发明名称
一种低损耗 Fe 基纳米晶磁粉芯及其制备方法

摘要
本发明公开了一种低损耗 Fe 基纳米晶软磁粉芯及其制备方法。构成该粉芯的合金粉末成分为 Fe,Si,B,Cu,M,M,Y,式中 M 为 C、P、Cr 或 Mn, 下标 a,b,c,d,e,f 表示相应合金元素的原子百分比。满足以下条件: 70 ≤ a ≤ 90, 2 ≤ b ≤ 15, 4 ≤ c ≤ 13, 0.4 ≤ d ≤ 3, 2 ≤ e ≤ 8, 0.4 ≤ f ≤ 5, 且 a+b+c+d+e+f=100。所制得的磁粉芯具有较小的涡流损耗, 制备工艺简单, 易于成型, 利于环保, 并具有一定的成本优势。
1. 一种低损耗 Fe 基纳米晶磁粉芯的制备方法，其特征在于它的步骤如下：

（1）将 Fe₈Si₅B₄Cu₄M₆Y₇非晶薄带在真空退火炉中于 420℃保温 1h 后，对其进行机械破碎，式中 M 为 C、P、Cr 或 Mn，下标 a、b、c、d、e、f 表示相应合金元素的原子百分比，满足以下条件：70 ≤ a ≤ 90，2 ≤ b ≤ 15，4 ≤ c ≤ 13，0.4 ≤ d ≤ 3，2 ≤ e ≤ 8，0 ≤ f ≤ 5 且 a+b+c+d+e+f=100；

（2）Fe₈Si₅B₄Cu₄M₆Y₇非晶薄带机械破碎后，置于行星式球磨机中球磨，球料比为 5:1，球磨时间为 4h，转速为 260r/min，并加入乙醇防止氧化，干燥后经筛分得到不同颗粒度的 Fe₈Si₅B₄Cu₄M₆Y₇磁粉；

（3）将不同目数的 Fe₈Si₅B₄Cu₄M₆Y₇磁粉进行混合，其中 ~100 目、~200 目的 Fe₈Si₅B₄Cu₄M₆Y₇磁粉占总质量的 15%，~200 目、~300 目的 Fe₈Si₅B₄Cu₄M₆Y₇磁粉占总质量的 70%，~300 目、~400 目的 Fe₈Si₅B₄Cu₄M₆Y₇磁粉占总质量的 10%，~400 目的 Fe₈Si₅B₄Cu₄M₆Y₇磁粉占总质量的 5%，经过 0.4wt%的磷酸水溶液钝化处理后，与 0.5wt%的粘结剂充分混合，再在 1.80GPa 压强下压制成磁粉芯；

（4）将压制好的磁粉芯置于真空退火炉中 500℃保温 1h，得到 Fe 基纳米晶磁粉芯。

2. 根据权利要求 1 所述的一种低损耗 Fe 基纳米晶磁粉芯的制备方法，其特征在于所述的粘结剂为环氧树脂或硅酮树脂。
一种低损耗 Fe 基纳米晶磁粉芯及其制备方法

技术领域
[0001] 本发明涉及磁性材料领域，尤其涉及一种低损耗 Fe 基纳米晶磁粉芯及其制备方法。

背景技术
[0002] 软磁粉芯在电子信息、电工及中高频领域有着广泛的应用。随着电子工业的发展，对于电子产品微型化的要求越来越高。近几十年来，为了满足电子工业的发展，各国研究人员采用不同方法制备了各种具有不同磁性能的软磁粉芯。这些磁粉芯广泛应用于滤波器、调频扼流圈及开关电源中。

[0003] 1921 年，美国西屋公司的 Arnold 和 G. W. Elmen 等首次将电解铁粉压制成磁粉芯。他们将这种磁粉芯主要用作电话线路中的负载电感。两年后，他们又研制出高磁导率坡莫合金，并于 1927 年将其制成了磁粉芯。因其具有良好的优点，很快被产业化。到 1950 年代已被广泛使用。1932 年，日本人增本量和山本宏发明了铁硅铝合金，由于发明地是在仙台，因此铁硅铝合金也被称为 Sendust。但是，直到 1980 年代初，Sendust 磁粉芯才成功开发并逐渐实现产业化。1940 年，美国贝尔实验室的 V. E. Legg 和 F. J. Given 开发了铁镍合金磁粉芯。这种磁粉芯由 81%镍、17%铁和 2%钼组成。因含有 2%左右的钼，因此磁导率和电阻率大幅提高，具有良好的时间稳定性、较小的温度系数，低损耗等优点，之后受到高度关注。上世纪六十年代的时候，美国的 MK-4611 鱼雷的制导和控制部分，就大量使用了该磁芯。

