PRODUCING METHOD OF ENCAPSULATING LAYER-COVERED SEMICONDUCTOR ELEMENT AND PRODUCING METHOD OF SEMICONDUCTOR DEVICE

Applicant: NITTO DENKO CORPORATION, Ibaraki-shi, Osaka (JP)

Inventors: Munehisa Mitani, Osaka (JP); Yuki Ebe, Osaka (JP); Yasunari Ooyabu, Osaka (JP); Hiroshi Noro, Osaka (JP); Hiroki Kono, Osaka (JP)

Assignee: NITTO DENKO CORPORATION, Ibaraki-shi, Osaka (JP)

Appl. No.: 14/414,921

PCT Filed: Jul. 17, 2013

PCT No.: PCT/JP2013/069374

§ 371 (g)(1), (2) Date: Jan. 15, 2015

Foreign Application Priority Data

Jul. 17, 2012 (JP) 2012-158945

Publication Classification

Int. Cl.
H01L 21/56 (2006.01)
H01L 23/29 (2006.01)

U.S. Cl.
CPC H01L 21/56 (2013.01); H01L 23/295 (2013.01)

ABSTRACT

A method for producing an encapsulating layer-covered semiconductor element includes a disposing step of disposing a semiconductor element on a support, an encapsulating step of embedding and encapsulating the semiconductor element by an encapsulating layer on an encapsulating sheet including a peeling layer and the encapsulating layer laminated below the peeling layer and made from a thermosetting resin before complete curing, and a heating step of heating and curing the encapsulating layer after the encapsulating step. The heating step includes a first heating step in which the encapsulating sheet is heated under a normal pressure at a first temperature, a peeling step in which the peeling layer is peeled from the encapsulating layer after the first heating step, and a second heating step in which the encapsulating layer is heated at a second temperature that is higher than the first temperature after the peeling step.
PRODUCING METHOD OF ENCAPSULATING LAYER-COVERED SEMICONDUCTOR ELEMENT AND PRODUCING METHOD OF SEMICONDUCTOR DEVICE

TECHNICAL FIELD

[0001] The present invention relates to a method for producing an encapsulating layer-covered semiconductor element and a method for producing a semiconductor device, to be specific, to a method for producing an encapsulating layer-covered semiconductor element and a method for producing a semiconductor device using the encapsulating layer-covered semiconductor element obtained by the method for producing an encapsulating layer-covered semiconductor element.

BACKGROUND ART

[0002] It has been conventionally known that a semiconductor element such as a light emitting diode is encapsulated by a resin.

[0003] A method for producing an optical semiconductor device has been proposed (Ref. for example, the following Patent Document 1). In the method, for example, an encapsulating sheet having a substrate sheet and a silicone resin layer laminated below the substrate sheet is disposed on a board mounted with a light emitting diode and next, the light emitting diode is embedded and encapsulated by the silicone resin layer. Thereafter, the encapsulating sheet is heated at 120 to 250°C, the silicone resin layer (an encapsulating layer) is cured, and subsequently, the substrate sheet is peeled from the encapsulating layer to produce the optical semiconductor device.

PRIOR ART DOCUMENT

Patent Document

SUMMARY OF THE INVENTION

Problems to be Solved by the Invention

[0005] In the method described in Patent Document 1, however, there is a disadvantage that an encapsulating layer is deformed during heating. Also, there is a disadvantage that the substrate sheet is deformed during heating, so that along with the deformation of the substrate sheet, the encapsulating layer is further deformed.

[0006] It is an object of the present invention to provide a method for producing an encapsulating layer-covered semiconductor element and a method for producing a semiconductor device that are capable of obtaining a desired encapsulating layer by preventing deformation of a peeling layer and preventing deformation of the encapsulating layer.

Solution to the Problems

[0007] In order to achieve the above-described object, a method for producing an encapsulating layer-covered semiconductor element of the present invention includes a disposing step of disposing a semiconductor element on a support, an encapsulating step of embedding and encapsulating the semiconductor element by an encapsulating layer in an encapsulating sheet including a peeling layer and the encapsulating layer laminated below the peeling layer and made from a thermostetting resin before complete curing, and a heating step of heating and curing the encapsulating layer after the encapsulating step, wherein the heating step includes a first heating step in which the encapsulating sheet is heated under a normal pressure at a first temperature, a peeling step in which the peeling layer is peeled from the encapsulating layer after the first heating step, and a second heating step in which the encapsulating layer is heated at a second temperature that is higher than the first temperature after the peeling step.

[0008] According to this method, in the first heating step, the encapsulating sheet is heated under a normal pressure at the first temperature that is a relatively low temperature, so that the shape of the encapsulating layer is retained, while the encapsulating layer is in tight contact with the peeling layer and thus, the deformation of the encapsulating layer is capable of being suppressed.

[0009] Also, the first heating step is performed before the peeling step, so that in the encapsulating layer that is subjected to the peeling step, the curing thereof is further progressed and thus, in the peeling step after the first heating step, a peeling of the peeling layer from the encapsulating layer is capable of being surely performed by causing an interfacial peeling on the border between the peeling layer and the encapsulating layer. As a result, a desired encapsulating layer is capable of being obtained.

[0010] Furthermore, in the peeling step, after the peeling layer is peeled from the encapsulating layer, in the second heating step, when the encapsulating layer is heated at the second temperature that is a relatively high temperature, the peeling layer is already peeled from the encapsulating layer, so that the deformation of the peeling layer based on a difference in a linear expansion coefficient between the peeling layer and the encapsulating layer and accordingly, the deformation of the encapsulating layer is capable of being prevented.

[0011] In the method for producing an encapsulating layer-covered semiconductor element of the present invention, it is preferable that the encapsulating layer after the first heating step has a compressive elastic modulus at 23°C of 0.15 MPa or more.

[0012] According to this method, the compressive elastic modulus at 23°C of the encapsulating layer after the first heating step is 0.15 MPa or more. Thus, the peeling layer is capable of being surely peeled from the encapsulating layer in the peeling step.

[0013] In the method for producing an encapsulating layer-covered semiconductor element of the present invention, it is preferable that the encapsulating layer in the encapsulating step is in a B-stage state of a two-step thermostetting resin composition.

[0014] According to this method, the encapsulating layer in the encapsulating step is in a B-stage state of the two-step thermostetting resin composition, so that in the encapsulating step, the shape of the encapsulating layer is capable of being surely retained. Thus, the semiconductor element is capable of being surely embedded and encapsulated, while the shape of the encapsulating layer is retained.
In the method for producing an encapsulating layer-covered semiconductor element of the present invention, it is preferable that the encapsulating layer contains a filler and/or a phosphor.

According to this method, the shape retaining properties of the encapsulating layer after the first heating step is capable of being improved.

In the method for producing an encapsulating layer-covered semiconductor element of the present invention, it is preferable that the first temperature has a temperature rising range in which the temperature rises up to the second temperature.

According to this method, the production efficiency of the encapsulating layer-covered semiconductor element is capable of being improved.

In the method for producing an encapsulating layer-covered semiconductor element of the present invention, it is preferable that the support is a board and in the disposing step, the semiconductor element is mounted on the board.

According to this method, the deformation of the encapsulating layer is prevented and the encapsulating layer that is completely cured is capable of being mounted on the board, so that the encapsulating layer-covered semiconductor element having excellent reliability is capable of being produced.

A method for producing a semiconductor device of the present invention includes the steps of producing an encapsulating layer-covered semiconductor element and mounting the encapsulating layer-covered semiconductor element on a board, wherein the encapsulating layer-covered semiconductor element is produced by the method for producing an encapsulating layer-covered semiconductor element including a disposing step of disposing a semiconductor element on a support, an encapsulating step of embedding and encapsulating the semiconductor element by an encapsulating layer in an encapsulating sheet including a peeling layer and the encapsulating layer laminated below the peeling layer and made from a thermosetting resin before complete curing, and a heating step of heating and curing the encapsulating layer after the encapsulating step, and the heating step includes a first heating step in which the encapsulating sheet is heated under a normal pressure at a first temperature, a peeling step in which the peeling layer is peeled from the encapsulating layer after the first heating step, and a second heating step in which the encapsulating layer is heated at a second temperature that is higher than the first temperature after the peeling step.

