
(19) United States
US 2006O179287A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0179287 A1
Kim et al. (43) Pub. Date: Aug. 10, 2006

(54) APPARATUS FOR CONTROLLING
MULT-WORD STACK OPERATIONS IN
DIGITAL DATA PROCESSORS

(76) Inventors: Yong-Chun Kim, Yongin-shi (KR);
Hong-Kyu Kim, Yongin-shi (KR);
Seh-Woong Jeong, Yongin-shi (KR)

Correspondence Address:
F. CHAU & ASSOCIATES, LLC
13O WOODBURY ROAD
WOODBURY, NY 11797 (US)

(21) Appl. No.: 11/369,722

(22) Filed: Mar. 7, 2006

Related U.S. Application Data

(63) Continuation of application No. 09/338.473, filed on
Jun. 22, 1999, now Pat. No. 7,028,163.

Instruction
DeCOder

SP Contro
logic

(30) Foreign Application Priority Data

Jun. 22, 1998 (KR)... 98-23335
Sep. 29, 1998 (KR)... 98-40587

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl. .. 712/225

(57) ABSTRACT

A digital data processor comprising a stack storage having a
plurality of locations classified into two or more banks, and
a stack pointer circuit pointing to one or more stack banks
of the stack storage. The stack pointer circuit operates in
response to decoding signals from an instruction decoder
which decodes a current instruction to determine whether a
one-word or a multi-word Stack operation is desired.

400

Fig. 1
(Prior Art)

Address

31

6

5

4

3
22
252
22
252
2S2

2

1

O

US 2006/0179287 A1 Patent Application Publication Aug

O
O
O

Jap0000 UO? ?on I ? su |

US 2006/0179287 A1

#WSOG

Patent Application Publication Aug. 10, 2006 Sheet 3 of 10

S} |g Jep10

Patent Application Publication Aug. 10, 2006 Sheet 4 of 10 US 2006/0179287 A1

Fig. 4A

y
Address Address

210

Bank1 Bank0

Fig. 4B

<One Word Pushed

ZZZZZ2

%5%
Bank1 Bank0

Patent Application Publication Aug. 10, 2006 Sheet 5 of 10 US 2006/0179287 A1

Fig. 4C

<TWO Word PuShe

Address Address 210

224747247 444/

25Z2

Bank Bank0

Fig. 4D

<One Word Pop>

Patent Application Publication Aug. 10, 2006 Sheet 6 of 10 US 2006/0179287 A1

Fig. 4E

<Two Word Pop>
Address Address

Fig. 5A
300

/

2

25%
Bank1 Bank0

<0dd Address>

Patent Application Publication Aug. 10, 2006 Sheet 7 of 10 US 2006/0179287 A1

Fig. 5B

<One Word Push
Address Address 210

Fig. 5C

<TWO Word PuSh>

210 Address Address 230

* L2 3

2%,

Bank1 Bank0

Patent Application Publication Aug. 10, 2006 Sheet 8 of 10 US 2006/0179287 A1

Fig. 5D

<One Word Pop>

Address Address

Bank1 Bank0

Fig. 5E

<Two Word Pop>

Address Address

Bank1 Bank0

US 2006/0179287 A1

r–
| L.

Patent Application Publication Aug. 10, 2006 Sheet 9 of 10

Patent Application Publication Aug. 10, 2006 Sheet 10 of 10 US 2006/0179287 A1

Fig. 7A
<Even Address>

Fig. 7B

<0dd Address>

NER BSP
MPSCn: 12+1

MPS<n: 1)

MPSCn: 12

US 2006/0179287 A1

APPARATUS FOR CONTROLLING MULT-WORD
STACK OPERATIONS IN DIGITAL DATA

PROCESSORS

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application is a Continuation of U.S. patent
application Ser. No. 09/338.473, filed on Jun. 22, 1999,
which is fully incorporated herein by reference.

BACKGROUND

0002) 1. Technical Field
0003. The present invention relates generally to micro
architecture design of digital data processors and, more
particularly, to an apparatus for controlling a multibank
stack storage device embedded in a digital data processor.
0004 2. Description of Related Art
0005. Many conventional programmable digital data pro
cessors, such as microcontroller units (MCUs) and digital
signal processors (DSPs), use stack-based instruction sets. A
data stack is a storage device that stores information in Such
a manner that the last stored information item is the first item
retrieved, i.e., a stack is accessed in a Last-In, First-Out
(LIFO) fashion.
0006. In general, two operations of a stack are the inser
tion and deletion of stack items. When a new item is inserted
to the stack, it is said to be “pushed onto the stack.
Conversely, when an item is deleted from the stack, it is said
to be “popped off the stack. The stack may store program
data Such as operands or their results, or address pointers,
Subroutine parameters, and register contents for either Sub
routine calls and returns or interrupt acknowledges and
returns. All “push” and “pop” operations are performed by
utilizing the top of the stack. In other words, the top of stack
(TOS) is the memory location that is normally read or
written. The register that holds the address for the stack is
called a stack pointer (SP). This pointer indicates the loca
tion of the top of the stack.
0007. In a system (e.g., a computer) having a digital data
processor chip, a stack may exist as a stand-alone unit or
may be implemented in a random access memory (RAM)
unit attached to the processor chip. This stack is organized
from a software point of view, and is generally called a
“software' stack (sometimes called a “memory’ stack).
Also, a stack can be organized as a collection of a finite
number of registers embedded within a digital processor
chip. This type of stack is called a “hardware” stack (some
times called a “register stack”).
0008. The software stack is convenient to use because it
allows a user to adjust the stack to a desired size. But, its
structure is disadvantageous in view of operating speed and
power dissipation since it is required to access external units.
On the other hand, the embedded hardware stack structure is
Suitable for meeting the higher stack operation requirements,
for example, a context Switching (in which all the contents
of several internal registers of the processor chip are saved
on the stack for a short time). Also, the hardware stack
requires low power consumption because there is no need
for accessing any external unit Such as a memory. Conse
quently, such stack-embedded processors have been used for

