PROCESS FOR THE PRODUCTION OF OPTIONALLY-FOAMED POLYURETHANES

Inventors: Werner Rasshofer, Cologne; Geza Avar, Leverkusen; Hans-Albrecht Freitag, Bergisch Gladbach; Gerhard Gröger, Leverkusen; Richard Kopp, Cologne, all of Fed. Rep. of Germany

Filed: Jan. 25, 1982

Foreign Application Priority Data

Int. Cl. C08G 18/14; C08G 18/24
U.S. Cl. 521/51; 260/429.7; 521/51; 521/126; 528/58
Field of Search 521/51, 126; 528/58; 260/429.7

This invention relates to a process for the production of polyurethanes, particularly polyurethane foam moldings having a compact skin and a cellular core, using special tin activators.

5 Claims, No Drawings
PROCESS FOR THE PRODUCTION OF OPTIONALLY-FOAMED POLYURETHANES

FIELD OF THE INVENTION

This invention relates to a process for the production of polyurethanes, particularly polyurethane foam moldings having a compact skin and a cellular core, using special activators.

The flexible, semi-rigid and rigid polyurethane foam moldings hitherto obtainable on the market are generally based on the crosslinking of aromatic polysiocyanates with polyether or polyester polyols, optionally in combination with known chain-extending agents and crosslinking agents. Moldings of the type are characterized by good mechanical properties which makes them suitable for numerous applications, such as, for example, furniture manufacture, vehicle manufacture and house building and for the production of elastic moldings, such as cushions, shock absorbers and shoe soles.

One disadvantage common to all these moldings is that they turn yellow under the effect of weather and, in addition, undergo surface roughening through chemical degradation, so that, for example, moldings which have to meet increased demands generally have to be provided with a protective layer of lacquer.

The discoloration of polyurethanes under the effect of light is known and occurs particularly when aromatic polysicosyanates are used. Because of this, attempts have recently been made to produce polyurethane foams, including integral forms, using aliphatic and/or alcyclic polysiocyanates.

The polyaddition reaction between polyhydroxyl compounds and polysiocyanates, particularly aliphatic and alcyclic polysiocyanates, on which the formation of polyurethanes is based, requires suitable catalysis in order to obtain a reaction which is fast enough for industrial purposes.

It is known that activator combinations of metal compounds and amine-containing catalysts or other basic catalysts may be used for this purpose. Examples of the metal compounds used are the bis-carboxylates of dialkyl tin compounds, such as di-n-butyl tin dilaurate; the bis-mercaptides of dialkyl tin compounds, such as dimethyl tin bis-(lauryl mercaptide); metal acetyl acetonates, such as Fe(II)acetyl acetonate, Fe(III)acetyl acetonate, dibutyl tin (IV)acetyl acetonate, lead (II)acetyl acetonate; and lead compounds, such as lead di-(2-ethylhexanate) or bismuth compounds such as bismuth(III)-2-ethyl hexanoate.

In general, however, the catalytic activity of these metal compounds alone is not sufficient for industrial processes. Because of this, basic co-catalysts, such as, for example, amidines (including diazabicycloundecene, diazabicyclononene and dimethyl tetrahydropryprimidine), guanidines (for example, guanidine and tetramethyl guanidine) or tertiary amines, (such as diazabicyclooctane) are frequently used.

The use of these amine-containing co-catalysts often involves a number of serious disadvantages. For example, it has been found that polyol components containing diazabicycloundecene (DBU) lose some of their activity in storage, making re-catalysis necessary. This has been attributed to a reaction of the diazabicycloundecene with water and carbon dioxide, which leads to a less active DBU-hydrogen carbonate, and to a hydrolysis of the reactive carbon-nitrogen double bond. Problems may arise for example, from storing chlorinated hydrocarbons, such as dichloromethane, with catalysts, such as, for example, diazabicyclooctane (DABCO® triethylene diamine) because ammonium salts are formed. Another disadvantage of using these strong amine bases is the normally unpleasant odor which occurs in particular in the manufacture of polyurethane products and which—because the products in question are generally volatile at room temperature—surrounds these products for some considerable time and reduces their utility value.