According to this method, the encapsulating layer-covered semiconductor element including the encapsulating layer that is completely cured and in which the deformation thereof is prevented is capable of being mounted on the board, so that the semiconductor device having excellent reliability is capable of being produced.

Effect of the Invention

According to the method for producing an encapsulating layer-covered semiconductor element of the present invention, the deformation of the encapsulating layer is capable of being suppressed.

In the method for producing a semiconductor device of the present invention, the encapsulating layer-covered semiconductor element including the encapsulating layer that is completely cured and in which the deformation thereof is prevented is capable of being mounted on the board, so that the semiconductor device having excellent reliability is capable of being produced.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows process drawings for producing a first embodiment of a method for producing a semiconductor device of the present invention:

FIG. 1A illustrating a disposing step,

FIG. 1B illustrating an encapsulating step,

FIG. 1C illustrating a first heating step and a peeling step, and

FIG. 1D illustrating a second heating step.

FIG. 2 shows process drawings for producing a second embodiment of a method for producing a semiconductor device of the present invention:

FIG. 2A illustrating an LED peeling step and

FIG. 2B illustrating a mounting step.

FIG. 3 shows process drawings for producing a third embodiment of a method for producing a semiconductor device of the present invention:

FIG. 3A illustrating a disposing step,

FIG. 3B illustrating a pressure-welding step,

FIG. 3C illustrating a pressure exposed step,

FIG. 3D illustrating a first heating step and a peeling step, and

FIG. 3E illustrating a second heating step.

EMBODIMENT OF THE INVENTION

First Embodiment

In FIG. 1, the upper side of the paper surface is referred to as an upper side (one side in a first direction, one side in a thickness direction); the lower side of the paper surface is referred to as a lower side (the other side in the first direction, the other side in the thickness direction); the left side of the paper surface is referred to as a left side (one side in a second direction perpendicular to the first direction); the right side of the paper surface is referred to as a right side (the other side in the second direction); the near side of the paper surface is referred to as a near side (one side in a third direction perpendicular to the first direction and the second direction); and the far side of the paper surface is referred to as a rear side (the other side in the third direction). To be specific, the directions described in FIG. 1 are defined as a reference. Directions in figures subsequent to FIG. 2 are in conformity with the directions in FIG. 1.

A method for producing an LED device 1 that is one embodiment of a method for producing an encapsulating layer-covered semiconductor element of the present invention includes a disposing step (ref: FIG. 1A), an encapsulating step (ref: FIG. 1B), a first heating step (ref: a solid line in FIG. 1C), a peeling step (ref: a phantom line in FIG. 1C), and a second heating step (ref: FIG. 1D). Hereinafter, each of the steps is described in detail.

[Disposing Step]

In the disposing step, LEDs 2, as semiconductor elements, are disposed on a board 3, as a support. To be specific, the LEDs 2 are mounted on the upper surface of the board 3.

As shown in FIG. 1A, the board 3 is formed into a flat plate shape in a generally rectangular shape in plane view extending in a plane direction (a front-rear direction and a
The board 3 is formed of a material that is generally used in a board of the LED device 1, such as a metal material including aluminum, a ceramic material including alumina, and a resin material including polyimide. On the upper surface of the board 3, a conductive pattern (not shown) including an electrode (not shown) that is electrically connected to terminals (not shown) in the LEDs 2 and wires that are continuous to the electrode is formed. The conductive pattern is, for example, formed of a conductor such as gold, copper, silver, and nickel. The board 3 has a length of one side of, for example, 1 mm or more, and of, for example, 1000 mm or less. The board 3 has a thickness of, for example, 0.7 mm or more, or preferably 0.9 mm or more, and of, for example, 10 mm or less, or preferably 5 mm or less.

Each of the LEDs 2 is formed into a flat plate shape in a generally rectangular shape in plane view and is provided with a terminal (not shown) on the upper surface of the lower surface thereof. The LED 2 has a length of one side of, for example, 0.05 mm or more, or preferably 0.1 mm or more, and of, for example, 10 mm or less, or preferably 5 mm or less. The LED 2 has a thickness of, for example, 5 μm or more, or preferably 10 μm or more, and of, for example, 2000 μm or less, or preferably 1000 μm or less.

As a method for mounting the LEDs 2 on the board 3, for example, a flip-chip mounting is used. Or, the terminals in the LEDs 2 are also capable of being wire-bonding connected to the electrode in the board 3.

A plurality of the LEDs 2 are mounted on the board 3. The LEDs 2 are mounted on the upper surface of the board 3 at spaced intervals to each other in the plane direction. The LEDs 2 have a gap in the front-rear direction and the right-left direction of, for example, 0.1 mm or more, or preferably 1 mm or more, and of, for example, 50 mm or less, or preferably 5 mm or less.

[Encapsulating Step]

In the encapsulating step, as shown in FIG. 1A, first, an encapsulating sheet 4 is prepared and thereafter, as shown in FIG. 1B, the LEDs 2 are encapsulated by the encapsulating sheet 4.

As shown in FIG. 1A, the encapsulating sheet 4 includes a peeling layer 5 and an encapsulating layer 6 that is laminated below the peeling layer 5.

The peeling layer 5 is a layer that supports the encapsulating layer 6 in the encapsulating sheet 4 and that is peeled from the encapsulating layer 6 after its use. Examples of a material that forms the peeling layer 5 include a polymer film such as a polyethylene film and a polyester film (a PET film and the like), a ceramic sheet, and a metal foil. Preferably, a polymer film is used. The surfaces (the upper surface and the lower surface) of the peeling layer 5 can be also subjected to a release treatment such as a fluorine treatment. In the case of a polymer film, the peeling layer 5 has a linear expansion coefficient of, for example, 70×10⁻⁵ K⁻¹ or more, or preferably 80×10⁻⁵ K⁻¹ or more, and of, for example, 140× 10⁻⁵ K⁻¹ or less, or preferably 120×10⁻⁵ K⁻¹ or less. The peeling layer 5 has a thickness of, for example, 25 μm or more, or preferably 38 μm or more, and of, for example, 2000 μm or less, or preferably 100 μm or less.

The encapsulating layer 6 is formed from an encapsulating resin composition containing an encapsulating resin into a sheet shape.

An example of the encapsulating resin includes a thermosetting resin that is cured by heating.
reaction curable type silicone resin composition that contains a first organopolysiloxane having, in one molecule, both at least two ethylenically unsaturated hydrocarbon groups and at least two hydrosilyl groups, a second organopolysiloxane having, in one molecule, at least two hydrosilyl groups without containing an ethylenically unsaturated hydrocarbon group, a hydrosilation catalyst, and a hydrosilation retarder; a sixth condensation reaction and addition reaction curable type silicone resin composition that contains a first organopolysiloxane having, in one molecule, both at least two ethylenically unsaturated hydrocarbon groups and at least two silanol groups, a second organopolysiloxane having, in one molecule, at least two hydrosilyl groups without containing an ethylenically unsaturated hydrocarbon group, a hydrosilation retarder, and a hydrosilation catalyst; a seventh condensation reaction and addition reaction curable type silicone resin composition that contains a silicon compound, and a boron compound or an aluminum compound; and an eighth condensation reaction and addition reaction curable type silicone resin composition that contains a polydimethylsiloxane and a silane coupling agent.

These condensation reaction and addition reaction curable type silicone resin compositions can be used alone or in combination of two or more.

As the condensation reaction and addition reaction curable type silicone resin composition, preferably, a fourth condensation reaction and addition reaction curable type silicone resin composition is used.

The fourth condensation reaction and addition reaction curable type silicone resin composition is described in Japanese Unexamined Patent Publication No. 2011-219597 or the like and contains, for example, a dimethylvinilsilyl-terminated polydimethylsiloxane, a trimethylsilyl-terminated dimethylsiloxane-methylhydroxysiloxane copolymer, a platinum-divinyltetramethyldisiloxane complex, and a tetramethylammonium hydroxide.

