用于选择性癌症治疗的特异性人抗体

摘要
本发明涉及一种包括 Fv 分子，其构建体，两者的片段，或片段的构建体的肽或多肽，它具有增强的结合特征，以便与其他细胞相比更有利于选择性地和/或特异性地结合靶细胞，其中，所述结合选择性或特异性主要是由第一高变区决定的，并且，其中的 Fv 是 scFv 或 dsFv，并且任选具有一个或多个标记。所述增强了的结合是针对位于该靶上或靶内的基本上暴露的和/或超量表达的结合位点的，该靶包括一种细胞，该细胞相对于对在其上或内部基本上不存在和/或不表达所述结合位点的其他细胞更有利于结合。本发明还涉及用于从噬菌体展示文库中分离所述肽和多肽的方法，并且涉及编码它们的核酸分子。本发明提供了包括所述肽或多肽的药物组合物，以及用于诊断和治疗疾病，优选癌症，最优选急性髓性细胞白血病的试剂盒。
权利要求书

1. 一种包含 Fv 分子、其构建体、两者的片段或片段的构建体的肽或多肽，它具有增强了的结合特征，以便与其他细胞相比，有利于选择性地和/或特异性地结合靶细胞，其中，所述结合选择性或特异性主要是由第一高变区决定的，并且其中的 Fv 是 scFv 或 dsFv，并且任选具有一个或多个标记。

2. 如权利要求 1 的肽或多肽，其中，所述第一高变区是具有选自 SEQ ID NOs: 8-24 的氨基酸序列的 CDR3 区。

3. 如权利要求 1 的肽或多肽，其中，所述第一高变区是具有选自 SEQ ID NOs: 8-24 的氨基酸序列的 CDR3 区，并且，其中的结合选择性或特异性其次受到第二高变区、第三高变区和/或位于所述第一、第二和/或第三高变区侧翼的若干或多个上游或下游区的影响。

4. 如权利要求 2 的肽或多肽，其中，所述肽或多肽是具有 SEQ ID NO: 25 的 scFv，其中的第一高变区是与 SEQ ID NO: 8 相同的 CDR3 区。

5. 如权利要求 1 的肽或多肽，其中，所述 scFv 分子包括具有 20 个或更少氨基酸残基的直链或支链间隔片段。

6. 如权利要求 5 的肽或多肽，其中，所述间隔片段包括 SEQ ID NO: 123 或 SEQ ID NO: 124。

7. 如权利要求 1 的肽或多肽，其中，所述靶细胞是激活的、兴奋的、修饰的、改变的、失调的、异常的或病变的细胞。

8. 如权利要求 7 的肽或多肽，其中，所述病变细胞是癌细胞。

9. 如权利要求 7 的肽或多肽，其中，所述细胞选自癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤和黑素瘤细胞。

10. 如权利要求 9 的肽或多肽，其中，所述细胞是白血病或骨髓瘤细胞。

11. 如权利要求 9 的肽或多肽，其中，所述白血病或骨髓瘤细胞是 B-细胞恶性肿瘤。

12. 如权利要求 10 的肽或多肽，其中，所述白血病细胞是急性髓细胞白血病细胞或 B-细胞恶性肿瘤。

13. 如权利要求 2 的肽或多肽，还包括一个连续氨基酸的盒，该盒具有选自 SEQ ID NOs: 30-113 的氨基酸序列，或与所述氨基酸序列
或其片段具有至少 90% 的氨基酸相似性的氨基酸序列，其中，所述盒或片段提供了这样一种构架，其中，构建、插入、连接、偶联、结合或融合了具有选自 SEQ ID NOs：8-24 的氨基酸序列的 CDR3 区。

14. 如权利要求 13 的肽或多肽，其中，所述盒具有选自 SEQ ID NOs：30-32，33，37-39，41，43，45，46，48，51，54，57，59-68，70，71，76-85，87，89-92，94，97，99，103，106，112，和 113 的氨基酸序列，或与所述序列具有至少 90% 的氨基酸相似性的氨基酸序列。

15. 如权利要求 13 的肽或多肽，其中，所述盒具有 SEQ ID NO: 61 的氨基酸序列，或与所述序列具有至少 90% 的氨基酸相似性。

16. 如权利要求 15 的肽或多肽，其中，所述盒具有 SEQ ID NO: 61 的氨基酸序列，或与所述序列具有至少 90% 的氨基酸相似性。

17. 如权利要求 15 的肽或多肽，其中，SEQ ID NO: 61 的 7 个羧基末端氨基酸残基被 SEQ ID NO: 122 的 7 个氨基酸残基所取代。

18. 如权利要求 13 的肽或多肽，其中，所述第二和第三高变区分别是 CDR2 和 CDR1 高变区。

19. 如权利要求 12 的肽或多肽，其中，所述 CDR3 区具有 SEQ ID NO: 8 的氨基酸序列。

20. 如权利要求 18 的肽或多肽，其中，所述 CDR2 和 CDR1 区分别具有 SEQ ID NO: 115 和 SEQ ID NO: 114 的氨基酸序列。

21. 如权利要求 13 的肽或多肽，其中，所述第二和第三高变区分别是 CDR2 和 CDR1 高变区，并且其中的 CDR3，CDR2 和 CDR1 区分别具有 SEQ ID NOs：8，115 和 114 的氨基酸序列。

22. 如权利要求 13 的肽或多肽，其中，CDR3 区侧翼的上游区具有 SEQ ID NO: 117 的氨基酸序列，并且，其中 CDR3 区侧翼的下游区具有 SEQ ID NO: 116 的氨基酸序列。

23. 如权利要求 13 的肽或多肽，其中，所述第二高变区是 CDR2 高变区，并且，其中 CDR2 区侧翼的上游区具有 SEQ ID NO: 119 的氨基酸序列，并且，其中 CDR2 区侧翼的下游区具有 SEQ ID NO: 118 的氨基酸序列。

24. 如权利要求 13 的肽或多肽，其中，所述第三高变区是 CDR1 高变区，并且，其中 CDR1 区侧翼的上游区具有 SEQ ID NO: 120 的氨基酸序列，并且，其中 CDR1 区侧翼的下游区具有 SEQ ID NO: 121 的
氨基酸序列。

25. 如权利要求 18 的肽或多肽，其中，所述选自 30-113 或其片段的连续氨基酸的盒的 CDR2 和 CDR1 区分别被 SEQ ID NOs：115 和 114 替代。

27. 如权利要求 3 的肽或多肽，其中，
 (a) 所述第二和第三高变区分别是 CDR2 和 CDR1 高变区，
 (b) 所述 CDR3 氨基酸序列是 SEQ ID NO：8，
 (c) 所述 CDR2 氨基酸序列是 SEQ ID NO：115，
 (d) 所述 CDR1 氨基酸序列是 SEQ ID NO：114，
 (e) CDR3 区侧翼的上游区具有 SEQ ID NO：117 的氨基酸序列，
 (f) CDR3 区侧翼的下游区具有 SEQ ID NO：116 的氨基酸序列，
 (g) CDR2 区侧翼的上游区具有 SEQ ID NO：119 的氨基酸序列，
 (h) CDR2 区侧翼的下游区具有 SEQ ID NO：118 的氨基酸序列，
 (i) CDR1 区侧翼的上游区具有 SEQ ID NO：121 的氨基酸序列，和
 (j) CDR1 区侧翼的下游区具有 SEQ ID NO：120 的氨基酸序列。

28. 如权利要求 1 的肽或多肽，其中，所述 Fv 是可以从噬菌体展示文库获得的 scFv。

29. 如权利要求 28 的肽或多肽，其中，所述噬菌体展示文库是用未免疫过的人的外周血淋巴细胞构建的，并且，其中的 scFv 肽是用靶细胞表面上的预先未表达过的和未纯化过的抗原选择的。

30. 一种用于选择或鉴定权利要求 28 的肽或多肽的方法，包括生物筛选，其中，所述生物筛选包括将噬菌体结合于靶，除去未结合的噬菌体，洗脱结合的噬菌体，和增扩并用合成的噬菌体。

31. 一种包括 Fv 分子、其构建体、两者的片段、或片段的构建体的肽或多肽，它具有增强了的结合特征，以便能选择性地和/或特异性地结合靶细胞上或靶细胞内的基本上暴露的和/或超量表达的结合位点，其中，相对于其上或内部基本上不存在和/或表达所述结合位点的
其他细胞，更有利于结合靶细胞，其中，所述结合选择性或特异性主要是由第一高变区决定的，其中，Fv 是 scFv 或 dsFv，并且，其中的 Fv 任选具有一个或多个标记。

32. 如权利要求 31 的肽或多肽，其中，所述第一高变区是具有选自 SEQ ID NOs : 8-24 的氨基酸序列的 CDR3 区。

33. 如权利要求 31 的肽或多肽，其中，所述第一高变区是具有选自 SEQ ID NOs : 8-24 的氨基酸序列的 CDR3 区，并且，其中的结合选择性或特异性其次受到第二高变区、第三高变区和/或位于所述第一、第二和/或第三高变区侧翼的一个或多个上游或下游区的影响，并且，其中，所述第二和第三高变区分别是 CDR2 和 CDR1 区。

34. 一种包括 Fv 分子、其构建体、两者的片段或片段的构建体的肽或多肽，它具有增强了的结合特征，以便与其他细胞相比更有利于选择性地和/或特异性地结合靶细胞，其中，所述 Fv 分子包括具有第一、第二和第三高变区的第二条链，和具有第一、第二和第三高变区的第二条链，其中，所述第一条链的高变区之一具有选自 SEQ ID NOs : 8-24 的序列，并且，其中第二条链的高变区之一具有选自 SEQ ID NOs : 1-6 和 125-202 的序列，并且，其中所述第一、第二和第三高变区分别是 CDR3, CDR2 和 CDR1 区，其中，Fv 是 scFv 或 dsFv，并且其中所述 Fv 任选具有一个或多个标记。

