woO 201:3/188780 A 1[I N0F V0000000 OO O

(43) International Publication Date

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2013/188780 A1l

19 December 2013 (19.12.2013) WIPO | PCT
(51) International Patent Classification: (74) Agents: McKENNA, Christopher, J. et al.; FOLEY &
HO04L 12/24 (2006.01) HO04L 29/08 (2006.01) LARDNER LLP, 3000 K Street N.W., Suite 600, Wash-
(21) International Application Number: ington, District of Columbia 20007-5109 (US).
PCT/US2013/045915 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
14 June 2013 (14.06.2013) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
13/525,042 15 June 2012 (15.06.2012) Us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(71) Applicant: CITRIX SYSTEMS, INC. [US/US]; 851 TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
West Cypress Creek Road, Fort Lauderdale, Florida 33309 . o
(US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: ANNAMALAISAMI, Saravana; c/o Citrix GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

Systems, Inc. Silicon Valley, 4988 Great America Park-
way, Santa Clara, California 95054 (US). HOLLA,
Raveendra; c/o Citrix Systems, Inc. Silicon Valley, 4988
Great America Parkway, Santa Clara, California 95054
(US). JAIN, Nishant Kumar; c/o Citrix Systems, Inc. Sil-
icon Valley, 4988 Great America Parkway, Santa Clara,
California 95054 (US). MITHYANTHA, Sharvari; c/o
Citrix Systems, Inc. Silicon Valley, 4988 Great America
Parkway, Santa Clara, California 95054 (US). GEDAM,
Dhiraj; c/o Citrix Systems, Inc. Silicon Valley, 4988 Great
America Parkway, Santa Clara, California 95054 (US).

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR SUPPORTING A SNMP REQUEST OVER A CLUSTER

Appliance 200A Appliance 200B

‘ Entities 710A ‘

‘ Entities 7108 ‘

Monitored
Values 712B

Monitored
Values 712A

‘ Aggregator 722A ‘

‘ Aggregator 722B ‘

Appliance 200N

Entities 710N

Monitored
Values 712N

MIB 717

Agent/SNMPD 705A

Agent/SNMPD 705B

Entity Selector
720A

Entity Selector
7208

606 Aggregator 722N

SNMPD/ Master
Agent 705N

Aggregator 722M

Entity Selector
720N

Cluster 600

FIG.

104

7A

Network

SNMP Manager 707

Entity Selector

-
N
=3
=

100

(57) Abstract: The present disclosure is directed towards systems and methods for supporting Simple Network Management Pro-
tocol (SNMP) request operations over clustered networking devices. The system includes a cluster that includes a plurality of inter -
mediary devices and an SNMP agent executing on a first intermediary device of the plurality of intermediary devices. The SNMP
agent receives an SNMP GETNEXT request for an entity. Responsive to receipt of the SNMP GETNEXT request, the SNMP agent
requests a next entity from each intermediary device of the plurality of intermediary devices of the cluster. To respond to the SNMP
request, the SNMP agent selects a lexicographically minimum entity. The SNMP agent may select the lexicographically minimum
entity from a plurality of next entities received via responses from each intermediary device of the plurality of intermediary devices.

WO 20137188780 A1 |IIIWAIL 00TV AV 0 VO 0O A AR

Published: — before the expiration of the time limit for amending the
— with international search report (Art. 21(3)) claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

SYSTEMS AND METHODS FOR SUPPORTING A SNMP REQUEST OVER
A CLUSTER

Related application

The present application claims the benefit of and priority to U.S. patent application
No. 13/525,042, entitled “Systems and Methods for Supporting a SNMP Request Over a
Cluster” and filed on June 15, 2012, which is incorporated herein by reference in its entirety

for all purposes.

Field of the Invention

The present application generally relates to data communication networks. In
particular, the present application relates to systems and methods for supporting Simple
Network Management Protocol (SNMP) request operations over clustered networking

devices.

Background of the Invention

A device may expose a large set of tabular and singular data to SNMP management
systems for system monitoring. Tabular data comprises rows where each row corresponds to
a networking entity and may contain statistical or configuration information for that entity.
When scaling to a large number of tabular data, the performance of such systems may be

significantly decreased.

Brief Summary of the Invention

A clustered networking system may provide an aggregated view of all entities
belonging to the cluster. The clustered networking system may further provide support
operations such as SNMPGET and SNMPGETNEXT that may use a configuration
coordinator (CCO) SNMP daemon (SNMPD) to be aware of all the entities across the cluster,
the placement of the entities, and maintain the ordering of object identifiers (OID)
corresponding to those entities. When scaling to a large number of managed objects, the
performance of such systems may be significantly decreased. The present solution improves
performance such systems with a large number of managed objects.

The present application is directed towards supporting SNMP request operations over
clustered network devices. While it may be possible to maintain awareness of all entities in a

simple single appliance system, maintaining awareness of all entities in clustered networking

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

systems may pose scalability issues and increase maintainability costs. For example, when a
new entity is added to or removed from a node, all other nodes in the cluster may need to be
informed. The present solution generates an on the fly partial view of the configuration of a
cluster that is relevant to a current request. When a CCO-SNMPD receives an SNMP
GETNEXT request, the CCO-SNMPD may request cach node for the next entity in the
node’s local view along with that entity’s relevant statistical or configuration information.
Based on all the responses from the nodes, the CCO-SNMPD may select a lexicographically
minimum entity and respond to the SNMP manager with statistical or configuration
information corresponding to the lexicographically minimum entity.

The present solution is distributed in nature and may support any general statistic
collection or monitoring system, including, ¢.g., extracting node level statistics, by defining
an order among entities analogous to the lexicographic SNMP order. By walking through a
cluster configuration without requiring the CCO-SNMPD to explicitly maintain any
information, the present solution may facilitate the support of spotted and striped
configurations. Furthermore, the present solution may prevent cluster state changes such as
node addition and deletion from impacting the CCO-SNMPD.

In some aspects, the present solution is directed to a method of responding to a Simple
Network Management Protocol (SNMP) request by a cluster of intermediary devices. The
method includes receiving, by a Simple Network Protocol (SNMP) agent an SNMP
GETNEXT request for an entity. The SNMP agent may execute on a first intermediary
device of a cluster comprising a plurality of intermediary devices. The method includes
requesting a next entity from each intermediary device of the plurality of intermediary
devices of the cluster. The SNMP agent may request the next entity responsive to receipt of
the SNMP GETNEXT request. The method includes selecting a lexicographically minimum
entity by the SNMP agent to respond to the SNMP request. The SNMP agent may select the
lexicographically minimum entity from a plurality of next entities received via responses
from each intermediary device of the plurality of intermediary devices.

In some embodiments, the method includes receiving, by the SNMP agent from an
SNMP manager, the SNMP GETNEXT request for the entity and a variable representing one
of a statistical or configuration information of the entity.

In some embodiments, the method includes forwarding, by the SNMP agent, the
SNMP GETNEXT request to an aggregator. In some embodiments, the method further
includes transmitting, by the aggregator, the request for the next entity to each intermediary

device of the cluster. In some embodiments, the method includes transmitting, by the first

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

intermediary device, SNMP GETNEXT requests to cach SNMP agent executing on a
corresponding intermediary device of the plurality of intermediary devices.

In some embodiments, the method includes selecting the lexicographically minimum
entity. The SNMP agent may select the lexicographically minimum entity from a plurality of
different object identifiers of next entities received via the response from each of the
intermediary devices. In some embodiments, the method includes selecting, by the SNMP
agent, the lexicographically minimum entity comprising the next entity having an object
identifier lexicographically closest to a lexicographic identifier of the entity.

In some embodiments, the method includes aggregating, by the first intermediary
device, values for a variable. The variable may be identified via the SNMP GETNEXT
request and the values may be received for the selected next entity from one or more of the
intermediary devices of the cluster. In some embodiments, the method includes generating,
by the SNMP agent, a response to an SNMP manager. The response may include an
aggregation of values received from one or more intermediary devices of the cluster for the
selected next entity. In some embodiments, the method includes transmitting, by the SNMP
agent to an SNMP manager, the response. The response may include the selected next entity
as the next entity.

In some aspects, the present solution is directed to a system for responding to a SNMP
request by a cluster of intermediary devices. The system includes a cluster that includes a
plurality of intermediary devices. The system includes a SNMP agent executing on a first
intermediary device of the plurality of intermediary devices. The SNMP agent receives an
SNMP GETNEXT request for an entity. Responsive to receipt of the SNMP GETNEXT
request, the SNMP agent requests a next entity from each intermediary device of the plurality
of intermediary devices of the cluster. To respond to the SNMP request, the SNMP agent
selects a lexicographically minimum entity. The SNMP agent may select the
lexicographically minimum entity from a plurality of next entities received via responses
from each intermediary device of the plurality of intermediary devices.

In some embodiments of the system, the SNMP agent receives the SNMP GETNEXT
request from an SNMP manager. The SNMP GETNEXT request may be for the entity and a
variable representing one of a statistical or configuration information of the entity.

In some embodiments of the system, the SNMP agent forwards the SNMP
GETNEXT request to an aggregator. In some embodiments, the aggregator further transmits
the request for the next entity to each intermediary device of the cluster. In some

embodiments of the system, the first intermediary device transmits SNMP GETNEXT

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

requests to each SNMP agent executing on a corresponding intermediary device of the
plurality of intermediary devices.

In some embodiments of the system, the SNMP agent selects the lexicographically
minimum entity. The SNMP agent may select the lexicographically minimum entity from a
plurality of different object identifiers of next entities. The SNMP agent may receive the
plurality of different object identifier via the response from each of the intermediary devices.
In some embodiments of the system, the SNMP agent selects the lexicographically minimum
entity that includes the next entity having an object identifier lexicographically closest to a
lexicographic identifier of the entity.

In some embodiments of the system, the first intermediary device aggregates values
for a variable. The variable may be identified via the SNMP GETNEXT request. The
variable may be received for the selected next entity from one or more of the intermediary
devices of the cluster.

In some embodiments of the system, the SNMP agent generates a response to an
SNMP manager. The response may include an aggregation of values received from one or
more intermediary devices of the cluster for the selected next entity. In some embodiments
of the system, the SNMP agent transmits to an SNMP manager the response. The response
may include the selected next entity as the next entity

The details of various embodiments of the invention are set forth in the accompanying

drawings and the description below.

Brief Description of the Figures

The foregoing and other objects, aspects, features, and advantages of the invention
will become more apparent and better understood by referring to the following description
taken in conjunction with the accompanying drawings, in which:

FIG. 1A is a block diagram of an embodiment of a network environment for a client
to access a server via an appliance;

FIG. 1B is a block diagram of an embodiment of an environment for delivering a
computing environment from a server to a client via an appliance;

FIG. 1C is a block diagram of another embodiment of an environment for delivering a
computing environment from a server to a client via an appliance;

FIG. 1D is a block diagram of another embodiment of an environment for delivering a

computing environment from a server to a client via an appliance;

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

FIGs. 1E - 1H are block diagrams of embodiments of a computing device;

FIG. 2A is a block diagram of an embodiment of an appliance for processing
communications between a client and a server;

FIG. 2B is a block diagram of another embodiment of an appliance for optimizing,
accelerating, load-balancing and routing communications between a client and a server;

FIG. 3 is a block diagram of an embodiment of a client for communicating with a
server via the appliance;

FIG. 4A is a block diagram of an embodiment of a virtualization environment;

FIG. 4B is a block diagram of another embodiment of a virtualization environment;

FIG. 4C is a block diagram of an embodiment of a virtualized appliance;

FIG. 5A are block diagrams of embodiments of approaches to implementing
parallelism in a multi-core system;

FIG. 5B is a block diagram of an embodiment of a system utilizing a multi-core
System;

FIG. 5C is a block diagram of another embodiment of an aspect of a multi-core
System;

FIG. 6 is a block diagram of an embodiment of a computing device cluster or
appliance cluster;

FIG. 7A is a block diagram of an embodiment of supporting a SNMP request by a
network cluster;

FIG. 7B is a block diagram of an embodiment of supporting a SNMP request by a
network cluster; and

FIG. 7C is a flow diagram of an embodiment of a method of supporting a SNMP
request by a network cluster.

The features and advantages of the present invention will become more apparent from
the detailed description set forth below when taken in conjunction with the drawings, in
which like reference characters identify corresponding elements throughout. In the drawings,
like reference numbers generally indicate identical, functionally similar, and/or structurally

similar elements.

Detailed Description of the Invention

For purposes of reading the description of the various embodiments below, the

following descriptions of the sections of the specification and their respective contents may

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

be helpful:
- Section A describes a network environment and computing environment
which may be useful for practicing embodiments described herein;
- Section B describes embodiments of systems and methods for delivering a
computing environment to a remote user;
- Section C describes embodiments of systems and methods for accelerating
communications between a client and a server;
- Section D describes embodiments of systems and methods for virtualizing an
application delivery controller;
- Section E describes embodiments of systems and methods for providing a
multi-core architecture and environment;
- Section F describes embodiments of systems and methods for providing a
clustered appliance architecture environment;
- Section G describes embodiments of systems and methods for supporting

SNMP request operations over a clustered networking system.

A. Network and Computing Environment

Prior to discussing the specifics of embodiments of the systems and methods of an
appliance and/or client, it may be helpful to discuss the network and computing environments
in which such embodiments may be deployed. Referring now to Figure 1A, an embodiment
of a network environment is depicted. In brief overview, the network environment comprises
one or more clients 102a-102n (also generally referred to as local machine(s) 102, or client(s)
102) in communication with one or more servers 106a-106n (also generally referred to as
server(s) 106, or remote machine(s) 106) via one or more networks 104, 104’ (generally
referred to as network 104). In some embodiments, a client 102 communicates with a server
106 via an appliance 200.

Although FIG. 1A shows a network 104 and a network 104’ between the clients 102
and the servers 106, the clients 102 and the servers 106 may be on the same network 104.
The networks 104 and 104’ can be the same type of network or different types of networks.
The network 104 and/or the network 104 can be a local-area network (LAN), such as a
company Intranet, a metropolitan area network (MAN), or a wide area network (WAN), such
as the Internet or the World Wide Web. In one embodiment, network 104’ may be a private
network and network 104 may be a public network. In some embodiments, network 104 may

be a private network and network 104’ a public network. In another embodiment, networks

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

104 and 104’ may both be private networks. In some embodiments, clients 102 may be
located at a branch office of a corporate enterprise communicating via a WAN connection
over the network 104 to the servers 106 located at a corporate data center.

The network 104 and/or 104° be any type and/or form of network and may include
any of the following: a point to point network, a broadcast network, a wide area network, a
local arca network, a telecommunications network, a data communication network, a
computer network, an ATM (Asynchronous Transfer Mode) network, a SONET
(Synchronous Optical Network) network, a SDH (Synchronous Digital Hierarchy) network, a
wireless network and a wireline network. In some embodiments, the network 104 may
comprise a wireless link, such as an infrared channel or satellite band. The topology of the
network 104 and/or 104’ may be a bus, star, or ring network topology. The network 104
and/or 104’ and network topology may be of any such network or network topology as
known to those ordinarily skilled in the art capable of supporting the operations described
herein.

As shown in FIG. 1A, the appliance 200, which also may be referred to as an interface
unit 200 or gateway 200, is shown between the networks 104 and 104°. In some
embodiments, the appliance 200 may be located on network 104. For example, a branch
office of a corporate enterprise may deploy an appliance 200 at the branch office. In other
embodiments, the appliance 200 may be located on network 104°. For example, an appliance
200 may be located at a corporate data center. In yet another embodiment, a plurality of
appliances 200 may be deployed on network 104. In some embodiments, a plurality of
appliances 200 may be deployed on network 104°. In one embodiment, a first appliance 200
communicates with a second appliance 200°. In other embodiments, the appliance 200 could
be a part of any client 102 or server 106 on the same or different network 104,104° as the
client 102. One or more appliances 200 may be located at any point in the network or
network communications path between a client 102 and a server 106.

In some embodiments, the appliance 200 comprises any of the network devices
manufactured by Citrix Systems, Inc. of Ft. Lauderdale Florida, referred to as Citrix
NetScaler devices. In other embodiments, the appliance 200 includes any of the product
embodiments referred to as WebAccelerator and BiglP manufactured by F5 Networks, Inc. of
Seattle, Washington. In another embodiment, the appliance 205 includes any of the DX
acceleration device platforms and/or the SSL VPN series of devices, such as SA 700, SA
2000, SA 4000, and SA 6000 devices manufactured by Juniper Networks, Inc. of Sunnyvale,

California. In yet another embodiment, the appliance 200 includes any application

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

acceleration and/or security related appliances and/or software manufactured by Cisco
Systems, Inc. of San Jose, California, such as the Cisco ACE Application Control Engine
Module service software and network modules, and Cisco AVS Series Application Velocity
System.

In one embodiment, the system may include multiple, logically-grouped servers 106.
In these embodiments, the logical group of servers may be referred to as a server farm 38. In
some of these embodiments, the serves 106 may be geographically dispersed. In some cases,
a farm 38 may be administered as a single entity. In other embodiments, the server farm 38
comprises a plurality of server farms 38. In one embodiment, the server farm executes one or
more applications on behalf of one or more clients 102.

The servers 106 within each farm 38 can be heterogeneous. One or more of the
servers 106 can operate according to one type of operating system platform (e.g., WINDOWS
NT, manufactured by Microsoft Corp. of Redmond, Washington), while one or more of the
other servers 106 can operate on according to another type of operating system platform (e.g.,
Unix or Linux). The servers 106 of each farm 38 do not need to be physically proximate to
another server 106 in the same farm 38. Thus, the group of servers 106 logically grouped as
a farm 38 may be interconnected using a wide-area network (WAN) connection or medium-
arca network (MAN) connection. For example, a farm 38 may include servers 106 physically
located in different continents or different regions of a continent, country, state, city, campus,
or room. Data transmission speeds between servers 106 in the farm 38 can be increased if the
servers 106 are connected using a local-area network (LAN) connection or some form of
direct connection.

Servers 106 may be referred to as a file server, application server, web server, proxy
server, or gateway server. In some embodiments, a server 106 may have the capacity to
function as either an application server or as a master application server. In one embodiment,
a server 106 may include an Active Directory. The clients 102 may also be referred to as
client nodes or endpoints. In some embodiments, a client 102 has the capacity to function as
both a client node secking access to applications on a server and as an application server
providing access to hosted applications for other clients 102a-102n.

In some embodiments, a client 102 communicates with a server 106. In one
embodiment, the client 102 communicates directly with one of the servers 106 in a farm 38.
In another embodiment, the client 102 executes a program neighborhood application to
communicate with a server 106 in a farm 38. In still another embodiment, the server 106

provides the functionality of a master node. In some embodiments, the client 102

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

communicates with the server 106 in the farm 38 through a network 104. Over the network
104, the client 102 can, for example, request execution of various applications hosted by the
servers 106a-106n in the farm 38 and receive output of the results of the application
execution for display. In some embodiments, only the master node provides the functionality
required to identify and provide address information associated with a server 106’ hosting a
requested application.

In one embodiment, the server 106 provides functionality of a web server. In another
embodiment, the server 106a receives requests from the client 102, forwards the requests to a
second server 106b and responds to the request by the client 102 with a response to the
request from the server 106b. In still another embodiment, the server 106 acquires an
enumeration of applications available to the client 102 and address information associated
with a server 106 hosting an application identified by the enumeration of applications. In yet
another embodiment, the server 106 presents the response to the request to the client 102
using a web interface. In one embodiment, the client 102 communicates directly with the
server 106 to access the identified application. In another embodiment, the client 102
receives application output data, such as display data, generated by an execution of the
identified application on the server 106.

Referring now to FIG. 1B, an embodiment of a network environment deploying
multiple appliances 200 is depicted. A first appliance 200 may be deployed on a first
network 104 and a second appliance 200’ on a second network 104°. For example a
corporate enterprise may deploy a first appliance 200 at a branch office and a second
appliance 200’ at a data center. In another embodiment, the first appliance 200 and second
appliance 200’ are deployed on the same network 104 or network 104. For example, a first
appliance 200 may be deployed for a first server farm 38, and a second appliance 200 may be
deployed for a second server farm 38’. In another example, a first appliance 200 may be
deployed at a first branch office while the second appliance 200’ is deployed at a second
branch office’. In some embodiments, the first appliance 200 and second appliance 200’
work in cooperation or in conjunction with each other to accelerate network traffic or the
delivery of application and data between a client and a server

Referring now to FIG. 1C, another embodiment of a network environment deploying
the appliance 200 with one or more other types of appliances, such as between one or more
WAN optimization appliance 205, 205 is depicted. For example a first WAN optimization
appliance 205 is shown between networks 104 and 104’ and a second WAN optimization

appliance 205’ may be deployed between the appliance 200 and one or more servers 106. By

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

way of example, a corporate enterprise may deploy a first WAN optimization appliance 205
at a branch office and a second WAN optimization appliance 205’ at a data center. In some
embodiments, the appliance 205 may be located on network 104°. In other embodiments, the
appliance 205’ may be located on network 104. In some embodiments, the appliance 205’
may be located on network 104’ or network 104°. In one embodiment, the appliance 205
and 205’ are on the same network. In another embodiment, the appliance 205 and 205 are
on different networks. In another example, a first WAN optimization appliance 205 may be
deployed for a first server farm 38 and a second WAN optimization appliance 205’ for a
second server farm 38’

In one embodiment, the appliance 205 is a device for accelerating, optimizing or
otherwise improving the performance, operation, or quality of service of any type and form of
network traffic, such as traffic to and/or from a WAN connection. In some embodiments, the
appliance 205 is a performance enhancing proxy. In other embodiments, the appliance 205 is
any type and form of WAN optimization or acceleration device, sometimes also referred to as
a WAN optimization controller. In one embodiment, the appliance 205 is any of the product
embodiments referred to as WANScaler manufactured by Citrix Systems, Inc. of Ft.
Lauderdale, Florida. In other embodiments, the appliance 205 includes any of the product
embodiments referred to as BIG-IP link controller and WANjet manufactured by F5
Networks, Inc. of Seattle, Washington. In another embodiment, the appliance 205 includes
any of the WX and WXC WAN acceleration device platforms manufactured by Juniper
Networks, Inc. of Sunnyvale, California. In some embodiments, the appliance 205 includes
any of the steelhead line of WAN optimization appliances manufactured by Riverbed
Technology of San Francisco, California. In other embodiments, the appliance 205 includes
any of the WAN related devices manufactured by Expand Networks Inc. of Roseland, New
Jersey. In one embodiment, the appliance 205 includes any of the WAN related appliances
manufactured by Packeteer Inc. of Cupertino, California, such as the PacketShaper, iShared,
and SkyX product embodiments provided by Packeteer. In yet another embodiment, the
appliance 205 includes any WAN related appliances and/or software manufactured by Cisco
Systems, Inc. of San Jose, California, such as the Cisco Wide Area Network Application
Services software and network modules, and Wide Area Network engine appliances.

In one embodiment, the appliance 205 provides application and data acceleration
services for branch-office or remote offices. In one embodiment, the appliance 205 includes
optimization of Wide Area File Services (WAFS). In another embodiment, the appliance 205

accelerates the delivery of files, such as via the Common Internet File System (CIFS)

10

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

protocol. In other embodiments, the appliance 205 provides caching in memory and/or
storage to accelerate delivery of applications and data. In one embodiment, the appliance 205
provides compression of network traffic at any level of the network stack or at any protocol
or network layer. In another embodiment, the appliance 205 provides transport layer protocol
optimizations, flow control, performance enhancements or modifications and/or management
to accelerate delivery of applications and data over a WAN connection. For example, in one
embodiment, the appliance 205 provides Transport Control Protocol (TCP) optimizations. In
other embodiments, the appliance 205 provides optimizations, flow control, performance
enhancements or modifications and/or management for any session or application layer
protocol.

In another embodiment, the appliance 205 encoded any type and form of data or
information into custom or standard TCP and/or IP header fields or option fields of network
packet to announce presence, functionality or capability to another appliance 205°. In
another embodiment, an appliance 205’ may communicate with another appliance 205 using
data encoded in both TCP and/or IP header fields or options. For example, the appliance may
use TCP option(s) or IP header fields or options to communicate one or more parameters to
be used by the appliances 205, 205” in performing functionality, such as WAN acceleration,
or for working in conjunction with each other.

In some embodiments, the appliance 200 preserves any of the information encoded in
TCP and/or IP header and/or option fields communicated between appliances 205 and 205°.
For example, the appliance 200 may terminate a transport layer connection traversing the
appliance 200, such as a transport layer connection from between a client and a server
traversing appliances 205 and 205°. In one embodiment, the appliance 200 identifies and
preserves any encoded information in a transport layer packet transmitted by a first appliance
205 via a first transport layer connection and communicates a transport layer packet with the
encoded information to a second appliance 205’ via a second transport layer connection.

