

United States Patent [19]

[19]

Mathe

[11] 3,790,923

[45] Feb. 5, 1974

- [54] **ELECTRICAL CONNECTOR HAVING IMPROVED PANEL MOUNTING MEANS AND AN IMPROVED RELEASEABLE CONTACT CONSTRUCTION**
- [75] Inventor: **Istvan Mathe**, Cicero, Ill.
- [73] Assignee: **Bunker Ramo Corporation**, Oak Brook, Ill.
- [22] Filed: **Apr. 4, 1972**
- [21] Appl. No.: **241,014**

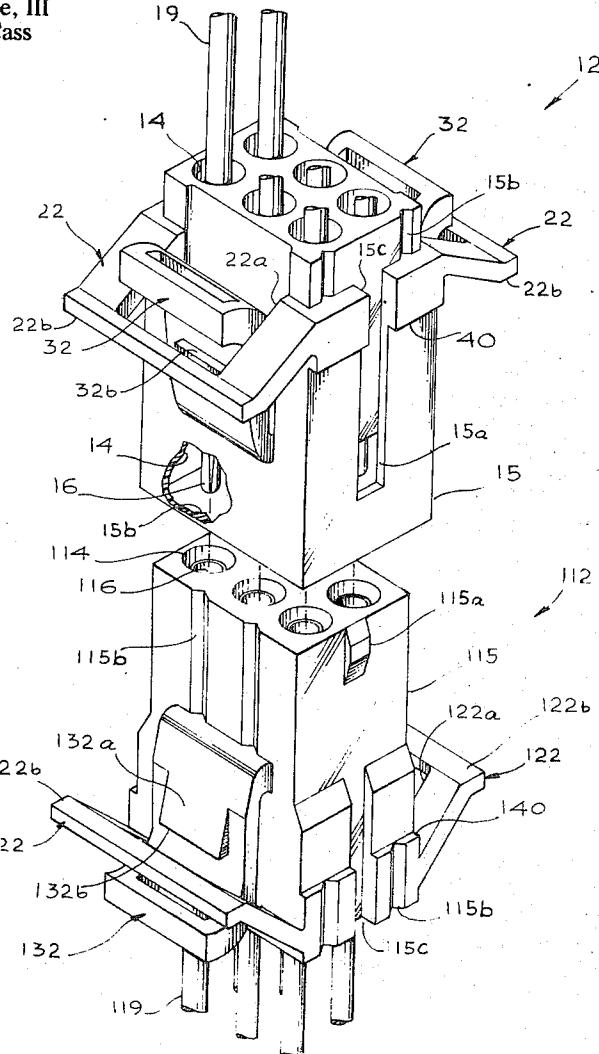
[52] U.S. Cl. 339/128, 248/27
[51] Int. Cl. H02b 1/02
[58] **Field of Search** 339/128; 200/168 C;
174/153 G; 248/27; 24/73 SM, 73 SB;
85/ R, 80

[56] **References Cited**

UNITED STATES PATENTS

3,354,302	11/1967	Greasley	339/128	X
2,891,103	6/1959	Swengel	339/128	
3,514,743	5/1970	Schantz	339/128	
3,573,716	4/1971	Garver	339/128	
3,523,269	8/1970	Witek et al.	339/128	X

Primary Examiner—Stephen J. Novosad


Assistant Examiner—William F. Pate, III

Attorney, Agent, or Firm—Nathan Cass

[57] ABSTRACT

An electrical connector having an improved panel mounting construction and an improved releasable contact construction. The improved panel mounting construction typically comprises first and second pairs of resilient wings provided on opposite sides of the housing. Each pair of wings comprises a resilient stop wing and a deflectable snap-in wing projecting through an aperture provided in the stop wing. The stop wing provides bearing surfaces for resiliently bearing against the entry side of a panel and the snap-in wing has a locking lip with bearing surfaces for resiliently bearing against the opposite side of the panel after being passed through a panel opening by inward deflection of the snap-in wing. The improved releasable contact construction provides for unusually reliable and rugged retention of a contact in its receiving cavity by the combined action of a deflectable retention tine provided on the contact operating on the principle of long beam deflection with respect to a retention shoulder in the cavity along with two additionally provided radially compressible retention flares operating on the principle of radial compression with respect to the same retention shoulder.