35. 如权利要求 34 的肽或多肽，其中，

(a) 所述第一条链和第二条链各自包括一个选自 SEQ ID NOs: 8-24 的第一高变区；或

(b) 所述第一条链的第一高变区和所述第二条链的第一高变区是相同的，并且选自 SEQ ID NOs: 8-24；或

(c) 所述第一条链的第一高变区选自 SEQ ID NOs: 8-24，所述第二条链的第一高变区选自 SEQ ID NOs : 1-6 和 125-202；或

(d) 所述第一条链的第一高变区选自 SEQ ID NOs : 1-6 和 125-202，所述第二条链的第一高变区选自 SEQ ID NOs : 8-24。

36. 如权利要求 34 的肽或多肽，其中，所述第一条链的第二和第三高变区分别是 SEQ ID NOs : 114 和 115。

37. 一种包括 Fv 分子、其构建体、两者的片段或片段的构建体的肽或多肽,
(a) 它能结合具有第一种和第二种状态的第一种细胞上的未知配体，其中，所述结合是在第二种状态下实现的，而基本上不能在第一种状态下实现，和

(b) 通过免疫交叉反应性，与第二种细胞上的配体特异性的或选择性地结合，并且，其中的 Fv 是 scFv 或 dsFv，并且，其中的 Fv 任选具有一个或多个标记。

38. 如权利要求 37 的肽或多肽，其中，所述第一种细胞是正常细胞。

39. 如权利要求 37 的肽或多肽，其中，所述第一种状态是非激活的状态，所述第二种状态是激活的、兴奋的、修饰的、改变的或失调的状态。

40. 如权利要求 37 的肽或多肽，其中，所述第二种细胞是病变细胞。

41. 如权利要求 40 的肽或多肽，其中，所述病变细胞是癌细胞。

42. 如权利要求 40 的肽或多肽，其中，所述病变细胞选自癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤和黑素瘤细胞。

43. 如权利要求 42 的肽或多肽，其中，所述病变细胞是白血病细胞。

44. 如权利要求 43 的肽或多肽，其中，所述白血病细胞是急性髓细胞白血病细胞。

45. 如权利要求 37 的肽或多肽，其中，所述肽或多肽与第二种细胞的配体的选择性地或特异性结合主要是由第一高变区决定的。

46. 如权利要求 45 的肽或多肽，其中，所述第一高变区是具有选自 SEQ ID NOs: 8-24 的氨基酸序列的 CDR3 区。

47. 如权利要求 46 的肽或多肽，其中，所述第一高变区是具有选自 SEQ ID NOs: 8-24 的氨基酸序列的 CDR3 区，并且，其中的结合选择性或特异性其次受到第二高变区、第三高变区、和/或分别位于所述第一、第二和/或第三高变区侧翼的一个或多个上游或下游区的影响。

48. 一种配体，它是由所述第二种细胞表达的，并且它能够与权利要求 37 的肽或多肽结合。

49. 一种能识别并且结合权利要求 48 的配体的分子。
50. 一种核酸分子，它编码权利要求 1, 31, 34 或 37 中任意一项的肽或多肽。
51. 如权利要求 50 的核酸分子，其中，所述核酸是 DNA。
52. 如权利要求 37 的肽或多肽，其中，所述第一种细胞的第一和第二状态是相同的，并且，其中，所述第一种细胞来自一种细胞系。
53. 如权利要求 52 的肽或多肽，其中，所述细胞系选自 Jurkat, Molt-4, HS-602, U937, TF-1, THP-1, KG-1, ML-2 和 HUT-78。
54. 一种用于鉴定能结合第一种和第二种细胞上的未知的免疫交叉反应性结合位点的导向分子的方法，包括
 (a) 在第一种靶细胞上进行一次或多次生物捕获，所述靶细胞处在第二种状态，而不是第一种状态，它基本上暴露或展示包括至少一种未知配体的结合位点，以便产生第一个识别分子群；
 (b) 从步骤 (a) 的第一个识别分子群开始实施随后的生物捕获和/或选择步骤，该步骤是在第二种细胞上进行的，所述细胞展示包括至少一种未知配体的结合位点，该未知配体与所述第一种细胞的未知配体具有免疫交叉反应性，以便产生第二个识别分子群；
 (c) 扩增并且纯化步骤 (b) 的第二个识别分子群；和
 (d) 由步骤 (c) 的纯化的识别分子的识别位点构建肽或多肽，所述肽或多肽包括对所述第二种细胞上的未知配体具有选择性和/或特异性的导向分子。
55. 如权利要求 54 的方法，其中，所述第一种细胞是正常细胞，并且，其中所述第一种状态是非激活状态，第二种状态是激活的、兴奋的、修饰的、改变的或失调的状态。
56. 如权利要求 54 的方法，其中，所述第二种细胞是癌细胞。
57. 如权利要求 54 的方法，其中，所述癌细胞是癌细胞。
58. 如权利要求 56 的方法，其中，所述细胞选自癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚胎细胞瘤、精原细胞瘤和黑色素瘤细胞。
59. 如权利要求 58 的方法，其中，所述细胞是白血病细胞。
60. 如权利要求 59 的方法，其中，所述白血病细胞是急性髓细胞白血病细胞。
61. 将任选与一种药用试剂结合或附着、偶联、联合、连接或融合的权利要求 1 或权利要求 37 的肽或多肽用于制造药物的用途。
62. 如权利要求 61 的用途，其中，所述药物具有抗病变细胞的活性。
63. 如权利要求 62 的用途，其中，所述病变细胞是癌细胞。
64. 如权利要求 62 的用途，其中，所述细胞选自癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤和黑素瘤细胞。
65. 如权利要求 64 的用途，其中，所述细胞是白血病细胞。
66. 如权利要求 65 的用途，其中，所述白血病细胞是急性髓细胞白血病细胞。
67. 用作药物的任选与一种药用试剂缔合或附着、偶联、联合、连接或融合的权利要求 1 或权利要求 37 的肽或多肽。
68. 如权利要求 67 的肽或多肽，其中，所述药物具有抗病变细胞的活性。
69. 如权利要求 68 的肽或多肽，其中，所述病变细胞是癌细胞。
70. 如权利要求 68 的肽或多肽，其中，所述细胞选自癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤和黑素瘤细胞。
71. 如权利要求 70 的肽或多肽，其中，所述细胞是白血病细胞。
72. 如权利要求 71 的肽或多肽，其中，所述白血病细胞是急性髓细胞白血病细胞。
73. 将权利要求 1 或权利要求 37 的肽或多肽用于制备用来抑制病变细胞或癌细胞生长的组合物的用途。
74. 如权利要求 73 的肽或多肽的用途，其中，所述细胞是白血病细胞。
75. 如权利要求 74 的肽或多肽的用途，其中，所述白血病细胞是急性髓细胞白血病细胞。
76. 将权利要求 1 或权利要求 37 的肽或多肽用于制备用来抑制癌细胞生长的组合物的用途，所述组合物包括至少一种化合物，该化合物具有对所述癌细胞有选择性和/或特异性的药用配体。
77. 一种组合物，包括药用有效量的与一种药用试剂缔合或附着、偶联、联合、连接或融合的如权利要求 1 或权利要求 37 的至少一种肽，并且任选包括一种药用有效的载体。
78. 如权利要求 77 的组合物，其中，所述肽或多肽和所述药用试
剂是通过接头化合物连接的。

79. 如权利要求 78 的组合物，其中，所述接头化合物选自二羧酸、马来酰亚胺酰肼、PDPh，羧酸酰肼和小肽。

80. 如权利要求 79 的组合物，其中，所述小肽选自 AU1, AU5, BTag, c-myc, FLAG, Glu-Glu, HA, His6, HSV, HTTPHH, IRS, KT3, 蛋白 C, S-Tag®，T7, V5, VSV-G 和 KAX-Tag。

81. 如权利要求 1, 31, 34 和 37 中任意一项的肽或多肽，其中，所述标记选自 AU1, AU5, BTag, c-myc, FLAG, Glu-Glu, HA, His6, HSV, HTTPHH, IRS, KT3, 蛋白 C, S-Tag®, T7, V5, VSV-G 和 KAX-Tag。

82. 如权利要求 77 的组合物，其中，所述药用试剂选自放射性同位素，毒素，寡核苷酸，重组蛋白，抗体片段，和抗癌剂。

83. 如权利要求 82 的组合物，其中，所述同位素选自铅，111 铋，113 铋，115 铋，116 铋，117 铋，118 铋，119 铋，121 铋，122 铋，123 铋，124 铋，125 铋，126 铋，127 汞，128 汞，129 汞，131 汞，133 汞，81 氡，83 氡，89 钬，90 锕，92 钫，95 钅，97 钅，101 钅，105 钅，107 汞，203 汞，67 铈和 68 铈。

84. 如权利要求 82 的组合物，其中，所述毒素选自 gelonin, 假单胞菌外毒素 (PE), PE40, PE38, 白喉毒素, 菌麻毒蛋白, 及其修饰物和衍生物。

85. 如权利要求 82 的组合物，其中，所述抗癌剂选自阿霉素，吗啉代阿霉素 (MDOX), 阿得里亚霉素，顺铂，紫杉醇，加利素霉素，长春新碱，阿糖胞苷 (Ara-C), 环磷酰胺，强的松，柔红霉素，伊达比星，氟达拉滨，苯丁酸氮芥，干扰素 α，羟基脲，替莫唑胺，沙利度胺，博来霉素，及其衍生物。

86. 一种抑制细胞生长的方法，它包括让所述细胞与一定量的权利要求 1 或权利要求 37 的肽或多肽接触。

87. 如权利要求 86 的方法，其中，所述细胞选自癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚胎细胞瘤、精原细胞瘤和黑色素瘤。