On the other hand, the one-step curable type silicone resin composition is a thermosetting silicone resin composition that has a one-step reaction mechanism and in which a silicone resin composition is subjected to a final curing in the first-step reaction.

An example of the one-step curable type silicone resin composition includes an addition reaction curable type silicone resin composition.

The addition reaction curable type silicone resin composition contains, for example, an ethylenically unsaturated hydrocarbon group-containing polysiloxane, which serves as a main agent, and an organohydrogensilosiloxane, which serves as a cross-linking agent.

Examples of the ethylenically unsaturated hydrocarbon group-containing polysiloxane include an alkyl group-containing polydimethylsiloxane, an alkyl group-containing polymethylphenylsiloxane, and an alkyl group-containing polydiphenylsiloxane.

In the addition reaction curable type silicone resin composition, the ethylenically unsaturated hydrocarbon group-containing polysiloxane and the organohydrogensilosiloxane are usually provided in separate packages. To be specific, the addition reaction curable type silicone resin composition is provided as two liquids of A liquid that contains a main agent (the ethylenically unsaturated hydrocarbon group-containing polysiloxane) and B liquid that contains a cross-linking agent (the organohydrogensilosiloxane). A known catalyst that is necessary for the addition reaction of both components is added in the ethylenically unsaturated hydrocarbon group-containing polysiloxane.

In the addition reaction curable type silicone resin composition, the main agent (A liquid) and the cross-linking agent (B liquid) are mixed to prepare a liquid mixture. In a step of forming the liquid mixture into the above-described shape of the encapsulating layer 6, the ethylenically unsaturated hydrocarbon group-containing polysiloxane and the organohydrogensilosiloxane are subjected to an addition reaction and the addition reaction curable type silicone resin composition is cured, so that a silicone elastomer (a cured material) is formed.

The mixing ratio of the encapsulating resin with respect to 100 parts by mass of the encapsulating resin composition is, for example, 20 parts by mass or more, or preferably 50 parts by mass or more, and is, for example, 99.9 parts by mass or less, or preferably 99.5 parts by mass or less.

A phosphor and a filler can be also contained in the encapsulating resin composition as required.

An example of the phosphor includes a yellow phosphor that is capable of converting blue light into yellow light. An example of the phosphor includes a phosphor obtained by doping a metal atom such as cerium (Ce) or europium (Eu) into a composite metal oxide, a metal sulfide, or the like.

To be specific, examples of the phosphor include a garnet type phosphor having a garnet type crystal structure such as Y₃Al₅O₁₂:Ce (YAG: yttrium aluminum garnet):Ce, (Y, Gd)₃Al₅O₁₂:Ce, Tb₃Al₅O₁₂:Ce, Ca₃Sc₂Si₄O₁₄:Ce, and Lu₃CaMg₄(Si, Ge)₃O₁₂:Ce; a silicate phosphor such as Sr₂Ba₂Zn₄O₁₀:Eu; Sr₂SiO₄:Eu, Sr₂SiO₄:Eu, Li₂SrSiO₄:Eu, and Ca₂Si₂O₅:Eu; an aluminate phosphor such as Ca₂Al₃O₁₀: Eu; Sr₂SiO₄:Eu; and Eu; a sulfide phosphor such as Zn₃Cu₂Al, Ca₃S:Eu, Ca₃S:Eu, Sr₂Ga₂S₄:Eu, and Sr₂Ga₂S₄:Eu; an oxynitride phosphor such as Ca₃Al₅N₇:Eu; Sr₂Al₅N₇:Eu, Ba₃Si₂O₅:Eu, and Ca₂Zr:SiAlON; a nitrile phosphor such as Ca₃AlN₃:Eu and Ca₃AlN₃:Eu; and a fluoride-based phosphor such as K₂SiF₆:Eu and K₂TiF₆:Eu. Preferably, a garnet type phosphor is used, or more preferably, Y₃Al₅O₁₂:Ce is used. These phosphors can be used alone or in combination of two or more.

Examples of a shape of the phosphor include a sphere shape, a plate shape, and a needle shape. Preferably, in view of fluidity, a sphere shape is used.

The phosphor has an average value of the maximum length (in the case of a sphere shape, the average particle size) of, for example, 0.1 μm or more, or preferably 1 μm or more, and of, for example, 200 μm or less, or preferably 100 μm or less.

The mixing ratio of the phosphor with respect to 100 parts by mass of the encapsulating resin composition is, for example, 0.1 parts by mass or more, or preferably 0.5 parts by mass or more, and is, for example, 80 parts by mass or less, or preferably 50 parts by mass or less.

Examples of the filler include silicone microparticles, glass, alumina, silica, titania, zirconia, talc, clay, and barium sulfide. These fillers can be used alone or in combination of two or more. Preferably, silicone microparticles and silica are used.

The mixing ratio of the filler with respect to 100 parts by mass of the encapsulating resin composition is, for example, 0.1 parts by mass or more, or preferably 0.5 parts by mass or more, and is, for example, 80 parts by mass or less, or preferably 50 parts by mass or less.
In addition, a known additive can be added to the encapsulating resin composition at an appropriate proportion. Examples of the known additive include modifiers, surfactants, dyes, pigments, discoloration inhibitors, and ultraviolet absorbers.

When the encapsulating layer 6 is a two-step thermosetting resin composition, the encapsulating layer 6 is prepared from a first-step cured material of the two-step thermosetting resin composition and when the encapsulating layer 6 is a one-step thermosetting resin composition, the encapsulating layer 6 is prepared from an uncured material (before curing) of the one-step thermosetting resin composition.

Particularly preferably, the encapsulating layer 6 is a first-step cured material of the two-step curable type silicone resin composition. That is, particularly preferably, the encapsulating layer 6 is in a B-stage state of the two-step thermosetting resin composition.

In order to form the encapsulating layer 6, for example, the above-described encapsulating resin composition (containing a phosphor, a filler, or the like as required) is applied onto the peeling layer 5 so as to have an appropriate thickness by, for example, an application method such as a casting, a spin coating, or a roll coating and the applied laminate is heated as required. In this way, the encapsulating layer 6 in a sheet shape is formed on the peeling layer 5.

The encapsulating layer 6 has a compressive elastic modulus at 23°C of, for example, 0.15 MPa or less, preferably 0.12 MPa or less, or more preferably 0.1 MPa or less, and of, for example, 0.01 MPa or more, or preferably 0.02 MPa or more. When the compressive elastic modulus of the encapsulating layer 6 is not more than the above-described upper limit, the flexibility of the encapsulating layer 6 can be secured. On the other hand, when the compressive elastic modulus of the encapsulating layer 6 is not less than the above-described lower limit, the shape retaining properties of the encapsulating layer 6 are ensured and the LEDs 2 can be embedded by the encapsulating layer 6.

The encapsulating layer 6 has a linear expansion coefficient of, for example, 150×10⁻⁶ K⁻¹ or more, or preferably 200×10⁻⁶ K⁻¹ or more, and of, for example, 400×10⁻⁶ K⁻¹ or less, or preferably 300×10⁻⁶ K⁻¹ or less. There may be a case where the larger a value (a difference) obtained by deducting the linear expansion coefficient of the peeling layer 5 from that of the encapsulating layer 6 is, the more easily the encapsulating layer 6 is deformed. The linear expansion coefficient is measured by TMA (thermomechanical analysis).

As referred in FIG. 1A, the encapsulating layer 6 is formed into a generally rectangular sheet shape in plane view. The encapsulating layer 6 is adjusted to have a size that is capable of collectively encapsulating a plurality of the LEDs 2. The encapsulating layer 6 has a thickness of, for example, 100 μm or more, preferably 300 μm or more, or more preferably 400 μm or more, and of, for example, 2000 μm or less, or preferably 1000 μm or less.

The encapsulating layer 6 can be also formed of a plurality of layers. The encapsulating layer 6 can be formed of, for example, a first layer 61 and a second layer 62 that is formed on the upper surface of the first layer 61. The second layer 62 is laminated on the lower surface of the peeling layer 5. The first layer 61 and the second layer 62 are formed to have an appropriate thickness.