5 Claims, 7 Drawing Figures

PATENTED FEB 5 1974

3,790,923

SHEET 1 OF 3

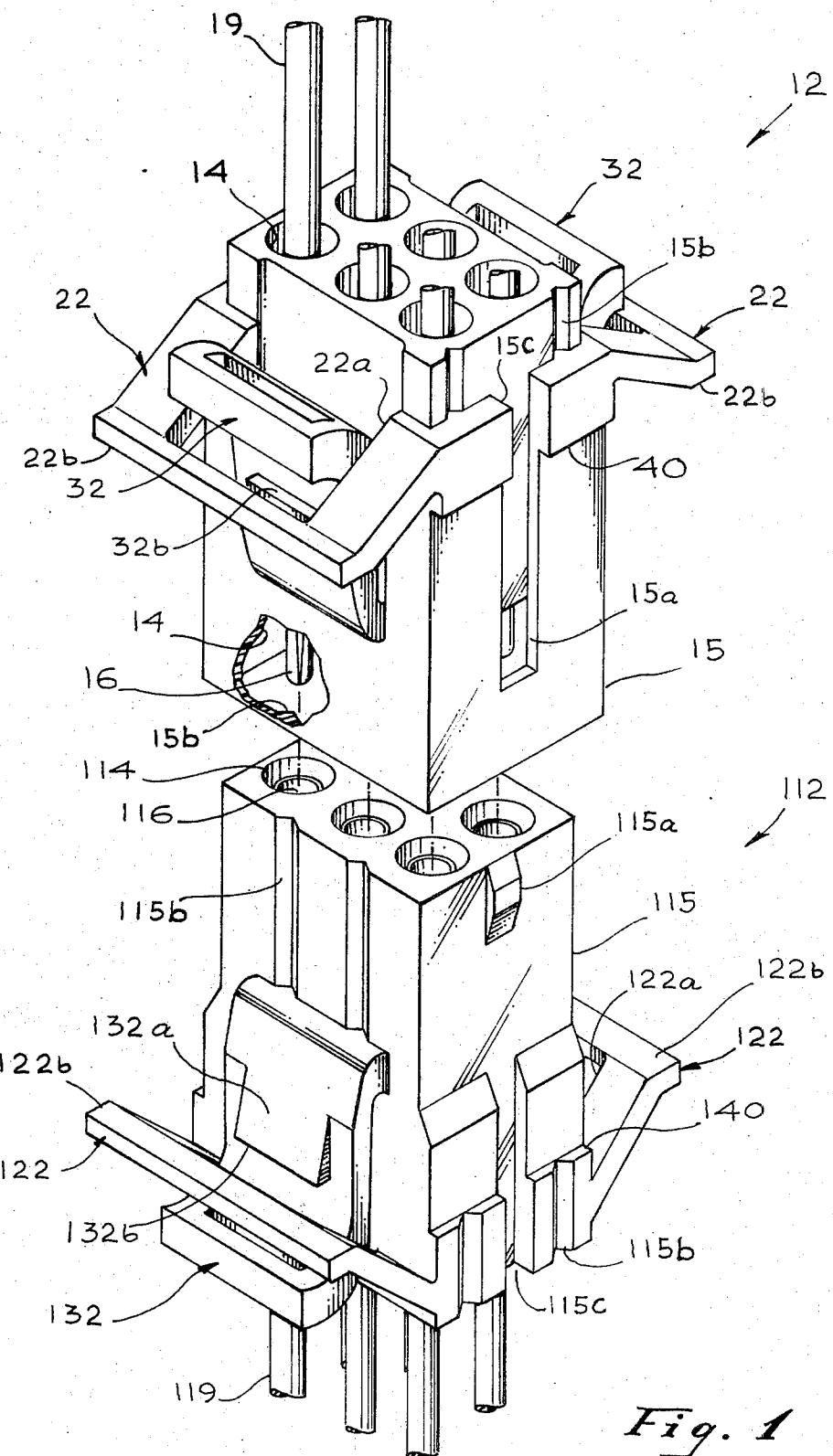


Fig. 1

PATENTED FEB 5 1974