88. 如权利要求 87 的方法，其中，所述细胞是白血病细胞。

89. 如权利要求 88 的方法，其中，所述白血病细胞是急性髓细胞白血病细胞。

90. 一种用于肿瘤的诊断定位和显像的药物组合物，它包括与一种
显像剂附着、偶联、组合、连接或融合的方法或权利要求 1 或权利要求 37 的至少一种肽。

91. 一种治疗患有疾病或癌症的患者的方法，该方法包括给所述患者施用能有效治疗所述疾病或癌症的量的权利要求 1 或权利要求 37 的肽或多肽。

92. 如权利要求 91 的方法，其中，所述疾病或癌症选自癌、肉瘤、白血病、腺癌、淋巴癌、骨髓癌、胚细胞癌、精原细胞癌和黑素瘤。

93. 如权利要求 92 的方法，其中，所述疾病是白血病。

94. 如权利要求 93 的方法，其中，所述白血病是急性髓细胞白血病。

95. 如权利要求 1 或权利要求 37 的肽或多肽，其中，所述 Fv 能特异性地或选择性地结合急性髓细胞白血病 (AML) 细胞。

96. 一种存在于 AML 细胞上能被权利要求 95 的肽或多肽结合的配体。

97. 一种能结合权利要求 96 的配体的肽或多肽。

98. 一种用于在治疗之前、期间或之后分析治疗效果的诊断试剂盒，包括与一种指示标记分子附着、偶联、组合、连接或融合的权利要求 1 或权利要求 37 的肽或多肽。

99. 如权利要求 98 的试剂盒，其中，所述指示标记分子是荧光标记。

100. 如权利要求 99 的试剂盒，其中，所述荧光标记选自荧光素、罗丹明、藻红蛋白，及其修饰物和偶联物。

101. 如权利要求 98 的试剂盒，其中，所述试剂盒被用于诊断疾病或癌症。

102. 如权利要求 1 或权利要求 37 的肽或多肽，其中，所述构建体是 Ig 多肽。

103. 一种生产权利要求 102 的肽或多肽的方法，其中，所述 Ig 多肽是作为重组多肽表达的，并且是在真核细胞系统中产生的。

104. 如权利要求 103 的方法，其中，所述真核系统是哺乳动物细胞系统。

105. 如权利要求 102 的肽或多肽，其中，所述 Ig 多肽是 IgG 多肽。

106. 如权利要求 105 的肽或多肽，其中，所述 IgG 多肽包括分别
具有 SEQ ID NOs : 8, 115 和 114 的 CDR3, CDR2 和 CDR1 区。

107. 如权利要求 106 的 IgG 多肽，其中，所述 CDR3, CDR2 和 CDR1 区是重链的。

108. 如权利要求 106 的 IgG 多肽，其中，所述 CDR3, CDR2 和 CDR1 区是轻链的。

109. 如权利要求 102 的 IgG 多肽，其中，所述 IgG 具有包括 SEQ ID NO : 26 的重链和包括 SEQ ID NO : 27 的轻链或与所述链具有至少 90%的氨基酸相似性的链。

110. 一种用于生产权利要求 1 或权利要求 37 的肽或多肽的方法，其中，所述肽或多肽是在原核细胞系统或真核细胞系统中产生的。

111. 如权利要求 110 的方法，其中，所述原核系统包括大肠杆菌，所述大肠杆菌包括一种表达载体，所述真核系统是哺乳动物细胞系统。

112. 如权利要求 111 的方法，其中，所述原核系统的表达载体包括选自 osmB, deo, β-lac-U5, λ Pr, SRα5 和 CMV 的启动子。

113. 包括一种结合基序的肽或多肽，所述基序包括氨基酸序列 R 1-X Phe Pro-R 1，其中，R 1 和 R 2 各自包括 0-15 个氨基酸残基，并且，其中的 X 是 Arg, Gly 或 Lys。

114. 如权利要求 2, 34 或 46 中任意一项的肽或多肽，所述 CDR3 包括氨基酸序列 R 1-X Phe Pro-R 1，其中，R 1 和 R 2 各自包括 0-15 个氨基酸残基，并且，其中的 X 是 Arg, Gly 或 Lys。

115. 如权利要求 1 或权利要求 37 的肽或多肽，其中，所述肽或多肽包括至少一种非天然存在的修饰。

116. 如权利要求 115 的肽或多肽，其中，所述非天然存在的修饰使得所述肽或多肽具有更高的免疫原性或更稳定。

117. 如权利要求 116 的肽或多肽，其中，所述至少一种修饰选自类肽修饰，半类肽修饰，环肽修饰，N-末端修饰，C-末端修饰，肽键修饰，主链修饰，和残基修饰。

118. 如权利要求 1, 31, 34, 37 或 67 中任意一项的肽或多肽，用于离体净化自体骨髓，以便除去异细胞。

119. 一种生产导向剂的方法，包括以下步骤：

a) 分离并选择包括一个主要识别位点的一种或多种导向分子，包
括直接在靶细胞上进行生物检测程序或间接在处在第二种状态而不是
第一种状态的第一种靶细胞上进行生物检测程序，以及随后间接在第二
种靶细胞上进行生物检测程序，以便生产一种或多种所述导向分子；

b) 扩增、纯化和鉴定一种或多种导向分子；和

c) 由所述一种或多种导向分子构建一种导向剂，或者，其中，所述
导向剂可以是肽、多肽、抗体或抗体片段，或其多聚体。

120. 如权利要求 119 的方法，其中，所述导向剂与一种药用试剂
偶联、附着、联合、连接、融合、或缔合。

121. 如权利要求 119 和 120 的方法，其中，所述导向剂是抗病或
抗癌剂。

122. 如权利要求 120 的方法，其中，所述药用试剂选自放射性同
位素，毒素，寡核苷酸，重组蛋白，抗体片段，和抗癌剂。

123. 如权利要求 122 的方法，其中，所述放射性同位素选自
^{111}铟，
^{113}铟，^{90}铱，^{103}铱，^{105}铱，^{99}锝，^{121}碲，^{122}碲，^{123}碲，^{125}镓，^{167}镓，^{168}镓，^{173}镓，^{175}镓，^{185}镓，^{186}镓，^{81}氪，^{133}氪，^{135}氪，^{96}锶，^{213}钋，^{77}溴，^{18}氟，^{95}馏，^{97}馏，^{103}馏，^{105}馏，^{107}馏，^{203}馏，^{67}镅和^{68}镅。

124. 如权利要求 122 的方法，其中，所述毒素选自 gelonin，假
单胞菌属外毒素 (PE)，PE40，PE38，白喉毒素，蓖麻毒蛋白，及其
修饰物和衍生物。

125. 如权利要求 122 的方法，其中，所述抗癌剂选自长春新碱，
阿糖胞苷 (Ara-C)，环磷酰胺，强的松，柔红霉素，伊达比星，氟达拉
宾，苯丁酸氮芥，干扰素 α，羟基脲，替莫唑胺，沙利度胺，博来霉素，
及其衍生物。

126. 具有以下通式或结构的肽或多肽：

A-X-B

其中，X 是具有 3-30 个氨基酸的 CDR3 区，A 和 B 可以各自是长度
为 1-1000 个氨基酸的氨基酸链，其中，A 是氨基末端，而 B 是羧基末
端。

127. 如权利要求 126 的肽，其中，A 是 150-250 个氨基酸残基，
并且，其中的 B 是 350-500 个氨基酸残基。

128. 如权利要求 126 的肽，其中，所述 CDR3 区是 5-13 个氨基酸
残基。

129. 如权利要求 126 的肽，其中，X 是选自 SEQ ID NOs：8-24 的氨基酸序列。

130. 如权利要求 127 的肽或多肽，它是较大的或完整抗体或多聚体的一部分。

131. 一种二聚体分子，它包括两种肽或多肽，其中之一是权利要求 126 的肽或多肽。

132. 一种包括权利要求 126 的两种肽或多肽的二聚体分子，这两种肽或多肽是相同的。

133. 如权利要求 131 或 132 的二聚体分子，其中，X 是选自 SEQ ID NOs：8-24 的氨基酸序列。

134. 一种核酸分子，它编码权利要求 126 的肽或多肽或编码权利要求 130 的二聚体分子。

135. 如权利要求 104 的方法，其中，所述哺乳动向细胞系统包括 SR α 5 启动子。

136. 如权利要求 104 的方法，其中，所述哺乳动物细胞系统包括 CMV 启动子。

137. 基本如本文所述的肽或多肽。

138. 一种包括 Fv 分子、其构建体、两者的片段或片段的构建体的肽或多肽，它具有增强的结合特征，以便相对其他细胞更有利于选择性地和/或特异性地结合靶细胞，其中，所述结合选择性或特异性主要是由第一高变区决定的，其中，所述第一高变区是包括选自 SEQ ID NOs：8 或 20 的氨基酸序列的 CDR3 区，并且，其中的 Fv 是 scFv 或 dsFv，并且任选具有一个或多个标记。

139. 如权利要求 138 的肽或多肽，其中，所述结合选择性或特异性其次受到第二高变区、第三高变区、和/或位于所述第一、第二和/或第三高变区侧翼的一个或多个上游或下游区的影响。

140. 如权利要求 138 的肽或多肽，其中，所述肽或多肽是具有 SEQ ID NO：25 的 scFv，其中，所述第一高变区是与 SEQ ID NO：8 相同的 CDR3 区。

141. 如权利要求 138 的肽或多肽，其中，所述肽或多肽是具有 SEQ ID NO：203 的 scFv，其中，所述第一高变区是与 SEQ ID NO：20 相
同的 CDR3 区。

142. 如权利要求 138 的肽或多肽，其中，所述 scFv 分子具有 20 或更少的氨基酸残基的直链或支链间隔片段。

143. 如权利要求 142 的肽或多肽，其中，所述间隔片段包括 SEQ ID NO: 123 或 SEQ ID NO: 124。

144. 如权利要求 138 的肽或多肽，其中，所述靶细胞是激活的、兴奋的、修饰的、改变的、失调的、异常的或病变的细胞。

145. 如权利要求 144 的肽或多肽，其中，所述病变细胞是癌细胞。

146. 如权利要求 144 的肽或多肽，其中，所述细胞选自癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤和黑素瘤细胞。

147. 如权利要求 146 的肽或多肽，其中，所述细胞是白血病细胞或骨髓瘤细胞。

148. 如权利要求 146 的肽或多肽，其中，所述白血病或骨髓瘤细胞是 B-细胞恶性肿瘤。

149. 如权利要求 147 的肽或多肽，其中，所述白血病细胞是急性髓细胞白血病细胞或 B-恶性肿瘤。

150. 如权利要求 138 的肽或多肽，还包括一个连续氨基酸的盒，该盒具有选自 SEQ ID NOs: 30-113 的氨基酸序列，或与所述氨基酸序列或其片段具有至少 90%的氨基酸相似性的氨基酸序列，其中，所述盒或片段提供了这样一种构架，其中，构建、插入、连接、偶联、结合或融合了具有选自 SEQ ID NOs: 8-24 的氨基酸序列的 CDR3 区。

151. 如权利要求 150 的肽或多肽，其中，所述盒具有选自 SEQ ID NOs: 30-32, 33, 37-39, 41, 43, 45, 46, 48, 51, 54, 57, 59-68, 70, 71, 76-85, 87, 89-92, 94, 97, 99, 103, 106, 112 和 113 的氨基酸序列，或与所述序列具有至少 90%的氨基酸相似性的氨基酸序列。

