala 705	Gln	Cya	Pro	CÀa	Tyr 710	Tyr	Aab	Gly	Glu	Leu 715	Phe	Gln	Pro	Ala	Asp 720
Ile	Phe	Ser	Asp	His 725	His	Thr	Met	Cya	Tyr 730	Суа	Glu	Asp	Gly	Phe 735	Met
His	Cya	Thr	Thr 740	Ser	Gly	Thr	Leu	Gly 745	Ser	Leu	Leu	Pro	Asp 750	Thr	Val
Leu	Ser	Ser 755	Pro	Leu	Ser	His	Arg 760	Ser	Lys	Arg	Ser	Leu 765	Ser	Сув	Arg
Pro	Pro 770	Met	Val	Lys	Leu	Val 775	Суз	Pro	Ala	Asp	Asn 780	Pro	Arg	Ala	Gln
Gly 785	Leu	Glu	Суз	Ala	Lys 790	Thr	Суз	Gln	Asn	Tyr 795	Asp	Leu	Glu	Сув	Met 800
Ser	Leu	Gly	Суз	Val 805	Ser	Gly	Суз	Leu	Cys 810	Pro	Pro	Gly	Met	Val 815	Arg
His	Glu	Asn	Lys 820	Суз	Val	Ala	Leu	Glu 825	Arg	Суз	Pro	Суз	Phe 830	His	Gln
Gly	Ala	Glu 835	Tyr	Ala	Pro	Gly	Asp 840	Thr	Val	Lys	Ile	Gly 845	Суз	Asn	Thr
Суз	Val 850	Суз	Arg	Glu	Arg	Lys 855	Trp	Asn	Суз	Thr	Asn 860	His	Val	Суз	Asp
Ala 865	Thr	Суз	Ser	Ala	Ile 870	Gly	Met	Ala	His	Tyr 875	Leu	Thr	Phe	Asp	Gly 880
Leu	Lys	Tyr	Leu	Phe 885	Pro	Gly	Glu	Cys	Gln 890	Tyr	Val	Leu	Val	Gln 895	Asp

-continued

											- (con	tir	iuec	±	
Tyr	Суз	Gly	Ser 900	Asn	Pro	Gly		Phe (905	Gln I	le 1	Leu	Val	Gly 910		n Glu	
Gly	Суа	Ser 915	Tyr	Pro	Ser		Lys 920	Cys i	Arg I	'Aa j	-	Val 925		r Ile	e Leu	
Val	-	Gly	-	Glu	Leu	Glu 935			Asp C			Val	Asr	n Val	l Lys	
Arg 945		Leu	Arg		Glu 950	Ser	His	Phe (7al 1 955	Val	Glu	Ser	f Gly	y Arg 960	
Tyr	Val	Ile	Leu	Leu 965	Leu	Gly	Gln		Leu S 970	Ser V	Val	Val	Trp	979 979	p His 5	
His	Leu	Ser	Ile 980	Ser	Val	Val		Lys 1 985		hr '	-				n Val	
Суз	Gly	Leu 995	Cys	Gly	Asn		Asp 1000		Ile	Gln		n As 10		/ap I	Phe T	hr
Thr	Ser 1010		Leu	ı Glr	n Val		1 Gl					n 20	Phe	Gly	Asn	
Ser	Trp 1025	Lys			: Ser		n Cy 80					:g)35	Lys	Leu	Ser	
Leu	Asp 1040		Ser	Pro	> Ala		с Су 15					.e)50	Met	Lys	Gln	
Thr	Met 1055		Asp) Ser	: Ala	-	a Ar	<u> </u>		ι Th:		er 065	Asp	Val	Phe	
Gln	Gly 1070	Cys					L As				-	r 80	Leu	Asp	Ile	
Cys	Ile 1085	Tyr					c Cy					-y 95	Asp	Сүз	Ala	
CAa	Phe		Asp) Thr	: Ile		a Al	a Ty:		i Hi:		1 10	Суа	Ala	Gln	
His	Gly 1115	Gln				a Trp		g Th:	r Pro) Th	r Le		Cya	Pro	Gln	
Ser	Cys 1130	Glu			a Asr	n Val		g Gl	u Asr	n Gly	у Ту		Glu	Сув	Glu	
Trp	Arg 1145	Tyr	Asr	n Ser	с Суа		a Pr	o Ala		s Pro	o Va		Thr	Сув	Gln	
His	Pro 1160	Glu					a Pr				s Va		Glu	Gly	Суз	
His	Ala 1175	His	Cys	9 Pro) Pro	o Gly	/ Ar	g Il	e Leu	ı Asj	p Gl		Leu	Leu	Gln	
Thr	Cys 1190	Val	Asp) Pro	Glr	118 n Asp 119	o Cy	s Pro	o Val	. Cy	s Gl		Val	Ala	Gly	
Arg	Arg 1205	Leu	. Ala	a Pro	Gly		s Ly	s Ile	e Thr	: Lei	u Se		Pro	Asp	Asp	
Pro	Ala	His	Суз	g Glr	ı Asr	n Cys	s Hi	s Cy	a Asp	Gly	y Va	ıl	Asn	Leu	Thr	
Cys	1220 Glu	Ala	Суа	s Glr	ı Glu		o Gl	y Gl	y Leu	ı Va	1 A1		Pro	Pro	Thr	
Asp	1235 Ala	Prc	Val	. Ser	: Ser		r Th	r Pro	o Tyr	: Vai	1 G1		Asp	Thr	Pro	
Glu	1250 Pro	Prc	Leu	l His	s Asr		e Ty	r Cy	s Ser	: Ly:	s Le		Leu	Asp	Leu	
Val	1265 Phe		. Leu	ı Asp	Gly	127 / Ser		r Met	t Leu	ı Se:		.u	Ala	Glu	Phe	

