AN APPARATUS FOR ESCALADING

In the field of materials handling, e.g., in warehouses, there is a need for a low-cost shelving access system which does not require a user thereof to carry objects whilst negotiating, e.g., ladders and steps. The disclosure relates to an apparatus including a framework (11); a generally vertical ladder (12a, 12b) secured to the framework; and a goods hoist (20) secured to the framework in such a way that the platform (22a, 22b) of the goods hoist (20) may be manoeuvred to a plurality of locations adjacent the ladder (12a, 12b). The ladder (12a, 12b) is moveable laterally on the framework to enable the platform (22a, 22b) of the goods hoist to access any position within the envelope defined by the framework (11).
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GE</td>
<td>Georgia</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BR</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>CH</td>
<td>Switzerland</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>CM</td>
<td>Cameroon</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>CZ</td>
<td>Czech Republic</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>DE</td>
<td>Germany</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>DK</td>
<td>Denmark</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>ES</td>
<td>Spain</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>FI</td>
<td>Finland</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>GA</td>
<td>Gabon</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>GE</td>
<td>Georgia</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
<td>GN</td>
<td>Guinea</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
<td>HU</td>
<td>Hungary</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
An Apparatus for Escalading

This invention relates to an apparatus for escalading.

The basic design of the ladder has been known for many years. The ladder has proved over many centuries to be one of the most useful inventions ever devised.

However, the ladder does suffer numerous disadvantages. Most notably, these disadvantages are concerned with the safety of users of ladders. There have been innumerable incidents of ladder users falling off ladders and suffering severe injuries, or sometimes even death.

One of the main causes of accidents amongst ladder users is that many ladder users attempt to carry objects such as tools, building materials, decorating equipment, etc. up ladders by hand. Such practices frequently cause ladder users only to have at best one hand and one foot in contact with the ladder. It is therefore easy for the ladder to overbalance, or for the ladder user simply to miss his footing and fall off the ladder.

Legislation has recently been introduced throughout the EC requiring ladder users not to carry any objects when ascending or descending a ladder at a place of work. Clearly, there is a strong need for a new design of apparatus the use of which satisfies the legislative requirements.

According to a first aspect of the invention, there is provided an apparatus for escalading including an upwardly extending framework; a moveable hoist for an operator or an upwardly extending ladder secured in the framework; and a goods hoist including a load supporting means, the operator hoist or ladder being selectively moveable horizontally on the framework, and the goods hoist being selectively moveable vertically and horizontally on the framework.

An advantage of this apparatus is that the goods hoist may be lifted to a desired level on the apparatus for escalading, and a user of the apparatus may climb or be raised unhindered to that level before loading or unloading the goods hoist, in complete safety.
The arrangement of the invention has numerous additional advantages. Firstly, the optional inclusion of a ladder in the apparatus utilises conventional technology which is cheap and easy to manufacture.

Secondly, the securing of an operator hoist or ladder and a goods hoist in a framework means that the apparatus can be built as a discrete item, for easy attachment to a further structure.

Conveniently, the apparatus may include means for securing the framework to a further structure.

This arrangement allows the apparatus to be used, e.g., in conjunction with fixed warehouse shelving.

Preferred embodiments of the invention include means for securing the framework to a ceiling. This feature allows the apparatus to be secured in front of, e.g., unsafe or incomplete structures.

Conveniently, the height and/or the length of the framework are adjustable. These features improve the versatility of the apparatus.

In a particularly preferred embodiment, the goods hoist and the operator hoist or ladder are rigidly interconnected. It has been found to be particularly advantageous for the goods hoist to be moveable with the operator hoist or ladder on the framework.

The framework may preferably include a guide rail or track and the ladder may include means co-operating with the guide rail or track to permit lateral movement of the ladder on the framework. This arrangement has been found to be the most effective for providing lateral movement of the ladder on the framework.

Optionally, the framework may include a guide rail or track and the operator hoist includes means co-operating with the guide rail or track to permit lateral movement of the operator hoist on the framework.

Optionally, the goods hoist may include means for co-operating with the guide rail or track to permit lateral movement of the goods hoist on the framework. This feature is particularly advantageous in some embodiments wherein the goods hoist and the ladder are rigidly interconnected. (It is then desirable to ensure that lateral movements of the hoist and the ladder are coordinated one with the other.)
Optionally, the operator hoist may include an upwardly extending member; an operator platform loosely captive relative to the member; and means whereby the platform may be driven along the member.

In a particularly preferred embodiment, the hoist may include an upwardly extending member having a channel therein; a load platform constrained to move along the member with a part engaged in the channel; and drive means whereby the platform may be driven along the member.

In an alternative embodiment, the upwardly extending member includes a projection adapted to engage a part of the load platform.

In a particularly preferred embodiment, the apparatus comprises a pair of ladders or operator hoists secured on the framework. This allows the apparatus to be highly versatile.

In one optional form of the invention, the ladders or operator hoists are interconnected by e.g. the load supporting platform of a common goods hoist. This version of the invention is particularly suitable for use in warehousing where elongate objects are stored on shelves, since the load supporting means of the goods hoist may be sized adequately to raise and lower such elongate components.

Alternatively, there may be provided a separate goods hoist secured to each ladder or operator hoist.

Conveniently, the apparatus may include a harness secured to the or a ladder or operator hoist, whereby a user of the apparatus may be prevented from falling from the apparatus. Optionally, the goods hoist may be arranged to be inoperative unless the harness is fastened about a user of the apparatus.

These two features advantageously improve the safety of the device in use.

According to a second aspect of the invention, there is provided a framework for use in apparatus as aforesaid comprising a plurality of elongate members secured one to another such that, in use of the framework, at least one of the elongate members extends horizontally, said elongate member being adapted for the laterally moveable securing thereon of a ladder or an operator hoist; and/or a goods hoist.
According to a third aspect of the invention, there is provided a ladder for use in apparatus as aforesaid, wherein at least one of the uprights of the ladder includes a hook extending therefrom so as to permit suspending of the ladder on the framework by means of the hook.

According to a fourth aspect of the invention, there is provided an apparatus for escalading, comprising at least a first, generally upwardly extending frame member; an operator support means secured to the first frame member and moveable in a generally vertical direction; a load support means secured to the first or a frame member and selectively moveable in vertical and horizontal directions; a bracing member secured to the apparatus and extending outwardly therefrom; and floor-or ground-engaging means secured to the first or a frame member and the bracing member, respectively, the arrangement being such that when the apparatus stands with the floor- or ground-engaging means on a level surface, the mass of the apparatus and any loads supported thereon acts within a plane interconnecting the floor- or ground-engaging means regardless of the positions of the operator support means and the load support means.