152. 如权利要求 150 的肽或多肽，其中，所述盒具有 SEQ ID NO: 61 的氨基酸序列，或与所述序列具有至少 90%的氨基酸相似性。

153. 如权利要求 152 的肽或多肽，其中，所述盒具有 SEQ ID NO: 61 的氨基酸序列，或与所述序列具有至少 90%的氨基酸相似性。

154. 如权利要求 152 的肽或多肽，其中， SEQ ID NO: 61 的七个
羧基末端氨基酸残基被 SEQ ID NO: 122 的七个氨基酸残基所取代。
155. 如权利要求 139 的肽或多肽，其中，所述第二和第三高变区
分别是 CDR2 和 CDR1 高变区。
156. 如权利要求 138 的肽或多肽，其中，所述 CDR3 区具有 SEQ ID
NO: 8 的氨基酸序列。
157. 如权利要求 138 的肽或多肽，其中，所述 CDR3 区具有 SEQ ID
NO: 20 的氨基酸序列。
158. 如权利要求 155 的肽或多肽，其中，所述 CDR2 和 CDR1 区分
别具有 SEQ ID NO: 115 和 SEQ ID NO: 114 的氨基酸序列。
159. 如权利要求 140 的肽或多肽，其中，所述第二和第三高变区
分别是 CDR2 和 CDR1 高变区，并且，其中的 CDR3, CDR2 和 CDR1 区分
别具有 SEQ ID NOs: 8, 115 和 114 的氨基酸序列。
160. 如权利要求 140 的肽或多肽，其中，所述第二和第三高变区
分别是 CDR2 和 CDR1 高变区，并且，其中的 CDR3, CDR2 和 CDR1 区分
别具有 SEQ ID NOs: 20, 115 和 114 的氨基酸序列。
161. 如权利要求 139 的肽或多肽，其中，CDR3 区侧翼的上游区具
有 SEQ ID NO: 117 的氨基酸序列，并且，其中 CDR3 区侧翼的下游区
具有 SEQ ID NO: 116 的氨基酸序列。
162. 如权利要求 139 的肽或多肽，其中，所述第二高变区是 CDR2
高变区，并且，其中 CDR2 区侧翼的上游区具有 SEQ ID NO: 119 的氨
基酸序列，并且，其中 CDR2 区侧翼的下游区具有 SEQ ID NO: 118 的氨
基酸序列。
163. 如权利要求 139 的肽或多肽，其中，所述第三高变区是 CDR1
高变区，并且，其中 CDR1 区侧翼的上游区具有 SEQ ID NO: 121 的氨
基酸序列，并且，其中 CDR1 区侧翼的下游区具有 SEQ ID NO: 120 的氨
基酸序列。
164. 如权利要求 155 的肽或多肽，其中，所述选自 SEQ ID NOs:
30-113 或其片段的连续氨基酸的盒的 CDR2 和 CDR1 区分别被 SEQ ID
NOs : 115 和 114 取代。
165. 如权利要求 155 的肽或多肽，其中，所述选自 SEQ ID NOs:
30-32, 35, 37-39, 41, 43, 45, 46, 48, 51, 54, 57, 59-63, 70,
71, 76-85, 87, 89-92, 94, 97, 99, 103, 106, 112 和 113 或其片
段的连续氨基酸的盒的 CDR2 和 CDR1 区分别被 SEQ ID NOs：115 和 114 取代。

166. 如权利要求 139 的肽或多肽，其中
(a) 所述第二和第三高变区分别是 CDR2 和 CDR1 高变区，
(b) 所述 CDR3 氨基酸序列是 SEQ ID NO：8，
(c) 所述 CDR2 氨基酸序列是 SEQ ID NO：115，
(d) 所述 CDR1 氨基酸序列是 SEQ ID NO：114，
(e) CDR3 区侧翼的上游区具有 SEQ ID NO：117 的氨基酸序列，
(f) CDR3 区侧翼的下游区具有 SEQ ID NO：116 的氨基酸序列，
(g) CDR2 区侧翼的上游区具有 SEQ ID NO：119 的氨基酸序列，
(h) CDR2 区侧翼的下游区具有 SEQ ID NO：118 的氨基酸序列，
(i) CDR1 区侧翼的上游区具有 SEQ ID NO：121 的氨基酸序列，和
(j) CDR1 区侧翼的下游区具有 SEQ ID NO：120 的氨基酸序列。

167. 如权利要求 139 的肽或多肽，其中
(a) 所述第二和第三高变区分别是 CDR2 和 CDR1 高变区，
(b) 所述 CDR3 氨基酸序列是 SEQ ID NO：20，
(c) 所述 CDR2 氨基酸序列是 SEQ ID NO：115，
(d) 所述 CDR1 氨基酸序列是 SEQ ID NO：114，
(e) CDR3 区侧翼的上游区具有 SEQ ID NO：117 的氨基酸序列，
(f) CDR3 区侧翼的下游区具有 SEQ ID NO：116 的氨基酸序列，
(g) CDR2 区侧翼的上游区具有 SEQ ID NO：119 的氨基酸序列，
(h) CDR2 区侧翼的下游区具有 SEQ ID NO：118 的氨基酸序列，
(i) CDR1 区侧翼的上游区具有 SEQ ID NO：121 的氨基酸序列，和
(j) CDR1 区侧翼的下游区具有 SEQ ID NO：120 的氨基酸序列。

168. 如权利要求 138 的肽或多肽，其中，所述 Fv 是可以从噬菌体展示文库中获得的 scFv。

169. 如权利要求 165 的肽或多肽，其中，所述噬菌体展示文库是用末免疫过的人的外周血淋巴细胞构建的，并且，其中，所述 scFv 肽是在靶细胞表面上用以前未表征的和未纯化的抗原选择的。

170. 一种用于选择或鉴定权利要求 165 的肽或多肽的方法，包括生物淘选，其中，所述生物淘选包括将噬菌体结合于靶，除去未结合的噬菌体，洗脱结合的噬菌体，和增殖并且扩增洗脱的噬菌体。
171. 一种包括 Fv 分子、其构建体、两者的片段、或片段的构建体的肽或多肽，它具有增强了的结合特征，以便能选择性地和/或特异性地结合靶细胞上或靶细胞内的基本上暴露的和/或超量表达的结合位点，其中，相对于其上或内部基本上不存在和/或表达所述结合位点的其他细胞，更有利于结合靶细胞，其中，所述结合选择性或特异性主要是由第一高变区决定的，其中，所述结合选择性或特异性主要是由第一高变区决定的，其中，所述第一高变区是由 SEQ ID NOs: 8 或 20 组成的 CDR3 区，其中，所述 Fv 是 scFv 或 dsFv，并且，其中的 Fv 任选具有一个或多个标记。

172. 如权利要求 171 的肽或多肽，其中，所述结合选择性或特异性其次受第二高变区、第三高变区和/或位于所述第一、第二和/或第三高变区侧翼的一个或多个上游或下游区的影响，并且，其中，所述第二和第三高变区分别是 CDR2 和 CDR1 区。

173. 一种包括 Fv 分子、其构建体、两者的片段或片段的构建体的肽或多肽，它具有增强了的结合特征，以便与其他细胞相比更有利于选择性地和/或特异性地结合靶细胞，其中，所述 Fv 分子包括具有第一、第二和第三高变区的第一条链，和具有第一、第二和第三高变区的第二条链，其中，所述第一条链的高变区之一包括选自 SEQ ID NOs: 8 或 20 的序列，并且，其中所述第二条链的高变区之一具有选自 SEQ ID NOs: 1-6 和 125-202 的序列，并且，其中所述第一、第二和第三高变区分别是 CDR3，CDR2 和 CDR1 区，其中，Fv 是 scFv 或 dsFv，并且，其中所述 Fv 任选具有一个或多个标记。

174. 如权利要求 173 的肽或多肽，其中，
(a) 所述第一条链的第一高变区和所述第二条链的第一高变区是相同的，并且选自 SEQ ID NO: 8 或 20；或
(b) 所述第一条链的第一高变区选自 SEQ ID NOs: 8 或 20，并且，所述第二条链的第一高变区选自 SEQ ID NOs: 1-6 和 125-202；或
(d) 所述第一条链的第一高变区选自 SEQ ID NOs: 1-6 和 125-202，并且所述第二条链的第一高变区选自 SEQ ID NOs: 8 或 20。

175. 如权利要求 173 的肽或多肽，其中，所述第一条链的第二和第三高变区分别是 SEQ ID NOs: 114 和 115。

176. 一种包括 Fv 分子、其构建体、两者的片段或片段的构建体的
肽或多肽，

(a) 它能结合具有第一种和第二种状态的第一种细胞上的未知配体，其中，所述结合是在第二种状态下实现的，而基本上不能在第一种状态下实现，和

(b) 通过免疫交叉反应性，与第二种细胞上的配体特异性或选择性地结合，并且，其中的 Fv 是 scFv 或 dsFv，并且，其中的 Fv 选择具有一个或多个标记，并且，其中的第一高变区是具有选自 SEQ ID NOs 8 或 20 的氨基酸序列的 CDR3。

177. 如权利要求 176 的肽或多肽，其中，所述第一种细胞是正常细胞。

178. 如权利要求 176 的肽或多肽，其中，所述第一种状态是非激活的状态，所述第二种状态是激活的、兴奋的、修饰的、改变的或失调的状态。

179. 如权利要求 176 的肽或多肽，其中，所述第二种细胞是病变细胞。

180. 如权利要求 179 的肽或多肽，其中，所述病变细胞是癌细胞。

181. 如权利要求 179 的肽或多肽，其中，所述病变细胞选自癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤和黑素瘤细胞。

182. 如权利要求 181 的肽或多肽，其中，所述病变细胞是白血病细胞。

183. 如权利要求 182 的肽或多肽，其中，所述白血病细胞是指急性髓细胞白血病细胞。

184. 如权利要求 176 的肽或多肽，其中，所述肽或多肽与第二种细胞的配体的选择性和/或特异性结合主要是由第一高变区决定的。

185. 如权利要求 176 的肽或多肽，其中，结合选择性和特异性其次受到第二高变区、第三高变区、和/或分别位于所述第一、第二和/或第三高变区侧翼的一个或多个上游或下游区的影响。

186. 一种配体，它是由所述第二种细胞表达的，并且它能够与权利要求 196 的肽或多肽结合。

187. 一种能识别并结合权利要求 186 的配体的分子。

188. 一种核酸分子，它编码权利要求 138, 171, 173 或 176 中任
意一项的肽或多肽。

189. 如权利要求 188 的核酸分子，其中，所述核酸是 DNA。

190. 如权利要求 176 的肽或多肽，其中，所述第一种细胞的第一和第二种状态是相同的，并且，其中，所述第一种细胞来自一种细胞系。

191. 如权利要求 190 的肽或多肽，其中，所述细胞系选自 Jurkat, Mol-4，HS-602，U937，TF-1，THP-1，KG-1，ML-2 和 HUT-78。