In this way, the encapsulating sheet 4 including the peeling layer 5 and the encapsulating layer 6 is prepared.

Thereafter, as shown in FIG. 1B, the LEDs 2 are encapsulated by the encapsulating sheet 4. To be specific, the LEDs 2 are embedded and encapsulated by the encapsulating layer 6 in the encapsulating sheet 4. When the encapsulating layer 6 is formed of the first layer 61 and the second layer 62, the LEDs 2 are embedded by the first layer 61.

To be specific, as shown in FIG. 1A, first, the encapsulating sheet 4 is disposed at the upper side of the board 3 so that the encapsulating layer 6 faces downwardly and next, as shown in FIG. 1B, the encapsulating layer 6 is pressure-welded to the board 3 with a pressing machine or the like.

Preferably, the encapsulating sheet 4 and the board 3 are disposed in opposition to each other and then, are put into a vacuum chamber such as a vacuum pressing machine. Next, the pressure in the vacuum chamber is reduced. To be specific, the pressure in the vacuum chamber is evacuated with a vacuum pump (a pressure-reducing pump) or the like. Thereafter, the inside of the vacuum chamber is brought into a reduced pressure atmosphere and the encapsulating layer 6 is pressure-welded to the board 3 with a pressing machine of the vacuum pressing machine or the like. The reduced pressure atmosphere is, for example, 300 Pa or less, preferably 100 Pa or less, or particularly preferably 50 Pa or less. Thereafter, the board 3 and the encapsulating layer 6 are exposed to an atmospheric pressure atmosphere.

The temperature in the encapsulating step is adjusted to be a temperature at which the encapsulating layer 6 is not completely cured, to be specific, a temperature at which a B-stage state is retained when the encapsulating layer 6 is in a B-stage state. The temperature in the encapsulating step is, for example, 0°C or more, or preferably 15°C or more, and is, for example, 30°C or less, or preferably 25°C or less. To be specific, the temperature in the encapsulating step is a normal temperature (to be specific, 20 to 25°C.).

In this way, the LEDs 2 are embedded and encapsulated at a normal temperature by the encapsulating layer 6.

That is, the upper surface and the side surfaces (the left surface, the right surface, the front surface, and the rear surface) of each of the LEDs 2 and the upper surface of the board 3 that is exposed from the LEDs 2 are covered with the encapsulating layer 6.

First Heating Step

The first heating step is a heating step of, after the encapsulating step, heating the encapsulating sheet 4 under a normal pressure at the first temperature.

The normal pressure is a state in which the encapsulating sheet 4 is not subjected to a fluid pressurizing or a mechanically pressurizing. To be specific, the normal pressure is a state in which the encapsulating sheet 4 is in a no-load state under a normal pressure atmosphere (an atmospheric pressure, that is, about 0.1 MPa).

In order to heat the encapsulating sheet 4 under a normal pressure at the first temperature, for example, a normal pressure-heating device such as a heating oven (to be specific, a drying oven or the like) and a hot plate is used. Preferably, a heating oven is used.

The first temperature is selected as a fixed temperature (a constant temperature) from the above-described range.

The first temperature and the heating duration thereof are set so that the compressive elastic modulus at 23°C of the encapsulating layer 6 after the first heating step is, for example, 0.15 MPa or more, or preferably 0.20 MPa or more. When the compressive elastic modulus is not less than the above-described lower limit, the encapsulating layer 6 in
a cured state in which the peeling layer 5 is capable of being surely peeled from the encapsulating layer 6 in the peeling step (to be specific, when the encapsulating layer 6 is prepared from a two-step thermosetting resin composition, the encapsulating layer 6 is in a B-stage state in which the curing is slightly progressed from the B-stage state immediately after the encapsulating step) is capable of being surely prepared.

[0098] The first temperature is the temperature at which the above-described encapsulating layer 6 is not completely cured. To be specific, the first temperature is, for example, 20°C or more, or furthermore 25°C or more, and is, for example, less than 75°C, or preferably less than 70°C. When the first temperature is not less than the above-described lower limit, the compressive elastic modulus at 23°C of the encapsulating layer 6 is set within the above-described range, and the encapsulating layer 6 in a cured state in which the peeling layer 5 is capable of being surely peeled from the encapsulating layer 6 in the peeling step (to be specific, when the encapsulating layer 6 is prepared from a two-step thermosetting resin composition, the encapsulating layer 6 in a B-stage state in which the curing is slightly progressed from the B-stage state immediately after the encapsulating step) is capable of being surely prepared. When the first temperature is not more than the above-described upper limit, the deformation of the peeling layer 5 caused by a difference in the linear expansion coefficient between the peeling layer 5 and the encapsulating layer 6 is capable of being suppressed.

[0099] The heating duration at the first temperature is, for example, five minutes or more, preferably ten minutes or more, more preferably one hour or more, or further more preferably ten hours or more, and is, for example, 50 hours or less, preferably 25 hours or less, or more preferably 20 hours or less. When the heating duration at the first temperature is not less than the above-described lower limit, the compressive elastic modulus at 23°C of the encapsulating layer 6 is set within the above-described desired range, and the encapsulating layer 6 in a cured state in which the peeling layer 5 is capable of being surely peeled from the encapsulating layer 6 in the peeling step (to be specific, when the encapsulating layer 6 is prepared from a two-step thermosetting resin composition, the encapsulating layer 6 in a B-stage state in which the curing is slightly progressed from the B-stage state immediately after the encapsulating step) is capable of being surely prepared. On the other hand, when the heating duration at the first temperature is not more than the above-described upper limit, the duration in the first heating step is shortened and the production cost of the LED device 1 is capable of being reduced.

[0100] The compressive elastic modulus at 23°C of the encapsulating layer 6 after the first heating step is as described above.

[0101] By the first heating step, the curing of the encapsulating layer 6 is slightly progressed from the B-stage state immediately after the encapsulating step, while the encapsulating layer 6 retains the state before complete curing. Among all, when the encapsulating layer 6 is in a B-stage state, by the first heating step, the curing (to be specific, an addition reaction of a condensation reaction and addition reaction curable type silicone resin composition when the encapsulating layer 6 contains the condensation reaction and addition reaction curable type silicone resin composition) is slightly progressed, while the encapsulating layer 6 retains the B-stage state.

[0102] [Peeling Step]
[0103] As shown by the phantom line in FIG. 1C, in the peeling step, the peeling layer 5 is peeled from the encapsulating layer 6. When the encapsulating layer 6 is formed of the first layer 61 and the second layer 62, the peeling layer 5 is peeled from the second layer 62.

[0104] A laminate made of the LED 2, the board 3, and the encapsulating sheet 4 is, for example, taken out from a normal pressure-heating device and the laminate is cooled to the normal temperature. Thereafter, in the laminate, the peeling layer 5 is peeled from the encapsulating layer 6.

[0105] [Second Heating Step]

[0106] In the second heating step, for example, a (1) normal pressure-heating device, a (2) mechanically pressurizing-heating device, a (3) fluid pressurizing-fluid heating device, or the like is used.

[0107] The (1) normal pressure-heating device is the same as that in the above-described normal temperature-heating device.

[0108] Examples of the (2) mechanically pressurizing-heating device include a hot-pressing device including a flat plate provided with a heater (a mechanically pressurizing-heating device) and a pressing device including a dryer including a pressing device having a flat plate (a fluid pressurizing-heating device).

[0109] The (3) fluid pressurizing-fluid heating device is a device that heats the encapsulating layer 6 at the second temperature, while the encapsulating layer 6 is fluid pressurized (by a static pressure). To be specific, an autoclave or the like is used.

[0110] Preferably, in view of effectively preventing the deformation of the encapsulating layer 6 before complete curing, a (1) normal pressure-heating device is used. In the case of the (1) normal pressure-heating device, the first heating step and the second heating step are capable of being performed with the same (1) normal pressure-heating device as that in the first heating step, that is, with the same type of the heating device as that in the first heating step, so that the device structure of the production device is capable of being simplified.