-continued

											- COI	ntir	nuec	11
	1280					1285					1290			
Glu	Val 1295		Lys	Ala	Phe	Val 1300		Gly	Met	Met	Glu 1305	Arg	Leu	His
Ile	Ser 1310	Gln	ГЛа	Arg	Ile	Arg 1315		Ala	Val	Val	Glu 1320	Tyr	His	Asp
Gly	Ser 1325		Ala	Tyr		Glu 1330		Lys	Ala	Arg	Lys 1335	Arg	Pro	Ser
Glu	Leu 1340		Arg	Ile	Thr	Ser 1345		Ile	Lys	Tyr	Thr 1350	Gly	Ser	Gln
Val	Ala 1355		Thr	Ser	Glu	Val 1360		Lys	Tyr	Thr	Leu 1365	Phe	Gln	Ile
Phe	Gly 1370		Ile	Asp		Pro 1375		Ala	Ser	His	Ile 1380	Thr	Leu	Leu
Leu	Thr 1385		Ser	Gln	Glu	Pro 1390		Arg	Met	Ala	Arg 1395	Asn	Leu	Val
Arg	Tyr 1400		Gln	Gly	Leu	Lys 1405		Lys	Lys	Val	Ile 1410	Val	Ile	Pro
Val	Gly 1415		Gly	Pro	His	Ala 1420		Leu	Lys	Gln	Ile 1425	Arg	Leu	Ile
Glu	Lys 1430		Ala	Pro	Glu	Asn 1435		Ala	Phe	Leu	Leu 1440	Ser	Gly	Val
Asp	Glu 1445	Leu	Glu	Gln	Arg	Arg 1450		Glu	Ile	Val	Ser 1455	Tyr	Leu	Сүз
Asp	Leu 1460	Ala	Pro	Glu	Ala	Pro 1465		Pro	Thr	Gln	Pro 1470	Pro	Gln	Val
Ala	His 1475	Val	Thr	Val	Ser	Pro 1480	Gly	Ile	Ala	Gly	Ile 1485	Ser	Ser	Pro
Gly	Pro 1490	-	Arg	Lys	Ser	Met 1495		Leu	Asp	Val	Val 1500	Phe	Val	Leu
Glu	Gly 1505		Asp	Glu	Val	Gly 1510	Glu	Ala	Asn	Phe	Asn 1515	Lya	Ser	Lys
Glu	Phe 1520		Glu	Glu	Val	Ile 1525	Gln	Arg	Met	Asp	Val 1530	Ser	Pro	Asp
Ala	Thr 1535	Arg	Ile	Ser	Val	Leu 1540	Gln	Tyr	Ser	Tyr	Thr 1545	Val	Thr	Met
	Tyr 1550		Phe	Asn		Ala 1555		Ser	Lys		Glu 1560		Leu	Arg
		Arg	Glu	Ile			Gln	Gly	Gly		Arg 1575	Thr	Asn	Thr
Gly		Ala	Leu	Gln	Tyr		Ser	Glu	His	Ser	Phe 1590		Pro	Ser
Gln		Asp	Arg	Val	Glu		Pro	Asn	Leu	Val	Tyr 1605	Met	Val	Thr
Gly		Pro	Ala	Ser	Asp		Ile	Lys	Arg	Leu	Pro 1620	Gly	Asp	Ile
Gln		Val	Pro	Ile	Gly		Gly	Pro	His	Ala	Asn 1635	Met	Gln	Glu
Leu	Glu		Ile	Ser	Arg	Pro	Ile	Ala	Pro	Ile	Phe	Ile	Arg	Asp
Phe			Leu	Pro	Arg		Ala	Pro	Asp	Leu	1650 Val	Leu	Gln	Thr
	1655					1660					1665			

-continued

Суа	Cys 1670	Ser	ГЛа	Glu	Gly	Leu 1675	Gln	Leu	Pro	Thr	Leu 1680	Pro	Pro	Leu
Pro	Asp 1685	Суз	Ser	Gln	Pro	Leu 1690	Asp	Val	Val	Leu	Leu 1695	Leu	Asp	Gly
Ser	Ser 1700	Ser	Leu	Pro	Glu	Ser 1705	Ser	Phe	Asp	Lys	Met 1710	Lys	Ser	Phe
Ala	Lys 1715	Ala	Phe	Ile	Ser	Lys 1720	Ala	Asn	Ile	Gly	Pro 1725	His	Leu	Thr
Gln	Val 1730	Ser	Val	Ile	Gln	Tyr 1735	Gly	Ser	Ile	Asn	Thr 1740	Ile	Asp	Val
Pro	Trp 1745	Asn	Val	Val	Gln	Glu 1750	Lys	Ala	His	Leu	Gln 1755	Ser	Leu	Val
Asp	Leu 1760	Met	Gln	Gln	Glu	Gly 1765	Gly	Pro	Ser	Gln	Ile 1770	Gly	Asp	Ala
Leu	Ala 1775	Phe	Ala	Val	Arg	Tyr 1780	Val	Thr	Ser	Gln	Ile 1785	His	Gly	Ala
Arg	Pro 1790	Gly	Ala	Ser	Lys	Ala 1795	Val	Val	Ile	Ile	Ile 1800	Met	Asp	Thr
Ser	Leu 1805	Asp	Pro	Val	Asp	Thr 1810	Ala	Ala	Asp	Ala	Ala 1815	Arg	Ser	Asn
Arg	Val 1820	Ala	Val	Phe	Pro	Val 1825	Gly	Val	Gly	Asp	Arg 1830	Tyr	Asp	Glu
Ala	Gln 1835	Leu	Arg	Ile	Leu	Ala 1840	Gly	Pro	Gly	Ala	Ser 1845	Ser	Asn	Val
Val	Lys 1850	Leu	Gln	Gln	Val	Glu 1855	Aab	Leu	Ser	Thr	Met 1860	Ala	Thr	Leu
Gly	Asn 1865	Ser	Phe	Phe	His	Lys 1870	Leu	Суз	Ser	Gly	Phe 1875	Ser	Gly	Val
Суз	Val 1880	Asp	Glu	Asp	Gly	Asn 1885	Glu	Lys	Arg	Pro	Gly 1890	Asp	Val	Trp
Thr	Leu 1895	Pro	Asp	Gln	Сүз	His 1900	Thr	Val	Thr	Сүз	Leu 1905	Ala	Asn	Gly
Gln	Thr 1910	Leu	Leu	Gln	Ser	His 1915	Arg	Val	Asn	Сув	Asp 1920	His	Gly	Pro
Arg	Pro 1925	Ser	Суз	Ala	Asn	Ser 1930	Gln	Ser	Pro	Val	Arg 1935	Val	Glu	Glu
Thr	Cys 1940	Gly	Сүз	Arg	Trp	Thr 1945	Сүз	Pro	Сув	Val	Cys 1950	Thr	Gly	Ser
Ser	Thr 1955	Arg	His	Ile	Val	Thr 1960	Phe	Asp	Gly	Gln	Asn 1965	Phe	Lys	Leu
Thr	Gly 1970	Ser	Сүз	Ser	Tyr	Val 1975	Ile	Phe	Gln	Asn	Lys 1980	Glu	Gln	Asp
Leu	Glu 1985	Val	Leu	Leu	His	Asn 1990	Gly	Ala	Суз	Ser	Pro 1995	Gly	Ala	Lys
Gln	Ala 2000	Сүз	Met	Lys	Ser	Ile 2005	Glu	Ile	Lys	His	Ala 2010	Gly	Val	Ser
Ala	Glu 2015	Leu	His	Ser	Asn	Met 2020	Glu	Met	Ala	Val	Asp 2025	Gly	Arg	Leu
Val	Leu 2030	Ala	Pro	Tyr	Val	Gly 2035	Glu	Asn	Met	Glu	Val 2040	Ser	Ile	Tyr

