I *I Innovation, Sciences et Innovation, Science and CA 2949251 C 2019/05/07
Déeveloppement economique Canada Economic Development Canada
Office de la Propriéete Intellectuelle du Canada Canadian Intellectual Property Office (11)(21) 2 949 251
12 BREVET CANADIEN
CANADIAN PATENT
(13) C
(86) Date de depot PCT/PCT Filing Date: 2015/06/10 (51) Cl.Int./Int.Cl. GO6F 8/70 (2018.01),

(87) Date publication PCT/PCT Publication Date: 2015/12/17 GO6F 11/36 (2006.01)
(72) Inventeurs/Inventors:

(45) Date de delivrance/lssue Date: 2019/05/07 CARBACK RICHARD T. Il US:
(85) Entree phase nationale/National Entry: 2016/11/15 GAYNOR, BRAD D., US:
(86) N° demande PCT/PCT Application No.: US 2015/035138 BROCK, NEIL A., US;

SHNIDMAN, NATHAN R., US
(87) N° publication PCT/PCT Publication No.: 2015/191737 ,
(73) Proprietaire/Owner:

(30) Priorité/Priority: 2014/06/13 (US62/012.127) THE CHARI ES STARK DRAPER | ABORATORY INC
US

(74) Agent: BENOIT & COTE INC.

(54) Titre : SYSTEMES ET PROCEDES POUR ANALYSE LOGICIELLE
(54) Title: SYSTEMS AND METHODS FOR SOFTWARE ANALYSIS

% 7 i ';:"}/,f;, aAss W %3 h :'é:"-f)' 2L >">"f:-’:-’ﬁf'f:fF‘/"'/"'}'FE-":-":-"#?"}"fﬁ'f'f;ﬁ_§;gg%
v ;
e i 250
205 E? ?/»w::
i s
..525:;:_" 2 2 O '3
T e
T % fﬁffﬁffﬁWﬁﬂﬁwﬁwﬁwﬁf :
o /%’ . //ﬁ%"ﬁ’f%%
s R RRR e IR e R
. %%
215 .
)"%!-- -”‘?f t'fé
, y 235
. yd
‘ .':i?.h' "::;Q
#
S, /EV
: M : %

s
5 %%/%/%/ ‘ 230

(57) Abrege/Abstract:
Systems, methods, and computer program products are provided for identifying software files, flaws In code, and program

fragments by obtaining a software file, determining a plurality of artifacts, accessing a database which stores a plurality of reference
artifacts for reference software files, comparing at least one of the artifacts to at least one of the reference artifacts stored in the
database, and identifying the software file by identifying the reference software file having the reference artifacts that correspond to
the plurality of artifacts. Certain embodiments can also automatically provide updated versions of files, patches to be applied, or
repaired blocks of code to replace flawed blocks. Example embodiments can accept a wide variety of file types, including source
code and binary files and can analyze source code or convert files to an intermediate representation (IR) and analyze the IR.

50 rue Victoria e Place du Portage1l e Gatineau, (Québec) K1AOC9 e www.opic.ic.gc.ca i+

50 Victoria Street e Place du Portage 1l ® Gatineau, Quebec K1AO0C9 e www.cipo.ic.gc.ca C anada

(43) International Publication Date

CA 02949251 2016-11-15

(19) World Intellectual Property
Organization
International Bureau

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2015/191737 Al

(1)

(21)

(22)

(25)

(26)
(30)

(71)

(72)

(74)

15/191737 A1 |[HI V0 AP OO 0000 RO R0 R

(57) Abstract: Systems, methods, and computer prog
gram fragments by obtaining a software file, dete:
&= erence arti

International Filing Date:
10 June 2015 (10.06.2015)

Filing Language: English
Publication Language: English
Priority Data:

62/012,127 13 June 2014 (13.06.2014) US
Applicant: THE CHARLES STARK DRAPER

LABORATORY, INC. [US/US]; 555 Technology Square,
Cambridge, MA 02139 (US).

Inventors: CARBACK, IIl, Richard, T.; 43 Woodlawn
Street, Everett, MA 02149 (US). GAYNOR, Brad, D.; 15
Oakmont Road, Newton, MA 02459 (US). BROCK, Neil,
A.; 2 Candida Lane, Acton, MA 01720 (US). SHNID-
MAN, Nathan, R.; 6 Pitcairn Place, Lexington, MA 02421

(US).

Agents: WAKIMURA, Mary Lou et al.; Hamilton,

Brook, Smith & Reynolds, P.C., 530 Virginia Rd, P.O. box
9133, Concord, MA 01742-9133 (US).

............
R A MO R R KON B B e R R KR R i XD o
[} .

B SR g,
205

AR

.//'-//' - e /.' /.' e e e /.' /.' RS RX I NI RD - - - -
TEmimi B e b B
/../ -./ _./ o .._/ ._/ ._/ ._/ ../ .-/ .-/ ._/ '._/ ._/ oo oo ._./ _./ _./ ../ oy
SRR R R A R S R SRR R R
sl T N R G okttt
o ISR A M
;'; 2 ", o '., o '.$/@/@/@;/§/}i€/@/ﬁ/w ﬁ
e B
2

/%lwlgg A A A 4 i i A A A A /"/‘
7, ‘:l':/': ////// ’ './',:.ﬁ,:ﬁ,ﬁ" .'.‘."."."./':/':/':’l‘
e e ., 7}?‘ 2. Z_ ; w =T 8 E’f?‘ D R e R

e A DRI R R I P S
/-' /.‘ I.‘ /-'- /-'- /-'. /-‘.//‘- / ‘-//'-//'-//'.'a ".//‘-/l/‘- / = / '-', '.‘, ‘.‘/ ‘-'l /-'/ /-', /-‘. /.'

N L L T D R T &/ b (el
R s

R .'., .'., .'.’ Oy / Oy / oy / .'.') /.') /.‘) /.'/ /g/ /.'/ /.') /.'/ /.‘) /g/ /.'.’/%’/.'.’/.'.’ / .'.’ / .’.’ / .'.,. ¢

N

-

-

%
%

FIG. 2

ram products are provided for identifying software files, flaws in code, and pro -
'mining a plurality of artifacts, accessing a database which stores a plurality of ref -
facts for reference software files, comparing at least one of the artifacts to at least one of the reference artifacts stored in

*

17 December 2015 (17.12.2015) WIPO I PCT
International Patent Classification: (81)
GO6F 9/44 (2006.01)

International Application Number:
PCT/US2015/035138

(84)

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

(54) Title: SYSTEMS AND METHODS FOR SOFTWARE ANALYSIS

with international search report (Art. 21(3))

Vo ot o e /"'/"'/"'%/R;&{/RWW%" e e e e,

R

P o
S e e

. 2 A R R SRR
2'..' el el el f el el e e e T A A, S

€N the database, and i1dentifying the software file by identifying the reference sottware file having the reference artifacts that correspond

S

W

to the plurality of artifacts. Certain embodiments can also automatically provide updated versions of files, patches to be applied, or
repaired blocks of code to replace flawed blocks. Example embodiments can accept a wide variety of file types, including source
code and binary files and can analyze source code or convert files to an intermediate representation (IR) and analyze the IR.

SYSTEMS AND METHODS FOR SOFTWARE ANALYSIS

RELATED APPLICATION(S)

[0001] This application claims the benefit of U.S. Provisional Application No.
62/012,127, filed on June 13, 2014.

GOVERNMENT SUPPORT

[0002] This invention was made with government support under grant number FA750-
14-C-0056 from the United States Air Force and grant number FA8750-15-C-0242 from the

Defense Advanced Research Projects Agency. The government has certain rights in the

invention.

BACKGROUND OF THE INVENTION

[0003] Today, software development, maintenance, and repair arc manual processes.
Software vendors plan, implement, document, test, deploy, and maintain computer programs
over time. The initial plans, implementations, documentation, tests, and deployments are
often incomplete and invariably lack desired features or contain flaws. Many vendors have
lifecycle maintenance plans to address these shortcomings by pushing iterative bug fixes,
sccurity patches, and feature cnhancements as the software matures.

[0004] There 1s a large amount of software code deployed in the world, billions of lines,

and maintenance and bug fixes take large amounts of time and money to address.
Historically, software maintenance has been an ad-hoc and reactionary (i.e., responding to
bug reports, sccurity vulnerability reports, and uscr requests for featurc cnhancements)

manual process.

SUMMARY OF THE INVENTION

[0005] Embodiments of the present invention automate key aspects of the software

development, maintcnance, and repair lifecycle, including, for example, finding and repairing

CA 2949251 2018-03-21

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_0

program flaws, such as bugs (errors 1n the code), security vulnerabailities, and protocol
deficiencies. Example embodiments of the present invention provide systems and methods
which can utilize large volumes of software files, including those that are publicly available
or proprictary software.

[0006] Certain of the example embodiments can automatically identify and provide the
newest versions or patches for software files. Additional embodiments can automatically
locate design patterns, such as software flaws (e.g., bugs, security vulnerabilities, protocol
deficiencies), that are known to exist in certain software files and provide repairs. Other
embodiments may make use of the known flaws by locating them in software files for which
1t was previously unknown that the files contained the flaw. Additional embodiments can
automatically locate design patterns, such as identifying portions of source or binary code, to
1dentify files, programs, functions, or blocks of code.

10007] When a software flaw 1s 1identificd, for some embodiments, the corresponding
software repair pattern can be used to generate a repair specification. This repair
specification, for example, can be used to synthesize an appropriate software repair 1n the
form of a source or binary, also referred to as machine language, patch. Certain example
embodiments can support performing automatic software maintenance, such as flaw
identification and repair, on both binary code and source code allowing for broad automated
software maintenance for legacy systems.

[0008] According to one embodiment of the invention, a method for identitying software
includes obtaining a software file, determining a plurality of artifacts for the software file,
accessing a database which stores a plurality of reference artifacts for each of a plurality of
reference software files, comparing the plurality of artifacts to the plurality of reference
artifacts, and 1dentifying the software file by 1dentifying the reference software file having the
plurality of reference artifacts that match the plurality of artifacts.

[0009] According to additional embodiments, the plurality of artifacts for the software
file can include one or more of a call graph, control flow graph, use-def chain, def-use chain,
dominator tree, basic block, variable, constant, branch semantic, and protocol. For yet other
additional embodiments, the plurality of artifacts can include one or more of a system call
trace and execution trace. For another example embodiment, the plurality of artifacts can
include one or more of a loop invariant, type information, Z notation, and label transition

system representation. For certain example embodiments, the plurality of artifacts can

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_3 -

include one or more artifacts determined from any of an in-line code comment, commit
history, documentation file, and common vulnerabilities and exposure source entry. For
some example embodiments, the plurality of artifacts arc each a graph artifact or a
developmental artifact. For additional embodiments, the plurality of artifacts are cach static
artifacts, dynamic artifacts, derived artifacts, or meta data artifacts. For certain embodiments,
the plurality of reference artifacts match the plurality of artifacts when at least a fuzzy match
ex1sts between the plurality of reference artifacts and the plurality of artifacts.

[0010] According to additional embodiments, the method can also determine whether a
newer version of the software file exists by analyzing at least one of the reference artifacts
stored 1n the database that 1s associated with the 1dentified reference software file. For some
embodiments, the method can also automatically provide the newer version of the software
file.

10011} According to other embodiments, the method can also mnclude determining
whether a patch for the software file exists by analyzing at Ieast one of the reference artifacts
associated with the 1dentified reference software file. Certain embodiments can also
automatically apply the patch to the software file. Other embodiments can also analyze the
patch to determine a repair portion of the patch that corresponds to a repair of a flaw 1n the
software file, and apply only the repair portion ot the patch to the software file. For certain
embodiments, analyzing the patch and the software file includes converting the patch, and the
software file also for some embodiments, into an intermediate representation and determining
at least one of the artifacts from the intermediate representation.