Still additional disadvantages attributable to the use of known amine and multi-catalyst systems include:

1. When diazabicycloundecene is used as a catalyst, a white coating (consisting partly of diazabicycloundecene) appears, for example, on steering wheels or headrests produced from aliphatic polysiocyanates and polyhydroxyl compounds. That effect is attributable to the volatility the amine compounds and is, of course, very troublesome to industrial processes.

2. It is known that amine catalysts also catalyze the splitting of urethane bonds and ether bonds.

3. When several catalysts are used, problems of activity balance must be taken in consideration.

Since only one catalytically active component is required with the catalysts of the present invention and since the activators according to the invention possess none of the negative amine catalyst properties described herein, the disadvantages of existing commercial catalyst systems are obviated by the present invention.

DESCRIPTION OF THE INVENTION

The present invention relates to a process for the production of optionally-foamed polyurethanes by reacting polysiocyanates with organic compounds containing at least two isocyanate-reactive hydrogen atoms and having molecular weights in the range of from 400 to 10,000 in the presence of activators. Blowing agents, chain-extending agents having a molecular weight in the range from 32 to 400 and other known auxiliaries and additives may also be present. The activators used are compounds corresponding to the general formula

\[R^1 Sn(O-C-(R^2=O)x)_n \]

wherein

- \(R \) and \(R^1 \) may be the same or different and represent \(\text{C}_1-\text{C}_{20}-\text{alkyl}, \text{C}_3-\text{C}_7-\text{cycloalkyl} \) or \(\text{C}_7-\text{C}_{30}-\text{alkaryl radicals}; \)
- \(\text{Hal} \) is a halogen atom, preferably a chlorine atom;
- \(R^2 \) is a saturated aliphatic radical containing from 1 to 30 carbon atoms and preferably from 1 to 20 carbon atoms, an unsaturated aliphatic radical containing from 2 to 18 carbon atoms, a cycloaliphatic radical containing from 4 to 7 carbon atoms, or an aromatic radical containing from 6 to 14 carbon atoms;
- \(X \) represents hydrogen or a group corresponding to the formula

\[\text{Hal} \]

\[O-Sn-O-R \]

\[O-C-\text{Hal} \]
and
n is an integer of from 1 to 3.

According to the invention, it is preferred to produce foam moldings having a compact surface and cellular core and to use aliphatic and/or alicyclic polysiocyanates as the isocyanate starting component.

Particularly advantageous properties are obtained where a bis-(2-hydroxyalkyl)-amine, such as, for example, diethanolamine or diisopropanolamine, is used either completely or in part as the crosslinking component. In this connection, it has been found that standard tin catalysts used either on their own or in combination with any of the amine catalysts normally used in polyurethane chemistry do not give satisfactory product properties and, in some cases, are even responsible for unsatisfactory reaction kinetics. (Suitable tin-free catalysts for a system of this type containing bis-(2-hydroxyalkyl)-amine include lead compounds, which unfortunately are physiologically unacceptable, and bismuth compounds which unfortunately are unstable, particularly on exposure to light, so that both classes of products should be avoided.)

It has now surprisingly been found that the activators according to the invention are capable of acting as effective catalysts, even in PU-systems of the type in which aliphatic and/or alicyclic polysiocyanates are used as the polysiocyanates, using chain-extending agents having a molecular weight in the range of from 32 to 400, these chain-extending agents preferably consisting completely or in part of bis-(2-hydroxyalkyl)-amines.

The activators used in accordance with the invention are known. Thus, in Advances in Chem. Soc., 169, 363 (1978), Parker and Carman discuss the occurrence of dibutyl chlororotin laurate by the equilibration of dibutyl tin dilaurate and dibutyl tin dichloride with the aid of 1H-NMR-spectra. Davies and Harrison report in J. Chem. Soc. C. 1967, page 298 on the formation of dibutyl chlororotin acetate where dibutyl tin dichloride and dibutyl tin diacetate are combined in tetrachloromethane. In J. Organometall. Chem. 59, 189 (1973), T. N. Mitchell describes the 13C-NMR-spectrum of the last of the above-mentioned compounds without, however, reporting on its preparation.