An advantage of this arrangement is that the apparatus is inherently stable when used as a free standing item, without physical attachment to, e.g., a wall against which it stands. Thus, the apparatus of the invention may be used adjacent unstable structures such as partly constructed buildings, damaged buildings or buildings undergoing restoration; warehousing shelving which is not secured to a wall, floor or ceiling; and moveable structures such as gantries, cranes, ships, boats, sliding doors and numerous other articles.

Preferably, the apparatus comprises a plurality of generally upwardly extending frame members spaced one from another and interconnected by at least one further, horizontally extending frame member.

This allows the apparatus to be constructed as a rigid item which will easily support the weight of, e.g., a person and any tools or equipment carried on the load supporting means.

Conveniently, the apparatus comprises three generally upwardly extending, generally parallel frame members interconnected by respective
Conveniently, the apparatus comprises three generally upwardly extending, generally parallel frame members interconnected by respective further frame members and defining two or more generally upwardly extending, parallel planes, the operator support means being constrained to move generally vertically in one of the planes and the load supporting means to move selectively vertically and horizontally in the other plane.

This feature allows for an even distribution of loads on the apparatus, thereby improving its stability. Moreover, this feature ensures that any loads are carried on the apparatus in a convenient location a short distance from any person using the apparatus, whilst discouraging such a person from carrying objects in his hands.

Preferably, the first or a frame member and the load supporting means include mutually engaging means, e.g. a projection and channel of complementary profile, whereby the load support means is retained loosely captive on the first or said member and is moveable generally parallel thereto.

This feature allows a simple and economical construction of the apparatus.

In preferred embodiments, the operator support means comprises a generally horizontal, first platform adapted such that an operator may stand thereupon. Conveniently, the apparatus may include guarding disposed above the platform thereby to minimise the possibility of an operator falling from the platform. Particularly preferred embodiments include means, e.g. a harness, whereby an operator may be secured relative to the apparatus.

These features advantageously improve the safety of the device for users thereof.

Similarly, preferred embodiments of the invention include the load supporting means in the form of one or more generally horizontally extending, further platforms. Again, guarding may optionally be disposed above the further platform thereby to minimise the possibility of objects falling from the platform. These features also advantageously enhance the safety of the apparatus.
Preferably, the apparatus includes a plurality of bracing members. The bracing members may conveniently extend in different respective directions from the apparatus. In a preferred embodiment, the bracing members extend from opposite sides of the apparatus.

Conveniently the or a bracing member may be selectively moveable relative to the apparatus. Preferably, the or a bracing member is pivotable. Additionally or alternatively, the or a bracing member may be secured at a plurality of locations on the apparatus. Conveniently, the or each bracing member comprises a rigid member rigidly secured at the base of the first or a frame member and extending generally perpendicular thereto; and the apparatus includes a strut rigidly interconnecting the bracing member and said frame member.

These features allow the or a bracing member to extend rigidly in a direction perpendicular to the upwardly extending frame member or members. Thus, the apparatus is stabilised in orthogonal directions when standing on a level surface. This results in an inherently safe structure.

In preferred embodiments, the floor- or ground-engaging means includes a plurality of respective support feet or anchor members secured to the first or a frame member or to the bracing member. In particularly preferred embodiments, both the bracing member and the or a frame member have the feet or anchor members referred to. Conveniently, the support feet are adjustable thereby to adjust the height of and/or to level the apparatus. The support feet may include one or more additional outriggers if desired.

Additionally or alternatively, the floor- or ground-engaging means may include at least one wheel whereby the apparatus may be wheeled from place to place.

One embodiment of the invention includes secured rotatably to the apparatus support means, eg. a roller, adapted to receive thereon a roll or coil of flexible material, whereby said flexible material may be stored on and dispensed from the apparatus. The apparatus may also include a receptacle for a liquid, e.g. water or an adhesive, securable thereto.
This feature is of particular utility in versions of the apparatus intended for use in decorating, because rolls of wallpaper may be installed on the apparatus and dispensed readily therefrom, without the need for a decorator to carry the rolls of wallpaper by hand.

Conveniently, the roller is disposed to present a roll or coil of flexible material on the exterior of the apparatus. Thus, the apparatus may conveniently be placed adjacent a wall to be decorated, and a roll of wallpaper can be offered up to the wall for adhering thereto.

The roller may conveniently be moveable vertically on the apparatus. Thus, once the upper end of a roll of wallpaper is secured to a wall, the remainder of the strip of wallpaper needed to cover the wall may readily be dispensed by permitting the roller to move downwardly on the apparatus, simultaneously allowing the wallpaper to unroll from the roll thereof. The wallpaper is then automatically positioned correctly, flat against the wall by virtue of the motion of the roller. In some embodiments, the roller may be moveable horizontally on the apparatus.

Conveniently, the load support means and the roller are interconnected to permit simultaneous movement thereof. This feature is particularly advantageous if, for example, a tray of wallpaper adhesive is carried on the load support means. It would then be a straightforward matter for a decorator to apply adhesive either to the wallpaper or the wall ahead of the advancing roller, thereby leading to the ready, secure fixing of wallpaper on a wall.

Preferred embodiments of the invention include a presser or gripper member disposed on the exterior of the apparatus thereby to trap flexible material dispensed from the apparatus between the presser member or gripper and an object or surface adjacent the apparatus. The presser member or gripper is of particular use in trapping the upper end of a length of wallpaper against a wall at the upper end of the apparatus, thereby obviating the need for accurate adherence of the upper end of the length of wallpaper by means of adhesive at the outset of a wallpapering operation. The gripper may be in the form of, e.g. a pair of adjustable, gripping jaws.
Conveniently, the presser member comprises a generally horizontal, padded bar secured on the exterior of the apparatus and protruding therefrom. This arrangement advantageously prevents the presser member or gripper from damaging wallpaper trapped between it and e.g. a wall.

When a gripper means is provided, such means may comprise a pair of jaws secured on the apparatus, the jaws being selectively closeable about a piece of material thereby to secure said material relative to the apparatus. The presser member or the gripper means may optionally be moveable on the apparatus.

Preferred embodiments of the invention may also include the feature that the operator support means and the load support means are secured one to another, thereby to cause simultaneous movement thereof.

Movement of the various moveable components of the invention may be achieved in various ways. For example, manual actuators such as chain drive mechanisms and rotatable handles may be employed; alternatively, pneumatic, hydraulic, spring, gravity or electric motors may be employed.