[0111] The second temperature in the second heating step is the temperature at which the encapsulating layer 6 is completely cured. When the encapsulating layer 6 after the first heating step is in a B-stage state, the second temperature is the temperature at which the encapsulating layer 6 is brought into a C-stage state. When the encapsulating layer 6 contains a condensation reaction and addition reaction curable type silicone resin composition, the second temperature is the temperature at which the addition reaction of the condensation reaction and addition reaction curable type silicone resin composition is capable of being substantially terminated (completed). To be specific, the second temperature is, for example, 60°C or more, preferably 75°C or more, or more preferably 135°C or more, and is, for example, 200°C or less, or preferably 180°C or less.

[0112] The heating duration at the second temperature is, for example, 10 minutes or more, or preferably 30 minutes or more, and is, for example, 20 hours or less, preferably 10 hours or less, or more preferably five hours or less.

[0113] The encapsulating layer 6 is completely cured by the second heating step. The encapsulating layer 6 that is in a B-stage state in the first heating step is, for example, brought into a C-stage state by the second heating step. When the encapsulating layer 6 contains a condensation reaction and addition reaction curable type silicone resin composition, the
addition reaction of the condensation reaction and addition reaction curable-type silicone resin composition is substantially terminated (completed).

[0114] The encapsulating layer 6 that is cured (completely cured) after the second heating step has a compressive elastic modulus at 23°C of, for example, above 0.6 MPa, preferably 1.2 MPa or more, or more preferably 1.4 MPa or more, and, of, for example, 15 MPa or less, or preferably 10 MPa or less.

[0115] In this way, as shown in FIG. 1C, the LED device 1 including the board 3, a plurality of the LEDs 2, and the encapsulating sheet 4 is produced.

[0116] In the LED device 1, as an encapsulating layer-covered semiconductor element, an encapsulating layer-covered LED 11 that includes the LEDs 2 and the encapsulating layer 6 covering the LEDs 2 is made on the board 3. That is, in the LED device 1, the encapsulating layer-covered LED 11 is mounted on the board 3.

[0117] [Function and Effect]

[0118] According to this method, in the first heating step, the encapsulating sheet 4 is heated under a normal pressure at the first temperature that is a relatively low temperature, so that the shape of the encapsulating layer 6 is retained, while the encapsulating layer 6 is in tight contact with the peeling layer 5 and thus, the deformation of the encapsulating layer 6 is capable of being suppressed.

[0119] Also, the first heating step is performed before the peeling step, so that in the encapsulating layer 6 that is subjected to the peeling step, the curing thereof is further progressed and thus, in the peeling step after the first heating step, a peeling of the peeling layer 5 from the encapsulating layer 6 is capable of being easily performed by causing an interfacial peeling on the border between the peeling layer 5 and the encapsulating layer 6. As a result, a desired encapsulating layer 6, that is, the encapsulating layer 6 having a desired thickness and shape is capable of being obtained.

[0120] Furthermore, in the peeling step, after the peeling layer 5 is peeled from the encapsulating layer 6, in the second heating step, when the encapsulating layer 6 is heated at the second temperature that is a relatively high temperature, the peeling layer 5 is already peeled from the encapsulating layer 6, so that the deformation of the peeling layer 5 based on the difference in the linear expansion coefficient between the peeling layer 5 and the encapsulating layer 6, to be specific, a value obtained by deducting the linear expansion coefficient of the encapsulating layer 6 from that of the peeling layer 5 is within the above-described range and thus, warping of the encapsulating layer 6 based on larger expansion of the peeling layer 5 than that of the encapsulating layer 6, accordingly, the deformation such as the warping of the encapsulating layer 6 is capable of being prevented.

[0121] According to this method, when the compressive elastic modulus at 23°C of the encapsulating layer 6 after the first heating step is 0.15 MPa or more, by the first heating step, the peeling layer 5 is capable of being surely peeled from the encapsulating layer 6 in the peeling step.

[0122] In other words, in a case where the compressive elastic modulus at 23°C of the encapsulating layer 6 after the first heating step is below the above-described lower limit, when the encapsulating layer 6 is subjected to the peeling step, the encapsulating layer 6 is excessively flexible, so that the peeling layer 5 is not capable of being peeled from the encapsulating layer 6, to be specific, the interfacial peeling on the border between the peeling layer 5 and the encapsulating layer 6 is not capable of being performed and thus, a cohesive failure may occur in the encapsulating layer 6.

[0123] On the other hand, in a case where the compressive elastic modulus at 23°C of the encapsulating layer 6 after the first heating step is not less than the above-described lower limit, when the encapsulating layer 6 is subjected to the second heating step, the shape of the encapsulating layer 6 is sufficiently retained, the above-described cohesive failure fails to occur in the peeling step, and the encapsulating layer 6 is hard enough to cause the interfacial peeling between the peeling layer 5 and the encapsulating layer 6. Thus, the peeling layer 5 is capable of being surely peeled from the encapsulating layer 6. As a result, the encapsulating layer 6 having excellent reliability is capable of being obtained.

[0124] According to this method, when the encapsulating layer 6 in the encapsulating step is in a 2-stage state of the two-step thermosetting resin composition, in the encapsulating step, the shape of the encapsulating layer 6 is capable of being surely retained. Thus, the LEDs 2 are capable of being surely embedded and encapsulated, while the shape of the encapsulating layer 6 is retained.

[0125] In this method, when the encapsulating layer 6 contains a filler and/or a phosphor, the shape retaining properties of the encapsulating layer 6 after the first heating step are capable of being improved.

[0126] According to this method, the deformation of the encapsulating layer 6 is prevented and the encapsulating layer 6 that is completely cured has excellent reliability is capable of being mounted on the board 3, so that the encapsulating layer-covered LED 11 having excellent reliability, accordingly, the LED device 1 is capable of being produced.

Modified Example

[0127] In the above-described first embodiment, a plurality of the LEDs 2 are disposed on the board 3. Alternatively, for example, though not shown, a single piece of the LED 2 can be also disposed on the board 3.

[0128] In the above-described first embodiment, the LED 2 that is a light semiconductor element as a semiconductor element in the present invention is described as one example. Alternatively, for example, though not shown, the semiconductor element can also include an electronic element.

[0129] The electronic element is a semiconductor element that converts electrical energy to energy other than light, to be specific, to signal energy or the like. To be specific, examples thereof include a transistor and a diode. The size of the electronic element is appropriately selected in accordance with its use and purpose.

[0130] In this case, the encapsulating layer 6 contains an encapsulating resin as an essential component and a filler as an optional component. An example of the filler further includes a black pigment such as carbon black. The mixing ratio of the filler with respect to 100 parts by mass of the encapsulating resin is, for example, 5 parts by mass or more, or preferably 10 parts by mass or more, and is, for example, 99 parts by mass or less, or preferably 95 parts by mass or less.

[0131] The properties (to be specific, the compressive elastic modulus, the linear expansion coefficient, and the like) of the encapsulating layer 6 are the same as those in the above-described first embodiment.

[0132] [First Temperature]

[0133] In the above-described first embodiment, the first temperature is set to be a fixed temperature, but the first temperature is not limited to this and the first temperature may
have, for example, a temperature range. To be specific, the first temperature may have a temperature rising range in which the temperature rises up to the second temperature.

To be specific, the first temperature has a temperature range of, for example, 20°C. or more, or furthermore, 25°C. or more, and of, less than the second temperature. The temperature rising rate at the first temperature is, for example, 1°C./min or more, or preferably 2°C./min or more, and is, for example, 30°C./min or less, or preferably 20°C./min or less. The temperature rising duration at the first temperature is, for example, 4 minutes or more, or preferably 5 minutes or more, and is, for example, 30 minutes or less, or preferably 12 minutes or less.

In this case, the same normal pressure-heating device is used in both the first heating step and the second heating step and the peeling step is performed at the inside of the normal pressure-heating device.

The encapsulating sheet 4 is, for example, set in the normal pressure-heating device in which the temperature thereof is a room temperature (about 20 to 25°C.) and subsequently, in the first heating step, the temperature is increased so that the temperature at the inside of the normal pressure-heating device reaches the second temperature. Subsequently, the peeling step is performed and thereafter, the second heating step is performed by heating the normal pressure-heating device at the second temperature.