Preferred compounds corresponding to the above general formula are those in which R and R1 represent a C1-C6-alkyl radical, n is equal to 1, R2 represents a C1-C11-alkylene, C3-C1-cycloalkylene or C1-C10-arylene radical and Hal is a chlorine atom. In many cases, it is also preferred for X in the general formula to represent hydrogen and for n to have a value of 1.

The activators according to the invention are obtained, for example, by reacting dialkyl tin dilides with carboxylic acid metal salts, preferably in the presence of a solvent, such as toluene, xylene, 1,4-dioxane, dimethyl formamide, sulfanil, dimethyl sulfoxide or dimethoxy ethane. Preferred diorganyl tin dilides are dialkyl tin dichlorides, such as dimethyl tin dichloride, di-n-butyl tin dichloride, di-n-octyl tin dichloride, with dimethyl tin dichloride being particularly preferred. Preferred carboxylic acid metal salts are the salts of organic carboxylic acids with metals belonging to Groups I, II and III of the Periodic System. The salts of organic carboxylic acids with metals belonging to the First Main Group are particularly preferred. Examples of suitable carboxylic acids are acetic acid, propionic acid, octanoic acid, 2-ethyl hexanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, oleic acid, ricenoic acid, linoleic acid, malonic acid, succinic acid, maleic acid, fumaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and didecanoic acid.

According to the invention, it is preferred to use the following activators: dimethyl tin monochloroacetate corresponding to the formula

\[
\text{CH}_3\text{SnCl}_2
\]

dimethyl tin monochlorooctoate corresponding to the formula

\[
\text{CH}_3\text{SnCl}_2
\]

dimethyl tin monochlorododecanoate corresponding to the formula

\[
\text{CH}_3\text{SnCl}_2
\]

1,12-didodecanoic acid-1,12-(dimethylmonochlorotin)-ester corresponding to the formula

\[
\text{CH}_3\text{SnCl}_2
\]

In general, the activators according to the invention may be dissolved without difficulty both in the compounds containing at least two active H-atoms and having molecular weights in the range from 400 to 10,000 and in the isocyanate component. They are preferably dissolved under heat in the compounds containing at least two active H-atoms and having molecular weights in the range from 400 to 10,000, surprisingly without any reaction occurring between this component and the activators.

However, the activators may also be added to the reaction mixture in solid form. In this connection, it has been found that the activity of the dispersed activator is often only slightly different from the activity of dissolved activators.

The activators used in accordance with the invention are normally employed in quantities of from 0.005 to
These catalysts are generally compounds which melt without decomposition at low to medium-high temperatures.

In carrying out the process according to the invention, aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polysiloxanes of the type described, for example, by W. Siefen in Justus Liebig's Annalen der Chemie, 562, pages 75 to 136, for example, those corresponding to the formula

\[Q(NCO)_{n} \]

in which

\[n = 2 \text{ to } 4, \text{ preferably } 2; \text{ and} \]

\[Q \text{ represents an aliphatic hydrocarbon radical containing from } 2 \text{ to } 18 \text{ carbon atoms and preferably from } 6 \text{ to } 10 \text{ carbon atoms; a cycloaliphatic hydrocarbon radical containing from } 4 \text{ to } 15 \text{ carbon atoms and preferably from } 5 \text{ to } 10 \text{ carbon atoms; an aromatic hydrocarbon radical containing from } 6 \text{ to } 15 \text{ and preferably from } 6 \text{ to } 13 \text{ carbon atoms; or an araliphatic hydrocarbon radical containing from } 8 \text{ to } 15 \text{ and preferably from } 8 \text{ to } 13 \text{ carbon atoms.} \]

Suitable isocyanates are described, for example, on pages 16 to 18 of German Offenlegungschrift No. 2,916,139.