There now follows a description of preferred embodiments of the invention, by way of example, with reference being made to the accompanying drawings in which:

Figure 1 is a perspective view of one form of apparatus in accordance with the invention;

Figure 2 is a schematic, perspective view of part of the framework shown in Figure 1;

Figure 3 is an enlarged, perspective view of one of the goods hoists of the apparatus of Figure 1;

Figure 4 is a perspective view of a simple form of apparatus in accordance with the fourth aspect of the invention;

Figure 5 is a perspective view of an embodiment of the invention specifically adapted for use in decorating operations;

Figure 6 is a perspective view of a variant of the embodiment of Figure 4;

Figure 7 is a perspective view of a variant of the embodiment of Figure 5; and
Figure 8 is a further variant on the embodiment of Figure 4, in which the operator support and load platform are more readily moveable laterally on the apparatus.

Referring to the drawings, there is shown an apparatus 10 for escalading, the apparatus including a pair of goods hoists 20.

The apparatus 10 includes a rectangular framework 11. Framework 11 consists of a series of square or rectangular section members secured to one another in a rectangle. As best shown in Figure 2, the height of the rectangle is adjustable by means of the members 11a (which constitute the upright ends of the rectangle) being adjustable in length. This is achieved by virtue of the members 11a being constituted by pairs of members, one of which is hollow, of differing cross sectional dimensions. The smaller of the two members 11a at each end of the framework 11 is adapted to slide into the larger of the two members in the manner of a telescope. Means may be provided for locking the members 11a to give rise to a desired overall height of the framework.
The members 11b interconnecting the upright members 11a may be adjusted by means of similar mechanisms, whereby the length of the framework 11 may also be adjusted.

In an alternative embodiment (not shown), the feature permitting adjustment of the size of the framework may be dispensed with. Such an embodiment could be manufactured as a bespoke item, according to the requirement of a user thereof.

A pair of ladders 12a, 12b is secured on the framework 11. The ladders 12a, 12b are of conventional design, except that the upper ends 13 of the respective ladder uprights are formed into hook-like projections. The projections 13 hook over the top edge of the upper member 11b. The undersides of the hook-like projections 13 are shaped to be complementary to the upper surface of upper member 11b, whereby the ladders 12a, 12b are retained captive on the framework 11 when the framework 11 is placed in an upright position as shown.

Suitable bearings (such as roller bearings or needle bearings) are in the embodiments shown secured interposed between the undersides of the hook-like projections 13 and the upper surface of upper member 11b. Thus, the ladders 12a, 12b are readily slidable from side to side along the framework upper member 11b. Alternatively or additionally, the bearings may be secured in the upper surface of the member 11b.

The lower ends 14 of the ladder uprights are shaped similarly to the upper ends 13, and hook under the lower surface of the lower member 11b. Bearings (again such as roller or needle bearings) may be secured interposed between the upper surfaces of the hook-like projections 14 and the lower surface of the lower member 11b, whereby the ladders 12a, 12b are retained captive on the framework 11. It will thus be appreciated that the ladders 12a, 12b may freely be moved from side to side on the framework 11. The securing of the ladders 12a, 12b at both the top and bottom ends thereof ensures the ladders are secure and stable on the framework 11.

The ladders 12a, 12b may be removed from the framework simply by sliding them off one or other end thereof. However, if desired, stops may be added e.g. in the form of upwardly and downwardly projecting
extensions of the side members 11a, to prevent the ladders from running off the ends of the framework 11. Such stops may be removable.

Further uprights 21a, 21b are respectively secured in an analogous manner to extend on the framework between the upper and lower members 11b parallel to the uprights of the ladders 12a, 12b and spaced a short distance laterally therefrom.

The further uprights 21a, 21b include guide channels for respective hoist platforms 22a, 22b. The uprights 21a, 21b are in the embodiment shown constrained to move laterally with the respective ladders 12a, 12b with which they are associated. This is achieved by means of respective, rigid interconnections between the respective ladders 12a, 12b and the associated uprights 21a, 21b.

In an alternative embodiment, one or more of the rigid interconnections between the ladders 12a, 12b and the respective uprights 21a, 21b may be dispensed with. This would allow one or both the uprights 21a, 21b and hence the hoist platforms 22a, 22b, to be laterally moveable on the framework 11 independently of the associated ladder 12a, 12b. Thus, one or more of the ladders would be useable in a more conventional manner if desired, without the need to manoeuvre a hoist with the ladder.

Each member 21a, 21b in the embodiment shown includes a channel into which a projecting portion of the respective hoist platform 22a, 22b is engaged, for guidance purposes.

As best shown in Figure 3, the respective uprights 15a, 15b of each ladder 12a, 12b adjacent the corresponding upright 21a, 21b include a channel 16 extending along the length thereof.

An edge 23 of each respective platform 22a, 22b is constrained to move adjacent the associated channel 16, by virtue of a projection on the respective platforms 22a, 22b engaging into the channel 16. Drive means such as chains or belts for the hoist platforms 22a, 22b are disposed within the respective channels 16 in operative engagement with the projections on the respective platforms 22a, 22b. It will thus be appreciated that actuation of one of the drive means either upwardly or
downwardly causes upward or downward movement of the hoist platform 22a, 22b connected thereto.

A motor means (not shown) may be provided, whereby the drive means may be actuated automatically. A suitable control switch may also be provided for the motor means.

It will thus be seen that the two hoist platforms 22a, 22b may between them be moved to any position within the rectangular envelope defined by the framework 11. This is achieved by sliding one or other of the ladder plus hoist assemblies as appropriate along the framework as described hereinabove, and selective raising or lowering of the desired platform 22a, 22b until it rests at a suitable height.

As shown in Figure 1, the apparatus is secured by means of suitable fixings (such as bolts, rivets, etc.) to a shelving rack 25. This method of fixing is suitable when the apparatus is to be used in conjunction with a firmly secured structure, such as wall-secured shelving. The shelving provides a firm mounting for the apparatus.

However, it may be desired to use the apparatus in conjunction with, e.g., unstable shelving or perhaps an incomplete structure. Under such circumstances, the framework 11 may be equipped with jacking feet (not shown) whereby the framework 11 and hence the apparatus as a whole is a freestanding item. Embodiments of this kind are shown in Figures 4 to 8 of the drawings. Additionally, suitable fixing means may be secured to the framework 11 whereby the apparatus may be secured to, e.g., a ceiling or overhead beam; or an adjacent wall. Such means may be in the form of, e.g., angle brackets extending upwardly of the upper member 11b.

The apparatus shown may optionally include a pair of harnesses secured respectively to ladders 12a, 12b. The harnesses would be slidable up and down the respective ladders, and would be suitable for wearing by a user of the apparatus. The purpose of the harnesses would be to prevent users from falling off the apparatus.

It is contemplated that the harnesses would include electrical and/or mechanical interlock means, whereby the hoist platforms 22a, 22b
would be rendered immobile unless the harnesses are secured about the users of the apparatus.

In an alternative arrangement, a single harness may be provided, the harness being detachable from one of the ladders 12a, 12b and re-attachable to the other ladder 12a, 12b as desired.

