WO 02/23375 A2

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

21 March 2002 (21.03.2002) PCT WO 02/23375 A2
(51) International Patent Classification’: GOG6F 17/00 (74) Agents: PERKINS, Jefferson et al.; Piper Marbury Rud-
nick & Wolfe, P.O. Box 64807, Chicago, IL 60664-0807

(21) International Application Number: PCT/US01/17830 (US).

(22) International Filing Date: 1 June 2001 (01.06.2001) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
25) Filing L . Enelish AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(25) Filing Language: nghs CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
Lo , . GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
(26) Publication Language: English LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(30) Priority Data: MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
09/661,332 13 September 2000 (13.09.2000) US SL,TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(71) Applicant: SMARTSERYV ONLINE, INC.[US/US];One (84) Designated States (regional): ARIPO patent (GH, GM,
Station Place, Stamford, CT 06902 (US). KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
(72) Inventors: SANTOSSIO, Randy, L.; 204 New Haven Av- patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

enue, Apt 2B, Derby, CT 06418 (US). LA PORTE, Ger-
ard; 7 Hillcrest Drive, New Fairfield, CT 06812 (US).

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR PROVIDING DEVICE-SPECIFIC FORMATTED DATA TO A PLURALITY OF
BROWSER-ENABLED DEVICES

10
PALM VI,
WINDOWS CE 16
&q&ggg 14 DEVICES, HOML PHONES,
NETSCAPE R WAP PHONES,
NAVIGATOR PAGERS {7/ HTML PHONES
DESKTOPS ~ OPERA DAs PHONES WITH
LAPTOPS SUBNQTEBOCKS MICROBROWSERS
NOTEBOOKS

WEB-TO-WIRFLESS SERVER
» WINDOWS 2000

+1IS 5.0

« [SAPI DLL

* DEVICE-SPECIFIC TEMPLATES

(57) Abstract: A method and system for facilitating com-
munications between a content delivery server and a plu-
rality of browser-enabled devices, including both wired and
wireless devices. The method includes the step of initiating
a request for data by a user using a browser-enabled device,
where the request includes indicia of device and browser
type. The request is transmitted from the browser-enabled
device to the system’s content delivery server across a com-
munication network such as the Internet. The request is re-
ceived by the content delivery server, which then retrieves
the data requested by the user from networked data servers
or from a third-party server. The data is formatted by the
content delivery server as a function of the indicia of device
and browser type. The formatted data is finally transmitted
from the content delivery server to the browser-enabled de-
vice across the communication network.

w0 02/23375 A2 D000 0 AN A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report

ning of each regular issue of the PCT Gazette.

WO 02/23375 PCT/US01/17830

METHOD AND APPARATUS FOR PROVIDING
DEVICE-SPECIFIC FORMATTED DATA TO A
PLURALITY OF BROWSER-ENABLED DEVICES

FIELD OF THE INVENTION

The present invention relates to the retrieval and display of content and, in particular,
to the display of requested Internet information on a plurality of browser-enabled devices,
including both full capability browser-enabled devices and limited capability browser-enabled

devices.

BACKGROUND OF THE INVENTION

It is estimated that the largest growth in Internet usage in the next few years will come
from other than personal computer (“PC”) users. The majority of that growth will come in
the form of wireless Internet devices, including wireless personal data assistants (“PDA”),
wireless phones and wireless interactive pagers. Information and material that is made
available via the World Wide Web (“Web™), however, generally is designed to be accessed by
Full Capability browser-enabled devices (hereinafter "FCB Devices"), predominantly PCs.
Limited Capability browser-enabled devices (hereinafter "LCB Devices") display content in
ways vastly different from PCs and from each other. In order for these different devices to be
able to access the Web as efficiently as PCs do now, providers of Internet content may need
to provide their material in more than one, and possibly several different formats, eéch of
which is suited for a different type of browser-enabled device.

This reality is a particular problem for E-commerce providers. In the fast paced
Internet business environment, it is important to adapt to customers’ needs and desires as

quickly as possible, or the competition will fill the space. Not only is it desirable to bring E-

WO 02/23375 PCT/US01/17830

commerce to the LCB Devices in a quick fashion, it is also desirable to do it cost effectively.
If an E~commerce provider was required to replicate its current Internet offering across a
variety of different servers for display on different devices, the cost could be prohibitively
expensive.

An example of an E-commerce provider seeking to provide service by means of LCB
Devices may be a brokerage that already provides an Internet trading service. The brokerage
may desire to permit its existing customers to access its trading service via a portable wireless
device to provide them with greater flexibility and service. The brokerage also may desire to
capture potential new customers who may wish to access brokerage trading service functions
via such a device. Thus, the brokerage would be faced with adapting its existing on-line
trading service functionality for display on, and interaction with, a multitude of LCB Devices.

Due to the vastly different programming requirements for displaying Web pages on different
devices, this would not be a simple task. It may even entail, as stated above, the need to
recreate the existing on-line brokerage service on multiple different web servers for each
device potential customers may use.

Other examples of the above dilemma are not hard to imagine. Even the basic Web
content provider who wishes to provide access to its content through a multitude of different
browser-enabled devices is faced with the prospect of creating multiple different server
systems for each individual device. There is a great need, then, for a system which will
retrieve Internet information in response to a request from a user, recognize the specific type
of device making the inquiry and supply the requested information in the proper format for
that particular browser-enabled device. It is desirable that such a system is able to determine

the type of browser -enabled device and browser requesting such information, so that the

WO 02/23375 PCT/US01/17830

system can retrieve the requested data, insert the data into a document in the required format
for the specific device, and send the formatted data to the requesting device.

In addition to the multiple display requirements required for the multitude of Web
devices, another probiem encountered in adapting existing Internet E-Commerce sites for use
via LCB Devices involves the use of cookies. Cookies provide for the storing, on a browser-
enabled device, of information that can be accessed by a Web server to identify user or
session information, and potentially to customize the resulting information for the user’s
needs. Currently, the ability to store cookies on LCB Devices is non-existent or very limited.

Since many E-commerce sites require the use of cookies to function properly, it will be
necessary for an E-commerce provider to resolve this problem. In other words, there is a
need to address the use of cookies by E-commerce Internet sites that seek to be accessed by
both FCB Devices, which have the ability to store cookies, and LCB Devices, many of which

do not have the ability to store cookies.

SUMMARY OF THE INVENTION

In general, the networked content delivery system of the present invention involves a
process in which Internet content providers may provide for the delivery and display of their
content on a plurality of known browser-enabled devices, including PCs, wireless notebooks,
PDAs, interactive pagers and wireless phones.

The basic operation of the invention is as follows. A customer, using a browser-
enabled device, makes a request for data. The request can be as simple as requesting the
display of information from a Web site by entering the address, or Uniform Resource Locator
(“URL™), of the site into the device’s browser, micro-browser or clipping service. The

invention includes an intermediary system that determines the type of device that is the source

WO 02/23375 PCT/US01/17830

of the request, as well as the markup language that the device’s browser can read. The system
retrieves the data from a third-party Web server or from a data server on a Jocal area network,
and places it into a template for transmission to the requesting device. The template is a
partially completed page with some dynamically replaced data variable markers, or tags, and
is specific to the type of device making the request, the markup language being used and the
type of request that was initially made. The system requires the request to have been initiated
by a browser that is capable of reading at least one of a pre-defined set of markup languages,
such as HTML, Handheld Device Markup Language (“HDML”), Extensible HyperText
Markup Language (“XHTML”) or Wireless Markup Language (“WML”). The system further
requires the type of request itself to be one of a pre-defined group of requests.