-continued

											- COI	ntir	luec	1
Gly	Ala 2045		Met	Tyr	Glu	Val 2050		Phe	Thr	His	Leu 2055	Gly	His	IJ
Leu	Thr 2060	-	Thr	Pro	Gln	Asn 2065		Glu	Phe	Gln	Leu 2070	Gln	Leu	S
Pro	Lys 2075					Lys 2080					Сув 2085	Gly	Ile	Cys
Asp	Glu 2090					Asp 2095					Asp 2100	Gly	Thr	Val
Thr						Leu 2110			Glu		Thr 2115	Val	Gln	Gln
Pro		Tyr	Thr	Cys	Gln	Ala	Val				Gln 2130	СЛа	Pro	Val
Ser	Asp 2135				-	Gln 2140		Leu	Leu	Ser	Ala 2145	Ser	Phe	Ala
Glu	Cys 2150		-			Ala 2155					His 2160	Thr	Ile	Суз
Gln		Asp	Ser	Cys	His	Gln 2170					Glu 2175	Val	Ile	Ala
Ser		Ala	His	Leu	Cys	Arg 2185	Thr	Ser	Gly	Val		Val	Asp	Trp
Arg		Thr	Asp		Cys	Ala	Met		Cys	Pro		Ser	Leu	Val
Tyr		His		Glu		Gly	Cys	Pro	Arg	His		Asp	Gly	Asn
Thr		Phe	Cys	Gly		His 2230	Pro	Ser	Glu	Gly		Phe	Суз	Pro
Gln		Gln				Glu	Gly	Ser	Cys	Val		Glu	Glu	Ala
Cys		Gln				Glu	Asp	Gly	Val	Arg		Gln	Phe	Leu
Glu		Trp	Val	Pro	Asp	His	Gln	Pro	Cys	Gln		Сув	Met	Суз
Leu	Ser	Gly	Arg	Lys	Ile	Asn	Cys	Thr	Ala	Gln	Pro	Суз	Pro	Thr
Ala		Ala				Gly	Pro	Суз	Glu	Val		Arg	Leu	Lys
Gln		Thr	Asn	Leu	Cys	2305 Сув	Pro	Glu				Val	Сув	Asp
Leu		Asn	Суз	Asn	Leu	2320 Pro	Pro	Val	Pro	Pro	-	Glu	Gly	Gly
Leu		Pro	Thr	Leu	Thr	2335 Asn	Pro	Gly	Glu	Суз		Pro	Thr	Phe
Thr	-	Ala	Суз	Arg	Lys	2350 Glu	Glu	Суз	Lys	Arg		Ser	Pro	Pro
Ser		Pro	Pro	His	Arg	2365 Thr	Pro	Thr	Leu	Arg		Thr	Gln	Суз
Cys	2375 Asp		Tyr	Glu	Cys	2380 Ala		Ser	Cys	Val	2385 Asn	Ser	Thr	Leu
	2390					2395 Leu					2400			
	2405			-	-	2410					2415		_	-
өтү	сув	1111	1111	1111	1111	Суз	ьeu	ьт.O	чар	пЛа	va⊥	сув	val	чта

-continued

											- COI	nt i r	nue	1£
	2420					2425					2430			
Arg	Gly 2435	Thr	Val	Tyr	Pro	Val 2440		Gln	Phe	Trp	Glu 2445	Glu	Gly	Сүз
Asp	Thr 2450	Сүз	Thr	Сув	Thr	Asp 2455		Glu	Asp	Thr	Val 2460	Val	Gly	Leu
Arg	Val 2465	Val	Gln	Суз	Ser	Gln 2470	Arg	Pro	Сүз	Glu	Asp 2475	Ser	Сүз	Gln
Pro	Gly 2480	Phe	Ser	Tyr	Val	Leu 2485	His	Glu	Gly	Glu	Cys 2490	Суз	Gly	Arg
Суз	Leu 2495	Pro	Ser	Ala	Сув	Lys 2500	Val	Val	Ala	Gly	Ser 2505	Leu	Arg	Gly
Asp	Ser 2510	His	Ser	Ser	Trp	Lys 2515	Ser	Val	Gly	Ser	Arg 2520	Trp	Ala	Val
Pro	Glu 2525	Asn	Pro	Суз	Leu	Val 2530	Asn	Glu	Суз	Val	Arg 2535	Val	Glu	Asp
Ala	Val 2540	Phe	Val	Gln	Gln	Arg 2545	Asn	Ile	Ser	Суз	Pro 2550	Gln	Leu	Ala
Val	Pro 2555	Thr	Суз	Pro	Thr	Gly 2560	Phe	Gln	Leu	Asn	Сув 2565	Glu	Thr	Ser
Glu	Суз 2570	Сүз	Pro	Ser	Сув	His 2575	-	Glu	Pro	Val	Glu 2580	Ala	Сүз	Leu
Leu	Asn 2585	Gly	Thr	Ile	Ile	Gly 2590	Pro	Gly	Lys	Ser	Val 2595	Met	Val	Asp
Leu	Сув 2600	Thr	Thr	Суз	Arg	Суз 2605	Ile	Val	Gln	Thr	Asp 2610	Ala	Ile	Ser
Arg	Phe 2615	Lys	Leu	Glu	Суа	Arg 2620	Lys	Thr	Thr	Сүз	Glu 2625	Ala	Сүз	Pro
Met	Gly 2630	Tyr	Arg	Glu	Glu	Lys 2635	Ser	Gln	Gly	Glu	Сув 2640	-	Gly	Arg
СЛа	Leu 2645	Pro	Thr	Ala	Суа	Thr 2650	Ile	Gln	Leu	Arg	Gly 2655	Gly	Arg	Ile
Met	Thr 2660	Leu	Lys	Gln	Asp	Glu 2665	Thr	Phe	Gln	Asp	Gly 2670	-	Asp	Ser
His	Leu 2675	Сүз	Arg	Val	Asn	Glu 2680	Arg	Gly	Glu	Tyr	Ile 2685	Trp	Glu	Lys
Arg	Val 2690	Thr	Gly	Суз	Pro	Pro 2695	Phe	Asp	Glu	His	Lys 2700	Суз	Leu	Ala
Glu	Gly 2705	-	Lys	Ile	Val	Lys 2710		Pro	Gly	Thr	Cys 2715		Asp	Thr
Суз	Glu 2720	Glu	Pro	Asp	Суз	Lys 2725		Ile	Thr	Ala	Lys 2730		Gln	Tyr
Ile	Lys 2735	Val	Gly	Asp	Суз	Lys 2740		Gln	Glu	Glu	Val 2745		Ile	His
Tyr	Cys 2750	Gln	Gly	Lys	Суз	Ala 2755		Lys	Ala	Val	Tyr 2760	Ser	Ile	Asp
Ile	Glu 2765	Asp	Val	Gln	Glu	Gln 2770	-	Ser	Сүз	Сүз	Leu 2775	Pro	Ser	Arg
Thr	Glu 2780	Pro	Met	Arg	Val	Pro 2785	Leu	His	Суз	Thr	Asn 2790		Ser	Val
Val	Tyr 2795	His	Glu	Val	Ile	Asn 2800		Met	Gln	Суз	Arg 2805		Ser	Pro

Arg Asn Cys Ser Lys 2810

<210> SEQ ID NO 9 <211> LENGTH: 8537 <212> TYPE: DNA <213> ORGANISM: Mus musculus