Aug. 10, 2006

Small battery-powered systems having low power consump
tion requirements, such as mobile telephones. The drawback
of the embedded Stack is that users cannot change its size.
0009 FIG. 1 shows the organization of a conventional
hardware stack. Referring to FIG. 1, the stack 10 has the
storage capacity of 32 words. The stack pointer (SP) 20
contains a binary number whose value is equal to “the
current stack top word address (Ars)+1. For a stack that
can store 32 words, the stack pointer 20 should contain 5 bits
since 2=32. A stack pointer 20 having five bits cannot
exceed a number greater than 31 (11111 in binary).
0010. As illustrated in FIG. 1, five items are placed in the
32-word stack 10: A, B, C, D, and E in the order shown.
With item E on top of the stack, the content of the stack
pointer 20 is 5 (i.e., 00101 in binary). To insert a new item,
the stack storage 10 is “pushed by storing the new item into
the location indicated by the stack pointer 20 (i.e., the
location at address 5) and then incrementing the stack
pointer 20 so as to point to the next-higher order location at
address 6. For removal of the top item E at address “4, the
stack storage 10 is “popped by decrementing the content of
the stack pointer 20 first and then retrieving the top item E
from the location at address “4, so that the stack pointer 210
contains 4 to indicate the top location.
0011 Typically, digital data processors are categorized in
terms of the number of binary bits in the data they process,
i.e., their word length. For example, an 8-bit processor to
process information by 8 bits (1 byte) has an 8-bit wide
stack, hence only one word (i.e., 8 bits) is able to be pushed
onto the stack at a time.

0012. A digital processor will generally be designed to
have its address bit width larger than its data bit width in
order to acquire an adequate amount of memory address
space. For example, an 8-bit processor may have its address
being 16 bits or more in size even though its data word is
only 8-bit wide. In such a case, to push or pop a 16-bit
address (e.g., for a Subroutine call or return operation) onto
or off an 8-bit stack, the 16-bit address should be first
divided into two 8-bit portions, and then the two portions are
pushed/popped on/off the stack in twice, which causes
degradation in processor performance. Accordingly, a digital
processor that provides improved performance of stack
based operations is desired.

SUMMARY OF THE INVENTION

0013 The present invention is directed to an improved
hardware stack for digital data processors. In one aspect of
the present invention, a hardware stack comprises an instruc
tion decoder generating a plurality of decoding signals, each
of the plurality of decoding signals denoting one of a
plurality of stack operations, a stack storage comprising a
plurality of storage locations, each of the plurality of storage
location being classified into one of at least two banks, and
a stack pointer circuit for pointing to at least one of the stack
banks of the stack storage in response to at least one
decoding signal to thereby cause a stack operation.

0014. In another aspect of the present invention, a digital
data processor comprises a stack storage having a plurality
of locations each accommodating a one-word item only, and
a stack pointer circuit that points to one or more locations of
the Stack storage at a one time. The locations of the stack

US 2006/0179287 A1

storage is classified into two or more banks. In addition, an
instruction decoder is provided for decoding an instruction
and generating a plurality of decoding signals which denote
a one-word Stack operation or multi-word Stack operations.
The stack pointer circuit points to one or more stack banks
at a time in response to the decoding signals such that a
one-word item or a multi-word item can be pushed into or
popped from the stack banks at a time.
0.015 According to yet another aspect of the present
invention, a digital processor preferably comprises a stack
storage having two banks, a stack pointer for the stack
storage, and a stack storage control circuit which inserts and
removes either a one-word item or a two-word item into and
from the stack storage at a time on the basis of a content of
the stack pointer. The two-word item is inserted into and
removed from two adjacent locations of the stack storage at
a time. The Stack storage control circuit increases or
decreases the content of the stack pointer by one when the
decoding signals indicate a one-word Stack operation. Addi
tionally, the stack storage control circuit increases or
decreases the content of the stack pointer by two when the
decoding signals indicate a two-word Stack operation.
0016. According to another aspect of the present inven
tion, the digital data processor comprises a main stack
pointer, first and second stack pointers, and a stack pointer
control logic circuit. The main stack pointer, the first and
second stack pointers are provided for pointing to one of the
locations of the stack storage, to one of the locations of the
first bank, and to one of the locations of the second bank,
respectively. The instruction decoder decodes a stack-based
instruction and generates a plurality of decoding signals
which denote one-word push, one-word pop, two-word push
and two-word pop operations. The stack pointer control
logic circuit controls the first and second bank Stack pointers
in response to the decoding signals such that a one-word
item or a two-word item is inserted into and removed from
the stack storage at a time on the basis of a content of the
main stack pointer. The first and second banks preferably
have the same size. One of the first and second banks
includes the locations whose addresses have least significant
bits of 0s and the other of the first and second banks
includes the locations whose addresses have least significant
bits of 1 S.

0017. These and other aspects, features and advantages of
the present invention will be described and become apparent
from the following detailed description of preferred embodi
ments, which is to be read in connection with the accom
panying drawings in which like reference symbols indicate
the same or similar components.

BRIEF DESCRIPTION OF THE DRAWINGS

0018 FIG. 1 is a schematic diagram illustrating a con
ventional hardware stack architecture for digital processors;
0.019 FIG. 2 is a block diagram illustrating a hardware
stack according to a preferred embodiment of the present
invention;
0020 FIG. 3 is a high level block diagram illustrating a
detailed circuit configuration of a stack pointer circuit
according to an embodiment of the present invention;
0021 FIGS. 4A through 5E are schematic views which
illustrate methods of operation of the stack pointer circuit
according to the present invention;