An example of the system in operation, although the system is not limited to such
example, involves the facilitation of an online brokerage system. A requesting browser-
enabled device may be a PC, a laptop, a PDA, an interactive pager or a wireless phone, with
the request being made by a browser that is capable of displaying the resulting document (a
“Markup Language Document” or “MLD”) formatted in one or more of the known markup
languages: HTML, HDML, XHTML or WML. The type of request may be a stock quote,
stock price history, stock research, stock transactions, stock news, transaction history, account
information or customer service. Templates are created for each combination of the listed
variables and are used for each request received.

Another aspect of the invention is its ability to recognize and reformat “cookies” for
devices that may be unable to store them. Many existing Web sites, and virtually all E-
commerce sites, require that the browser that is attempting to access the 31tc be capable of
accepting and storing a “cookie” file on the browser-enabled device. Cookies are files that

contain a small amount of identifying information relating to the device, user, session or a

4

WO 02/23375 PCT/US01/17830

combination of these and possibly other pieces of information. Some wireless phones, PDAs
and two-way pagers, however, currently are unable to accept and store cookie files from Web
sites that attempt to place them. Under one embodiment of the present invention, when
requested data is retrieved from a third-party Web site, the system of the invention will
intercept a cookie that the third-party Web site is attempting to set, convert the cookie data
into a text field, place the converted text into the response template and send it to the
requesting device as part of the final Markup Language Document (in a manner that it will
not be displayed to the user). If a subsequent request is sent back to the system from that
results document, the cookie data is passed back to the system with the request, reconverted
to its original format, and passed to the third-party Web server as a normal cookie. The
process repeats itself with the response back to the system.

Thus, the invention provides for the ability of one Web server and one set of data
sources to communicate with a plurality of browser-enabled devices, including PCs, laptops,
PDAs, wireless phones, and two-way pagers. The invention eliminates the duplicity that
would have been required under the prior art. The invention also allows for the rapid
integration of wireless Internet access to existing Internet sites by being able to retrieve
information from third-party Web servers and format the data for the specific LCB Devices
accessing the site. An E-commerce provider with a current Web server for PCs can provide
access to its Web site through a plurality of wireless LCB Devices without the costs or time
associated with completely duplicating the server for each device. The invention’s ability to
translate the cookie information facilitates the ability to use existing Web site designs for

access to new devices.

WO 02/23375 PCT/US01/17830

TERMINOLOGY

Definitions of certain terms used to describe the present invention, as defined by the

inventors, are given below:

Browser-enabled Device: A computer device, including, but not limited to, personal

computers, notebook computers, personal data assistants, laptop computers, handheld
computers, wireless two-way pagers, and wireless phones, containing browser
software which allows the device to retrieve information from a remote source.

Content delivery server: A computer server connected to browser-enabled devices

across a network, programmed to retrieve data requested by the devices and format the
retrieved data for display on the device consistent with the capabilities of the device
browser.

Full Capability Browser-enabled Devices ("FCB Devices"): Devices containing

browser software capable of completely displaying documents formatted in the
HyperText Markup Language ("HTML").

Limited Capability Browser-enabled Devices ("LCB Devices"): Devices containing
browser software capable of displaying documents formatted in certain markup
languages, including other than HTML, but which may or may not be capable of
completely displaying documents formatted in HTML.

Networked content delivery system: A system for delivering content across a

computer network where the network can be a local area network, the Internet, an
intranet, or any other type of wired or wireless connection between one or more
browser-enabled devices and a content delivery server.

Markup Language Document (MLD): A document formatted in one of a known set of

markup languages for display on a browser-enabled device.

6

WO 02/23375 PCT/US01/17830

¢ Markup Language Document (MIL.D) Template: A template formatted in one of a

known set of markup languages used to create final MLDs for the display of requested
data on browser-enabled devices.

° Specific Application Function (SAF): A programmed function residing within an

ISAPI DLL which performs the specific commands requested by a user of a browser-
enabled device on a networked content delivery system.

* Specific Application Function (SAF) Template: A template file formatted in a

markup language, used to create datasets of requested data to be inserted into a larger,

final MLD template used to display requested results to a user.

BRIEF DESCRIPTION OF THE DRAWINGS

Further aspects of the invention and their technical advantages will be discovered by
reading the following detailed description, when read in conjunction with the drawings, in
which like characters identify like parts and in which:

Figure 1 is a high-level schematic diagram of the networked content delivery system
of the present invention in one embodiment;

Figure 2 is a high-level schematic diagram of the networked content delivery system
of a present invention in a second embodiment;

Figure 3 is a functional block diagram of a content delivery server of the present
invention as used in the embodimént of FIG. 1.

Figure 4 is a functional block diagram of a content delivery server of the present

invention in the embodiment of FIG. 2.

WO 02/23375 PCT/US01/17830

Figure 5 shows a HyperText Transfer Protocol (“HTTP”) header, received by the
content delivery server of Figures 3 or 4, as part of a request from a device using Microsoft®
Internet Explorer, Version 5.5.

Figure 6 shows an HTTP header, received by the content deﬁvery server of Figures 3
or 4, as part of a request from a device using Palm, Inc.’s Web browser for Palm handheld
devices.

Figure 7 shows an HTTP header, received by the content delivery server of Figures 3
or 4, as part of a request from a device using Phone.com’s WAP/HDML browser.

Figure 8 shows a flow chart for an initial device/browser recognition module of the
present invention.

Figure 9 shows a flow chart for a log-in function in one exemplary application of the
networked content delivery system of the present invention.

Figure 10 is a first illustration example of the display of an HTML Web page on a
two-way wireless pager.

Figures 11a, 11b, 11c and 11d show a flow chart for a specific application function in
one eiemplary application of the system of the present invention.

Figure 12 is a second illustration example of the display of an HTML Web page on a
two-way wireless pager.

Figure 13 is a third illustration example of the display of an HTML Web page on a
two-way wireless pager.

Figure 14 is the HTML code for a template for the display of the results of the specific

application function illustrated in Figures 11a, 11b, 11c and 11d.

WO 02/23375 PCT/US01/17830

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 shows the preferred embodiment of the networked contént delivery system of
the present invention. The system, indicated generally at 10, is capable of receiving requests
from a multitude of browser-enabled devices, which can include PCs 12, PDAs 14 and
wireless phones 16. Other browser-enabled devices such as two-way pagers (not shown) are
capable of employing the invention; in general, the invention has application to any device
which has a display and which has some form of browser software that permits a user to
retrieve information from a remote source. These devices communicate with the Internet 18
either directly, as in the case with PCs or laptops, or through gateways 20, 22, as required by
PDAs and browser-enabled wireless phones. These gateways 20, 22 can be a comp;)nent of a
commercial wireless service provider, similar to the more common Internet Service Providers
(“ISP”) that are used by PCs and laptops. Examples of services that implement such
gateways 20, for PDAs are Palm.net from Palm, Inc. of Santa Clara, California, and Go.net
from GoAmerica Communications Corp. of Hackensack, New Jersey. Examples of services
that implement such gateways 22 for wireless phones include AT&T Pocketnet from AT&T
Wireless Inc., of New York, New York, and Sprint PCS Web, from Sprint PCS Inc., of
Kansas City, Missouri. Once a request from any of these devices 12, 14 or 16 is made, and is
communicated through the Internet 18, it is directed to the content delivery server 24. The
content delivery server 24 then communicates with and retrieves data from a back-end data
server or servers 26. As shown in FIG. 1, the back-end data servers are connected to the
content delivery server 24 through a network such as a local area network 25.