Preferred polysiloxanes are aliphatic and alicyclic polysiloxanes, such as 1,6-hexamethylene disiloxane; 1,12-dodecane disiloxane; cyclobutane-1,3-disiloxane; cyclohexane-1,3- and -1,4-disiloxane and mixtures of these isomers; 1-isosiloxane-3,3,5-trimethyl-5-isosiloxane-methylcyclohexane (German Auslegeschrift No. 1,202,785; U.S. Pat. No. 3,401,190); 2,4- and 2,6-hexahydroxyylene disiloxane and mixtures of these isomers; hexahydropoly-1,3- and/or -1,4-phenylene disiloxane; perhydro-2,4'- and/or -4,4'-diphenyl methane disiloxane; and polysiloxanes produced therefrom and modified by urethane groups, allophanate groups, isocyanurate groups, urea groups, or biuret groups. Mixed trimers of various aliphatic and/or alicyclic polysiloxanes of the type mentioned above are also preferred.

Further starting components include compounds containing at least two isocyanate-reactive hydrogen atoms and having molecular weights of generally from 400 to 10,000. In addition to compounds containing amino groups, thiol groups or carboxyl groups, compounds such as these are preferably compounds containing hydroxyl groups, particularly compounds containing from 2 to 8 hydroxyl groups. Most preferred are those polyhydroxyl compounds having molecular weights of from 1000 to 8000, preferably 1500 to 6000. Examples of these include polyesters, polyethers, polythioethers, polycetals, polycarbonates and polyester amides containing at least two, generally from 2 to 8, and preferably from 2 to 4 hydroxyl groups of the type known for the production of cellular and non-cellular polyurethanes (cf. German Offenlegungschrift No. 2,916,139, pages 19 to 26).

Optional starting components include compounds containing at least two isocyanate-reactive hydrogen atoms and having molecular weights in the range from 32 to 400. In this case, too, the compounds include those containing hydroxyl groups and/or amino groups and/or thiol groups and/or carboxyl groups. Preferred are compounds containing hydroxyl groups and/or amino groups which serve as chain-extending agents or cross-linking agents. These compounds generally contain from 2 to 8 and preferably from 2 to 4 isocyanate-reactive hydrogen atoms. In this case, too, it is possible to use mixtures of different compounds containing at least two isocyanate-reactive hydrogen atoms and having molecular weights in the range from 32 to 400. Examples of suitable compounds are the compounds described on pages 27 to 33 of German Offenlegungschrift No. 2,916,139.

Optional additives and auxiliaries may include water and/or readily volatile inorganic or organic compounds as blowing agents; other known catalysts (generally in a quantity of from about 0.001 to 10% by weight, based on the total quantity of compounds containing at least two isocyanate-reactive hydrogen atoms); and surface-active additives, such as emulsifiers and foam stabilizers. Additionally, reaction retarders and known cell regulators together with known pigments or dyes and flameproofing agents, stabilizers against the effects of ageing and weather, plasticizers and fungistic and bacteriostatic substances as well as fillers may also be used. All these auxiliaries and additives are described for example on pages 33 to 38 of German Offenlegungschrift No. 2,916,139.

Further examples of surface-active additives and foam stabilizers, as well as cell regulators, reaction retarders, stabilizers, flameproofing substances, plasticizers, dyes and fillers and fungistic and bacteriostatic substances which may optionally be used in accordance with the invention and information on the way in which these additives are used and on their respective modes of action may be found in Kunststoff-Handbuch, Vol. VII, by Vieweg and Hochtlen, Carl-Hanser-Verlag, Munich, 1966, for example, on pages 103 to 113.

According to the invention, the reaction components are reacted by the known one-shot process, by the prepolymer process or by the semi-prepolymer process, in many cases using machines, for example, of the type described in U.S. Pat. No. 2,764,565. Particulars of processing machines which may also be used in accordance with the invention may be found in Kunststoff-Handbuch by Vieweg and Hochtlen, Vol. III, Carl-Hanser-Verlag, Munich, 1966, for example, on pages 121 to 205.