<400> SEQUENCE: 9

CHOON REGOL	SINCE: 9					
agtagcggct	gggtttcctc	aagggacctt	ggagatacag	cccctgtttg	tatgggcaag	60
atgaaccctt	tcaggtatga	gatctgcctg	cttgttctgg	ccctcacctg	gccagggacc	120
ctctgcacag	aaaagccccg	tgacaggccg	tcgacggccc	gatgcagcct	ctttgggggac	180
gacttcatca	acacgtttga	tgagaccatg	tacagctttg	caggggggctg	cagttatctc	240
ctggctgggg	actgccagaa	acgttccttc	tccattctcg	ggaacttcca	agatggcaag	300
agaatgagcc	tgtctgtgta	tcttggggag	tttttgaca	tccatttgtt	tgccaatggc	360
accgtaacgc	agggtgacca	aagcatctcc	atgccctacg	cctcccaagg	actctaccta	420
gaacgcgagg	ctgggtacta	taagctctcc	agtgagacct	ttggctttgc	ggccagaatc	480
gatggcaatg	gcaacttcca	agtcctgatg	tcagacagac	acttcaacaa	gacctgtggg	540
ctgtgcggtg	attttaacat	cttcgcggaa	gatgatttta	ggacgcagga	ggggaccttg	600
acctcagacc	cctatgattt	tgccaactcc	tgggccctga	gcagtgagga	acagcggtgt	660
aaacgggcat	ctcctcccag	caggaactgc	gagagctctt	ctggggacat	gcatcaggcc	720
atgtgggagc	aatgccagct	actgaagacg	gcatcggtgt	ttgcccgctg	ccaccctctg	780
gtggatcccg	agtcctttgt	ggctctgtgt	gagaagattt	tgtgtacgtg	tgctacgggg	840
ccagagtgcg	catgtcctgt	actccttgag	tatgcccgaa	cctgcgccca	ggaagggatg	900
gtgctgtacg	gctggactga	ccacagtgcc	tgtcgtccag	cttgcccagc	tggcatggaa	960
tataaggagt	gtgtgtctcc	ttgccccaga	acctgccaga	gcctgtctat	caatgaagtg	1020
tgtcagcagc	aatgtgtaga	cggctgtagc	tgccctgagg	gagagctctt	ggatgaagac	1080
cgatgtgtgc	agagctccga	ctgtccttgc	gtgcacgctg	ggaagcggta	ccctcctggc	1140
acctccctct	ctcaggactg	caacacttgt	atctgcagaa	acagcctatg	gatctgcagc	1200
aatgaggaat	gcccagggga	gtgtcttgtc	acaggccaat	cgcacttcaa	gagettegae	1260
aacaggtact	tcaccttcag	tgggatctgc	caatatctgc	tggcccggga	ctgcgaggat	1320
cacactttct	ccattgtcat	agagaccatg	cagtgtgccg	atgaccctga	tgctgtctgc	1380
acccgctcgg	tcagtgtgcg	gctctctgcc	ctgcacaaca	gcctggtgaa	actgaagcac	1440
ggggggagcag	tgggcatcga	tggtcaggat	gtccagctcc	ccttcctgca	aggtgacctc	1500
cgcatccagc	acacagtgat	ggcttctgta	cgcctcagct	atgcggagga	cctgcagatg	1560
gactgggatg	gccgtgggcg	gctactggtt	aagctgtccc	cagtctattc	tgggaagacc	1620
tgtggcttgt	gtgggaatta	caacggcaac	aagggagacg	acttcctcac	gccggccggc	1680
ttggtggagc	ccctggtggt	agacttcgga	aacgcctgga	agcttcaagg	ggactgttcg	1740
gacctgcgca	ggcaacacag	cgacccctgc	agcctgaatc	cacgcttgac	caggtttgca	1800
gaggaggctt	gtgcgctcct	gacgtcctcc	aagttcgagg	cctgccacca	cgcagtcagc	1860
cctctgccct	atctgcagaa	ctgccgttat	gatgtttgct	cctgctccga	cagccgggat	1920

		-continued	
tgcctgtgta acgca	gtage taactatget geegagtgte	g cccgaaaagg cgtgcacatc	1980
gggtggcggg agcct	ggett etgtgetetg ggetgteea	c agggccaggt gtacctgcag	2040
tgtgggaatt cctgc	aacct gacctgccgc tccctctcc	c teeeggatga agaatgeagt	2100
gaagtetgte ttgaa	ggetg ctactgeeca ceagggete	t accaggatga aagaggggac	2160
tgtgtgccca aggcc	cagtg cccctgctac tacgatggt	g agetetteea geetgeggae	2220
attttctcag accac	catac catgtgttac tgtgaagat	g gcttcatgca ctgtaccaca	2280
agtggcaccc tgggg	ageet gttgeetgae actgteete	a gcagtcccct gtctcaccgt	2340
agcaaaagga gcctt	teetg eeggeeacee atggteaage	c tggtgtgtcc tgctgacaac	2400
ccacgggctc aaggg	ctgga gtgtgctaag acgtgccag	a actacgacct ggagtgtatg	2460
ageetggget gtgtg	tetgg etgeetetgt eeeceagge	a tggtccggca cgaaaacaag	2520
tgtgtggcct tggag	eggtg teeetgette cateagggtg	g cagagtacgc cccgggagac	2580
acagtgaaga ttggc	tgcaa cacctgtgtc tgccgggag	c ggaagtggaa ctgcacgaac	2640
catgtgtgtg acgcc	acttg ctctgccatt ggtatggcc	c actacctcac cttcgatgga	2700
ctcaagtacc tgttc	ccggg ggagtgccag tatgttctg	g tgcaggatta ctgtggcagt	2760
aaccctggga ccttt	cagat cctggtggga aatgagggt	t gcagctatcc ctcggtgaag	2820
tgcaggaagc gggtg	accat cctggtggat ggaggggag	c ttgaactgtt tgacggagag	2880
gtgaacgtta agagg	cccct gagagatgaa tctcacttt	g aggtggtgga gtcgggccgg	2940
tacgtcatcc tgctg	ctggg tcaggccctt tctgtggtc	gggaccacca cctcagcatc	3000
tctgtggtcc tgaag	cacac ataccaggaa caggtgtgt	g geetetgegg gaaetttgat	3060
ggcatccaga acaat	gactt caccactage ageeteeag	g tggaggaaga ccccgtcaac	3120
tttgggaact cctgg	aaagt gageteacag tgtgetgaea	a cgagaaagct gtcactagat	3180
gtttcccctg ccact	tgcca caacaacatc atgaaacaga	a cgatggtgga ctcagcctgc	3240
agaateetta ceagt	gacgt cttccagggc tgcaacagge	c tggtggaccc tgagccatac	3300
ctggacatct gtatt	tatga cacttgctcc tgtgagtcca	a teggggaetg egeetgttte	3360
tgtgacacca ttgct	geeta tgeecaegtg tgtgeecage	c atggccaggt ggtagcctgg	3420
aggacaccca cactg	tgeee ceagagetgt gaagaaaaga	a atgttcggga aaatggctat	3480
gagtgtgagt ggcgt	tataa cagctgtgcg cctgcttgc	c cagtcacgtg tcagcaccct	3540
gageetetgg ettge	cctgt gcagtgtgtg gagggttgt	c atgcacattg ccctccaggg	3600
agaatcctgg atgaa	cttct gcagacctgc gtagacccc	c aagactgccc cgtgtgtgag	3660
gtggctggtc ggcgc	ttggc tcctggaaag aaaatcacc	t tgagteetga tgaeeetgea	3720
cactgtcaga attgt	cactg tgatggtgtg aaccttacg	gtgaageetg eeaagageee	3780
ggaggcctgg tggca	ccccc aactgatgcc ccagtcagc	ctaccacccc atatgttgag	3840
gatacccccg agccc	cccct gcacaacttc tactgcage	a agctgctgga tcttgtcttc	3900
ctgctggatg gctcc	tctat gttgtccgag gctgagttt	g aagtgeteaa agettttgtg	3960
gtgggcatga tggag	aggtt acacatctct cagaagcgca	a teegegtgge agtggtagag	4020
taccatgatg gctcc	cgtgc ctaccttgag ctcaaggcc	c ggaagcgacc ctcagagctt	4080
cggcgcatca ccago	cagat taagtataca ggcagccag	g tggcctctac cagtgaggtt	4140
ttgaagtaca cactg	tteca gatetttgge aaaattgae	c gccctgaagc ctcccatatc	4200