An alternative embodiment of the networked content delivery system 10 is depicted in
FIG. 2. Here, a third-party Web server 28 replaces the back-end data servers 26 and is

connected to the content delivery server 24 via a communication network 19. The

WO 02/23375 PCT/US01/17830

communication network 19 may be a local area network, a wide area network, a virtual
private network or the Internet.

The operation of the networked content delivery system 10 will now be described. To
facilitate the understanding of the system, each component of the system depicted in FIG. 3
will be generally described and then an example of the system’s operation shall follow.
Specifically, each component’s functions, while executing an exemplary application entitled
Snap Quote, from SmartServ Online, Inc. of Stamford, Connecticut, will be explained. The
explanation of this particular application, however, should not be interpreted to limit this
invention to this exemplary application.

In the illustrated embodiment, the core of the networked content delivery system 10 is
a content delivery server 24 running an Internet Web server application such as Internet
Information Services (“IIS”), by Microsoft Corporation, Redmond, Washington, running on
operating system software such as Microsoft® Windows® 2000 Server, also by Microsoft
Corporation. The specific application functions performed by the content delivery server 24
make use of a collection of Internet Server Application Programming Interface (“ISAPI”)
Dynamic Link Library (“DLL”) files. ISAPI is a framework for creating DLLs to provide
Internet server-side functionality. The ISAPI DLL files perform the specific functions
requested by the software program and IIS facilitates this operation.

The IIS software on the content delivery server 24 is the first interface to receive
requests from browser-enabled devices. For each received request, IIS calls a specific
application function, or SAF, that resides within an ISAPI DLL to perform the request
specified by the user. If at that point the ISAPI DLL is not yet loaded into memory on the
content delivery server 24, for example because this is the first call to an SAF resident in that

ISAPI DLL, then the ISAPI DLL will be loaded into the memory of the content delivery

10

WO 02/23375 PCT/US01/17830

server 24 and an instance of the SAF will be called by IIS. Along with the SAF call, IIS will
pass a set of parameters to the SAF. These parameters are dependent on the type of request
being made and the specific SAF being called.

Once a request is made via a call to the relevant SAF, it is handled generally as
depicted in FIG. 3, which shows a block diagram of the basic process flow of the networked
content delivery system 10 of the present invention. Each SAF has its own server request
manager 30 as part of its structure. The task of the server request manager 30 is to listen for
and receive requests from IS 29 once the ISAPI DLL in which the SAF resides has been
loaded into memory. When the server request manager 30 receives a request for information,
it classifies and processes that request. The server request manager 30 then informs the
thread pool manager 32 that a request h;cxs been received.-

Each ISAPI DLL of the networked content delivery system 10 includes its own thread
pool manager 32 that is responsible for managing the ISAPI DLL’s own thread pool 34. The
functionality of the thread pool manager 32 and thread pool 34 are the same in all of the
system’s ISAPI DLLs; there may, however, be a different number of threads allocated within
the thread pool 34 for each ISAPIDLL. As an ISAPI DLL is loaded into memory, its
associated thread pool manager 32 is initialized. Upon initialization of an ISAPIDLL.’s
thread pool manager 32, it creates a certain number of threads, the amount of which is preset
for each ISAPI DLL. A thread is the basic entity to which the operating system allocates time
access to the computer’s central processing unit. A thread can execute any part of an
application’s instruction code, including parts that currently are being executed by another
thread. The thread pool manager 32 then corrals the created threads in the thread pool 34 and
sets them to the “ready” state. Each thread receives its instructions from the thread pool

manager 32.

11

WO 02/23375 PCT/US01/17830

The thread pool manager 32 manages the thread pool 34 to permit the content delivery
server 24 to handle multiple requests at the same time. The individual threads in the thread
pool 34 make all of the data access calls to the data servers 26 and collect the raw data
necessary to fulfill requests from users. The thread pool manager 32 provides instructions to
each thread, based on requests of the server request manager 30 that called the thread pool
manager 32. When the thread pool manager 32 hands off the instructions that it received
from the server request manager 30 to a thread, it marks that thread as “busy.” While one
thread is performing its assigned task, the thread pool manager 32 continues to accept calls
from the server request manager 30 of this SAF (as well as from other server request
managers 30 of other SAFs resident within the same ISAPI DLL) and to assign tasks to other
threads within the thread pool for this ISAPI DLL. In the event that all of the threads in the
thread pool for this ISAPI DLL are busy, the server request managers 30 begin to wait in line
until a thread is “ready,” at which point the thread pool manager 32 then accepts the
instructions from the next waiting server request manager 30. When a thread has completed
its assigned task, it notifies the thread pool manager 32, which then marks it as “ready.”

The specific function of the request handler 36 is different for each SAF. It is
controlled by the thread, which was assigned by the thread pool manager 32 when the SAF’s
server request manager 30 made a request. The request handler’s 36 sole purpose is to
request and receive data from the data servers 26. Its function differs for each SAF, each of
which makes requests for different types of data. In almost every case, the thread’s request
handler 36 will create a socket (or sockets) of its own for data communication with a data
server (or servers) 26. A socket is a Transmission Control Protocol/Internet Protocol
(“TCP/IP”) connection to another TCP/IP server. Using the parameters that were initially

aggregated by the SAF’s server request manager 30, the thread’s request handler 36 builds a

12

WO 02/23375 PCT/US01/17830

command that is sent via the socket connection(s) to the data server(s) 26. The response from
the data server(s) 26 is received by the request handler 36, which in turn passes the resulting
data to the response handler 40.

The response handler 40 then begins to massage the data so that it can be delivered to
browser-enabled devices 12, 14 or 16. The response handler 40 will perform any validation
of the resulting data that may be required. The data is checked against a set of rules to make
sure that it is valid before it is sent off to the data integrator 44.

FIG. 4 depicts a block diagram corresponding to the alternative embodiment of FIG.
2. All components are the same with the exception of the third-party Web server 28 and the
inclusion of a request cookie handler 38 and a response cookie handler 39. In this alternative
embodiment, the third-party Web server 28 may make use of state objects, or cookies, which
are small files that provide for the storing, on a browser-enabled device, of information that is
accessed by a Web server to identify user or session information, and potentially to customize
the resulting information for the user’s needs. Since many of the Web browsers on LCB
Devices are not capable of accepting and storing cookies, the data within the cookie (which is
returned from a third-party Web server 28) is converted to a format that can be stored within
the final Markup Language Document that is to be returned to the device. Thus, when the
request handler 36 receives a cookie as part of the response from a third-party Web server 28,
the response handler 40 will call the response cookie handler 39 to convert the cookie’s value
into a text string. The response cookie handler 39 returns the converted text string to the
response handler 40, which will build it into the final MLD. On a subsequent data request to
a third-party Web server 28 known to expect the cookie as part of that request, the request

handler 36 will call the request cookie handler 38 to reformat the cookie data in the template

13

WO 02/23375 PCT/US01/17830

into a true Web-based cookie. The request handler 36 then can send the resulting cookie to
the third-party Web server 28 with the request.