Referring now to FIG. 1D, a network environment for delivering and/or operating a
computing environment on a client 102 is depicted. In some embodiments, a server 106
includes an application delivery system 190 for delivering a computing environment or an
application and/or data file to one or more clients 102. In brief overview, a client 10 is in
communication with a server 106 via network 104, 104’ and appliance 200. For example, the
client 102 may reside in a remote office of a company, e.g., a branch office, and the server
106 may reside at a corporate data center. The client 102 comprises a client agent 120, and a

computing environment 15. The computing environment 15 may execute or operate an

11

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

application that accesses, processes or uses a data file. The computing environment 15,
application and/or data file may be delivered via the appliance 200 and/or the server 106.

In some embodiments, the appliance 200 accelerates delivery of a computing
environment 15, or any portion thereof, to a client 102. In one embodiment, the appliance
200 accelerates the delivery of the computing environment 15 by the application delivery
system 190. For example, the embodiments described herein may be used to accelerate
delivery of a streaming application and data file processable by the application from a central
corporate data center to a remote user location, such as a branch office of the company. In
another embodiment, the appliance 200 accelerates transport layer traffic between a client
102 and a server 106. The appliance 200 may provide acceleration techniques for
accelerating any transport layer payload from a server 106 to a client 102, such as: 1)
transport layer connection pooling, 2) transport layer connection multiplexing, 3) transport
control protocol buffering, 4) compression and 5) caching. In some embodiments, the
appliance 200 provides load balancing of servers 106 in responding to requests from clients
102. In other embodiments, the appliance 200 acts as a proxy or access server to provide
access to the one or more servers 106. In another embodiment, the appliance 200 provides a
secure virtual private network connection from a first network 104 of the client 102 to the
second network 104’ of the server 106, such as an SSL VPN connection. It yet other
embodiments, the appliance 200 provides application firewall security, control and
management of the connection and communications between a client 102 and a server 106.

In some embodiments, the application delivery management system 190 provides
application delivery techniques to deliver a computing environment to a desktop of a user,
remote or otherwise, based on a plurality of execution methods and based on any
authentication and authorization policies applied via a policy engine 195. With these
techniques, a remote user may obtain a computing environment and access to server stored
applications and data files from any network connected device 100. In one embodiment, the
application delivery system 190 may reside or execute on a server 106. In another
embodiment, the application delivery system 190 may reside or execute on a plurality of
servers 106a-106n. In some embodiments, the application delivery system 190 may execute
in a server farm 38. In one embodiment, the server 106 executing the application delivery
system 190 may also store or provide the application and data file. In another embodiment, a
first set of one or more servers 106 may execute the application delivery system 190, and a
different server 106n may store or provide the application and data file. In some

embodiments, each of the application delivery system 190, the application, and data file may

12

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

reside or be located on different servers. In yet another embodiment, any portion of the
application delivery system 190 may reside, execute or be stored on or distributed to the
appliance 200, or a plurality of appliances.

The client 102 may include a computing environment 15 for executing an application
that uses or processes a data file. The client 102 via networks 104, 104° and appliance 200
may request an application and data file from the server 106. In one embodiment, the
appliance 200 may forward a request from the client 102 to the server 106. For example, the
client 102 may not have the application and data file stored or accessible locally. In response
to the request, the application delivery system 190 and/or server 106 may deliver the
application and data file to the client 102. For example, in one embodiment, the server 106
may transmit the application as an application stream to operate in computing environment
15 on client 102.

In some embodiments, the application delivery system 190 comprises any portion of
the Citrix Access Suite™ by Citrix Systems, Inc., such as the MetaFrame or Citrix
Presentation Server™ and/or any of the Microsoft® Windows Terminal Services
manufactured by the Microsoft Corporation. In one embodiment, the application delivery
system 190 may deliver one or more applications to clients 102 or users via a remote-display
protocol or otherwise via remote-based or server-based computing. In another embodiment,
the application delivery system 190 may deliver one or more applications to clients or users
via steaming of the application.

In one embodiment, the application delivery system 190 includes a policy engine 195
for controlling and managing the access to, selection of application execution methods and
the delivery of applications. In some embodiments, the policy engine 195 determines the one
or more applications a user or client 102 may access. In another embodiment, the policy
engine 195 determines how the application should be delivered to the user or client 102, ¢.g.,
the method of execution. In some embodiments, the application delivery system 190
provides a plurality of delivery techniques from which to select a method of application
execution, such as a server-based computing, streaming or delivering the application locally
to the client 120 for local execution.

In one embodiment, a client 102 requests execution of an application program and the
application delivery system 190 comprising a server 106 selects a method of executing the
application program. In some embodiments, the server 106 receives credentials from the
client 102. In another embodiment, the server 106 receives a request for an enumeration of

available applications from the client 102. In one embodiment, in response to the request or

13

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

receipt of credentials, the application delivery system 190 enumerates a plurality of
application programs available to the client 102. The application delivery system 190
receives a request to execute an enumerated application. The application delivery system 190
selects one of a predetermined number of methods for executing the enumerated application,
for example, responsive to a policy of a policy engine. The application delivery system 190
may select a method of execution of the application enabling the client 102 to receive
application-output data generated by execution of the application program on a server 106.
The application delivery system 190 may select a method of execution of the application
enabling the local machine 10 to execute the application program locally after retrieving a
plurality of application files comprising the application. In yet another embodiment, the
application delivery system 190 may select a method of execution of the application to stream
the application via the network 104 to the client 102.

A client 102 may execute, operate or otherwise provide an application, which can be
any type and/or form of software, program, or executable instructions such as any type and/or
form of web browser, web-based client, client-server application, a thin-client computing
client, an ActiveX control, or a Java applet, or any other type and/or form of executable
instructions capable of executing on client 102. In some embodiments, the application may
be a server-based or a remote-based application executed on behalf of the client 102 on a
server 106. In one embodiments the server 106 may display output to the client 102 using
any thin-client or remote-display protocol, such as the Independent Computing Architecture
(ICA) protocol manufactured by Citrix Systems, Inc. of Ft. Lauderdale, Florida or the
Remote Desktop Protocol (RDP) manufactured by the Microsoft Corporation of Redmond,
Washington. The application can use any type of protocol and it can be, for example, an
HTTP client, an FTP client, an Oscar client, or a Telnet client. In other embodiments, the
application comprises any type of software related to VoIP communications, such as a soft IP
telephone. In further embodiments, the application comprises any application related to real-
time data communications, such as applications for streaming video and/or audio.

In some embodiments, the server 106 or a server farm 38 may be running one or more
applications, such as an application providing a thin-client computing or remote display
presentation application. In one embodiment, the server 106 or server farm 38 executes as an
application, any portion of the Citrix Access Suite™ by Citrix Systems, Inc., such as the
MetaFrame or Citrix Presentation Server™, and/or any of the Microsoft® Windows Terminal
Services manufactured by the Microsoft Corporation. In one embodiment, the application is

an ICA client, developed by Citrix Systems, Inc. of Fort Lauderdale, Florida. In other

14

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

embodiments, the application includes a Remote Desktop (RDP) client, developed by
Microsoft Corporation of Redmond, Washington. Also, the server 106 may run an
application, which for example, may be an application server providing email services such
as Microsoft Exchange manufactured by the Microsoft Corporation of Redmond,
Washington, a web or Internet server, or a desktop sharing server, or a collaboration server.
In some embodiments, any of the applications may comprise any type of hosted service or
products, such as GoToMeeting™ provided by Citrix Online Division, Inc. of Santa Barbara,
California, WebEx™ provided by WebEx, Inc. of Santa Clara, California, or Microsoft
Office Live Meeting provided by Microsoft Corporation of Redmond, Washington.

Still referring to FIG. 1D, an embodiment of the network environment may include a
monitoring server 106A. The monitoring server 106A may include any type and form
performance monitoring service 198. The performance monitoring service 198 may include
monitoring, measurement and/or management software and/or hardware, including data
collection, aggregation, analysis, management and reporting. In one embodiment, the
performance monitoring service 198 includes one or more monitoring agents 197. The
monitoring agent 197 includes any software, hardware or combination thereof for performing
monitoring, measurement and data collection activities on a device, such as a client 102,
server 106 or an appliance 200, 205. In some embodiments, the monitoring agent 197
includes any type and form of script, such as Visual Basic script, or Javascript. In one
embodiment, the monitoring agent 197 executes transparently to any application and/or user
of the device. In some embodiments, the monitoring agent 197 is installed and operated
unobtrusively to the application or client. In yet another embodiment, the monitoring agent
197 is installed and operated without any instrumentation for the application or device.

In some embodiments, the monitoring agent 197 monitors, measures and collects data
on a predetermined frequency. In other embodiments, the monitoring agent 197 monitors,
measures and collects data based upon detection of any type and form of event. For example,
the monitoring agent 197 may collect data upon detection of a request for a web page or
receipt of an HTTP response. In another example, the monitoring agent 197 may collect data
upon detection of any user input events, such as a mouse click. The monitoring agent 197
may report or provide any monitored, measured or collected data to the monitoring service
198. In one embodiment, the monitoring agent 197 transmits information to the monitoring
service 198 according to a schedule or a predetermined frequency. In another embodiment,
the monitoring agent 197 transmits information to the monitoring service 198 upon detection

of an event.

15

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

In some embodiments, the monitoring service 198 and/or monitoring agent 197
performs monitoring and performance measurement of any network resource or network
infrastructure element, such as a client, server, server farm, appliance 200, appliance 205, or
network connection. In one embodiment, the monitoring service 198 and/or monitoring
agent 197 performs monitoring and performance measurement of any transport layer
connection, such as a TCP or UDP connection. In another embodiment, the monitoring
service 198 and/or monitoring agent 197 monitors and measures network latency. In yet one
embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and measures
bandwidth utilization.

In other embodiments, the monitoring service 198 and/or monitoring agent 197
monitors and measures end-user response times. In some embodiments, the monitoring
service 198 performs monitoring and performance measurement of an application. In another
embodiment, the monitoring service 198 and/or monitoring agent 197 performs monitoring
and performance measurement of any session or connection to the application. In one
embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and measures
performance of a browser. In another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of HTTP based transactions. In
some embodiments, the monitoring service 198 and/or monitoring agent 197 monitors and
measures performance of a Voice over IP (VolIP) application or session. In other
embodiments, the monitoring service 198 and/or monitoring agent 197 monitors and
measures performance of a remote display protocol application, such as an ICA client or RDP
client. In yet another embodiment, the monitoring service 198 and/or monitoring agent 197
monitors and measures performance of any type and form of streaming media. In still a
further embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and
measures performance of a hosted application or a Software-As-A-Service (SaaS) delivery
model.

In some embodiments, the monitoring service 198 and/or monitoring agent 197
performs monitoring and performance measurement of one or more transactions, requests or
responses related to application. In other embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures any portion of an application layer stack, such
as any .NET or J2EE calls. In one embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures database or SQL transactions. In yet another
embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and measures

any method, function or application programming interface (API) call.

16

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

In one embodiment, the monitoring service 198 and/or monitoring agent 197 performs
monitoring and performance measurement of a delivery of application and/or data from a
server to a client via one or more appliances, such as appliance 200 and/or appliance 205. In
some embodiments, the monitoring service 198 and/or monitoring agent 197 monitors and
measures performance of delivery of a virtualized application. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 monitors and measures performance of
delivery of a streaming application. In another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures performance of delivery of a desktop
application to a client and/or the execution of the desktop application on the client. In another
embodiment, the monitoring service 198 and/or monitoring agent 197 monitors and measures
performance of a client/server application.

In one embodiment, the monitoring service 198 and/or monitoring agent 197 is
designed and constructed to provide application performance management for the application
delivery system 190. For example, the monitoring service 198 and/or monitoring agent 197
may monitor, measure and manage the performance of the delivery of applications via the
Citrix Presentation Server. In this example, the monitoring service 198 and/or monitoring
agent 197 monitors individual ICA sessions. The monitoring service 198 and/or monitoring
agent 197 may measure the total and per session system resource usage, as well as application
and networking performance. The monitoring service 198 and/or monitoring agent 197 may
identify the active servers for a given user and/or user session. In some embodiments, the
monitoring service 198 and/or monitoring agent 197 monitors back-end connections between
the application delivery system 190 and an application and/or database server. The
monitoring service 198 and/or monitoring agent 197 may measure network latency, delay and
volume per user-session or ICA session.

In some embodiments, the monitoring service 198 and/or monitoring agent 197
measures and monitors memory usage for the application delivery system 190, such as total
memory usage, per user session and/or per process. In other embodiments, the monitoring
service 198 and/or monitoring agent 197 measures and monitors CPU usage the application
delivery system 190, such as total CPU usage, per user session and/or per process. In another
embodiments, the monitoring service 198 and/or monitoring agent 197 measures and
monitors the time required to log-in to an application, a server, or the application delivery
system, such as Citrix Presentation Server. In one embodiment, the monitoring service 198
and/or monitoring agent 197 measures and monitors the duration a user is logged into an

application, a server, or the application delivery system 190. In some embodiments, the

17

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

monitoring service 198 and/or monitoring agent 197 measures and monitors active and
inactive session counts for an application, server or application delivery system session. In
yet another embodiment, the monitoring service 198 and/or monitoring agent 197 measures
and monitors user session latency.

In yet further embodiments, the monitoring service 198 and/or monitoring agent 197
measures and monitors measures and monitors any type and form of server metrics. In one
embodiment, the monitoring service 198 and/or monitoring agent 197 measures and monitors
metrics related to system memory, CPU usage, and disk storage. In another embodiment, the
monitoring service 198 and/or monitoring agent 197 measures and monitors metrics related to
page faults, such as page faults per second. In other embodiments, the monitoring service
198 and/or monitoring agent 197 measures and monitors round-trip time metrics. In yet
another embodiment, the monitoring service 198 and/or monitoring agent 197 measures and
monitors metrics related to application crashes, errors and/or hangs.

In some embodiments, the monitoring service 198 and monitoring agent 198 includes
any of the product embodiments referred to as EdgeSight manufactured by Citrix Systems,
Inc. of Ft. Lauderdale, Florida. In another embodiment, the performance monitoring service
198 and/or monitoring agent 198 includes any portion of the product embodiments referred to
as the TrueView product suite manufactured by the Symphoniq Corporation of Palo Alto,
California. In one embodiment, the performance monitoring service 198 and/or monitoring
agent 198 includes any portion of the product embodiments referred to as the Teal.eaf CX
product suite manufactured by the TeaLeaf Technology Inc. of San Francisco, California. In
other embodiments, the performance monitoring service 198 and/or monitoring agent 198
includes any portion of the business service management products, such as the BMC
Performance Manager and Patrol products, manufactured by BMC Software, Inc. of Houston,
Texas.

The client 102, server 106, and appliance 200 may be deployed as and/or executed on
any type and form of computing device, such as a computer, network device or appliance
capable of communicating on any type and form of network and performing the operations
described herein. FIGs. 1E and IF depict block diagrams of a computing device 100 useful
for practicing an embodiment of the client 102, server 106 or appliance 200. As shown in
FIGs. 1E and 1F, each computing device 100 includes a central processing unit 101, and a
main memory unit 122. As shown in FIG. 1E, a computing device 100 may include a visual
display device 124, a keyboard 126 and/or a pointing device 127, such as a mouse. Each

computing device 100 may also include additional optional elements, such as one or more

18

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

input/output devices 130a-130b (generally referred to using reference numeral 130), and a
cache memory 140 in communication with the central processing unit 101.

The central processing unit 101 is any logic circuitry that responds to and processes
instructions fetched from the main memory unit 122. In many embodiments, the central
processing unit is provided by a microprocessor unit, such as: those manufactured by Intel
Corporation of Mountain View, California; those manufactured by Motorola Corporation of
Schaumburg, Illinois; those manufactured by Transmeta Corporation of Santa Clara,
California; the RS/6000 processor, those manufactured by International Business Machines
of White Plains, New York; or those manufactured by Advanced Micro Devices of
Sunnyvale, California. The computing device 100 may be based on any of these processors,
or any other processor capable of operating as described herein.

Main memory unit 122 may be one or more memory chips capable of storing data and
allowing any storage location to be directly accessed by the microprocessor 101, such as
Static random access memory (SRAM), Burst SRAM or SynchBurst SRAM (BSRAM),
Dynamic random access memory (DRAM), Fast Page Mode DRAM (FPM DRAM),
Enhanced DRAM (EDRAM), Extended Data Output RAM (EDO RAM), Extended Data
Output DRAM (EDO DRAM), Burst Extended Data Output DRAM (BEDO DRAM),
Enhanced DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC SRAM, PC100
SDRAM, Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM (ESDRAM),
SyncLink DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or Ferroelectric RAM
(FRAM). The main memory 122 may be based on any of the above described memory chips,
or any other available memory chips capable of operating as described herein. In the
embodiment shown in FIG. 1E, the processor 101 communicates with main memory 122 via
a system bus 150 (described in more detail below). FIG. 1F depicts an embodiment of a
computing device 100 in which the processor communicates directly with main memory 122
via a memory port 103. For example, in FIG. 1F the main memory 122 may be DRDRAM.

FIG. IF depicts an embodiment in which the main processor 101 communicates
directly with cache memory 140 via a secondary bus, sometimes referred to as a backside
bus. In other embodiments, the main processor 101 communicates with cache memory 140
using the system bus 150. Cache memory 140 typically has a faster response time than main
memory 122 and is typically provided by SRAM, BSRAM, or EDRAM. In the embodiment
shown in FIG. 1F, the processor 101 communicates with various /O devices 130 via a local
system bus 150. Various busses may be used to connect the central processing unit 101 to

any of the 1/0 devices 130, including a VESA VL bus, an ISA bus, an EISA bus, a

19

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

MicroChannel Architecture (MCA) bus, a PCI bus, a PCI-X bus, a PCI-Express bus, or a
NuBus. For embodiments in which the I/O device is a video display 124, the processor 101
may use an Advanced Graphics Port (AGP) to communicate with the display 124. FIG. 1F
depicts an embodiment of a computer 100 in which the main processor 101 communicates
directly with I/O device 130b via HyperTransport, Rapid I/O, or InfiniBand. FIG. 1F also
depicts an embodiment in which local busses and direct communication are mixed: the
processor 101 communicates with I/O device 130b using a local interconnect bus while
communicating with I/O device 130a directly.

The computing device 100 may support any suitable installation device 116, such as a
floppy disk drive for receiving floppy disks such as 3.5-inch, 5.25-inch disks or ZIP disks, a
CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape drives of various formats, USB
device, hard-drive or any other device suitable for installing software and programs such as
any client agent 120, or portion thereof. The computing device 100 may further comprise a
storage device 128, such as one or more hard disk drives or redundant arrays of independent
disks, for storing an operating system and other related software, and for storing application
software programs such as any program related to the client agent 120. Optionally, any of the
installation devices 116 could also be used as the storage device 128. Additionally, the
operating system and the software can be run from a bootable medium, for example, a
bootable CD, such as KNOPPIX®, a bootable CD for GNU/Linux that is available as a
GNU/Linux distribution from knoppix.net.

Furthermore, the computing device 100 may include a network interface 118 to
interface to a Local Area Network (LAN), Wide Area Network (WAN) or the Internet
through a variety of connections including, but not limited to, standard telephone lines, LAN
or WAN links (e.g., 802.11, T1, T3, 56kb, X.25), broadband connections (e.g., ISDN, Frame
Relay, ATM), wireless connections, or some combination of any or all of the above. The
network interface 118 may comprise a built-in network adapter, network interface card,
PCMCIA network card, card bus network adapter, wireless network adapter, USB network
adapter, modem or any other device suitable for interfacing the computing device 100 to any
type of network capable of communication and performing the operations described herein.
A wide variety of I/0 devices 130a-130n may be present in the computing device 100. Input
devices include keyboards, mice, trackpads, trackballs, microphones, and drawing tablets.
Output devices include video displays, speakers, inkjet printers, laser printers, and dye-
sublimation printers. The I/O devices 130 may be controlled by an I/O controller 123 as

shown in FIG. 1E. The I/O controller may control one or more I/0O devices such as a

20

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

keyboard 126 and a pointing device 127, e.g., a mouse or optical pen. Furthermore, an I/O
device may also provide storage 128 and/or an installation medium 116 for the computing
device 100. In still other embodiments, the computing device 100 may provide USB
connections to receive handheld USB storage devices such as the USB Flash Drive line of
devices manufactured by Twintech Industry, Inc. of Los Alamitos, California.

In some embodiments, the computing device 100 may comprise or be connected to
multiple display devices 124a-124n, which each may be of the same or different type and/or
form. As such, any of the I/O devices 130a-130n and/or the I/O controller 123 may comprise
any type and/or form of suitable hardware, software, or combination of hardware and
software to support, enable or provide for the connection and use of multiple display devices
124a-124n by the computing device 100. For example, the computing device 100 may
include any type and/or form of video adapter, video card, driver, and/or library to interface,
communicate, connect or otherwise use the display devices 124a-124n. In one embodiment, a
video adapter may comprise multiple connectors to interface to multiple display devices
124a-124n. In other embodiments, the computing device 100 may include multiple video
adapters, with each video adapter connected to one or more of the display devices 124a-124n.
In some embodiments, any portion of the operating system of the computing device 100 may
be configured for using multiple displays 124a-124n. In other embodiments, one or more of
the display devices 124a-124n may be provided by one or more other computing devices,
such as computing devices 100a and 100b connected to the computing device 100, for
example, via a network. These embodiments may include any type of software designed and
constructed to use another computer’s display device as a second display device 124a for the
computing device 100. One ordinarily skilled in the art will recognize and appreciate the
various ways and embodiments that a computing device 100 may be configured to have
multiple display devices 124a-124n.

In further embodiments, an I/O device 130 may be a bridge 170 between the system
bus 150 and an external communication bus, such as a USB bus, an Apple Desktop Bus, an
RS-232 serial connection, a SCSI bus, a FireWire bus, a FireWire 800 bus, an Ethernet bus,
an AppleTalk bus, a Gigabit Ethernet bus, an Asynchronous Transfer Mode bus, a HIPPI bus,
a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP bus, a FibreChannel bus, or a Serial
Attached small computer system interface bus.

A computing device 100 of the sort depicted in FIGs. 1E and 1F typically operate
under the control of operating systems, which control scheduling of tasks and access to

system resources. The computing device 100 can be running any operating system such as

21

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

any of the versions of the Microsoft® Windows operating systems, the different releases of
the Unix and Linux operating systems, any version of the Mac OS® for Macintosh
computers, any embedded operating system, any real-time operating system, any open source
operating system, any proprictary operating system, any operating systems for mobile
computing devices, or any other operating system capable of running on the computing
device and performing the operations described herein. Typical operating systems include:
WINDOWS 3.x, WINDOWS 95, WINDOWS 98, WINDOWS 2000, WINDOWS NT 3.51,
WINDOWS NT 4.0, WINDOWS CE, and WINDOWS XP, all of which are manufactured by
Microsoft Corporation of Redmond, Washington; MacOS, manufactured by Apple Computer
of Cupertino, California; OS/2, manufactured by International Business Machines of
Armonk, New York; and Linux, a freely-available operating system distributed by Caldera
Corp. of Salt Lake City, Utah, or any type and/or form of a Unix operating system, among
others.

In other embodiments, the computing device 100 may have different processors,
operating systems, and input devices consistent with the device. For example, in one
embodiment the computer 100 is a Treo 180, 270, 1060, 600 or 650 smart phone
manufactured by Palm, Inc. In this embodiment, the Treo smart phone is operated under the
control of the PalmOS operating system and includes a stylus input device as well as a five-
way navigator device. Moreover, the computing device 100 can be any workstation, desktop
computer, laptop or notebook computer, server, handheld computer, mobile telephone, any
other computer, or other form of computing or telecommunications device that is capable of
communication and that has sufficient processor power and memory capacity to perform the
operations described herein.

As shown in FIG. 1G, the computing device 100 may comprise multiple processors
and may provide functionality for simultaneous execution of instructions or for simultanecous
execution of one instruction on more than one piece of data. In some embodiments, the
computing device 100 may comprise a parallel processor with one or more cores. In one of
these embodiments, the computing device 100 is a shared memory parallel device, with
multiple processors and/or multiple processor cores, accessing all available memory as a
single global address space. In another of these embodiments, the computing device 100 is a
distributed memory parallel device with multiple processors each accessing local memory
only. In still another of these embodiments, the computing device 100 has both some
memory which is shared and some memory which can only be accessed by particular

processors or subsets of processors. In still even another of these embodiments, the

22

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

computing device 100, such as a multi-core microprocessor, combines two or more
independent processors into a single package, often a single integrated circuit (IC). In yet
another of these embodiments, the computing device 100 includes a chip having a CELL
BROADBAND ENGINE architecture and including a Power processor element and a
plurality of synergistic processing elements, the Power processor element and the plurality of
synergistic processing elements linked together by an internal high speed bus, which may be
referred to as an element interconnect bus.

In some embodiments, the processors provide functionality for execution of a single
instruction simultaneously on multiple pieces of data (SIMD). In other embodiments, the
processors provide functionality for execution of multiple instructions simultancously on
multiple pieces of data (MIMD). In still other embodiments, the processor may use any
combination of SIMD and MIMD cores in a single device.