Aug. 10, 2006

0022 FIG. 6 is a high level block diagram illustrating a
stack pointer circuit according to another embodiment of the
present invention; and
0023 FIGS. 7A and 7B are tables showing content
variations of the stack pointers of FIG. 6 in accordance with
stack instructions and content of the main stack pointer.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0024. The present invention relates to an improved hard
ware stack for digital data processors. In order to provide a
thorough understanding of the present invention, the com
monarchitecture of digital data processors will be explained
before the description of the preferred embodiments.
0025. A digital data processor typically contains an arith
metic and logic unit (ALU), a set of registers (or register
file), and a control unit (CU). These three sections are
connected through internal buses.
0026. One function of the ALU is to perform arithmetic
operations such as add, Subtract, multiply and divide on
operands presented to it by the CU. Another function of the
ALU is to perform boolean operations, such as NOT AND,
OR, and EXclusive-OR. Other operations performed by the
ALU include clear, increment, rotate and shift in both
arithmetic and logic form.
0027. The register set includes both general- and special
purpose types, as is well known to those skilled in the art.
One special register is the program counter (PC) which
points to the memory location where the next sequential
instruction is to be found. This register is automatically
updated following the execution of the current instruction
unless the current instruction is a branch or jump. Another
special register is the instruction register (IR) which tem
porarily stores instructions that are fetched from memory.
The stack pointer (SP) is a special register which holds the
address of a stack unit for the temporary storage of variables.
Additionally, an accumulator (ACC) and status register (SR)
are used for special purposes. The ACC holds data fetched
from memory, passes this data onto the ALU for some
calculation, receives results back from the ALU and then
passes these results back to memory. The ALU operations
affect flag bits in the SR. These bits can be subsequently
used to test for conditional jumps, which are taken depend
ing on whether a carry, overflow, negative or Zero result was
obtained.

0028. Typically, program execution in a digital data pro
cessor involves such steps as repeatedly fetching, decoding
and executing these instructions, one at a time. An instruc
tion fetch involves loading the IR with the contents of a
particular memory location, followed by incrementing the
PC to the next sequential location unless the current instruc
tion is a branch or jump. Instructions fetched from memory
are passed via the IR to the instruction decoder for decoding
and Subsequent execution. The instruction decoder deter
mines what operation needs to be performed. The CU carries
out the decoded instruction by selecting the appropriate
combination of individual control lines.

0029 Preferred embodiments of the present invention
will now be described in detail with reference to the accom
panying drawings. Reference is made first to FIG. 2, which
illustrates an architecture of a hardware stack device 500

US 2006/0179287 A1

according to a preferred embodiment of the invention. The
stack device 500 is intended to be incorporated within a
programmable digital data processor, Such as a micropro
cessor, a microcontroller unit, or a digital signal processor.

0030) Referring to FIG. 2, the stack device 500 is con
nected with a register set 400 to provide a temporary storage
for the register set 400. The stack device 500 comprises a
stack pointer circuit 200 and a stack storage 300. The stack
storage 300 is subdivided into two banks BANKO and
BANK1. The first stack bank BANKO comprises stack
locations whose least significant bits (LSBs) of addresses are
O's and the second stack bank BANK1 comprises other
locations whose LSBs of addresses are 1’s. The stack pointer
circuit 200 comprises a main stack pointer (MSP) 210 of n+1
bits, two n bit-wide bank stack pointers (BSPs) 230 and 240
for pointing to the tops of the stack banks BANKO and
BANK1, respectively, and a stack pointer control logic
circuit 220 for controlling the stack pointers 210, 230 and
240, where n is a positive integer. The main stack pointer
(sometimes called a user stack pointer) 210 is designed to
contain a binary number whose value equals “the top word
address (Ars)+1. A stack storage control circuit, compris
ing the first and second bank stack pointers 230, 240 and the
stack pointer control circuit 220, inserts and removes either
a one-word item or a two-word item into and from the stack
storage 300 at a time on the basis of a content of the main
stack pointer 210 in response to a plurality of decoding
signals from an instruction decoder 100.
0031 FIG. 3 is a high level block diagram illustrating a
detailed circuit configuration of a stack pointer circuit 200
according to and embodiment of the present invention.
Referring to FIG. 3, the stack pointer circuit 200 comprises
a stack pointer control logic circuit 220a for controlling the
stack pointers 210, 230 and 240, which comprises an adder
221, first, second, and third multiplexers (MUXs) 222, 225
and 226 serving as selectors, an increment logic circuit 223,
and first and second MUX control logic circuits 224 and
227. The multiplexers 222, 225 and 226 are preferably 2x1
multiplexers, each having two inputs IN1, IN2 and an output
OUT. The characters 'S' and E for each of the multiplexers
222, 225 and 226 denote a select terminal and an enable
terminal, respectively.

0032) The adder 221 adds +1, +2, -1, or '-2' to the
content MSP-n:0> of the main stack pointer 210 in response
to a first instruction decoding signal DCSA1 from the
instruction decoder 100, which indicates the types of stack
based instructions. Specifically, if the first instruction decod
ing signal DCSA1 indicates a one-word (i.e., 8-bit) push
operation, the adder 221 adds +1 and the content
MSP-n:0> of the stack pointer 210. If the first instruction
decoding signal DCSA1 indicates a one-word pop operation,
the adder 221 adds -1 to the content MSP&n:0>. For a
two-word (i.e., 16-bit) push operation, +2 is added to the
content MSP-n:0>; and for a two-word pop instruction, -2
is added.

0033. The first multiplexer 222 selects one of the content
MSP-n:0> of the main stack pointer 210 and the content
ADD-n:0> of the adder 221 in response to a second instruc
tion decoding signal DCSA2 provided from the instruction
decoder 100, which functions as a “select control signal for
the first multiplexer 222. Specifically, when the instruction
decoder 100 indicates a push operation by generating a

Aug. 10, 2006

second instruction decoding signal DCSA2 of logic 0, the
first multiplexer 222 selects the output MSP-n:0> of the
main stack pointer 210. Thereafter, the main stack pointer
210 is updated by the resultant content ADD-n:0> of the
adder 221. On the other hand, when the instruction decoder
100 indicates a pop operation by generating an instruction
decoding signal DCSA2 of logic 1, the first multiplexer
222 selects the output ADD-n:0> of the adder 221, and then
the main stack pointer 210 is also updated by the resultant
value ADDan:0> of the adder 221.