192. 将任选与一种药用试剂复合或附着、偶联、联合、连接或融合的权利要求 138 或权利要求 176 的肽或多肽用于生产药物的用途。

193. 如权利要求 192 的用途，其中，所述药物具有抗病变细胞的活性。

194. 如权利要求 193 的用途，其中，所述病变细胞是癌细胞。

195. 如权利要求 193 的用途，其中，所述细胞选自癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤和黑素瘤。

196. 如权利要求 195 的用途，其中，所述细胞是白血病细胞。

197. 如权利要求 196 的用途，其中，所述白血病细胞是急性髓细胞白血病细胞。

198. 用作药物的任选与一种药用试剂复合或附着、偶联、联合、连接或融合的权利要求 138 或权利要求 176 的肽或多肽。

199. 如权利要求 198 的肽或多肽，其中，所述药物具有抗病变细胞的活性。

200. 如权利要求 199 的肽或多肽，其中，所述病变细胞是癌细胞。

201. 如权利要求 199 的肽或多肽，其中，所述细胞选自癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤和黑素瘤细胞。

202. 如权利要求 201 的肽或多肽，其中，所述细胞是白血病细胞。

203. 如权利要求 202 的肽或多肽，其中，所述白血病细胞是急性髓细胞白血病细胞。

204. 将权利要求 138 或权利要求 176 的肽或多肽用于制备用来抑制病变细胞生长的组合物的用途。

205. 如权利要求 204 的肽或多肽的用途，其中，所述细胞是白血病细胞。
206. 如权利要求 205 的肽或多肽的用途，其中，所述白血病细胞是急性髓细胞白血病细胞。

207. 将权利要求 138 或权利要求 176 的肽或多肽用于制备用来抑制癌细胞生长的组合物的用途，所述组合物包括至少一种化合物，该化合物具有对所述癌细胞有选择性或/或特异性的药用配体。

208. 一种组合物，包括药用有效量的与一种药用试剂结合或附着、偶联、联合、连接或融合的如权利要求 138 或权利要求 176 的至少一种肽，并且选包括一种药物学上有效的载体。

209. 如权利要求 208 的组合物，其中，所述肽或多肽和所述药用试剂是通过一种接头化合物连接的。

210. 如权利要求 209 的组合物，其中，所述接头化合物选自二羧酸、马来酰亚胺酰肼、PDPH、羧酸酰肼和小肽。

211. 如权利要求 210 的组合物，其中，所述肽或多肽选自 AU1，AUS，BTAG，c-myc，FLAG，GLU–GLU，HA，His6，HSV，HTPHH，IRS，KT3，蛋白C，S·Tag®，T7，V5 和 VSV–G。

212. 如权利要求 138，171，173 和 176 中任意一项的肽或多肽，其中，所述肽或多肽选自 AU1，AUS，BTAG，c-myc，FLAG，GLU–GLU，HA，His6，HSV，HTPHH，IRS，KT3，蛋白C，S·Tag®，T7，V5 和 VSV–G。

213. 如权利要求 208 的组合物，其中，所述药用试剂选自放射性同位素，毒素，寡核苷酸，重组蛋白，抗体片段，和抗癌剂。

214. 如权利要求 213 的组合物，其中，所述放射性同位素选自铟，铟，铟，99m 铀，105 铀，101 铀，100 钋，121b 碱，123a 碱，123b 碱，125c 碱，169 铟，168 铟，127 碘，126 碘，131 碘，131 碘，81m 氡，99 钇，213 铋，77 溴，18 氟，97 钯，99 钯，107 钚，105 钚，167 铀，209 铀，67 铥和 44 镅。

215. 如权利要求 213 的组合物，其中，所述毒素选自 gelonin，假单胞菌外毒素 (PE)，PE40，PE38，蓖麻毒蛋白，及其修饰物和衍生物。

216. 如权利要求 213 的组合物，其中，所述抗癌剂选自阿霉素，阿得里亚霉素，顺铂，紫杉醇，加利霉素，长春新碱，阿糖胞苷 (Ara-C)，环磷酰胺，强的松，柔红霉素，伊达比星，氟达拉宾，苯丁酸氮芥，干扰素α，羟基脲，替莫唑胺，沙利度胺和博来霉素，及其衍生物。
217.一种抑制细胞生长的方法，它包括让所述细胞与一定量的权利要求 138 或权利要求 176 的肽或多肽接触。

218.如权利要求 217 的方法，其中，所述细胞选自癌、肉瘤、白血病、腺癌、淋巴癌、骨髓癌、胚细胞癌、精原细胞癌和黑素瘤。

219.如权利要求 218 的方法，其中，所述细胞是白血病细胞。

220.如权利要求 219 的方法，其中，所述白血病细胞是急性髓细胞白血病细胞。

221.一种用于肿瘤的诊断定义和显像的药物组合物，它包括与一种显像剂附着、偶联、组合、连接或融合的如权利要求 138 或权利要求 176 的至少一种肽。

222.一种用于治疗患有疾病的患者的方法，该方法包括给所述患者施用能有效治疗所述疾病的量的权利要求 138 或权利要求 176 的肽或多肽。

223.如权利要求 222 的方法，其中，所述疾病选自癌、肉瘤、白血病、腺癌、淋巴癌、骨髓癌、胚细胞癌、精原细胞癌和黑素瘤。

224.如权利要求 223 的方法，其中，所述疾病是白血病。

225.如权利要求 224 的方法，其中，所述白血病是急性髓细胞白血病。

226.如权利要求 138 或权利要求 176 的肽或多肽，其中，所述 Fv 能特异性地或选择性地结合急性髓细胞白血病 (AML) 细胞。

227.一种存在于 AML 细胞上的，能被权利要求 226 的肽或多肽结合的配体。

228.一种能结合权利要求 227 的配体的肽或多肽。

229.一种用于在治疗之前、期间或之后体外分析治疗效果的诊断试剂盒，包括与一种指示标记分子附着、偶联、组合、连接或融合的如权利要求 138 或权利要求 176 的肽或多肽。

230.如权利要求 229 的试剂盒，其中，所述指示标记分子是荧光标记。

231.如权利要求 230 的试剂盒，其中，所述荧光标记选自荧光素、罗丹明、藻红蛋白，及其修饰物和偶联物。

232.如权利要求 229 的试剂盒，其中，所述试剂盒被用于诊断癌症。
233. 如权利要求 139 或权利要求 176 的肽或多肽，其中，所述构建体是 IgD 多肽。
234. 一种生产权利要求 233 的肽或多肽的方法，其中，所述 IgD 多肽是作为重组多肽表达的，并且是在真核细胞系统中产生的。
235. 如权利要求 234 的方法，其中，所述真核系统是哺乳动物细胞系统。
236. 如权利要求 233 的肽或多肽，其中，所述 IgD 多肽是 IgG 多肽。
237. 如权利要求 236 的肽或多肽，其中，所述 IgG 多肽包括分别具有 SEQ ID NOs：8，115 和 114 的 CDR3，CDR2 和 CDR1 区。
238. 如权利要求 236 的 IgG 多肽，其中，所述 IgG 多肽包括分别具有 SEQ ID NOs：20，115 和 114 的 CDR3，CDR2 和 CDR1 区。
239. 如权利要求 237 的 IgG 多肽，其中，所述 CDR3，CDR2 和 CDR1 区是重链的。
240. 如权利要求 238 的 IgG 多肽，其中，所述 CDR3，CDR2 和 CDR1 区是重链的。
241. 如权利要求 237 的 IgG 多肽，其中，所述 CDR3，CDR2 和 CDR1 区是轻链的。
242. 如权利要求 238 的 IgG 多肽，其中，所述 CDR3，CDR2 和 CDR1 区是轻链的。
243. 如权利要求 233 的 IgG 多肽，其中，所述 IgG 多肽具有包括 SEQ ID NOs：26 的重链和包括 SEQ ID NOs：27 的轻链或与所述链具有至少 90%的氨基酸相似性的链。
244. 一种用于生产权利要求 139 或权利要求 176 的肽或多肽的方法，其中，所述肽或多肽是在原核细胞系统或真核细胞系统中产生的。
245. 如权利要求 244 的方法，其中，所述原核系统包括大肠杆菌，所述大肠杆菌包括一种表达载体，所述真核系统是哺乳动物细胞系统。
246. 如权利要求 245 的方法，其中，所述原核系统的表达载体包括选自 osmB，deo，β-lac-U5，λ P1 和 CMV 的启动子。
247. 如权利要求 138 或 176 中任意一项的肽或多肽，其中，所述 CDR3 包括氨基酸序列 R1-X Phe Pro-R1，其中，R1 和 R2 各自包括 0-15 个氨基酸残基，并且，其中的 X 是 Arg，Gly 或 Lys。
248. 如权利要求 138 或权利要求 176 的肽或多肽，其中，所述肽或多肽包括至少一种非天然存在的修饰。

249. 如权利要求 248 的肽或多肽，其中，所述非天然存在的修饰使得所述肽或多肽具有更高的免疫原性或更稳定。

250. 如权利要求 249 的肽或多肽，其中，所述至少一种修饰选自硫肽修饰，半硫肽修饰，环肽修饰，N-末端修饰，C-末端修饰，肽键修饰，主链修饰，和残基修饰。

251. 如权利要求 138，171，173，176 或 198 中任意一项的肽或多肽，用于离体净化自体骨髓，以便除去异常细胞。

252. 一种具有以下通式或结构的肽或多肽：

A-X-B

其中，X 是包括 SEQ ID NOs : 8 或 20 的高变 CDR3 区；A 和 B 可以各自是长度为 1-1000 个氨基酸的氨基酸链，其中，A 是氨基末端，而 B 是羧基末端。