In some embodiments, the computing device 100 may comprise a graphics processing
unit. In one of these embodiments, depicted in FIG. 1H, the computing device 100 includes
at least one central processing unit 101 and at least one graphics processing unit. In another
of these embodiments, the computing device 100 includes at least one parallel processing unit
and at least one graphics processing unit. In still another of these embodiments, the
computing device 100 includes a plurality of processing units of any type, one of the plurality
of processing units comprising a graphics processing unit.

In some embodiments, a first computing device 100a executes an application on
behalf of a user of a client computing device 100b. In other embodiments, a computing
device 100a executes a virtual machine, which provides an execution session within which
applications execute on behalf of a user or a client computing devices 100b. In one of these
embodiments, the execution session is a hosted desktop session. In another of these
embodiments, the computing device 100 executes a terminal services session. The terminal
services session may provide a hosted desktop environment. In still another of these
embodiments, the execution session provides access to a computing environment, which may
comprise one or more of: an application, a plurality of applications, a desktop application,

and a desktop session in which one or more applications may execute.

B. Appliance Architecture

FIG. 2A illustrates an example embodiment of the appliance 200. The architecture of
the appliance 200 in FIG. 2A is provided by way of illustration only and is not intended to be

limiting. As shown in FIG. 2, appliance 200 comprises a hardware layer 206 and a software

23

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

layer divided into a user space 202 and a kernel space 204.

Hardware layer 206 provides the hardware elements upon which programs and
services within kernel space 204 and user space 202 are executed. Hardware layer 206 also
provides the structures and elements which allow programs and services within kernel space
204 and user space 202 to communicate data both internally and externally with respect to
appliance 200. As shown in FIG. 2, the hardware layer 206 includes a processing unit 262
for executing software programs and services, a memory 264 for storing software and data,
network ports 266 for transmitting and receiving data over a network, and an encryption
processor 260 for performing functions related to Secure Sockets Layer processing of data
transmitted and received over the network. In some embodiments, the central processing unit
262 may perform the functions of the encryption processor 260 in a single processor.
Additionally, the hardware layer 206 may comprise multiple processors for each of the
processing unit 262 and the encryption processor 260. The processor 262 may include any of
the processors 101 described above in connection with FIGs. 1E and 1F. For example, in one
embodiment, the appliance 200 comprises a first processor 262 and a second processor 262°.
In other embodiments, the processor 262 or 262’ comprises a multi-core processor.

Although the hardware layer 206 of appliance 200 is generally illustrated with an
encryption processor 260, processor 260 may be a processor for performing functions related
to any encryption protocol, such as the Secure Socket Layer (SSL) or Transport Layer
Security (TLS) protocol. In some embodiments, the processor 260 may be a general purpose
processor (GPP), and in further embodiments, may have executable instructions for
performing processing of any security related protocol.

Although the hardware layer 206 of appliance 200 is illustrated with certain elements
in FIG. 2, the hardware portions or components of appliance 200 may comprise any type and
form of elements, hardware or software, of a computing device, such as the computing device
100 illustrated and discussed herein in conjunction with FIGs. 1E and 1F. In some
embodiments, the appliance 200 may comprise a server, gateway, router, switch, bridge or
other type of computing or network device, and have any hardware and/or software elements
associated therewith.

The operating system of appliance 200 allocates, manages, or otherwise segregates
the available system memory into kernel space 204 and user space 204. In example software
architecture 200, the operating system may be any type and/or form of Unix operating system
although the invention is not so limited. As such, the appliance 200 can be running any

operating system such as any of the versions of the Microsoft® Windows operating systems,

24

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

the different releases of the Unix and Linux operating systems, any version of the Mac OS®
for Macintosh computers, any embedded operating system, any network operating system,
any real-time operating system, any open source operating system, any proprietary operating
system, any operating systems for mobile computing devices or network devices, or any other
operating system capable of running on the appliance 200 and performing the operations
described herein.

The kernel space 204 is reserved for running the kernel 230, including any device
drivers, kernel extensions or other kernel related software. As known to those skilled in the
art, the kernel 230 is the core of the operating system, and provides access, control, and
management of resources and hardware-related elements of the application 104. In
accordance with an embodiment of the appliance 200, the kernel space 204 also includes a
number of network services or processes working in conjunction with a cache manager 232,
sometimes also referred to as the integrated cache, the benefits of which are described in
detail further herein. Additionally, the embodiment of the kernel 230 will depend on the
embodiment of the operating system installed, configured, or otherwise used by the device
200.

In one embodiment, the device 200 comprises one network stack 267, such as a
TCP/IP based stack, for communicating with the client 102 and/or the server 106. In one
embodiment, the network stack 267 is used to communicate with a first network, such as
network 108, and a second network 110. In some embodiments, the device 200 terminates a
first transport layer connection, such as a TCP connection of a client 102, and establishes a
second transport layer connection to a server 106 for use by the client 102, e.g., the second
transport layer connection is terminated at the appliance 200 and the server 106. The first
and second transport layer connections may be established via a single network stack 267. In
other embodiments, the device 200 may comprise multiple network stacks, for example 267
and 267’, and the first transport layer connection may be established or terminated at one
network stack 267, and the second transport layer connection on the second network stack
267°. For example, one network stack may be for receiving and transmitting network packet
on a first network, and another network stack for receiving and transmitting network packets
on a second network. In one embodiment, the network stack 267 comprises a buffer 243 for
queuing one or more network packets for transmission by the appliance 200.

As shown in FIG. 2, the kernel space 204 includes the cache manager 232, a high-
speed layer 2-7 integrated packet engine 240, an encryption engine 234, a policy engine 236

and multi-protocol compression logic 238. Running these components or processes 232,

25

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

240, 234, 236 and 238 in kernel space 204 or kernel mode instead of the user space 202
improves the performance of each of these components, alone and in combination. Kernel
operation means that these components or processes 232, 240, 234, 236 and 238 run in the
core address space of the operating system of the device 200. For example, running the
encryption engine 234 in kernel mode improves encryption performance by moving
encryption and decryption operations to the kernel, thereby reducing the number of
transitions between the memory space or a kernel thread in kernel mode and the memory
space or a thread in user mode. For example, data obtained in kernel mode may not need to
be passed or copied to a process or thread running in user mode, such as from a kernel level
data structure to a user level data structure. In another aspect, the number of context switches
between kernel mode and user mode are also reduced. Additionally, synchronization of and
communications between any of the components or processes 232, 240, 235, 236 and 238 can
be performed more efficiently in the kernel space 204.

In some embodiments, any portion of the components 232, 240, 234, 236 and 238
may run or operate in the kernel space 204, while other portions of these components 232,
240, 234, 236 and 238 may run or operate in user space 202. In one embodiment, the
appliance 200 uses a kernel-level data structure providing access to any portion of one or
more network packets, for example, a network packet comprising a request from a client 102
or a response from a server 106. In some embodiments, the kernel-level data structure may
be obtained by the packet engine 240 via a transport layer driver interface or filter to the
network stack 267. The kernel-level data structure may comprise any interface and/or data
accessible via the kernel space 204 related to the network stack 267, network traffic or
packets received or transmitted by the network stack 267. In other embodiments, the kernel-
level data structure may be used by any of the components or processes 232, 240, 234, 236
and 238 to perform the desired operation of the component or process. In one embodiment, a
component 232, 240, 234, 236 and 238 is running in kernel mode 204 when using the kernel-
level data structure, while in another embodiment, the component 232, 240, 234, 236 and 238
1S running in user mode when using the kernel-level data structure. In some embodiments,
the kernel-level data structure may be copied or passed to a second kernel-level data
structure, or any desired user-level data structure.

The cache manager 232 may comprise software, hardware or any combination of
software and hardware to provide cache access, control and management of any type and
form of content, such as objects or dynamically generated objects served by the originating

servers 106. The data, objects or content processed and stored by the cache manager 232

26

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

may comprise data in any format, such as a markup language, or communicated via any
protocol. In some embodiments, the cache manager 232 duplicates original data stored
elsewhere or data previously computed, generated or transmitted, in which the original data
may require longer access time to fetch, compute or otherwise obtain relative to reading a
cache memory element. Once the data is stored in the cache memory element, future use can
be made by accessing the cached copy rather than refetching or recomputing the original
data, thereby reducing the access time. In some embodiments, the cache memory element
may comprise a data object in memory 264 of device 200. In other embodiments, the cache
memory element may comprise memory having a faster access time than memory 264. In
another embodiment, the cache memory element may comprise any type and form of storage
element of the device 200, such as a portion of a hard disk. In some embodiments, the
processing unit 262 may provide cache memory for use by the cache manager 232. In yet
further embodiments, the cache manager 232 may use any portion and combination of
memory, storage, or the processing unit for caching data, objects, and other content.

Furthermore, the cache manager 232 includes any logic, functions, rules, or
operations to perform any embodiments of the techniques of the appliance 200 described
herein. For example, the cache manager 232 includes logic or functionality to invalidate
objects based on the expiration of an invalidation time period or upon receipt of an
invalidation command from a client 102 or server 106. In some embodiments, the cache
manager 232 may operate as a program, service, process or task executing in the kernel space
204, and in other embodiments, in the user space 202. In one embodiment, a first portion of
the cache manager 232 executes in the user space 202 while a second portion executes in the
kernel space 204. In some embodiments, the cache manager 232 can comprise any type of
general purpose processor (GPP), or any other type of integrated circuit, such as a Field
Programmable Gate Array (FPGA), Programmable Logic Device (PLD), or Application
Specific Integrated Circuit (ASIC).

The policy engine 236 may include, for example, an intelligent statistical engine or
other programmable application(s). In one embodiment, the policy engine 236 provides a
configuration mechanism to allow a user to identify, specify, define or configure a caching
policy. Policy engine 236, in some embodiments, also has access to memory to support data
structures such as lookup tables or hash tables to enable user-selected caching policy
decisions. In other embodiments, the policy engine 236 may comprise any logic, rules,
functions or operations to determine and provide access, control and management of objects,

data or content being cached by the appliance 200 in addition to access, control and

27

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

management of security, network traffic, network access, compression or any other function
or operation performed by the appliance 200. Further examples of specific caching policies
are further described herein.

The encryption engine 234 comprises any logic, business rules, functions or
operations for handling the processing of any security related protocol, such as SSL or TLS,
or any function related thereto. For example, the encryption engine 234 encrypts and
decrypts network packets, or any portion thereof, communicated via the appliance 200. The
encryption engine 234 may also setup or establish SSL or TLS connections on behalf of the
client 102a-102n, server 106a-106n, or appliance 200. As such, the encryption engine 234
provides offloading and acceleration of SSL processing. In one embodiment, the encryption
engine 234 uses a tunneling protocol to provide a virtual private network between a client
102a-102n and a server 106a-106n. In some embodiments, the encryption engine 234 is in
communication with the Encryption processor 260. In other embodiments, the encryption
engine 234 comprises executable instructions running on the Encryption processor 260.

The multi-protocol compression engine 238 comprises any logic, business rules,
function or operations for compressing one or more protocols of a network packet, such as
any of the protocols used by the network stack 267 of the device 200. In one embodiment,
multi-protocol compression engine 238 compresses bi-directionally between clients 102a-
102n and servers 106a-106n any TCP/IP based protocol, including Messaging Application
Programming Interface (MAPI) (email), File Transfer Protocol (FTP), HyperText Transfer
Protocol (HTTP), Common Internet File System (CIFS) protocol (file transfer), Independent
Computing Architecture (ICA) protocol, Remote Desktop Protocol (RDP), Wireless
Application Protocol (WAP), Mobile IP protocol, and Voice Over IP (VoIP) protocol. In
other embodiments, multi-protocol compression engine 238 provides compression of
Hypertext Markup Language (HTML) based protocols and in some embodiments, provides
compression of any markup languages, such as the Extensible Markup Language (XML). In
one embodiment, the multi-protocol compression engine 238 provides compression of any
high-performance protocol, such as any protocol designed for appliance 200 to appliance 200
communications. In another embodiment, the multi-protocol compression engine 238
compresses any payload of or any communication using a modified transport control
protocol, such as Transaction TCP (T/TCP), TCP with selection acknowledgements (TCP-
SACK), TCP with large windows (TCP-LW), a congestion prediction protocol such as the
TCP-Vegas protocol, and a TCP spoofing protocol.

As such, the multi-protocol compression engine 238 accelerates performance for users

28

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

accessing applications via desktop clients, e.g., Microsoft Outlook and non-Web thin clients,
such as any client launched by popular enterprise applications like Oracle, SAP and Siebel,
and even mobile clients, such as the Pocket PC. In some embodiments, the multi-protocol
compression engine 238 by executing in the kernel mode 204 and integrating with packet
processing engine 240 accessing the network stack 267 is able to compress any of the
protocols carried by the TCP/IP protocol, such as any application layer protocol.

High speed layer 2-7 integrated packet engine 240, also generally referred to as a
packet processing engine or packet engine, is responsible for managing the kernel-level
processing of packets received and transmitted by appliance 200 via network ports 266. The
high speed layer 2-7 integrated packet engine 240 may comprise a buffer for queuing one or
more network packets during processing, such as for receipt of a network packet or
transmission of a network packet. Additionally, the high speed layer 2-7 integrated packet
engine 240 is in communication with one or more network stacks 267 to send and receive
network packets via network ports 266. The high speed layer 2-7 integrated packet engine
240 works in conjunction with encryption engine 234, cache manager 232, policy engine 236
and multi-protocol compression logic 238. In particular, encryption engine 234 is configured
to perform SSL processing of packets, policy engine 236 is configured to perform functions
related to traffic management such as request-level content switching and request-level cache
redirection, and multi-protocol compression logic 238 is configured to perform functions
related to compression and decompression of data.

The high speed layer 2-7 integrated packet engine 240 includes a packet processing
timer 242. In one embodiment, the packet processing timer 242 provides one or more time
intervals to trigger the processing of incoming, i.¢., received, or outgoing, i.¢., transmitted,
network packets. In some embodiments, the high speed layer 2-7 integrated packet engine
240 processes network packets responsive to the timer 242. The packet processing timer 242
provides any type and form of signal to the packet engine 240 to notify, trigger, or
communicate a time related event, interval or occurrence. In many embodiments, the packet
processing timer 242 operates in the order of milliseconds, such as for example 100ms, 50ms
or 25ms. For example, in some embodiments, the packet processing timer 242 provides time
intervals or otherwise causes a network packet to be processed by the high speed layer 2-7
integrated packet engine 240 at a 10 ms time interval, while in other embodiments, at a 5 ms
time interval, and still yet in further embodiments, as short as a 3, 2, or 1 ms time interval.
The high speed layer 2-7 integrated packet engine 240 may be interfaced, integrated or in

communication with the encryption engine 234, cache manager 232, policy engine 236 and

29

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

multi-protocol compression engine 238 during operation. As such, any of the logic,
functions, or operations of the encryption engine 234, cache manager 232, policy engine 236
and multi-protocol compression logic 238 may be performed responsive to the packet
processing timer 242 and/or the packet engine 240. Therefore, any of the logic, functions, or
operations of the encryption engine 234, cache manager 232, policy engine 236 and multi-
protocol compression logic 238 may be performed at the granularity of time intervals
provided via the packet processing timer 242, for example, at a time interval of less than or
equal to 10ms. For example, in one embodiment, the cache manager 232 may perform
invalidation of any cached objects responsive to the high speed layer 2-7 integrated packet
engine 240 and/or the packet processing timer 242. In another embodiment, the expiry or
invalidation time of a cached object can be set to the same order of granularity as the time
interval of the packet processing timer 242, such as at every 10 ms.

In contrast to kernel space 204, user space 202 is the memory area or portion of the
operating system used by user mode applications or programs otherwise running in user
mode. A user mode application may not access kernel space 204 directly and uses service
calls in order to access kernel services. As shown in FIG. 2, user space 202 of appliance 200
includes a graphical user interface (GUI) 210, a command line interface (CLI) 212, shell
services 214, health monitoring program 216, and daemon services 218. GUI 210 and CLI
212 provide a means by which a system administrator or other user can interact with and
control the operation of appliance 200, such as via the operating system of the appliance 200.
The GUI 210 or CLI 212 can comprise code running in user space 202 or kernel space 204.
The GUI 210 may be any type and form of graphical user interface and may be presented via
text, graphical or otherwise, by any type of program or application, such as a browser. The
CLI 212 may be any type and form of command line or text-based interface, such as a
command line provided by the operating system. For example, the CLI 212 may comprise a
shell, which is a tool to enable users to interact with the operating system. In some
embodiments, the CLI 212 may be provided via a bash, csh, tcsh, or ksh type shell. The shell
services 214 comprises the programs, services, tasks, processes or executable instructions to
support interaction with the appliance 200 or operating system by a user via the GUI 210
and/or CLI212.

Health monitoring program 216 is used to monitor, check, report and ensure that
network systems are functioning properly and that users are receiving requested content over
a network. Health monitoring program 216 comprises one or more programs, services, tasks,

processes or executable instructions to provide logic, rules, functions or operations for

30

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

monitoring any activity of the appliance 200. In some embodiments, the health monitoring
program 216 intercepts and inspects any network traffic passed via the appliance 200. In
other embodiments, the health monitoring program 216 interfaces by any suitable means
and/or mechanisms with one or more of the following: the encryption engine 234, cache
manager 232, policy engine 236, multi-protocol compression logic 238, packet engine 240,
daemon services 218, and shell services 214. As such, the health monitoring program 216
may call any application programming interface (API) to determine a state, status, or health
of any portion of the appliance 200. For example, the health monitoring program 216 may
ping or send a status inquiry on a periodic basis to check if a program, process, service or task
is active and currently running. In another example, the health monitoring program 216 may
check any status, error or history logs provided by any program, process, service or task to
determine any condition, status or error with any portion of the appliance 200.

Daemon services 218 are programs that run continuously or in the background and
handle periodic service requests received by appliance 200. In some embodiments, a dacmon
service may forward the requests to other programs or processes, such as another daemon
service 218 as appropriate. As known to those skilled in the art, a daemon service 218 may
run unattended to perform continuous or periodic system wide functions, such as network
control, or to perform any desired task. In some embodiments, one or more daemon services
218 run in the user space 202, while in other embodiments, one or more daemon services 218
run in the kernel space.

Referring now to FIG. 2B, another embodiment of the appliance 200 is depicted. In
brief overview, the appliance 200 provides one or more of the following services,
functionality or operations: SSL VPN connectivity 280, switching/load balancing 284,
Domain Name Service resolution 286, acceleration 288 and an application firewall 290 for
communications between one or more clients 102 and one or more servers 106. Each of the
servers 106 may provide one or more network related services 270a-270n (referred to as
services 270). For example, a server 106 may provide an http service 270. The appliance
200 comprises one or more virtual servers or virtual internet protocol servers, referred to as a
vServer, VIP server, or just VIP 275a-275n (also referred herein as vServer 275). The
vServer 275 receives, intercepts or otherwise processes communications between a client 102
and a server 106 in accordance with the configuration and operations of the appliance 200.

The vServer 275 may comprise software, hardware or any combination of software
and hardware. The vServer 275 may comprise any type and form of program, service, task,

process or executable instructions operating in user mode 202, kernel mode 204 or any

31

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

combination thereof in the appliance 200. The vServer 275 includes any logic, functions,
rules, or operations to perform any embodiments of the techniques described herein, such as
SSL VPN 280, switching/load balancing 284, Domain Name Service resolution 286,
acceleration 288 and an application firewall 290. In some embodiments, the vServer 275
establishes a connection to a service 270 of a server 106. The service 275 may comprise any
program, application, process, task or set of executable instructions capable of connecting to
and communicating to the appliance 200, client 102 or vServer 275. For example, the service
275 may comprise a web server, http server, ftp, email or database server. In some
embodiments, the service 270 is a daemon process or network driver for listening, receiving
and/or sending communications for an application, such as email, database or an enterprise
application. In some embodiments, the service 270 may communicate on a specific [P
address, or IP address and port.

In some embodiments, the vServer 275 applies one or more policies of the policy
engine 236 to network communications between the client 102 and server 106. In one
embodiment, the policies are associated with a vServer 275. In another embodiment, the
policies are based on a user, or a group of users. In yet another embodiment, a policy is
global and applies to one or more vServers 275a-275n, and any user or group of users
communicating via the appliance 200. In some embodiments, the policies of the policy
engine have conditions upon which the policy is applied based on any content of the
communication, such as internet protocol address, port, protocol type, header or fields in a
packet, or the context of the communication, such as user, group of the user, vServer 275,
transport layer connection, and/or identification or attributes of the client 102 or server 106.

In other embodiments, the appliance 200 communicates or interfaces with the policy
engine 236 to determine authentication and/or authorization of a remote user or a remote
client 102 to access the computing environment 15, application, and/or data file from a server
106. In another embodiment, the appliance 200 communicates or interfaces with the policy
engine 236 to determine authentication and/or authorization of a remote user or a remote
client 102 to have the application delivery system 190 deliver one or more of the computing
environment 15, application, and/or data file. In yet another embodiment, the appliance 200
establishes a VPN or SSL VPN connection based on the policy engine’s 236 authentication
and/or authorization of a remote user or a remote client 102 In one embodiment, the
appliance 200 controls the flow of network traffic and communication sessions based on
policies of the policy engine 236. For example, the appliance 200 may control the access to

a computing environment 15, application or data file based on the policy engine 236.

32

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

In some embodiments, the vServer 275 establishes a transport layer connection, such
as a TCP or UDP connection with a client 102 via the client agent 120. In one embodiment,
the vServer 275 listens for and receives communications from the client 102. In other
embodiments, the vServer 275 establishes a transport layer connection, such as a TCP or
UDP connection with a client server 106. In one embodiment, the vServer 275 establishes
the transport layer connection to an internet protocol address and port of a server 270 running
on the server 106. In another embodiment, the vServer 275 associates a first transport layer
connection to a client 102 with a second transport layer connection to the server 106. In
some embodiments, a vServer 275 establishes a pool of transport layer connections to a
server 106 and multiplexes client requests via the pooled transport layer connections.

In some embodiments, the appliance 200 provides a SSL VPN connection 280
between a client 102 and a server 106. For example, a client 102 on a first network 102
requests to establish a connection to a server 106 on a second network 104°. In some
embodiments, the second network 104’ is not routable from the first network 104. In other
embodiments, the client 102 is on a public network 104 and the server 106 is on a private
network 104°, such as a corporate network. In one embodiment, the client agent 120
intercepts communications of the client 102 on the first network 104, encrypts the
communications, and transmits the communications via a first transport layer connection to
the appliance 200. The appliance 200 associates the first transport layer connection on the
first network 104 to a second transport layer connection to the server 106 on the second
network 104. The appliance 200 receives the intercepted communication from the client
agent 102, decrypts the communications, and transmits the communication to the server 106
on the second network 104 via the second transport layer connection. The second transport
layer connection may be a pooled transport layer connection. As such, the appliance 200
provides an end-to-end secure transport layer connection for the client 102 between the two
networks 104, 104°.

In one embodiment, the appliance 200 hosts an intranet internet protocol or IntranetIP
282 address of the client 102 on the virtual private network 104. The client 102 has a local
network identifier, such as an internet protocol (IP) address and/or host name on the first
network 104. When connected to the second network 104’ via the appliance 200, the
appliance 200 establishes, assigns or otherwise provides an IntranetIP address 282, which is a
network identifier, such as IP address and/or host name, for the client 102 on the second
network 104°. The appliance 200 listens for and receives on the second or private network

104’ for any communications directed towards the client 102 using the client’s established

33

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

IntranetIP 282. In one embodiment, the appliance 200 acts as or on behalf of the client 102 on
the second private network 104. For example, in another embodiment, a vServer 275 listens
for and responds to communications to the IntranetIP 282 of the client 102. In some
embodiments, if a computing device 100 on the second network 104’ transmits a request, the
appliance 200 processes the request as if it were the client 102. For example, the appliance
200 may respond to a ping to the client’s IntranetIP 282. In another example, the appliance
may establish a connection, such as a TCP or UDP connection, with computing device 100
on the second network 104 requesting a connection with the client’s IntranetIP 282.

In some embodiments, the appliance 200 provides one or more of the following
acceleration techniques 288 to communications between the client 102 and server 106: 1)
compression; 2) decompression; 3) Transmission Control Protocol pooling; 4) Transmission
Control Protocol multiplexing; 5) Transmission Control Protocol buffering; and 6) caching.
In one embodiment, the appliance 200 relieves servers 106 of much of the processing load
caused by repeatedly opening and closing transport layers connections to clients 102 by
opening one or more transport layer connections with each server 106 and maintaining these
connections to allow repeated data accesses by clients via the Internet. This technique is
referred to herein as “connection pooling”.

In some embodiments, in order to seamlessly splice communications from a client
102 to a server 106 via a pooled transport layer connection, the appliance 200 translates or
multiplexes communications by modifying sequence number and acknowledgment numbers
at the transport layer protocol level. This is referred to as “connection multiplexing”. In
some embodiments, no application layer protocol interaction is required. For example, in the
case of an in-bound packet (that is, a packet received from a client 102), the source network
address of the packet is changed to that of an output port of appliance 200, and the destination
network address is changed to that of the intended server. In the case of an outbound packet
(that is, one received from a server 106), the source network address is changed from that of
the server 106 to that of an output port of appliance 200 and the destination address is
changed from that of appliance 200 to that of the requesting client 102. The sequence
numbers and acknowledgment numbers of the packet are also translated to sequence numbers
and acknowledgement numbers expected by the client 102 on the appliance’s 200 transport
layer connection to the client 102. In some embodiments, the packet checksum of the
transport layer protocol is recalculated to account for these translations.