[0012] Certain embodiments of the present invention can determine the plurality of
artifacts for the software file by converting the software file into an intermediate
representation and determining at least one of the plurality of artifacts from the intermediate
representation. Additional embodiments may also run the software file 1n an instrumented
environment, such as a virtual machine, to determine the artifacts. Certain embodiments may
also determine some of the artifacts by extracting a string of characters from the software file,
including when the software file 1s in source code format or binary code format.

[0013] Additional embodiments of the example method can determine whether a flaw
ex1sts 1n the software file by analyzing at least one of the reference artifacts associated with
the 1dentified reterence software file, and also at least one of the artifacts associated with the

software file for certain embodiments. Additional embodiments can automatically repair the

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_4

flaw 1n the software file. For certain of these embodiments, automatically repairing the flaw
includes replacing a block of source code with a repair block of source code. For certain of
these embodiments, automatically repairing the flaw includes replacing a block of binary
code with a repair block of binary code. For certain of these embodiments, automatically
repairing the flaw includes replacing a block of intermediate representation of the software
file with a repair block of intermediate representation. These blocks can be contiguous, but
do not have to be, and can include code spread throughout the file.

[0014] According to another embodiment of the present invention, a method for
1dentifying code includes obtaining one or more software files, determining a plurality of
artifacts for the software files, accessing a database which stores a plurality of reference

artifacts, and identifying a program fragment that 1s 1n the software file by matching the

artifacts that correcsponds to the program fragment. The matching can also be based on fuzzy
matching wherein close matches are deemed as matches.

[0015] For some embodiments, determining the plurality of artifacts for the sottware files
includes converting the software files into an intermediate representation format and
determining at least one of the plurality of artifacts from the intermediate representation. For
some of the embodiments of the example method, the software files are each 1n a source code
format. For other embodiments, the software files are each in a binary code format. For
some embodiments, the program fragment corresponds to a flaw in the software file, such as
a bug, a security vulnerability, or a protocol deficiency. For certain example embodiments,
the plurality of artifacts include a graph artifact, and/or a developmental artifact, or are each
meta data artifacts. For certain example embodiments, the one or more software files can be
files within a software project.

[0016] For certain embodiments, the reference artifacts corresponding to the program
fragment have previously been 1dentified 1n the database to correspond to a flaw. For some
embodiments, the method also includes automatically repairing the flaw 1n the software file,
offering one or more repair options to a user to repair the flaw, and/or ordering the one or
more repair options, including based on one or more previous repair options selected by the
user or based on a likelithood of success for cach of the repair options. Repairing a flaw
automatically includes repairing a flaw without any input from a user for that file, including

by referencing a configuration file, setting, or flag, including those that can be previously set

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_5

by a user, such as an administrator, to determine whether repairing a flaw automatically 1s
desired or allowed.

[0017] For certain example embodiments, the program fragment has been 1dentified in
the database to correspond to a feature. Certain embodiments can also automatically augment
the feature with a feature enhancement, including by applying a binary or source code patch.
[0018] Additional embodiments of the present invention provide a system for identifying
software, which includes an interface capable of communicating with a source having a
software file, a storage device which stores a plurality of reference artifacts for cach of a
plurality of reference software files, a processor communicatively coupled to the interface
and the storage device, and configured to obtain the software file, determine a plurality of

artifacts for the software file, access the plurality of reference artifacts in the storage device,

softwarc filc by identifying the reference software file having the plurality of reference
artifacts that match the plurality of artifacts.

[0019] Additional embodiments of the system can have the processor configured to
determine the pluralhity of artifacts for the software file by, among other things, converting the
software file into an intermediate representation and determining at least one of the plurality
of artifacts from the intermediate representation. Yet other embodiments have the processor
also being configured to determine whether a patch for the software file exists by analyzing at
least one of the reference artifacts associated with the identitfied reference software file.
Certain additional embodiments have the processor also being configured to automatically
apply the patch to the software file. Certain other embodiments have the processor also being
configured to analyze the patch and the software file to determine a repair portion of the
patch that corresponds to a repair of a flaw 1n the software file, and apply only the repair
portion of the patch to the software file.

[0020] Additional embodiments of the present invention provide a system for identifying
code, which includes an interface capable of communicating with a source having on¢ or
more¢ software files, a storage device for storing a plurality of reference artifacts, and a
processor communicatively coupled to the interface and the storage device, and configured
to: cause one or more software files to be obtained, determine a plurality of artifacts for the
one¢ or more software files, access a database which stores a plurality of reference artifacts,

and 1dentify a program fragment for the one or more software files by matching the plurality

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
-6 -

of artifacts that correspond to the program fragment to the plurality of reference artifacts that
correspond to the program fragment. For certain example embodiments, the program
fragment has been 1dentified in the database to correspond to a flaw. Examples of such flaws
include a bug, a security vulnerability, and a protocol deficiency. These flaws can be within
the one or more software files or can be related to one or more interfaces between the
software files. Additional embodiments also can have the processor be configured to
automatically repair the flaw 1n the one or more software files.

[0021] According to an additional embodiment of the present invention, provided 1s a
non-transitory computer readable medium with an executable program stored thereon,
wherein the program instructs a processing device to perform the following steps: obtain a

software file, determine a plurality of artifacts for the software file, access a database which

software file by 1dentifying the reterence software file having the plurality of reference

artifacts that match the plurality of artifacts.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] The foregoing will be apparent from the following more particular description of
example embodiments of the invention, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout the different views. The drawings
are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of
the present invention.

[0023] FIG. 1 is a flow diagram 1llustrating an example embodiment of a method for
providing a corpus for software files.

[0024] FIG. 2 1s a flow chart illustrating example processing to extract intermediate
representation (IR) from input software files for the corpus in accordance with an
embodiment of the present invention.

[0025] F1G. 3 1s a block diagram 1illustrating hierarchical relationships amongst artifacts
for software files in accordance with an embodiment of the invention.

[0026] FIG. 4 1s a block diagram 1llustrating an example embodiment of a system for

providing a corpus of artifacts for software files.

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_7

[0027] FI1G. 5 18 a block diagram 1llustrating an example embodiment of a method for
1dentifying design patterns.

[0028] FIG. 6 1s a flow diagram 1illustrating an example embodiment of a method for

identifying flaws.

[0029] FI1G. 7 1s a block diagram illustrating the clustering of artifacts for identifying

design patterns 1n accordance with an embodiment of the present invention.

[0030] FIG. & 1s a flow diagram 1llustrating an example embodiment of a method for

1dentifying software files using a corpus.

[0031] FIG. 9 1s a flow diagram 1illustrating an example embodiment of a method for

1dentifying program fragments.

[0032] FI1G. 10 1s a block diagram illustrating a system using the corpus 1n accordance

DETAILED DESCRIPTION OF THE INVENTION

[0033] A description of example embodiments of the invention follows. The entire
teachings of any patent or publication cited herein are incorporated into this document by
reference.

[0034] Software analysis 1n accordance with example embodiments of the present
disclosure allows for knowledge to be leveraged from existing software files, mcluding files
that are from publicly available sources or that are proprietary software. This knowledge can
then be applied to other software files, including to repair flaws, 1dentify vulnerabilities,
1dentify protocol deficiencies, or suggest code improvements.

[0035] Example embodiments of the present invention can be directed to varying aspects
of software analysis, including creating, updating, maintaining, or otherwise providing a
corpus of software files and related artifacts about the software files for the knowledge
database. This corpus can be used for a variety of purposes 1n accordance with aspects of the
present invention, including to identify automatically newer versions of software files,
patches that are available for software files, flaws 1n files that are known to have these flaws,

and known flaws 1n files that are previously unknown to contain these errors. Embodiments

problems.

[0036] Fig. 11s a flow chart illustrating example processing of input sottware files for the

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_8 -

corpus 1n accordance with an embodiment of the present invention. The first illustrated step
1S to obtain a plurality of software files 110. These software files can be 1n a source code
format, which typically 1s plain text, or in a binary code format, or some other format.
Further, for certain example embodiments of the present invention the source code format can
be any computer language that can be compiled, including Ada, C/C++, D, Erlang, Haskell,
Java, Lua, Objective C/C++, PHP, Pure, Python, and Ruby. For certain additional example
embodiments, interpreted languages can also be obtained for use with embodiments of the
present invention, including PERL and bash script.

[0037] The software files obtained include not only the source code or binary files, but
also can include any file associated with those files or the corresponding software project.

For example, software files also include the associated build files, make files, libraries,

Vulnerabilitics and Exposurcs {CVE) entrics, and other unstructured text.

0038} The software files can be obtained from a variety of sources. For example,
software files can be obtained over a network interface via the Internet from publicly
available software repositories such as GitHUB, SourceForge, BitBucket, GoogleCode, or
Common Vulnerabilities and Exposures systems, such as the one maintained by the MITRE
corporation. Generally, these repositories contain files and a history of the changes made to
the files. Also, for example, a uniform resource locator (URL) can be provided to point to a
site from which files can be obtained. Software files can also be obtained via an interface
from a private network or locally from a local hard drive or other storage device. The
interface provides for communicatively coupling to the source.

[0039] Example embodiments of the present invention can obtain some, most, or all files
available from the source. Further, some example embodiments also automate obtaining files
and, for example, can automatically download a file, an entire software project (¢.g., revision
histories, commit logs, source code), all revisions of a project or program, all files 1in a
directory, or all files available from the source. Some embodiments crawl through cach
revision for the entire repository to obtain all of the available software files. Certain example
embodiments obtain the entire source control repository for each software project in the
corpus to facilitate automatically obtaining all of the associated files for the project, including
obtaining cach software file revision. Example source control systems for the repositories

include Git, Mercurial, Subversion, Concurrent Versions System, BitKeeper, and Perforce.

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_0 -

Certain embodiments can also continuously or periodically check back with the source to
discern whether the source has been changed or updated, and 1f so, can just obtain the
changes or updates from the source, or also obtain all of the software files again. Many
sources have ways to determine changes to the source, such as date added or date changed
fields that example embodiments may use 1n obtaining updates from a source.

[0040] Certain example embodiments of the present invention also can separately obtain
library software files that may be used by the source code files that were obtained from the
repositories to address the need for such files in case the repositories did not contain the
libraries. Certain of these embodiments attempt to obtain any library software file reasonably
available from any public source or obtained from a software vendor for inclusion in the

corpus. Additionally, certain embodiments allow a user to provide the libraries used by

cmbodiments scrape the software files for cach project to 1identify the librarics used by the
project so that they can be obtained and also mstalled, 1f needed.

10041] The next step 1n the example method 1n accordance with the present imvention 1s
determining a plurality of artifacts for each of the plurality of software files 120. Software
artitacts can describe the function, architecture, or design of a software file. Examples of the
types of artifacts include static artifacts, dynamic artifacts, derived artifacts, and meta data
artifacts.

[0042] The final step of the example method 1s storing the plurality of artifacts for each
of the plurality of software files in a database 130. The plurality of artifacts are stored 1n
such a way that they can be 1dentified as corresponding to the particular software file from
which they were determined. This identification can be done in any of a well known variety
of ways, such as a field 1n the database as represented by the database schema, a pointer, the
location of where stored, or any other identifier, such as filename. Files that belong to the
same project or build can similarly be tracked so that the relationship can be maintained.
[0043] For different embodiments, the database can take different forms such as a graph
database, a relational database, or a flat file. One preferred embodiment employs OrientDB,
which 1s a distributed graph database provided by the OrientDB Open Source Project lead by
Orient Technologies. Another preferred embodiment employs Titan, which 1s a

scalable graph database optimized for storing and querying graphs distributed across a multi-

machine cluster, and the Apache Cassandra storage backend. Certain example embodiments

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
- 10 -

can also employ SciDB, which 18 an array database to also store and operate on graph-
artifacts, from Paradigm4.