As a result of the first temperature having a temperature rising range in which the temperature rises up to the second temperature, the production efficiency is capable of being improved.

Second Embodiment

In the second embodiment, the same reference numerals are provided for members and steps corresponding to each of those in the first embodiment, and their detailed description is omitted.

In the first embodiment, the support of the present invention is described as the board 3. Alternatively, for example, as shown by the phantom lines in FIG. 1, the support of the present invention is also capable of being described as a support sheet 12.

The second embodiment includes a disposing step (ref: FIG. 1A), an encapsulating step (ref: FIG. 1B), a first heating step (ref: the solid line in FIG. 1C), a peeling step (ref: the phantom line in FIG. 1C), a second heating step (ref: FIG. 1D), and a mounting step (ref: FIGS. 2A to 2C). Hereinafter, each of the steps is described in detail.

[Disposing Step]

In the disposing step, as shown in FIG. 1A, the LEDs 2 are disposed on the support sheet 12 as a support.

To be specific, first, the support sheet 12 is prepared.

The support sheet 12 is formed into the same plane shape as that of the board 3 in the first embodiment. As shown by the phantom line in FIG. 1A, the support sheet 12 includes a support board 10 and a pressure-sensitive adhesive layer 15 that is laminated on the upper surface of the support board 10.

The support board 10 is formed into a plate shape extending in the plane direction. The support board 10 is provided in the lower portion in the support sheet 12 and is formed into the generally same shape in plane view as that of the support sheet 12. The support board 10 is made of a hard material that is incapable of stretching in the plane direction. To be specific, examples of the material include silicon oxide (silica or the like), oxide such as alumina, metal such as stainless steel, and silicon. The support board 10 has a Young’s modulus at 23°C. of, for example, 100 GPa or more, preferably 100 GPa or more, or more preferably 10 GPa or more, and of, for example, 10 GPa or less. When the Young’s modulus of the support board 10 is not less than the above-described lower limit, the hardness of the support board 10 is secured and the LEDs 4 are capable of being further more surely supported. The Young’s modulus of the support board 10 is obtained from the compressive elastic modulus or the like of JIS H7002-2008. The support board 10 has a thickness of, for example, 0.1 mm or more, or preferably 0.3 mm or more, and of, for example, 5 mm or less, or preferably 2 mm or less.

The pressure-sensitive adhesive layer 15 is formed on the entire upper surface of the support board 10. An example of a pressure-sensitive adhesive material that forms the pressure-sensitive adhesive layer 15 includes a pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive and a silicone pressure-sensitive adhesive. The pressure-sensitive adhesive layer 15 can be also formed of an active energy ray irradiation peeling sheet or the like (to be specific, an active energy ray irradiation peeling sheet described in Japanese Unexamined Patent Publication No. 2005-286005 or the like) in which the pressure-sensitive adhesive force is reduced by application of an active energy ray. The pressure-sensitive adhesive layer 15 has a thickness of, for example, 0.1 mm or more, or preferably 0.2 mm or more, and of, for example, 1 mm or less, or preferably 0.5 mm or less.

In order to prepare the support sheet 12, for example, the support board 10 is attached to the pressure-sensitive adhesive layer 15. Also, the pressure-sensitive adhesive layer 15 can be directly laminated on the support board 10 by the following application method or the like. In the method, first, the support board 10 is prepared; next, a varnish that is prepared from the above-described pressure-sensitive adhesive material and a solvent blended is required is applied to the support board 10; and thereafter, the solvent is distilled off as required.

The support sheet 12 has a thickness of, for example, 0.2 mm or more, or preferably 0.5 mm or more, and of, for example, 6 mm or less, or preferably 2.5 mm or less.

Next, a plurality of the LEDs 2 are laminated on the support sheet 12. To be specific, the lower surface of each of the LEDs 2 is brought into contact with the upper surface of the pressure-sensitive adhesive layer 15.

In this way, a plurality of the LEDs 2 are disposed on the support sheet 12.

In the encapsulating step, as shown in FIG. 1A, first, the encapsulating sheet 4 is prepared. Thereafter, as shown in FIG. 1B, the LEDs 2 are encapsulated by the encapsulating sheet 4 in the same manner as that in the first embodiment.

As shown in FIGS. 1C and 1D, a first heating step, a peeling step, and a second heating step are sequentially performed in the same manner as that in the first embodiment.

The upper limit values of the first temperature and the second temperature in the first heating step are set in view of heat resistance of the support sheet 12.

In this way, the encapsulating layer-covered LED 11 in which a plurality of the LEDs 2 are covered with the encapsulating layer 6 is obtained on the support sheet 12.
In the mounting step, first, as shown in FIG. 2A, the encapsulating layer-covered LED 11 is peeled from the support sheet 12. To be specific, when the pressure-sensitive adhesive layer 15 is an active energy ray irradiation peel sheet, an active energy ray is applied to the pressure-sensitive adhesive layer 15.

In this way, the encapsulating layer-covered LED 11 is peeled from the support sheet 12. Subsequently, as shown by a dashed line in FIG. 2A, the encapsulating layer 6 is cut corresponding to each of the LEDs 2. To be specific, the encapsulating layer 6 is cut along the thickness direction. In this way, the encapsulating layer-covered LEDs 11 are singulated corresponding to each of the LEDs 2.

Thereafter, after the singulated encapsulating layer-covered LED 11 is selected in accordance with emission wavelength and luminous efficiency, as shown in FIG. 2B, encapsulating layer-covered LED 11 is mounted on the board 3. To be specific, a terminal provided on the lower surface of the LED 2 is connected to an electrode in the board 3 and the encapsulating layer-covered LED 11 is flip-chip mounted on the board 3.

In this way, the LED device 1 including the board 3, a single piece of the LED 2, and the encapsulating sheet 4 is produced.

In this method, the encapsulating layer-covered LED 11 including the encapsulating layer 6 that has excellent reliability and is completely cured and in which the deformation thereof is prevented is capable of being mounted on the board 3, so that the LED device 1 having excellent reliability is capable of being produced.

Among all, in the second embodiment, the LEDs 2 are disposed on the support sheet 12 (ref: the phantom line in FIG. 1A) and the LEDs 2 are supported by the support sheet 12 with a smaller supporting force than that of the LEDs 2 with respect to the board 3 in the first embodiment (ref: the solid line in FIG. 1A). Thus, the LED 2 in the second embodiment is easily shifted (displaced) in the plane direction with respect to the LED 2 in the first embodiment.

In the second embodiment, however, in the first heating step, the encapsulating sheet 4 is heated at a relatively low temperature, so that the displacement (chip shift) of the LED 2 is capable of being prevented.

In the third embodiment, the same reference numerals are provided for members and steps corresponding to each of those in the first embodiment, and their detailed description is omitted.

In the first embodiment shown in FIG. 1A, the board 3 is formed into a flat plate shape. Alternatively, for example, as shown in FIG. 3A, a concave portion 7 can be also formed.

The third embodiment includes a disposing step (ref: FIG. 3A), an encapsulating step (ref: FIGS. 3B and 3C), a first heating step (ref: the solid line in FIG. 3D), a peeling step (ref: the phantom line in FIG. 3D), and a second heating step (ref: FIG. 3E). Hereinafter, each of the steps is described in detail.

As shown in FIG. 3A, the concave portion 7 is formed so as to dent downwardly in a rectangular shape in plane view in the upper surface of the board 3 and is surrounded by a portion other than the concave portion 7 (the circumference) of the board 3 around the concave portion 7 in all directions (the front-rear and the right-left directions) without any space.

The concave portion 7 has a length of one side of, for example, 0.8 mm or more, or preferably 1 mm or more, and of, for example, 300 mm or less, or preferably 100 mm or less.

The concave portion 7 has a depth H1 (a length, in the up-down direction, between the upper surface of a portion around the concave portion 7 (hereinafter, referred to as a circumferential upper surface 21) and the upper surface of the concave portion 7 (hereinafter, referred to as a concave upper surface 14)) of, for example, 1000 μm or less, preferably 500 μm or less, more preferably 200 μm or less, or particularly preferably 170 μm or less, and of, for example, 10 μm or more, or preferably 50 μm or more.