As shown in FIGs. 3 and 4, the response handler 40 directly follows the request
handler 36 in the process chain. The response handler 40 starts as soon as the response is
received from a data server 26. The responses from the data servers 26 as in FIG. 3, or from
the third-party Web server 28 as in FIG. 4, can be in varied formats. Thus, the response
handler 40 is tasked with parsing the response to obtain the requested data. The response
handler 40 will collect all of the data that was made available on the socket created by the
request handler 36, close the socket, and begin to massage the response data as needed. If
needed, the response handler 40 also performs data validation. If an empty response or error
message is returned, that state is sent to the data integrator 44 for transmission to the user.

Once the response data is received and massaged, the networked content delivery
system 10 begins to build a resulting Markup Language Document by placing the data results
into templates formatted for final display on the browser-enabled devices 12, 14 or 16. The
networked content delivery system 10 employs two types of templates. The data integrator 44
uses the first type of template to build datasets of data that will be inserted into the completed
MLD. The second type of template is used to form MLDs by collecting and inserting
individual data elements, or by inserting datasets of data.

The first type of template, called a Specific Application Function template (or “SAF
templates™), is used only to build datasets of data. SAF templates are used to describe the
data content and formatting of, for example, individual lines of a table or the items for a list
box. The data integrator 44 is aware of the appropriate SAF template to be used to match the

markup language of the final MLD. For example, a template to display a single stock quote

14

WO 02/23375 PCT/US01/17830

within a multiple stock watch list, which is a sub-template that may display multiple times on
a single MLD, will have a version for each of the supported markup languages.

The second type of templates, Markup Language Document templates (or “MLD
templates™), is used to create the final MLD, including the look and feel of the Web sites.
Page navigation, layout, and other visual components are described here, and tags are used to
hold the places for the maintenance and insertion of data. Among the tags included in almost
every MLD template are tags for the maintenance of the user identification number and the
session identification value. This inclusion, in a location that is not displayed to the user,
allows the system to track users and requests across multiple pages, servers and sites.

These MLD templates have different names depending on the initial data request, and
different extensions for different markup languages. In other words, there exist multiple
versions of a particular MLD template with each version having the same name but a
different filename extension that corresponds to a resulting markup language. The correct
template to be used always is passed in from the server request manager 30 as one of the SAF
parameters.

In the event that the response handler 40 returns an error, the data integrator 44 still is
used to build a MLD for display to the user. Each SAF has an associated set of static error
pages to be displayed in the event of an error of some kind. Some of these documents allow
for data to be inserted to provide further specificity concerning the type of error.

After the data integrator 44 has completed its data substitution, it sends the completed
MLD to the server response manager 48, which is the last stop before it goes back through the
Internet Web server application 29. Prior to sending the page to the browser-enabled
device 12, 14 or 16, the server response manager 48 sets the completed Markup Language

Document’s Multipurpose Internet Mail Extensions (“MIME”) media type and subtype

15

WO 02/23375 PCT/US01/17830
identifiers. This is required because a Web browser will attempt to read and interpret a MLD
based upon its specified MIME type. Thus, the server response manager 48 must examine the
filename extension of the outgoing template and designate the proper MIME type(s) within

the MLD. The following table shows the MIME type for each template file extension:

Template File

Extension MIME type Markup Language
Jhtm text/html HTML

hdrn text/x-hdml HDML

.wml text/vnd.wap.wml WML

Xtm text/html XHTML

Once the MIME type information is set and the MLD is complete, the document is
handed off to the Internet Web server application 29 “processor” that returns an HT'TP
response to the requesting browser for display to the user. The thread, now having completed
its task, notifies the thread pool manager 32, which marks it as “ready.”

In operation, a session is started between a browser-enabled device 12, 14 or 16 and a
content delivery server 24 by the request for a generic URL of the server. As an example, a
user would type the URL into the address bar on a Web browser or select the URL from a list
of stored addresses. The networked content delivery system 10 receives the request and will
read other information included in the header of the HTTP request to determine which
specific file to send to the device for appropriate display. This additional information is
contained in the basic Internet protocol HTTP-based request.

FIGS. 5, 6 and 7 are examples of the header information contained with URL page

requests generated from three different Web browsers. An HI'TP header contains various

16

WO 02/23375 PCT/US01/17830

fields, and associated values for each field. The HITP header information contains the same
fields regardless of the type of browser being used. The HITP_ACCEPT 50 request-header
field specifies certain MIME media types that are acceptable for the response given the
browser’s display capabilities. The variable HTTP_USER_AGENT 52 provides specific
information regarding the “brand name” of the browser.

In FIGS. 5 and 7, the value “*/*” 54 contained in the variable HTTP_ACCEPT 50
indicates that the browser can read all MIME media types. However, because several
browsers erroneously send “*/*”, the system 10 uses other means to determine the appropriate
response format. In FIG. 7, for example, the variable HI'TP_ACCEPT 50 also includes the
value “text/x-hdml; version=3.1", which expressly indicates that the browser can read files
published in the HDML format. The absence of this value (and any other HDML related
value) in FIG. 5 indicates that this browser cannot read HDML files — notwithstanding the
presence of the “*/*” 54 in FIG. 5, which is known by the system 10 to be an erroneous
indication of that browser’s capabilities. The networked content delivery system 10 then uses
the information gathered from the initial request-header to determine the appropriate markup
language to be used when formatting response MLDs. For browsers that can read only one of
the supported markup languages, the networked content delivery system 10 sends all further
MLDs in the appropriate markup language.

If a browser can read more than one markup language, the networked content delivery
system 10 either can prompt the user to select an appropriate markup language for the current
online session with the content delivery server 24, or it can obtain further information from
the browser by reading the HTTP_USER_AGENT 52 header field. For example, a number of
browser-enabled devices use HTML with vastly different display characteristics. Thus, it is

not possible to deliver the same HTML document even to all of the potential HTML-

17

WO 02/23375 PCT/US01/17830

compatible browser-enabled devices. When the system 10 has determined that HTML is the
markup language for response to the browser, the HTTP_USER_AGENT 52 field is used to
distinguish among known HTML-compatible browsers. Examples of values that will
distinguish the requesting browser from others can be seen in FIG. 5, where the returned
value includes “MSIE5.5” 58, and in FIG. 6, where the returned value includes
“Elaine/1.0” 60. These browser-specific values in the HTTP_USER_AGENT 52 field can be
used to determine the correct format of the final MLLD. As an alternative, the networked
content delivery system 10 provides a simple menu for selecting the type of device and
browser when confronted with an HTML-compatible browser. While all HTML templates
have the same extension (for HTML), the system 10 manages a set of HTML templates for
delivery to different identifiable HTML-compatible browsers.
Decision Flow

An example of the decision flow that the networked content delivery system 10 makes
on an initial request to the content delivery server 24 is depicted in the flowchart on FIG. 8.
In this case, the session is initiated by the request from a Web browser in step 62. The HTTP
request-header field HTTP_ACCEPT is checked first for compatibility with WML, in
step 64. If it can display a WML document, it is then also checked for HDML compatibility
in step 66. If it is not HDML compatible, then the first page in WML format is sent to the
Web browser in step 68. If it is HDML compatible, then, in this example, the networked
content delivery system 10 sends a simple menu in HDML format (step 70) to the Web
browser allowing the user to choose between various WML and HDML options for display of
the first page.