253. 如权利要求 252 的肽，其中，A 是 150-250 个氨基酸残基，并且，其中的 B 是 350-500 个氨基酸残基。

254. 如权利要求 255 的肽或多肽，它是较大的或完整抗体或多聚体的一部分。

255. 一种二聚体分子，它包括两种肽或多肽，其中之一是权利要求 252 的肽或多肽。

256. 一种包括权利要求 252 的两种肽或多肽的二聚体分子，这两种肽或多肽是相同的。

257. 一种核酸分子，它编码权利要求 252 的肽或多肽或编码权利要求 254 的二聚体分子。

258. 如权利要求 235 的方法，其中，所述哺乳动物细胞系统包括 SRα5 启动子。

259. 如权利要求 235 的方法，其中，所述哺乳动物细胞系统包括 CMV 启动子。
用于选择性癌症治疗的特异性人抗体

发明领域

本发明涉及借助于噬菌体展示技术进行的组织导向和鉴定领域，并涉及能特异性结合靶细胞的肽和多肽。所述肽和多肽是Fv分子，其构建体，两者的片段或片段的构建体。更具体地讲，所述肽和多肽可以具有抗癌活性，和/或与抗癌剂结合或偶联，特别是抗与血液相关的癌症。

发明背景

治疗剂的组织选择性导向是制药工业中正在形成的学科。业已设计出了基于导向的新的癌症治疗方法，以便提高治疗的特异性和效力，同时降低毒性，从而增强总体效果。为了将毒素、放射性核苷酸和化疗偶联物导向肿瘤，业已采用了针对肿瘤相关抗原的小鼠单克隆抗体(MAb’s)。另外，在治疗造血细胞恶性肿瘤时，业已将CD19，CD20，CD22和CD25的分化抗原用作癌特异性靶。然而，深入的研究表明，该方法具有若干局限。一种局限是难于分离具有选择性结合能力的合适的单克隆抗体。第二种局限是作为成功分离抗体的前提，需要高的抗体免疫原性。第三种局限是引起患者对鼠抗体的免疫反应(人抗鼠抗体-HAMA反应)，这种反应通常会导致较短的血清半衰期，并妨碍反复治疗，因此降低了所需抗体的治疗价值。后一种限制因素引起了在工程生产来源于鼠的嵌合的或人源化的单克隆抗体方面，以及在发现人类抗体方面的兴趣。

存在多种干扰单克隆抗体(Mabs)治疗癌症的治疗效力的因素。所述因素包括在肿瘤细胞上抗原表达的特异性，表达的水平，抗原杂合性，以及肿瘤物质的可接近性。与诸如癌的实体癌相比，白血病和淋巴瘤一般来说对用抗体进行的治疗更敏感。MAbs能迅速结合血液中的白血病细胞和淋巴瘤细胞，并且容易穿透至淋巴组织中的恶性肿瘤细胞，因此使得淋巴瘤成为基于MAB治疗的最佳候选疾病。一种理想系统涉及到鉴定能产生识别恶性肿瘤后代细胞的干细胞细胞表面上的标记的MAb。
为了帮助发现/生产 Mabs，业已利用噬菌体文库来选择能结合诸如抗体、激素和受体的分离的、预先确定的靶蛋白的随机单链 Fvs（scFvs）。另外，一般来说，抗体展示文库的使用，具体来说噬菌体 scFv 文库的使用，有利于发现具有导向特异性、尚未认知和确定的、细胞表面成分的特殊分子的其他方法。

白血病、淋巴瘤和骨髓瘤是起源于骨髓和淋巴组织的癌症，并且涉及细胞的不受控制的生长。急性淋巴性白血病（"ALL"）是通过特异性临床和免疫学特征定义的异型疾病。与其他形式的 ALL 类似，大部分 B 细胞 ALL（"B-ALL"）的形成原因尚属未知，尽管在很多场合下，这种疾病是由于单细胞 DNA 上的获得性遗传改变所导致的，这种改变使它变得异常并且连续扩增。

AML 是一种杂合型肿瘤，其祖细胞在正常情况下能产生骨髓系的最终分化细胞（红细胞、粒细胞、单核细胞和血小板）。与其他形式的肿瘤类似，AML 与获得性遗传改变相关，这种改变会导致表现出一种或多种类型的早期骨髓分化特征的相对未分化的前细胞取代正常分化的骨髓细胞。AML 一般与骨髓相关，并且在较低程度上与次要造血器官相关。AML 主要影响成年人，发病高峰在 15-40 岁之间，不过已知这种病还能影响儿童和老年人。几乎所有 AML 患者都需要在诊断之后马上治疗，以便获得临床上的症状缓解，其中，没有异常含量的循环的未分化前细胞的证据。

到目前为止，业已开发了能诱导针对肿瘤细胞的细胞溶解活性的多种单克隆抗体。一种针对 P185-生长因子受体（HER2）的细胞外结构域的人源化形式的单克隆抗体 MuMAb4D5 获得了 FDA 的批准，并且正被用于治疗人类乳腺癌（美国专利 5，821，337 和 5，720，954）。在结合之后，所述抗体能够抑制肿瘤细胞生长，肿瘤细胞的生长是依赖于 HER2 生长因子受体的。另外，一种能导致包括与淋巴瘤相关的 B 细胞在内的外周 B 细胞快速清除的抗 CD20 的嵌合抗体，最近获得了 FDA 的批准（美国专利 5，843，439）。这种抗体与靶细胞的结合导致了补体依赖型裂解。该产品最近已经获得批准，并且正被用于治疗低级 B 细胞非霍杰金氏淋巴瘤。

若干种其他人源化和嵌合抗体正在开发之中或被用于临床实验。另外，将能与在正常骨髓细胞和大多数类型的髓细胞白血病细胞上表

尽管以上初步结果看上去很有希望，但是它们存在以下局限性。包括非人序列的最终产品，导致了对非人材料的成问题的免疫反应，如 HAMA。这种 HAMA 反应妨碍了反复治疗，并且导致了该产品具有较短的血清半衰期。另外，上述方法只能分离一种类型的抗体，并且只能分离抗已知的和纯化的抗原的抗体。另外，所述方法不是选择性的，因为所述方法可以分离抗存在于正常细胞和恶性肿瘤细胞上的细胞表面标记的抗体。

因此，需要一种克服了上述局限性的方法。另外，所述方法优选能够鉴定癌细胞上的与诸如介导癌细胞转移相关的靶配体或标记。另外，所述方法还能够在生产所述靶的抗体。噬菌体展示技术似乎具有这种能力。

噬菌体展示技术的应用，使得可以分离包括完整人序列的 scFvs。例如，最近业已开发出了来自噬菌体展示技术的基于 scFv 克隆的抗人 TGFβ2 受体的完整的人抗体。这种 scFv 在转化成能够竞争结合 TGFβ2 的完整的人 IgG4 之后 (Thompson 等，J. Immunol Methods, 227, 17-29 (1999))，具有很强的抗增殖活性。为本领域技术人员所公知的
这种技术，在以下文献中有更详细的说明：Smith, Science, 228, 1315 (1985); Scott等, Science, 249, 386-390 (1990); Cwirla
等，PNAS，87, 6378-6382 (1990); Devlin等, Science, 249, 404-406 (1990); Griffiths等, EMBO J., 13 (14), 3245-3260
(1994); Bass等, Proteins, 8, 309-314 (1990); McCafferty
409 和 5, 403, 484 等等。

利用该噬菌体展示技术，本发明的发明人已鉴定出了存在于病变
的或恶性状态的细胞上的细胞标记。因此，本发明的一个目的是鉴定
能识别基本上暴露的或超量表达的，特别是在病变或恶性状态中的细
胞上或细胞内表达的细胞标记的肽和多肽。

本发明的另一个目的是使用并扩展噬菌体展示技术，以便鉴定所
述肽和多肽。

本发明的另一个目的是通过免疫交叉反应性鉴定所述肽和多肽。
本发明的另一个目的是所述肽和多肽是完全来源于人类的。
本发明的另一个目的是所述肽和多肽是用不一定是免疫原性的抗
原分离的。

本发明的另一个目的是提供能够预防、延缓或治愈癌症，特别是
包括白血病或淋巴瘤在内的与血液相关的癌症的肽或多肽。
本发明的另一个目的是利用所述肽和多肽本身，或与抗癌剂
和/或诊断标记或标志缠合或偶联的所述肽和多肽对癌细胞进行局部
导气。

本发明的另一个目的是提供一种生产针对所需配体的导向剂的方
法。

本发明的再一个目的是鉴定提供了对在恶性状态下超量表达的细
胞中标记的识别作用的特殊基序，并且可以将该基序用于构建抗癌剂
的导向或诊断标记或标志。

本发明还有一个目的是提供一种包括有效数量的与一种抗癌剂或
诊断标记或标志结合或连接的所述肽、多肽或基序的组合物。

业已证实，SCFv 能进入组织，并且比完整大小的抗体更快地从血
液中清除，因为其体积较小。Adams, G. P., 等, Br. J. Cancer

单链 Fv (scFv) 片段由多肽接头连接在一起的抗体的重链可变结构域 (V\textsubscript{\alpha}) 和轻链可变结构域 (V\textsubscript{\beta}) 组成。所述接头足够长, 以便使 (V\textsubscript{\alpha}) 结构域和 (V\textsubscript{\beta}) 结构域折叠成有功能的 Fv 结构域, 使得 scFv 能识别并以与亲代抗体类似或更高的亲和力结合其靶位。常用的接头包括甘氨酸和丝氨酸残基, 以便提供灵活性和蛋白酶抗性。

通常，将 scFv 单体设计成使 V\textsubscript{\alpha} 结构域的 C-末端通过多肽接头连接在 V\textsubscript{\beta} 的 N-末端残基上。任选采用相反的方向: V\textsubscript{\alpha} 结构域的 C-末端通过多肽接头连接在 V\textsubscript{\beta} 的 N-末端残基上。Power, B., 等, J. Immun. Meth. 242, 193-204 (2000)。所述多肽接头的长度通常大约为 12 个氨基酸。当所述接头的长度降低到大约 3-12 个氨基酸时, scFvs 就不能再折叠成有功能的 Fv 结构域, 相反, 它与另一个 scFv 结合形成双抗体。如果将所述接头的长度进一步降低到少于 3 个氨基酸, 会迫使 scFv 结合成三聚体或四聚体, 这要取决于所述接头的长度、组成和 Fv 结构域的方向。B. E. Powers, P. J. Hudson, J. Immun. Meth. 242 (2000) 193-194。

最近, 业已发现诸如 scFv 二聚体、三聚体和四聚体的多价抗体片段通常具有高于亲代抗体的对靶的更高的表观结合亲和力。这种较高的亲和力具有多种优点, 包括肿瘤导向应用的理想的药物动力学优点。