3,790,923

SHEET 2 OF 3

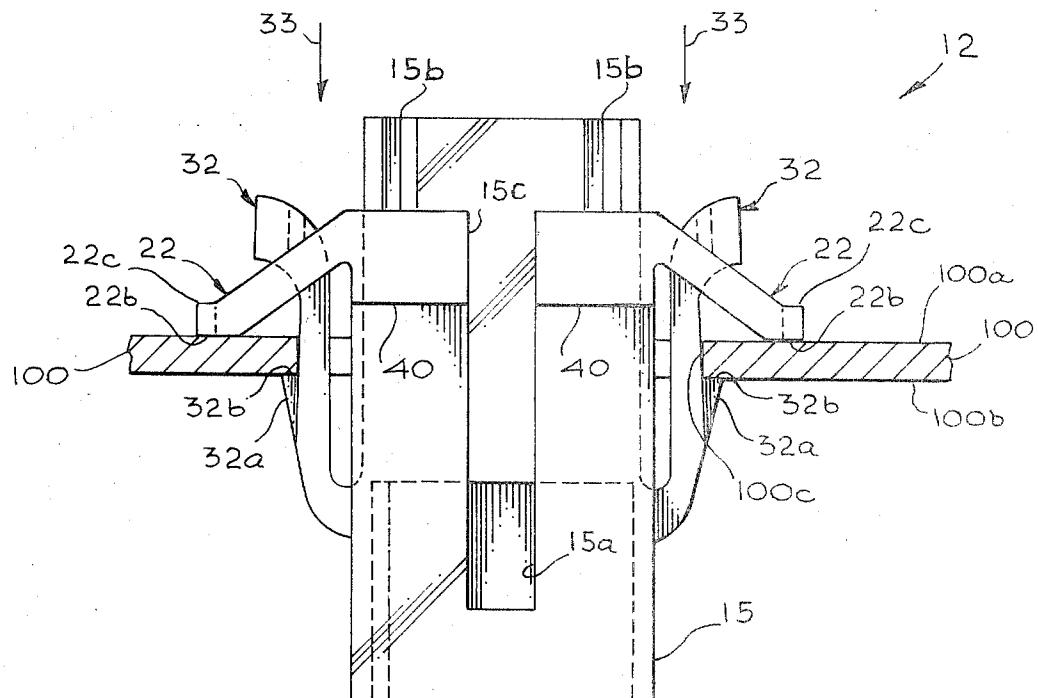


Fig. 2(a)

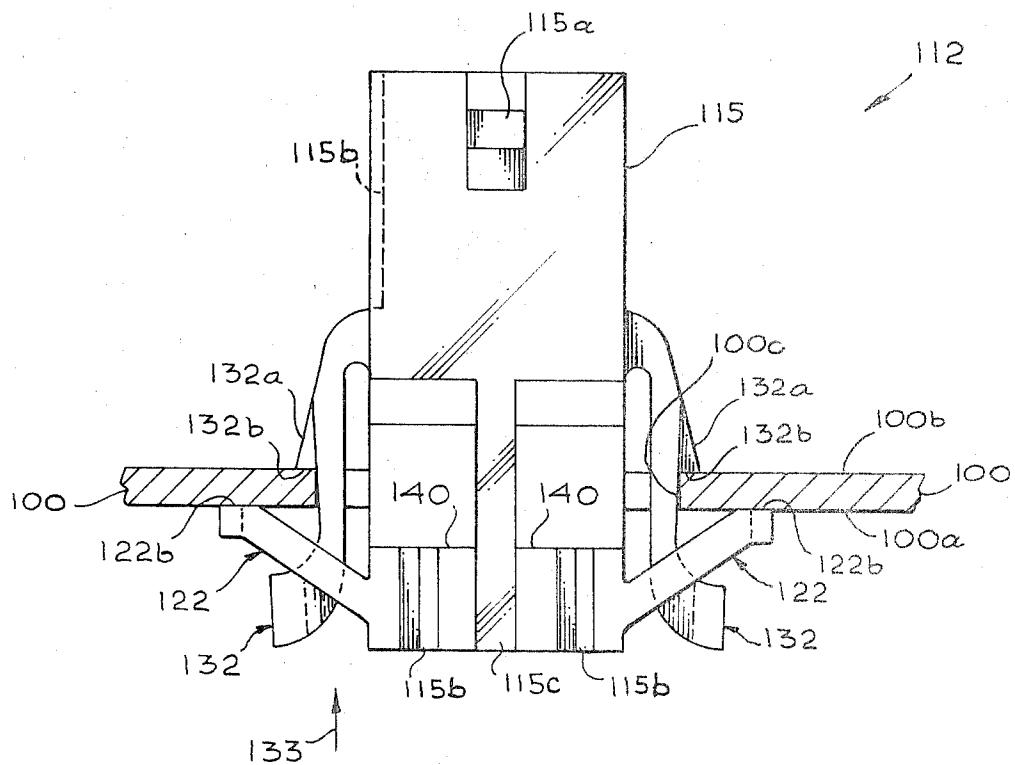


Fig. 2(b)