If the browser is not WML compatible, it is then screened for HDML compatibility in

step 72. If it is HDML compatible, then the networked content delivery system 10 sends the

18

WO 02/23375 PCT/US01/17830

first page of the session in HDML format to the Web browser in step 74. If it is also not
HDML. compatible, then the networked content delivery system 10 in this example sends a
simple menu in HTML format (step 76) to the Web browser allowing the user to choose
between various HTML options. Other alternative algorithms can be used for determining
which markup language and device specific templates should be used.

Once the appropriate browser language and device type, if required, has been
determined, the networked content delivery system 10 maintains this determination
throughout the concurrent session. The first page displayed by the system, essentially a
device-specific default page, will include non-displayed tags that determine the appropriate
MLD filenames. Each subsequent page will contain at least the filename of the next results
template or templates in the command parameters. Thus, throughout a session, the user will
consistently receive appropriately displayed pages.

In certain applications, it may be desirable for the first page that is displayed to be a
login page in order to identify the user and for security purposes. FIG. 9 depicts a flowchart
of such a function. A display of a representative menu of options sent to a user after login has
been completed may be as depicted in FIG. 10.

Example

An example of a data retrieval application of the networked content delivery
system 10 is a stock quote retrieval request 77, here entitled “Snap Quote,” which is one of
the commands in the menu displayed in FIG. 10. A flowchart for this command is depicted in
FIGS. 11a—11d. The user starts at step 78, which is the command menu displayed in FIG.
10. In step 79, the user selects the Snap Quote command. The Web page based command,

transmitted when the Snap Quote command 77 was clicked, is:

19

WO 02/23375 PCT/US01/17830

“w2w.smartserv.com/cmd/SmartServ.dl1 ?MfcISAPICommand=Page&u=000000&s=1

1N &t=\c\tSnQu.htm”

There are three parameters sent with the HTTP request that will be passed to the “Page”
Specific Application Function: U = 000000, where U is the current user’s identification
number, S =11111111, where S is the current session identification value, T »= \c\tSnQu.htm,
which is the MLD template to be used for this command.

This command instructs IS 29, which receives the command in step 80, to call the
“Page” SAF which resides in the SmartServ.DLL file 82 — if necessary, causing the
SmartServ.DLL file to be loaded into memory on the content delivery server 24, e.g. because
this is the first call to any SAF resident in the SmartServ.DLL file. The server request
manager 30 of the “Page” SAF is handed this request in step 84. The SAF is then executed,
causing the server request manager 30 to request a “ready” thread from the thread pool
manager 32, in step 86, to process this request.

The thread, now marked “busy” by the thread pool manager 32, first verifies, in step
88, the login status of the user. If the user is not logged in, or if the login is invalid, then, in
step 90, an “invalid user” command is sent to the response handler 40, which passes the
information off to the Data Integrator 44 in step 91. The data integrator 44 will then return, in
step 92, a MLLD with the appropriate error information for display to the user. In this case, the
thread, now having completed, will return to the “ready” state, as in step 94.

If the user is successfully logged in, the “Enter Symbol” MLD is sent to and displayed
on the user’s browser, in step 96, and the “Page” SAF thread completes and is returned to the
“ready” state in step 97. An example of this completed MLD is displayed in FIG. 12. In

step 98, the user enters a stock symbol, for example “MSFT” and requests the quote by

20

WO 02/23375 PCT/US01/17830

clicking the appropriate button. When the user directs the browser to get the quote, a Web
page based command is transmitted, as follows:

“w2w.smartserv.com/cmd/Real Time.dl1 ?MfcIS APICommand=Stock&st=MSFT&u=0

00000&s=1111111&t=\c\tSnQuRe.htm&mut=\c\tsnQuMuRe.htm&net=\c\tCoHe.htm”
There are five parameters sent with the HTTP request that will be passed to the “Stock”
SmartServ Command Function: U = 000000, where U is the current user’s identification
number, S = 11111111, where S is the current session identification value, T =
\c\tSnQuRe.htm, which is the MLD template to be used if one stock was successfully
requested; MUT = \c\tSnQuMuRe.htm, which is the MLD template to be used if more than
one stock was successfully requested; and NET = \c\tCoHe.htm, which is the MLD template
used to display any company news headlines that are available for the returned symbol(s). In
some circumstances, the server request manager 30 may need to manipulate the passed
parameters before proceeding. For example, if there is an unsupported character in any of the
parameters that the SAF cannot handle, the server request manager 30 will substitute that
character before proceeding.

This command instructs IIS 29, which receives the command in step 100, to call, in
step 102, the “Stock” SAF which resides in the RealTime.DLL — if necessary, causing the
RealTime.DLL file to be loaded into memory on the content delivery server 24, e.g., because
this is the first call to any SAF resident in the RealTime.DLL file. The server request
manager 30 of the “Stock” SAF is handed this request in step 104. The SAF is then executed,
causing the server request manager 30 to request a “ready” thread from the thread pool
manager 32, in step 106, to process this request.

The thread now “busy” executing the “Stock” SAF instructions, first verifies, in step

108, the log-in status of the user. If the user is not logged in or is invalid, then an “invalid

21

WO 02/23375 PCT/US01/17830

user” command is sent to the response handier 40, in step 110, which passes off the error to
the data integrator 44 in step 111. The data integrator 44 then, in step 112, will return a MLLD
with the appropriate error information for display to the user. In this case, the thread, now
having completed, will return to the “ready” state, as in step 114. If the user is successfully
logged in, then the request handler 36 in the thread processes the user’s request for a stock
quote(s). First, in step 116, a socket connection is established to a server that will supply the
requested data. Then, in step 118, the request handler 36 builds a properly formatted request
that includes the symbol(s) in the user’s request. Finally, in step 120, the entire request is sent
to the data server 26.

The request handler 36 receives the information from the data server(s) 26, in step
122, and passes the resulting data to the response handler 40 in step 124. The response
handler 40 then checks the resulting data for its return codes. If the response handler 40
receives an invalid symbol response, at step 126, or if the user is not authorized to receive this
data, at step 128, the appropriate error code is sent to the data integrator 44 in steps 129 or
131. The data integrator 44 then transmits the appropriate MDL to the user, in steps 130 or
132, respectively. The thread, having completed its task, notifies the thread pool manager 32,
which marks that thread as “ready” in step 134.

If the symbol(s) is/are valid and the user is authorized to receive the requested data,
the data is passed on to the data integrator 44 in step 136, which then checks, in step 138, if
more than one symbol was entered in step 98. If only one symbol was requested, then the
data integrator 44 loads the MLD template file tSnQuRe.htm in step 140, or, if more than one
symbol was requested, then the data integrator 44 loads the MLD template file
tSnQuMuRe.htm in step 142. Then, in step 144, the data integrator 44 examines the returned

data to determine if the data server 26 has indicated that there is current news associated with

22

WO 02/23375 PCT/US01/17830

any of the symbol(s). If so, the data integrator 44 will build a link or links, using SAF
templates, to the SAF titled “News.” These links will be inserted into the final MLLD for
display and possibly execution by the user to retrieve the associated news items.

After the data integrator 44 builds any necessary news link(s), the stock data is then
used to replace the data tags in the MLD template, in step 148. Notwithstanding the number
of data elements received from the data server 26 for each stock symbol, the data
integrator 44 only inserts those data elements into the MLD for which the MLD template
included data tags. Thus, the data integrator 44 and the MLD template control which data
will be included in the final MLD.

In step 150, the completed MLD is then sent to and displayed on the user’s browser.
The thread, having completed its task, notifies the thread pool manager 32, which marks that
thread as “ready” in step 152.