-cont	າກນອ	a

-continued	
actctgctcc tgactgctag ccaggagccc ccacggatgg ctaggaattt ggtccgctat	4260
gtccaaggtc tgaagaagaa gaaggttatc gtgatccctg tgggcattgg gccccacgcc	4320
agceteaaac agateegeet categagaag caggeeeetg aaaacaagge ttttetgete	4380
agtggggtgg atgagctgga gcagagaaga gatgagatag tcagctacct ctgtgacctt	4440
gctcccgagg ccccagcccc aactcagcct ccacaggtag cccacgtcac cgtgagtcca	4500
gggatcgctg ggatctcgtc accgggacca aaacggaagt ccatggttct ggatgtggtg	4560
tttgtcctgg aggggtcaga cgaagttggt gaagccaact tcaataagag caaggagttc	4620
gtggaggagg taatccagcg catggacgtg agcccggatg caacgcgcat ctcagtactg	4680
cagtatteet acaeggtaac catggagtat geetteaatg gggeeeagte caaggaggag	4740
gtgctgcggc acgtgcgaga gatccgctac cagggcggca ataggacaaa cactgggcag	4800
gccctgcagt acctttctga gcacagcttc tctcccagcc aaggggaccg ggtagaggca	4860
cctaacctgg tctacatggt cacggggaac cccgcctctg atgagatcaa gaggttgcct	4920
ggagacatcc aggtggtacc cattggggtg ggcccccatg ccaacatgca ggaactggag	4980
aggatcagca ggcccatcgc tcccatcttc atccgggact ttgagacact tccccgagag	5040
geteetgace tggteetgea gacatgttge teeaaggagg gtetgeaact geceaceete	5100
ccccctctcc ctgactgcag ccaacccctg gatgtggtcc tgctcctgga tggctcctct	5160
agettgecag agtetteett tgataaaatg aagagttttg eeaaggettt eattteaaag	5220
gccaacattg ggccccacct cacacaggtg tccgtgatac agtatggaag catcaatacc	5280
attgatgtac catggaatgt ggttcaggag aaagcccatc tacagagttt ggtggacctc	5340
atgeageagg agggtggeee cageeagatt ggggatgete tggeetttge egtgegetat	5400
gtaacttcac aaatccacgg agccaggcet ggggeeteea aagcagtggt cateateate	5460
atggatacct ccttggatcc cgtggacaca gcagcagatg ctgccagatc caaccgagtg	5520
gcagtgtttc ccgttggggt tggggatcgg tatgatgaag cccagctgag gatcttggca	5580
ggccctgggg ccagctccaa tgtggtaaag ctccagcaag ttgaagacct ctccaccatg	5640
gccaccctgg gcaactcctt cttccacaaa ctgtgttctg ggttttctgg agtttgtgtg	5700
gatgaagatg ggaatgagaa gaggcctggg gatgtctgga ccttgccgga tcagtgccac	5760
acagtgactt gcttggcaaa tggccagacc ttgctgcaga gtcatcgtgt caattgtgac	5820
catggacccc ggccttcatg tgccaacagc cagtctcctg ttcgggtgga ggagacgtgt	5880
ggctgccgct ggacctgccc ttgtgtgtgc acgggcagtt ccactcggca catcgtcacc	5940
ttcgatgggc agaatttcaa gcttactggt agctgctcct atgtcatctt tcaaaacaag	6000
gagcaggacc tggaagtgct cctccacaat ggggcctgca gccccggggc aaaacaagcc	6060
tgcatgaagt ccattgagat taagcatgct ggcgtctctg ctgagctgca cagtaacatg	6120
gagatggcag tggatgggag actggtcctt gccccgtacg ttggtgaaaa catggaagtc	6180
agcatctacg gegetateat gtatgaagte aggtttaeee atettggeea cateeteaca	6240
tacacgccac aaaacaacga gttccaactg cagcttagcc ccaagacctt tgcttcgaag	6300
atgcatggtc tttgcggaat ctgtgatgaa aacggggcca atgacttcac gttgcgagat	6360
ggcacggtca ccacagactg gaaaaggctt gtccaggaat ggacggtgca gcagccaggg	6420
tacacatgee aggetgttee egaggageag tgteeegtet etgacagete ceaetgeeag	6480

			-contir	nued	
gtcctcctct cagcgtcgtt	tgctgaatgc c	cacaaggtca	tcgctccagc	cacattccat	6540
accatctgcc agcaagacag	ttgccaccag g	gagcgagtgt	gtgaggtgat	tgcttcttac	6600
geccatetet gteggaeeag	tggggtctgt g	gttgattgga	ggacaactga	tttctgtgct	6660
atgtcatgcc caccgtccct	ggtgtataac c	cactgtgagc	gtggctgccc	tcggcactgc	6720
gatgggaaca ctagcttctg	tggggaccat c	cctcagaag	gctgcttctg	tccccaacac	6780
caagtttttc tggaaggcag	ctgtgtcccc g	jaggaggcct	gcactcagtg	tgttggcgag	6840
gatggagttc gacatcagtt	cctggagacc t	gggtcccag	accatcagcc	ctgtcagatc	6900
tgtatgtgcc tcagtgggag	aaagattaac t	gcactgccc	agccgtgtcc	cacageeega	6960
gctcccacgt gtggcccatg	tgaagtggct c	egeetcaage	agagcacaaa	cctgtgctgc	7020
ccagagtatg agtgtgtgtg	tgacctgttc a	actgcaact	tgcctccagt	gcctccgtgt	7080
gaaggagggc tccagccaac	cctgaccaac c	cctggagaat	gcagacccac	ctttacctgt	7140
gcctgcagga aagaagagtg	caaaagagtg t	ccccaccct	cctgcccccc	tcaccggaca	7200
cccactctcc ggaagaccca	gtgctgtgat g	yaatacgagt	gtgcttgcag	ctgtgtcaac	7260
tccacgctga gctgcccact	tggctacctg g	geeteageea	ctaccaatga	ctgtggctgc	7320
accacgacca cctgtctccc	tgacaaggtt t	gtgtccacc	gaggcaccgt	ctaccctgtg	7380
ggccagttct gggaggaggg	ctgtgacacg t	gcacctgta	cggacatgga	ggatactgtc	7440
gtgggcctgc gtgtggtcca	gtgctctcaa a	aggccctgtg	aagacagctg	tcagccaggt	7500
ttttcttatg ttctccacga	aggcgagtgc t	gtggaaggt	gcctgccctc	tgcttgcaag	7560
gtggtggctg gctcactgcg	gggcgattcc c	actetteet	ggaaaagtgt	tggatctcgg	7620
tgggctgttc ctgagaaccc	ctgcctcgtc a	acgagtgtg	tccgcgtgga	ggatgcagtg	7680
tttgtgcagc agaggaacat	ctcctgccca c	cagetggetg	tccctacctg	tcccacaggc	7740
ttccaactga actgtgagac	ctcagagtgc t	gteetaget	gccactgtga	gcctgtggag	7800
gcctgcctgc tcaatggcac	catcattggg c	ccgggaaga	gtgtgatggt	tgacctatgc	7860
acgacctgcc gctgcatcgt	gcagacagac g	gccatctcca	gattcaagct	ggagtgcagg	7920
aagactacct gtgaggcctg	ccccatgggc t	atcgggaag	agaagagcca	gggtgaatgc	7980
tgtgggagat gcttgcctac	agcttgcact a	attcagctaa	gaggaggacg	gatcatgacc	8040
ctgaagcaag atgagacatt	ccaggatggc t	gtgacagtc	atttgtgcag	ggtcaacgag	8100
agaggagagt acatctggga	gaagagggtc a	acgggctgcc	caccatttga	tgaacacaag	8160
tgtctggctg aaggaggcaa	aatcgtgaaa a	attccaggca	cctgctgtga	cacatgtgag	8220
gageetgatt geaaagaeat	cacagccaag g	gtgcagtaca	tcaaagtggg	agattgtaag	8280
tcccaagagg aagtggacat	tcattactgc c	cagggaaagt	gtgccagcaa	agctgtgtac	8340
tccattgaca tcgaggatgt	gcaggagcaa t	geteetget	gcctgccctc	gaggacggag	8400
cccatgcgcg tgcccttgca	ctgcaccaat g	getetgteg	tgtaccacga	ggtcatcaac	8460
gccatgcagt gcaggtgttc	tccccggaac t	gcagcaagt	gaggcctgtg	cagctacagc	8520
ggatteetae tgatace					8537
<210> SEQ ID NO 10 <211> LENGTH: 208					