PATENTED FEB 5 1974

3,790,923

SHEET 3 OF 3

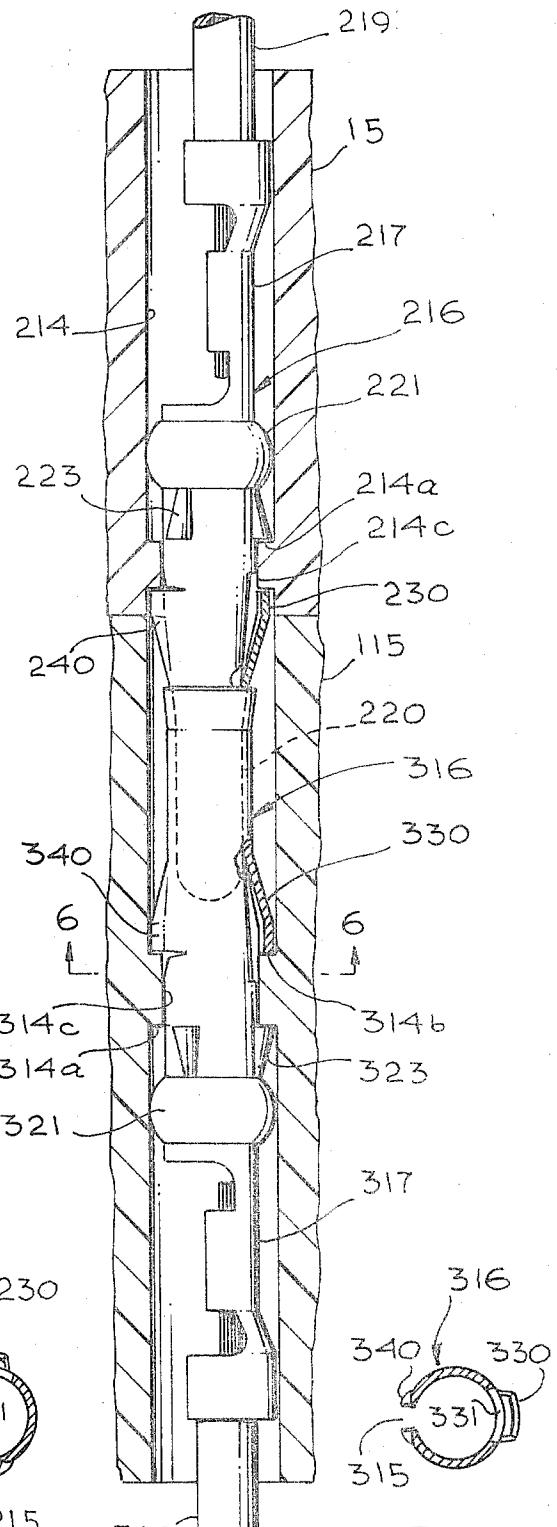
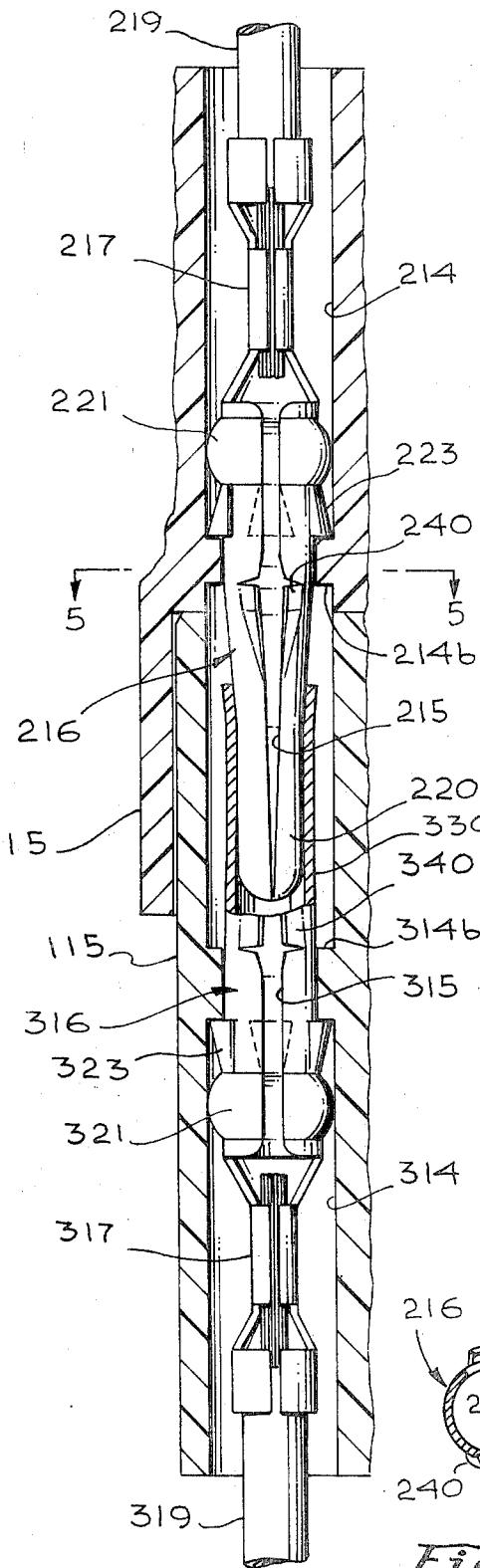