FIG. 13 shows an example of the final results template as it would be displayed on a
browser-enabled device. FIG. 14 is the source cod§: for the version of the final MLD
template, tSnQuRe.htm, that is written in HTML. |

The invention has been described with reference to specific exemplary embodiments
thereof and various modifications and changes may be made thereto without departing from
the broad spirit and scope of the invention. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive sense; the invention is limited only by

the following claims.

23

WO 02/23375 PCT/US01/17830

CLAIMS
What is claimed is:
L. A method for facilitating communications between a browser enabled device
and a content delivery server, the method comprising the steps of:
initiating a request for data by a user of a browser-enabled device, the request
including indicia of device and browser type;
transmitting said request from said browser-enabled device to the content
delivery server across a first communication network;
receiving said request by said content delivery server;,
retrieving, by said content delivery server, said data requested by said user;
formatting said data by said content delivery server as a function of the
transmitted indicia of device and browser type to obtain formatted data; and
transmitting the formatted data from said content delivery server to said

browser-enabled device across the first communication network.

2. The method of claim 1, further comprising the step of displaying the formatted

data on a display of the browser-enabled device.

3. The method of claim 1, wherein said first communications network is the
Internet.
4. The method of step 1, wherein said formatting step comprises:

reading said indicia of device and browser type;

24

WO 02/23375 PCT/US01/17830

selecting a template corresponding to the device and browser type from a
plurality of stored templates; and

inserting the requested data into the selected template.

5. The method of claim 4, further comprising the step of storing a group of
pre-formatted templates for the display of data on each of a known set of browser-enabled

devices.

6. The method of claim 5, wherein said request for data is selected from one of a

group of predefined data requests.

7. The method of claim 6, wherein said templates are further formatted for each

of the predefined data requests.

8. The method of claim 1, wherein the retrieving step comprises the steps of:
sending a request for said data from said content delivery server to a data
server across a second communication network; and
receiving a response to said request for said data by said content delivery

server from said data server across said second communication network.

0. The method of claim 8, wherein said second communication network is a local

area network.

25

WO 02/23375 PCT/US01/17830

10. The method of claim 8, wherein said second communication network is the

Internet.

11. The method of claim 8, further comprising the steps of:

receiving a state object from said data server by said content delivery server as
part of said response to said request for data;

converting said state object to a format compatible with said browser-enabled
device;

transmitting said converted state object from said content delivery server to

said browser-enabled device as part of said formatted data.

12. The method of claim 11, further comprising the steps of:

receiving said converted state object from said browser-enabled device by said
content delivery server as part of a subsequent request for data;

converting said converted state object to its original format;

transmitting said state object in its original format to said data server as part of
said subsequent request for data.
13. A system for facilitating communications between a browser-enabled device

and a content delivery server, the system comprising:

means for initiating a request for data by a user using a browser-enabled
device, the request including indicia of device and browser type;

means for transmitting said request from said browser-enabled device to the
content delivery server across a first communication network;

means for receiving said request by said content delivery server;

26

WO 02/23375 PCT/US01/17830
means for retrieving, by said content delivery server, said data requested by
said user;
means for formatting said data by said content delivery server as a function of
the transmitted indicia of device and browser type to obtain formatted data; and
means for transmitting the formatted data from said content delivery server to

said browser-enabled device across the first communication network.

14. The system of claim 13, further comprising means for displaying the formatted

data.on a display of the browser-enabled device.

15. The system of claim 13, wherein said first communication network is the

Internet.

16. The system of claim 13, wherein said means for formatting comprises:
means for reading said indicia of device and browser type;
means for selecting a template corresponding to the device and browser type
from a plurality of stored templates; and

means for inserting the requested data into the selected template.

17. The system of claim 16, further comprising means for storing a group of

pre-formatted templates for the display of data on each of a known set of browser-enabled

devices.

27

WO 02/23375 PCT/US01/17830
18. The system of claim 17, wherein said request for data is selected from one of a

group of predefined data requests.

19. The system of claim 18, wherein said templates are further formatted for each

of the predefined data requests.

20. The system of claim 13, wherein the means for retrieving further comprises:
means for sending a request for said data from said content delivery server to a
data server across a second communication network; and
means for receiving said data by said content delivery server from said data

server across said second communication network.

21. The system of claim 20, wherein said second communication network is a
local area network.
22. The system of claim 20, wherein said second communication network is the

Internet.

23. The system of claim 13, further comprising:

means for receiving a state object in an original format from said data server
by said content delivery server as part of said response to said request for data,

means for converting said state object to a format compatible with said
browser-enabled device;

means for transmitting said converted state object from said content delivery

server to said browser-enabled device as part of said formatted data.

28

WO 02/23375 PCT/US01/17830

24. The method of claim 23, further comprising:
means for receiving said converted state object from said browser-enabled
device by said content delivery server as part of a subsequent request for data;
means for converting said converted state object to its original format;
means for transmitting said state object in its original format to said data

server as part of said subsequent request for data.

25. A system for supplying data requested by a user over a communication
network, comprising:

a remote device having a type selected from a plurality of predetermined
device types, the remote device having a user data interface, a device memory, a
device communications port for transmitting signals over the communications
network and a processor coupled to the device memory, the user data interface and the
communications port, the processor executing a browser of predetermined type, the
device operable by the user to generate a request for data, the request including indicia
of the device type and the browser type;

a content delivery server having a first communications port for transmitting
and receiving data over the communications network, a link to a database, a memory,
and a content delivery server processor coupled to the first communications port, the
link and the memory, the content delivery server processor comprising:

data recognition means for recognizing a request for data from the remote

device;

29

WO 02/23375 PCT/US01/17830

data retrieval means for retrieving the requested data from the memory over
the link;

formatting means for formatting the retrieved data as a function of the indicia
included in the request for data; and

transmission means for transmitting the formatted, retrieved data from the

communications port over the first communications network to the remote device.

26. A method of transferring state information between a content delivery server
and a browser-enabled device, the method comprising the steps of:

initiating a request for data by a user of said browser-enabled device;

receiving said request for data by said content delivery server;

transmitting said request for data to a data server;

receiving a response to said request for data from said data server by said
content delivery server;

receiving a state object from said data server by said content delivery server;

converting said state object to a format compatible with said browser-enabled
device;

transmitting said response to said request for data from said content delivery
server to said browser-enabled device; and

transmitting said converted state object from said content delivery server to
said browser-enabled device.
27. The method of claim 26, further comprising the steps of:

receiving said converted state object from said browser-enabled device by said

content delivery server as part of a subsequent request for data;

30

WO 02/23375 PCT/US01/17830

converting said converted state object to its original format;
transmitting said subsequent request for data to said data server; and

transmitting said state object in its original format to said data server.

28. A server for facilitating communication between any of a plurality of
predetermined recognizable browser-enabled devices including wireless devices and at least
one database server, comprising:

a receiver coupled to a communication network for receiving a request for data
from one of the client devices, the request for data including indicia of device and
browser type;

a retriever for retrieving from said at least one database server the requested
data;

a memory for storing a plurality of templates each corresponding to respective
combinations of browsers and client device types;

a formatter for retrieving one of the stored templates which corresponds to said
transmitted indicia and which formats the requested data into the retrieved template;
and

a transmitter for transmitting the formatted data over the communications

network to the requesting device.