Yet a further variant of the invention comprises a pair of ladders such as 12a, 12b having upright members 15a, 15b as shown in Figure 1. However, the pair of platforms 22a, 22b and the corresponding guide uprights 21a, 21b would be dispensed with. Instead, a single hoist platform may be provided interconnecting the uprights 15a, 15b in a vertically slidable manner. This arrangement is particularly suitable when the apparatus is intended for carrying elongate objects such as vehicle exhaust pipes. Obviously, in this embodiment the two ladders 12a, 12b would be simultaneously laterally moveable.

The embodiment shown in Figures 1 to 3 includes guarding 26 extending around three of the four sides of each rectangular platform 22a, 22b. The guarding 26 is open along one edge 23 of each platform for ease of loading of the respective platforms.

The ladder and hoist assemblies are moveable laterally by means of manual propulsion. However, the lateral motion of the assemblies could be motorised if desired. Suitable control means such as switch gear and a power supply could be incorporated.

There may be provided more than the two hoist and ladder assemblies shown in the drawings, especially if the framework 11 is constructed having a long length. For example, many warehouse shelf units are more than 15 metres long. It would be impractical in some cases to attempt to provide rapid access of a hoist and ladder assemblies to all parts of the frontage of such a shelf unit if only two hoist and ladder assemblies are provided.

In embodiments in which ladders and hoists are laterally moveable independently of one another, a disparate number of ladders and hoists may be provided if desired.

In use of the apparatus, an operator would initially position one of the hoist platforms at an appropriate position for loading or
unloading, by sliding one or other of the ladder and hoist assemblies laterally and actuating the drive means for the hoist in question until the platform is at a desired lateral and vertical position. The position of the platform could if necessary be locked by means of an interlock effective on the drive means. The operator would then climb the ladder adjacent the positioned hoist, having first secured himself into the harness if this is a requirement in the installation concerned. Once the operator reaches the height of the platform it is an easy matter for him to load goods from, e.g., a shelf disposed adjacent the platform onto the platform itself.

The operator would then return to floor level or the level of another shelf and operate the hoist to bring the platform to a desired level for unloading. The hoist and ladder assembly could be moved laterally to position the platform as desired.

Clearly, the sequence of operations required to load items from floor level onto shelving would generally be a reverse of the above described procedure.

The apparatus provides a low-cost solution to a common problem in warehouse storage installations. The apparatus is cheaper to fabricate and maintain than, for example, a stacker truck, and moreover may readily be used e.g. in relation to mezzanine level shelving and in conjunction with shelving units spaced apart only by narrow aisles. Such places are generally inaccessible to stacker trucks.

The embodiment described is adjustable in height and length. In such an embodiment, adjustable length ladders 12a, 12b and upright members 21a, 21b may be employed. Alternatively, a range of sizes of ladders and upright members may be available, and the framework 11 adjusted to a height to suit the ladders and uprights chosen.

Many variants on the arrangements described herein may be devised in accordance with the invention. For example, the ladders of the preferred embodiment may be replaced by alternative means such as a flight of steps. Optionally the ladders may be replaced by e.g. further hoists adapted to raise and lower users of the apparatus in safety. One form of such a hoist may be a kind of escalator comprising one or more
horizontal rungs constrained and driveable to move vertically in a pair of guide channels formed in a corresponding pair of upright members laterally moveably secured on the framework. A suitable safety harness may be provided in conjunction with the rung(s) to ensure that a user stepping onto the rung(s) does not run the risk of falling off the apparatus during movement of the rung(s).

When the apparatus includes an operator hoist, such a hoist may, for example, be configured similarly to the hoist shown in Figure 3 of the drawings, i.e. a hoist platform vertically moveable on an upwardly extending guide channel itself moveable from side to side on the framework.

A suitable method for the construction of the apparatus is by fabrication (e.g. by welding, riveting and screwing) from e.g., mild steel. However, various other materials could be used. For example, lightweight alloy metals could be used in certain installations. There may also be a requirement to minimise the risk of explosion in certain environments. The apparatus could then be manufactured from or coated with a material which is unlikely to cause sparking. When the apparatus is to be used in areas of high flammability, and in certain other applications, the drive to the hoist platforms is preferably either manual or hydraulic. The use of such drives is not precluded in non-flammable applications.

Referring to Figure 4, there is shown an apparatus indicated generally by the reference numeral 10 in accordance with the invention, including three upwardly extending frame members 11a, 11b, 11c. The frame members 11a, 11b, 11c extend generally vertically in use of the apparatus, and are generally parallel one to another. The frame members 11a, 11b, 11c are equi-spaced and interconnected at their upper and lower ends by horizontal frame members 12a and 12b.

Thus, the frame members 11 and 12 between them define a generally upwardly extending rectangular framework, which is divided into two parallel, generally upwardly extending rectangular planes or regions 13a, 13b which are adjacent one another.
Extending rearwardly of the apparatus when aligned as shown in Figure 4 are respective bracing members 14a, 14b. The bracing members 14a, 14b are rigidly secured respectively at the lowermost ends of the outermost, upwardly extending frame members 11a, 11c. Respective struts 16a, 16b extend between the approximate mid points of the upwardly extending members 11a, 11c and positions generally adjacent the free ends of the corresponding bracing members 14a, 14b to ensure that the fixing of the bracing members 14a, 14b relative to the upwardly extending frame members 11a, 11c is rigid. For example, the fixing can be achieved by means of bolts, snap lock connections and/or welds.

Additionally, cross-bracing members 17 rigidly interconnect the opposite corners of the rectangular base portion of the apparatus defined by the bracing members 14a, 14b and the lower horizontal member 12b. Thus, the framework of the apparatus is simple yet rigid.

The edges of the frame members 11b, 11c which face into the rectangular plane 13b are provided with channels. The channels are not visible in the figures, but may be of a design similar to those shown in Figure 3. The channels are adapted slindingly to receive complementary projections formed on the corners of an operator support platform 18 adjacent the channels. The operator support platform 18 is a horizontal planar member, and it is retained loosely captive in the channels in the members 11b, 11c. Therefore, the operator support platform 18 is constrained to move in a generally vertical direction.

Means (not shown) may be provided whereby the support platform 18 may be raised and lowered. For example, chain drives may incorporated in one or more of the channels in driving engagement with the platform 18. The chains of the chain drives could be operated manually (for example if a gear wheel having a handle is provided), or by means of a suitable motor.

Alternatively, a gravity counterbalance mechanism could be employed, wherein the platform 18 is supported on cables running. e.g., within the channels and a counterbalance weight may be provided elsewhere on the apparatus in the manner of an elevator.
A further possibility of the employment of, e.g., a spring drive to drive the platform 18 upwardly and/or downwardly within the rectangular plane 13b as desired.