Fig. 6

ELECTRICAL CONNECTOR HAVING IMPROVED PANEL MOUNTING MEANS AND AN IMPROVED RELEASABLE CONTACT CONSTRUCTION

The present invention relates generally to an improved panel-mountable housing.

The present invention is more particularly directed to providing improved mounting and contact constructions for electrical connectors.

A broad object of the invention is to provide a housing containing improved panel mounting means.

More specific objects of the invention are to provide electrical connector means which can rapidly and firmly be manually mounted in panels having widely differing thicknesses without requiring mounting tools or mechanical fasteners or the like, and also without requiring the provision of any special cut-outs or receiving means in the panel.

Another object of the invention is to provide improved electrical connector means which can be readily removed manually from the same side of the panel as used for mounting without the need for tools.

A further object of the invention is to provide improved electrical connector means having panel mounting means provided as an integral part thereof.

A still further object of the invention is to provide connector means having improved panel mounting means which are rugged and durable and which are also resistant to overstressing.

Another broad object of the invention is to provide electrical connector means having an improved construction and arrangement for its internal contacts.

A more specific object of the invention in accordance with the foregoing object is to provide electrical connector means having removable contacts with improved contact retention features.

A further object of the invention is to provide electrical connector means containing improved stabilizing means for maintaining a contact in proper alignment.

In an exemplary embodiment of the invention, opposite sides of an electrical connector housing are each provided with a pair of resilient opposing wings projecting therefrom having oppositely acting panel bearing surfaces and constructed and arranged for cooperative interaction so as to permit the housing to be rapidly and securely mounted in or removed from a conventional opening of a panel having a wide range of possible thicknesses without the need for any mechanical fasteners or tools or the like.

In a particular preferred embodiment of the invention, each pair of opposing wings comprises a resilient stop wing and a deflectable snap-in wing projecting angularly from the housing towards one another with the snap-in wing being deflectable and projecting through an opening or aperture provided in the stop wing. In mounting the housing to the panel, the snap-in wings are the first to encounter the entry side of the panel which causes them to deflect inwardly to permit passage of locking lips provided on each snap-in wing through the panel opening. After the locking lips pass through the panel opening, the snap-in wings swing back to cause the locking lips provided to resiliently lock the housing in the panel between the snap-in and stop wings. The stop wing resiliency permits a wide range of panel thicknesses to be accommodated. The connector housing is also provided with a positive stop corresponding to maximum panel thickness in order to prevent overstressing.