0034) For the sole purpose of illustration, and by way of
example with reference to FIG. 2, the stack storage 300 is
assumed to have the storage capacity of 32 words, with each
of the stack banks BANKO and BANK1 having the storage
capacity of 16 words. With this example, the main stack
pointer 210 is assumed to contain 5 bits of MSP-4:0> (since
2=32) and each of the bank stack pointers 230 and 240 is
assumed to be 4-bit wide (since 2'-16). In addition, it is
assumed that (1) the stack pointer circuit 200 of the inven
tion is incorporated within an 8-bit processor intended to
process 8-bit data (1-byte-wide); (2) the stack storage 300 is
8-bit wide; and (3) the 8-bit processor is loaded with 8
(single- or one-word) or 16-bit (double- or two-word) wide
stack items. An example of the 16-bit items (i.e., two-word
items) includes an address stored in the program counter
(PC).
0035). Of the five bits MUX1<4:0> output from the first
multiplexer 222, the least significant bit MUX1<0> is
applied to first and second MUX control logics 224 and 227,
and the remaining four high-order bits MUX1<4:12 output
from the first multiplexer 222 are provided to an increment
logic circuit 223. The MUX1<4:1> are also provided to first
inputs IN1 of the respective second and third multiplexers
225 and 226.

0036) The increment logic circuit 223 increments the
MUX1<4:1d (which is output from the first multiplexer 222)
by 1. The content INC-3:0> output from the increment logic
circuit 223 is provided to the second inputs IN2 of the
respective multiplexers 225 and 226, each of which selects
one of the MSP-4:1> from the first multiplexer 222 and the
output INC-3:0> of the increment logic circuit 223 in
response to the corresponding select control signal SA1 or
SA2. The output MUX2<3:0> of the second multiplexer 225
is provided to the second bank stack pointer 240, while the
output MUX3<3:0> of the third multiplexer 226 is provided
to the first bank stack pointer 230.
0037. The first MUX control logic circuit 224 receives
the MUX1<0> from the first multiplexer 222 and a third
instruction decoding signal DCSA3 from the instruction
decoder 100, and generates a first MUX enable signal EA1
and a select control signal SA1 for the second multiplexer
225. The second MUX control logic circuit 227 receives the
MUX1<0> from the first multiplexer 222 and a fourth
instruction decoding signal DCSA4 from the instruction
decoder 100, and generates a second MUX enable signal
EA2 and a select control signal SA2 for the third multiplexer
226.

0038. When the MUX1<0> is logic “1” and the decoding
signals DCSA3 and DCSA 4 indicate a one-word operation,
the first MUX control logic circuit 224 enables the second
multiplexer 225, while the second MUX control logic circuit
227 disables the third multiplexer 226. Conversely, when the

US 2006/0179287 A1

MUX1<0> is logic “0” and the decoding signals DCSA3 and
DCSA 4 indicate a one-word operation, the first MUX
control logic circuit 224 disables the second multiplexer 225
while the second MUX control logic circuit 227 enables the
third multiplexer 226. In short, during a one-word operation,
either of the first and second MUX control logic circuits 224
and 227 generates the respective select control signals SA1
or SA2 of logic 0, so that the second or third multiplexer
225 and 226 selects the MUX1<4:1> from the first multi
plexer 222.
0039. On the other hand, when the instruction decoding
signals DCSA3 and DCSA4 indicate a two-word operation,
the second and third multiplexers 225 and 226 both are
enabled by the first and second MUX control logic circuits
224 and 227, respectively, regardless of the logic state of the
MUX10>.

0040. Additionally, if the MUX1<0> is logic “0” during
the two-word operation, then the first and second MUX
control logic circuits 224 and 227 generate a select control
signal SA1 of logic “1” and a select control signal SA2 of
logic 0, respectively, so that the second multiplexer 225
selects the output INC-3:0> of the increment logic circuit
223 and the third multiplexer 226 selects the MUX1<4:1>
from the first multiplexer 222. In contrast, if the MUX1<0>
is logic “1” during the two-word operation, then the first and
second MUX control logic circuits 224 and 227 generate a
select control signal SA1 of logic “0” and the select control
signal SA2 of logic 1, respectively, so that the second
multiplexer 225 selects the MUX1<4:1> from the first
multiplexer 222 and the third multiplexer 226 selects the
output INC-3:0> of the increment logic circuit 223.
0041. Hereinafter, various modes of operation of the
stack pointer circuit 200 of FIG. 3 will be explained with
reference to FIGS. 4A through 5E, wherein the numbers
within the respective blocks (i.e., locations) of the two banks
BANKO and BANK1 represent the addresses of the stack
storage 300; the numbers outside the blocks represent the
bank addresses of the corresponding bank; the dashed blocks
represent the locations having items; the bold box represents
the result of a push operation; and the dashed box represents
the result of a pop operation.

0.042 FIG. 4A illustrates a situation where the main
stack pointer 210 points to the location at an even address '4'
(="00100 in binary) of the stack storage 300, i.e., a bank
address 2 (="0010 in binary) of the first bank BANKO.
FIGS. 4B through 4E illustrate the results of a one-word
push, a two-word push, a one-word pop, and a two-word pop
operation, respectively, based on the example shown in FIG.
4A. Each of these stack operations will now be described in
further detail.

0043. To begin, referring now to FIG. 3 and FIG. 4B,
during a one-word push (e.g., 8-bit push) operation, the
stack pointer circuit 200 of FIG.3 operates as follows. The
adder 221 adds +1 to the content of the main stack pointer
210 in response to the instruction decoding signal DCSA1
from the instruction decoder 100. The first multiplexer 222
selects the content (00100) of the main stack pointer 210
in response to the instruction decoding signal DCSA2 from
instruction decoder 100. Since the MUX1<0> (output from
the first multiplexer 222) is logic 0, the second multiplexer
225 is disabled by the first MUX control logic circuit 224 in
response to the instruction decoding signal DCSA3 from the