It is also desirable to ensure that the platform 18 remains horizontal during its travel. This may be achieved, for example, by the use of drive members (such as springs, cables or chains) which are functionally linked for simultaneous, identical movement. This can be achieved, for example, by passing the chains or cables over a common gear wheel or pulley, or over pulleys or gear wheels the motions of which are synchronised.

In the embodiment shown, the platform 18 is braced on its lower edges by respective fillets 19 which define downwardly extending edges of the rearmost corners of the platform. Other forms of stiffening and strengthening mechanisms may be employed instead.

The platform 18 is shown protruding forwardly of the apparatus. However, the arrangement is such that even in such an embodiment the centre of mass of an operator 20 acts within the "footprint" of the apparatus defined by the members 14a, 14b and 12b. Thus, the apparatus is inherently stable in use. Further stability can be provided in embodiments in which the operator platform 18 extends rearwardly, within the "footprint" referred to.

A load platform 22 of similar construction to the operator platform 18 is moveable vertically and horizontally in the rectangular plane 13a adjacent the plane 13b. The means whereby the platform 22 may be supported and driven vertically are similar to those described in relation to the operator platform 18. In the embodiment of Figure 4, the load platform 22 differs from the operator platform 18 in that a guard rail 23 is provided extending about a plane disposed a short distance above the upper surface of the platform 22. The guard rail 23 prevents objects placed on the platform 22 from falling off. Instead of a guard rail, the platform 22 may be provided with e.g. one or more lips or side walls (which may optionally take the form of a closeable box), to achieve the same purpose.
Horizontal movement of the load platform 22 broadly within plane 13a may be achieved e.g. by virtue of the platform being loosely captive in the fillets 22a that engage the upwardly extending members 11a and 11b. For example, the fillets may each include upstanding projections that engage a slot of complementary profile and formed in the base of platform 22.

When one or other of the platforms 18, 22 is driven by a motor means, it is desirable for the motor controls to be accessible to the operator 20 while he is standing on the platform 18. Therefore, some embodiments of the invention may include, e.g., push button controls connected to the motor controlled circuitry by means of appropriate cables. The push button unit may be secured either temporarily or permanently on one of the frame members of the apparatus at an appropriate height, by means of e.g., suitable hanging hooks; or the push button unit may be intended to be hand held by the operator 20 during use of the apparatus.

The two platforms 18, 22 may be linked together such that their movement is synchronised, or simultaneous. Indeed, the two load platforms 18, 22 may be rigidly linked together so that only a single drive means is required to drive both platforms. In such a case, it is likely that the load platform 22 would be secured at a height above that of the platform 18 to facilitate access by the operator 20 to the objects carried on the platform 22. In such an embodiment, lateral movement of the operator platform may be necessary. This may be achieved e.g. by the means disclosed above in relation to platform 22.

The embodiment of Figure 4 is supported on floor or ground engaging wheels or castors 24. Thus, the apparatus may readily be wheeled into position for use and wheeled away again after use. The castors 24 may desirably be fitted with brakes to lock the apparatus in position during use.

Similarly, locking means, such as locking pins insertable into the frame members or brakes operable on the drive means for the platforms, are desirably provided to secure the platforms 18 and 22 in position during use of the apparatus.
Referring now to Figure 5, there is shown a further embodiment of the apparatus which additionally includes various features to enable the specific use of the apparatus for the hanging of wallpaper and carrying out decorating operations. The embodiment of Figure 5 is broadly similar to that of Figure 4, and therefore components of the embodiment of Figure 5 corresponding the components of the Figure 4 embodiment will be defined herein using identical reference numerals.

The embodiment of Figure 5 includes four generally upwardly extending frame members 11a, 11b, 11c and 11d. The frame members 11 are generally parallel one to another and equi-spaced, thereby to define three rectangular planes 13a, 13b and 13c.

The operator platform 18 is constrained to move in the central plane 13c, in the manner described in relation to the Figure 4 embodiment. Platform 18 of the Figure 5 embodiment additionally includes a guard rail 25 which in the embodiment shown is open towards the left hand edge of the platform 18. The guard rail 25 extends about a zone which would correspond to the waist height of a typical operator of the apparatus, thereby improving the safety of the apparatus for operators. The open side of the guarding 25 is intended to allow ready access to the platform 18 by operators. For this reason, the platform 18 is moveable in the central plane 13c, so that there is space adjacent the plane 13a for an operator safely to step onto and off the platform 18.

In the embodiment of Figure 5, the load support platform 22 is rigidly secured to the operator platform 18, e.g., by welding at the top of the guard rail 25 and by means of additional struts 27 which extend downwardly from the underside of the load support platform 22 towards the downwardly extending members 25a disposed on the right hand side of the guard rail 25.

The load support platform 22 and the struts can if desired be constructed so that the load platform 22 hinges or folds to adopt a parking position, e.g. vertically aligned adjacent the members 25a, when not in use. Suitable hinges, joints and fastening means may be provided for this purpose.
In the embodiment of Figure 5, an optional feature is the positioning of the push button controls of a motor adapted to drive the platforms 18 and 22 at the location indicated by the reference numeral 28.

A pair 29a, 29b of support members extends forwardly of the apparatus from the region above the platform 18, in the region 13c. The members 29a, 29b are constrained in the channels of the frame members 11b, 11d to move vertically on the apparatus in a manner similar to the platform 18. Gripped rotatably between the members 29a, 29b may be a roll of wallpaper 30. The wallpaper roll 30 may optionally be supported on a roller rotatably secured between the support members 29a, 29b; alternatively, the support members 29a, 29b may simply include further members e.g. spigots at the free ends thereof at right angles to the support members 29a, 29b which further members protrude into the open ends of the wallpaper roll 30, thereby rotatably to support it. Another possibility is to provide a single support member such as member 29a having secured to its free end a horizontal bar on which e.g. a wallpaper roll may be hung.

The arrangement may be such that movement of the support members 29a, 29b is independent of the movement of the platform 18; alternatively, the movement of the support members 29a and 29b may be arranged by means of suitable support means to be synchronous with the platforms 18 and 22 in the embodiments shown. Of course, in order to maintain the wallpaper roll 30 horizontal, it is essential in this embodiment that the movements of the respective support members 29a and 29b are synchronised one with another.

Extending forwardly of the apparatus at the uppermost edge thereof is a pair 31a, 31b of arms which are interconnected at their free ends by a padded, horizontal presser or gripper member 33.

It will be appreciated that in use of the apparatus during the hanging of wallpaper, it would be a simple matter for an operator of the apparatus to unroll a length of wallpaper above the roll 30 thereof and trap it between the presser bar 33 and a wall to which the wallpaper is to be adhered. Assuming that the wall and/or the wallpaper had
previously been pasted with a suitable adhesive wallpaper paste, the roll 30 could then be moved downwardly on the support members 29a, 29b in channels formed in the members 11b and 11d, thereby to unroll further wallpaper which would then adhere smoothly to the wall in a straight line.