In an exemplary embodiment of a releasable electrical connector contact construction in accordance with the invention, an improved releasable retention arrangement is achieved by the provision of a specially shaped deflectable retention tine on the contact operating in conjunction with two radially compressible retention flanges or flares also provided on the contact. The deflectable tine operates on the principle of long beam deflection while the retention flanges or flares operate on the principle of radial compression, resulting in a highly reliable and rugged releasable contact construction. The contact is additionally provided with a plurality of keylike embossments which serve to provide a positive multi-point stop for contact insertion as well as to aid in pre-aligning the contact in proper position in the contact housing. Also provided is a stabilizer collar having a slight press fit in the housing which serves to maintain the contact securely aligned after insertion.

The specific nature of the invention as well as other objects, features, advantages and uses thereof will become evident from the following detailed description of an exemplary embodiment taken in conjunction with the accompanying drawings in which:

FIG. 1 is a perspective view of an electrical connector assembly comprised of mating socket and pin connector parts in accordance with the invention.

FIGS. 2a and 2b are side views of the pin and socket connector parts of FIG. 1 additionally illustrating how each may be mounted in a panel in accordance with the invention.

FIGS. 3 and 4 are front and side longitudinal cross-sectional views illustrating the construction and mating 35 of an engaged pair of electrical connector pin and socket contacts in accordance with the invention.

FIGS. 5 and 6 are cross-sectional views taken along the lines 5-5 and 6-6 in FIGS. 3 and 4 illustrating further details of the retention tines and flares provided 40 on each contact in accordance with the invention.

Like characters designate like elements throughout the figures of the drawings.

To facilitate an understanding of the connector assembly illustrated in FIGS. 1 and 2, elements of the pin connector part 12 are designated by numbers less than 100, while elements of the socket connector part 112 are designated by numbers between 100 and 200, and the panel illustrated in FIG. 2 is designated by the number 100. The mating pin and contact constructions illustrated in FIGS. 3-6 are given designations such that elements associated with the pin contact 212 are designated by numbers between 200 and 300, while elements associated with the socket contact 312 are designated by numbers between 300 and 400. Also, where appropriate and helpful to the description, sub-portions of a larger element in the drawings are designated by the numeral of the larger element followed by the letter *a*, *b*, *c*, etc. To further aid a ready understanding of the invention, mating or similar functioning parts on different elements are usually designated by numbers differing exactly by 100.

It is additionally to be noted that the present invention is primarily directed to the provision of improved mounting means on electrical connectors and to an improved releasable contact construction, and that other connector portions may be conventional. Accordingly, such conventional portions are referred to only briefly

and generally in the description, since they may readily be provided by those skilled in the art.

First to be considered with reference to FIGS. 1 and 2 is an exemplary embodiment of panel mounting means which may be provided for a connector assembly in accordance with the invention. As shown, the connector assembly comprises a pin connector part 12 and a mating socket part 112. Either or both of the pin connector and socket connector parts 12 and 112 may be provided with panel mounting means in accordance with the invention so as to permit either one to be mounted in a panel 100 as shown in FIG. 2.

The pin connector part 12 may typically comprise a generally rectangular-shaped housing 15 of insulating material having a plurality of pin contact receiving cavities 14 (FIG. 1) extending axially therethrough containing pins 16 suitably mounted therein and attached to respective wires 19. Similarly, the mating socket connector part 112 may typically comprise a generally rectangular-shaped housing 115 having socket receiving cavities 114 therein extending axially therethrough containing sockets 116 suitably mounted therein and attached to respective wires 119.

In order to provide for the interconnection and locking together of the pin and socket connectors 12 and 112, an interlock slot 15a is provided on a side of the pin housing 15 for cooperative locking engagement with a dimple 115a provided on a corresponding side of the socket housing 115. Also, the housing 15 and 115 may additionally include notches and/or keyways such as indicated at 15b and 115b for orienting and polarizing purposes. Additional notches 15c and 115c are provided for use during molding.

Each of the pin and socket connector parts 12 and 112 are provided with panel mounting means in accordance with the invention which may be the same on both. Accordingly, only the mounting means provided for the pin connector part 12 will be specifically referred to in the description following, it being understood that the mounting means provided for the socket connector part 112 may be of similar construction with like elements thereof having a numerical designation exactly 100 greater than those used for the pin connector part 12.

As illustrated in the upper portions of FIGS. 1 and 2, the panel mounting means provided on the connector part 12 basically comprise a pair of opposing resilient wings 22 and 32 provided on opposite sidewalls of the housing 15, and which may typically be formed of preset semi-rigid thermoplastic material. As will become evident, the wings 22 and 32 of each pair project angularly from the housing 15 towards one another with the snap-in wing 32 projecting through a centrally located aperture 22a (FIG. 2) provided in the stop wing 22.