Aug. 10, 2006

instruction decoder 100, whereas the third multiplexer 226
is enabled by the second MUX control logic circuit 227 in
response to the instruction decoding signal DCSA4 from the
instruction decoder 100. The third multiplexer 226 selects
the MUX1<4:1> of "0010 (=2) in response to the select
control signal SA2 from the second MUX control logic
circuit 227. As a result, the first bank stack pointer 230
contains a bank address of 2. Accordingly, a new one-word
stack item from the register set 400 is stored in the location
at the bank address 2 of the first bank BANK0, i.e., at the
address “4” of the stack storage 300. Finally, the main stack
pointer 210 is updated by the content (5') of the adder 221,
so that the pointer 210 points to the next location at address
“5” of stack storage 300.
0044) Next, during a two-word push operation (e.g.,
16-bit push), the first multiplexer 222 also selects the content
(00100) of the main stack pointer 210 in response to the
instruction decoding signal DCSA2. Both the second and
third multiplexers 225, 226 are enabled independent of the
LSB MUX1<0> (which is output from the first multiplexer
222) because of the two-word operation. The second and
third multiplexers 225, 226 both select the MUX1<4:1>
(0010) in response to the respective select control signals
SA1 and SA2, so that the bank stack pointers 230 and 240
each contain the same bank address of 2. Accordingly, a
new two-word stack item from the register set 400 is stored
in the locations at the bank addresses '2s of the respective
banks BANKO and BANK1, i.e., at the addresses “4” and 5
of the stack storage 300. In this operation, the adder 221
adds +2 to the content (4) of the main stack pointer 210
and the main stack pointer 210 is updated by the content of
the adder 221, allowing the pointer 210 points to the next
location at address 6 of stack storage 300 as shown in FIG.
4C.

0045 Next, with the one-word pop operation, the adder
221 adds -1 to the content (4) of the main stack pointer
210. The first multiplexer 222 selects the content ('00011)
of the adder 221 in response to the instruction decoding
signal DCSA2. Since the MUX1<0> is logic 1, the second
multiplexer 225 is enabled while the third multiplexer 226 is
disabled. The second multiplexer 225 selects the
MUX1<4:1> of 0001 in response to the select control
signal SA1 from the first MUX control logic circuit 224. As
a result, the second bank Stack pointer 240 contains a bank
address of 1. Accordingly, the one-word item is removed
from the location at the bank address 1 of the second bank
BANK1, i.e., at the address 3 of the stack storage 300.
Finally, the main stack pointer 210 is updated by the content
(3) of the adder 221, so that the pointer 210 points to the
top location at address 3 of stack storage 300 as illustrated
in FIG. 4D.

0046) Next, during a two-word pop operation, the adder
221 adds -2 to the content (4) of the main stack pointer
210, so that the adder 221 contains 2. The first multiplexer
222 selects the content (00010) of the adder 221 in
response to the instruction decoding signal DCSA2. In this
operation, both the second and third multiplexers 225, 226
are enabled. The second and third multiplexers 225, 226
each select MUX1<4:1> of 0001 from the first multiplexer
222 in response to the respective select control signals SA1
and SA2, so that the bank stack pointers 230 and 240 each
contain the same bank address of 1. Accordingly, the
two-word item is deleted from the locations at the bank

US 2006/0179287 A1

addresses is of the respective banks BANK0 and BANK1,
i.e., at the addresses 2 and 3 of the stack storage 300. The
main stack pointer 210 is also updated by the content (2)
of the adder 221, allowing the pointer 210 to point to the top
location at address 2 of stack storage 300 as shown in FIG.
4E.

0047 FIG. 5A illustrates the situation where the main
stack pointer 210 points to the location at an odd address 5’
(="00101) of the stack storage 300, i.e., a bank address 2
(="0010) of the second bank BANK1. FIGS. 5B through
5E illustrate results of a one-word push, a two-word push, a
one-word pop, and a two-word pop operation, respectively,
based on the example shown in FIG. 5A. Each of these stack
operations will now be described in further detail.
0.048. To begin, during a one-word push operation, the

first multiplexer 222 selects the content ("00101) of the
main stack pointer 210 in response to the instruction decod
ing signal DCSA2. The second and third multiplexer 225
and 226 are enabled and disabled, respectively, because the
MUX1<0> is 1. The second multiplexer 225 selects the
MUX1<4:1> of "0010 in response to the select control
signal SA1 from the first MUX control logic circuit 224. As
a result, the second bank Stack pointer 240 contains a bank
address of 2. Accordingly, a new one-word item is stored
in the location at the bank address 2 of the second bank
BANK1, i.e., at the address 5 of the stack storage 300. The
adder 221 adds +1 to the content (5') of the main stack
pointer 210, and the main stack pointer 210 is updated by the
content (6) of the adder 221, so that the pointer 210 points
to the next location at address 6 of stack storage 300 as
illustrated in FIG. S.B.

0049 Next, during a two-word push operation, the first
multiplexer 222 selects the content (00101=5) of the main
stack pointer 210 in response to the instruction decoding
signal DCSA2. The second and third multiplexers 225, 226
are both enabled because of two-word operation. The incre
ment logic circuit 223 increases the MUX1<4:1> of "0010
by one. The second multiplexer 225 selects the MUX1<4:1>
of 2 in response to the select control signal SA1 from the
first MUX control logic circuit 224 and the third multiplexer
226 selects the content ("0011) of the increment logic
circuit 223 in response to the select control signal SA2 from
the second MUX control logic circuit 227. As a result, the
first bank stack pointer 230 contains a bank address of 0011
(=3) and the second bank stack pointer 240 contains a bank
address of 0010 (=2). Accordingly, a new two-word item is
inserted into the locations at the bank addresses 2 and 3
of the respective banks BANK1 and BANK0, i.e., at the
addresses “5” and 6 of the stack storage 300. In this
operation, the adder 221 adds +2 to the content (5') of the
main stack pointer 210 and the main stack pointer 210 is
updated by the content of the adder 221, allowing the pointer
210 points to the next location at address 7 of stack storage
300 as shown in FIG. SC.