[0004] 人们为了使电子器件以适应不同频段的工作环境，使其具有高频、低损耗、高 Q 值等特性，做了大量的工作。目前，在高端市场上铁镍铝合金磁粉芯占据了主要份额，但由于铁镍钼磁粉芯造价昂贵，其应用一直受到限制。近年来，Fe 基纳米晶—非晶软磁粉芯因其成本较低，制备工艺简单，性能优异而备受关注，有望取代铁镍钼磁粉芯的部分用途。

发明内容
[0005] 本发明的目的是克服现有技术的不足，提供一种低损耗 Fe 基纳米晶磁粉芯及其制备方法。

[0006] 低损耗 Fe 基纳米晶磁粉芯的组成为：Fe₄Si₅B₆Cu₄MₓY₃，式中 M 为 C、P、Cr 或 Mn，下标 a、b、c、d、e、f 表示相应合金元素的原子百分比，满足以下条件：70 ≤ a ≤ 90，2 ≤ b ≤ 15，4 ≤ c ≤ 13，0.4 ≤ d ≤ 3，2 ≤ e ≤ 8，0 ≤ f ≤ 5；且 a+b+c+d+e+f=100。

[0007] 低损耗 Fe 基纳米晶磁粉芯的制备方法的步骤如下：

[0008] （1）将 Fe₄Si₅B₆Cu₄MₓY₃非晶带在真空退火炉中于 420℃保温 1h 后，对其进行机械破碎，式中 M 为 C、P、Cr 或 Mn，下标 a、b、c、d、e、f 表示相应合金元素的原子百分比，满足以下条件：70 ≤ a ≤ 90，2 ≤ b ≤ 15，4 ≤ c ≤ 13，0.4 ≤ d ≤ 3，2 ≤ e ≤ 8，0 ≤ f ≤ 5；且 a+b+c+d+e+f=100；

[0009] （2）Fe₄Si₅B₆Cu₄MₓY₃非晶带机械破碎后，置于行星式球磨机中球磨，球料比为 5:1，球磨时间为 4h，转速为 260r/min，并加入乙醇防止氧化，干燥后经筛分得到不同颗粒...
度的Fe₆Si₆B₄Cu₉M₅Y₉磁粉：

[0010]（3）将不同目数的Fe₆Si₆B₄Cu₉M₅Y₉磁粉进行混合，其中-100目～+200目的Fe₆Si₆B₄Cu₉M₅Y₉磁粉占总质量的15%，-200目～+300目的Fe₆Si₆B₄Cu₉M₅Y₉磁粉占总质量的70%，-300目～+400目的Fe₆Si₆B₄Cu₉M₅Y₉磁粉占总质量的10%，-400目及Fe₆Si₆B₄Cu₉M₅Y₉磁粉占总质量的5%，经过0.4wt%的磷酸水溶液钝化处理后，与0.5wt%的有机粘结剂充分混合，并在1.8GPa压强下压制成磁粉芯；

[0011]（4）将压制好的磁粉芯置于真空退火炉中500℃保温1h，得到Fe基纳米磁粉芯。

[0012]所述的有机粘结剂为环氧树脂或硅酮树脂。

[0013]本发明的优点是：通过此法可获得软磁性能优异的低损耗Fe基纳米磁粉芯，且工艺简单，易于成型，利于环保，并具有一定的成本优势。

具体实施方式

[0014]低损耗Fe基纳米磁粉芯的组成为：Fe₆Si₆B₄Cu₉M₅Y₉，式中M为C、P、Cr或Mn，下标a、b、c、d、e、f表示相应合金元素的原子百分比，满足以下条件：70 ≤ a ≤ 90，2 ≤ b ≤ 15，4 ≤ c ≤ 13，0.4 ≤ d ≤ 13，2 ≤ e ≤ 8，0 ≤ f ≤ 5；且a+b+c+d+e+f=100。

[0015]实施例1

[0016]（1）将Fe₆Si₆B₄Cu₉M₅Y₉非晶薄带在真空退火炉中于420℃保温1h后，对其进行机械破碎；

[0017]（2）Fe₆Si₆B₄Cu₉M₅Y₉非晶薄带机械破碎后，置于行星式球磨机中球磨，球料比为5:1，球磨时间为4h，转速为260r/min，并加入乙醇防止氧化，干燥后经筛分得到不同颗粒度的Fe₆Si₆B₄Cu₉M₅Y₉磁粉；