[0044] The static artifacts, dynamic artifacts, derived artifacts, and meta data artifacts
generally can be determined from source code files, binary files, or other artifacts. Examples
of these types of artifacts arc provided below. Example embodiments can determine one or
more of these artifacts for the source code or binary software files. Certain embodiments do
not determine each of these types of artifacts or each of the artifacts for a particular type, and
instead may determine a subset of the artifact types and/or a subset of the artifacts within a
type, and/or none of a particular type at all.

Static Artifacts

[0045] Static artifacts for software files include call graphs, control flow graphs, use-det

and protocols.

10046] A Call Graph (CG) 1s a directed graph of the functions called by a function. CGs
represent high-level program structure and are depicted as nodes with each node of the graph
representing a function and each edge between nodes 1s directional and shows 1f a function
can call another function.

[0047] A Control Flow Graph (CFG) 1s a directed graph of the control tflow between
basic blocks inside of a function. CFGs represent function-level program structure. Each
node 1n a CFG represents a basic block and the edges between nodes are directional and
shows potential paths in the flow.

[0048] Use-Detf (UD) and Det-Use Chains (DU) are directed acyclic graphs of the inputs
(uses), outputs (definitions), and operations performed in a basic block of code. For example,
a UD Chain 18 a use of a variable and all the definitions of that variable that can reach that use
without intervening re-definition. A DU Chain 1s a definition of a variable and all the uses
that can be reached from that definition without intervening re-definition. These chains
cnable semantic analysis of basic blocks of code with regard to the input types accepted, the
output types gencrated, and the operations performed 1nside a basic block of code.

[0049] A Dominator Tree (DT) 1s a matrix representing which nodes in a CFG dominate
(are in the path of) other nodes. For example, a first node dominates a second node if every
path from the entry node to the second node must go through the first node. DTs are
expressed in Pre (from entry forward) and Post (from exit backward) forms. DTs highlight

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_11 -

when the path changes to a particular node 1 a CFG.

[0050] Basic Blocks are the instructions and operands inside cach node of a CFG. Basic
blocks can be compared, and similarity metrics between two basic blocks can be produced.
[0051] Variables are a unit of storage for information and 1ts type, representing the types
of information 1t can store, for any function parameters, local variables, or global variables,
and includes a default value, 1f one 1s available. They can provide initial state and basic
constraints on the program and show changes 1n the type or initial value, which can affect
program behavior.

[0052] Constants are the type and value of any constant and can provide initial state and
basic constraints on the program. They can show changes 1n the type or 1nitial value, which
can affect program behavior.

[0053] Branch Semantics arc the Boolcan evaluations mnside of 1f statcments and loops.
Branches control the conditions under which their basic blocks are exccuted.

10054] Protocols are the name and references of protocols, libraries, system calls, and
other known functions used by the program.

|0055] Example embodiments of the present invention can automatically determine static
artifacts from an intermediate representation (IR) of the software source code files such as
provided by the publicly available LLVM (formerly Low Level Virtual Machine) compiler
infrastructure project. LLVM IR 1s a low level common language that can represent high
level languages eftectively and 1s independent of instruction set architectures (ISAs), such as
ARM, X86, X64, MIPS, and PPC. Different LLVM compilers, also termed front ends, for
different computer languages can be used to transform the source code to the common LLVM
IR. Front ends for at least Ada, C/C++, D, Erlang, Haskell, Java, Lua, Objective C/C++,
PHP, Pure, Python, and Ruby are publicly available. Further, front ends for additional
languages can be readily programmed. LLVM also has an optimizer available and back ends
that can transform the LLVM IR 1nto machine language for a variety of different ISAs.
Additional example embodiments can determine static artifacts from the source code files.
[0056] Fig. 2 15 a flow chart 1llustrating additional example processing of mput software
files for the corpus that can be utilized 1n accordance with an embodiment of the present
invention. Example embodiments can obtain, among other things, both source code 205 and
binary code 210 software files. When a LLVM compiler 220 1s available for the language of
a source code file 205, the LLVM compiler 220 for that language can be used to translate the

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_ 17 -

source code into LLVM IR 250. For compiled languages without an available LLVM
compiler, the source code 205 can be first compiled into a binary file 230 with any supported
compiler 215 for that language. Then, the binary file 230 1s decompiled using a decompiler
235 such as Fracture, which 1s a publicly available open source decompiler provided by
Draper Laboratory. The decompiler 235 translates the machine code 230 into LLVM IR 250.
For files that are obtained in binary form 210, which 1s machine code 230, they are
decompiled using the decompiler 235 to obtain LLVM IR 250. Example embodiments can
extract language- independent and ISA-independent artifacts from the LLVM IR.

[0057] Example embodiments of the present invention can automatically obtain the IR
for each of the source code software files. For example, the example embodiments can

automatically search the repository for a project for a standard build file, such as autocomtf,

automatically sclectively try to use such files to build the project by monitoring the build
process and converting compiler calls into LLVM front end calls for the particular language
of the source code. The selection process for the build files can step through cach of the files
to determine which exist and provide for a completed build or partially completed build.
[0058] Additional example embodiments can use a distributed computer system 1n
automatically obtaining files from a repository, converting files to LLVM IR, and/or
determining artifacts for the files. An example distributed system can use a master computer
to push projects and builds out to slave machines to process. The slaves can each process the
project, version, revision, or build they were assigned, and can translate the source or binary
files to LLVM IR and/or determine artifacts and provide the results for storage in the corpus.
Certain example embodiments can employ Hadoop, which 1s an open-source software
framework for distributed storage and distributed processing of very large data sets.
Obtaining of the files from a source repository can also be distributed amongst a group of
machines.

[0059] The software files and the LLVM IR also can be stored 1n the corpus in
accordance with example embodiments, including in distributed storage. Example
embodiments also may determine that the software file or LLVM IR code 1s already stored in
the database and choose to not store the file again. Pointers, edges 1n a graph database, or
other reference 1dentifiers can be used to associate the files with a particular project,

directory, or other collection of files.

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
- 13 -

Dynamic Artifacts

[0060] Dynamic artifacts are representative of program behavior and are generated by
running the software in an instrumented environment, such as a virtual machine, emulators
(¢.g. quick emulator (“QEMU?), or a hypervisor. Dynamic artifacts include system call
traces/library traces and execution traces.

[0061] A system call trace or library trace 1s the order and frequency 1n which system
calls or library calls are executed. A system call 1s how a program requests a service from

an operating system’s kernel, which manages the input/output requests. A library call 1s a
call to a software library, which 1s a collection of programming code that can be re-used to
develop software programs and applications.

[0062] An ¢xecution trace 1s a per-instruction trace that includes instruction bytes, stack
frame, memory usage (¢.g., resident/working sct size), uscr/kernel time, and other run-time
information.

0063] Example embodiments of the present invention can spawn virtual environments,
including for a variety of operating systems, and can run and compile source code and binary
files. These environments can allow for dynamic artifacts to be determined. For example,
publicly available programs such as Valgrind or Daikon can be employed to provide run-time
information about the program to serve as artifacts. Valgrind 1s a tool for, among other
things, debugging memory, detecting memory leak, and profiling. Daikon 1s a program that
can detect 1invariants 1n code; an invariant 1s a condition that holds true at certain points 1n the
code.

[0064] Yet other embodiments can employ additional diagnostic and debugging programs
or utilities, such as strace and dtrace, which are publicly available. Strace 1s used to monitor
interactions between processes and the kernel, including system calls. Dtrace can be used to
provide run-time information for the system, including the amount of memory used, CPU
time, specific function calls, and the processes accessing a specific file. Example
embodiments can also track execution traces (¢.g., using Valgrind) across multiple runs of the
program.

[0065] Additional embodiments can run the LLVM IR through the KLEE engine. KLEE
1s a symbolic virtual machine which 1s publicly available open source code. KLEE

symbolically executes the LLVM IR and automatically generates tests which exercise all

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_14 -

code program paths. Symbolic execution relates to, among other things, analyzing code to
determine what inputs cause cach part of the code to execute. Employing KLEE 1s highly
effective at finding functional correctness errors and behavioral inconsistencies, and thus,
allowing example embodiments of the present invention to rapidly 1dentify differences in

similar code (e.g., across revisions).

Derived Artifacts

[0066] Derived artifacts are representative of complex, high-level program behaviors and
extract properties and facts that are characteristic of these behaviors. Derived artifacts
include Program Characteristics, Loop Invariants, Extended Type Information, Z Notation
and Label Transition System representation.

[0067] Program Characteristics arc facts about the program derived from execution
traccs. These facts include minimum, maximum, and average memory s1z¢; ¢xccution time;
and stack depth.

[0068] Loop Invariants are properties which are maintained over all 1terations (or a
selected group of 1terations) of a loop. Loop mmvariants can be mapped to the branch
semantics to uncover similar behaviors.

[0069] Extended Type Information comprise facts about types, including the range of
values a variable can hold, relationships to other variables, and other features that can be
abstracted. Type constraints can reveal behaviors and features about the code.

[0070] Z. Notation 1s based on Zermelo-Fraenkel set theory. It provides a typed algebraic
notation, enabling comparison metrics between basic blocks and whole functions 1gnoring
structure, order, and type.

[0071] Label Transition System (LTS) representation 1s a graph system which represents
high-level states abstracted from the program. The nodes of the graph are states and the
edges are labelled by the associated actions in the transition.

[0072] For certain example embodiments, derived artifacts can be determined from other

artifacts, from the source code files, including using programs described above for dynamic

artifacts, and from LLVM IR.

Meta data Artifacts

[0073] Meta data artifacts are representative of program context, and include the meta

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
- 15 -

data associated with the code. These artifacts have a contextual relationship to the computer
programs. Meta data artifacts include file names, revision numbers, time stamps of files,
hash values, and the location of the files, such as belonging to a specific directory or project.
A subset of meta data artifacts can be referred to as developmental artifacts, which are
artifacts that relate to the development process of the file, program, or project.
Developmental artifacts can include in-line code comments, commit histories, bugzilla
entrics, CVE entries, build mfo, configuration scripts, and documentation files such as
README.* TODO.*.

[0074] Example embodiments can employ Doxygen, which 1s a publicly available
documentation gencrator. Doxygen can generate software documentation for programmers
and/or end users from specially commented source code files (1.¢. inline code
documentation).

10075] Additional embodiments can employ parsers, such as a Another Tool For
Language Recognition (ANTLR)4-generated parser, to produce abstract syntax trees (ASTS)
to extract high-level language features, which can also serve as artifacts. ANTLR4 takes a
grammar, production rules for strings for a language, and generates a parser that can build
and walk parse trees. The resultant parsers emit the various types, function definitions/calls,
and other data related to the structure of the program. Low-level attributes extracted with
ANTLR4-generated parsers include complex types/structures, loop invariants/counters (e.g.,
from a for each paradigm), and structured comments (e.g., formal pre/post condition
statements). Example embodiments can map this extracted data to its referenced locations in
the LLVM IR because filename, line, and column number information exists in both the
parser and LLVM IR.

[0076] Example embodiments of the present invention can automatically determine one
or mor¢ meta data artifacts by extracting a string of characters, such as an in-line comment,
from the source software files. Yet other embodiments automatically determine meta data

artifacts from the file system or the source control system.