The depth H1 of the concave portion 7 with respect to a thickness H2 of the board 3 is, for example, 90% or less, or preferably 80% or less, and is, for example, 10% or more, or preferably 20% or more.

A plurality of the LEDs 4 are disposed in the concave portion 7. The thickness of the LED 4 with respect to the depth H1 of the concave portion 7 is, for example, 90% or less, or preferably 80% or less.

Encapsulating Step

The encapsulating step includes a pressure-welding step (ref: FIG. 3B) and a pressure exposed step (ref: FIG. 3C).

Pressure-Welding Step

In the pressure-welding step, first, the encapsulating sheet 4 is prepared. As shown in FIG. 3A, a thickness H3 of the encapsulating layer 6 with respect to the depth H1 of the concave portion 7 is, for example, 50% or more, preferably 80% or more, or more preferably 100% or more, and is, for example, 900% or less, preferably 700% or less, or more preferably 400% or less.

In the pressure-welding step, next, the prepared encapsulating sheet 4 is disposed in opposed relation at spaced intervals to the upper side of the board 3 and then, is put into a vacuum chamber such as a vacuum pressing machine.

Next, the pressure in the vacuum chamber is reduced. To be specific, the pressure in the vacuum chamber is evacuated with a vacuum pump (a pressure-reducing pump) or the like.

As shown in FIG. 3B, the inside of the vacuum chamber is brought into a reduced pressure atmosphere and the encapsulating layer 6 in the encapsulating sheet 4 is pressure-welded to the board 3 with a pressing machine of the vacuum pressing machine or the like.

The reduced pressure atmosphere in the pressure-welding step is, for example, 300 Pa or less, preferably 100 Pa or less, or particularly preferably 50 Pa or less.

In the pressure-welding in the pressure-welding step, the amount (hereinafter, defined as a pushed-in amount) in which the encapsulating layer 6 is pushed into (pressure-welded to) the side of the board 3 (the lower side) is controlled.

By controlling the pushed-in amount, the lower surface of the encapsulating layer 6 is adjusted so as to be in tight contact with the circumferential upper surface 21 and to be separated from the concave upper surface 14.

To be specific, the encapsulating layer 6 is adjusted so that the pushed-in amount shown in the following formula
is minus and the absolute value of the pushed-in amount is smaller than the depth H1 of the concave portion 7.

[0187] Pushed-in amount=(height H2 of the concave upper surface 14 with the bottom surface of the board 3 as a reference-thickness H3 of the encapsulating layer 6 before the pressure-welding step)−height H4 of the upper surface of the encapsulating layer 6 with the bottom surface of the board 3 after the pressure-welding step as a reference.

[0188] When the pushed-in amount is plus, the encapsulating layer 6 is excessively pressed to such a degree that the thickness (H4−H2) of the encapsulating layer 6 after the pressure-welding step becomes thinner than the thickness H3 of the encapsulating layer 6 before the pressure-welding step. In this way, the encapsulating layer 6 is brought into tight contact with the concave upper surface 14. In contrast, when the pushed-in amount is minus, the encapsulating layer 6 is adjusted so as to be separated from the concave upper surface 14.

[0189] When the absolute value of the pushed-in amount is larger than the depth H1 of the concave portion 7, the lower surface of the encapsulating layer 6 is not brought into tight contact with the circumferential upper surface 21 and the concave portion 7 is not capable of being confined by the encapsulating layer 6. In contrast, when the absolute value of the pushed-in amount is smaller than the depth H1 of the concave portion 7, the encapsulating layer 6 is adjusted so as to be brought into tight contact with the circumferential upper surface 21.

[0190] The absolute value of the pushed-in amount (H2−H4−H5) with respect to the depth H1 of the concave portion 7 is, for example, less than 100%, or preferably 95% or less, and is, for example, above 0%, or preferably 10% or more.

[0191] The temperature in the pressure-welding step is, for example, 0°C. or more, preferably 15°C. or more, and is, for example, 60°C. or less, or preferably 35°C. or less.

[0192] In the pressure-welding step, the encapsulating sheet 4 is retained in a state of being pushed down (pushed in) as required.

[0193] The duration of retention is, for example, 5 seconds or more, or preferably 10 seconds or more, and is, for example, 10 minutes or less, or preferably 5 minutes or less.

[0194] As shown in FIG. 3B, by the pressure-welding step, a reduced-pressure space 8 that is, in the concave portion 7, defined by the board 3 and the encapsulating layer 6 and is sealed is formed.

[0195] The pressure-welding step is performed at, for example, the same temperature as that in the encapsulating step in the first embodiment or preferably at a normal temperature.

[0196] (Pressure Exposed Step)

[0197] As shown in FIG. 3C, the pressure exposed step is a step of exposing the board 3 and the encapsulating sheet 4 to an atmospheric pressure atmosphere.

[0198] After the pressure-welding step, by the pressure exposed step, the encapsulating layer 6 is brought into tight contact with the concave portion 7 so as to conform to the shape thereof.

[0199] To be specific, the operation of the vacuum pump is stopped and the pressure in the vacuum chamber is exposed.

[0200] Then, by a differential pressure between a pressure in the reduced-pressure space 8 and the atmospheric pressure, the upper surface of the encapsulating layer 6 is pressed downwardly and the lower surface of the encapsulating layer 6 is deformed so as to conform to the shape of the concave portion 7 to be brought into tight contact with the upper surface of the concave portion 7.

[0201] By the pressure exposed step, the encapsulating layer 6 encapsulates the LEDs 4 so as to be in tight contact with the concave portion 7.

[0202] [First Heating Step, Peeling Step, and Second Heating Step]

[0203] As shown in FIGS. 3D and 3E, a first heating step, a peeling step, and a second heating step are sequentially performed in the same manner as that in the first embodiment.

[0204] In this way, the LED device 1 is obtained.

[0205] [Function and Effect]

[0206] According to the method for producing the LED device 1, in the pressure-welding step, the encapsulating layer 6 is pressure-welded so as to be separated from the concave upper surface 14. Thus, when a member around the LEDs 2, to be specific, the LEDs 2 are wire-bonding connected to the board 3, the stress of the encapsulating layer 6 with respect to a wire at the time of being pressure-welded thereto is capable of being reduced.

[0207] On the other hand, in the pressure-welding step, the encapsulating layer 6 confines the circumferential upper surface 21 under a reduced pressure atmosphere, so that the reduced-pressure space 8 that is, in the concave portion 7, defined by the board 3 and the encapsulating layer 6 and is sealed is formed.

[0208] Thus, in the pressure exposed step, when the atmospheric pressure is exposed, the encapsulating layer 6 fills the concave portion 7 without any space by a differential pressure between a pressure in the reduced-pressure space 8 and the atmospheric pressure. Thus, generation of a void between the board 3 and the encapsulating layer 6 is capable of being suppressed.

[0209] As a result, when the LEDs 2 are wire-bonding connected to the board 3, the deformation of the wire (not shown) is capable of being reduced and the generation of the void is capable of being suppressed.

EXAMPLES

[0210] Values in Examples and the like shown in the following can be replaced with the values (that is, the upper limit value or the lower limit value) described in the above-described embodiment.

Example 1

Disposing Step

[0211] A plurality of LEDs were disposed on a board. Each of the LEDs had a thickness of 100 μm and the gap between the LEDs was 1.5 mm.

[0212] [Encapsulating Step]

[0213] An encapsulating sheet was prepared.

[0214] To be specific, 20 g (1.4 mmol of a vinylsilyl group) of a dimethylvinylsilyl-terminated polydimethylsiloxane (a vinylsilyl group equivalent of 0.071 mmol/g); 0.40 g (1.6 mmol of a hydrosilyl group) of a trimethylsilyl-terminated dimethylsiloxane-methylhydridosiloxane copolymer (a hydrosilyl group equivalent of 4.1 mmol/g); 0.036 mL (1.9 μmol) of a xylene solution (a platinum concentration of 2 mass%) of a platinum-diynevinyltetramethylsiloxane complex (a hydrosilylation catalyst); and 0.063 mL (57 μmol) of a methanol solution (10 mass%) of a tetramethylammonium hydroxide (TMAH, a curing retarder) were mixed to be
stirred at 20°C for 10 minutes and then, 30 parts by mass of silicone microparticles (Tospearl 2000B, manufactured by Momentive Performance Materials Inc.) were blended with respect to 100 parts by mass of the obtained mixture to be uniformly stirred and mixed, so that a two-step curable type silicone resin composition was obtained.