<212> TYPE: PRT <213> ORGANISM: Mus musculus

	inued	

<400> SEQUI	INCE: 10	10							
Asp Ile Se 1	r Glu Pro 5	Pro Leu	His As	sp Phe 10	Tyr Cy	vs Ser	Arg	Leu 15	Leu
Asp Leu Va	l Phe Leu 20	Leu Asp	Gly Se 25		Arg Le	eu Ser	Glu 30	Ala	Glu
Phe Glu Va 35	l Leu Lys	Ala Phe	Val Va 40	al Asp	Met Me	et Glu 45	Arg	Leu	Arg
Ile Ser Gl: 50	ı Lys Trp	Val Arg 55	Val Al	la Val	Val Gl 60	-	His	Asp	Gly
Ser His Al 65	a Tyr Ile	Gly Leu 70	Lys As	sp Arg	Lys Ar 75	g Pro	Ser	Glu	Leu 80
Arg Arg Il	e Ala Ser 85	Gln Val	Lys Ту	yr Ala 90	Gly Se	er Gln	Val	Ala 95	Ser
Thr Ser Gl	ı Val Leu 100	Lys Tyr		eu Phe 05	Gln Il	.e Phe	Ser 110	Lys	Ile
Asp Arg Pr 11		Ser Arg	Ile Al 120	la Leu	Leu Le	u Met 125	Ala	Ser	Gln
Glu Pro Gl: 130	n Arg Met	Ser Arg 135		he Val	Arg Ty 14		Gln	Gly	Leu
Lys Lys Ly 145	s Lys Val	Ile Val 150	Ile Pı	ro Val	Gly Il 155	e Gly.	Pro	His	Ala 160
Asn Leu Ly	Gln Ile 165	-	Ile Gl	lu Lys 170	Gln Al	.a Pro	Glu	Asn 175	Гла
Ala Phe Va	Leu Ser 180	Ser Val	-	lu Leu 85	Glu Gl	.n Gln	Arg 190	Asp	Glu
Ile Val Se 19	-	Cys Asp	Leu A] 200	la Pro	Glu Al	a Pro. 205	Pro	Pro	Thr

What is claimed is:

1. An isolated mutant human von Willebrand Factor A1 protein comprising one or more selected from the group consisting of: 1263 S>P, 1269D>N, 1274R>K, 1287R>M, 1302D>G, 1308R>H, 1313W>R, 1314V>I, 1326H>R, 1329I>L, 1330G>E, 1333D>A, 1344A>T, 1347V>I, 1350A>T, 1370S>G, 1379R>H, 1381A>T, 1385M>T 1391Q>P, 1394S>A, 1397F>L, 1421N>S, 1439V>L, 1442S>G, 1449Q>R, 1466P>A, 1469L>Q, 1472H>Q, 1473M>V, 1475Q>H, and 1479G>S, wherein each amino acid position corresponds to a position in SEQ ID NO: 6.

2. An isolated mutant human von Willebrand Factor A1 protein having SEQ ID NO: 6, wherein the protein comprises one or more mutation(s) selected from the group consisting of: 1263S>P, 1269D>N, 1274R>K, 1287R>M, 1302D>G, 1308R>H, 1313W>R, 1314V>I, 1326H>R, 1329I>L, 1330G>E, 1333D>A, 1344A>T, 1347V>I, 1350A>T, 1370S>G, 1379R>H, 1381A>T, 1385M>T, 1391Q>P, 1394S>A, 1397F>L, 1421N>S, 1439V>L, 1442S>G, 1449Q>R, 1466P>A, 1469L>Q, 1472H>Q, 1473M>V, 1475Q>H, and a 1479G>S.

3. An isolated mutant human von Willebrand Factor A1 protein comprising a 1326H>R mutation in an amino acid sequence of SEQ ID NO: 1.

4. A transgenic non-human animal expressing von Willebrand Factor A1 protein containing mutation(s) at one of more amino acid position selected from the group consisting of: 1263, 1269, 1274, 1287, 1302, 1308, 1313, 1314, 1326, 1329, 1330, 1333, 1344, 1347, 1350, 1370, 1379, 1381, 1385, 1391, 1394, 1397, 1421, 1439, 1442, 1449, 1466, 1469, 1472, 1473, 1475, and 1479, wherein the position corresponds to an amino acid position of human von Willebrand Factor A1 protein shown in SEQ ID NO: 6.

5. The transgenic non-human animal of claim **4**, wherein the animal is a murine, a porcine, a canine, a feline, a rabbit, or a primate.

6. The transgenic non-human animal of claim **4**, wherein the protein comprises a single mutation.

7. The transgenic non-human animal of claim 4, wherein the protein comprises two or more mutations.

8. The transgenic non-human animal of claim **4**, wherein the protein comprises at least one mutation selected from the group consisting of: 1263>S, 1269>D, 1274>R, 1287>R, 1302>D, 1308>R, 1313R>W, 1314>V, 1326>H, 1329>I, 1330>G, 1333>D, 1344>A, 1347>V, 1350>A, 1370>S, 1379>R, 1381>A, 1385>M 1391>Q, 1394>S, 1397>F, 1421>N, 1439>V, 1442>S, 1449>Q, 1466>P, 1469>L, 1472>H, 1473>M, 1475>Q, 1479>G, and any combination thereof.

9. The transgenic non-human animal of claim **4**, wherein the protein comprises a 1326R>H mutation, a 1314I>V mutation, or a combination thereof.

10. The transgenic non-human animal of claim 8 or 9, wherein the animal is a mouse.

11. The transgenic non-human animal of claim 8 or 9, wherein the protein comprises SEQ ID NO: 5.

12. The transgenic non-human animal of claim **4**, wherein the VWF protein is at least 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100% identical to the A1 domain of human VWF protein as shown in SEQ ID NO: 1.