Each of the stop wings 22 is provided with bearing surfaces 22b for resiliently bearing against the entry side 100a of the panel 100 (FIG. 2) when the connector part 12 is mounted therein, the direction of insertion being indicated by the arrows 33. These stop wing bearing surfaces 22b are provided on a lateral bar portion 22b extending parallel to and spaced from the sidewall of the housing 15. The snap-in wing bearing surfaces 32b are provided on a tapered locking lip 32a (as best indicated at 132a in the lower half of FIG. 1) for resiliently bearing against the outward side 100b of the panel 100 after insertion. The construction, arrangement and operation of the stop and snap-in wings 22

and 32 are such that, during insertion of the connector part 12 in the panel 100, the snap-in wings 32 first encounter the panel which causes them to deflect inwardly so as to permit passage of the locking lips 32a of the snap-in wings 32 through the panel opening 100c. After passing through the panel opening 100c, the snap-in wings 32 swing back to cause the locking lips 32a to resiliently lock the connector part 12 in the panel 100 between the stop wing and snap-in wing bearing surfaces 22b and 32b as shown in FIG. 2.

In order to prevent overstressing, the connector housing 15 is preferably additionally provided with shoulders 40 which abut against the entry side 100a of the panel 100 so as to provide a positive stop for an inserted connector part at a position corresponding to the maximum panel thickness which the wings are designed to accommodate. It will be understood that a wide range of panel thicknesses may be accommodated by providing the stop and snap-in wings 22 and 32 with the appropriate resiliency.

It is to be noted that the above-described construction and arrangement of exemplary mounting means in accordance with the invention provides the very significant advantages of permitting the stop wing panel bearing surfaces 22b to be provided extending the entire length of the snap-in wing bearing surfaces 32b as well as extending beyond both outer edges thereof in a direction parallel to the panel and lateral to the housing, while also permitting the stop wing bearing surfaces 22b to be provided at a position spaced from the housing sidewall which is large relative to that of the snap-in wing locking lip bearing surfaces 32b, and preferably is at least 50 percent greater. As a result, a housing having panel mounting means in accordance with the invention can be most firmly and securely mounted in a panel having a wide range of possible thicknesses, while also being rapidly insertable and removable without the need for any tools or mechanical fasteners or the like.

It will be understood that the above-described exemplary mounting means in accordance with the invention also provides the additional advantage of not requiring that the panel 100 have a specially shaped or complementary opening. Thus, a housing having panel mounting

means in accordance with the invention may readily be employed with an existing panel opening. It will further be understood that a housing may conveniently and rapidly be removed from the panel merely by manually depressing the free ends of the snap-in wings 32 inwardly so as to permit passage of the snap wing locking lips 32a back through the panel opening 100c.

Next to be considered with reference to FIGS. 3-6 is an exemplary embodiment of a releasable electrical connector contact construction in accordance with the invention which may advantageously be employed in providing the pin and socket terminals 16 and 116 generally illustrated in FIG. 1. FIGS. 3 and 4 are front and side cross-sectional views illustrating a pin contact 216 in mating engagement with a socket contact 316.

Each of the contacts 216 and 316 may typically be provided in a generally cylindrical shape with respective longitudinal slots 215 and 315 by appropriately shaping a sheet metal blank having suitable electrical and mechanical properties. It will be noted that, except for the mating pin and socket portions 200 and 330 (which may be of conventional construction), the remaining portions of the pin and socket contacts 216

and 316 may typically have essentially the same construction.

The description to follow will accordingly specifically refer only to the pin contact 216, it being understood that the socket contact 316 is similarly constructed with like elements there of having a number exactly 100 greater than that used for the pin socket 216.

It will be seen in FIGS. 3 and 4 that the pin contact 216 includes a ferrule 217 for providing a crimping attachment to a wire 219. Forwardly of the ferrule 217, the contact 216 is provided with a resilient collar 221 having a slight press fit with respect to the cavity 214 so as to permit its serving as a stabilizer to maintain the contact securely aligned after insertion. Immediately ahead of the collar 221 are keylike embossments 223 which contact an annular shoulder 214a in the cavity 214 and provide a positive multi-point stop for an inserted contact. This multi-point stop additionally serves to pre-align the contact in proper position.