因此, 所述多价形式的、较大的结合亲和力, 是诊断和治疗方案所需要的。例如, 可以将 scFv 用作阻断剂, 用于结合靶受体, 并因此阻断“天然”配体的结合。在这种场合下, 需要 scFv 和受体之间具有高的缔合亲和力, 以便降低解离的可能性, 这种解离可能导致不希望的天然配体与所述靶的结合。另外, 当所述靶受体参与粘附或滚动或当所述靶受体存在于出现在高剪切流动部位的诸如血小板的细胞上
时，这种高的亲和力是特别重要的。

因此，本发明的目的是多价形式的 Y1 和 Y17 scFv。这种多价形式包括，但不局限于二聚体、三聚体和四聚体，在本文中，有时分别称之为双抗体、三抗体和四抗体。

发明概述

本发明提供了选择性地和/或特异性地结合靶细胞，特别是与血液相关的癌细胞的肽和多肽，其构建，其自身的用途，或与一种或多种试剂缔合或组合、偶联或融合后的用途。

本发明的一种实施方案提供了包括 Fv 分子、其构建体、两者的片段或片段的构建体的肽或多肽，它具有增强的结合特征，以便相对其他细胞而言，更有利于选择性地和/或特异性地结合靶细胞，其中，所述结合选择性或特异性主要是由第一高变区决定的，并且，其中的 Fv 是单链（"scFv"）或二硫 Fv（"dsFv"），并任选具有一个或多个标记。

在本发明的另一种实施方案中，提供了一种包括 Fv 分子、其构建体、两者的片段、或片段的构建体的肽或多肽，它具有增强的结合特征，以便能选择性地和/或特异性地结合靶细胞上的结合位点，其中，相对于其他细胞上或内部基本上不存在和/或表达所述结合位点的其他细胞，更有利于结合靶细胞，其中，所述结合选择性或特异性主要是由第一高变区决定的，并且，其中的 Fv 是 scFv 或 dsFv，并任选具有一个或多个标记。

在本发明的另一种实施方案中，提供了包括 Fv 分子、其构建体、其片段或片段的构建体的肽或多肽，它具有增强的结合特征，以便相对其他细胞而言，更有利于选择性地和/或特异性地结合靶细胞，其中，Fv 分子包括具有第一、第二和第三高变区的第一条链，和具有第一、第二和第三高变区的第二条链，其中所述第一条链的高变区之一具有选自 SEQ ID Nos: 8-24 的序列，并且，其中，所述第二条链的高变区之一具有选自 SEQ ID Nos: 1-6 和 125-202 的序列，并且，其中的第一、第二和第三高变区是 CDR3，CDR2 和 CDR1 区，并且，其中的 Fv 是 scFv 或 dsFv，并任选具有一个或多个标记。

在本发明的另一种实施方案中，
(a) 所述第一条链和第二条链各自包括选自 SEQ ID NOs : 8-24 的第一高变区，
(b) 所述第一条链和第二条链的第一高变区是相同的，并且选自 SEQ ID NOs : 8-24，
(c) 所述第一条链的第一高变区选自 SEQ ID NOs : 8-24，所述第二条链的第一高变区选自 SEQ ID NOs: 1-6 和 125-202，或
(d) 所述第一条链的第一高变区选自 SEQ ID NOs : 1-6 和 125-202，所述第二条链的第一高变区选自 SEQ ID NOs : 8-24。

在本发明的另一种实施方案中，提供了一种包括 Fv 分子、其构建体、两者的片段或片段的构建体的肽或多肽，它能结合具有第一种状态和第二种状态的第一种细胞上的未知配体其中，所述结合是通过与第二种细胞上的配体的免疫交叉反应性、结合特异性和或选择性，在所述第二种状态下的实现的，而基本上不能在第一种状态下实现，并且，其中的 Fv 是 scFv 或 dsFv，并任选具有一个或多个标记。

在本发明的另一种实施方案中，提供了一种用于鉴定能结合第一种和第二种细胞上的未知免疫交叉反应性结合位点的导向分子的方法，包括
(a) 一个或多个生物检测步骤，这些步骤是在处于第二种状态，而不是第一种状态的第一靶细胞上进行的，在这种状态下基本上能暴露或展示包括未知配体的结合位点，以便产生第一个识别分子群；
(b) 随后的生物检测和/或选择步骤，由步骤 (a) 所得到的识别分子群开始，这些步骤是在包括与所述第一种细胞上的未知配体具有免疫交叉反应性的未知配体的结合位点的第二种细胞上进行的，以便生产第二个识别分子群；
(c) 扩增并且纯化步骤 (b) 的第二个识别分子群；和
(d) 由步骤 (c) 的纯化的识别分子的识别位点构建包括导向分子的肽或多肽，所述导向分子对所述第二种细胞上的未知配体具有选择性和/或特异性。

在本发明的另一种实施方案中，提供了包括氨基酸序列 R1-X Phe Pro-R2 的结合基序，其中，R1 和 R2 各自包括 0-15 个氨基酸残基，并且，其中的 X 是 Arg, Gly 或 Lys。

在本发明的另一种实施方案中，提供了一种生产导向剂的方法，
包括以下步骤：

a) 分离并选择包括一个主要识别位点的一种或多种导向分子，包括直接在靶细胞上进行生物筛选程序或间接在处在第二种状态而不是第一种状态的第一种靶细胞上进行生物筛选程序，以及随后间接在第二种靶细胞上进行生物筛选程序，以便生产一种或多种所述导向分子；

b) 扩增、纯化和鉴定一种或多种导向分子；和

c) 由所述一种或多种导向分子构建一种导向剂，或者，其中，所述导向剂可以是肽、多肽、抗体或抗体片段，或其多聚体。

其中，所述导向剂可以是肽、多肽、抗体或抗体片段或其多聚体。

在本发明的另一种实施方案中，提供了一种具有以下分子式或结构的肽或多肽：

A-X-B

其中，X 是长度为 3-30 个氨基酸的高变 CDR3 区；A 和 B 可以各自是长度为 1-1000 个氨基酸的氨基酸链，其中，A 是氨基末端，而 B 是羧基末端。

附图说明

下面将结合下文披露的附图仅以举例形式，而不是限定形式对本发明作更详细地说明，其中：

图 1 表示通过 EIA 分析测定的结合在固定血小板上的噬菌体克隆。数据是以在 405 nm 波长下吸光度的函数形式提供的。

图 2a、2b 和 2c 表示通过 FACS 分子测定的，从三位AML 患者体内获得的单核细胞样品与 scFvs 的结合。示出了通过两种 FITC-标记的测试样品（对照 scFv 和 scFv 克隆 Y1）结合的细胞的荧光强度。

图 3 表示通过 FACS 分析测定的业已通过 Ficoll-纯化的 Y-1 与血小板(3a)和单核细胞(3b)的结合。示出了通过两种 FITC-标记的测试样品（对照 scFv 和 scFv 克隆 Y1）结合的细胞的荧光强度。

图 4 表示 FITC-标记的 scFv 克隆 Y1 与脐带血 CD34+干细胞的结合。在 FL1-H 通道中，分析 FL3-H 通道中的 CD34+门控细胞与 FITC-标记的阴性对照 scFv (图 4a) 或 FITC-标记的 scFv 克隆 Y1 (图 4b)
的结合。图 4c 表示与图 4b 中相同的 FITC-标记的 scFv 克隆 Y1 样品
的 FSC 和 SSC 点图分析。在图 4b 和 4c 中被圈起来的部分表示 CD34+
细胞的能结合 scFv 克隆 Y1 的亚群体。

图 5: 从存在前 B-ALL 细胞的两位患者体内获得的样品的 FACS 分
析：一种样品来自儿童 (5a, 5c, 5e), 而另一种样品来自成人 (5b, 5d, 5f)。采用双染色方法，该方法使用了通过商业渠道获得的 PE-
标记的 CD19 (正常外周 B-细胞的标记; 图 5a, 5c) 或 PE-标记的 CD34
(干细胞的标记, 图 5d), 同时使用了 FITC-标记的阴性对照 scFv (5a, 5b) 或 FITC-标记的 Y-I scFv (5c, 5d)。图 5b 是双阴性对照。提供
了与阴性对照染色模式形成对比的由 FITC-标记的样品 (scFv 克隆 Y1)
结合的细胞的荧光强度 (x 轴) (5e 和 5f)。

图 6: 该图提供了用 Jurkat 细胞进行的结合比较研究的结果。提
供了 FITC-标记的 Y-I scFv 单体，双抗体和三抗体以及阴性对照与
Jurkat 细胞结合的 FACS 分析。

图 7: 该图提供了比较 IgG-Y-I 和 scFv-Y1 结合的研究的结果。
为了比较完整大小的 IgG-Y1 的结合和 scFv-Y1 形式的结合, 采用了双
染色方法。将 5ng IgG-Y1 用于对 RAJI 细胞 (Y1 阴性细胞; 图 7a) 和
Jurkat 细胞 (Y1 阳性细胞; 图 7b) 进行 FACS 分析。为了进行检测，使
用了 PE 标记的山羊抗 IgG。将大约 1μg (200 倍) 用于 scFv-YI-I 结
合，然后用 PE-标记的兔抗 scFv 抗体进行染色，并且进行 FACS 分析
（图 7c）。

图 8: 该图表示 Y1 二聚体，Y1 scFv (CONY1) 和 Y1 IgG 之间的结
合比较。

图 9: 该图表示 Y1 硫醚键二聚体与 Y1 scFv (CONY1) 之间的结合
比较。

图 10: 该图是 Y1cys-kak 的 Superdex 75 曲线。

图 11: 该图表示二聚体的大小与在还原和非还原条件下与单体的
大小的比较。

图 12: 该图提供了 ELISA 分析结果。

图 13: 该图是抗 GPIb α抗体的表位的曲线图。

图 14: 该图是氨基酸 SEQ ID NO:。
发明详述

特异性在本文中被定义为由本发明的肽或多肽中的一个或多个结构域对靶配体的识别，以及随后与它的结合。

选择性在本文中被定义为导向分子选择并结合细胞类型或细胞状态的混合物中的一种类型或细胞状态的能力，该混合物的所有细胞类型或细胞状态可能对所述导向分子具有特异性。

保守性氨基酸取代被定义为通过改变肽、多肽或蛋白或其片段上的一个或两个氨基酸导致的氨基酸组成的改变。所述取代是用具有大体上类似特性（例如，酸性、碱性、芳族、大小、带正电荷或负电荷、极性或非极性）的氨基酸进行的，以便这种取代不会明显改变肽、多肽或蛋白的特征（例如，电荷、IEF、亲和力、抗体亲和性、构像、溶解度）或活性。可以在所述保守性氨基酸取代中进行的典型的取代可以包括在以下氨基酸组中进行的取代：