In another embodiment, the appliance 200 provides switching or load-balancing

functionality 284 for communications between the client 102 and server 106. In some

34

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

embodiments, the appliance 200 distributes traffic and directs client requests to a server 106
based on layer 4 or application-layer request data. In one embodiment, although the network
layer or layer 2 of the network packet identifies a destination server 106, the appliance 200
determines the server 106 to distribute the network packet by application information and
data carried as payload of the transport layer packet. In one embodiment, the health
monitoring programs 216 of the appliance 200 monitor the health of servers to determine the
server 106 for which to distribute a client’s request. In some embodiments, if the appliance
200 detects a server 106 is not available or has a load over a predetermined threshold, the
appliance 200 can direct or distribute client requests to another server 106.

In some embodiments, the appliance 200 acts as a Domain Name Service (DNS)
resolver or otherwise provides resolution of a DNS request from clients 102. In some
embodiments, the appliance intercepts a DNS request transmitted by the client 102. In one
embodiment, the appliance 200 responds to a client’s DNS request with an IP address of or
hosted by the appliance 200. In this embodiment, the client 102 transmits network
communication for the domain name to the appliance 200. In another embodiment, the
appliance 200 responds to a client’s DNS request with an IP address of or hosted by a second
appliance 200°. In some embodiments, the appliance 200 responds to a client’s DNS request
with an IP address of a server 106 determined by the appliance 200.

In yet another embodiment, the appliance 200 provides application firewall
functionality 290 for communications between the client 102 and server 106. In one
embodiment, the policy engine 236 provides rules for detecting and blocking illegitimate
requests. In some embodiments, the application firewall 290 protects against denial of
service (DoS) attacks. In other embodiments, the appliance inspects the content of intercepted
requests to identify and block application-based attacks. In some embodiments, the
rules/policy engine 236 comprises one or more application firewall or security control
policies for providing protections against various classes and types of web or Internet based
vulnerabilities, such as one or more of the following: 1) buffer overflow, 2) CGI-BIN
parameter manipulation, 3) form/hidden field manipulation, 4) forceful browsing, 5) cookie
or session poisoning, 6) broken access control list (ACLs) or weak passwords, 7) cross-site
scripting (XSS), 8) command injection, 9) SQL injection, 10) error triggering sensitive
information leak, 11) insecure use of cryptography, 12) server misconfiguration, 13) back
doors and debug options, 14) website defacement, 15) platform or operating systems
vulnerabilities, and 16) zero-day exploits. In an embodiment, the application firewall 290

provides HTML form field protection in the form of inspecting or analyzing the network

35

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

communication for one or more of the following: 1) required fields are returned, 2) no added
field allowed, 3) read-only and hidden field enforcement, 4) drop-down list and radio button
field conformance, and 5) form-field max-length enforcement. In some embodiments, the
application firewall 290 ensures cookies are not modified. In other embodiments, the
application firewall 290 protects against forceful browsing by enforcing legal URLSs.

In still yet other embodiments, the application firewall 290 protects any confidential
information contained in the network communication. The application firewall 290 may
inspect or analyze any network communication in accordance with the rules or polices of the
engine 236 to identify any confidential information in any field of the network packet. In
some embodiments, the application firewall 290 identifies in the network communication one
or more occurrences of a credit card number, password, social security number, name, patient
code, contact information, and age. The encoded portion of the network communication may
comprise these occurrences or the confidential information. Based on these occurrences, in
one embodiment, the application firewall 290 may take a policy action on the network
communication, such as prevent transmission of the network communication. In another
embodiment, the application firewall 290 may rewrite, remove or otherwise mask such
identified occurrence or confidential information.

Still referring to FIG. 2B, the appliance 200 may include a performance monitoring
agent 197 as discussed above in conjunction with FIG. 1D. In one embodiment, the
appliance 200 receives the monitoring agent 197 from the monitoring service 198 or
monitoring server 106 as depicted in FIG. 1D. In some embodiments, the appliance 200
stores the monitoring agent 197 in storage, such as disk, for delivery to any client or server in
communication with the appliance 200. For example, in one embodiment, the appliance 200
transmits the monitoring agent 197 to a client upon receiving a request to establish a transport
layer connection. In other embodiments, the appliance 200 transmits the monitoring agent
197 upon establishing the transport layer connection with the client 102. In another
embodiment, the appliance 200 transmits the monitoring agent 197 to the client upon
intercepting or detecting a request for a web page. In yet another embodiment, the appliance
200 transmits the monitoring agent 197 to a client or a server in response to a request from
the monitoring server 198. In one embodiment, the appliance 200 transmits the monitoring
agent 197 to a second appliance 200 or appliance 205.

In other embodiments, the appliance 200 executes the monitoring agent 197. In one
embodiment, the monitoring agent 197 measures and monitors the performance of any

application, program, process, service, task or thread executing on the appliance 200. For

36

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

example, the monitoring agent 197 may monitor and measure performance and operation of
vServers 275A-275N. In another embodiment, the monitoring agent 197 measures and
monitors the performance of any transport layer connections of the appliance 200. In some
embodiments, the monitoring agent 197 measures and monitors the performance of any user
sessions traversing the appliance 200. In one embodiment, the monitoring agent 197
measures and monitors the performance of any virtual private network connections and/or
sessions traversing the appliance 200, such an SSL VPN session. In still further
embodiments, the monitoring agent 197 measures and monitors the memory, CPU and disk
usage and performance of the appliance 200. In yet another embodiment, the monitoring
agent 197 measures and monitors the performance of any acceleration technique 288
performed by the appliance 200, such as SSL offloading, connection pooling and
multiplexing, caching, and compression. In some embodiments, the monitoring agent 197
measures and monitors the performance of any load balancing and/or content switching 284
performed by the appliance 200. In other embodiments, the monitoring agent 197 measures
and monitors the performance of application firewall 290 protection and processing

performed by the appliance 200.

C. Client Agent
Referring now to FIG. 3, an embodiment of the client agent 120 is depicted. The

client 102 includes a client agent 120 for establishing and exchanging communications with
the appliance 200 and/or server 106 via a network 104. In brief overview, the client 102
operates on computing device 100 having an operating system with a kernel mode 302 and a
user mode 303, and a network stack 310 with one or more layers 310a-310b. The client 102
may have installed and/or execute one or more applications. In some embodiments, one or
more applications may communicate via the network stack 310 to a network 104. One of the
applications, such as a web browser, may also include a first program 322. For example, the
first program 322 may be used in some embodiments to install and/or execute the client agent
120, or any portion thereof. The client agent 120 includes an interception mechanism, or
interceptor 350, for intercepting network communications from the network stack 310 from
the one or more applications.

The network stack 310 of the client 102 may comprise any type and form of software,
or hardware, or any combinations thereof, for providing connectivity to and communications
with a network. In one embodiment, the network stack 310 comprises a software

embodiment for a network protocol suite. The network stack 310 may comprise one or more

37

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

network layers, such as any networks layers of the Open Systems Interconnection (OSI)
communications model as those skilled in the art recognize and appreciate. As such, the
network stack 310 may comprise any type and form of protocols for any of the following
layers of the OSI model: 1) physical link layer, 2) data link layer, 3) network layer, 4)
transport layer, 5) session layer, 6) presentation layer, and 7) application layer. In one
embodiment, the network stack 310 may comprise a transport control protocol (TCP) over the
network layer protocol of the internet protocol (IP), generally referred to as TCP/IP. In some
embodiments, the TCP/IP protocol may be carried over the Ethernet protocol, which may
comprise any of the family of IEEE wide-area-network (WAN) or local-area-network (LAN)
protocols, such as those protocols covered by the IEEE 802.3. In some embodiments, the
network stack 310 comprises any type and form of a wireless protocol, such as IEEE 802.11
and/or mobile internet protocol.

In view of a TCP/IP based network, any TCP/IP based protocol may be used,
including Messaging Application Programming Interface (MAPI) (email), File Transfer
Protocol (FTP), HyperText Transfer Protocol (HTTP), Common Internet File System (CIFES)
protocol (file transfer), Independent Computing Architecture (ICA) protocol, Remote
Desktop Protocol (RDP), Wireless Application Protocol (WAP), Mobile IP protocol, and
Voice Over IP (VoIP) protocol. In another embodiment, the network stack 310 comprises
any type and form of transport control protocol, such as a modified transport control protocol,
for example a Transaction TCP (T/TCP), TCP with selection acknowledgements (TCP-
SACK), TCP with large windows (TCP-LW), a congestion prediction protocol such as the
TCP-Vegas protocol, and a TCP spoofing protocol. In other embodiments, any type and
form of user datagram protocol (UDP), such as UDP over IP, may be used by the network
stack 310, such as for voice communications or real-time data communications.

Furthermore, the network stack 310 may include one or more network drivers
supporting the one or more layers, such as a TCP driver or a network layer driver. The
network drivers may be included as part of the operating system of the computing device 100
or as part of any network interface cards or other network access components of the
computing device 100. In some embodiments, any of the network drivers of the network
stack 310 may be customized, modified or adapted to provide a custom or modified portion
of the network stack 310 in support of any of the techniques described herein. In other
embodiments, the acceleration program 302 is designed and constructed to operate with or
work in conjunction with the network stack 310 installed or otherwise provided by the

operating system of the client 102.

38

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

The network stack 310 comprises any type and form of interfaces for receiving,
obtaining, providing or otherwise accessing any information and data related to network
communications of the client 102. In one embodiment, an interface to the network stack 310
comprises an application programming interface (API). The interface may also comprise any
function call, hooking or filtering mechanism, event or call back mechanism, or any type of
interfacing technique. The network stack 310 via the interface may receive or provide any
type and form of data structure, such as an object, related to functionality or operation of the
network stack 310. For example, the data structure may comprise information and data
related to a network packet or one or more network packets. In some embodiments, the data
structure comprises a portion of the network packet processed at a protocol layer of the
network stack 310, such as a network packet of the transport layer. In some embodiments,
the data structure 325 comprises a kernel-level data structure, while in other embodiments,
the data structure 325 comprises a user-mode data structure. A kernel-level data structure
may comprise a data structure obtained or related to a portion of the network stack 310
operating in kernel-mode 302, or a network driver or other software running in kernel-mode
302, or any data structure obtained or received by a service, process, task, thread or other
executable instructions running or operating in kernel-mode of the operating system.

Additionally, some portions of the network stack 310 may execute or operate in
kernel-mode 302, for example, the data link or network layer, while other portions execute or
operate in user-mode 303, such as an application layer of the network stack 310. For
example, a first portion 310a of the network stack may provide user-mode access to the
network stack 310 to an application while a second portion 310a of the network stack 310
provides access to a network. In some embodiments, a first portion 310a of the network stack
may comprise one or more upper layers of the network stack 310, such as any of layers 5-7.
In other embodiments, a second portion 310b of the network stack 310 comprises one or
more lower layers, such as any of layers 1-4. Each of the first portion 310a and second
portion 310b of the network stack 310 may comprise any portion of the network stack 310, at
any one or more network layers, in user-mode 203, kernel-mode, 202, or combinations
thereof, or at any portion of a network layer or interface point to a network layer or any
portion of or interface point to the user-mode 203 and kernel-mode 203. .

The interceptor 350 may comprise software, hardware, or any combination of
software and hardware. In one embodiment, the interceptor 350 intercept a network
communication at any point in the network stack 310, and redirects or transmits the network

communication to a destination desired, managed or controlled by the interceptor 350 or

39

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

client agent 120. For example, the interceptor 350 may intercept a network communication
of a network stack 310 of a first network and transmit the network communication to the
appliance 200 for transmission on a second network 104. In some embodiments, the
interceptor 350 comprises any type interceptor 350 comprises a driver, such as a network
driver constructed and designed to interface and work with the network stack 310. In some
embodiments, the client agent 120 and/or interceptor 350 operates at one or more layers of
the network stack 310, such as at the transport layer. In one embodiment, the interceptor 350
comprises a filter driver, hooking mechanism, or any form and type of suitable network
driver interface that interfaces to the transport layer of the network stack, such as via the
transport driver interface (TDI). In some embodiments, the interceptor 350 interfaces to a
first protocol layer, such as the transport layer and another protocol layer, such as any layer
above the transport protocol layer, for example, an application protocol layer. In one
embodiment, the interceptor 350 may comprise a driver complying with the Network Driver
Interface Specification (NDIS), or a NDIS driver. In another embodiment, the interceptor
350 may comprise a mini-filter or a mini-port driver. In one embodiment, the interceptor 350,
or portion thereof, operates in kernel-mode 202. In another embodiment, the interceptor 350,
or portion thereof, operates in user-mode 203. In some embodiments, a portion of the
interceptor 350 operates in kernel-mode 202 while another portion of the interceptor 350
operates in user-mode 203. In other embodiments, the client agent 120 operates in user-mode
203 but interfaces via the interceptor 350 to a kernel-mode driver, process, service, task or
portion of the operating system, such as to obtain a kernel-level data structure 225. In further
embodiments, the interceptor 350 is a user-mode application or program, such as application.

In one embodiment, the interceptor 350 intercepts any transport layer connection
requests. In these embodiments, the interceptor 350 execute transport layer application
programming interface (API) calls to set the destination information, such as destination IP
address and/or port to a desired location for the location. In this manner, the interceptor 350
intercepts and redirects the transport layer connection to a IP address and port controlled or
managed by the interceptor 350 or client agent 120. In one embodiment, the interceptor 350
sets the destination information for the connection to a local IP address and port of the client
102 on which the client agent 120 is listening. For example, the client agent 120 may
comprise a proxy service listening on a local IP address and port for redirected transport layer
communications. In some embodiments, the client agent 120 then communicates the
redirected transport layer communication to the appliance 200.

In some embodiments, the interceptor 350 intercepts a Domain Name Service (DNS)

40

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

request. In one embodiment, the client agent 120 and/or interceptor 350 resolves the DNS
request. In another embodiment, the interceptor transmits the intercepted DNS request to the
appliance 200 for DNS resolution. In one embodiment, the appliance 200 resolves the DNS
request and communicates the DNS response to the client agent 120. In some embodiments,
the appliance 200 resolves the DNS request via another appliance 200’ or a DNS server 106.

In yet another embodiment, the client agent 120 may comprise two agents 120 and
120°. In one embodiment, a first agent 120 may comprise an interceptor 350 operating at the
network layer of the network stack 310. In some embodiments, the first agent 120 intercepts
network layer requests such as Internet Control Message Protocol (ICMP) requests (e.g., ping
and traceroute). In other embodiments, the second agent 120’ may operate at the transport
layer and intercept transport layer communications. In some embodiments, the first agent
120 intercepts communications at one layer of the network stack 210 and interfaces with or
communicates the intercepted communication to the second agent 120°.

The client agent 120 and/or interceptor 350 may operate at or interface with a protocol
layer in a manner transparent to any other protocol layer of the network stack 310. For
example, in one embodiment, the interceptor 350 operates or interfaces with the transport
layer of the network stack 310 transparently to any protocol layer below the transport layer,
such as the network layer, and any protocol layer above the transport layer, such as the
session, presentation or application layer protocols. This allows the other protocol layers of
the network stack 310 to operate as desired and without modification for using the interceptor
350. As such, the client agent 120 and/or interceptor 350 can interface with the transport
layer to secure, optimize, accelerate, route or load-balance any communications provided via
any protocol carried by the transport layer, such as any application layer protocol over
TCP/IP.

Furthermore, the client agent 120 and/or interceptor may operate at or interface with
the network stack 310 in a manner transparent to any application, a user of the client 102, and
any other computing device, such as a server, in communications with the client 102. The
client agent 120 and/or interceptor 350 may be installed and/or executed on the client 102 in a
manner without modification of an application. In some embodiments, the user of the client
102 or a computing device in communications with the client 102 are not aware of the
existence, execution or operation of the client agent 120 and/or interceptor 350. As such, in
some embodiments, the client agent 120 and/or interceptor 350 is installed, executed, and/or
operated transparently to an application, user of the client 102, another computing device,

such as a server, or any of the protocol layers above and/or below the protocol layer

41

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

interfaced to by the interceptor 350.

The client agent 120 includes an acceleration program 302, a streaming client 306, a
collection agent 304, and/or monitoring agent 197. In one embodiment, the client agent 120
comprises an Independent Computing Architecture (ICA) client, or any portion thereof,
developed by Citrix Systems, Inc. of Fort Lauderdale, Florida, and is also referred to as an
ICA client. In some embodiments, the client 120 comprises an application streaming client
306 for streaming an application from a server 106 to a client 102. In some embodiments, the
client agent 120 comprises an acceleration program 302 for accelerating communications
between client 102 and server 106. In another embodiment, the client agent 120 includes a
collection agent 304 for performing end-point detection/scanning and collecting end-point
information for the appliance 200 and/or server 106.

In some embodiments, the acceleration program 302 comprises a client-side
acceleration program for performing one or more acceleration techniques to accelerate,
enhance or otherwise improve a client’s communications with and/or access to a server 106,
such as accessing an application provided by a server 106. The logic, functions, and/or
operations of the executable instructions of the acceleration program 302 may perform one or
more of the following acceleration techniques: 1) multi-protocol compression, 2) transport
control protocol pooling, 3) transport control protocol multiplexing, 4) transport control
protocol buffering, and 5) caching via a cache manager. Additionally, the acceleration
program 302 may perform encryption and/or decryption of any communications received
and/or transmitted by the client 102. In some embodiments, the acceleration program 302
performs one or more of the acceleration techniques in an integrated manner or fashion.
Additionally, the acceleration program 302 can perform compression on any of the protocols,
or multiple-protocols, carried as a payload of a network packet of the transport layer protocol.

The streaming client 306 comprises an application, program, process, service, task or
executable instructions for receiving and executing a streamed application from a server 106.
A server 106 may stream one or more application data files to the streaming client 306 for
playing, executing or otherwise causing to be executed the application on the client 102. In
some embodiments, the server 106 transmits a set of compressed or packaged application
data files to the streaming client 306. In some embodiments, the plurality of application files
are compressed and stored on a file server within an archive file such as a CAB, ZIP, SIT,
TAR, JAR or other archive. In one embodiment, the server 106 decompresses, unpackages or
unarchives the application files and transmits the files to the client 102. In another

embodiment, the client 102 decompresses, unpackages or unarchives the application files.

42

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

The streaming client 306 dynamically installs the application, or portion thereof, and executes
the application. In one embodiment, the streaming client 306 may be an executable program.
In some embodiments, the streaming client 306 may be able to launch another executable
program.

The collection agent 304 comprises an application, program, process, service, task or
executable instructions for identifying, obtaining and/or collecting information about the
client 102. In some embodiments, the appliance 200 transmits the collection agent 304 to the
client 102 or client agent 120. The collection agent 304 may be configured according to one
or more policies of the policy engine 236 of the appliance. In other embodiments, the
collection agent 304 transmits collected information on the client 102 to the appliance 200.

In one embodiment, the policy engine 236 of the appliance 200 uses the collected information
to determine and provide access, authentication and authorization control of the client’s
connection to a network 104.

In one embodiment, the collection agent 304 comprises an end-point detection and
scanning mechanism, which identifies and determines one or more attributes or
characteristics of the client. For example, the collection agent 304 may identify and
determine any one or more of the following client-side attributes: 1) the operating system
an/or a version of an operating system, 2) a service pack of the operating system, 3) a running
service, 4) a running process, and 5) a file. The collection agent 304 may also identify and
determine the presence or versions of any one or more of the following on the client: 1)
antivirus software, 2) personal firewall software, 3) anti-spam software, and 4) internet
security software. The policy engine 236 may have one or more policies based on any one or
more of the attributes or characteristics of the client or client-side attributes.

In some embodiments, the client agent 120 includes a monitoring agent 197 as
discussed in conjunction with FIGs. 1D and 2B. The monitoring agent 197 may be any type
and form of script, such as Visual Basic or Java script. In one embodiment, the monitoring
agent 197 monitors and measures performance of any portion of the client agent 120. For
example, in some embodiments, the monitoring agent 197 monitors and measures
performance of the acceleration program 302. In another embodiment, the monitoring agent
197 monitors and measures performance of the streaming client 306. In other embodiments,
the monitoring agent 197 monitors and measures performance of the collection agent 304. In
still another embodiment, the monitoring agent 197 monitors and measures performance of
the interceptor 350. In some embodiments, the monitoring agent 197 monitors and measures

any resource of the client 102, such as memory, CPU and disk.

43

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

The monitoring agent 197 may monitor and measure performance of any application
of the client. In one embodiment, the monitoring agent 197 monitors and measures
performance of a browser on the client 102. In some embodiments, the monitoring agent 197
monitors and measures performance of any application delivered via the client agent 120. In
other embodiments, the monitoring agent 197 measures and monitors end user response times
for an application, such as web-based or HTTP response times. The monitoring agent 197
may monitor and measure performance of an ICA or RDP client. In another embodiment, the
monitoring agent 197 measures and monitors metrics for a user session or application session.
In some embodiments, monitoring agent 197 measures and monitors an ICA or RDP session.
In one embodiment, the monitoring agent 197 measures and monitors the performance of the
appliance 200 in accelerating delivery of an application and/or data to the client 102.

In some embodiments and still referring to FIG. 3, a first program 322 may be used to
install and/or execute the client agent 120, or portion thereof, such as the interceptor 350,
automatically, silently, transparently, or otherwise. In one embodiment, the first program 322
comprises a plugin component, such an ActiveX control or Java control or script that is
loaded into and executed by an application. For example, the first program comprises an
ActiveX control loaded and run by a web browser application, such as in the memory space
or context of the application. In another embodiment, the first program 322 comprises a set
of executable instructions loaded into and run by the application, such as a browser. In one
embodiment, the first program 322 comprises a designed and constructed program to install
the client agent 120. In some embodiments, the first program 322 obtains, downloads, or
receives the client agent 120 via the network from another computing device. In another
embodiment, the first program 322 is an installer program or a plug and play manager for

installing programs, such as network drivers, on the operating system of the client 102.

D. Systems and Methods for Providing Virtualized Application Delivery Controller

Referring now to FIG. 4A, a block diagram depicts one embodiment of a
virtualization environment 400. In brief overview, a computing device 100 includes a
hypervisor layer, a virtualization layer, and a hardware layer. The hypervisor layer includes a
hypervisor 401 (also referred to as a virtualization manager) that allocates and manages
access to a number of physical resources in the hardware layer (e.g., the processor(s) 421, and
disk(s) 428) by at least one virtual machine executing in the virtualization layer. The
virtualization layer includes at least one operating system 410 and a plurality of virtual

resources allocated to the at least one operating system 410. Virtual resources may include,

44

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

without limitation, a plurality of virtual processors 432a, 432b, 432¢ (generally 432), and
virtual disks 442a, 442b, 442¢ (generally 442), as well as virtual resources such as virtual
memory and virtual network interfaces. The plurality of virtual resources and the operating
system 410 may be referred to as a virtual machine 406. A virtual machine 406 may include
a control operating system 405 in communication with the hypervisor 401 and used to
execute applications for managing and configuring other virtual machines on the computing
device 100.

In greater detail, a hypervisor 401 may provide virtual resources to an operating
system in any manner which simulates the operating system having access to a physical
device. A hypervisor 401 may provide virtual resources to any number of guest operating
systems 410a, 410b (generally 410). In some embodiments, a computing device 100 executes
one or more types of hypervisors. In these embodiments, hypervisors may be used to emulate
virtual hardware, partition physical hardware, virtualize physical hardware, and execute
virtual machines that provide access to computing environments. Hypervisors may include
those manufactured by VMWare, Inc., of Palo Alto, California; the XEN hypervisor, an open
source product whose development is overseen by the open source Xen.org community;
HyperV, VirtualServer or virtual PC hypervisors provided by Microsoft, or others. In some
embodiments, a computing device 100 executing a hypervisor that creates a virtual machine
platform on which guest operating systems may execute is referred to as a host server. In one
of these embodiments, for example, the computing device 100 is a XEN SERVER provided
by Citrix Systems, Inc., of Fort Lauderdale, FL.

In some embodiments, a hypervisor 401 executes within an operating system
executing on a computing device. In one of these embodiments, a computing device
executing an operating system and a hypervisor 401 may be said to have a host operating
system (the operating system executing on the computing device), and a guest operating
system (an operating system executing within a computing resource partition provided by the
hypervisor 401). In other embodiments, a hypervisor 401 interacts directly with hardware on
a computing device, instead of executing on a host operating system. In one of these
embodiments, the hypervisor 401 may be said to be executing on “bare metal,” referring to
the hardware comprising the computing device.

In some embodiments, a hypervisor 401 may create a virtual machine 406a-c
(generally 406) in which an operating system 410 executes. In one of these embodiments, for
example, the hypervisor 401 loads a virtual machine image to create a virtual machine 406.