0050. Next, during a one-word pop operation, the adder
221 adds -1 to the content (5) of the main stack pointer
210. The first multiplexer 222 selects the content ("00100 =
4) of the adder 221 in response to the instruction decoding
signal DCSA2. Since the MUX1<0> is 0, the third mul
tiplexer 226 is enabled while the second multiplexer 225 is
disabled. The third multiplexer 226 selects the MUX1<4:1>
of 0010 in response to the select control signal SA1. As a

Aug. 10, 2006

result, the first bank stack pointer 230 contains a bank
address of 2. Accordingly, the one-word item is removed
from the location at the bank address 2 of the first bank
BANK0, i.e., at the address “4 of the stack storage 300.
Thereafter, the main stack pointer 210 is updated by the
content (4) of the adder 221, so that the pointer 210 points
to the top location at address 3 of stack storage 300 as
illustrated in FIG. S.D.

0051 Next, during a two-word pop operation, the adder
221 adds -2 to the content (5) of the main stack pointer
210 in response to the instruction decoding signal DCSA1
and contains 3. The first multiplexer 222 selects the
content (00011 =3) of the adder 221 in response to the
instruction decoding signal DCSA2. The increment logic
circuit 223 increases the MUX1<4:1> of 0001 by one. The
second and third multiplexers 225, 226 are both enabled in
this operation. The second multiplexer 225 selects the
MUX1<4:1d in response to the select control signal SA1 and
the third multiplexer 226 selects the content ("0010) of the
increment logic circuit 223 in response to the select control
signal SA2. As a result, the first bank stack pointer 230
contains a bank address of 2 and the second bank Stack
pointer 240 contains a bank address of 1. Accordingly, the
two-word item is removed from the locations at the bank
addresses 2 and 1 of the respective banks BANKO and
BANK1, i.e., at the addresses 4 and 3 of the stack storage
300. Finally, the main stack pointer 210 is updated by the
content (3) of the adder 221, allowing the pointer 210 to
point to the top location at address 3 of stack storage 300
as shown in FIG. S.E.

0.052 FIG. 6 illustrates a detailed circuit architecture of
a stack pointer circuit 200 of FIG. 2 according to another
embodiment of the invention. Referring to FIG. 6, the stack
pointer circuit 200 comprises a stack pointer control logic
circuit 220b for controlling the stack pointers 210, 230 and
240, which includes an adder 251, three 2x1 multiplexers
252, 253 and 254, and a control logic circuit 255.
0053) The high-order bits MSP-n:1> of the main stack
pointer 210 are applied to the adder 221. The adder 221 adds
+1 or -1 to the MSP-n:1> in response to a instruction
decoding signal DCSB1 from the instruction decoder 100,
which indicates the types of stack-based instructions. The
least significant bit MSP-0> is applied to the control logic
circuit 255, along with an instruction decoding signal
DCSB2 from the instruction decoder 100, which indicates
the types of Stack-based instructions. The control logic
circuit 255 controls the multiplexers 252-254 and the least
significant bit MSP-0> of the main stack pointer 210 in
response to the MSP-0> and the instruction decoding signal
DCSB2. The multiplexers 253 and 254 are exclusively
enabled by MUX enable signals EB1 and EB2 from the
control logic circuit 255, respectively, during one-word
operations, and are both enabled during two-word opera
tions. The MSP-n:1> is commonly applied to first inputs
IN1 of the multiplexers 252-254 and the content ADD-n-
1:02 of the adder 251 is applied to second inputs IN2
thereof. The output MUX1<n-1:0> of the first multiplexer
252 is fed back to the main stack pointer 210. The output
MUX2<n-1:0> of the multiplexer 253 is provided to the
second bank stack pointer 240. The output MUX3<n-1:0>
of the multiplexer 254 is provided to the first bank stack
pointer 230. The respective multiplexers 252-254 selectively
input one of the MSP-n: 12 and the ADD-n-1:0> in

US 2006/0179287 A1

response to select control signals SB1, SB2 and SB3 from
the control logic circuit 255, respectively. The control logic
circuit 255 generates a control signal SB4 for toggling the
MSP&Os

0054 FIG. 7A is a table which illustrates content varia
tions of stack pointers of FIG. 6 in accordance with the stack
instructions in the situation wherein the main stack pointer
contains an even address. FIG. 7B is a table which illustrates
content variations of stack pointers of FIG. 6 in accordance
with the stack instructions in the situation wherein the main
stack pointer contains an odd address.
0.055 Various examples of stack operations of the stack
pointer circuit 200 of FIG. 6 will now be described with
reference to FIGS. 4A-5E, 6, 7A, and 7B. For the purposes
of explanation, it is assumed that the main stack pointer 210
contains 5 bits of MSP-4:0> and each of the bank stack
pointers 230 and 240 is 4-bit wide.
0056 Referring initially to FIGS. 4A, 6 and 7A, a
one-word push (e.g., 8-bit push) operation will now be
described based on the above assumption that the main stack
pointer 210 points to the location at the even address of 4
(=00100 in binary). With this stack operation, the multi
plexer 254 selects the MSP-4:1> of "0010 (=2) in response
to the MUX enable signal EB2 and the select control signal
SB3 from the control logic circuit 255, whereas the multi
plexer 253 is disabled by the MUX enable signal EB1 from
the control logic circuit 255, so that the first bank stack
pointer 230 contains 2. Accordingly, a new one-word item
is stored in the location at the bank address 2 of the first
bank BANK0, i.e., at the address “4” of the stack storage 300.
At this time, the multiplexer 252 selects the MSP-4:1> in
response to the select control signal SB1 from the control
logic circuit 255, and then outputs MUX1<3:0> of 2 which
is fed back to the main stack pointer 210. The control logic
circuit 255 then generates control signal SB4 to toggle the
MSP-0> of logic “0” (refer to FIG. 7A), so that the main
stack pointer contains 00101 (=5) as illustrated in FIG. 4B.
0057 Next, during a two-word push (e.g., 16-bit push)
operation (assuming as in the above example that the main
stack pointer 210 contains the address “4), the adder 251
adds +1 to the MSP-4:12 of 2 in response to the
instruction decoding signal DCSB1 from the instruction
decoder 100. The multiplexers 253 and 254 both are enabled
in response to the MUX enable signals EB1 and EB2 from
the control logic circuit 255, respectively, and they select the
MSP-4:12 of 2, so that the bank stack pointers 230 and
240 each contain the same bank address of 2. Accordingly,
a new two-word item is inserted into the locations at bank
addresses '2s of the respective banks BANKO and BANK1,
i.e., at the addresses 4 and 5 of the stack storage 300. On
the other hand, the multiplexer 252 selects the adder's
content ADD-3:0> of "0011 (=3) in response to the select
control signal SB1. The MUX1<3:0> or ADD-3:0> is
naturally provided to the high-order bits MSP-4:1> of the
main stack pointer 210 with the least significant bit MSP-0>
of logic 0, so that the main stack pointer 210 contains
*00110 (=6) as illustrated in FIG. 4C.
0.058 Next, during a one-word pop operation (assuming
as in the above example that the main stack pointer 210
contains the address “4), the adder 251 adds -1 to the
MSP-4:1> of 2 and the multiplexer 254 is disabled by the
MUX enable signal EB2. The multiplexers 252 and 253