The embodiment of Figure 5 includes a number of additional features which particularly suit it for use in decorating operations.

In particular, the embodiment includes hooks 34 attached to the support platform 22, whereby, e.g., paint brushes and paint rollers may be hung up in such a position as to avoid damaging a newly decorated wall adjacent the apparatus.

Furthermore, the members 14a, 14b, 16a and 16b are secured to the upwardly extending frame members 11a and 11c by means of suitable hinges 35 secured at the attachment points. Thus, the pair of wings defined respectively by the members 14a and 16a and 14b and 16b may be folded inwardly to reduce the overall size of the apparatus during carrying thereof.

Figure 5 shows a power cable 36 whereby power may be delivered to the apparatus to power the platforms when the apparatus is designed to be powered by an electric motor. The power cable 36 may optionally be connected to mains power (via a transformer if necessary) or to a battery pack.

The apparatus is typically manufactured from extruded aluminium sections, which may be secured together, e.g. by welding. Various other materials may also be employed. For example, the apparatus may be manufactured from any of a number of steels or other metals, from plastics materials or even from timber. Moreover, any of the materials employed may be coated with, e.g., a plastics or rubberised finish for safety and durability. The platforms 18, 22 may be coated with non-slip materials for added safety.

The embodiment of Figure 5 employs adjustable feet 37 to support the bracing members 14a, 14b and, if desired, the lowermost extremities of the upright members 11. The feet 37 are adjustable, to level the apparatus and to adjust its overall height. Instead of or in addition
to feet the apparatus may include e.g. anchor means such as adjustable knives which are adapted to engage the ground when the apparatus is used outdoors.

The arms 31a, 31b protrude forwardly of the apparatus further than the support members 29a, 29b. Thus, there is adequate space for the mounting of a full roll of wallpaper 30 on the apparatus without it fouling a wall against which the presser member 33 is pressing a length of wallpaper. Moreover, the positioning of the roll 30 closer to the apparatus than the free end thereof causes the wallpaper to adopt a parabolic curve which may easily be smoothed onto a wall to provide a good decorating result.

Referring now to Figure 6, there is shown a further embodiment of the invention, which is a variant on the embodiment of Figure 4. In Figure 6 there are provided four bracing members 14 extending perpendicular to the lower ends of the frame members 11. A pair of bracing members extend respectively from each member 11. Struts 16 extend between the bracing members 14 and the members 11. The members of the pairs of bracing members extend on opposite sides of the apparatus, to create a stable base for the apparatus regardless of the direction in which forces may be applied to the frame members. Thus, the embodiment of Figure 6 may be used e.g. in the middle of a room, for instance to allow the changing of light bulbs or ceiling tiles.

The embodiment of Figure 6 may be regarded as a version of the Figure 4 embodiment to which an additional set of bracing members 14 and struts 16 has been secured, to enlarge the base area of the apparatus and spread the feet and/or wheels of the apparatus for greater stability. The additional members 14 and the struts 16 may be attached by e.g. welding, to create a permanently enlarged base.

Alternatively, the additional members may be attached by releasable means such as bolts or spring clips.

Yet a further possibility is to allow the members 14 and struts 16 to be lockably moveable on the apparatus. For example the attachment of the proximal ends of the members 14 and struts 16 may be achieved by engagement of the projections on the members in complementary slots or
tracks in the upwardly extending members 11. This would allow movement of the members forming the base of the apparatus in the directions shown by the arrows A, A'. The members forming the base can be moveable over a substantial portion of the length of the members 11 if desired. Thus, the apparatus may be safely used in places where the floor height changes abruptly, such as on stairs or in swimming pools.

As an alternative or in addition to the foregoing arrangements, the connection between the bracing members 14 and the members 11 may be pivotable to allow rotation of the members 14 in the directions shown by the arrows B. If this arrangement is adopted, further, pivotable connections must be provided at the ends of the struts 16. The changes in the lengths of the struts 16 can be accommodated by ensuring that the struts 16 are telescopically collapsible, or by allowing the upper end of each strut to slide relative to the relevant member 11 as indicated by the arrows A'. Thus, the apparatus may safely be used on, e.g. sloping or uneven ground.

Suitable joint and/or locking means for the various members may be provided in conjunction one with another.

The Figure 6 embodiment also shows a further optional feature, in the form of safety guarding 40 disposed on the forward edge of the operator support platform. The guarding may extend to a predetermined height above the platform, e.g. to waist height as shown, or to the full height of an operator. The purposes of the guarding are to prevent an operator from falling from the apparatus, and also to minimise the risk of an operator trapping e.g. a hand or a foot when travelling on the platform.

The guarding 40 may be moveable relative to the platform, to allow the operator access to a workpiece. The guarding can be arranged to be slidable upwardly, downwardly or sideways relative to the platform for this purpose. Alternatively, the guarding 40 can be manufactured as a flexible item so that it may be retracted by rolling it onto a roller (not shown). A suitable interlock means can optionally be provided to prevent the guarding from moving relative to the operator platform 18 while the platform 18 is moving. Further guarding similar to guarding
40 may additionally or alternatively be provided adjacent the rear edge of platform 18 if desired.

Referring now to Figure 7, there is shown a version of the Figure 5 embodiment, to which the additional bracing members and struts shown in Figure 6 have been secured. An additional, optional feature of the Figure 7 embodiment is a trough 41 which is releasably securable by means of, e.g., hooks or spring clips on the apparatus. The trough 41 may conveniently be sited a short distance below the roll 30 of wallpaper, and may contain water or wallpaper adhesive to facilitate the hanging of wallpaper.

While the embodiments show the rectangular planes 13a, 13b and (where present) 13c as being co-planar one with another, it will be appreciated that this need not be so and the planes 13 may be angled one relative to another. Alternatively, the planes 13 may be parallel but not co-planar.

In its simple form, the apparatus may be manufactured lacking the load support means 22 if desired. If this version of the apparatus is manufactured, it is possible to devise a version having only a single rectangular plane 13, in which the operator platform 18 is constrained to move vertically and horizontally.

The embodiment of Figure 8 is similar to that of Figures 4 to 7 except that a greater degree of lateral movement of the operator and load supporting components is possible, by means of an arrangement like that shown eg. in Figure 1. In the Figure 8 embodiment, the operator support is in the form of a ladder, but may equally well be a hoist-like platform or a ladder vertically moveable on the framework. Such means are also, optionally, horizontally moveable thereon.