Separately, LR7665 (a two-step curable type silicone resin composition, manufactured by Wacker AsahiKasei Silicone Co., Ltd.) was applied onto a peeling layer (a thickness of 50 μm, a linear expansion coefficient: 90×10⁻⁶ K⁻¹) made of a PET film that was subjected to a release treatment, so that a second coated film having a thickness of 200 μm was prepared.

Next, the second coated film was heated at 105°C for 10 minutes, so that a second layer having a thickness of 200 μm was obtained.

Next, the two-step curable type silicone resin composition was applied onto the second layer to prepare a first coated film. The obtained first coated film was heated at 135°C for 15 minutes, so that a first layer that was made of the two-step curable type silicone resin composition in a semi-cured state (in a B-stage state) and had a thickness of 800 μm was fabricated. In this way, an encapsulating layer made of the second layer and the first layer was fabricated. That is, in this way, an encapsulating sheet including the peeling layer and the encapsulating layer (a thickness of 800 μm, a linear expansion coefficient: 260×10⁻⁶ K⁻¹) was fabricated (ref: FIG. 1A).

The board mounted with the LEDs and the encapsulating layer in the encapsulating sheet were disposed in opposed relation to each other in the thickness direction. The resulting laminate was put into a vacuum chamber of a vacuum pressing machine (model number: CV200, manufactured by Nichigo-Morton Co., Ltd.).

The pressure in the vacuum chamber was evacuated with a vacuum pump (a pressure-reducing pump) (model number: E2M80, manufactured by Edwards Japan Limited) and the pressure in the vacuum chamber was reduced to be 50 Pa at a normal temperature.

The board and the encapsulating sheet were pressure-welded to each other under a reduced pressure atmosphere with the vacuum pressing machine to be retained at 20°C for 3 minutes. Thereafter, the vacuum pump was stopped and the pressure in the vacuum chamber was exposed.

In this way, the LEDs were encapsulated by the encapsulating layer (ref: FIG. 1B).

[First Heating Step]

The board mounted with the LEDs that were encapsulated by the encapsulating layer was set in a heating oven.

Next, the inside of the heating oven was set to be 50°C and the obtained laminate was heated for 12 hours.

Thereafter, after the laminate was taken out from the heating oven to be cooled to 25°C, the peeling layer was peeled from the encapsulating layer.

(Second Heating Step)

Thereafter, the laminate was again set into the heating oven.

Next, the temperature at the inside of the heating oven was increased to 150°C at a temperature rising rate of 2°C/min and the laminate was heated at 150°C for two hours. In this way, the encapsulating layer was brought into a C-stage state, that is, was completely cured.

In this way, an LED device including the board, a plurality of the LEDs, and the encapsulating sheet was produced.

Example 2

An LED device was produced in the same manner as that in Example 1, except that the heating duration in the first heating step was changed from 12 hours to 18 hours.

Example 3

An LED device was produced in the same manner as that in Example 1, except that the heating duration in the first heating step was changed from 12 hours to 24 hours.

Comparative Example 1

An LED device was produced in the same manner as that in Example 1, except that the temperature and the duration in the first heating step were changed to 150°C and 14 hours, respectively and the second heating step was not performed.

Comparative Example 2

An LED device was produced in the same manner as that in Example 1, except that the peeling step was performed after the second heating step.

Comparative Example 3

An LED device was produced in the same manner as that in Example 1, except that the peeling step was performed after the encapsulating step and before the first heating step.

(Evaluation)

The compressive elastic modulus at 23°C of each of the encapsulating layers after the encapsulating step, after the first heating step (before the peeling step), and after the second heating step in Examples and Comparative Examples was measured. The compressive elastic modulus was measured in conformity with the description in JIS H 7002:2008.

(Deformation of Encapsulating Layer and Peeling Layer)

A presence or absence of deformation and a cohesive mode in each of the encapsulating layers and the peeling layers in the obtained LED devices in Examples and Comparative Examples were visually observed.

The results are shown in Table 1.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encapsulating Layer</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>After Encapsulating Step</td>
</tr>
</tbody>
</table>
TABLE 1-continued

<table>
<thead>
<tr>
<th>Peeling Mode</th>
<th>Interfacial Peeling</th>
<th>Interfacial Peeling</th>
<th>Interfacial Peeling</th>
<th>Interfacial Peeling</th>
<th>Interfacial Peeling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Presence or Absence of Deformation</td>
</tr>
</tbody>
</table>

*First heating step: 150°C.
*Second heating step.
*Peeling step performed after encapsulating step and before first heating step.

[0242] While the illustrative embodiments of the present invention are provided in the above description, such is for illustrative purpose only and it is not to be construed as limiting the scope of the present invention. Modification and variation of the present invention that will be obvious to those skilled in the art is to be covered by the following claims.

INDUSTRIAL APPLICABILITY

[0243] The encapsulating layer-covered semiconductor element and the semiconductor device obtained by a method for producing an encapsulating layer-covered semiconductor element and a method for producing a semiconductor device are used in various semiconductor uses.

1. A method for producing an encapsulating layer-covered semiconductor element comprising:
 - a disposing step of disposing a semiconductor element on a support;
 - an encapsulating step of embedding and encapsulating the semiconductor element by an encapsulating layer in an encapsulating sheet including a peeling layer and the encapsulating layer laminated below the peeling layer and made from a thermosetting resin before complete curing, and
 - a heating step of heating and curing the encapsulating layer after the encapsulating step, wherein the heating step includes:
 - a first heating step in which the encapsulating sheet is heated under a normal pressure at a first temperature, a peeling step in which the peeling layer is peeled from the encapsulating layer after the first heating step, and a second heating step in which the encapsulating layer is heated at a second temperature that is higher than the first temperature after the peeling step.

2. The method for producing an encapsulating layer-covered semiconductor element according to claim 1, wherein the encapsulating layer after the first heating step has a compressive elastic modulus of at least 23°C. of 0.5 MPa or more.

3. The method for producing an encapsulating layer-covered semiconductor element according to claim 1, wherein the encapsulating layer in the encapsulating step is in a B-stage state of a two-step thermosetting resin composition.

4. The method for producing an encapsulating layer-covered semiconductor element according to claim 1, wherein the encapsulating layer contains a filler and/or a phosphor.

5. The method for producing an encapsulating layer-covered semiconductor element according to claim 1, wherein the first temperature has a temperature rising range in which the temperature rises up to the second temperature.

6. The method for producing an encapsulating layer-covered semiconductor element according to claim 1, wherein the support is a board and in the disposing step, the semiconductor element is mounted on the board.

7. A method for producing a semiconductor device comprising the steps of:
 - producing an encapsulating layer-covered semiconductor element and mounting the encapsulating layer-covered semiconductor element on a board, wherein
 - the encapsulating layer-covered semiconductor element is produced by a method for producing an encapsulating layer-covered semiconductor element, wherein the method for producing an encapsulating layer-covered semiconductor element comprises:
 - a disposing step of disposing a semiconductor element on a support,
 - an encapsulating step of embedding and encapsulating the semiconductor element by an encapsulating layer in an encapsulating sheet including a peeling layer and the encapsulating layer laminated below the peeling layer and made from a thermosetting resin before complete curing, and
 - a heating step of heating and curing the encapsulating layer after the encapsulating step, and
 - the heating step includes:
 - a first heating step in which the encapsulating sheet is heated under a normal pressure at a first temperature, a peeling step in which the peeling layer is peeled from the encapsulating layer after the first heating step, and a second heating step in which the encapsulating layer is heated at a second temperature that is higher than the first temperature after the peeling step.

* * * *