Hierarchical inter-artifacts relationships
[0077] Fig. 3 15 a block diagram 1llustrating hierarchical relationships amongst artifacts
for software files in accordance with an embodiment of the invention. Example embodiments

can maintain and exploit these hierarchical inter-artifact relationships. Further, different

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
- 16 -

embodiments can use different schemas and different hierarchical relationships. For the
example embodiment of Figure 3, the top of the artifact hierarchy 1s the LTS artifact 310.
Each LTS node 310 can map to a set or subset of functions and particular variable states.
Under the LTS artifact 310 1s the CG artifact 320. Each CG node 320 can map to a particular
function with a CFG artifact 330 whose edges may contain loop invariants and branch
semantics 330. Each CFG node 330 can contain basic blocks, and DTs 340. Beneath those
artifacts are variables, constants, UD/DU chains, and the IR 1nstructions 350. Fig. 3 clearly
1llustrates that artifacts can be mapped to different levels of the hierarchy, from an LTS node
describing ranges of dynamic information down to individual IR 1nstructions. These
hicrarchical relationships can be used by example embodiments for a variety of uses,

including to search more efficiently for matching artifacts, such as by first comparing

to include or exclude entire scts of lower level artifacts associated with the higher level
artifacts depending upon whether or not the higher level artifacts are a match. Additional
embodiments can also utilize the hierarchical relationships in locating or suggesting repair
code for flaws or for feature enhancements, including by going higher 1n the hierarchy to
locate repair code for a flaw having matching higher level artifacts.

[0078] Fig. 4 1s a block diagram 1llustrating an example embodiment of a system for
providing a corpus of artifacts for software files. An example embodiment can have an
interface 420 capable of communicating with a source 430 having a plurality of software
files. This interface 420 can be communicatively coupled to a local source 430 such as a local
hard drive or disk for certain embodiments. In other embodiments, the interface 420 can be a
network interface 420 for obtaining files over a public or private network. Examples of
public sources 430 of these software files include GitHUB, SourceForge, BitBucket,
GoogleCode, or Common Vulnerabilities and Exposures systems. Examples of private
sources include a company’s internal network and the files stored thereon, including 1n shared
network drives and private repositories. This example system also has one or more
processors 410 coupled to the interface 420 to obtain the plurality of software files from the
source 430. The processor 410 can also be used to determine the plurality of artifacts for
cach of the plurality of software files. These artifacts can be static, dynamic, derived, and/or
meta data artifacts. For additional embodiments, the processor 410 can also be configured to

convert each of the software files into an intermediate representation and to determine

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
- 17 -

artifacts from the intermediate representation.

[0079] The example system also has one or more storage devices 440a - 440n for storing
the artifacts for cach of the software files, and are coupled to the processor 410. These
storage devices 440a - 440n can be hard drives, arrays of hard drives, other types of storage
devices, and distributed storage, such as provided by employing Titan and Cassandra on a
Hadoop File System (HDFS). Likewise, the example system can have one processor 410 or
employ distributing processing and have more than one processor 410. Yet other
embodiments also provide from direct communicative coupling between the interface 420
and the storage devices 440a - 440n.

[0080] FIG. 5 1s a block diagram 1llustrating an example embodiment of a method for
locating design patterns. Examples of design patterns include bug, repair, vulnerability,
sccurity-patch, protocol, protocol-cxtension, fecature, and featurc-cnhancement. Each design
pattcrn can be associated with cxtracted artifacts (c.g., specifications, CG, CFG, Det-Usc
Chains, mnstruction sequences, types, and constants) at various levels of the software project
hierarchy.

[0081] The example method provides accessing a database having multiple artitacts
corresponding to multiple software files 510. The database can be a graph database,
relational database, or flat file. The database can be located locally, on a private network, or
available via the Internet or the Cloud. Once the database has been accessed, then the method
can 1dentify automatically a design pattern based on at least one of the plurality of artifacts
for a first file of the plurality of files 520. For certain example embodiments, each of the
plurality of artifacts can be static artifacts, dynamic artifacts, derived artifacts, or meta data
artifacts. Other embodiments can have a mix of different types of artifacts. Further, the
format of the files 1s not limited, and can be a binary code format, a source code format, or an
intermediate representation (IR) format, for example.

[0082] For certain embodiments, the design patterns can be 1dentified by key word
searching or natural language scarching of the developmental artifacts. For example, inline
code comments 1n a revision of a source code file may i1dentify a flaw that was found and
fixed. The comments may use words such as flaw, bug, error, problem, defect, or glitch.
These words could be used in key word searching of the meta data. Commit logs also can
include text describing why new revisions and patches have been applied, such as to address

flaws or enhance features. Further, training and feedback can be applied to the searching to

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_ 18 -

refine the search efforts.

[0083] Additional example embodiments can search the developmental artifacts from
CVE sources, which 1identify common vulnerabilities and errors 1n text and can describe the
flaw and the available repairs, 1f any. This text can be obtained as an artifact and stored in
the database. Certain sources also code the flaws so that code can be used as a key word to
locate which file contains a flaw. Additionally, the source of the artifacts can be considered
and weighted in the 1dentification of a software file. For example, a CVE source may be
more reliable 1n 1dentifying flaws than a repository without provenance or in-line comments.
Y et other embodiments may use meta data artifacts such as file name and revision number to
at least preliminarily identify a software file and confirm the 1dentification based on matching
additional artifacts, such as, for example, CGs or CFGs.

[0084] Certain embodiments of the present invention perform the example method and
try to 1identify design patterns for some, most, or all source code and LLVM IR files.
Additionally, whenever files are added to the corpus, certain embodiments access the
database and try to 1dentify any design patterns. Certain embodiments can also label the
1dentified design patterns for later use.

[0085] Certain embodiments also find the location of the flaw 1n the source code or the
LLVM IR associated with the file that also has been stored 1n the database. For example, the
developmental artifacts may specity where in the source code the tflaw exists and where 1n a
patch the repair exists. Also, the source code or LLVM IR can be analyzed and compared
with the file having the flaw and the newer repaired version of the file for isolating the
differences and discerning where the flaw and repair are located. For certain embodiments
the type of flaw 1dentified 1n the developmental artifact can also be used to narrow the search
of the code for the location of the flaw. Additional embodiments also can 1dentify the design
pattern, such as using a label, and store the 1dentifier in the database for the file. This allows
the database to be readily searched for certain flaws or types of flaws. Examples of such
labels include character strings obtamed from the developmental artifacts for the software file
or from the source code. This same approach can apply to identifying features and feature
enhancements and labeling them.

[0086] For certain example embodiments, the design pattern 1s located in the software
file. For certain example embodiments, the design pattern may relate to the interaction, such

as interfaces, between files. Example embodiments can 1dentify automatically the design

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
- 19 -

pattern by basing the 1dentification on artifacts for multiple software files, such as a first and
second file which both belong to a software project. For example, a pre-identified pattern
that denotes a design pattern, such as an interface mismatch error, can be stored 1n a database
or ¢lsewhere that allows artifacts from the first and second file to be used to 1dentify that the
interface error exists for these files. Example design patterns for example embodiments
include a flaw, repair, feature, feature enhancement, or a pre-identified program fragment.
[0087] For certain example embodiments, the method locates 1n an artifact a character
string that denotes a flaw or a repair. Often, such strings, such as bug, error, or flaw, are
present in developmental artifacts, as well as strings regarding repairs and where those can be
found 1n the code. These developmental artifacts also can have strings that denote a feature
or a feature enhancement.

[0088] For certain example embodiments, the design patterns arc bascd on a pre-
1dentificd pattern which denotes the design pattern. These pre-identificd patterns can be
created by a user, can be previously 1dentified by methods associated with this disclosure, or
can be 1dentified 1in some other way. These pre-identified patterns can correspond to tlaws,
repairs, features, feature enhancements, or items of interest or other significance.

[0089] Fig. 6 1s a flow diagram 1llustrating an example embodiment ot a method for
locating tlaws. The method includes accessing a database, 610 such as the corpus, having a
plurality of software artifacts corresponding to a plurality of software files. Then, the
artitacts are analyzed to discern patterns from the volume of data. For example, this analysis
can include clustering the plurality of artifacts 620. By clustering the data, known flaws 1n
files that are not known to contain the known flaws can be found. Thus, from the clustering,
the example method can identify a previously unidentified flaw based on one or more
previously identified flaws 630.

[0090] Certain example embodiments of the present invention can employ machine
learning to the corpus. Machine learning relates to learning hierarchical structures of the data
by beginning with low level artifacts to capture related features in the data and then build up
more complex representations. Certain example embodiments can employ deep learning to
the corpus. Deep learning 1s a subset of the broader family of machine learning methods
based on learning representations of data. For certain embodiments, autoencoders can be used
for clustering.

[0091] For certain example embodiments, the artifacts can be processed by a set of

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
290 -

autoencoders to automatically discover compact representations of the unlabeled graph and
document artifacts. Graph artifacts include those artifacts that can be expressed in graph
form, such as CGs, CFGs, UD chains, DU chains, and DTs. The compact representations of
the graph artifacts can then be clustered to discover software design patterns. Knowledge
extracted from the corresponding meta data artifacts can be used to label the design patterns
(e.g., bug, fix, vulnerability, security-patch, protocol, protocol-extension, feature, and feature-
enhancement).

[0092] For certain example embodiments, the autoencoders are structured sparse auto-
encoders (SSAE), which can take vectors as input and extract common features. For certain
embodiments to automatically discover features of a program, the extracted graph artifacts
are first expressed in matrix form. Many of the extracted artifacts can be expressed as
adjacency matrices, including, for example, CFG, UD chains, and DU chains. The structural
fecaturcs can be lcarncd at cach Icvel of the software filc and project hicrarchy.

10093] The number of nodes 1n the graph artifacts can vary widely; therefore,
intermediate artifacts can be provided as mput for deep learning. One such intermediate
artifact 1s the first k eigenvalues of the Graph Laplacian, enabling the deep learning to
perform processing akin to spectral clustering. Other intermediate artifacts include clustering
coctticients, providing a measure of the degree to which nodes 1n a graph tend to cluster
together, such as the global clustering coetfficient, network average clustering coetticient, and
the transitivity ratio. Another intermediate artifact 1s the arboricity ot a graph, a measure of
how dense the graph 1s. Graphs with many edges have high arboricity, and graphs with high
arboricity have a dense subgraph. Yet another intermediate artifact 1s the 1soperimetric
number, a numerical measure of whether or not a graph has a bottleneck. These intermediate
artifacts capture different aspects of the structure of the graph for use in machine learning
methods.

[0094] Machine learning, including deep learning, for example embodiments can employ
algorithms that are tramned using a multi-step process starting with a simple autoencoder
structure, and iteratively refining the approach to develop the SSAE. The SSAE also can be
trained to learn features from the intermediate artifacts. An autoencoder learns a compact
representation of unlabeled data. It can be modeled by a neural network, consisting of at lecast
on¢ hidden layer and having the same number of inputs and outputs, which learn an

approximation to the identity function. The autoencoder dehydrates (encodes) the mput

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
271 -

signals to an essential set of descriptive parameters and rehydrates (decodes) those signals to
recreate the original signals. The descriptive parameters can be automatically chosen during
training to optimize rehydrating over all training signals. The essential nature of the
dehydrated signals provides the basis for grouping signals into clusters.

[0095] Autoencoders can reduce the dimensionality of input signals by mapping them to
a lower-dimensionality feature space. Example embodiments can then perform clustering
and classification of the codes in the feature space discovered by the autoencoder. A k-means
algorithm clusters learned features. The A-means algorithm 18 an iterative refinement
technique which partitions the features into & clusters which minimize the resulting cluster
means. The mitial number of clusters, £, can be chosen based on the number of topics

extracted. It 1s very efficient to search over the number of potential clusters, calculating a

1s based on Euclidcan distance. Example embodiments can classity the resultant clusters with
the labels of the topics most frequently occurring within the software files from which the
clustered features are derived.

10096] Although the feature vector 1s sparse and compact, 1t can be difficult to understand
the mput vector merely by mspection of the feature vector. Thus, example embodiments can
exploit the priors associated with previously learned weight parameters. Given a sufficient
corpus, patterns in the parameter space should emerge e.g., for “repaired” code. Example
embodiments can incorporate particular patterns into the autoencoder using prior information
given by the data set collected up to that point. In particular, as labels are learned by the
system, example embodiments can incorporate that information into the autoencoder
operation.