[0018]（3）将不同目数的Fe₆Si₆B₄Cu₉M₅Y₉磁粉进行混合，其中-100目～+200目的Fe₆Si₆B₄Cu₉M₅Y₉磁粉占总质量的15%，-200目～+300目的Fe₆Si₆B₄Cu₉M₅Y₉磁粉占总质量的70%，-300目～+400目的Fe₆Si₆B₄Cu₉M₅Y₉磁粉占总质量的10%，-400目的Fe₆Si₆B₄Cu₉M₅Y₉磁粉占总质量的5%，经过0.4wt%的磷酸水溶液钝化处理后，与0.5wt%的环氧树脂粘结剂充分混合，并在1.8GPa压强下压制成环型坯样；磁环的外径为22.90mm，内径为14.20mm，高为7.60mm。

[0019]（4）将压制好的磁粉芯置于真空退火炉中500℃，保温1h，得到Fe基纳米磁粉芯。

[0020]经检测，目标产物的相关电磁参数如表1：

[0021]
<table>
<thead>
<tr>
<th>性能</th>
<th>样品 1</th>
<th>样品 2</th>
<th>样品 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>有效磁导率</td>
<td>60</td>
<td>64</td>
<td>67</td>
</tr>
<tr>
<td>(f=100\text{kHz, }1\text{V})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>铁损 (P_{ec}) (mW/cm³)</td>
<td>415</td>
<td>410</td>
<td>412</td>
</tr>
<tr>
<td>(f=50\text{kHz, }B_m=1000\text{Gs})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>直流偏磁特性(%)</td>
<td>75</td>
<td>72</td>
<td>70</td>
</tr>
<tr>
<td>(H=40\text{Oe 时，}\mu_{H=40}/\mu_{H=0})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0022] 实施例 2

[0023] （1）将 Fe₉₀Si₂B₄Cu₂P₂Y₁非晶薄带在真空退火炉中于 420℃保温 1h 后，对其进行机械破碎；

[0024] （2）Fe₉₀Si₂B₄Cu₂P₂Y₁非晶薄带机械破碎后，置于行星式球磨机中球磨，球料比为 5:1，球磨时间为 4h，转速为 260r/min，并加入乙醇防止氧化，干燥后经筛分得到不同颗粒度的 Fe₉₀Si₂B₄Cu₂P₂Y₁磁粉；

[0025] （3）将不同目数的 Fe₉₀Si₂B₄Cu₂P₂Y₁磁粉进行混合，其中 -100 目 ~ +200 目的Fe₉₀Si₂B₄Cu₂P₂Y₁磁粉占总质量的 15%，-200 目 ~ +300 目的 Fe₉₀Si₂B₄Cu₂P₂Y₁磁粉占总质量的 70%，-300 目 ~ +400 目的 Fe₉₀Si₂B₄Cu₂P₂Y₁磁粉占总质量的 10%，-400 目的 Fe₉₀Si₂B₄Cu₂P₂Y₁磁粉占总质量的 5%，经过 0.4wt%的磷酸水溶液浸蚀处理后，与 0.5wt%的硅酮树脂粘结剂充分混合，并在 1.80GPa 压强下压制成磁粉芯；

[0026] （4）将压制好的磁粉芯置于真空退火炉中 500℃保温 1h，得到 Fe 基纳米晶磁粉芯。

[0027] 经检测，目标产物的相关电磁参数如表 2：

[0028]
<table>
<thead>
<tr>
<th>性能</th>
<th>样品编号</th>
<th>样品1</th>
<th>样品2</th>
<th>样品3</th>
</tr>
</thead>
<tbody>
<tr>
<td>有效磁导率（f=100kHz，1V）</td>
<td></td>
<td>66</td>
<td>59</td>
<td>67</td>
</tr>
<tr>
<td>铁损 P_e(_v)（mW/cm(^3)）(f=50kHz、B_m=1000Gs)</td>
<td></td>
<td>430</td>
<td>451</td>
<td>427</td>
</tr>
<tr>
<td>直流偏磁特性（%）（H=400Oe 时，(\mu_{H_o-40}/\mu_{H_o-0})）</td>
<td></td>
<td>72</td>
<td>75</td>
<td>73</td>
</tr>
</tbody>
</table>

[0029] 实施例 3

[0030] (1) 将 Fe_{60}Si_{11}B_{13}Cu_{3}Cr_{8}Y_{5} 非晶磁带真空退火炉中于 420℃保温 1h 后，对其进行机械破碎；

[0031] (2) Fe_{60}Si_{11}B_{13}Cu_{3}Cr_{8}Y_{5} 非晶磁带机械破碎后，置于行星式研磨机中研磨，球料比为 5:1，研磨时间为 4h，转速为 260r/min，并加入乙醇防止氧化，干燥后经筛分得到不同颗粒度的 Fe_{60}Si_{11}B_{13}Cu_{3}Cr_{8}Y_{5}磁粉；