The apparatus of any of the embodiments disclosed herein may be constructed as a permanently erected item; as a potentially dismantlable or foldable item or as a kit of parts and/or members which may be assembled to form the apparatus. Suitable joints and/or fixings may be incorporated to facilitate dismantling and reassembly.
Furthermore, any of the optional features of one of the embodiments described herein may equally readily be applied to any other embodiment if desired.

It will be appreciated that the apparatus of the invention can be manufactured as an extremely versatile item, which is suitable for use, e.g., by professional builders, carpenters, electricians, engineers, decorators, DIY enthusiasts and numerous other operators who would otherwise be required to carry objects by hand up a ladder to gain access to their work.

Moreover, it is possible to arrange several examples of embodiments of the invention to work in conjunction with one another. For example, several examples of the embodiments of Figures 1, 4 or 8 may be placed with their ends abutting or adjacent but spaced from one another, to form parallelogram-shaped structures that may be used to surround e.g. buildings, construction sites and shelving units. If the ends of the apparatuses are in abutting relationships, it would be desirable to provide releasable locking means such as quick release bolts for securing the apparatuses together as a rigid structure.

Alternatively or additionally examples of the apparatus may be secured one above another to permit access to tall structures.

When plural examples of the apparatus are secured adjacent one another, it may be advantageous to provide adapter members whereby the laterally and vertically extending members (on which the various components are moveable) may be appropriately interconnected, thereby to allow e.g. access of a load or operator platform to all points of a structure constituted by or including the apparatus.

Structures in which examples of the apparatus are secured one above another may be adapted to receive the load or operator platforms in a removeable manner, so that such platforms may selectively be fed into the structure at the bottom for subsequent movement elsewhere on the apparatus.
CLAIMS

1. An apparatus for escalading comprising
 an upwardly extending framework;
 a moveable hoist for an operator or an upwardly extending ladder
 secured in the framework; and
 a goods hoist including load supporting means, the operator hoist
 or ladder being selectively moveable horizontally on the framework, and
 the goods hoist being selectively moveable vertically and horizontally
 on the framework.

2. An apparatus according to Claim 1 including means for securing the
 framework to a further structure.

3. An apparatus according to Claim 1 or Claim 2 including means for
 securing the framework to a ceiling.

4. An apparatus according to any of Claims 1 to 3 including means
 whereby the height of the framework is adjustable.

5. An apparatus according to any of preceding claim including means
 whereby the length of the framework is adjustable.

6. An apparatus according to any preceding claim wherein the hoist and
 the ladder or operator hoist are rigidly interconnected.

7. An apparatus according to any preceding claim wherein the framework
 includes a guide rail or track and the ladder includes means co-operating
 with the guide rail or track to permit lateral movement of the ladder on
 the framework.

8. An apparatus according to any of Claims 1 to 6 wherein the
 framework includes a guide rail or track and the operator hoist includes
means co-operating with the guide rail or track to permit lateral movement of the operator hoist on the framework.

9. An apparatus according to any preceding claim wherein the framework includes a guide rail or track and the hoist includes means co-operating with the guide rail or track to permit lateral movement of the hoist on the framework.

10. An apparatus according to any preceding claim wherein the operator hoist includes an upwardly extending member; an operator platform loosely captive relative to the member; and means whereby the platform may be driven along the member.

11. An apparatus according to any preceding claim wherein the goods hoist includes an upwardly extending member having a channel formed therein; a load platform constrained to move along the member with a part engaged in the channel; and drive means whereby the platform may be driven along the member.

12. An apparatus according to Claim 11 modified in that the upwardly extending member includes a projection instead of or in addition to the channel and the load platform includes means adapted to receive the projection.

13. An apparatus according to any preceding claim comprising a pair of ladders or operator hoists secured on the framework.

14. An apparatus according to Claim 13 wherein the ladders or operator hoists are interconnected by a common goods hoist.

15. An apparatus according to Claim 13 including a separate goods hoist secured to each ladder or operator hoist.
16. Apparatus according to any preceding claim wherein the or a ladder or operator hoist secured on the framework is moveable independently of any goods hoist secured on the framework.

17. An apparatus according to any preceding claim including a harness secured to the or a ladder or operator hoist, whereby a user of the apparatus may be prevented from falling from the apparatus.

18. An apparatus according to Claim 17 including means whereby the goods hoist is inoperative unless the harness is fastened about a user of the apparatus.

19. A framework for use in apparatus according to any preceding claim, the framework comprising a plurality of elongate members secured one to another such that, in use of the framework, at least one of the elongate members extends horizontally, said elongate member being adapted for the laterally moveable securing thereon of a ladder or operator hoist and/or a goods hoist.

20. A framework according to Claim 19 including means whereby the length and/or the height of the framework is/are adjustable.

21. A ladder for use in apparatus according to any of Claims 1 to 18, wherein at least one of the uprights of the ladder includes a hook extending therefrom so as to permit suspending of the ladder on the framework by means of the hook.

22. A ladder according to Claim 21 wherein the hook includes a bearing means disposed to support the hook, and hence the ladder, on the framework.

23. A ladder according to Claim 21 or Claim 22 including a hoist secured thereto.
24. An apparatus for escalading, comprising
 at least a first, generally upwardly extending frame member;
 an operator support means secured to the first frame member and
 moveable in a generally vertical direction;
 a load support means secured to the first or a frame member and
 moveable in a vertical and horizontal directions;
 a bracing member secured to the apparatus and extending outwardly
 therefrom; and
 floor-or ground-engaging means secured to the first or a frame
 member and the bracing member respectively, the arrangement being such
 that, when the apparatus stands with the floor- or ground engaging means
 on a level surface, the mass of the apparatus and any loads supported
 thereon acts within a plane interconnecting the floor- or ground-engaging
 means regardless of the positions of the operator support means and the
 load support means.

25. An apparatus according to Claim 24, comprising a plurality of
 generally upwardly extending frame members spaced one from another and
 interconnected by at least one further, horizontally extending frame
 member.

26. An apparatus according to Claim 25, comprising three generally
 upwardly extending, generally parallel frame members interconnected by
 respective further frame members and defining two or more generally
 upwardly extending, parallel planes, the operator support means being
 constrained to move generally vertically in one of the planes and the
 load support means being constrained to move selectively generally
 vertically and horizontally in the other plane.

27. An apparatus according to any of Claims 24 to 26 wherein the first
 frame member and the operator support means include mutually engaging
 means, e.g., a projection and a channel of complementary profile, whereby
 the operator support means is retained loosely captive on the first
 member and is moveable generally parallel thereto.
28. An apparatus according to any of Claims 24 to 27, wherein the first frame member and the load support means include mutually engaging means, e.g. a projection and a channel of complementary profile, whereby the load support means is retained loosely captive on the first or said member and is constrained to move generally parallel thereto.

29. An apparatus according to any of Claims 24 to 28, wherein the operator support means comprises a generally horizontal, first platform adapted such that an operator may stand thereupon.