In another of these embodiments, the hypervisor 401 executes an operating system 410 within

45

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

the virtual machine 406. In still another of these embodiments, the virtual machine 406
executes an operating system 410.

In some embodiments, the hypervisor 401 controls processor scheduling and memory
partitioning for a virtual machine 406 executing on the computing device 100. In one of
these embodiments, the hypervisor 401 controls the execution of at least one virtual machine
406. In another of these embodiments, the hypervisor 401 presents at least one virtual
machine 406 with an abstraction of at least one hardware resource provided by the computing
device 100. In other embodiments, the hypervisor 401 controls whether and how physical
processor capabilities are presented to the virtual machine 406.

A control operating system 405 may execute at least one application for managing
and configuring the guest operating systems. In one embodiment, the control operating
system 405 may execute an administrative application, such as an application including a user
interface providing administrators with access to functionality for managing the execution of
a virtual machine, including functionality for executing a virtual machine, terminating an
execution of a virtual machine, or identifying a type of physical resource for allocation to the
virtual machine. In another embodiment, the hypervisor 401 executes the control operating
system 405 within a virtual machine 406 created by the hypervisor 401. In still another
embodiment, the control operating system 405 executes in a virtual machine 406 that is
authorized to directly access physical resources on the computing device 100. In some
embodiments, a control operating system 405a on a computing device 100a may exchange
data with a control operating system 405b on a computing device 100b, via communications
between a hypervisor 401a and a hypervisor 401b. In this way, one or more computing
devices 100 may exchange data with one or more of the other computing devices 100
regarding processors and other physical resources available in a pool of resources. In one of
these embodiments, this functionality allows a hypervisor to manage a pool of resources
distributed across a plurality of physical computing devices. In another of these
embodiments, multiple hypervisors manage one or more of the guest operating systems
executed on one of the computing devices 100.

In one embodiment, the control operating system 405 executes in a virtual machine
406 that is authorized to interact with at least one guest operating system 410. In another
embodiment, a guest operating system 410 communicates with the control operating system
405 via the hypervisor 401 in order to request access to a disk or a network. In still another
embodiment, the guest operating system 410 and the control operating system 405 may

communicate via a communication channel established by the hypervisor 401, such as, for

46

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

example, via a plurality of shared memory pages made available by the hypervisor 401.

In some embodiments, the control operating system 405 includes a network back-end
driver for communicating directly with networking hardware provided by the computing
device 100. In one of these embodiments, the network back-end driver processes at least one
virtual machine request from at least one guest operating system 110. In other embodiments,
the control operating system 405 includes a block back-end driver for communicating with a
storage element on the computing device 100. In one of these embodiments, the block back-
end driver reads and writes data from the storage element based upon at least one request
received from a guest operating system 410.

In one embodiment, the control operating system 405 includes a tools stack 404. In
another embodiment, a tools stack 404 provides functionality for interacting with the
hypervisor 401, communicating with other control operating systems 405 (for example, on a
second computing device 100b), or managing virtual machines 406b, 406¢ on the computing
device 100. In another embodiment, the tools stack 404 includes customized applications for
providing improved management functionality to an administrator of a virtual machine farm.
In some embodiments, at least one of the tools stack 404 and the control operating system
405 include a management API that provides an interface for remotely configuring and
controlling virtual machines 406 running on a computing device 100. In other embodiments,
the control operating system 405 communicates with the hypervisor 401 through the tools
stack 404.

In one embodiment, the hypervisor 401 executes a guest operating system 410 within
a virtual machine 406 created by the hypervisor 401. In another embodiment, the guest
operating system 410 provides a user of the computing device 100 with access to resources
within a computing environment. In still another embodiment, a resource includes a
program, an application, a document, a file, a plurality of applications, a plurality of files, an
executable program file, a desktop environment, a computing environment, or other resource
made available to a user of the computing device 100. In yet another embodiment, the
resource may be delivered to the computing device 100 via a plurality of access methods
including, but not limited to, conventional installation directly on the computing device 100,
delivery to the computing device 100 via a method for application streaming, delivery to the
computing device 100 of output data generated by an execution of the resource on a second
computing device 100’ and communicated to the computing device 100 via a presentation
layer protocol, delivery to the computing device 100 of output data generated by an execution

of the resource via a virtual machine executing on a second computing device 100°, or

47

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

execution from a removable storage device connected to the computing device 100, such as a
USB device, or via a virtual machine executing on the computing device 100 and generating
output data. In some embodiments, the computing device 100 transmits output data
generated by the execution of the resource to another computing device 100°.

In one embodiment, the guest operating system 410, in conjunction with the virtual
machine on which it executes, forms a fully-virtualized virtual machine which is not aware
that it is a virtual machine; such a machine may be referred to as a “Domain U HVM
(Hardware Virtual Machine) virtual machine”. In another embodiment, a fully-virtualized
machine includes software emulating a Basic Input/Output System (BIOS) in order to execute
an operating system within the fully-virtualized machine. In still another embodiment, a
fully-virtualized machine may include a driver that provides functionality by communicating
with the hypervisor 401. In such an embodiment, the driver may be aware that it executes
within a virtualized environment. In another embodiment, the guest operating system 410, in
conjunction with the virtual machine on which it executes, forms a paravirtualized virtual
machine, which is aware that it is a virtual machine; such a machine may be referred to as a
“Domain U PV virtual machine”. In another embodiment, a paravirtualized machine includes
additional drivers that a fully-virtualized machine does not include. In still another
embodiment, the paravirtualized machine includes the network back-end driver and the block
back-end driver included in a control operating system 405, as described above.

Referring now to FIG. 4B, a block diagram depicts one embodiment of a plurality of
networked computing devices in a system in which at least one physical host executes a
virtual machine. In brief overview, the system includes a management component 404 and a
hypervisor 401. The system includes a plurality of computing devices 100, a plurality of
virtual machines 406, a plurality of hypervisors 401, a plurality of management components
referred to variously as tools stacks 404 or management components 404, and a physical
resource 421, 428. The plurality of physical machines 100 may each be provided as
computing devices 100, described above in connection with FIGs. 1E-1H and 4A.

In greater detail, a physical disk 428 is provided by a computing device 100 and stores
at least a portion of a virtual disk 442. In some embodiments, a virtual disk 442 is associated
with a plurality of physical disks 428. In one of these embodiments, one or more computing
devices 100 may exchange data with one or more of the other computing devices 100
regarding processors and other physical resources available in a pool of resources, allowing a
hypervisor to manage a pool of resources distributed across a plurality of physical computing

devices. In some embodiments, a computing device 100 on which a virtual machine 406

48

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

executes is referred to as a physical host 100 or as a host machine 100.

The hypervisor executes on a processor on the computing device 100. The hypervisor
allocates, to a virtual disk, an amount of access to the physical disk. In one embodiment, the
hypervisor 401 allocates an amount of space on the physical disk. In another embodiment,
the hypervisor 401 allocates a plurality of pages on the physical disk. In some embodiments,
the hypervisor provisions the virtual disk 442 as part of a process of initializing and
executing a virtual machine 450.

In one embodiment, the management component 404a is referred to as a pool
management component 404a. In another embodiment, a management operating system
405a, which may be referred to as a control operating system 405a, includes the management
component. In some embodiments, the management component is referred to as a tools
stack. In one of these embodiments, the management component is the tools stack 404
described above in connection with FIG. 4A. In other embodiments, the management
component 404 provides a user interface for receiving, from a user such as an administrator,
an identification of a virtual machine 406 to provision and/or execute. In still other
embodiments, the management component 404 provides a user interface for receiving, from a
user such as an administrator, the request for migration of a virtual machine 406b from one
physical machine 100 to another. In further embodiments, the management component 404a
identifies a computing device 100b on which to execute a requested virtual machine 406d and
instructs the hypervisor 401b on the identified computing device 100b to execute the
identified virtual machine; such a management component may be referred to as a pool
management component.

Referring now to Figure 4C, embodiments of a virtual application delivery controller
or virtual appliance 450 are depicted. In brief overview, any of the functionality and/or
embodiments of the appliance 200 (e.g., an application delivery controller) described above
in connection with FIGs. 2A and 2B may be deployed in any embodiment of the virtualized
environment described above in connection with FIGs 4A and 4B. Instead of the
functionality of the application delivery controller being deployed in the form of an appliance
200, such functionality may be deployed in a virtualized environment 400 on any computing
device 100, such as a client 102, server 106 or appliance 200.

Referring now to FIG. 4C, a diagram of an embodiment of a virtual appliance 450
operating on a hypervisor 401 of a server 106 is depicted. As with the appliance 200 of FIGs.
2A and 2B, the virtual appliance 450 may provide functionality for availability, performance,

offload and security. For availability, the virtual appliance may perform load balancing

49

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

between layers 4 and 7 of the network and may also perform intelligent service health
monitoring. For performance increases via network traffic acceleration, the virtual appliance
may perform caching and compression. To offload processing of any servers, the virtual
appliance may perform connection multiplexing and pooling and/or SSL processing. For
security, the virtual appliance may perform any of the application firewall functionality and
SSL VPN function of appliance 200.

Any of the modules of the appliance 200 as described in connection with FIGs. 2A
may be packaged, combined, designed or constructed in a form of the virtualized appliance
delivery controller 450 deployable as one or more software modules or components
executable in a virtualized environment 300 or non-virtualized environment on any server,
such as an off the shelf server. For example, the virtual appliance may be provided in the
form of an installation package to install on a computing device. With reference to FIG. 2A,
any of the cache manager 232, policy engine 236, compression 238, encryption engine 234,
packet engine 240, GUI 210, CLI 212, shell services 214 and health monitoring programs
216 may be designed and constructed as a software component or module to run on any
operating system of a computing device and/or of a virtualized environment 300. Instead of
using the encryption processor 260, processor 262, memory 264 and network stack 267 of the
appliance 200, the virtualized appliance 400 may use any of these resources as provided by
the virtualized environment 400 or as otherwise available on the server 106.

Still referring to FIG. 4C, and in brief overview, any one or more vServers 275A-
275N may be in operation or executed in a virtualized environment 400 of any type of
computing device 100, such as any server 106. Any of the modules or functionality of the
appliance 200 described in connection with FIG. 2B may be designed and constructed to
operate in either a virtualized or non-virtualized environment of a server. Any of the vServer
275, SSL VPN 280, Intranet UP 282, Switching 284, DNS 286, acceleration 288, App FW
280 and monitoring agent may be packaged, combined, designed or constructed in a form of
application delivery controller 450 deployable as one or more software modules or
components executable on a device and/or virtualized environment 400.

In some embodiments, a server may execute multiple virtual machines 406a-406n in
the virtualization environment with each virtual machine running the same or different
embodiments of the virtual application delivery controller 450. In some embodiments, the
server may execute one or more virtual appliances 450 on one or more virtual machines on a
core of a multi-core processing system. In some embodiments, the server may execute one or

more virtual appliances 450 on one or more virtual machines on each processor of a multiple

50

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

processor device.

E. Systems and Methods for Providing A Multi-Core Architecture

In accordance with Moore’s Law, the number of transistors that may be placed on an
integrated circuit may double approximately every two years. However, CPU speed
increases may reach plateaus, for example CPU speed has been around 3.5 — 4 GHz range
since 2005. In some cases, CPU manufacturers may not rely on CPU speed increases to gain
additional performance. Some CPU manufacturers may add additional cores to their
processors to provide additional performance. Products, such as those of software and
networking vendors, that rely on CPUs for performance gains may improve their
performance by leveraging these multi-core CPUs. The software designed and constructed
for a single CPU may be redesigned and/or rewritten to take advantage of a multi-threaded,
parallel architecture or otherwise a multi-core architecture.

A multi-core architecture of the appliance 200, referred to as nCore or multi-core
technology, allows the appliance in some embodiments to break the single core performance
barrier and to leverage the power of multi-core CPUs. In the previous architecture described
in connection with FIG. 2A, a single network or packet engine is run. The multiple cores of
the nCore technology and architecture allow multiple packet engines to run concurrently
and/or in parallel. With a packet engine running on each core, the appliance architecture
leverages the processing capacity of additional cores. In some embodiments, this provides up
to a 7X increase in performance and scalability.

Illustrated in FIG. 5A are some embodiments of work, task, load or network traffic
distribution across one or more processor cores according to a type of parallelism or parallel
computing scheme, such as functional parallelism, data parallelism or flow-based data
parallelism. In brief overview, FIG. 5A illustrates embodiments of a multi-core system such
as an appliance 200’ with n-cores, a total of cores numbers 1 through N. In one embodiment,
work, load or network traffic can be distributed among a first core 505A, a second core 505B,
a third core 505C, a fourth core 505D, a fifth core 505E, a sixth core 505F, a seventh core
505G, and so on such that distribution is across all or two or more of the n cores 505N
(hereinafter referred to collectively as cores 505.) There may be multiple VIPs 275 each
running on a respective core of the plurality of cores. There may be multiple packet engines
240 each running on a respective core of the plurality of cores. Any of the approaches used
may lead to different, varying or similar work load or performance level 515 across any of

the cores. For a functional parallelism approach, each core may run a different function of

51

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

the functionalities provided by the packet engine, a VIP 275 or appliance 200. In a data
parallelism approach, data may be paralleled or distributed across the cores based on the
Network Interface Card (NIC) or VIP 275 receiving the data. In another data parallelism
approach, processing may be distributed across the cores by distributing data flows to each
core.

In further detail to FIG. 5A, in some embodiments, load, work or network traffic can
be distributed among cores 505 according to functional parallelism 500. Functional
parallelism may be based on each core performing one or more respective functions. In some
embodiments, a first core may perform a first function while a second core performs a second
function. In functional parallelism approach, the functions to be performed by the multi-core
system are divided and distributed to each core according to functionality. In some
embodiments, functional parallelism may be referred to as task parallelism and may be
achieved when each processor or core executes a different process or function on the same or
different data. The core or processor may execute the same or different code. In some cases,
different execution threads or code may communicate with one another as they work.
Communication may take place to pass data from one thread to the next as part of a
workflow.

In some embodiments, distributing work across the cores 505 according to functional
parallelism 500, can comprise distributing network traffic according to a particular function
such as network input/output management (NW 1/0) 510A, secure sockets layer (SSL)
encryption and decryption 510B and transmission control protocol (TCP) functions 510C.
This may lead to a work, performance or computing load 515 based on a volume or level of
functionality being used. In some embodiments, distributing work across the cores 505
according to data parallelism 540, can comprise distributing an amount of work 515 based on
distributing data associated with a particular hardware or software component. In some
embodiments, distributing work across the cores 505 according to flow-based data
parallelism 520, can comprise distributing data based on a context or flow such that the
amount of work 515A-N on each core may be similar, substantially equal or relatively evenly
distributed.

In the case of the functional parallelism approach, each core may be configured to run
one or more functionalities of the plurality of functionalities provided by the packet engine or
VIP of the appliance. For example, core 1 may perform network 1/O processing for the
appliance 200’ while core 2 performs TCP connection management for the appliance.

Likewise, core 3 may perform SSL offloading while core 4 may perform layer 7 or

52

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

application layer processing and traffic management. Each of the cores may perform the
same function or different functions. Each of the cores may perform more than one function.
Any of the cores may run any of the functionality or portions thereof identified and/or
described in conjunction with FIGs. 2A and 2B. In this the approach, the work across the
cores may be divided by function in either a coarse-grained or fine-grained manner. In some
cases, as illustrated in FIG. 5A, division by function may lead to different cores running at
different levels of performance or load 515.

In the case of the functional parallelism approach, each core may be configured to run
one or more functionalities of the plurality of functionalities provided by the packet engine of
the appliance. For example, core 1 may perform network 1/O processing for the appliance
200’ while core 2 performs TCP connection management for the appliance. Likewise, core 3
may perform SSL offloading while core 4 may perform layer 7 or application layer
processing and traffic management. Each of the cores may perform the same function or
different functions. Each of the cores may perform more than one function. Any of the cores
may run any of the functionality or portions thereof identified and/or described in conjunction
with FIGs. 2A and 2B. In this the approach, the work across the cores may be divided by
function in either a coarse-grained or fine-grained manner. In some cases, as illustrated in
FIG. 5A division by function may lead to different cores running at different levels of load or
performance.

The functionality or tasks may be distributed in any arrangement and scheme. For
example, FIG. 5B illustrates a first core, Core 1 505A, processing applications and processes
associated with network I/O functionality 5S10A. Network traffic associated with network
I/O, in some embodiments, can be associated with a particular port number. Thus, outgoing
and incoming packets having a port destination associated with NW I/O 510A will be
directed towards Core 1 505A which is dedicated to handling all network traffic associated
with the NW 1/O port. Similarly, Core 2 505B is dedicated to handling functionality
associated with SSL processing and Core 4 505D may be dedicated handling all TCP level
processing and functionality.

While FIG. 5A illustrates functions such as network I/O, SSL and TCP, other
functions can be assigned to cores. These other functions can include any one or more of the
functions or operations described herein. For example, any of the functions described in
conjunction with FIGs. 2A and 2B may be distributed across the cores on a functionality
basis. In some cases, a first VIP 275A may run on a first core while a second VIP 275B with

a different configuration may run on a second core. In some embodiments, each core 505 can

53

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

handle a particular functionality such that each core 505 can handle the processing associated
with that particular function. For example, Core 2 505B may handle SSL offloading while
Core 4 505D may handle application layer processing and traffic management.

In other embodiments, work, load or network traffic may be distributed among cores
505 according to any type and form of data parallelism 540. In some embodiments, data
parallelism may be achieved in a multi-core system by each core performing the same task or
functionally on different pieces of distributed data. In some embodiments, a single execution
thread or code controls operations on all pieces of data. In other embodiments, different
threads or instructions control the operation, but may execute the same code. In some
embodiments, data parallelism is achieved from the perspective of a packet engine, vServers
(VIPs) 275A-C, network interface cards (NIC) 542D-E and/or any other networking
hardware or software included on or associated with an appliance 200. For example, each
core may run the same packet engine or VIP code or configuration but operate on different
sets of distributed data. Each networking hardware or software construct can receive
different, varying or substantially the same amount of data, and as a result may have varying,
different or relatively the same amount of load 515.

In the case of a data parallelism approach, the work may be divided up and distributed
based on VIPs, NICs and/or data flows of the VIPs or NICs. In one of these approaches, the
work of the multi-core system may be divided or distributed among the VIPs by having each
VIP work on a distributed set of data. For example, each core may be configured to run one
or more VIPs. Network traffic may be distributed to the core for each VIP handling that
traffic. In another of these approaches, the work of the appliance may be divided or
distributed among the cores based on which NIC receives the network traffic. For example,
network traffic of a first NIC may be distributed to a first core while network traffic of a
second NIC may be distributed to a second core. In some cases, a core may process data
from multiple NICs.

While FIG 5A illustrates a single vServer associated with a single core 505, as is the
case for VIP1 275A, VIP2 275B and VIP3 275C. In some embodiments, a single vServer
can be associated with one or more cores 505. In contrast, one or more vServers can be
associated with a single core 505. Associating a vServer with a core 505 may include that
core 505 to process all functions associated with that particular vServer. In some
embodiments, each core executes a VIP having the same code and configuration. In other
embodiments, each core executes a VIP having the same code but different configuration. In

some embodiments, each core executes a VIP having different code and the same or different

54

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

configuration.

Like vServers, NICs can also be associated with particular cores 505. In many
embodiments, NICs can be connected to one or more cores 505 such that when a NIC
receives or transmits data packets, a particular core 505 handles the processing involved with
receiving and transmitting the data packets. In one embodiment, a single NIC can be
associated with a single core 505, as is the case with NIC1 542D and NIC2 542E. In other
embodiments, one or more NICs can be associated with a single core 505. In other
embodiments, a single NIC can be associated with one or more cores 505. In these
embodiments, load could be distributed amongst the one or more cores 505 such that each
core 505 processes a substantially similar amount of load. A core 505 associated with a NIC
may process all functions and/or data associated with that particular NIC.

While distributing work across cores based on data of VIPs or NICs may have a level
of independency, in some embodiments, this may lead to unbalanced use of cores as
illustrated by the varying loads 515 of FIG. 5A.

In some embodiments, load, work or network traffic can be distributed among cores
505 based on any type and form of data flow. In another of these approaches, the work may
be divided or distributed among cores based on data flows. For example, network traffic
between a client and a server traversing the appliance may be distributed to and processed by
one core of the plurality of cores. In some cases, the core initially establishing the session or
connection may be the core for which network traffic for that session or connection is
distributed. In some embodiments, the data flow is based on any unit or portion of network
traffic, such as a transaction, a request/response communication or traffic originating from an
application on a client. In this manner and in some embodiments, data flows between clients
and servers traversing the appliance 200’ may be distributed in a more balanced manner than
the other approaches.

In flow-based data parallelism 520, distribution of data is related to any type of flow
of data, such as request/response pairings, transactions, sessions, connections or application
communications. For example, network traffic between a client and a server traversing the
appliance may be distributed to and processed by one core of the plurality of cores. In some
cases, the core initially establishing the session or connection may be the core for which
network traffic for that session or connection is distributed. The distribution of data flow may
be such that each core 505 carries a substantially equal or relatively evenly distributed
amount of load, data or network traffic..

In some embodiments, the data flow is based on any unit or portion of network

55

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

traffic, such as a transaction, a request/response communication or traffic originating from an
application on a client. In this manner and in some embodiments, data flows between clients
and servers traversing the appliance 200’ may be distributed in a more balanced manner than
the other approached. In one embodiment, data flow can be distributed based on a
transaction or a series of transactions. This transaction, in some embodiments, can be
between a client and a server and can be characterized by an IP address or other packet
identifier. For example, Core 1 505A can be dedicated to transactions between a particular
client and a particular server, therefore the load 515A on Core 1 505A may be comprised of
the network traffic associated with the transactions between the particular client and server.
Allocating the network traffic to Core 1 505A can be accomplished by routing all data
packets originating from either the particular client or server to Core 1 505A.

While work or load can be distributed to the cores based in part on transactions, in
other embodiments load or work can be allocated on a per packet basis. In these
embodiments, the appliance 200 can intercept data packets and allocate them to a core 505
having the least amount of load. For example, the appliance 200 could allocate a first
incoming data packet to Core 1 505A because the load 515A on Core 1 is less than the load
515B-N on the rest of the cores 505B-N. Once the first data packet is allocated to Core 1
505A, the amount of load 515A on Core 1 505A is increased proportional to the amount of
processing resources needed to process the first data packet. When the appliance 200
intercepts a second data packet, the appliance 200 will allocate the load to Core 4 505D
because Core 4 505D has the second least amount of load. Allocating data packets to the
core with the least amount of load can, in some embodiments, ensure that the load 515A-N
distributed to each core 505 remains substantially equal.

In other embodiments, load can be allocated on a per unit basis where a section of
network traffic is allocated to a particular core 505. The above-mentioned example illustrates
load balancing on a per/packet basis. In other embodiments, load can be allocated based on a
number of packets such that every 10, 100 or 1000 packets are allocated to the core 505
having the least amount of load. The number of packets allocated to a core 505 can be a
number determined by an application, user or administrator and can be any number greater
than zero. In still other embodiments, load can be allocated based on a time metric such that
packets are distributed to a particular core 505 for a predetermined amount of time. In these
embodiments, packets can be distributed to a particular core 505 for five milliseconds or for
any period of time determined by a user, program, system, administrator or otherwise. After

the predetermined time period elapses, data packets are transmitted to a different core 505 for

56

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

the predetermined period of time.

Flow-based data parallelism methods for distributing work, load or network traffic
among the one or more cores 505 can comprise any combination of the above-mentioned
embodiments. These methods can be carried out by any part of the appliance 200, by an
application or set of executable instructions executing on one of the cores 505, such as the
packet engine, or by any application, program or agent executing on a computing device in
communication with the appliance 200.

The functional and data parallelism computing schemes illustrated in FIG. 5A can be
combined in any manner to generate a hybrid parallelism or distributed processing scheme
that encompasses function parallelism 500, data parallelism 540, flow-based data parallelism
520 or any portions thereof. In some cases, the multi-core system may use any type and form
of load balancing schemes to distribute load among the one or more cores 505. The load
balancing scheme may be used in any combination with any of the functional and data
parallelism schemes or combinations thereof.

Mlustrated in FIG. 5B is an embodiment of a multi-core system 545, which may be
any type and form of one or more systems, appliances, devices or components. This system
545, in some embodiments, can be included within an appliance 200 having one or more
processing cores S05A-N. The system 545 can further include one or more packet engines
(PE) or packet processing engines (PPE) 548 A-N communicating with a memory bus 556.
The memory bus may be used to communicate with the one or more processing cores S05A-
N. Also included within the system 545 can be one or more network interface cards (NIC)
552 and a flow distributor 550 which can further communicate with the one or more
processing cores S05A-N. The flow distributor 550 can comprise a Receive Side Scaler
(RSS) or Receive Side Scaling (RSS) module 560.