[0097] Example embodiments can use a mixture of database management (e.g., joins,
filters) and analytic operations (e.g., singular value decomposition (SVD), biclustering).
Example embodiments’ graph-theoretic (e.g., spectral clustering) and machine learning or
deep learning algorithms can both use similar algorithm primitives for feature extraction.
SVD also can be used to denoise input data for learning algorithms and to approximate data
using fewer dimensions, and, thus, perform data reduction.

[0098] Example embodiments can encapsulate human understanding of the code state
over time and across programs through unsupervised semantic label generation of document

artifacts, including via text analytics. An example of text analytics 1s latent Dirichlet

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_0)

allocation (LDA). Semantic information can be extracted from the document artifacts using
LDA and topic modeling. These approaches are “bag-of-words” techniques that look at the
occurrences of words or phrases, ignoring the order. For example, a bag representing
“scientific computing” may have seed terms such as “FFT,” “wavelet,” “sin,” and “atan.”
The example embodiments can use the extracted document artifacts from sources such as
source comments, CG/CFG node labels, and commit messages to fill “bags™ by counting the
occurrence of terms. The resulting fixed bin histogram can be fed to a Restricted Boltzmann
Machine (RBM), an implementation of a deep learning algorithm appropriate for text
applications. The extracted topics capture the semantic information associated with the
extracted document artifacts and can serve as labels (e.g., bug/fix, vulnerability/patch) for the

clusters formed by the unsupervised learning of graph-artifacts via the autoencoder. Other

natural language processing, Iexical analysis, and predictive analysis.

10099] The topic labels extracted from the document artifacts can provide the labeling
information to inform the structuring of the autoencoder. Example embodiments can query
the corpus database for populations of training data based on learned topics, the semantic
commonalities that represent ordinal software patterns (i.e., before/atter software revisions).
These patterns can capture changes embedded in software development files, such as in
commit logs, change logs, and comments, which are associated with the software
development lifecycle over time. The association of these changes provides insight into the
evolution of the software relevant for detection and repair such as bugs/fixes,
vulnerability/security patch, and feature/enhancement. This information also can be used to
understand and label the knowledge automatically extracted from the artifact corpus.

[00100] Fig. 7 shows a block diagram illustrating the clustering of artifacts for identifying
design patterns 1n accordance with an embodiment of the present invention. The structural
features can be learned at cach level of the software file hierarchy, including system,
program, function, and block 710. Graph artifacts, such as CGs, CFGs, and DTs, can be
analyzed for the clustering 715. These graph artifacts can be transformed into graph invariant
features 720. These graph features 740 can then be provided as input to a graph analytics
module 760, such as an autoencoder, and the resultant clustering reviewed for the like design
patterns, which are clustered together 780. Text, such as one or more strings of characters

from source code files or from developmental artifacts, can be mapped to labels 730. These

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
203 -

labels 750 can be analyzed by a text analytics module 770, such as by using LDA or other
natural language processing, and the labels can be associated with the corresponding
discovered clusters 780 from which the labels were derived. These modules 760, 770 can be
realized in software, hardware, or combinations thereof.

[00101] Fig. 8 shows a flow diagram 1illustrating an example embodiment of a method for
1dentifying software using a corpus. The example embodiment obtains a software file &10.
The file can be obtained via a network interface from a public or private source, such as a
public repository via the Internet, the Cloud, or a private company’s server. Certain example
embodiments can also obtain the software file from a local source, such as a local hard drive,
portable hard drive, or disk. Example embodiments can obtain a single file or multiple files

from the source and can do so automatically, such as via the use of a scripting language, or

artifacts for the softwarc file 820, such as any of the other artifacts described herein. The
example method can then access a database 830 which stores a plurality of reference artifacts
for each of a plurality of reference software files. The reference artifacts can be stored in the
corpus database. For certain example embodiments, these reference files can include the
software files that have previously been obtained and whose artifacts have been stored in the
database, along with the software files for certain embodiments. The artifacts, or plural
subsets thereof, that have been determined for the obtained software file are compared to the
reference artifacts, or plural subsets thereof, stored in the database 840. Example
embodiments can 1dentity the software file by 1dentifying the reference software file having
the plurality of reference artifacts that match the plurality of artifacts 850. Because the
compared artifacts and reference artifacts match, the software file and the reference software
file are 1dentified as being the same file.

[00102] Additional artifacts or portions of code can also then be compared to increase the
confidence level that the correct identification was made. The degree of confidence can be
fixed or adjustable and can be based on a wide variety of criteria, such as the number of
artifacts that match, which artifacts match, and a combination of number and which artifacts.
This adjustment can be made for particular data sets and observations thereof, for example.
Furthermore, for certain embodiments matching can include fuzzy matching, such as having
an adjustable setting for a percentage less than 100% of matching, to have a match declared.

[00103] For certain example embodiments, certain artifacts can be given more or less

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_74

welght 1 the matching and 1dentification process. For example, common artifacts, such as
whether the 1nstructions are associated with a 32 bit or 64 bit processor, can be given a
welght of zero or some other lesser weight. Some artifacts can be more or less invariant
under transformation and the weights for these artifacts can be adjusted accordingly for
certain example embodiments. For example, the filename or CG artifact may be considered
highly informative 1n establishing the identity of a file while certain artifacts, such as LTS or
DTs, for example, can be considered less dispositive and given less weight for certain
example embodiments and sources. Additional embodiments can give certain combinations
of artifacts more weight to 1dentify a match when making comparisons. For example, having
the CFG and CG artifacts match may be given more weight in making an i1dentification than

having basic block artifacts and DT artifacts match. Likewise, certain artifacts not matching

of cvaluating weighting 1n the identification process can mclude expressing an 1identification
threshold, such as 1in percentages of matching artifacts or some other metric. Additional
embodiments can vary the identification threshold, including based on such things as the
source of the file, the type of the file, the time stamp, which includes the date of the file, the
size of the file, or whether certain artifacts cannot be determined for the file or are otherwise
unavailable.

[00104] Additional embodiments can determine some of the plurality of artifacts for the
software file by converting the software file into an intermediate representation, such as
LLVM IR, and determining at least one of the plurality of artifacts from the intermediate
representation. Yet other embodiments can determine some of the plurality of artifacts by
extracting a character string from the software file, such as a source code file or
documentation file.

[0010S5] Example embodiments can also include determining whether a newer version of
the software file exists by analyzing at lecast on¢ of the reference artifacts associated with the
1dentified reference software file. For example, once the software file has been identified, the
database can be checked to see whether a newer revision of the software file 18 available,
such as by checking the revision number or time stamp of the corresponding reference file, or
the labels associated with artifacts and files in the database that can identify the reference file

as an older revision of another file. Additional example embodiments can also automatically

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_05

provide the newer version of the software file, including to a user or a public or private
source.

[00106] Certain additional embodiments can determine whether a patch for the software
file exists by analyzing at least one of the reference artifacts associated with the 1dentified
reference software file. For example, the example embodiments can check an artifact
associated with the reference software file and determine that a patch exists for the file,
including a patch that has not yet been applied to the software file. Additional embodiments
can automatically apply the patch to the software file or prompt a user as to whether they
want the patch applied.

[00107] Certain additional embodiments can analyze the patch, and also the software file

(or the reference software file because they are matched) for certain embodiments, to

file. This analysis can occur before or after the software file 1s obtained for certain
embodiments. Additional embodiments can apply only the repair portion of the patch to the
software file, including automatically or prompting a user as to whether they what the repair
portion of the patch apphed. Additional embodiments can provide the repair portion of the
patch to the source for it to be applied at the source. Further, the analysis of the patch and the
software file can include converting the patch and the software file into an intermediate
representation and determining at least one of the plurality of artifacts from the intermediate
representation. Similarly, additional embodiments can analyze the patch and the software file
(or the reference software file because they are matched) to determine a feature enhancement
portion of the patch that corresponds to an improvement or change of a feature 1n the
software file. Additional embodiments can apply only the feature enhancement portion of the
patch to the software file, including automatically or prompting a user as to whether they
want the feature enhancement portion of the patch applied.

[00108] Additional example embodiments can determine whether a flaw exists in the
software file by analyzing at Icast one of the reference artifacts associated with the 1identified
reference software file. For example, the reference software file can have an artifact that
1dentifies 1t as having a flaw for which a repair 1s available. Additional embodiments can
automatically repair the flaw in the software file, including by automatically replacing a
block of source code with a repair block of source code or a block of intermediate

representation in the software file with a repair block of intermediate representation.

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
206 -

Additional embodiments can repair the flaw in a binary file by replacing a portion of the
binary with a binary patch. For certain embodiments, the repaired file can be sent to the
source of the software file. Additional embodiments can provide for the repair code to be
provided to the source of the software file for the file to repaired there.

[00109] Fig. 9 1s a flow diagram 1llustrating an example embodiment of a method for
1dentifying code. The example method can obtain one or more software files 910. For the
software files, a plurality of artifacts can be determined 920. Certain embodiments can
instead obtain the artifacts rather than determining the artifacts if they have already been
determined. A database can be accessed which stores a plurality of reference artifacts 930.
The reference artifacts are artifacts as described herein and can correspond to reference

software files, reference design patterns, or other blocks of code of interest. The database can

Internet or in the Cloud, and also can be distributed across a plurality of storage devices.
Then, a program fragment that 1s in the one or more software files, or associated with them
such as interface bugs, can be 1dentified by matching the plurality of artifacts that correspond
to the program fragment to the plurality of reference artifacts that correspond to the program
fragment 940. A program fragment 1s a sub portion of a file, program, basic block, function,
or interfaces between functions. A program fragment can be as small as a single instruction
or as large as the entire file, program, basic block, function, or interface. The portions chosen
can be sufficient to identify the program fragment with any desired degree of confidence,
which can be set or adjustable for certain embodiments, and which can vary, such as
described above with respect to 1dentifying files.

[00110] For certain embodiments, determining artifacts for the software file includes
converting the software file into an intermediate representation and determining at least one
of the artifacts from the intermediate representation. For certain embodiments, the software
file and the reference software file are each in a source code format or are cach in a binary
code format. For additional embodiments, the program fragment corresponds to a flaw in the
software file and has been 1dentified in the database to correspond to the flaw. Additional
embodiments can automatically repair the flaw 1n the software file or offer one or more repair
options to a user to repair the flaw. Certain embodiments can order repair options, including,
for example, based on one or more previous repair options selected by the user or based on

the likelihood of success for the repair option.

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
_27 -

[00111] Fig. 10 1s a block diagram illustrating a system using a database corpus of
software files 1n accordance with an embodiment of the present mmvention. The example
system 1ncludes an mterface 1020 that can communicate with a source 1010 that has at least
on¢ software file. The interface 1020 1s also communicatively coupled to a processor 1030.
For additional embodiments, the interface 1020 can also be coupled directly to a storage
device 1040. This storage device 1040 can be a wide variety of well known storage devices
or systems, such as a networked or local storage device, such as a single hard drive, or a
distributed storage system having multiple hard drives, for example. The storage device 1040
can store reference artifacts, including for each of a number reference software files and can
be communicatively coupled to the processor 1030. The processor 1030 can be configured to

caus¢ a software file to be obtained from the source 1010. The 1dentity of this software file

that the example system can address. The processor 1030 1s also configured to determine a
plurality of artifacts for the software file, access the reference artifacts in the storage device
1040, compare the artifacts for the software file to the reference artifacts stored 1n the storage
device 1040, and 1dentify the software file by 1dentifying the reference software file having
the reference artifacts that correspond to the compared artifacts for the software file.