31

WO 02/23375 PCT/US01/17830

1/15
10
N FIG. 1
PALM VI,
WINDOWS CE
INTERNET
EXPLORER, 14 DEVICES, ~_ HDML PHONES,
E | POCKET PC <55 WAP PHONES,
NETSCAP (&3 DEVICES, RIM v
=1 NAVIGATOR, o HTML PHONES
DESKTOPS ~ OPERA s ,ERS
N(%#Egggis SUBNOTEBOOKS MICROBROWSERS
/\ I
GATEWAY 20 22
18 THE INTERNET
-1

WEB-TO-WIRELESS SERVER
l « WINDOWS 2000
A «1IS 5.0
24 « ISAPI DLL
« DEVICE-SPECIFIC TEMPLATES

A
\

- T - T
|

|

26 o5 26 26

= = e =1 e

SUBSTITUTE SHEET (RULE 26)

WO 02/23375

PCT/US01/17830
2/15
10°
N FIG. 2
PALM VI,
WINDOWS CE
INTERNET
12 EXPLORER, DEVICES, HDML PHONES,
| NETSCAPE)/~ POCKET PC 7 WAP PHONES,
NAVIGATOR, . DEVFE%EEQSRIM s HTML PHONES
DESKTOPS ~ OPERA PDAs PHONES WITH
LAPTOPS SUBNOTEBOOKS MICROBROWSERS
NOTEBOOKS
A |]
20 22
18
:E]“_I
WEB-TO-WIRELESS SERVER
| « WINDOWS 2000
A «IIS 5.0
24 « ISAPI DLL
« DEVICE—SPECIFIC TEMPLATES
19?>
H
|
28]

SUBSTITUTE SHEET (RULE 26)

WO 02/23375 PCT/US01/17830

3/15

18~

THE INTERNET

FIG. 8
A
4
2 29~ MICROSOFT IIS
k CALL TO AN 1
ISAPT DL |
SERVER SERVER

30~ REQUEST | |RESPONSE |48
MANAGER | | MANAGER

A

Yy

THREAD 44
32~ pooL INﬂggg&OR= ~ TEMPLATES
MANAGER
\ ? \
46
THREAD RESPONSE
34— pooL HANDLER [-40
v }

36— REQUEST HANDLER

A
y

26~

DATA SERVERS

SUBSTITUTE SHEET (RULE 26)

WO 02/23375 PCT/US01/17830

4/15
18~
THE INTERNET
FIG. 4
A
\i
21 29~J" \icrosoFT 11
1‘ CALL TO AN 1
ISAPL DLL |
SERVER SERVER
30~ REQUEST RESPONSE |48
MANAGER MANAGER
) A
THREAD 1
32~ ‘pooL INT[?@;QTOR «——»| TEMPLATES
MANAGER
\ I \
RESPONSE 46
_— COOKIE -39
HANDLER
34-"1 pooL ~-40
RESPONSE
HANDLER
A
\ 4
REQUEST
38—+ COOKIE REQUEST |
HANDLER HANDLER 36
A

28~

THIRD PARTY WEB
SERVERS

SUBSTITUTE SHEET (RULE 26)

WO 02/23375 PCT/US01/17830

5/16

50
Microsoft’s Internet Explorer 5.5: /
HTTP_ACCEPT:image/gif, image/x—xbitmap, image/jpeg, image/pjpeq,’ application/msword,
application/vnd.ms—powerpoint, application/vnd.ms~excel, */* ~_54
HTTP_ACCEPT_LANGUAGE:en—us.
HTTP_CONNECTION:Keep—Alive 98
HTTP_HOST:pikachu.smartserv.com
HTTP_USER_AGENT:Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0) ~_ 52
HTTP_COOKIE:Userld=114137; Session=6615121
HTTP_ACCEPT_ENCODING:gzip, deflate

FIG. 5

50 Palm VII:

-HTTP_ACCEPT:text/html, image/jpeg, image/qif
HTTP_CONNECTION:Keep—Alive 60
HTTP_HOST:pikachu.smartserv.com /

59 _~HTTP_USER_AGENT:Mozilla/2.0 (compatible; Elaine/1.0)
HTTP_VIA:1.1 WebCache (NetCache 4.0R4D11)
HTTP_X_FORWARDED_FOR:192.168.166.5

FIG. 6

SUBSTITUTE SHEET (RULE 26)

PCT/US01/17830

WO 02/23375

6/15

81°8:3ZIS"W3"dVOAIQ dN™ X dLH
801°1£1:STAXId ™NAFYOS dvoAIa dN~ X dLIH
CSAIMLIOS TWNNJVYOAIA dN ™ X dLH
L L1437V QINNT dVOAIa dN X dLIH
0:40100 SYH dvoA3d dn X dLIH
F“_.:n_n._olzmmmomu%oaom%lxun_ﬁ_._
LONTTVIALYVIAS dVOAdd n_:lx|nE_._
ococ“v_zs%l%lxln_t_._
BUOU:S| 4300V XV4dN~dN™ X dLH
W09 AlaspWS NYapYId —ApubLONENS ~dN X dLLH
CGC L —smopulm: [ISYYHO ~1dFIIV™ dLIH
pPepooUs|IN—WLIoj—~Mmmm—X /uonpoiddp:3dAL TINTINOD "dLLH
L'07/dN 19dN:INFOV H3SNdLH ~-7C
Wwo9*AuasHbws nyapYid: | SOH dLLH
¥G U 39VNINYT ™ L4300V dLIH
N\ w3y /3xa}
dEn\omoE_ .** ﬁcom_E;.ac;.v%\#x& N_E;.ac;.w%\yxﬁ ._E;.aoglw\yxﬁ ‘0'Z=UoIsIon]|wpy
~X/1x8} ‘0'C=UOISIOAJWPY—X /1X8) ‘| C=UOISIBA!WPY—X /1X8} ‘A1yuaysabip— :lx\co:oo_._%o ‘90lA0p
—dn—x /uoppoijddp doo;ocola?&\cozoo:&o ‘pajp—dn—x /uonpoyjddp ‘ojwpy—X /uolooiddp:] 4390V dLIH~_
9 iz 01g 0% J0jojnwiS TNAH/dVM S,Luod"auoyd

& 91A

0§

SUBSTITUTE SHEET (RULE 26)

WO 02/23375

7/16

FIG. 8

USER REQUESTS GENERIC
URL FROM A WEB BROWSER

62~

-~ CAN THIS
WEB BROWSER

PCT/US01/17830

USE WML?

WEB BROWSER USE

DISPLAY LOGIN | 74
PAGE IN WML |_ o

DISPLAY MENU
WITH HDML AND
WML OPTIONS
IN HDML

70

CAN THIS NO
WEB BROWSER USE
HDML?
76

v/

DISPLAY MENU
PAGE IN HTML

DISPLAY FIRST
PAGE IN HDML

SUBSTITUTE SHEET (RULE 26)

WO 02/23375

DISPLAY

PCT/US01/17830

8/16

LOGIN
DATA

DATA FROM
BACK END

USER LOGINS IN WITH A
USER ID AND PASSWORD

Y

W2W PROCESSES THE
REQUEST AND GATHERS DATA
FROM THE BACK END SERVER

IS

NO~" THIS A VALID

ERROR PAGE|

H

DATA FROM
MENU | BACK END

DATA

9

TEMPLATES

USER?