Further forward of the embossments 223 (and as best shown in FIGS. 4 and 5), the contact 216 is provided with releasable retention means cooperating with a common annular retention shoulder 214b. These releasable retention means comprise a deflectable retention tine 230 provided on one side of the contact, and two outwardly projecting retention flares or flanges 240 provided on the opposite side of the contact and on opposite sides of the slot 215 (FIG. 5). The deflectable tine 230 is deflectable into an appropriate opening 231 (FIG. 5) provided in the contact 216 and operates on the principle of long beam deflection. When the contact 216 is inserted from the rear (that is, from the upper end as seen in FIGS. 3 and 4), the retention tine 230 deflects to pass through the smallest diameter portion of the cavity 214, which is constituted by the bore 214c of the cavity 214 located between the oppositely facing shoulders 214a and 214b. After passing through the bore 214c, the retention tine 230 swings back to abut the retention shoulder 214b and thereby retain the contact 216 in the cavity 214.

The retention flares 240, on the other hand, operate on the principle of radial compression. Accordingly, when the contact 216 is inserted from the rear, the contact body is radially compressed by the bore 214c to permit passage of the flares 240 therethrough. After the flares 240 pass through the bore 214c, the contact body relaxes to cause the flares 240 to abut the retention shoulder 214b along with the deflectable retention tine 230. An unusually reliable and rugged retention of the contact in its cavity is thereby achieved.

In order to remove the contact 216, a readily provable appropriate hand tool may be employed to inwardly deflect the retention tine 230 while at the same time radially compressing the contact body so as to disengage both the retention tine 230 and the flares 240 from the retention shoulder 214b, thereby permitting the contact to be withdrawn. In this regard, it is most advantageous that the end portion of the retention tine 230 be shaped, as shown in FIG. 4, to be generally parallel to the longitudinal axis of the contact. This permits the hand tool to provide sufficient inward deflection of the retention tine 230 for release thereof without the end of the tool having to be inserted to a position where it reaches the end of the retention tine 230 and the retention flares 240. Thus, the tool can provide for release of the retention tine 230 and accommodate the flares 240.

Although the invention has been described herein with respect to particular exemplary embodiments, it is to be understood that the invention is subject to a wide range of possible modifications in construction, arrangement and/or use without departing from the scope of the invention as defined in the appended claims.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. A panel-mountable electrical connector part comprising:

a housing, first and second pairs of resilient wings provided on opposite sides of said housing, each pair of wings comprising a stop wing and a snap-in wing projecting from said housing towards one another with the outward end portion of said snap-in wing projecting through an aperture provided in said stop wing,

said stop wing being provided with bearing surfaces at its outward end for resiliently bearing against the entry side of a panel when the connector part is mounted therein and said snap-in wing being provided with a locking lip having bearing surfaces for resiliently bearing against the opposite side of the panel, the stop wing bearing surfaces being provided extending the entire length of the locking lip bearing surfaces as well as extending beyond both outer edges thereof in a direction parallel to the panel and lateral to the housing,

said snap-in wing being deflectable towards said housing and said locking lip being shaped so as to cause deflection of said snap-in wing during panel insertion sufficient to permit passage of said locking lip and its bearing surfaces through the panel opening for bearing against the opposite side of the panel after return of the snap-in wing to its undeflected position,

said stop wing having a central opening through which the outward end portion of said snap-in wing projects to permit manual inward deflection thereof from the entry side of the panel, said stop and snap-in wings being further constructed and arranged with said stop wing projecting outwardly beyond said snap-in wing so that the stop wing bearing surfaces extend to a position spaced from said housing which is large relative to that of the snap-in wing bearing surfaces provided on said locking lip.

2. The invention in accordance with claim 1, wherein the spacing of said stop wing bearing surfaces is at least 50 percent greater than the spacing of said locking lip bearing surfaces from said housing.

3. The invention in accordance with claim 1, wherein said housing additionally includes means providing a positive stop for the housing when inserted in a panel at a position corresponding to the maximum permitted panel thickness.

4. The invention in accordance with claim 1, wherein said wings are formed of preset semi-rigid thermoplastic material.

5. The invention in accordance with claim 1, wherein at least one electrical contact is mounted in said housing.