[00112] In additional embodiments of the example system, the processor 1030 can be
configured to automatically apply a patch to the software file if one 1s available in the storage
device 1040 for the file. In yet additional embodiments, the processor also can be configured
to analyze an 1dentified patch and the software file to determine 1f there 1s a repair portion of
the patch that corresponds to a repair of a flaw 1n the software file, and, 1f so, automatically
apply only the repair portion of the patch to the software file, or prompt a user.

[00113] The block diagram of Fig. 10 also can illustrate another example system using a
database corpus in accordance with an embodiment of the present invention. This other
illustrated example system includes an interface 1020 that can communicate with a source
1010 that has one or more software files. The interface 1020 1s also communicatively
coupled to a processor 1030. For additional embodiments, the interface 1020 can also be
coupled directly to a storage device 1040. This storage device 1040 can be a wide variety of
well known storage devices or systems, such as a networked or local storage device, such as a

single hard drive, or a distributed storage system having multiple hard drives, for example.

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
208 -

The storage device 1040 can store reference artifacts and can be communicatively coupled to
the processor 1030. The processor 1030 can be configured to cause one or more software
files to be obtained, to determine a plurality of artifacts for the one or more software files, to
access a database which stores a plurality of reference artifacts, and to 1dentify a program
fragment for the one or more software files by matching the plurality of artifacts that
correspond to the program fragment to the plurality of reference artifacts that correspond to
the program fragment. For certain example embodiments, the program fragment has been
identified 1n the database to correspond to a flaw. Examples of such flaws include a bug, a
security vulnerability, and a protocol deficiency. These flaws can be within the one or more
software files or can be related to one or more interfaces between the software files.

Additional embodiments also can have the processor be configured to automatically repair

fragment has been 1dentified in the database to correspond to a feature and certain
embodiments can also automatically provide a feature enhancement, including in the form of

a patch for a source code or binary file.

Repairs

[00114] Example embodiments support program synthesis for automated repair, including
by replacing CG nodes (functions), CFG nodes (basic blocks), specific instructions, or
specific variables and constants to instantiate selected repairs. These elements (e.g., function,
basic block, instruction) are swappable with elements that have compatible interfaces (1.e.,
the same number of parameters, types, and outputs) and can transform the LLVM IR by
replacing a flaw bock of LLVM IR with a repair block of LLVM IR.

[00115] Certain embodiments can also elect to swap a basic block with a function call and
a function call with one or more basic blocks. Certain embodiments can patch source code
and binarics. Additional embodiments can also create suitable elements for swap when they
do not already exist. High level artifacts (¢.g., LTS and Z predicates) can be used to derive
compatible implementations for the software patches. Example embodiments can exploit the
hicrarchy of the extracted graph representations, first ascending the hierarchy to a suitable
representation of the repair pattern, and then descending the hierarchy (via compilation) to a
concrete implementation. The hierarchical nature of the artifacts can help in fashioning the

repair code.

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
200 _

[00116] Example embodiments can allow a user to submit a target program (either source
or binary) and example embodiments discover the existence of any flaw design patterns. For
cach flaw, candidate repair strategies (1.¢., repair design patterns) can be provided to the user.
The user can select a strategy for the repair to be synthesized and the target to be patched.
Certain example embodiments also can learn from the user selections to best rank future
repailr solutions, and repair strategies can also be presented to the user 1n ranked order.
Certain embodiments also can run autonomously, repairing flaws or vulnerabilities over the
entire software corpus, including continuously, periodically, and/or 1n the design
environment.

[00117] In addition to the embodiments discussed above, the present invention can be
employed for a wide variety of uses. For example, example embodiments can be used during

programming of softwarc codc¢ to assistant the programmer, including to identify flaws or

vulnerabilities and optionally automatically repairing them. Yet other example embodiments
can be used to optimize code, including to 1dentify code that 1s not used, inetficient code, and
suggest code to replace less efficient code.

[00118] Example embodiments can also be used for risk management and assessment,
including with respect to what vulnerabilities may exist in certain code. Additional
embodiments may also be used 1n the design certification process, including to provide
certification that software files are free from known flaws, such as bugs, security
vulnerabilities, and protocol deficiencies.

[00119] Yet still other additional example embodiments of the present invention mclude:
code re-use discoverer (finding code which does the same thing already 1n your codebase),
code quality measurement, text-description to code translator, library generator, test-case
generator, code-data separator, code mapping and exploration tool, automatic architecture
generation of existing code, architecture improvement suggestor, bug/error estimator, useless
code discovery, code-feature mapping, automated patch reviewer, code improvement
decision tool (map feature list to minimal changes), extension to existing design tools (¢.g.,
enterprise architect), alternate implementation suggestor, code exploration and learning tool

(e.g., for teaching), system level code license footprint, and enterprise software usage

mapping.

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
- 30 -

[00120] It should be understood that the example embodiments described above may be
implemented 1n many different ways. In some instances, the various methods and machines
described herein may each be implemented by a physical, virtual or hybrid general purpose
computer having a central processor, memory, disk or other mass storage, communication
interface(s), input/output (I/0) device(s), and other peripherals. The general purpose
computer 1§ transformed into the machines that execute the methods described above, for
example, by loading software instructions into a data processor, and then causing execution
of the 1nstructions to carry out the functions described, herein. The software instructions may
also be modularized, such as having an ingest module for ingesting files to form a corpus, an
analytics module to determine artifacts for files for the corpus and/or files to be 1dentified or

analyzed for design patterns, a graph analytics module and a text analytics module to perform

repair module for repairing code or providing updated or repaired files. These modules can
be combined or separated into additional modules for certain example embodiments.

[00121] As 1s known 1n the art, such a computer may contain a system bus, where a bus 1s
a set of hardware lines used for data transfer among the components of a computer or
processing system. The bus or busses are essentially shared conduit(s) that connect different
clements of the computer system, e.g., processor, disk storage, memory, input/output ports,
network ports, efc., which enables the transfer of information between the elements. One or
more central processor units are attached to the system bus and provide for the execution of
computer mstructions. Also attached to system bus are typically I/0 device interfaces for
connecting various mput and output devices, e.g., keyboard, mouse, displays, printers,
speakers, etc., to the computer. Network interface(s) allow the computer to connect to
various other devices attached to a network. Memory provides volatile storage for computer
software 1nstructions and data used to implement an embodiment. Disk or other mass storage
provides non-volatile storage for computer software instructions and data used to implement,
for example, the various procedures described herein.

[00122] Embodiments may therefore typically be implemented in hardware, firmware,
software, or any combination thereof. Furthermore, example embodiments may wholly or
partially reside on the Cloud and can be accessible via the Internet or other networking

architectures.

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
231 -

[00123] In certain embodiments, the procedures, devices, and processes described herein
constitute a computer program product, including a non-transitory computer-readable
medium, e.g., a removable storage medium such as one or more DVD-ROM’s, CD-ROM’s,
diskettes, tapes, erc., that provides at least a portion of the software instructions for the
system. Such a computer program product can be installed by any suitable software
installation procedure, as 1s well known in the art. In another embodiment, at least a portion
of the software instructions may also be downloaded over a cable, communication and/or
wireless connection.

[00124] Further, firmware, software, routines, or instructions may be described herein as
performing certain actions and/or functions of the data processors. However, 1t should be
appreciated that such descriptions contained herein are merely for convenience and that such
actions 1n fact result from computing devices, processors, controllers, or other devices
cxccuting the firmware, software, routines, mstructions, ctc.

|00125] It also should be understood that the tlow diagrams, block diagrams, and network
diagrams may include more or fewer elements, be arranged differently, or be represented
differently. But 1t further should be understood that certain implementations may dictate the
block and network diagrams and the number of block and network diagrams 1llustrating the
execution of the embodiments be implemented in a particular way.

[00126] Accordingly, further embodiments may also be implemented in a variety of
computer architectures, physical, virtual, cloud computers, and/or some combination thereof,
and, thus, the data processors described herein are intended for purposes of illustration only
and not as a limitation of the embodiments.

[00127] While this invention has been particularly shown and described with references to
example embodiments thereof, it will be understood by those skilled 1n the art that various
changes in form and details may be made therein without departing from the scope of the

ivention encompassed by the appended claims.

32

CLAIMS

A computer-based method for identifying an unidentified software program comprising:

N a processor:

obtaining a file of a subject software program, the file forming a part of the
subject software program;

from the obtained file, determining a plurality of software artifacts for the subject
software program;

accessing a database which stores a plurality of reference software artifacts for
each of a plurality of reference software programs:;

comparing the determined plurality of software artifacts to the plurality of
reference software artifacts;

as a function of the comparing, establishing that the software program has at least
partially equivalent semantics to semantics of one of the reference software programs by
matching the plurality of reference software artifacts of the one reference software
program to the determined plurality of software artifacts; and

automatically identifying the subject software program as the one reference
software program based on the subject software program having at least partially
equivalent semantics to semantics of the one reference software program, such that the
identification in the database of the one reference software program is used as
identification of the subject software program;

wherein the determined software artifacts and the reference software artifacts

represent different semantic aspects of software programs.

The method of Claim | wherein at least some of the determined plurality of software artifacts are
static software artifacts that include one or more of a call graph, control flow graph, use-def

chain, def-use chain, dominator tree, and branch semantic.

The method of Claim 1 wherein at least some of the determined plurality of software artifacts are

dynamic software artifacts that include one or more of a system call trace and execution trace.

CA 2949251 2018-09-11

-33-

The method of Claim | wherein at least some of the determined plurality of software artifacts are
derived software artifacts that include one or more of a loop invariant, type information, Z
notation, and label transition system representation, wherein type information includes
information relating to types of variables, expressions, functions, or modules of the obtained

software program.

The method of Claim | wherein at least some of the determined plurality of software artifacts are
associated with developmental artifacts, the developmental artifacts including information
extracted from any of an in-line code comment, commit history, documentation file, and

common vulnerabilities and exposure source entry.

T'he method of Claim 1 wherein the determined plurality of software artifacts include a graph

artifact, the graph artifact being a call graph that represents high level structure of a software

program.

The method of Claim 1 wherein the determined plurality of software artifacts include a meta data

artifact.

The method of Claim 1 further comprising determining a degree of confidence that the subject
software program is the one reference software program based on the established at least
partially equivalent semantics of the subject software program and the one reference program,
and wherein automatically identifying the subject software program as the one reference

software program is further based on the determined degree of confidence that the subject

software program is the one reference software program.

The method of Claim 1 wherein determining the plurality of software artifacts for the subject
software program includes converting the obtained file into an intermediate representation and
determining at lcast one of the plurality of software artifacts from the intermediate

representation.

CA 2949251 2018-09-11

10.

11,

12.

13.

14.

15.

1€.

17.

_34-

The method of Claim 1 further comprising determining whether a newer version of the subject

software program exists by analyzing at least one of the reference software artifacts associated

with the one reference software program.

The method of Claim 10 further comprising automatically providing the newer version of the

subject software program.

The method of Claim 1 further comprising determining whether a software patch for the subject

software program exists by analyzing at least one of the reference software artifacts associated

with the one reference software program.

The method of Claim 12 further comprising automatically applying the software patch to the

subject software program.

T'he method of Claim 12 further comprising analyzing the software patch to determine a repair
portion of the software patch that corresponds to a software repair of a software flaw in the
subject software program, and applying only the repair portion of the software patch to the

subject software program.

The method of Claim 14 wherein analyzing the software patch includes converting the software

patch into an intermediate representation and determining at least one patch artifact from the

intermediate representation.

The method of Claim 1 further comprising determining whether a software flaw exists in the
subject software program by analyzing at least one of the reference software artifacts associated

with the one reference software program and at Icast one of the determined artifacts associated

with the subject software program.

The method of Claim 16 further comprising automaﬁcally repairing the software flaw in the

subject software program.

CA 2949251 2018-09-11

18.

19.

21.

22.

-35.