W2W ASKS THE BACK END FOR
THE PROVISION DATA AND BUILDS
A MENU FOR THIS USER

;

DATA T

0 A
SIERRVPEAR MENU IS PRESENTED
TO THE USER

FIG. 9

SUBSTITUTE SHEET (RULE 26)

PCT/US01/17830

WO 02/23375

9/15

U] suoq (3}

g

Bo7 oDDSSOfy
oI

3pDI[

s90iaS Bulppa|
]
§5000S0I0H
SHods

§90IM8S 9JA15941]
ZEN

21083 [OqUIAS
SO

LL~ spomy dous

S82IAJSS |DIOUDUIY

v

om@ B0 [P MaSHDWS/pwio /wod*Miesppwis winjwisad / /:dyy (o mmw._%i_ P _ & ﬁ @ e ﬂv_
diof sjool seyiody ek ypT el |

X0 JoJo|dx7 JoulejU }OSOIOIN-SEOIMBG WNjal] AIBSHDWS [

Ot 914

SUBSTITUTE SHEET (RULE 26)

WO 02/23375 PCT/US01/17830

10/15

FIG. 1714

78 DISPLAY COMMAND MENU
WITH “SNAP QUOTE”

[TEM “SNAP QUOTE”

Y

80~/ IS RECEIVES REQUEST
FOR “SNAP QUOTE”

Y
82 ~_ [IS CALLS “PAGE”
SAF IN smartserv.dll

A
84~ “PAGE” SERVER REQUEST
MANAGER INITIATED

79\\ USER CLICKS ON MENU /

A J <
86~ THREAD POOL MANAGER LOGIN
OPENS “PAGE” THREAD DATA
______________ J
THIS USER LOGGED HES
IN?
\
RESPONSE HANDLER RECEIVES DISPLAY “ENTER
90~ INVALID USER CODE SYMBOL” MLD ~-96

‘ /—_\l\/

DATA INTEGRATOR ———
91-7] RECEIVES ERROR CODE PAGE” THREAD EXITS ~ ~_g7

Y

Y
DISPLAY LOGIN ERROR MLD @

e
FIG. 11B

94— “PAGE” THREAD EXITS

SUBSTITUTE SHEET (RULE 26)

WO 02/23375 PCT/US01/17830

FROM 11/15
FIG. 11A

98 USER ENTERS SYMBOL(S);
CLICKS “GET QUOTE”

!

100~ IIS RECEIVES “GET
QUOTE” COMMAND

A

102 ~ IIS CALLS “STOCK”
SAF IN realtime.dli

Y

104~ “STOCK” SERVER REQUEST
MANAGER INITIATED FIG. 118
<
106~] THREAD POOL MANAGER LOGIN
OPENS “STOCK” THREAD DATA
______________ 4
IS THIS
USER STILL LOGGED >1E>
IN? v
“STOCK” THREAD
OPENS SOCKET ~-116

RESPONSE HANDLER RECEIVES y
11071 INVALID USER CODE REQUEST HANDLER

v FORMATS REQUEST ™~-118
DATA INTEGRATOR v

111-7| RECEIVES ERROR CODE REQUEST HANDLER SENDS |
¢ REQUEST TO DATA SERVER
DISPLAY LOGIN ERROR MLD 4 DATA
1127 120 SERVER
/\i¥/ "4_ _________
1141 “STOCK” THREAD EXITS REQUEST HANDLER

RECEIVES THE RESPONSE |™122

Y
RESPONSE HANDLER RECEIVES
THE RESPONSE DATA ~-124

T0
FIG. 11C

SUBSTITUTE SHEET (RULE 26)

WO 02/23375

12/15

FROM
FIG. 11B
126 pJ1G. 11C
IS
THIS A VALID ,NO 129
SYMBOL? v /
DATA INTEGRATOR
RECEIVES
128 ERROR CODE
IS USER
AUTHORIZED TO RECEIVE
REQUESTED DATA?
NO 131 10 130
J FIG. 11D})

DATA INTEGRATOR
RECEIVES ERROR CODE

DISPLAY INVALID
SYMBOL MLD

!

DISPLAY INVALID
REQUEST MLD

y

NO

“STOCK THREAD EXITS

134

136 ~

PCT/US01/17830

FIG. 11D
FROM

FIG. 11C

P

DATA INTEGRATOR
RECEIVES DATA

MORE
THAN ONE SYMBOL
ENTERED?

142 140
N y N
LOAD TEMPLATE LOAD TEMPLATE
“tsnQuRe.htm” “tsnQuMuRe.htm”
| N
144 '
IS THERE
146 YES ~NEws ASSOCIATED WITH
N SYMBOLS?

DATA INTEGRATOR USES
SAF TEMPLATE TO

BUILD LINK TO NEWS
I

NO

"y

y

148~

DATA INTEGRATOR ASSEMBLES

FINAL RESULTS MLD

!

150 "]

FINAL RESULTS MLD

152

“STOCK™ THREAD EXITS

SUBSTITUTE SHEET (RULE 26)

PCT/US01/17830

WO 02/23375

13/15

jpulBu| &

suoQ (3]

701~ (s)er0np 399

ysw| :(s)joquifs Jsyu7

v

9s) wiy nousi\i\=peg792299=53.5 1¥ || =ngeBog=puniogigysioyclipiesyo 3| ssaipy|| P | D[] (%) = <2 |
§E2 dioff sjoo] sejuondy Mok #pT oliT |
X[1310)dX] J8UJBjU] 1JOSOIOIN—S8OIMBS WNjUIBLY AlaSHDWS[Z

ct 914

SUBSTITUTE SHEET (RULE 26)

PCT/US01/17830

WO 02/23375

14/15

N joulsiu| & auoQ (&
4|

nusiy

VIIEN

3pDi]

¥ :SMaN

00968 :oWINjoA

9l/L 6L Mo]

91/6 6L :ubiH

v/1 6L sy

9l/¢ 6/ ‘P'd

9L/L 6L S0

Z/1— ebupyy

LISW :JoquiAs

g L woisauioe/pud oo vesyous unieid e sseppy|| 2 | 2 (2] (9 » <0 2 B
B djof sjoo] sojoaBy Mok #pT 8|7 |
el]| JaJojdx] Jauieju| }JOSOIOIN~S8JAIBS Wnjwiald AagHbwis B

AN

SUBSTITUTE SHEET (RULE 26)

WO 02/23375 PCT/US01/17830

15 / 15
FIG. 14
tSnQuRe.htm
<HTML>
<HEAD>

<TITLE>SmartServ Online w2w2000</TITLE>
<META HTTP-EQUIV="Cache—Control” content="no—cache">
</HEAD>

<BODY>

Symbol: PSYMBOL¥

Change: [$CHANGE]

Last: £$LAST]

Bid: |$BID|

Ask: [$ASK]

High: | $HIGH]

Low: [$LOW]

Volume: [$VOLUME]]

News: [§NEWS_IND]

A

< ‘
HREF="/cmd/peckweb.dli?MfcISAPICommand=Trade&u=[$USERID]&s=[$SESSIONID]&r=1&0=\r\t0r
htm&C=\r\t0rCo.htm&sy=[$SYMBOL]">

[$TRADE_TEXT]

<A
HREF="/cmd/smartserv.dlI?MfcISAPICommand=Page&u=[$USERID}&s=[$SESSIONID]&t=\r\ tse.ht
m'>

Search

<A
HREF="/cmd,/SmartServ.dI?MfcISAPICommand=Menu&u=[§USERID]&s=[$SESSIONIDJat=\ r\ tMe.ht
"’ >Menu< /A>

</BODY>

</HTML>

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