Further referring to FIG. 5B, and in more detail, in one embodiment the packet
engine(s) 548A-N can comprise any portion of the appliance 200 described herein, such as
any portion of the appliance described in FIGs. 2A and 2B. The packet engine(s) 548A-N
can, in some embodiments, comprise any of the following elements: the packet engine 240, a
network stack 267; a cache manager 232; a policy engine 236; a compression engine 238; an
encryption engine 234; a GUI 210; a CLI 212; shell services 214; monitoring programs 216;
and any other software or hardware element able to receive data packets from one of either
the memory bus 556 or the one of more cores 505A-N. In some embodiments, the packet
engine(s) 548A-N can comprise one or more vServers 275A-N, or any portion thereof. In

other embodiments, the packet engine(s) 548 A-N can provide any combination of the

57

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

following functionalities: SSL. VPN 280; Intranet UP 282; switching 284; DNS 286; packet
acceleration 288; App FW 280; monitoring such as the monitoring provided by a monitoring
agent 197; functionalities associated with functioning as a TCP stack; load balancing; SSL
offloading and processing; content switching; policy evaluation; caching; compression;
encoding; decompression; decoding; application firewall functionalities; XML processing
and acceleration; and SSL VPN connectivity.

The packet engine(s) 548 A-N can, in some embodiments, be associated with a
particular server, user, client or network. When a packet engine 548 becomes associated with
a particular entity, that packet engine 548 can process data packets associated with that entity.
For example, should a packet engine 548 be associated with a first user, that packet engine
548 will process and operate on packets generated by the first user, or packets having a
destination address associated with the first user. Similarly, the packet engine 548 may
choose not to be associated with a particular entity such that the packet engine 548 can
process and otherwise operate on any data packets not generated by that entity or destined for
that entity.

In some instances, the packet engine(s) 548A-N can be configured to carry out the
any of the functional and/or data parallelism schemes illustrated in FIG. 5A. In these
instances, the packet engine(s) 548A-N can distribute functions or data among the processing
cores 505A-N so that the distribution is according to the parallelism or distribution scheme.
In some embodiments, a single packet engine(s) 548 A-N carries out a load balancing scheme,
while in other embodiments one or more packet engine(s) 548A-N carry out a load balancing
scheme. Each core 505A-N, in one embodiment, can be associated with a particular packet
engine 548 such that load balancing can be carried out by the packet engine. Load balancing
may in this embodiment, require that each packet engine 548A-N associated with a core 505
communicate with the other packet engines associated with cores so that the packet engines
548A-N can collectively determine where to distribute load. One embodiment of this process
can include an arbiter that receives votes from each packet engine for load. The arbiter can
distribute load to each packet engine 548A-N based in part on the age of the engine’s vote
and in some cases a priority value associated with the current amount of load on an engine’s
associated core 505.

Any of the packet engines running on the cores may run in user mode, kernel or any
combination thercof. In some embodiments, the packet engine operates as an application or
program running is user or application space. In these embodiments, the packet engine may

use any type and form of interface to access any functionality provided by the kernel. In

58

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

some embodiments, the packet engine operates in kernel mode or as part of the kernel. In
some embodiments, a first portion of the packet engine operates in user mode while a second
portion of the packet engine operates in kernel mode. In some embodiments, a first packet
engine on a first core executes in kernel mode while a second packet engine on a second core
executes in user mode. In some embodiments, the packet engine or any portions thereof
operates on or in conjunction with the NIC or any drivers thereof.

In some embodiments the memory bus 556 can be any type and form of memory or
computer bus. While a single memory bus 556 is depicted in FIG. 5B, the system 545 can
comprise any number of memory buses 556. In one embodiment, each packet engine 548 can
be associated with one or more individual memory buses 556.

The NIC 552 can in some embodiments be any of the network interface cards or
mechanisms described herein. The NIC 552 can have any number of ports. The NIC can be
designed and constructed to connect to any type and form of network 104. While a single
NIC 552 is illustrated, the system 545 can comprise any number of NICs 552. In some
embodiments, each core S05A-N can be associated with one or more single NICs 552. Thus,
each core 505 can be associated with a single NIC 552 dedicated to a particular core 505.
The cores 505A-N can comprise any of the processors described herein. Further, the cores
505A-N can be configured according to any of the core 505 configurations described herein.
Still further, the cores 505A-N can have any of the core 505 functionalities described herein.
While FIG. 5B illustrates seven cores 505A-G, any number of cores 505 can be included
within the system 545. In particular, the system 545 can comprise “N” cores, where “N” is a
whole number greater than zero.

A core may have or use memory that is allocated or assigned for use to that core.
The memory may be considered private or local memory of that core and only accessible by
that core. A core may have or use memory that is shared or assigned to multiple cores. The
memory may be considered public or shared memory that is accessible by more than one
core. A core may use any combination of private and public memory. With separate address
spaces for each core, some level of coordination is eliminated from the case of using the same
address space. With a separate address space, a core can perform work on information and
data in the core’s own address space without worrying about conflicts with other cores. Each
packet engine may have a separate memory pool for TCP and/or SSL connections.

Further referring to FIG. 5B, any of the functionality and/or embodiments of the cores
505 described above in connection with FIG. 5A can be deployed in any embodiment of the

virtualized environment described above in connection with FIGs. 4A and 4B. Instead of the

59

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

functionality of the cores 505 being deployed in the form of a physical processor 505, such
functionality may be deployed in a virtualized environment 400 on any computing device
100, such as a client 102, server 106 or appliance 200. In other embodiments, instead of the
functionality of the cores 505 being deployed in the form of an appliance or a single device,
the functionality may be deployed across multiple devices in any arrangement. For example,
one device may comprise two or more cores and another device may comprise two or more
cores. For example, a multi-core system may include a cluster of computing devices, a server
farm or network of computing devices. In some embodiments, instead of the functionality of
the cores 505 being deployed in the form of cores, the functionality may be deployed on a
plurality of processors, such as a plurality of single core processors.

In one embodiment, the cores 505 may be any type and form of processor. In some
embodiments, a core can function substantially similar to any processor or central processing
unit described herein. In some embodiment, the cores 505 may comprise any portion of any
processor described herein. While FIG. 5A illustrates seven cores, there can exist any “N”
number of cores within an appliance 200, where “N” is any whole number greater than one.
In some embodiments, the cores 505 can be installed within a common appliance 200, while
in other embodiments the cores 505 can be installed within one or more appliance(s) 200
communicatively connected to one another. The cores 505 can in some embodiments
comprise graphics processing software, while in other embodiments the cores 505 provide
general processing capabilities. The cores 505 can be installed physically near each other
and/or can be communicatively connected to each other. The cores may be connected by any
type and form of bus or subsystem physically and/or communicatively coupled to the cores
for transferring data between to, from and/or between the cores.

While each core 505 can comprise software for communicating with other cores, in
some embodiments a core manager (not shown) can facilitate communication between each
core 505. In some embodiments, the kernel may provide core management. The cores may
interface or communicate with each other using a variety of interface mechanisms. In some
embodiments, core to core messaging may be used to communicate between cores, such as a
first core sending a message or data to a second core via a bus or subsystem connecting the
cores. In some embodiments, cores may communicate via any type and form of shared
memory interface. In one embodiment, there may be one or more memory locations shared
among all the cores. In some embodiments, each core may have separate memory locations
shared with each other core. For example, a first core may have a first shared memory with a

second core and a second share memory with a third core. In some embodiments, cores may

60

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

communicate via any type of programming or API, such as function calls via the kernel. In
some embodiments, the operating system may recognize and support multiple core devices
and provide interfaces and API for inter-core communications.

The flow distributor 550 can be any application, program, library, script, task,
service, process or any type and form of executable instructions executing on any type and
form of hardware. In some embodiments, the flow distributor 550 may any design and
construction of circuitry to perform any of the operations and functions described herein. In
some embodiments, the flow distributor distribute, forwards, routes, controls and/ors manage
the distribution of data packets among the cores 505 and/or packet engine or VIPs running on
the cores.. The flow distributor 550, in some embodiments, can be referred to as an interface
master. In one embodiment, the flow distributor 550 comprises a set of executable
instructions executing on a core or processor of the appliance 200. In another embodiment,
the flow distributor 550 comprises a set of executable instructions executing on a computing
machine in communication with the appliance 200. In some embodiments, the flow
distributor 550 comprises a set of executable instructions executing on a NIC, such as
firmware. In still other embodiments, the flow distributor 550 comprises any combination of
software and hardware to distribute data packets among cores or processors. In one
embodiment, the flow distributor 550 executes on at least one of the cores 505A-N, while in
other embodiments a separate flow distributor 550 assigned to each core S05A-N executes on
an associated core 505A-N. The flow distributor may use any type and form of statistical or
probabilistic algorithms or decision making to balance the flows across the cores. The
hardware of the appliance, such as a NIC, or the kernel may be designed and constructed to
support sequential operations across the NICs and/or cores.

In embodiments where the system 545 comprises one or more flow distributors 550,
cach flow distributor 550 can be associated with a processor 505 or a packet engine 548. The
flow distributors 550 can comprise an interface mechanism that allows each flow distributor
550 to communicate with the other flow distributors 550 executing within the system 545. In
ong instance, the one or more flow distributors 550 can determine how to balance load by
communicating with each other. This process can operate substantially similarly to the
process described above for submitting votes to an arbiter which then determines which flow
distributor 550 should receive the load. In other embodiments, a first flow distributor 550’
can identify the load on an associated core and determine whether to forward a first data
packet to the associated core based on any of the following criteria: the load on the associated

core is above a predetermined threshold; the load on the associated core is below a

61

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

predetermined threshold; the load on the associated core is less than the load on the other
cores; or any other metric that can be used to determine where to forward data packets based
in part on the amount of load on a processor.

The flow distributor 550 can distribute network traffic among the cores 505 according
to a distribution, computing or load balancing scheme such as those described herein. In one
embodiment, the flow distributor can distribute network traffic according to any one of a
functional parallelism distribution scheme 550, a data parallelism load distribution scheme
540, a flow-based data parallelism distribution scheme 520, or any combination of these
distribution scheme or any load balancing scheme for distributing load among multiple
processors. The flow distributor 550 can therefore act as a load distributor by taking in data
packets and distributing them across the processors according to an operative load balancing
or distribution scheme. In one embodiment, the flow distributor 550 can comprise one or
more operations, functions or logic to determine how to distribute packers, work or load
accordingly. In still other embodiments, the flow distributor 550 can comprise one or more
sub operations, functions or logic that can identify a source address and a destination address
associated with a data packet, and distribute packets accordingly.

In some embodiments, the flow distributor 550 can comprise a receive-side scaling
(RSS) network driver, module 560 or any type and form of executable instructions which
distribute data packets among the one or more cores 505. The RSS module 560 can comprise
any combination of hardware and software, In some embodiments, the RSS module 560
works in conjunction with the flow distributor 550 to distribute data packets across the cores
505A-N or among multiple processors in a multi-processor network. The RSS module 560
can execute within the NIC 552 in some embodiments, and in other embodiments can execute
on any one of the cores 505.

In some embodiments, the RSS module 560 uses the MICROSOFT receive-side-
scaling (RSS) scheme. In one embodiment, RSS is a Microsoft Scalable Networking
initiative technology that enables receive processing to be balanced across multiple
processors in the system while maintaining in-order delivery of the data. The RSS may use
any type and form of hashing scheme to determine a core or processor for processing a
network packet.

The RSS module 560 can apply any type and form hash function such as the Toeplitz
hash function. The hash function may be applied to the hash type or any the sequence of
values. The hash function may be a secure hash of any security level or is otherwise

cryptographically secure. The hash function may use a hash key. The size of the key is

62

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

dependent upon the hash function. For the Toeplitz hash, the size may be 40 bytes for IPv6
and 16 bytes for IPv4.

The hash function may be designed and constructed based on any one or more criteria
or design goals. In some embodiments, a hash function may be used that provides an even
distribution of hash result for different hash inputs and different hash types, including
TCP/IPv4, TCP/IPv6, IPv4, and IPv6 headers. In some embodiments, a hash function may
be used that provides a hash result that is evenly distributed when a small number of buckets
are present (for example, two or four). In some embodiments, hash function may be used that
provides a hash result that is randomly distributed when a large number of buckets were
present (for example, 64 buckets). In some embodiments, the hash function is determined
based on a level of computational or resource usage. In some embodiments, the hash
function is determined based on ease or difficulty of implementing the hash in hardware. In
some embodiments, the hash function is determined based on the ease or difficulty of a
malicious remote host to send packets that would all hash to the same bucket.

The RSS may generate hashes from any type and form of input, such as a sequence of
values. This sequence of values can include any portion of the network packet, such as any
header, field or payload of network packet, or portions thercof. In some embodiments, the
input to the hash may be referred to as a hash type and include any tuples of information
associated with a network packet or data flow, such as any of the following: a four tuple
comprising at least two IP addresses and two ports; a four tuple comprising any four sets of
values; a six tuple; a two tuple; and/or any other sequence of numbers or values. The
following are example of hash types that may be used by RSS:

- 4-tuple of source TCP Port, source IP version 4 (IPv4) address, destination TCP Port,

and destination IPv4 address.

- 4-tuple of source TCP Port, source IP version 6 (IPv6) address, destination TCP Port,

and destination IPv6 address.
- 2-tuple of source IPv4 address, and destination IPv4 address.
- 2-tuple of source IPv6 address, and destination IPv6 address.

- 2-tuple of source IPv6 address, and destination IPv6 address, including support for

parsing IPv6 extension headers.

The hash result or any portion therecof may used to identify a core or entity, such as a

packet engine or VIP, for distributing a network packet. In some embodiments, one or more

63

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

hash bits or mask are applied to the hash result. The hash bit or mask may be any number of
bits or bytes. A NIC may support any number of bits, such as seven bits. The network stack
may set the actual number of bits to be used during initialization. The number will be
between 1 and 7, inclusive.

The hash result may be used to identify the core or entity via any type and form of
table, such as a bucket table or indirection table. In some embodiments, the number of hash-
result bits are used to index into the table. The range of the hash mask may effectively define
the size of the indirection table. Any portion of the hash result or the hast result itself may be
used to index the indirection table. The values in the table may identify any of the cores or
processor, such as by a core or processor identifier. In some embodiments, all of the cores of
the multi-core system are identified in the table. In other embodiments, a port of the cores of
the multi-core system are identified in the table. The indirection table may comprise any
number of buckets for example 2 to 128 buckets that may be indexed by a hash mask. Each
bucket may comprise a range of index values that identify a core or processor. In some
embodiments, the flow controller and/or RSS module may rebalance the network rebalance
the network load by changing the indirection table.

In some embodiments, the multi-core system 575 does not include a RSS driver or
RSS module 560. In some of these embodiments, a software steering module (not shown) or
a software embodiment of the RSS module within the system can operate in conjunction with
or as part of the flow distributor 550 to steer packets to cores 505 within the multi-core
system 575.

The flow distributor 550, in some embodiments, executes within any module or
program on the appliance 200, on any one of the cores 505 and on any one of the devices or
components included within the multi-core system 575. In some embodiments, the flow
distributor 550’ can execute on the first core 505A, while in other embodiments the flow
distributor 550” can execute on the NIC 552. In still other embodiments, an instance of the
flow distributor 550’ can execute on each core 505 included in the multi-core system 575. In
this embodiment, each instance of the flow distributor 550’ can communicate with other
instances of the flow distributor 550’ to forward packets back and forth across the cores 505.
There exist situations where a response to a request packet may not be processed by the same
core, 1.e. the first core processes the request while the second core processes the response. In
these situations, the instances of the flow distributor 550’ can intercept the packet and
forward it to the desired or correct core 505, i.e. a flow distributor instance 550° can forward

the response to the first core. Multiple instances of the flow distributor 550’ can execute on

64

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

any number of cores 505 and any combination of cores 505.

The flow distributor may operate responsive to any one or more rules or policies. The
rules may identify a core or packet processing engine to receive a network packet, data or
data flow. The rules may identify any type and form of tuple information related to a
network packet, such as a 4-tuple of source and destination IP address and source and
destination ports. Based on a received packet matching the tuple specified by the rule, the
flow distributor may forward the packet to a core or packet engine. In some embodiments,
the packet is forwarded to a core via shared memory and/or core to core messaging.

Although FIG. 5B illustrates the flow distributor 550 as executing within the multi-
core system 575, in some embodiments the flow distributor 550 can execute on a computing
device or appliance remotely located from the multi-core system 575. In such an
embodiment, the flow distributor 550 can communicate with the multi-core system 575 to
take in data packets and distribute the packets across the one or more cores 505. The flow
distributor 550 can, in one embodiment, receive data packets destined for the appliance 200,
apply a distribution scheme to the received data packets and distribute the data packets to the
one or more cores 505 of the multi-core system 575. In one embodiment, the flow distributor
550 can be included in a router or other appliance such that the router can target particular
cores 505 by altering meta data associated with each packet so that each packet is targeted
towards a sub-node of the multi-core system 575. In such an embodiment, CISCO’s vn-tag
mechanism can be used to alter or tag each packet with the appropriate meta data.

Mlustrated in FIG. 5C is an embodiment of a multi-core system 575 comprising one or
more processing cores S0SA-N. In brief overview, one of the cores 505 can be designated as
a control core 505A and can be used as a control plane 570 for the other cores 505. The other
cores may be secondary cores which operate in a data plane while the control core provides
the control plane. The cores 505A-N may share a global cache 580. While the control core
provides a control plane, the other cores in the multi-core system form or provide a data
plane. These cores perform data processing functionality on network traffic while the control
provides initialization, configuration and control of the multi-core system.

Further referring to FIG. 5C, and in more detail, the cores 505A-N as well as the
control core 505A can be any processor described herein. Furthermore, the cores 505A-N
and the control core 505A can be any processor able to function within the system 575
described in FIG. 5C. Still further, the cores 505A-N and the control core 505A can be any
core or group of cores described herein. The control core may be a different type of core or

processor than the other cores. In some embodiments, the control may operate a different

65

WO 2013/188780 PCT/US2013/045915

packet engine or have a packet engine configured differently than the packet engines of the
other cores.

Any portion of the memory of each of the cores may be allocated to or used for a
global cache that is shared by the cores. In brief overview, a predetermined percentage or
predetermined amount of each of the memory of each core may be used for the global cache.
For example, 50% of each memory of each code may be dedicated or allocated to the shared
global cache. That is, in the illustrated embodiment, 2GB of each core excluding the control
plane core or core 1 may be used to form a 28GB shared global cache. The configuration of
the control plane such as via the configuration services may determine the amount of memory
used for the shared global cache. In some embodiments, each core may provide a different
amount of memory for use by the global cache. In other embodiments, any one core may not
provide any memory or use the global cache. In some embodiments, any of the cores may
also have a local cache in memory not allocated to the global shared memory. Each of the
cores may store any portion of network traffic to the global shared cache. Each of the cores
may check the cache for any content to use in a request or response. Any of the cores may
obtain content from the global shared cache to use in a data flow, request or response.

The global cache 580 can be any type and form of memory or storage element, such
as any memory or storage element described herein. In some embodiments, the cores 505
may have access to a predetermined amount of memory (i.e. 32 GB or any other memory
amount commensurate with the system 575). The global cache 580 can be allocated from
that predetermined amount of memory while the rest of the available memory can be
allocated among the cores 505. In other embodiments, each core 505 can have a
predetermined amount of memory. The global cache 580 can comprise an amount of the
memory allocated to each core 505. This memory amount can be measured in bytes, or can
be measured as a percentage of the memory allocated to each core 505. Thus, the global
cache 580 can comprise 1 GB of memory from the memory associated with each core 505, or
can comprise 20 percent or one-half of the memory associated with each core 505. In some
embodiments, only a portion of the cores 505 provide memory to the global cache 580, while
in other embodiments the global cache 580 can comprise memory not allocated to the cores
505.

Each core 505 can use the global cache 580 to store network traffic or cache data. In
some embodiments, the packet engines of the core use the global cache to cache and use data
stored by the plurality of packet engines. For example, the cache manager of FIG. 2A and

cache functionality of FIG. 2B may use the global cache to share data for acceleration. For

66

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

example, each of the packet engines may store responses, such as HTML data, to the global
cache. Any of the cache managers operating on a core may access the global cache to server
caches responses to client requests.

In some embodiments, the cores 505 can use the global cache 580 to store a port
allocation table which can be used to determine data flow based in part on ports. In other
embodiments, the cores 505 can use the global cache 580 to store an address lookup table or
any other table or list that can be used by the flow distributor to determine where to direct
incoming and outgoing data packets. The cores 505 can, in some embodiments read from
and write to cache 580, while in other embodiments the cores 505 can only read from or write
to cache 580. The cores may use the global cache to perform core to core communications.

The global cache 580 may be sectioned into individual memory sections where each
section can be dedicated to a particular core 505. In one embodiment, the control core 505A
can receive a greater amount of available cache, while the other cores 505 can receiving
varying amounts or access to the global cache 580.

In some embodiments, the system 575 can comprise a control core 505A. While FIG.
5C illustrates core 1 505A as the control core, the control core can be any core within the
appliance 200 or multi-core system. Further, while only a single control core is depicted, the
system 575 can comprise one or more control cores each having a level of control over the
system. In some embodiments, one or more control cores can each control a particular aspect
of the system 575. For example, one core can control deciding which distribution scheme to
use, while another core can determine the size of the global cache 580.

The control plane of the multi-core system may be the designation and configuration
of a core as the dedicated management core or as a master core. This control plane core may
provide control, management and coordination of operation and functionality the plurality of
cores in the multi-core system. This control plane core may provide control, management
and coordination of allocation and use of memory of the system among the plurality of cores
in the multi-core system, including initialization and configuration of the same. In some
embodiments, the control plane includes the flow distributor for controlling the assignment of
data flows to cores and the distribution of network packets to cores based on data flows. In
some embodiments, the control plane core runs a packet engine and in other embodiments,
the control plane core is dedicated to management and control of the other cores of the
system.

The control core 505A can exercise a level of control over the other cores 505 such as

determining how much memory should be allocated to each core 505 or determining which

67

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

core 505 should be assigned to handle a particular function or hardware/software entity. The
control core 505A, in some embodiments, can exercise control over those cores 505 within
the control plan 570. Thus, there can exist processors outside of the control plane 570 which
are not controlled by the control core S505A. Determining the boundaries of the control plane
570 can include maintaining, by the control core 505A or agent executing within the system
575, a list of those cores 505 controlled by the control core S05A. The control core S505A can
control any of the following: initialization of a core; determining when a core is unavailable;
re-distributing load to other cores 505 when one core fails; determining which distribution
scheme to implement; determining which core should receive network traffic; determining
how much cache should be allocated to each core; determining whether to assign a particular
function or element to a particular core; determining whether to permit cores to communicate
with one another; determining the size of the global cache 580; and any other determination

of a function, configuration or operation of the cores within the system 575.

F. Systems and Methods for Providing a Distributed Cluster Architecture

As discussed in the previous section, to overcome limitations on transistor spacing
and CPU speed increases, many CPU manufacturers have incorporated multi-core CPUSs to
improve performance beyond that capable of even a single, higher speed CPU. Similar or
further performance gains may be made by operating a plurality of appliances, either single
or multi-core, together as a distributed or clustered appliance. Individual computing devices
or appliances may be referred to as nodes of the cluster. A centralized management system
may perform load balancing, distribution, configuration, or other tasks to allow the nodes to
operate in conjunction as a single computing system. Externally or to other devices,
including servers and clients, in many embodiments, the cluster may be viewed as a single
virtual appliance or computing device, albeit one with performance exceeding that of a
typical individual appliance.

Referring now to FIG. 6, illustrated is an embodiment of a computing device cluster
or appliance cluster 600. A plurality of appliances 200a-200n or other computing devices,
sometimes referred to as nodes, such as desktop computers, servers, rackmount servers, blade
servers, or any other type and form of computing device may be joined into a single
appliance cluster 600. Although referred to as an appliance cluster, in many embodiments,
the cluster may operate as an application server, network storage server, backup service, or

any other type of computing device without limitation. In many embodiments, the appliance

68

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

cluster 600 may be used to perform many of the functions of appliances 200, WAN
optimization devices, network acceleration devices, or other devices discussed above.

In some embodiments, the appliance cluster 600 may comprise a homogenous set of
computing devices, such as identical appliances, blade servers within one or more chassis,
desktop or rackmount computing devices, or other devices. In other embodiments, the
appliance cluster 600 may comprise a heterogencous or mixed set of devices, including
different models of appliances, mixed appliances and servers, or any other set of computing
devices. This may allow for an appliance cluster 600 to be expanded or upgraded over time
with new models or devices, for example.

In some embodiments, each computing device or appliance 200 of an appliance
cluster 600 may comprise a multi-core appliance, as discussed above. In many such
embodiments, the core management and flow distribution methods discussed above may be
utilized by each individual appliance, in addition to the node management and distribution
methods discussed herein. This may be thought of as a two-tier distributed system, with one
appliance comprising and distributing data to multiple nodes, and each node comprising and
distributing data for processing to multiple cores. Accordingly, in such embodiments, the
node distribution system need not manage flow distribution to individual cores, as that may
be taken care of by a master or control core as discussed above.