In the production of foams, it is also possible in accordance with the invention to carry out foaming in closed molds. To this end, the foamy reaction mixture is introduced into a mold made of metal, for example, aluminum, or plastic, for example, epoxide resin, and allowed to foam and form the molding. In-mold foaming may be carried out in such a way that the molding has a cellular structure at its surface, or in such a way that the molding has a compact skin and a cellular core. In this connection, it is possible, in accordance with the invention, to introduce a foamy reaction mixture into the mold in such a quantity that the foam formed just fills the mold or to introduce into the mold more foamable reaction mixture than is required for filling the interior of the mold with foam. This latter technique is known as "over-charging" and is shown, for example, in U.S. Pat. Nos. 3,178,490 and 3,182,104.

In many cases, "external release agents", such as silicone oils, are used when foaming is carried out in molds. However, it is also possible to use so-called "in-
ternal release agents", optionally in admixture with external release agents, of the type known, for example, from German Offenlegungsschrift Nos. 2,121,670 and 2,307,589.

According to the invention, it is also possible to produce cold-hardening foams (see British Pat. No. 1,162,517 and German Offenlegungsschrift No. 2,153,086) and foams may, of course, also be produced by block foaming or by the known laminator process.

The products obtainable in accordance with the invention are used, for example, as shoe soles, steering wheels, arm rests, headrests, upholstery material, sound insulating materials, moldings having a compact skin and a cellular core (integral foams) as e.g. obtainable by the process of German patent No. 1 694 138 (Canadian patent No. 879 796), coating materials, packaging materials and mattresses.

The invention is further illustrated, but is not intended to be limited by the following examples in which all parts and percentages are by weight unless otherwise specified.

EXAMPLES

Starting Compounds

I. Isocyanates

Isocyanate A: a semi-prepolymer of isophorone diisocyanate and a glycerol-started polypropylene ether (OH-number 670) having an NCO-content of 28%.

Isocyanate B: a prepolymer of 1,6-diisocyanatohexane and dipropylene glycol having an NCO-content of 14%.

Isocyanate C: a modified 1,6-diisocyanatohexane containing biuret units and having an NCO-content of 21.3%.

Isocyanate D: a semi-prepolymer of 4,4'-disocyanatodiphenyl methane and tripropylene glycol having an NCO-content of 22.8%.

Isocyanate E: a modified 1,6-diisocyanatohexane containing biuret units and having an NCO-content of 23%.

Isocyanate F: a mixture of 80% b.w. of tolylene diisocyanate and 20% b.w. of polymeric 4,4'-disocyanatodiphenyl methane (NCO-content 44.5%).

II. Polyols

Polyol A: a trifunctional trimethylol-propane-started PO/EO-polyether polyol (with 22% b.w. of terminal EO) having an OH-number of 27 and an average molecular weight of 6222.

Polyol B: a bifunctional propylene glycol-started PO/EO-polyether polyol (with 20% b.w. of terminal EO) having an OH-number of 28 and an average molecular weight of 4000.

Polyol C: a trifunctional trimethylol-propane-started PO/EO-polyether polyol (with 13.5% b.w. of terminal EO) having an OH-number of 35 and an average molecular weight of 4500.

Polyol D: a reaction product of glycerol and propylene oxide having an OH-number of 1050.

Polyol E: a reaction product of trimethylol propane with propylene oxide having an OH-number of 930.

Polyol F: a trimethylol-propane- and propylene-glycol-started PO/EO-polyether polyol (with 30% b.w. of EO) having a functionality of 2.78, an average molecular weight of 3700 and an OH-number of 42.