Aug. 10, 2006

Select the content ADD-3:0> of 1 from the adder 251 in
response to the select control signals SB1 and SB2, respec
tively. Accordingly, the bank stack pointer 240 points to the
bank address of 1 of the BANK1, i.e., at the address 3 of
the stack storage 300, from which the top one-word item is
deleted. The MUX1<3:0> of 1 is provided to the
MSP-4:1> of the main stack pointer 210 and the MSP-0>
is toggled to 1 in response to the control signal SB4 from
the control logic circuit 255 (refer to FIG. 7A), so that the
main stack pointer 210 contains 00011 (=3) as illustrated in
FG. 4D.

0059 Next, during two-word pop operation (assuming as
in the above example that the main stack pointer 210
contains the address “4), the adder 251 adds -1 to the
MSP-4:1> of 2 in response to the instruction decoding
signal DSCB1, and the multiplexer 252 selects the
ADD-3:0> of 1 in response to the select control signal
SB1. The multiplexers 253 and 254 select the ADD-3:0> of
1 in response to the select control signal SB2 and SB3.
respectively. As a result, the first and second bank Stack
pointers 230 and 240 each contain 1. Accordingly, the
two-word item is removed from the locations at the bank
addresses Is of the respective banks BANK0 and BANK1,
i.e., at the address 2 and 3 of the stack storage 300. The
MUX1<3:0> of 1 is provided to the MSP-4:1> of the main
stack pointer 210, so that the main stack pointer 210 contains
*00010 (=2) as illustrated in FIG. 4E.
0060 Referring to FIGS. 5A through 5E, 6 and 7B,
various examples of stack operations will be described under
the assumption that the main stack pointer 210 points to the
location at the odd address of 5’ (=00100) (as illustrated in
FIG. 5A). To begin, during a one-word push operation, the
adder 251 adds 1 to the MSP-4:1> of 2 in response to the
instruction decoding signal DCSB1, and the multiplexer 254
is disabled by the MUX enable signal EB2. The multiplexer
252 selects the ADDzn-1:0> of 3 and outputs
MUX1<3:0> in response to the select control signal SB1. In
addition, the multiplexer 253 selects the MSP-4:1> of 2 in
response to the select control signal SB2, so that the second
bank Stack pointer 240 contains 2. Accordingly, a new
one-word item is stored in the location at the bank address
2 of the second bank BANK1, i.e., at the address 5 of the
stack storage 300. The MUX1<3:0> of 3 is fed back to the
main stack pointer 210 and the control logic circuit 255
controls the main stack pointer 210 to toggle the MSP-0> of
1 (refer to FIG. 7B) with the control signal SB4, thereby
causing the main stack pointer 210 to point to the location
at the address 00110 (=6) of the stack storage 300 as
illustrated in FIG. S.B.

0061 Next, during a two-word push operation (assuming
as in the above example that the main stack pointer 210
contains 5), the adder 251 adds +1 to the MSP-4:1> of
2 in response to the instruction decoding signal DCSB1.
The multiplexers 253 and 254 both are enabled in response
to the MUX enable signals EB1 and EB2, respectively. The
multiplexer 253 selects the MSP-4:1> of 2 in response to
the select control signal SB2, so that the second bank stack
pointer 240 contains the bank address of 2. The multi
plexer 254 selects the ADD-3:0> of 3 in response to the
select control signal SB2, so that the first bank stack pointer
230 contains 3. Accordingly, a new two-word item is
inserted into the locations at bank addresses 3 and 2 of the
respective banks BANKO and BANK1, i.e., at the addresses

US 2006/0179287 A1

'6' and 5 of the stack storage 300. The multiplexer 252
selects the adder's content ADD-3:0> of 3 in response to
the select control signal SB1. The MUX1<3:0> of 3 is
provided to the high-order bits MSP-4:1> of the main stack
pointer 210 with the least significant bit MSP-0> of 1, so
that the main stack pointer 210 contains 00111 (=7) as
illustrated in FIG. SC.

0062 Next, during a one-word pop operation (assuming
as in the above example that the main stack pointer 210
contains 5), the multiplexer 254 selects the MSP-4:1> of
2 in response to the MUX enable signal EB2 and select
control signal SB3 while the multiplexer 253 is disabled by
the MUX enable signal EB1, so that the first bank stack
pointer 230 contains 2. Accordingly, the top one-word item
is removed from location at the bank address 2 of the first
bank BANK0, i.e., at the address “4” of the stack storage 300.
In addition, the multiplexer 252 selects the MSP-4:1d in
response to the select control signal SB1 and outputs
MUX1<3:0> of 2, which is then fed back to the main stack
pointer 210. The control logic circuit 255 generates the
control signal SB4 to toggle the MSP-0> of 1 (refer to
FIG. 7B), so that the main stack pointer contains 00100
(=4) as illustrated in FIG. 5D.
0063) Next, during a two-word pop operation (assuming
as in the above example that the main stack pointer 210
contains 5), the adder 251 adds -1 to the MSP-4:1> in
response to the instruction decoding signal DSCB1 and the
multiplexer 252 selects the ADD-n-1:0> of 1 in response
to the select control signal SB1. The multiplexer 253 selects
the ADD-3:0> of 1 in response to the select control signal
SB2, whereas the multiplexer 254 selects the MSP-4:1> of
2 in response to the select control signal SB3. As a result,
the first bank stack pointer 230 contains 2 and the second
stack pointer 240 contains 1. Accordingly, the two-word
item is removed from the locations at the bank addresses 2
and 1 of the respective banks BANKO and BANK1, i.e., at
the address “4” and 3 of the stack storage 300. The
MUX1<3:0> of 1 is provided to the MSP-4:1> of the main
stack pointer 210, so that the main stack pointer 210 contains
*00011 (=3) as illustrated in FIG. 5E.
0064. As described above, an embedded hardware stack
having an architecture in accordance with the teachings
herein can advantageously perform multi-word Stack opera
tions, as well one-word operations, thereby improving the
performance of processors having Such stack architectures.
0065. Although the present invention and its advantages
have been described in detail, it should be understood that
various changes, Substitutions and alterations can be made
herein without departing from the spirit and scope of the
invention as defined by the appended claims.