13. The transgenic non-human animal of claim **12**, wherein the von Willebrand Factor A1 protein of the transgenic animal contains the human A1 domain shown in SEQ ID NO: 1.

14. The transgenic non-human animal of claim 4, wherein the von Willebrand Factor A1 protein is partially or completely replaced with a human von Willebrand Factor A1 protein comprising SEQ ID NO: 1.

15. The transgenic non-human animal of claim 4, wherein the animal is a model for pre-clinical testing of compounds that expresses a mutant von Willebrand Factor (VWF) A1 protein containing one or more mutations, wherein the binding specificity of the mutant VWF-A1 protein changes from being specific for the animal platelets to being specific for human platelets.

16. The transgenic non-human animal of claim **15**, wherein the mutant VWF-A1 protein in the animal binds to human platelets.

17. A method for identifying a compound that modulates binding of VWF-A1 protein to GPIb-alpha protein, the method comprising:

a) providing an electronic library of test compounds;

- b) providing atomic coordinates listed in Table 8 for at least 10 amino acid residues for the A1 domain of the VWF protein, wherein the coordinates have a root mean square deviation therefrom, with respect to at least 50% of C α atoms, of not greater than about 2.5 Å, in a computer readable format;
- c) converting the atomic coordinates into electrical signals readable by a computer processor to generate a three dimensional model of the VWF-A1 domain;
- d) performing a data processing method, wherein electronic test compounds from the library are superimposed upon the three dimensional model of the VWF-A1 domain; and
- e) determining which test compound fits into the binding pocket of the three dimensional model of the VWF-A1 protein,

thereby identifying which compound would modulate the binding of VWF-A1 protein to GPIb-alpha protein.

18. A method for identifying a compound that modulates binding of VWF-A1 protein to GPIb-alpha protein, the method comprising:

a) providing an electronic library of test compounds;

- b) providing atomic coordinates listed in Table 8 in a computer readable format for at least 10, 15, 20, 25, 30, 35, or 40 amino acid residues for the A1 domain of the VWF protein, wherein the residues comprise two or more of the following residues: Pro1391, Arg1392, Arg1395, Val1398, Arg1399, Gln1402, Lys1406, Lys1423, Gln1424, Leu1427, Lys1430, or Glu1431;
- c) converting the atomic coordinates into electrical signals readable by a computer processor to generate a three dimensional model of the VWF-A1 domain;
- d) performing a data processing method, wherein electronic test compounds from the library are superimposed upon the three dimensional model of the VWF-A1 domain; and

 e) determining which test compound fits into the binding pocket of the three dimensional model of the VWF-A1 protein,

thereby identifying which compound would modulate the binding of VWF-A1 protein to GPIb-alpha protein.

19. The method of claim 17 or 18, wherein determining comprises detecting an IC_{50} of less than about 7.5 µg/ml for a test compound.

20. The method of claim 17 or 18, further comprising:

f) obtaining or synthesizing a compound;

- g) contacting VWF-A1 protein with the compound under a condition suitable for GPIb-alpha-VWF-A1 binding; and
- h) determining whether the compound modulates GPIbalpha-VWF-A1 protein binding using a diagnostic assay.

21. The method of claim **20**, wherein contacting comprises perfusing platelets into a flow chamber at a shear flow rate of at least 100 s^{-1} , wherein mutant murine VWF-A1 protein is immobilized on a bottom surface of the chamber.

22. The method of claim 20, wherein contacting comprises perfusing platelets into the transgenic non-human animal of claim 4.

23. The method of claim 21, wherein contacting occurs sequentially.

24. The method of claim 21, wherein the perfusing of platelets occurs prior to administration of the compound.

25. The method of claim 21, wherein the platelets are human platelets.

26. The method of claim 21, wherein the platelets are not murine platelets.

27. The method of claim 20, wherein the determining comprises detecting an increase or decrease in the dissociation rate between VWF-A1 protein and GPIb-alpha protein by at least two-fold.

28. The method of claim **20**, wherein the determining comprises detecting an increase or decrease of platelet adhesion to a surface expressing VWF-A1 protein.

29. The method of claim **20**, wherein the determining comprises detecting an increase or decrease in a stabilization of an interaction between VWF-A1 protein and GPIb-alpha protein.

30. The method of claim **20**, wherein the determining comprises detecting thrombosis formation.

31. The method of claim **20**, wherein the determining comprises identifying an occurrence of an abnormal thrombotic event in the subject.

32. The method of claim **31**, wherein an abnormal thrombotic event comprises abnormal bleeding, abnormal clotting, death, or a combination thereof.

33. The method of claim **20**, wherein the determining comprises dynamic force microscopy, a coagulation factor assay, a platelet adhesion assay, thrombus imaging, a bleeding time assay, aggregometry, review of real-time video of blood flow, a Doppler ultrasound vessel occlusion assay, or a combination thereof.

34. The method of claim **21**, wherein perfusing platelets is followed by perfusion of a labeled agent.

35. The method of claim **34**, wherein the labeled agent comprises one or more of a nanoparticle, a fluorophore, a quantum dot, a microcrystal, a radiolabel, a dye, a gold biolabel, an antibody, or a small molecule ligand.

36. The method of claim **34**, wherein the agent targets a platelet receptor, a VWF protein, or a portion thereof.

37. A nucleic acid encoding the protein of any of claims **1-3**.

38. A vector encoding the nucleic acid of claim **37**.

39. An animal expressing the protein of any of claims **1-3**. **40**. A method for treating von Willebrand Disease (VWD) in a subject in need thereof, the method comprising administering to the subject an effective amount of a compound that promotes platelet adhesion in the subject, wherein the compound increases the dissociation rate between VWF-A1 protein and GPIb-alpha protein by at least two-fold, thereby administration of the compound increases blood coagulation in the subject.

41. The method of claim **40**, wherein coagulation is measured by a coagulation factor assay, an ex-vivo flow chamber assay, or a combination thereof.

42. A method for rapidly detecting an internal vascular injury site in a subject, the method comprising:

- a) administering to a subject a targeted molecular imaging agent, wherein the molecule circulates for an effective period of time in order to bind to the injury site within the subject;
- b) tracking a deposition of the labeled targeted molecular imaging agent in the subject; and
- c) identifying the site of a thrombus formation in the subject by imaging the targeted molecular imaging agent,

thereby the deposition of the targeted molecular imaging agent at the internal vascular injury site is indicative of internal bleeding within a subject.

43. The method of claim **42**, wherein the targeted molecular imaging agent is administered by subcutaneous, intramuscular, intra-peritoneal, or intravenous injection; infusion; by oral, nasal, or topical delivery; or a combination thereof.

44. The method of claim **42**, wherein the targeted molecular imaging agent comprises a nanoparticle, a fluorophore, a quantum dot, a microcrystal, a radiolabel, a dye, a gold biolabel, an antibody, a peptide, a small molecule ligand, or a combination thereof.

45. The method of claim **44**, wherein the nanoparticle comprises a perfluorocarbon.

46. The method of claim **44**, wherein the nanoparticle is coupled to an antibody, a small molecule, a peptide, or a receptor trap.

47. The method of claim **42**, wherein the targeted molecular imaging agent specifically binds to a platelet receptor, or a VWF protein, or a portion thereof.