In many embodiments, an appliance cluster 600 may be physically grouped, such as a
plurality of blade servers in a chassis or plurality of rackmount devices in a single rack, but in
other embodiments, the appliance cluster 600 may be distributed in a plurality of chassis,
plurality of racks, plurality of rooms in a data center, plurality of data centers, or any other
physical arrangement. Accordingly, the appliance cluster 600 may be considered a virtual
appliance, grouped via common configuration, management, and purpose, rather than a
physical group.

In some embodiments, an appliance cluster 600 may be connected to one or more
networks 104, 104°. For example, referring briefly back to FIG. 1A, in some embodiments,
an appliance 200 may be deployed between a network 104 joined to one or more clients 102,
and a network 104’ joined to one or more servers 106. An appliance cluster 600 may be
similarly deployed to operate as a single appliance. In many embodiments, this may not
require any network topology changes external to appliance cluster 600, allowing for case of
installation and scalability from a single appliance scenario. In other embodiments, an
appliance cluster 600 may be similarly deployed as shown in FIGs. 1B-1D or discussed

above. In still other embodiments, an appliance cluster may comprise a plurality of virtual

69

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

machines or processes executed by one or more servers. For example, in one such
embodiment, a server farm may execute a plurality of virtual machines, each virtual machine
configured as an appliance 200, and a plurality of the virtual machines acting in concert as an
appliance cluster 600. In yet still other embodiments, an appliance cluster 600 may comprise
a mix of appliances 200 or virtual machines configured as appliances 200. In some
embodiments, appliance cluster 600 may be geographically distributed, with the plurality of
appliances 200 not co-located. For example, referring back to FIG. 6, in one such
embodiment, a first appliance 200a may be located at a first site, such as a data center and a
second appliance 200b may be located at a second site, such as a central office or corporate
headquarters. In a further embodiment, such geographically remote appliances may be joined
by a dedicated network, such as a T1 or T3 point-to-point connection; a VPN; or any other
type and form of network. Accordingly, although there may be additional communications
latency compared to co-located appliances 200a-200b, there may be advantages in reliability
in case of site power failures or communications outages, scalability, or other benefits. In
some embodiments, latency issues may be reduced through geographic or network-based
distribution of data flows. For example, although configured as an appliance cluster 600,
communications from clients and servers at the corporate headquarters may be directed to the
appliance 200b deployed at the site, load balancing may be weighted by location, or similar
steps can be taken to mitigate any latency.

Still referring to FIG. 6, an appliance cluster 600 may be connected to a network via
a client data plane 602. In some embodiments, client data plane 602 may comprise a
communication network, such as a network 104, carrying data between clients and appliance
cluster 600. In some embodiments, client data plane 602 may comprise a switch, hub, router,
or other network devices bridging an external network 104 and the plurality of appliances
200a-200n of the appliance cluster 600. For example, in one such embodiment, a router may
be connected to an external network 104, and connected to a network interface of each
appliance 200a-200n. In some embodiments, this router or switch may be referred to as an
interface manager, and may further be configured to distribute traffic evenly across the nodes
in the application cluster 600. Thus, in many embodiments, the interface master may
comprise a flow distributor external to appliance cluster 600. In other embodiments, the
interface master may comprise one of appliances 200a-200n. For example, a first appliance
200a may serve as the interface master, receiving incoming traffic for the appliance cluster
600 and distributing the traffic across each of appliances 200b-200n. In some embodiments,

return traffic may similarly flow from each of appliances 200b-200n via the first appliance

70

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

200a serving as the interface master. In other embodiments, return traffic from each of
appliances 200b-200n may be transmitted directly to a network 104, 104°, or via an external
router, switch, or other device. In some embodiments, appliances 200 of the appliance cluster
not serving as an interface master may be referred to as interface slaves.

The interface master may perform load balancing or traffic flow distribution in any of
a variety of ways. For example, in some embodiments, the interface master may comprise a
router performing equal-cost multi-path (ECMP) routing with nexthops configured with
appliances or nodes of the cluster. The interface master may use an open-shortest path first
(OSPF) In some embodiments, the interface master may use a stateless hash-based
mechanism for traffic distribution, such as hashes based on IP address or other packet
information tuples, as discussed above. Hash keys and/or salt may be selected for even
distribution across the nodes. In other embodiments, the interface master may perform flow
distribution via link aggregation (LAG) protocols, or any other type and form of flow
distribution, load balancing, and routing.

In some embodiments, the appliance cluster 600 may be connected to a network via a
server data plane 604. Similar to client data plane 602, server data plane 604 may comprise a
communication network, such as a network 104°, carrying data between servers and
appliance cluster 600. In some embodiments, server data plane 604 may comprise a switch,
hub, router, or other network devices bridging an external network 104’ and the plurality of
appliances 200a-200n of the appliance cluster 600. For example, in one such embodiment, a
router may be connected to an external network 104°, and connected to a network interface of
each appliance 200a-200n. In many embodiments, each appliance 200a-200n may comprise
multiple network interfaces, with a first network interface connected to client data plane 602
and a second network interface connected to server data plane 604. This may provide
additional security and prevent direct interface of client and server networks by having
appliance cluster 600 server as an intermediary device. In other embodiments, client data
plane 602 and server data plane 604 may be merged or combined. For example, appliance
cluster 600 may be deployed as a non-intermediary node on a network with clients 102 and
servers 106. As discussed above, in many embodiments, an interface master may be
deployed on the server data plane 604, for routing and distributing communications from the
servers and network 104’ to each appliance of the appliance cluster. In many embodiments,
an interface master for client data plane 602 and an interface master for server data plane 604
may be similarly configured, performing ECMP or LAG protocols as discussed above.

In some embodiments, each appliance 200a-200n in appliance cluster 600 may be

71

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

connected via an internal communication network or back plane 606. Back plane 606 may
comprise a communication network for inter-node or inter-appliance control and
configuration messages, and for inter-node forwarding of traffic. For example, in one
embodiment in which a first appliance 200a communicates with a client via network 104, and
a second appliance 200b communicates with a server via network 104’, communications
between the client and server may flow from client to first appliance, from first appliance to
second appliance via back plane 606, and from second appliance to server, and vice versa. In
other embodiments, back plane 606 may carry configuration messages, such as interface
pause or reset commands; policy updates such as filtering or compression policies; status
messages such as buffer status, throughput, or error messages; or any other type and form of
inter-node communication. In some embodiments, RSS keys or hash keys may be shared by
all nodes in the cluster, and may be communicated via back plane 606. For example, a first
node or master node may select an RSS key, such as at startup or boot, and may distribute
this key for use by other nodes. In some embodiments, back plane 606 may comprise a
network between network interfaces of each appliance 200, and may comprise a router,
switch, or other network device (not illustrated). Thus, in some embodiments and as
discussed above, a router for client data plane 602 may be deployed between appliance
cluster 600 and network 104, a router for server data plane 604 may be deployed between
appliance cluster 600 and network 104°, and a router for back plane 606 may be deployed as
part of appliance cluster 600. Each router may connect to a different network interface of
each appliance 200. In other embodiments, one or more planes 602-606 may be combined, or
a router or switch may be split into multiple LANs or VLANS to connect to different
interfaces of appliances 200a-200n and serve multiple routing functions simultaneously, to
reduce complexity or eliminate extra devices from the system.

In some embodiments, a control plane (not illustrated) may communicate
configuration and control traffic from an administrator or user to the appliance cluster 600.
In some embodiments, the control plane may be a fourth physical network, while in other
embodiments, the control plane may comprise a VPN, tunnel, or communication via one of
planes 602-606. Thus, the control plane may, in some embodiments, be considered a virtual
communication plane. In other embodiments, an administrator may provide configuration
and control through a separate interface, such as a serial communication interface such as RS-
232; a USB communication interface; or any other type and form of communication. In some
embodiments, an appliance 200 may comprise an interface for administration, such as a front

panel with buttons and a display; a web server for configuration via network 104, 104’ or

72

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

back plane 606; or any other type and form of interface.

In some embodiments, as discussed above, appliance cluster 600 may include internal
flow distribution. For example, this may be done to allow nodes to join/leave transparently to
external devices. To prevent an external flow distributor from needing to be repeatedly
reconfigured on such changes, a node or appliance may act as an interface master or
distributor for steering network packets to the correct node within the cluster 600. For
example, in some embodiments, when a node leaves the cluster (such as on failure, reset, or
similar cases), an external ECMP router may identify the change in nodes, and may rehash all
flows to redistribute traffic. This may result in dropping and resetting all connections. The
same drop and reset may occur when the node rejoins. In some embodiments, for reliability,
two appliances or nodes within appliance cluster 600 may receive communications from
external routers via connection mirroring.

In many embodiments, flow distribution among nodes of appliance cluster 600 may
use any of the methods discussed above for flow distribution among cores of an appliance.
For example, in one embodiment, a master appliance, master node, or interface master, may
compute a RSS hash, such as a Toeplitz hash on incoming traffic and consult a preference list
or distribution table for the hash. In many embodiments, the flow distributor may provide the
hash to the recipient appliance when forwarding the traffic. This may eliminate the need for
the node to recompute the hash for flow distribution to a core. In many such embodiments,
the RSS key used for calculating hashes for distribution among the appliances may comprise
the same key as that used for calculating hashes for distribution among the cores, which may
be referred to as a global RSS key, allowing for reuse of the calculated hash. In some
embodiments, the hash may be computed with input tuples of transport layer headers
including port numbers, internet layer headers including IP addresses; or any other packet
header information. In some embodiments, packet body information may be utilized for the
hash. For example, in one embodiment in which traffic of one protocol is encapsulated
within traffic of another protocol, such as lossy UDP traffic encapsulated via a lossless TCP
header, the flow distributor may calculate the hash based on the headers of the encapsulated
protocol (e.g. UDP headers) rather than the encapsulating protocol (e.g. TCP headers).
Similarly, in some embodiments in which packets are encapsulated and encrypted or
compressed, the flow distributor may calculate the hash based on the headers of the payload
packet after decryption or decompression. In still other embodiments, nodes may have
internal IP addresses, such as for configuration or administration purposes. Traffic to these

IP addresses need not be hashed and distributed, but rather may be forwarded to the node

73

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

owning the destination address. For example, an appliance may have a web server or other
server running for configuration or administration purposes at an IP address of 1.2.3.4, and,
in some embodiments, may register this address with the flow distributor as it’s internal IP
address. In other embodiments, the flow distributor may assign internal IP addresses to each
node within the appliance cluster 600. Traffic arriving from external clients or servers, such
as a workstation used by an administrator, directed to the internal IP address of the appliance

(1.2.3.4) may be forwarded directly, without requiring hashing.

G. Svstems and Methods for SNMP Management in A Cluster

The systems and methods of the present solution illustrated in FIGs. 7A-7C are
directed towards supporting a Simple Network Management Protocol (SNMP) request by a
network cluster of intermediary devices, such as intermediary devices 200 or a clustered
system of intermediary devices 600. The systems and methods of the present solution
provide for selecting a lexicographically minimum next entity from a plurality of next entities
in response to a SNMP GETNEXT request. By generating an on the fly partial view of
cluster configuration relevant to the current request, the present solution reduces or eliminates
the need for maintaining all entity indexes on a configuration coordinator (CCO) SNMP
daemon (SNMPD). The present solution is distributed in nature, unaffected by the addition
or deletion of a node, and supports spotted address configuration, SNMP walk across
different versions, and extracting node level statistics.

In some embodiments, the present solution uses a network management protocol,
such as SNMP, to query a server or device for one or more objects identifiers and data for the
objects of the object identifiers. By way of example only and not in any way limiting, the
present solution may use an SNMP architecture to provide management information bases
(MIBs), which specify management data of a device or device subsystem, such as a service
270 or virtual server 275, using a hierarchical namespace containing object identifiers for
managed objects. In some embodiments, a MIB is a collection of information that is
organized hierarchically. MIBs may be accessed using a network-management protocol such
as SNMP. An MIB includes managed objects identified by object identifiers. In one
embodiment, a managed object (sometimes called a MIB object, an object, or a MIB) is one
of any number of characteristics or metrics of a managed device, appliance or system. In
some embodiments, a managed objects includes one or more object instances, which

correspond to or referred to as variables.

74

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

A managed object may include scalar and tabular Objects. A managed object may
have both a type (e.g., as defined in ASN.1) and a value. For example, the SNMP system
group variable sysLocation (this variable is defined in RFC1213-MIB) has the type,
DisplayString and may have the value, "WebNMS". Managed objects, in SNMP, are of two
types : scalar objects and tabular objects. A managed object that always has a single instance
is called a scalar object. Tabular objects have multiple instances, such as the rows of a table.
Tables in SNMP are two-dimensional objects defined as an ASN.1 type called SEQUENCE
OF, which allows 0 or more members. Each element of the sequence is an entry (row) in the
table, which itself is a sequence of scalar-valued objects.

In one embodiment, the MIB hierarchy may be depicted as a tree with a nameless
root, the levels of which are assigned by different organizations. In some embodiments, the
top-level MIB object IDs may belong to different standards organizations, while lower-level
object IDs are allocated by associated organizations. The MIB and/or objects may be
arranged, constructed or organized for management across any of layers of the OSI reference
model. In some embodiments, the MIB and/or objects provide managed data and information
on applications such as databases, email, and web services. Furthermore, the MIB and/or
objects may define for any area-specific or appliance specification information and
operations, such as for any type of service 270, server 106 or device 100 managed by the
appliance 200.

In the example embodiment of SNMP, the SNMP communication model is based on a
manager and an agent with a data of management information and management objects. In
one embodiment, the manager provides an interface to the managed system. The agent
provides the interface between the manager and the device, system, application, component,
element or resource being managed. As illustrated in FIG. 7A, the appliance 200 or device
may include a manager and/or agent in the form of daecmons referred to as snmpd. A
manager, such as a master snmpd on a core or node, may requests and obtains object
identifiers and values from an agent, such as a non-master snmp executing on a core or node.
In the example of SNMP, a manager communicates a GET or GET-NEXT message to
request information for a specific object. The agent, in response to the manger’s request,
issues a GET-RESPONSE message to the manager with the information requested or an error
message. The manager may transmit a SET message to request a change to a value of a
specific variable or object. The agent may issue a TRAP message to inform the manager of
an ¢vent, such as an alarm or error on a service 270 or virtual server.

Although generally described in an embodiment of an SNMP network management

75

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

protocol, the present solution may use any type and form of network management protocol
and communication model to obtain identifiers and values of information, such as objects or
variables, from another device for an entity, such as a managed system, sub-system, virtual
server 275 or service 270. For example, the appliance 200 may use any of the following
protocols and/or communication models: Remote monitoring (RMON), AgentX , Simple
Gateway Monitoring Protocol (SGMP), Common management information protocol (CMIP),
Common management information service (CMIS) or CMIP over TCP/IP (CMOT).

Furthermore, although a MIB is generally described in reference to a manager/agent
communication model for an example network management protocol such as SNMP, the
MIB may include any type and form of data storage of object identifiers, variables,
parameters or other identifiers of metrics. The MIB may be either protocol dependent or
protocol independent. For example, the MIB may comprise a table of metrics for a device or
service that can be queried via any type and form of API.

Although the systems and methods of the present solution may be described in
connection with SNMP or other network protocols, these systems and methods are useful and
can be used for any implementation or deployment in which variables, objects or tabular data
cross multiple cores or nodes is to be cached.

Referring now to FIG. 7A, an embodiment of supporting SNMP request operations in
a clustered system is depicted. In brief overview, the system includes multiple intermediary
devices 200, such as any embodiments of an appliance 200 described herein, designed,
constructed and/or deployed into a cluster 600 as described in connection with FIG. 6. The
cluster may include a plurality of appliances 200A-200N (generally referred to as appliance
200). Each appliance may be considered a node in a multi-node cluster 600. Each appliance
200 may execute, operate or comprise a plurality of entities 710A-710N (generally referred to
as entity 710), such as, for example, a virtual server 275. Each appliance may execute or
operate a monitoring agent 705A-705N, generally referred to as a snmpd in the embodiments
of SNMP deployment or architecture. One or more appliances may execute or operate an
entity selector 720A-M (generally referred to as entity selector 720) that selects one entity of
a plurality of entities. One of the appliances, such as appliance 200N, which may be referred
to as the master node, may execute or operate a snmpd or master agent 705N, such as a
SNMP agent and/or manager in embodiments of an SNMP architecture such as a SNMPD
Master 705N. The master node may establish or provide a Management Information Base
(MIB) 717. The master node, such as via SNMPD or Master agent 705N, may distribute the

MIB, or portions thereof, across the appliances. The master node and/or each of the nodes

76

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

may have a SNMP cache or other memory to store managed objects collected from any of the
nodes. An aggregator 722A-M (generally referred to as 722) may execute or operate on the
cluster 600, on each multicore appliance 200, SNMP Manager 707 or on any other device.
The aggregator 722 aggregates information or values received from various cores, appliances,
devices, or clusters. The cluster may retrieve information in response to an SNMP
GETNEXT request on the fly, or the cluster may use the information stored in the SNMP
local memory to respond to SNMP GET and GETNEXT requests, such as requested by an
SNMP Manager 707 on a device 100 in communication with the cluster 600 via a network
104.

In some embodiments, each appliance in the cluster may be a single processor
appliance. In some embodiments, each appliance in the cluster may be a multi-core device.
In the clustered system, each appliance may communicate with another appliance via a data
plane, such as back plane 606 described in connection with FIG. 6. Each appliance may
communicate with other appliances via a data plane or back plane using an interface slave
610. One of the appliances in the cluster 600 may be designated or identified as a master
node or appliance. The master node or appliance may execute an interface master 608 for
coordinating and managing the cluster.

The cluster 200, such as via master agent 705 may communicate with a SNMP
manager 707 via a network 104. A cluster 600, may execute a master agent or snmpd 705
which reports information via SNMP to the SNMP manager 707.

Each agent on each appliance (e.g., node) may monitor values 712A-712N (generally
referred to as monitored values 712) in connection with, associated with or for one or more
entities. These entities may be represented by managed objects, such as scalar and tabular
data types, in the SNMP model and stored in the MIB 717. The master agent 705N may
communicate with each node or agent to obtain the monitored values for the entity and stores
these values to the MIB. The agents may communicate with the master agent to store these
values to the MIB. SNMP caches on each node may communicate monitored entity data with
cach node. SNMP caches on non-master nodes may communicate cached data to the SNMP
cache on the master node.

In some embodiments, the SNMP cache is distributed among the nodes in the cluster
600. Each node may maintain a SNMP cache. Each node, such as via agent 705, may store
values for a managed object, such as for an entity, that is managed by each of the nodes.
Each node may maintain a SNMP cache for those entities for which the node is the owner

node. Each node, such as via agent 705, may store values to the MIB for a managed object,

77

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

such as for an entity, that is managed by each of the nodes. Each node may maintain a
portion of the SNMP cache of the master node while the master node maintains an aggregate
of SNMP cache data in the SNMP cache on the master node. In some embodiments, one
SNMP cache may operate on the master node that receives SNMP cache data from each of
the nodes. In some embodiments, the SNMP cache may operate on the master node and
receives SNMP cache data from the MIB.

In operation and in some embodiments, the agents on each appliance communicate
with the master on the master node or appliance via the back plane. In some embodiments,
the agents on each appliance communicate with the master on the master node or appliance
via network communications. In some embodiments, the agents on each appliance
communicate via the interface slave with the master agent via interface master on the master
node or appliance. Each appliance may establish a connection, such as a transport layer
connection, with the other appliances. Each agent on each appliance may establish a
connection, such as a transport layer connection, with the master agent on the master node or
appliance. Using any of the above communication mechanisms, agents of appliances can
communicate SNMP cache data and/or monitored values to the master agent or SNMP cache
on the master node and the master node may query or request monitored values from the
agents.

Responsive to receipt of a SNMP GET or GETNEXT request from, ¢.g., the SNMP
Manager 707, the master agent 705N (or other agent 705A and 705B, for example) may
query, poll or obtain the monitored values from each of the agents. In some embodiments,
the master agent may use SNMP protocol communications to obtain, query or poll the
monitored value of the entity from agent(s) monitoring the entity. In some embodiments, the
master agent may use SNMP protocol communications to obtain, query or poll the monitored
value of the entity from the entity. In some embodiments, the master agent may use SNMP
protocol communications to obtain, query or poll the monitored value of the entity from a
SNMP database or MIB. In some embodiments, a local memory associated with the
appliance, node, core, or cluster may include the monitored value or information. In some
embodiments, the master agent may use proprietary protocols, interfaces and/or mechanisms
to obtain, query or poll the monitored value of the entity from the agents. The SNMP cache
or other memory may store the monitored values, such as responsive to the master agent.

In some embodiments, responsive to a SNMP GET or GETNEXT request, the entity,
core, appliance, or node may respond to the request with obtained data. In some

embodiments, the response to the request may include data stored in the SNMP cache. For

78

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

example, the master agent may send a SNMP response to the SNMP manager based on the
obtained data or cached data in the SNMP cache. In another example, an SNMPD agent of a
multicore appliance may receive a value, identifier, or other information from each core of
the multicore appliance.

In some embodiments, the SNMP agent 720 forwards the SNMP GETNEXT request
to an aggregator 722. Aggregator 722 may comprise any type and form of executable
instructions for aggregating any OID, value, variable or logged operational and/or
performance information and data from each of the cores, appliances, intermediary devices,
or clusters 600. The aggregator 722 may combine the information and data from each of the
cores, appliances, or clusters, for example, to present a combined set of values to an agent.
The aggregator may use any type and form of interface for receiving and/or obtaining the
values from each of the cores, appliances or clusters. In some embodiments, the aggregator
722 interfaces via a shared memory interface, messaging, a queue, or other interface. The
aggregator may receive SNMP requests and forward them to cores, agents, intermediary
devices, or clusters.

In some embodiments, SNMP agent 720A residing on a multicore appliance 200A
may forward the SNMP GETNEXT request to aggregator 722A. Aggregator 722A may
transmit the request for the next entity to each core of appliance 722A. In some
embodiments, the SNMPD/ Master Agent 705N may forward the SNMP GETNEXT request
to aggregator 722M. Aggregator 722M may transmit the request for the next entity to each
intermediary device of the cluster, including, e.g., appliances 200. In another embodiment,
the SNMP Manager 707 may forward the SNMP GETNEXT request to aggregator 722M of
cluster 600. Aggregator 722M may transmit the request for the next entity to each
intermediary device of the cluster, including, e.g., one or more of appliance 200A-N.

In some embodiments, an appliance 200 may act as a first intermediary device and
transmit the SNMP GETNEXT request to each SNMP agent executing on a corresponding
intermediary device of the one or more intermediary devices. For example, appliance 200N,
which may include the SNMPD/ master agent 705N, may transmit the SNMP GETNEXT
request to each intermediary device appliance 200.

An entity selector 720 may execute or operate on a core of an appliance, node, or
device. For example, each entity selector 720 may operate or execute on an SNMP manager
707 or SNMPD agent 705 residing on a single or multicore appliance 200, device 100, or
node may select a lexicographically minimum entity from one or more next entities received

via a response. For example, the entity selector 720 of a multicore appliance may receive a

79

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

value via a response from each core of the multicore appliance. In another example, the
entity selector 720 of the SNMP Manager 707 may receive a value from each appliance 200
of the cluster 600. In some embodiments, the entity selector 720 may reside on each core of a
multi-core appliance. In some embodiments, the entity selector 720 may reside on a device
corresponding to the SNMP Manager.

The entity selector 720 of an SNMP agent may receive one or more OID, value, or
variable representing statistical or configuration information corresponding to one or more
entities residing on one or more cores of the appliance 200A. The entity selector 720 may
select, from the one or more received OIDs or other values and variables, the
lexicographically minimum entity. To select the lexicographically minimum entity, the entity
selector 720 may order the one or more received entities in lexicographical order to select the
lexicographically minimum entity. In one embodiment, the entity selector 720 may compare
a received entity with a previously received entity to select the lexicographically minimum
entity. For example, instead of or in addition to storing all entity values for each request from
an SNMPD agent, master agent, or SNMP Manger, the entity selector 720 may only store the
entity value if the entity value is lexicographically less than the previously received entity
value, thus reducing the amount of data stored in memory for each request.

In some embodiments, the entity selector 720 may select the lexicographically
minimum entity from a plurality of different object identifiers of next entities received via the
response from each of the intermediary devices. For example, entity selector 720N residing
on a first intermediary device appliance 200N may receive one or more different OIDs from
corresponding appliances 200 and select a lexicographically minimum entity. In another
example, entity selector 720M residing on SNMP Manager 707 may receive one or more
different OIDs from appliances 200 or clusters 600 and select a lexicographically minimum
entity. In yet another example, entity selector 720A residing on appliance 200A may receive
one or more different OIDs from entities 710A and select a lexicographically minimum
entity.

In some embodiments, the entity selector 720 of an SNMP agent selects the
lexicographically minimum entity that includes the next entity having an OID
lexicographically closest to a lexicographic identifier of the entity. For example, a SNMP
agent may receive a SNMP GETNEXT request for an entity of the entities 710A. The entity
selector 720 of the SNMP agent may determine that a next entity has an OID or other
identifier or variable that is lexicographically closest to the entity. The entity selector 720

may then respond to the request by providing information about the next entity.