III. Catalysts

Catalyst A: dimethyl tin monochloro-(2-ethyl)hexanoate corresponding to the formula

\[
\text{CH}_3 \text{SnCl}_2 \text{H}_2\text{C} = \text{O} \text{C-C-C}_4\text{H}_9
\]

Catalyst B: dimethyl tin monochlorododecanoate corresponding to the formula

\[
\text{CH}_3 \text{SnCl}_2 \text{H}_2\text{C} = \text{O} \text{C-C-C}_4\text{H}_9
\]

Catalyst C: dimethyl tin monochloroacetate corresponding to the formula

\[
\text{H}_3\text{C} \text{SnCl}_2 \text{H}_2\text{C} = \text{O} \text{C-C-C}_4\text{H}_9
\]

Catalyst D: dimethyl tin monochloro-oleate corresponding to the formula

\[
\text{H}_3\text{C} \text{SnCl}_2 \text{H}_2\text{C} = \text{O} \text{C-C-C}_4\text{H}_9
\]

Catalyst E: diethyl tin monochloroacetate corresponding to the formula

\[
\text{C}_2\text{H}_5 \text{SnCl}_2 \text{H}_2\text{C} = \text{O} \text{C-C-C}_4\text{H}_9
\]

Catalyst F: didodecanoic acid-1,12-bis-(dimethylchloro-)ester corresponding to the formula

\[
\text{CH}_3 \text{SeO-C-C(CH}_2\text{)}_{10}\text{C-O-Se-C-C}_2\text{H}_5 \text{H}_2\text{C} = \text{O} \text{C-C-C}_4\text{H}_9
\]

The reaction times quoted in the Application Examples are defined as:
T_1 = cream time (time in seconds after the isocyanate component has been stirred in at which the mixture begins to foam);

T_2 = rise time (time in seconds after the isocyanate component has been stirred in at which the rising process is complete);

T_3 = tack-free time (time in seconds after the isocyanate component has been stirred in at which the surface of the foam is no longer tacky);

T_4 = plucking time (time in seconds after the isocyanate component has been stirred in at which small fragments can no longer be torn from the foam with the fingers).

The following examples illustrate the production of semi-rigid polyurethane foam based on aliphatic and alicyclic polyisocyanates:

EXAMPLE 1

Formulation: Component A:
- 90 g of polyol A
- 5 g of ethylene glycol
- 4 g of diethanolamine
- 1 g of catalyst B
- 12 g of trichlorofluoromethane

Component B:
- 46 g of isocyanate A

The constituents of Component A are combined at room temperature and intensively mixed for 30 seconds using a high-speed stirrer. The indicated quantity of Component B is added, intensive mixing is then continued for another 30 seconds at room temperature and the reaction mixture subsequently left to foam in a free foam packet.

A cream time of 37±3 seconds and a gel time of 130±10 seconds were observed.

By comparison, if the above test is repeated using 1 g of tin dioctoate or 1 g of dibutyl tin dilaurate instead of catalyst B, the foams stay tacky for several days without setting.

EXAMPLE 2

Formulation: Component A:
- 90 g of polyol A
- 5 g of ethylene glycol
- 4 g of diethanolamine
- 1 g of Tinuvin 327 (light stabilizer, a product of Ciba-Geigy AG)
- 12 g of trichlorofluoromethane
- 1 g of catalyst A

Component B:
- 89 g of isocyanate B

The constituents of Component A were combined at room temperature and intensively mixed for 30 seconds with a high-speed stirrer. The indicated quantity of isocyanate was added, intensive mixing was continued for another 30 seconds at room temperature and the reaction mixture was then left to foam in a free foam packet.

A cream time of 36±3 seconds and a gel time of 69±5 seconds were observed.

A foam square measuring 20×20×1 cm produced in a standard hinged laboratory mold of aluminum had a Shore A hardness of 57 and a density of 665 kg/m³, could be removed from the mold without difficulty and was characterized by high elasticity.

By contrast, if the above test is repeated using 1 g of tin dioctoate instead of catalyst A, a cream time of 60±5 seconds and a gel time of more than 5 minutes are observed, the foam remaining tacky for a long time.

EXAMPLE 3

Formulation: Component A:
- 169 g of polyol A
- 9.4 g of ethylene glycol
- 7.5 g of diethanolamine
- 1.87 g of catalyst A
- 20 g of trichlorofluoromethane
- 2 g of Tinuvin 327 (light stabilizer, a product of Ciba-Geigy AG)

Component B:
- 119 g of isocyanate C
- 3 g of foam stabilizer (PU 3110 of Bayer AG, Germany)

The constituents of Component A are combined at room temperature and intensively mixed for 30 seconds with a high-speed stirrer. The indicated quantity of Component B is added, intensive mixing is continued for another 30 seconds at room temperature and the reaction mixture is subsequently allowed to foam in a free foam packet.