[0032] (3) 将不同目数的 Fe_{60}Si_{11}B_{13}Cu_{3}Cr_{8}Y_{5}磁粉进行混合，其中 -100 目 ~ +200 目的 Fe_{60}Si_{11}B_{13}Cu_{3}Cr_{8}Y_{5}磁粉占总质量的 15%，-200 目 ~ +300 目的 Fe_{60}Si_{11}B_{13}Cu_{3}Cr_{8}Y_{5}磁粉占总质量的 70%，-300 目 ~ +400 目的 Fe_{60}Si_{11}B_{13}Cu_{3}Cr_{8}Y_{5}磁粉占总质量的 10%，-400 目的 Fe_{60}Si_{11}B_{13}Cu_{3}Cr_{8}Y_{5}磁粉占总质量的 5%，经过 0.4wt%的磷酸水溶液钝化处理后，与 0.5wt%的环氧树脂粘结剂充分混合，并在 1.80GPa 压强下压制成磁芯；

[0033] (4) 将压制好的磁粉芯置于真空退火炉中 500℃保温 1h，得到 Fe 基纳米晶磁粉芯。

[0034] 经检测，目标产物的相关电磁参数如表 3：

<table>
<thead>
<tr>
<th>性能</th>
<th>样品编号</th>
<th>样品1</th>
<th>样品2</th>
<th>样品3</th>
</tr>
</thead>
<tbody>
<tr>
<td>有效磁导率（f=100kHz，1V）</td>
<td></td>
<td>56</td>
<td>62</td>
<td>63</td>
</tr>
</tbody>
</table>

[0036]
铁损 P_{eq} (mW/cm³)

<table>
<thead>
<tr>
<th>f=50kHz、$B_m=1000Gs$</th>
</tr>
</thead>
<tbody>
<tr>
<td>395</td>
</tr>
</tbody>
</table>

直流偏磁特性(%) (H=400e 时，$\mu_{H0=40}/\mu_{H0=0}$)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
</tr>
<tr>
<td>71</td>
</tr>
<tr>
<td>69</td>
</tr>
</tbody>
</table>

实施例 4

(1) 将 $Fe_74Si_8B_6Cu_3Mn_6Y_5$ 非晶薄带在真空退火炉中于 420°C 保温 1h 后，对其进行机械破碎。

(2) $Fe_74Si_8B_6Cu_3Mn_6Y_5$ 非晶薄带机械破碎后，置于行星式搅拌机中搅拌，搅拌时间为 4h，转速为 260r/min，并加入乙醇防止氧化，干燥后经筛选得到不同颗粒度的 $Fe_74Si_8B_6Cu_3Mn_6Y_5$ 磁粉。

(3) 将不同目数的 $Fe_74Si_8B_6Cu_3Mn_6Y_5$ 磁粉进行混合，其中 -100 目～+200 目的 $Fe_74Si_8B_6Cu_3Mn_6Y_5$ 磁粉占总质量的 15%，-200 目～+300 目的 $Fe_74Si_8B_6Cu_3Mn_6Y_5$ 磁粉占总质量的 70%，-300 目～+400 目的 $Fe_74Si_8B_6Cu_3Mn_6Y_5$ 磁粉占总质量的 10%，-400 目的 $Fe_74Si_8B_6Cu_3Mn_6Y_5$ 磁粉占总质量的 5%。经过 0.4wt% 的磷酸水溶液钝化处理后，与 0.5wt% 的硅酮树脂粘结剂充分混合，并在 1.80GPa 压强下压制成磁粉芯。

(4) 将压制好的磁粉芯置于真空退火炉中 500°C 保温 1h，得到 Fe 基纳米晶磁粉芯。

经检测，目标产物的相关电磁参数如表 4：

<table>
<thead>
<tr>
<th>性能</th>
<th>样品编号</th>
<th>样品 1</th>
<th>样品 2</th>
<th>样品 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>有效磁导率 $(f=100kHz, 1V)$</td>
<td>61</td>
<td>63</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>铁损 P_{eq} (mW/cm³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f=50kHz、$B_m=1000Gs$)</td>
<td>450</td>
<td>425</td>
<td>434</td>
<td></td>
</tr>
<tr>
<td>直流偏磁特性(%) (H=400e 时，$\mu_{H0=40}/\mu_{H0=0}$)</td>
<td>77</td>
<td>74</td>
<td>76</td>
<td></td>
</tr>
</tbody>
</table>