The method of Claim 17 wherein automatically repairing the software flaw comprises replacing a

block of source code with a repair block of source code.

The method of Claim 17 wherein automatically repairing the software flaw comprises replacing a

block of binary code with a repair block of binary code.

The method of Claim 17 wherein automatically repairing the software flaw comprises replacing a

block of intermediate representation in the subject software program with a repair block of

intermediate representation.

A computer-based method comprising:

In a processor:

obtaining one or more files of a subject software program, the obtained files
forming portions of the subject software program;

from the obtained files, determining a plurality of software artifacts for the subject
software program, the determined plurality of software artifacts corresponding to at least
one program fragment of the subject software program of the obtained files:

accessing a database which stores a plurality of reference software artifacts, the
plurality of reference software artifacts corresponding to respective reference program
fragments, each of the reference program fragments being identified in the database:

comparing the determined plurality of software artifacts to the plurality of
reference software artifacts; and

as a function of the comparing, identifying automatically the at least one program
fragment of the subject software program by matching semantic aspects of the program
fragment to semantic aspects of one of the reference program fragments identified in the

database:

wherein the determined software artifacts and the reference software artifacts

represent different semantic aspects of software programs.

The method of Claim 21 wherein, after identifying automatically, the at least one program

fragment is automatically determined to correspond to a software flaw represented in the

CA 2949251 2018-09-11

23.

24,

25.

26.

27.

28.

29.

30.

31.

-36-

database, the software flaw having been previously identified in the database and is associated

with the respective reference program fragment.

The method of Claim 21 wherein the at least one program fragment corresponds to a software

flaw in the subject software program.

The method of Claim 21 wherein the at least one program fragment corresponds to a software

flaw that is selected from the group consisting of a bug, a security vulnerability, and a protocol

deficiency.

The method of Claim 23 further comprising automatically repairing the software flaw in the

subject software program.

The method of Claim 25 wherein automatically repairing the software flaw includes providing a

software repair program fragment to replace a software flaw program fragment.

The method of Claim 23 further comprising offering one or more software repair options to a

user to repair the software flaw.

The method of Claim 27 further comprising ordering the one or more software repair options

offered to the user.

T'he method of Claim 28 wherein the ordering of the one or more software repair options is based

on one or more previous software repair options selected by the user.

The method of Claim 28 wherein the ordering of the one or more software repair options is based

on a likelithood of success for each of the software repair options.

The method of Claim 21 wherein the at least one program fragment is automatically identified in
the database to correspond to a software feature, the software feature having been previously

identified with regards to the respective reference program fragment.

CA 2949251 2018-09-11

32.

33.

34.

35.

36.

37.

38.

39.

40.

-37-

The method of Claim 31 further comprising automatically augmenting the software feature with

a software feature enhancement.

The method of Claim 21 wherein the determined plurality of software artifacts include a graph

artifact, the graph artifact being a call graph, a control flow graph, a use-def chain, a def-use

chain, or a dominator tree.

The method of Claim 21 wherein the determined plurality of software artifacts include a

developmental artifact.

The method of Claim 21 wherein the determined plurality of software artifacts include a meta

data artifact.

The method of Claim 21 wherein determining the plurality of software artifacts for the subject
software program includes converting the obtained one or more files into an intermediate
representation and determining at least one of the plurality of software artifacts from the

intermediate representation.

The method of Claim 21 wherein the obtained one or more software files are each in a source

code format.

The method of Claim 21 wherein the obtained_one or more software files are each in a binary

code format.

The method of Claim 21 wherein the obtained one or more software files are files within a

software project.

A system for identifying a software program comprising:
an interface capable of communicating with a source having a subject software program:
a storage device which stores a plurality of reference software artifacts for each of a
plurality of reference software programs, each of the reference software programs, having an

identification in the storage device; and

CA 2949251 2018-09-11

41.

42,

43.

_38-

a processor communicatively coupled to the interface and the storage device, and

configured to:
cause one or more files of the subject software program to be obtained;

determine, from the obtained files, a plurality of software artifacts for the subject

software program;

access the plurality of reference software artifacts in the storage device;

compare the determined plurality of software artifacts to the plurality of reference
software artifacts;

as a function of the comparing, establish the subject software program as having at least
partially equivalent semantics to semantics of one of the reference software programs by
matching the plurality of reference artifacts of the one reference software program with the
determined plurality of software artifacts; and

automatically identify the subject software program as the one reference software
program based on the subject software program having at least partially equivalent semantics to
semantics of the one reference software program, such that the identification in the database of
the one reference software program is used as identification of the subject sofiware program;

wherein the determined software artifacts and the reference software artifacts represent

different semantic aspects of software programs.

The system of Claim 40 wherein the processor determining the plurality of software artifacts for
the subject software program includes the processor converting the obtained files into one or
more intermediate representations and determining at least one of the plurality of software

artifacts from the one or more intermediate representations.

The system of Claim 40 further comprising the processor also being configured to determine
whether a software patch for the subject software program exists by analyzing at least one of the

reference software artifacts associated with the one reference software program.

The system of Claim 40 further comprising after automatically identifying, the processor also

being configured to automatically apply a software patch to the subject software program.

CA 2949251 2018-09-11

44,

45.

-30.

The system of Claim 42 further comprising the processor also being configured to analyze the
software patch to determine a repair portion of the software patch that corresponds to a repair of
a software flaw in the subject software program, and apply only the repair portion of the software

patch to the subject software program.

A system comprising: '
an interface capable of communicating with a source having one or more files of a subject
software program;
a storage device which stores a plurality of reference software artifacts, the plurality of
reference software artifacts corresponding to respective reference program fragments; and
a processor communicatively coupled to the interface and the storage device, and
configured to:
cause one or more files of a subject software program to be obtained, the obtained
files torming portions of the subject software program;
from the obtained files, determine a plurality of software artifacts for the software
program, the determined plurality of software artifacts corresponding to at lcast one
program fragment of the subject software program;
access a database which stores a plurality of reference software artifacts, the
plurality of reterence software artifacts corresponding to respective reference program
fragments, each of the reference program fragments being identified in the database;
compare the determined plurality of software artifacts to the plurality of reference
software artifacts; and
as a function of the comparing, identify automatically the at least one program
tfragment of the subject software program by matching semantic aspects of the
unidentified program fragment to semantic aspects of one of the reference program
fragments identified in the storage device;
wherein the determined software artifacts and the reference software artifacts represent

different semantic aspects of software programs.

CA 2949251 2018-09-11

46.

47.

48.

49,

-40)-

The system of Claim 45 wherein the at least one program fragment 1s automatically identified to

correspond to a software tlaw, the software tflaw having been previously identified in the

database and 1s associated with the respective reference program fragment.

The system of Claim 45 wherein the at least one program fragment corresponds to a software
flaw that is selected from the group consisting of a bug, a security vulnerability, and a protocol

deficiency.

The system of Claim 46 further comprising the processor also being configured to automatically

repair the software flaw in the subject software program.

A non-transitory computer readable medium with an executable program stored thereon, wherein
the program instructs a processing device to perform the following steps:

obtain a file of a subject software program, the file forming a part of the subject software
program;

from the obtained file, determine a plurality of software artifacts for the subject software
program;

access a database which stores a plurality of reference software artifacts for each of a
plurality of reference software programs, each of the reference software programs being
identified in the database; '

compare the determined plurality of software artifacts to the plurality of reference
software artifacts;

as a function of the comparing, establish that the subject software program has at least
partially equivalent semantics to semantics of one of the reference software programs by
matching the plurality of reference software artifacts of the one reference software program to
the determined plurality of software artifacts; and

automatically identity the subject software program as the one reference software
program based on the subject software program having at least partially equivalent semantics to

semantics of the one reference software program, such that the identification in the database of

the one reference sofitware program is used as identification of the subject software program;

CA 2949251 2018-09-11

30.

41-

wherein the determined software artifacts and the reference software artifacts represent

different semantic aspects of software programs.

A non-transitory computer readable medium with an executable program stored thereon, wherein
the program instructs a processing device to perform the following steps:

obtain one or more files of a subject software program, the obtained files forming
portions of the subject software program;

from the obtained files, determine a plurality of software artifacts for the subject software
program, the determined plurality of software artifacts corresponding to at least one program
fragment of the subject software program of the obtained files:

access a database which stores a plurality of reference software artifacts, the plurality of
reference software artifacts corresponding to respective reference program fragments, each of the
reference program fragments being identified in the database:

compare the determined plurality of software artifacts to the plurality of reference
software artifacts; and

as a tunction of the comparing, identify automatically the at least one program fragment
of the subject software program by matching semantic aspects of the unidentified program
fragment to semantic aspects of one of the reference program fragments identified in the

database:

wherein the determined software artifacts and the reference software artifacts represent

different semantic aspects of software programs.

CA 2949251 2018-09-11

CA 02949251 2016-11-15

PCT/US2015/035138

WO 2015/191737

1/10

0ZT|

I DI

aseqejep e ul sa|l) ademilos Jo Ajljedn|d ay)
JO yoes .J0J sjoelipde Jo Ajljednid ayj 2403S

S9|l} 21emllos Jo Ajljeanid syl Jo yoes
10} sjoejide Jo Ajljedn|d e sulwaalag

S9|l} 21eM1J0S JO Ajljedn|d e uielqo

PCT/US2015/035138

CA 02949251 2016-11-15
2/10

(

WO 2015/191737

¢ Dl

.......
00000000000
00000000000000
00000000000000000
0000000000000000000
000000000000000000000
0000000000000000000000
000000000000000000000000
0000000000000000000000000
000000000000000000000000000
0000000000000000000000000000

00000000000000000000000000000
000000000000000000000000000000

000000000000000000000000000000
0000000000000000000000000000000

00000000000000000000000000000000

R

000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
00
00
00

00
000

00
000000000000000

e

000000000
lll
lll

. =
000000000000000000000000000000000
0000000000000000000000000000000000000

00

000000000000000000000000000000000000000

SRR

=
T

:
3
-
:
3
-
:
3
" e . - . . - . 4
' a - l- \l.) -
e \.K.\...Uk. l-(-.lvk\k- \k\ PR e
AR : oo ' y v "
. . v -
™ \ o . [l [o s
- - 4 ’“h‘ . 8 . r - \. . ’
.
¥ ‘ \ \
.
:
3
000000000000000000000000000000000000000
00000000000000000000000000000000000000
- L . . U I I D N D N N N N N B N B R N N N N U N N U N N R N N B B N B 3
2 S P R T O I D D R N DR D N R N U R N N R N N N U U N N U R N I B 3
- S . P R I O O D O U N U D U R N D D U U N N R U D D U R N U N N N B
L P S P O O D O O D O D D U D U U R O D L U U N D U N D U U U R I U B J
Lt e e e N
L PR P U D O O O O U U D D U N U N N O D N N R N D R N N D N U N U B
. 5 N L L AL L N L L L L B B B B A D I O O U U U U D U U B D
2.2 P P U O O R O O O D O R U D N N U N U N O O
. o LR 3 I I O
00000000000000000000000000000000
L2005 2 N RN A R AL L R AL L AR L R RN R A R L R R O O O R O R
000000000000000000000000000000
00000000000000000000000000000
...
000000000000000000000000

o v o
ooooooooooooooooooooooooooooooooooooooo
% %ﬁ% \ 0000000000000000000000000000000
0000000000000000000000000000

I.‘I I.II".I II“II.
L N
IU I-l (\.I l\
- I.II . . -
e el
lll-l'. “‘.II-
P .
Ry "t
o T
o s
agme” s
I-.“.I A“.I.-
.. -II .&I.II
“. s e,
un..-. I-I » .-I\‘.l“N
e, T e
\-n ---nl .-nl.-.
l‘l...l"l... “”%.
S, .
llllllllllllll - s "a"s