A cream time of 35±3 seconds and a gel time of 84±5 seconds were observed.

A foam square measuring 20×20×1 cm produced from the above mixture in a standard hinged aluminum laboratory mold had a Shore A hardness of 69 and a density of 665 kg/m³, could be easily removed from the mold and was characterized by high elasticity.

By comparison, if the above test is repeated using 1 g of tin dioctoate or 1 g of dibutyl tin dilaurate instead of catalyst A, the foams remain tacky for several days without setting.

EXAMPLE 4

Formulation: Component A:
- 90 g of polyol A
- 5 g of ethylene glycol
- 4 g of diethanolamine
- 10 g of trichlorofluoromethane
- 1 g of catalyst E

Component B:
- 46 g of isocyanate A

The preparation procedure is the same as described in Example 3.

A cream time of 35±3 seconds and a gel time of 110±10 seconds were observed.

If the above test is repeated using 1 g of tin dioctoate or 1 g of dibutyl tin dilaurate instead of catalyst E, the foams remain tacky for several days without setting.

The following examples illustrate the production of polyurethane foam based on aromatic polyisocyanates:

EXAMPLE 5

Formulation: Component A:
- 70 g of polyol B
- 20 g of polyol C
- 1 g of ethylene glycol
- 14 g of butane diol-14
- 0.1 g of water
- 0.02 g of catalyst F
- x g of DABCO (triethylene diamine)

Component B:
- 74 g of isocyanate D

The preparation procedure is the same as described in Example 3.

The following times are obtained:
If the above test is repeated using a mixture of 0.02 g of dibutyl tin dilaurate and 0.3 g of DABCO, instead of catalyst F, a T1-value of 30 seconds and a T4-value of 65 seconds are obtained.

The following examples illustrate the production of rigid integral polyurethane foam based on aliphatic isocyanates:

EXAMPLE 6.1 (COMPARISON EXAMPLE)

Formulation: A-component:
- 35 g of polyol D
- 55 g of polyol E
- 30 g of polyol F
- 1 g of foam stabilizer (a product of the Goldschmidt Company, Essen, based on polysiloxane/polyalkylene oxide block copolymer)
- 0.8 g of diazabicycloundecene
- 1.3 g of dibutyl tin dilaurate
- 30 g of chlorotrifluoromethane

B-component:
- 252.4 g of isocyanate E

The constituents of the A-component were combined at room temperature and intensively mixed for 30 seconds with a high-speed stirrer. The indicated quantity of isocyanate is added, intensive mixing is continued for another 30 seconds at room temperature and the reaction mixture subsequently left to foam in a free foam packet.

A cream time of 38±3 seconds and a gel time of 47±3 seconds were observed.

EXAMPLES 6.2–6.5

In these Examples, diazabicycloundecene and dibutyl tin dilaurate are replaced by the catalysts used in accordance with the invention. These Examples also illustrate the good effect of the suspended catalysts.

TABLE 1.

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Catalyst</th>
<th>Quantity</th>
<th>Cream time (secs. ± 5)</th>
<th>Gel time (secs. ± 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Catalyst A</td>
<td>3 g</td>
<td>46 ± 5</td>
<td>50 ± 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 g</td>
<td>46 ± 5</td>
<td>48 ± 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 g</td>
<td>43 ± 5</td>
<td>47 ± 5</td>
</tr>
<tr>
<td>6.3</td>
<td>Catalyst B</td>
<td>3 g</td>
<td>59 ± 5</td>
<td>65 ± 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g</td>
<td>59 ± 5</td>
<td>45 ± 5</td>
</tr>
<tr>
<td>6.4</td>
<td>Catalyst C</td>
<td>3.7 g</td>
<td>73 ± 5</td>
<td>78 ± 96</td>
</tr>
<tr>
<td>6.5</td>
<td>Catalyst D</td>
<td>3 g</td>
<td>44 ± 5</td>
<td>47 ± 5</td>
</tr>
</tbody>
</table>

EXAMPLE 7

This example demonstrates the stability in storage (stored at room temperature) of catalyst A (as a representative example).