80

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

In some embodiments, a first intermediary device, e.g., appliance 200N, may
aggregate values for a variable identified via the SNMP GETNEXT request and received for
the selected next entity from one or more of the intermediary devices 200 of the cluster 600.
The variable may refer to statistical or configuration information associated with an entity. In
some embodiments, the aggregator 722N of appliance 200N may aggregate the values for the
variable. In some embodiments, the response to the SNMP Manager includes an aggregation
of values received from one or more intermediary devices of the cluster for the selected next
entity. For example, the SNMPD/ master agent 705N may generate a response that includes
the aggregation of values. In another example, the SNMPD/ master agent may receive the
aggregation from an aggregator 722 and include the aggregation in the response to the SNMP
Manager 707.

Referring now to FIG. 7B, an illustrative embodiment of the present solution is
shown. In brief overview, some embodiments may includes an SNMP Manager 730, a node
0 or first intermediary device 734 and a plurality of nodes or intermediary devices 746a-b
(where 746a may refer to node 1 and 746b may refer to node 2). In some embodiments, The
first intermediary device 732 may include a cluster SNMP agent 732, a plurality of packet
engines (PE) 736a and 738a running on a plurality of cores, and a cluster aggregator 740.
The other intermediary devices 746a-b may each include a plurality of packet engines 736b-c
and 738b-c and aggregator 746. The intermediary devices may interface and connect with
cach other or the SNMP Manager using any of the previously mentioned interfaces or
connection methods.

In one embodiment, the SNMP manager 730 may request a SNMP GETNEXT for
total hits for device. The SNMP manager 730 may send the request to cluster SNMP 734 of
the first intermediary device 732. The cluster SNMP 734 may relay the request to an
aggregator 746a or 746b. The aggregators 746 of the intermediary devices may receive the
relayed request with the same semantics as the request sent by the SNMP Manager 730 to the
cluster SNMP 734. In some embodiments, the cluster aggregator 740 may further relay the
request to one or more packet engines 736 and 738 operating on a node 746. In some
embodiments, the cluster aggregator 740 may relay the request to an aggregator 746 of the
node, which may further relay the request to one or more packet engines of the node.

In response to the request, the packet engines of each node may return to an agent of
the node device identifier with the required counters in SNMP order. The node may then
select and respond with information corresponding to the lexicographically minimum entity

to the cluster aggregator 740. For example, node0 may return an identifier of device2, nodel

81

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

may return an identifier of device2, and node2 may return an identifier of device3. The
cluster aggregator 740 residing on node0 may receive device2 from node0, device2 from
nodel and device3 from node2 and aggregate all the devices and send the respond to the
cluster SNMP agent 734. The aggregation may include device2 and device3. The cluster
SNMP agent 734 may select the lexicographically minimum device2 and ignore or cache the
other values, e.g., device3. The cluster SNMP agent 734 may further reply to the SNMP
manager 730 with the total hits corresponding to device2 (e.g, Tothits.device2 = x).

Referring now to FIG. 7C, an embodiment of a method of supporting SNMP requests
by a cluster of intermediary devices is depicted. In brief overview, at step 750, an agent
executing on a first intermediary device receives a SNMP GETNEXT request. At step 755,
the agent requests a next entity from each intermediary device of a cluster comprising a
plurality of intermediary devices. At step 760, the agent selects a lexicographically minimum
entity from a plurality of next entities received via responses from each intermediary device
of the plurality of intermediary devices.

In further detail, at step 750, a SNMP agent receives a SNMP GETNEXT request for
an entity. The SNMP agent may execute or operate on a first intermediary device, e.g., an
appliance 200, cluster 600, or core of a multicore appliance. In some embodiments, the
SNMP agent may receive the SNMP GETNEXT request from an SNMP Manager, SNMPD/
Master agent, or an aggregator. In some embodiments, the GETNEXT operation retrieves the
value of the next OID in the tree. The GETNEXT operation may retrieve table data or
variables. In some embodiments, the SNMP agent receives the SNMP GETNEXT request
for an entity and a variable that represents one of a statistical or configuration information of
an entity.

At step 755, the SNMP agent may request a next entity from one or more
intermediary device of the plurality of intermediary devices. In some embodiments, the
SNMP agent may request a next entity from each intermediary device of the plurality of
intermediary devices. In some embodiments, the SNMP agent may make the request in
response to receipt of the SNMP GETNEXT request. The SNMP agent of the first
intermediary device may transmit the SNMP GETNEXT request to one or more SNMP agent
executing on a corresponding intermediary device of the plurality of intermediary devices.
For example, the SNMPD/ master agent residing on a cluster may transmit the request to one
or more other SNMP agents residing on appliances in the cluster.

In some embodiments, the SNMP agent may forward the request to an aggregator.

For example, an SNMP agent on a first intermediary device may forward the request to an

82

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

aggregator. In some embodiments, the aggregator may transmit the request for the next entity
to cach intermediary device of the cluster.

At step 760, the SNMP agent selects a lexicographically minimum entity from one or
more next entities received via responses from each intermediary device of the one or more
intermediary devices. The lexicographically minimum entity may be determined based on an
identifier (e.g., lexicographic identifier) of the entity or the next entity, e.g., the OID, received
via the response from each of the intermediary devices, appliances, cores, or clusters. In
some embodiments, selecting the lexicographically minimum entity may include selecting the
next entity that has an object identifier lexicographically closest to a lexicographic identifier
of the entity. For example, the agent may lexicographically order the received identifiers of
the next entities to determine a lexicographically closest identifier to the entity. For example,
if the entity submitted along with the SNMP GETNEXT request is “devicel”, and the
returned next entities are “device2, device3, and device4”, the agent may select “device2” as
the identifier of the next entity device2 is lexicographically closest to the entity devicel.

In some embodiments, the first intermediary device may aggregate values received for
the selected next entity. The values may be for a variable identified via the SNMP
GETNEXT. The first intermediary device may receive the values from one or more of the
intermediary devices of the cluster or one or more cores of an appliance or one or more
clusters of a network system. In some embodiments, the first intermediary device may
receive one or more aggregation of values (e.g., from a multicore appliance of a cluster). In
some embodiments, the SNMP agent of the first intermediary device may receive the values
and perform the aggregation. In some embodiments, the aggregation may include OIDs or
statistical or configuration information.

At step 765, the SNMP agent transmits a response comprising the selected next entity
as the entity. The SNMP agent may transmit the response to a SNMP manager. In some
embodiments, an SNMP agent of an appliance may transmit a response to an SNMPD/
master agent of a first intermediary device. In some embodiments, the response may include
an OID of the next entity and statistical or configuration information.

It should be understood that the systems described above may provide multiple ones
of any or each of those components and these components may be provided on either a
standalone machine or, in some embodiments, on multiple machines in a distributed system.
The systems and methods described above may be implemented as a method, apparatus or
article of manufacture using programming and/or engineering techniques to produce

software, firmware, hardware, or any combination thereof. In addition, the systems and

83

10

15

20

WO 2013/188780 PCT/US2013/045915

methods described above may be provided as one or more computer-readable programs
embodied on or in one or more articles of manufacture. The term "article of manufacture” as
used herein is intended to encompass code or logic accessible from and embedded in one or
more computer-readable devices, firmware, programmable logic, memory devices (e.g.,
EEPROMs, ROMs, PROMs, RAMs, SRAMs, etc.), hardware (e.g., integrated circuit chip,
Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC),
etc.), electronic devices, a computer readable non-volatile storage unit (e.g., CD-ROM,
floppy disk, hard disk drive, etc.). The article of manufacture may be accessible from a file
server providing access to the computer-readable programs via a network transmission line,
wireless transmission media, signals propagating through space, radio waves, infrared
signals, etc. The article of manufacture may be a flash memory card or a magnetic tape. The
article of manufacture includes hardware logic as well as software or programmable code
embedded in a computer readable medium that is executed by a processor. In general, the
computer-readable programs may be implemented in any programming language, such as
LISP, PERL, C, C++, C#, PROLOG, or in any byte code language such as JAVA. The
software programs may be stored on or in one or more articles of manufacture as object code.
While various embodiments of the methods and systems have been described, these
embodiments are exemplary and in no way limit the scope of the described methods or
systems. Those having skill in the relevant art can effect changes to form and details of the
described methods and systems without departing from the broadest scope of the described
methods and systems. Thus, the scope of the methods and systems described herein should
not be limited by any of the exemplary embodiments and should be defined in accordance

with the accompanying claims and their equivalents.

84

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

WHAT IS CLAIMED:

1.

A method of responding to a Simple Network Management Protocol (SNMP) request
by a cluster of intermediary devices, the method comprising:

(a) receiving, by a Simple Network Protocol (SNMP) agent executing on a
first intermediary device of a cluster comprising a plurality of intermediary devices,
an SNMP GETNEXT request for an entity;

(b) requesting, by the SNMP agent responsive to receipt of the SNMP
GETNEXT request, from each intermediary device of the plurality of intermediary
devices of the cluster, a next entity; and

(c) selecting, by the SNMP agent to respond to the SNMP request, a
lexicographically minimum entity from a plurality of next entities received via
responses from each intermediary device of the plurality of intermediary devices.
The method of claim 1, wherein step (a) further comprises receiving, by the SNMP
agent from an SNMP manager, the SNMP GETNEXT request for the entity and a
variable representing one of a statistical or configuration information of the entity.
The method of claim 1, wherein step (b) further comprises forwarding, by the SNMP
agent, the SNMP GETNEXT request to an aggregator.

The method of claim 3, further comprising transmitting, by the aggregator, the request
for the next entity to each intermediary device of the cluster.

The method of claim 1, wherein step (b) further comprises transmitting, by the first
intermediary device, SNMP GETNEXT requests to each SNMP agent executing on a
corresponding intermediary device of the plurality of intermediary devices.

The method of claim 1, wherein step (c) further comprises selecting, by the SNMP
agent, the lexicographically minimum entity from a plurality of different object
identifiers of next entities received via the response from each of the intermediary
devices.

The method of claim 1, wherein step (c) further comprises selecting, by the SNMP
agent, the lexicographically minimum entity comprising the next entity having an
object identifier lexicographically closest to a lexicographic identifier of the entity.
The method of claim 1, further comprising aggregating, by the first intermediary
device, values for a variable identified via the SNMP GETNEXT request and received
for the selected next entity from one or more of the intermediary devices of the

cluster.

85

10

15

20

25

30

WO 2013/188780 PCT/US2013/045915

10.

11.

12.

13.

14.

15.

16.

17.

18.

The method of claim 1, further comprising generating, by the SNMP agent, a response
to an SNMP manager, the response comprising an aggregation of values received
from one or more intermediary devices of the cluster for the selected next entity.

The method of claim 1, further comprising transmitting, by the SNMP agent to an
SNMP manager, the response comprising the selected next entity as the next entity.

A system for responding to a Simple Network Management Protocol (SNMP) request
by a cluster of intermediary devices, the system comprising:

a cluster comprising a plurality of intermediary devices;

a Simple Network Protocol (SNMP) agent executing on a first intermediary
device of the plurality of intermediary devices, receiving an SNMP GETNEXT
request for an entity and responsive to receipt of the SNMP GETNEXT request,
requesting from each intermediary device of the plurality of intermediary devices of
the cluster, a next entity; and

wherein the SNMP agent selects, to respond to the SNMP request, a
lexicographically minimum entity from a plurality of next entities received via
responses from each intermediary device of the plurality of intermediary devices.
The system of claim 11, wherein the SNMP agent receives from an SNMP manager,
the SNMP GETNEXT request for the entity and a variable representing one of a
statistical or configuration information of the entity.

The system of claim 11, wherein the SNMP agent forwards the SNMP GETNEXT
request to an aggregator.

The system of claim 13, wherein the aggregator transmits the request for the next
entity to each intermediary device of the cluster.

The system of claim 11, wherein the first intermediary device transmits SNMP
GETNEXT requests to cach SNMP agent executing on a corresponding intermediary
device of the plurality of intermediary devices.

The system of claim 11, wherein the SNMP agent selects the lexicographically
minimum entity from a plurality of different object identifiers of next entities received
via the response from each of the intermediary devices.

The system of claim 11, wherein the SNMP agent selects the lexicographically
minimum entity comprising the next entity having an object identifier
lexicographically closest to a lexicographic identifier of the entity.

The system of claim 11, further the first intermediary device aggregates values for a

variable identified via the SNMP GETNEXT request and received for the selected

86

WO 2013/188780 PCT/US2013/045915

next entity from one or more of the intermediary devices of the cluster.

19. The system of claim 11, wherein the SNMP agent generates a response to an SNMP
manager, the response comprising an aggregation of values received from one or
more intermediary devices of the cluster for the selected next entity.

20. The system of claim 11, wherein the SNMP agent transmits to an SNMP manager the

response comprising the selected next entity as the next entity

87

PCT/US2013/045915

WO 2013/188780

1/20

ugplL Jomeg

O O

qooL Jemseg

|
|

BO0L JoniRg

F0l
MIOM)ON

<—\ .w—u uzol usip

qzolL Lo

BZOL usHO

PCT/US2013/045915

WO 2013/188780

2/20

uooL

FEYNETS

|
|

q901 4

OO

YL

BO0L 19A48Q

asueyddy

gl "Old

MIOMISN

uzol usip

qzolL Lo

BZOL usHO

=7

PCT/US2013/045915

WO 2013/188780

3/20

uooL

FEYNETS

|
|

q901 4

OO

YL

BO0L 19A48Q

{eoin8p
uopeziwpdo

NVM
aoueljddy

1R E

aoueyddy

pa = I 50

v

L 1]

ooz

\\n\

P
/A ol
Y aompaN

uzol usip

{9o1n0p
uoneziundo

NVYM
aoueyjddy

qzolL Lo

BZOL usHO

=7

PCT/US2013/045915

WO 2013/188780

4/20

V90l JI8AISS
86| 90IAIBS
BuLioyuous
901 JoAseS soueuuoped
61
juabe Bunocyuow
aouewopad
G6lL
suiBug Aoyjod
}oMmpdN
061 WajsAg
Klanijag
uoneoiddy
ajlj eleq
uoneoyddy

at 'old

soueijddy

20l usH)

HIOMION

002

oz weby weyd

Bjif eieQ

uoneoyddy

| IUSWUOHAUT
Bunnduion

WO 2013/188780 PCT/US2013/045915
5/20

100
\ /’—\[128

_____’//
0S
Software
122 Client 120
- 101 - Agent EE
CPU Main
Memory \g)_rage ,
F150
<€ I >
123
N Display
110 device(s) Installation Network
CTRL k Device Interface
126\ e 124a-n _116 118
Keyboard %’;ﬁ?eg

Fig IE

WO 2013/188780 PCT/US2013/045915
6/20
140
Main L
Processor Cache
ya 122
/O | VO |Memory Main
Port |Port Bort Memory /_1 30b
N
103 /O
Device
Bridge| 170
/1 50
< SN
N ”
s 130a
/O
Device

Fig IF

WO 2013/188780

7/20

101
K
PPU
P1 P2
P3 P(N)

Fig 1G

101
/

CPU

107

GPU

Fig. I1H

PCT/US2013/045915

PCT/US2013/045915

WO 2013/188780

8/20

V¢ 'Old

\/\ 0Z
- — —— LA
99¢ siiod y9¢ YALYA A T4 i J0SS820.d m _
NIOM}ON Kowa 10853201 || 108$390.d | | yopdhioug | 90¢
7y _.----..-.\ ¥ alempieH
192 Joeis \
}IOM}aN
y ycz sauibuz
uondAioug
£ve 19ynq cye Jawi}
0vz suibuzg j9yoed pajeibalul
1-g 19he pasdg-ybiH 052 voT
— . [outey aoedg
— 5tC mNmN [ouioy
8¢€¢c 1abeue
uoissaidwo) sutbuz | wcomo_z
jo20304d-nINN Aaijod
812 saoiniag uowseq wolsAg 207
— — — — aoedg
912 sweiboid viT A %4 (1]%4 1980
BULIO}UOW UNEaH $92IMIBG [I9YS [bO) NS

PCT/US2013/045915

WO 2013/188780

9/20

Ugy[p Jonieg

VoY AINELS

a90l Jonses

q0.Z 9IS

90} JoAlSS

e0/z a0nIeS

x\\w\\.~

. YOl
sOMBON

g¢ 'Old

00C eooueiddy

161
webe Bunouuow

062 M4 ddy

gQ¢ uUoijeiajoddy

98¢ SNd

$8z Buiyoums

¢8¢ dl 1suenuj

082 NdA 1SS

ug/Z v JoAI9SA

BG/Z Y JOABSA

UzZoL JuUSHD

uozl
weby D

4colL 3usH)

YIOMIaN

qozi
weby jusyD

eZ0lL USHD

B0z
Jueby el

WO 2013/188780 PCT/US2013/045915

10/20
Client 102
i user mode 303 i
i 1st Program
i App 1 App 2 322 i
i App N i
i A v y i
5 310a ;
E monitoring i
i agent/script 197 !
i Network Streaming Client !
i Stack 306 i
i 310 i
frr > Collection Agent -t
i 304 H
! AP/ data i
i structure 325 Acceleration :
! Program 302 E
E interceptor i
i 350 :
Client Agent 120 i
; 310 i
i Kernel mode 302 i

WO 2013/188780

11/20

PCT/US2013/045915

device 100

virtualized environment 400

VIRTUALIZATION LAYER
Virtual Machine 406a Virtual Machine 406b || Virtual Machine 406¢
Control G
Operating uest
System Operating Guesﬁ
405 System Operating
System
Tools 410a 410b
Stack 404
 Virtal } § Virtwal | (|} Virwal] Viral §f|} Viteal 3 Viral |
i Disk 1 icpu [l Disk iicpu i Disk i CPU
i 4422 1 14322 1|1 442 tio432b |1 442c | 432¢ |
HYPERVISOR LAYER
y
Hypervisor 401
... e
HARDWARE LAYER
A 4
Physical Disk(s) 428 Physical CPU(s) 421

Fig. 44

WO 2013/188780 PCT/US2013/045915

12/20
Computing Device 100a Computing Device 100b
Virtual Virtual Virtual Virtual
Machine Machine Machine Machine
406a 406b 406¢ 406d
Control OS Guest Control Guest
405a Operating P % OS 405b Operating
Management System) " Meamt System
component 410a c OmI; onent 410b
404a 1 404a ;
i Virtual i Virtual i
y i Resources | 4 i Resources |
Hypervisor W ' 432a,442a | Hypervisor /r: 432b, 442b i
401a hommmmmmeees ' 401b BRbhhhbbbbbbb '
4
\4 v
Physical Resources Physical Resources
421a, 428a 421b, 428b
Computing Device 100c
Virtual Machine 450e Virtual Machine
406f
Guest Operating System 410c
.-----—---—---—i ___________________ Control OS
i Virtual Resources 432¢, 442¢ 405¢
""""""""""""""""""" Management

component
/ 404a
Hypervisor 401

Fig. 4B

WO 2013/188780 PCT/US2013/045915
13/20

virtualized application delivery controller 450

vServer A 275a vServer A 2753
vServer A 275n vServer A 275n
SSL VPN 280 SSL VPN 280

Intranet IP 282 Intranet IP 282

Switching 284 Switching 284

DNS 286 DNS 286

Acceleration 288 Acceleration 288

App FW 290 App FW 290

monitoring agent

197 monitoring agent

197

virtualized environment 400

computing device 100

Fig 4C

515

535

WO 2013/188780 PCT/US2013/045915
14/20
Functional
510C Parallelism
500
510A /
; 5105 TCP
NW 515
/O SSL
Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core N
coo
505A 505B 505C 505D 505E 505F 505G 505N
Data
542D Parallelism 40
542C
542 A
542E /
542B§ VIP3)
VIP1 NIC1 NIC2
ViP2
Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 | Core?7 Core N
coo
505A 505B 505C 505D 505E 505F 505G SO5SN
Flow-Based Data
Paralleli} 320
536B 336C < 536k - s
T 536C 30D 536E 536G 536N
Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 | Core7 Core N
coco
505A 505B 505C 505D S05E 505F 505G 505N

Fig 54

WO 2013/188780 PCT/US2013/045915

15/20
/ 545
548A 5488 548N
Packet Packet Packet
Engine A Engine B Lol o Engine N
A
Y
Memory Bus 356
| I
A 4
Core 1 Core 2 Core 3 Core 4 | Core5 Core 6 Core 7 Core N
000
505A 505B 505C 505D 505E 505F 505G 505N
Flow Distributor 550
NIC 552

Fig. 5B

PCT/US2013/045915

WO 2013/188780

16/20

J¢ 'Old

|
| 048 |

085 eyoeD [eqo|o “
NG05 5606 | Tos | o5 | acos | ooos g5 | weos | |
coo (2100 josyuoo) |
N®J0D) /8107 99107 gol07 #8107 £9107) 79100 18107 |
|
i |
i aue|d “
I jonuon _

|
L — — J

GlG

PCT/US2013/045915

WO 2013/188780

17/20

9 'Old
909

009 auejd yoeq

J9)snjn souelddy

809 191SEN _--
9orLI9)U| crressessscanny

2007 aoueljaay

sesvesscossnsye
.

spesvsonacesae

qoge @oueljaay

R XXX XX

Sesvvsscesned

vol
HOMION

NIOM)EN

200¢ 2oueijddy

seceencrcsvensee
.

¥09

auejd ejeQq 19A198 P00z soueiddy

aue|d ejeq jusid

sescesnsssveonsoshocscsvenvcacee

u-egL9
SOAR|S 90B}48)U|

PCT/US2013/045915

WO 2013/188780

18/20

00t

NOZL jIoM)aN
Joysteg Aul 009 J81sniD
L0/ JebeuelN JINNS
07, INZZ /. 101260160y
Jop9leg Anuz
NGO/ 1usby
Joi1selN /[AdININS
a0z, Y0Z.
NZZ/ 10125168y Jopseg Anug Jj0j0819g Ainug
909 4502 AdWNSAUsBY VS0. QdINNSAueby
LLLdIN gezel loiebaibby vzz/ loyeboibby
NZl/ Ssnjep gz1 /. senjen VZL. senjep
U@._O“—_CO_\/_ PaJOjiUON PaiOJiUON
NOLZ seiju3 d01Z sennug VYOl /. senpug

NQ0Z souelddy

400z souelddy

Vv00zZ @ouelddy

PCT/US2013/045915

WO 2013/188780

19/20

98¢.

g/, '9Old

el

0cl

Jabeue

*

FORETETS
Amug

dAINS
Jasn|o

dINS

eg9e.

a9y .

60y

l-dd

0-3d

ov.

1474

A 4

BBy
Jssn|n

eov.

9¢.

l-dd 0-dd

agel

q9¢.

PCT/US2013/045915

WO 2013/188780

20/20

3. 'Old

uo08}9S 8pIA0Id

<

Go/ deig

4

h

Anug wnwiulpy Ajjeoiydelbooixe 10918

~

09/ deis

4

Au3 1xaN 1senbay

<

GG/ deig

1senbay | X3INL3

O dIAINS dAI899Y

<

06/ deis

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/045915

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L12/24 HO4L29/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HOAL

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2002/103886 Al (RAWSON FREEMAN LEIGH 1-20
[US]) 1 August 2002 (2002-08-01)
abstract

claim 1

figure 1

paragraph [0022] - paragraph [0025]
paragraph [0033]

A US 2004/186906 Al (TORRANT MARC D [US] ET 1-20
AL) 23 September 2004 (2004-09-23)
abstract

claims 33-35

figure 5

paragraph [0045] - paragraph [0048]

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : i i . " .
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X* document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "v* document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

25 October 2013 04/11/2013

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, .
Fax: (+31-70) 340-3016 Bub » Armin

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/045915

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2003/014507 Al (BERTRAM RANDAL LEE [US]
ET AL) 16 January 2003 (2003-01-16)
abstract

figure 2

paragraph [0018] - paragraph [0019]

claim 1

EP 0 682 429 A2 (AT & T CORP [US])
15 November 1995 (1995-11-15)
abstract

claims 1,3-5,15

page 3, line 34 - line 53

page 6, line 38 - line 44

US 2004/158625 Al (NEALE TIMOTHY E [US])
12 August 2004 (2004-08-12)

abstract

paragraph [0048]

1-20

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/045915
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2002103886 Al 01-08-2002 NONE

US 2004186906 Al 23-09-2004 CN 1777869 A 24-05-2006
DE 112004000460 T5 17-07-2008
GB 2415814 A 04-01-2006
JP 4307448 B2 05-08-2009
JP 2006519424 A 24-08-2006
KR 20050122213 A 28-12-2005
TW 1242141 B 21-10-2005
US 2004186906 Al 23-09-2004
US 2008091769 Al 17-04-2008
US 2008098407 Al 24-04-2008
US 2013254399 Al 26-09-2013
WO 2004095269 A2 04-11-2004

US 2003014507 Al 16-01-2003 NONE

EP 0682429 A2 15-11-1995 CA 2145921 Al 11-11-1995
EP 0682429 A2 15-11-1995
JP HO7319793 A 08-12-1995
us 5561769 A 01-10-1996

US 2004158625 Al 12-08-2004 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - wo-search-report
	Page 111 - wo-search-report
	Page 112 - wo-search-report