48. The method of claim **42**, wherein the targeted molecular imaging agent has a $T_{1/2}$ of at least 30 minutes.

49. The method of claim **42**, wherein imaging comprises a PET scan, MRI, IR scan, ultrasound, nuclear imaging, or a combination thereof.

50. The method of claim **42**, wherein the subject is further administered a thrombotic compound.

51. The method of claim **50**, wherein the compound increases the dissociation rate between VWF-A1 protein and GPIb-alpha protein by at least two-fold.

52. A method for determining whether platelet function or morphology in a subject is abnormal, the method comprising:

a) affixing a molecule comprising a murine VWF-A1 domain to a surface of a flow chamber, wherein the domain comprises at least one mutation at a position selected from the group consisting of 1263>S, 1269>D, 1274>R, 1287>R, 1302>D, 1308>R, 1313R>W, 1314>V, 1326>H, 1329>I, 1330>G, 1333>D, 1344>A, 1347>V, 1350>A, 1370>S, 1379>R, 1381>A, 1385>M

1391>Q, 1394>S, 1397>F, 1421>N, 1439>V, 1442>S, 1449>Q, 1466>P, 1469>L, 1472>H, 1473>M, 1475>Q, 1479>G, and any combination thereof, where the position corresponds to an amino acid position of human von Willebrand Factor A1 protein shown in SEQ ID NO: 6;

- b) perfusing through the flow chamber a volume of blood or plasma from a subject at a shear flow rate of at least about 100 s^{-1} ;
- c) perfusing a targeted molecular imaging agent into the flow chamber; and
- d) comparing the flow rate of the blood or plasma from the subject as compared to a normal flow rate, so as to determine whether the subject's platelet function or morphology is abnormal.

53. The method of claim **52**, wherein the affixing comprises (i) affixing an antibody which specifically binds VWF-A1 domain, and (ii) perfusing murine mutant VWF-A1 protein in the flow chamber at a shear flow rate of at least 100 s^{-1} .

54. The method of claim **52**, wherein the targeted molecular imaging agent comprises a nanoparticle, a fluorophore, a quantum dot, a microcrystal, a radiolabel, a dye, a gold biolabel, an antibody, a peptide, a small molecule ligand, or a combination thereof.

55. The method of claim **52**, wherein the targeted molecular imaging agent binds to a platelet receptor, a platelet ligand, or any region of a VWF protein or a portion thereof.

56. The method of claim **52**, wherein the targeted molecular imaging agent comprises horseradish peroxidase (HRP) coupled to an antibody directed at VWF-A1.

57. The method of claim **52**, wherein the comparing comprises a platelet adhesion assay, fluorescence imaging, a chromogenic indicator assay, a microscopy morphology analysis, or any combination thereof.

58. The method of claim **52**, wherein platelets bound to VWF-A1 are less than about 500 cells/mm^2 .

59. The method of claim **58**, wherein the platelets are substantially spherical.

60. The method of claim **40**, **42**, or **52**, wherein the subject is a human, a canine, a feline, a murine, a porcine, an equine, or a bovine.

61. The method of claim **52**, wherein the VWF molecule is an antibody, a peptide, or a Fab fragment directed to a VWF polypeptide or a portion thereof.

62. A method for producing mutant von Willebrand Factor A1 protein that specifically binds human platelets, the method comprising:

- (a) providing an animal expressing a mutant von Willebrand Factor A1 protein, wherein the mutation causes the platelet binding specificity of the animal von Willebrand Factor A1 protein to change to be specific for human platelets; and
- (b) harvesting the mutant animal von Willebrand Factor A1 so as to produce von Willebrand Factor A1 protein that specifically binds human platelets.

63. The method of claim **62**, wherein the mutant animal von Willebrand Factor A1 protein comprises at least one mutation comprising 1263P>S, 1269N>D, 1274K>R, 1287M>R, 1302G>D, 1308H>R, 1313R>W, 1314I>V, 1326R>H, 1329L>1,1330E>G, 1333A>D, 1344T>A, 1347I>V, 1350T>A, 1370G>S, 1379H>R, 1381T>A, 1385T>M 1391P>Q, 1394A>S, 1397L>F, 1421S>N, 1439L>V, 1442G>S, 1449R>Q, 1466A>P, 1469Q>L, 1472Q>H, 1473V>M, 1475H>Q, 1479S>G, or any combination thereof.

64. A method for testing efficacy and toxicity of a gene therapy vector, the method comprising:

- a) introducing a gene therapy vector into the animal of claim 4, allowing sufficient time for expression of the vector;
- b) perfusing platelets from a subject into the animal under a condition suitable for GPIb-alpha-VWF-A1 protein binding; and
- c) determining whether or not a thrombotic event occurs in the animal.

65. The method of claim **64**, wherein the vector comprises a nucleic acid encoding a platelet receptor polypeptide, a platelet ligand polypeptide, or a VWF polypeptide, or a portion thereof.

66. The method of claim **64**, wherein the subject is a human, a dog, a cat, a horse, a pig, or a primate.

67. The method of claim 64, wherein the platelets are not murine platelets.

68. The method of claim **64**, wherein the thrombotic event comprises blood clotting, abnormal bleeding, abnormal clotting, death, or a combination thereof.

69. The method of claim **64**, wherein the determining comprises dynamic force microscopy, a coagulation factor assay, a platelet adhesion assay, thrombus imaging, a bleeding time assay, aggregometry, review of real-time video of blood flow, a Doppler ultrasound vessel occlusion assay, or a combination thereof.

70. The method of claim **64**, wherein perfusing platelets is followed by perfusion of a labeled agent.

71. The method of claim **70**, wherein the labeled agent comprises one or more of a nanoparticle, a fluorophore, a quantum dot, a microcrystal, a radiolabel, a dye, a gold biolabel, an antibody, or a small molecule ligand.

72. The method of claim **71**, wherein the agent targets a platelet receptor, a VWF protein, or a portion thereof.

73. A method for calibrating an aggregometry device or a device for measuring clot formation or retraction, the method comprising:

- a) providing hematologic data obtained from a subject, wherein blood or platelets from the subject is assessed by the device;
- b) determining whether or not a thrombotic event occurs in the animal of claim **4**, wherein the animal is perfused with a sample of blood or platelets from the subject; and
- c) correlating data obtained from (b) with the data obtained in (a) so as to calibrate the device, wherein a certain data obtained from the device is indicative of the corresponding thrombotic outcome determined in the animal of claim 4.

74. The method of claim **73**, wherein the thrombotic event comprises blood clotting, abnormal bleeding, abnormal clotting, death, or a combination thereof.

75. The method of claim **22**, wherein contacting occurs sequentially.

76. The method of claim 22, wherein the perfusing of platelets occurs prior to administration of the compound.

77. The method of claim 22, wherein the platelets are human platelets.

78. The method of claim **22**, wherein the platelets are not murine platelets.

79. The method of claim **22**, wherein perfusing platelets is followed by perfusion of a labeled agent.

80. The method of claim **79**, wherein the labeled agent comprises one or more of a nanoparticle, a fluorophore, a quantum dot, a microcrystal, a radiolabel, a dye, a gold biolabel, an antibody, or a small molecule ligand.

81. The method of claim **79**, wherein the agent targets a platelet receptor, a VWF protein, or a portion thereof.

* * * * *