What is claimed is:
1. A hardware stack, comprising:
a stack storage comprising a plurality of banks each

comprising storage locations;

an instruction decoder for decoding a stack-based instruc
tion and generating a plurality of decoding signals,
each of the plurality of decoding signals denoting one
of a one-word push operation, a one-word pop opera
tion, a two-word push operation and a two-word pop
operation; and

Aug. 10, 2006

a stack pointer circuit comprising a bank pointer for each
bank, wherein each bank pointer points to a storage
location of a corresponding bank, and wherein the stack
pointer circuit is responsive to at lest one control signal
to insert bank address data in at least two bank pointers
to perform a multi-word push or multi-word pop opera
tion.

2. A digital data processor, comprising:

a stack storage including a plurality of locations, wherein
each of the locations of said stack storage are assigned
to one of a first bank and second bank;

a main stack pointer for pointing to a top location of said
Stack storage;

a first bank Stack pointer for pointing to a top location of
said first bank;

a second bank Stack pointer for pointing to a top location
of said second bank;

an instruction decoder for decoding a stack-based instruc
tion and generating a plurality of decoding signals,
each of the plurality of decoding signals denoting one
of a one-word push operation, a one-word pop opera
tion, a two-word push operation and a two-word pop
operation; and

a stack pointer control logic circuit for controlling said
first and second bank Stack pointers in response to at
lest one of the decoding signals to insert bank address
data into the first and second bank Stack pointers based
on the content of the main stack pointer to perform a
multi-word push or multi-word pop operation.

3. The digital data processor of claim 2, wherein each
location of the first and second banks is configured for
storing a one-word item.

4. The digital data processor of claim 3, wherein a
two-word item is one of inserted into and removed from two
adjacent locations at a given time.

5. The digital data processor of claim 4, wherein said
controller either increases of decreases the content of said
main Stack pointer by one when the decoding signals indi
cate a one-word Stack operation, and wherein said controller
either increases or decreases the content of said main stack
pointer by two when the decoding signals indicate a two
word Stack operation.

6. The digital data processor of claim 2, wherein said
stack storage comprises 2" locations, n being a positive
integer, and wherein the first bank and the second bank each
include 2" locations.

7. The digital data processor of claim 2, wherein one of
the first and second banks includes locations with addresses
having a least significant bit of logic “0” and the other of the
first and second banks includes locations with addresses
having a lest significant bit of logic 1.

8. A digital data processor, comprising:

a register set; and

a stack storage that communicates with the register set to
perform a multi-word data push operation or a multi
word data pop operation.

9. The digital data processor of claim 8, wherein the stack
storage comprises a plurality of banks each comprising
storage locations.

US 2006/0179287 A1

10. The digital data processor of claim 9, comprising:
an instruction decoder for decoding a stack-based instruc

tion and generating a plurality of decoding signals,
each of the plurality of decoding signals denoting one
of a the multi-word data push operation and the multi
word data pop operation; and

a stack pointer circuit comprising a bank pointer for each
bank, wherein each bank pointer points to a storage
location of a corresponding bank, and wherein the stack
pointer circuit is responsive to at lest one control signal
to insert bank address data in at least two bank pointers
to perform a multi-word push or multi-word pop opera
tion.

11. The digital data processor of claim 10, wherein each
location of the first and second banks is configured for
storing a one-word item.

12. A digital data processor, comprising:
a register set; and
a stack storage comprising a plurality of banks each

comprising storage locations, wherein the stack storage
transmits one of one-word data and two-word data to
the register set, and wherein the stack storage com
prises:

an instruction decoder for decoding a stack-based instruc
tion and generating a plurality of decoding signals,
each of the plurality of decoding signals denoting one
of a one-word push operation, a one-word pop opera
tion, a two-word push operation and a two-word pop
operation; and

a stack pointer circuit comprising a bank pointer for each
bank, wherein each bank pointer points to a storage
location of a corresponding bank, and wherein the stack

Aug. 10, 2006

pointer circuit is responsive to at lest one control signal
to insert bank address data in at least two bank pointers
to perform a multi-word push or multi-word pop opera
tion.

13. A digital data processor, comprising:
a register set; and
a stack storage including a plurality of locations, wherein

each of the locations of said stack storage are assigned
to one of a first bank and second bank, wherein the
stack storage transmits one of one-word data and
two-word data to the register set, and wherein the stack
storage comprises:

a main stack pointer for pointing to a top location of said
Stack storage;

a first bank Stack pointer for pointing to a top location of
said first bank;

a second bank Stack pointer for pointing to a top location
of said second bank;

an instruction decoder for decoding a stack-based instruc
tion and generating a plurality of decoding signals,
each of the plurality of decoding signals denoting one
of a one-word push operation, a one-word pop opera
tion, a two-word push operation and a two-word pop
operation; and

a stack pointer control logic circuit for controlling said
first and second bank stack pointers in response to at
lest one of the decoding signals to insert bank address
data into the first and second bank Stack pointers based
on the content of the main stack pointer to perform a
multi-word push or multi-word pop operation.

k k k k k