30. An apparatus according to Claim 29, including guarding disposed above the platform thereby to minimise the possibility of an operator falling from the platform.

31. An apparatus according to any of Claims 24 to 30 including means, e.g. a harness, whereby an operator may be secured relative to the apparatus.

32. An apparatus according to any of Claims 24 to 31, wherein the load support means includes one or more generally horizontally extending, further platforms.

33. An apparatus according to Claim 32, including guarding disposed above the further platform thereby to minimise the possibility of objects falling from the platform.

34. An apparatus according to any of Claims 24 to 33 including a plurality of bracing members.

35. An apparatus according to Claim 34, wherein respective bracing members extend from the apparatus in different directions, eg. on opposite sides thereof.
36. An apparatus according to any of Claims 24 to 36, wherein the or a bracing member is selectively moveable relative to the apparatus.

37. An apparatus according to Claim 36, wherein the or a bracing member is pivotable.

33. An apparatus according to Claim 36 or Claim 37, wherein the or a bracing member may be secured at a plurality of positions on the apparatus.

30. An apparatus according to any of Claims 24 to 38, wherein the or each bracing member comprises a rigid member rigidly secured at the base of the first or a frame member and extending generally perpendicular thereto; and the apparatus includes a strut rigidly interconnecting the bracing member and said frame member.

40. An apparatus according to any of Claims 24 to 39, wherein the floor- or ground-engaging means includes a plurality of respective support feet or anchor members secured to the first or a frame member or to the bracing member.

41. An apparatus according to Claim 40, wherein the support feet are adjustable thereby to adjust the height of and/or to level the apparatus.

42. An apparatus according to any of Claims 24 to 41, wherein the floor- or ground-engaging means includes at least one wheel whereby the apparatus may be wheeled to transport it.

43. An apparatus according to any of Claims 24 to 42, including secured rotatably thereto support means eg. a roller adapted to receive rotatably thereon a roll or coil of a flexible material, whereby said flexible material may be stored on and dispensed from the apparatus.
44. An apparatus according to any of Claims 24 to 43, including a receptacle for a liquid, e.g. water or adhesive, securable thereto.

45. An apparatus according to Claim 43 or Claim 44, wherein said support means is disposed to present a roll or coil of flexible material on the exterior of the apparatus.

46. An apparatus according to any of Claims 43 to 45, wherein said support means is moveable generally vertically on the apparatus.

47. An apparatus according to Claim 46, wherein the support means eg. a roller and the load support means are interconnected to permit simultaneous movement thereof.

48. An apparatus according to any of Claims 43 to 47, including a presser member disposed on the exterior of the apparatus thereby to trap flexible material dispensed from the apparatus between the presser member and an object or surface adjacent the apparatus.

49. An apparatus according to Claim 48, wherein the presser member comprises a generally horizontal, padded bar secured on the exterior of the apparatus and protruding therefrom.

50. An apparatus according to any of Claims 21 to 49, including a gripper member including a pair of jaws secured on the apparatus, the jaws being selectively closeable about a piece of flexible material, thereby to secure said material relative to the apparatus.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 5 E04G1/20 E04G1/26 E06C9/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 5 E04G E06C B65G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE,B,12 92 581 (DEMAG-ZUG) 10 April 1969</td>
<td>1,2,16, 3,8,9,</td>
</tr>
<tr>
<td>A</td>
<td>see the whole document</td>
<td>11,19, 21-23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US,A,1 444 759 (TRAYLOR) 6 February 1923</td>
<td>1,7,9, 15,21-23</td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE,A,38 38 283 (KRALJE) 17 May 1990</td>
<td>1,2,4,5, 7,8, 19-22</td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE,B,12 24 667 (SIEBAU) 9 September 1966</td>
<td>1-3, 7-11,15, 16,19</td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

A: document defining the general state of the art which is not considered to be of particular relevance
E: earlier document but published on or after the international filing date
L: document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
O: document referring to an oral disclosure, use, exhibition or other means
P: document published prior to the international filing date but later than the priority date claimed

T: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X: document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y: document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

* & document member of the same patent family

Date of the actual completion of the international search: 2 June 1994

Date of mailing of the international search report: 14-06-1994

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentliaan 2
NL - 2280 H Wassenaar
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax (+31-70) 340-3016

Authorized officer
Vijverman, W
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US,A,2 616 769 (RECTOR) 4 November 1952</td>
<td>1,7,13, 14,21-23</td>
</tr>
<tr>
<td></td>
<td>see claims; figures</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE,B,12 95 482 (DEMA) 14 May 1969</td>
<td>1,2,7-11</td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US,A,3 236 331 (GREEN) 22 February 1966</td>
<td>1,10,11</td>
</tr>
<tr>
<td></td>
<td>see claims; figures</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP,A,0 061 358 (THALMANN) 29 September 1982</td>
<td>1,17,24, 31,44,46</td>
</tr>
<tr>
<td></td>
<td>see page 2, line 20 - page 4; figures</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DE,A,34 20 737 (VEB BAUMACHINISIERUNG DRESDEN) 7 March 1985</td>
<td>24, 27-30,32</td>
</tr>
<tr>
<td></td>
<td>see page 7 - page 10; figures</td>
<td>34-37, 40-42</td>
</tr>
<tr>
<td>A</td>
<td>see column 3, line 20 - column 6, line 17; figures</td>
<td>34-36, 40,42</td>
</tr>
<tr>
<td>X</td>
<td>US,A,3 548 970 (HUTCHENS) 22 December 1970</td>
<td>24, 27-29,34</td>
</tr>
<tr>
<td></td>
<td>see claims; figures</td>
<td>25,26, 32,39</td>
</tr>
<tr>
<td>A</td>
<td>US,A,4 125 173 (RUST) 14 November 1978</td>
<td>24,27, 28,30, 34,39,42</td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US,A,4 877 107 (ANDERSON) 31 October 1989</td>
<td>24,25, 34-38, 40-42</td>
</tr>
<tr>
<td></td>
<td>see claims; figures</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US,A,3 788 424 (CHABOT) 29 January 1974</td>
<td>43,45-47</td>
</tr>
<tr>
<td></td>
<td>see claims; figures</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DE-B-1292581</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US-A-1444759</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE-A-3838283</td>
<td>17-05-90</td>
<td>NONE</td>
</tr>
<tr>
<td>DE-B-1224667</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US-A-2616769</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE-B-1295482</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE-A-3420737</td>
<td>07-03-85</td>
<td>NONE</td>
</tr>
<tr>
<td>US-A-3548970</td>
<td>22-12-70</td>
<td>NONE</td>
</tr>
<tr>
<td>US-A-4877107</td>
<td>31-10-89</td>
<td>NONE</td>
</tr>
</tbody>
</table>