S
3

S e

SGTC

SR,

R

A s % 7 7 % 7 %

R %\“ X R S wu.amm % W e 7
m . \\\\\\ L .
Z : \x%\\\\. \% “a\‘w\\\\\\\\\\\\\\\\\\

3

e

G0

.
375

o

S

lllll
lllll

SR,

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
3/10

310
320
330
340
350

‘P\ﬁ\\\\\ \\\\\\\‘Q\ AN \ ,g,\%.\\\\\\ RN \ Q\.\\\\\\\\\ \\\\\\\\ ‘&\Nx\\\\\\\\\\ \\\
§ X § N *‘.'? N X § X
3 N ¥ 3 I R R
. B a0 3N .
¥ N AR 8 2 N N 3 N
N N R : 3N R WY OR
3 ¥ 3 FY O oy 3N X 3 ¥R
N N TR &y Wy O8N N2 3 N
x X R NN N 5 S N R = ‘\:
3 X N X X e St RN N RS
N AN X R X D X o N N Rt Y M R R
3 y N X2 ARRN RS e s NN e e »
» R n N Y N Wan & W oS, R ™Y "N ™
» " x W N W ‘\}\ . \\ SR N N Lad e A
N RTER ¥ 3 ¥ 2 T S s N W IN'E N N }\\ 3
% %‘?.:3 % § ::“., § P \:\;: 'CQ § -tsi*s § % q‘:\\'\\ Q}M ;\\n
» "&\ » ;E ::t ;:t . o '.\\ anNy NN ARG Y Wy ‘\:‘ -~
N B R S T T ¢ R 2 WY ON R
N ey Y R Yy MW v ¥R s R Y £ X \\‘\
L R SRS R
S 1 o« N P iR OS L
N o XY ¥ o o §) W o 3 W N aaE
3 ¥ & ¥ 3 £ ¥ Oy S F) O o R $ %
S N 3 3 3 NN 2 N N N
N SR X N S X N N 2 N {‘_:"‘ e & 8 2 =
;} ‘Q :§ e %: § A Y l’.\\‘\“ ’.\\ § M B K K § § \\\\\\ o
% AN % 2 o NNy % N SN o 8% PR
A A N :§ Q\ Y &_\{\3 o) A \\5 T \\\ § s ol i
» » N N - W e N8 ™ N
» 5\\ » :§ ‘\\\"h\ \\h § e \\\\ Y § e\'\\ R NN u‘.'.:.:.:._\\?«\
N N N N X N }\-'S e R N R ‘%:'....\‘?\1‘.3:3:3:3:3'«'i'i'i'i'i
N ol N 2N X D 2 =N 3 2 :3:3:3:3:3:3:-:3:3:'\\ """"" R
;.: o.': P ‘Q § i . § oY k\.\f \\\ ‘\\ h . .:.:.:.:.:.:.:.:.:.\\ \\\\\i\‘
N Ao X N NN N N F o s S N B S i TN NN
» N N % ey RO N S i YNy
§ W \\t § N NN NN \ N \;" :" A o R I Nl -;L-\
>) o NN L e W RN

N N B Sl S IR fn s R el
X i N Y 2 S R SRR ¢ Jos
N N N MRS Yy O -.-:3:3:'\\ & i
X = X N Sy N & VAR \\ \.\
» DS » :§ }‘\\ \\h § Q\\\{\é\\\\\ \\
Y : 3N ») W
Y o 3 N > R R A \\‘s\\\ \\
» NN n % 3N X2 IR R \\\
% Joows s s Aot N SE\?‘K?&:&% '-:-:-:%\::::::::
3 | R _.._-5ﬁzfzi:.;.‘;*?*.‘;*.;T‘fzizizisi:i'i*s':zfz**** e \\???z
{5 BN § § \\\ IR~ - = :.:.\ gyt \.:.:.:.:
N S N N el 1 NN L A SR
{5 {::\\ § ;E '._.:.:.:.:.:.:.:.:.:.:.:.% s-\w.:.:.:.:,_\ \‘. % o R \
§ \ ‘\t :§::::::::::::::::::::::::::::::\:::::::::“"‘Q:::::é“{'}:’"":::\"""' . ".::::::\\
N N XN _._.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:\\:-:-:-:-:- NRORIERIES. - S o
> \\}\\\ T - v e - SR - :
§ R \\\\:.:\\:.:.:.:. :\\ ::::\\”.
% \\ \\\ % % \
N \ \\ \ R """"\\\3:3:3:3 \\
’Q \ % e o \::::I:Z \ -
» & B
8.l \\ . \\

%ﬁ % %:f:f:f.. ' % %

FIG. 3

CA 02949251 2016-11-15

PCT/US2015/035138

WO 2015/191737

4/10

S3]1) |2I0]

STdN

=1AV,
9p0NH3|b0o0N)
19Xongdilg
9b6.1043924N0S
dNHID

OcP

P DI

10174 7%

SALID
pJey

0cP

[0} 47

SALIPD
pJey

mwmovv

SALIP
pJey

OV

CA 02949251 2016-11-15

PCT/US2015/035138

WO 2015/191737

5/10

§ DI

sss

L SO[I4 JO AJjjean|d 3y3 JO 314 IS4l B J0J Soejie Jo Ajjjednid ay3 |
F JO 9UO]sed| Je uo paseq uJdaned ubissp e Ajjeconnewoine AJauspl |

44

s9|l} Jo Ajljeanid e Jo yoea 10)

sjoelijde Jo Ajljedn|d e buiaey aseqeiep B SS200y

CA 02949251 2016-11-15

PCT/US2015/035138

WO 2015/191737

6/10

O DI

SMe|} paljiguapl A|SnolAaald 210w 10 U0 U0 paseq
ME[J paljiguapiun A|SnNoIAaJd e bulialsn|d syl wodj AJuap]

S9|1} a1emljos Jo Ajljeanid e 03 bulpuodsaaaod
sjoelide Jo Ajljedn|d e buiAey aseqejiep e SSa00y

bb

CA 02949251 2016-11-15

WO 2015/191737 PCT/US2015/035138
7/10

-

“u

- o
ettt e e 0

'k' ,Eﬁﬂﬁﬂﬁﬁﬂﬁﬂﬂﬁﬂk ﬂﬁﬂﬂﬁﬂﬂﬂﬂﬂﬁﬂé;
- - .
s ~ "
R I 'k ’t E
$:$ 3

: R B R R

. STt N

: R B R ™t

: SO AU)

. R N A oy

N e

.-‘.I‘-.‘ " e EEEEnR ¥ Y YT VYTVYTY*ST I YYYTYYYYTY Yy ¥ v evvvvwvvovwowdn
- n - - -

I e e e e - N
* o o s 8 8 8 8 s s s @ « s s s s s s o 8 8 88 .)
L R R D L T TR R vy vy v vewewew . -
. yvyvyvvrvvrw \\\'
« o s s s s s s e 8 s 8 * o o s 8 8 8 8 s s s @ Trereeee . L
« o o s s s 8 s s s o » « e s s s s e s s e s s ' ryryvyvvvrow
D T T R P T R Yy v YTy wveww . L .
T T L ' yrvvvrvew v - L W N
« o e s 8 s s e s s 8 « o o s s s 8 s s s o » PP P YPTPTPPPSTE S rTPTPTITSRTSRTRT WSS n -
« 5 s s 5 s s 8 s s 8 & « o s s s s 8 8 s 8 8 ® - - . [q. P Y Y YTYTYTYTYTSY yYyvvvvrvvrvevrew .5‘5‘5‘5 !\ -
B S R N I YYYTTYTTYTITITYTT OC"TYTYTYTTTTTYTY v - “u NN
S R R L I R "y s mw LI Py Yy YT vrTvrvrrw YTYTYTTYTTTYTYTYTYTYYILIYTYY yvvowew . .
B T T B B R LRGN W WL SN NN YYYTTYTTYTTYTYTYTT O"TYTYTTTTTTYTYTTY™ LN LS

e e B L R U O Py vy v v vvrvrw vr v v rervrvevel v NN LN
. e e . e “u"unn - - .n IR yYTYT vy v vyvvyr rvvyvvvvvvvvyf ‘h’ - v . -

" man v v - \b.

. SN

\.I-..I -n I:\‘.;T.I‘.. I.I-..‘::

. e e e v vy v ovwew yYyvvvrvvwrw C Y YT YTTTTYTYTSY ~
- ryr T rYTYTS il vyrrererererYy vYvrvevveveveveew -

. ST ST - e v vy vrrrreewr o vvvevvveew ‘\C\h N -
yvovrow v - rryrvvrvvrvew rryvyrrrrrvrw \\- \\\\

. e e ... v vy v v ew yYyvvvwrw .. y v vvvvovrvw oo

N ool

. R "
. el el .
. Batus e -~
. R "
. el el .
. Batus e -~
. R "
. ROSICE .
. R -~
. R "
. el el .
. Batus e -~
. R "
. el el .
. Batus e -~
. S "
. ROSICE .
. Batus e -~
. R "
. el el .
. Batus e -~
. LT et I I e e Y
. -:.:-:-:.:l:-:.:l:-:.:l:-:n:l:-:.:l:-:n:l:-:l:l:‘o

"
o
"l
o
o
"l
o
o
"l
o
o
"l
o
o
"l
o
o
"l
o
o
"l
o
o
"l

e e N e N

St

St

L. L. EPRR N . .
SO DTS s ; <)
A R Bl f - f
:.:.:.:.:.:.:.:.:.:.:.:. :.:.:.:.:.:.:.:.:.:.:.:. . f- .

TN NN NN NN NN NN NN NN NN NN

N : “ :
: N e : & :
: N M : “ :
I R B RN N : Y :

N e

L, A P P P ; ‘ '
:.:.:.:.:.:.:.:.:.:.:.:. :.:.:.:.:.:.:.:.:.:.:.:. ' :i '
o MR :
: L :.:‘:‘ :‘:.:‘:‘:.:‘:‘:.:‘:‘:.:‘ \-.-..--- -.--.--.--.--.-‘. '

CA 02949251 2016-11-15

PCT/US2015/035138

WO 2015/191737

8/10

m syoejide Jo Ajljeanid ayj yosjew jeyj
- | sjoejijue 2ousUaal JO Ajljedn|d By) Buiaey 9|14 94eMOS
058 1 soususyeu ayy BuiAynuapl Aq o)1y 21emyos ay3 AJIusp]

11

sjoejlyde aduadalad Jo Ajljednid ay)
\ 0] syoeljie jo Ajljeanid ayl sJdedwo)

\ S9[l} 81eM]1J0S 32uaJdalad JO Ajljedn|d e JOo yoea 10J) syoelnde
90Ua.Jd3jad JO Ajljedn|d e Sa.1031S UdIlym aseqeiep e SSaddy

www

((

CA 02949251 2016-11-15

PCT/US2015/035138

WO 2015/191737

9/10

6 Dl

Juswibel) welbouad ayj 0] puodssaiod jeyy sjoelide
20Ual3lad JOo Ajljedn|d ayj o3 Juswbed) welbouad ayj 0]
puodsa.l0d eyl sjoelinde Jo Alljeanid syl buiyosjew Ag sojll
9.1eM]JOS 210W 10 U0 3yl J0J Juswbed) welboldd e AlRuap]

44

sjoeljilde aduaJdajad Jo Ajljedn|d
B S2.103S UDIym aseqeiep e SSa00y

444

11

CA 02949251 2016-11-15

PCT/US2015/035138

WO 2015/191737

10/10

O DI

OPOT

22IAD 2belI0]1S

0cOT

10SS920.d

0c0T

2J.1N0S

OTO0T

e

f/ﬁffﬁffaﬁf/xﬁ

xR
X}
““
)

+
+
’A

LJ
LJ
.

»
»
.

o
4.4
»

RRLAE A0 MO MO 20 O . v v

205

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - abstract drawing