Formulation: Component A:
- 900 g of polyol A
- 50 g of ethylene glycol
- 40 g of diethanolamine
- 10 g of catalyst A

Component B:
- isocyanate A
- 12 g of chlorofluoromethane and 46 g of isocyanate A were added at regular intervals to 100 g of the single-phase A-component, followed by careful mixing at room temperature using a high-speed stirrer. The reaction mixture was then left to foam in a free foam packet.

The following times were measured:

<table>
<thead>
<tr>
<th>Cream time (secs. ± 5)</th>
<th>Gel time (secs. ± 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 g of diazabicycloundecene</td>
<td>29 ± 3</td>
</tr>
<tr>
<td>1 g of catalyst B</td>
<td>27 ± 2</td>
</tr>
</tbody>
</table>

EXAMPLE 8

100 g of a linear polypropylene ether (molecular weight 2000, OH-number 56) are thoroughly mixed with 29 g of dimeric 4,4'-diisocyanatodiphenyl methane produced in known manner (uretdione disiocyanate; NCO-content 14.5%). Quantities of 0.5 g of each of catalysts A, B, C, D and E are added to five different resulting suspensions, after which the reaction mixture is heated for 4 hours at 120° C.

Polyurethane elastomers having a Shore A hardness of approximately 52 are obtained.

By adding 0.5 g of tin dioxide instead of catalysts A, B, C, D and E, considerably more flexible polyurethane materials (Shore A hardness 30–40) are obtained under these reaction conditions, indicating an incomplete reaction.

EXAMPLE 9

If the polyether characterized in Example 8 is replaced by 100 g of a copolyester of adipic acid and ethylene glycol/butylen glycol (molecular weight 2000, OH-value: 56), an elastic polyurethane material having a Shore A hardness of 60 is obtained after the addition of 0.5 g of catalysts, A, B, C, D and E and heating for 3 hours at 120° C. In the absence of catalysis, no reaction takes place, even after a prolonged heating phase, and the reaction mixture remains liquid.

The following example illustrates the production of a flexible foam.
EXAMPLE 10

Formulation: Component A:
80 g of polyol G
20 g of polyol H
3.1 g of water
1 g of a foam stabilizer (PU 3110 of Bayer AG, Germany)
0.1 g of activator (Niax® Al, a product of the Union Carbide Co.)
0.5 g of activator (PU 3117, a product of Bayer AG)
0.2 g of catalyst D

Component B:
37.1 g of isocyanate F

A molded foam produced in known manner from the above mixture of components A and B in an aluminium box mold (mold temperature 50° to 55° C.) was characterized by the following data:
cream time: 8 seconds
fiber time: 65±5 seconds
rise time: 120±10 seconds
mold-release time: 9 minutes.

Although the invention has been described in detail in the foregoing for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as it may be limited by the claims.

What is claimed is:

1. A process for the production of optionally-foamed polyurethanes comprising reacting polyisocyanates with organic compounds containing at least two isocyanate-reactive hydrogen atoms and having molecular weights from 400 to 10,000 in the presence of activators, characterized in that the activators used are compounds corresponding to the general formula:

2. A process according to claim 1, characterized in that Hal is a chlorine atom.

3. A process according to claim 1, characterized in that the activators are used in a quantity of from 0.05 to 5% by weight, based on the compounds containing at least 2 active hydrogen atoms and having molecular weights in the range from 400 to 10,000.

4. A process according to claim 1 or claim 3, characterized in that aliphatic and/or alicyclic polyisocyanates are used as the polyisocyanates.

5. A process as claimed in claim 1 or claim 3, characterized in that the presence of activators, characterized in that the activators used are compounds corresponding to the general formula:

and

n is an integer of from 1 to 3.