(i) 甘氨酸 (G)，丙氨酸 (A)，缬氨酸 (V)，亮氨酸 (L) 和异亮氨酸 (I)
(ii) 天冬氨酸 (D) 和谷氨酸 (E)
(iii) 丙氨酸 (A)，丝氨酸 (S) 和苏氨酸 (T)
(iv) 组氨酸 (H)，赖氨酸 (K) 和精氨酸 (R)
(v) 天冬酰胺 (N) 和谷氨酰胺 (Q)
(vi) 苯丙氨酸 (F)，酪氨酸 (Y) 和色氨酸 (W)

保守性氨基酸取代可以在主要决定所述分子的选择性和/或特异性结合特征的高变区内和高变区侧翼进行，以及在所述分子的其他部分进行，例如，可变重链盒。作为补充或替代，可以通过重构所述分子形成完整大小的抗体、双抗体（二聚体）、三抗体（三聚体）、和/或四抗体（四聚体）或形成小体或微体进行修饰。

在本说明书和权利要求书中，Fv 被定义为由人抗体的重链可变区和人抗体的轻链可变区组成的分子，所述抗体可以是相同的或不同的，并且，其中的重链可变区与轻链可变区结合、连接、融合或共价连接或缔合。

Fv 分子的片段被定义为小于原始 Fv 的、仍然保留了原始 Fv 的选择性和/或特异性结合特征的分子。所述片段的例子包括，但不限于（1）小体，它仅包括 Fv 重链的一个片段，（2）微体，它包括一个小的组份单位的抗体重链可变区 (PCT 申请号 PCT/IL99/00581)，（3）
包括所述轻链的片段的类似体，和(4)包括轻链可变区的功能单位的类似体。

抗癌剂是一种具有抗癌活性，即能抑制癌或不成熟的前癌细胞生长或分化的任何活性，或能抑制癌细胞转移的任何活性的试剂。在本发明中，抗癌剂还是一种具有抗血管发病率性的试剂，它能阻止、抑制、延缓或消除肿瘤组织的血管发生，或者还可以是具有抗粘附活性的试剂，它能抑制、延缓或消除癌细胞和前癌细胞的粘附和转移性侵入。

癌细胞生长的抑制在本文中被定义为(i)抑制癌性或转移性生长，(ii)延缓癌性或转移性生长，(iii)完全抑制癌细胞的生长过程或转移过程，同时保持所述细胞的完整性和活力，或(iv)杀伤所述癌细胞。更具体地讲，癌性生长的抑制可特别应用于抗与血液相关的癌，例如AML，多发性骨髓瘤或慢性淋巴细胞白血病。

噬菌粒被定义为携带有质粒DNA的噬菌体颗粒，因为它携带有质粒DNA。噬菌体颗粒就不再具有足够的空间来容纳噬菌体基因组的整个互补体。从噬菌体基因组中缺少的部分，是包装噬菌体颗粒所必须的信息。因此，为了繁殖噬菌体，必须将需要的噬菌体颗粒与能补充缺少的包装信息的辅助噬菌体菌株一起培养。

正如本文所定义的，用于多肽的盒表示特定的连续氨基酸序列，该序列起着构架的作用，并且被认为是一个单位，并且作为一个单位进行操作，可以在其一端或两端取代、插入、去除或连接氨基酸。同样，可以在其一端或两端取代、插入、去掉或连接氨基酸片段。

在本文中，免疫球蛋白(Ig)分子被定义为五种类型中的任意一种，即IgG，IgA，IgD，IgE或IgM。IgG型包括若干种亚型，包括但不限于IgG1，IgG2，IgG3和IgG4。

药物组合物表示一种制剂，它包括本发明的肽或多肽，以及可以药用的载体、赋形剂或其稀释剂。

药用试剂表示可用于哺乳动物的预防性处理或诊断的试剂，所述哺乳动物包括，但不限于人、牛、马、猪、鼠、犬、猫或任何其他温血动物。所述药用试剂选自下列一组：放射性同位素，毒素，寡核苷酸，重组蛋白，抗体片段，和抗癌剂。所述药用试剂的例子包括，但不限于抗病毒剂，包括阿昔洛韦，更昔洛韦和齐多夫定；抗血
栓/抗凝血剂，包括西洛他唑，dalteparin sodium，瑞维肝素钠，
和阿司匹林；抗炎剂，包括扎托洛芬，普拉洛芬，屈氨昔康，乙酰
水杨酸，双氯芬酸，异丁苯丙酸，右布洛芬，舒林酸，甲氧萘
丙酸，amtolmetin，celecoxib，消炎痛，rofecoxib，和尼美
舒利；抗自身免疫剂，包括来氟米特，denileukin diftitox，
subreum，WinRho SDF，去纤酶胺，和环磷酸胺；和抗粘附/抗聚集
制剂，包括利马前列素，clorocromene，和透明质酸。

抗白血病剂是具有抗白血病活性的试剂。例如，抗白血病试剂包
括能抑制或阻止白血病细胞或不成熟的前白血病细胞生长的试剂，能
杀伤白血病细胞或前白血病细胞的试剂，能增强白血病细胞或前白血
病细胞对其他抗白血病剂的易感性的试剂，以及能抑制白血病细胞转
移的试剂。在本发明中，抗白血病剂还可以是具有抗血管发生活性的
试剂，它能阻止、抑制、延缓或消除肿瘤的血管化。

本文所使用的术语“亲和力”是衡量受体（例如，抗体上的结合
位点）和配体（例如，抗原决定簇）之间的结合强度（缔合常数）的
指标。抗体上的单个抗原结合位点与一个配体之间的总的非共价相互
作用的强度，是所述抗体对所述配体的亲和力。低亲和力抗体对抗原
的结合较弱，并且倾向于很容易解离，而高亲和力抗体能更紧密地结
合抗原，并且保持较长时间的结合。术语“抗原亲口性”与亲和力
不同，因为前者体现的是抗原-抗体相互作用的价。

抗体-抗原相互作用的特异性：尽管抗原-抗体反应是特异性的，
但是在某些场合下，由一种抗原诱导的抗体能够与另一种不相关的抗
原发生交叉反应。如果两种不同的抗原拥有同源的或类似的表位或它
的修饰区，或者如果对一种表位特异的抗体结合具有类似化学特性的
不相关的表位的话，就会发生所述交叉反应。

胚细胞是处在细胞发育的不成熟阶段的细胞，它与静息细胞的区
别是具有较高的细胞质-细胞核比例。

血小板是从骨髓窦中排出的巨核细胞的圆盘状细胞质片段，该片
段随后在外周血液中循环。血小板具有若干种生理学功能，包括在凝
血中的主要作用。血小板包括处在其中央部分的颗粒和外周部分的透
明原生质，但是没有明确的细胞核。

术语“表位”在本文中表示能与抗体-抗体片段-抗体复合体相
互作用的抗原决定簇或抗原部位或包括它的结合片段或 T-细胞受体的复合物。在本文中，术语表位可以与术语配体、结构域、和结合域互换使用。

一种特定的细胞可以在其表面上表达具有对特定抗体的结合位点（或表位）的蛋白，但是所述结合位点可能以隐蔽形式（例如，从空间上妨碍或封闭，或缺乏被抗体结合所需要的特征）存在于一种状态的所述细胞中，该状态可以被称为第一期（I 期），例如，I 期可以是正常的、健康的、非病变的状态。当所述表位以隐蔽形式存在时，它不能被所述特定抗体识别，即不存在所述抗体与该表位或处在 I 期的所述特定细胞的结合。不过，所述表位可能会暴露出来，例如，通过它自身发生的修饰，或因为相邻的或有关的分子受到修饰而解除封闭，或因为一个片段发生了构像变化。修饰的例子包括折叠的改变，翻译后修饰的改变，磷脂化的改变，硫酸化的改变，和糖基化改变等。所述修饰可以在所述细胞进入一种不同的状态时发生，所述状态可以被称为第二期（II 期），第二状态或期的例子包括激活、增殖、转化，或恶性肿瘤状态。在受到修饰时，所述表位就可以暴露出来，并且所述抗体能够与它结合。

在本文中，术语“Fab 片段”是免疫球蛋白的一价抗原结合片段。Fab 片段由轻链和部分重链组成。

单克隆抗体是免疫反应的产物，并且是由多种不同的 B-淋巴细胞形成的。单克隆抗体源于单一细胞。

本文所使用的凝集一词表示导致具有类似大小的悬浮的细菌、细胞、细胞和其他颗粒粘附在一起，并形成团块的过程。该过程类似于沉淀，但是所述颗粒较大，并且存在于悬浮液中，而不是存在于溶液中。

术语“聚集”表示体外和凝血酶和胶原诱导的血小板的聚集，它是导致形成血栓或止血栓的一系列机制的一部分。

可以通过分析在各种条件、特定时间、各种组织等中产生的基因产物的数量，研究基因的表达形式。当基因产物的数量高于存在于正常对照，例如非病变对照中的数量时，就认为该基因是“超量表达的”。

启动子是 DNA 上的一个区，RNA 聚合酶与它结合，并且启动转录。抗体或免疫球蛋白是能够结合抗原的蛋白分子。它们由通过二硫键
连接在一起的四个多肽链（两个重链和两个轻链）单位组成。每一条链具有一个恒定区和一个可变区，根据抗体的重链成分，可以将抗体分成五种类型：IgG，IgM，IgA，IgD 和 IgE。抗体是由 B 淋巴细胞产生的，能识别特定的外源抗原决定簇，并且能促进清除所述抗原。

抗体能够以多种形式生产并使用，包括抗体复合体。在本文中，术语“抗体复合体”被用于表示一种或多种抗体与另一种抗体或与一个或多个抗体片段形成的复合体，或与两个或两个以上抗体片段的复合体。

F(ab’) 2 片段是通过胃蛋白酶消化获得的免疫球蛋白二价抗原结合片段。它包括轻链和部分重链。

Fc 片段是免疫球蛋白的非抗原结合部分。它包括重链的羧基末端部分和 Fc 受体的结合位点。

Fd 片段是免疫球蛋白重链的可变区和第一恒定区。

污染蛋白是这样的蛋白，它不是特异性选择用于一种样品中的，并且可能存在于该样品中。

肽模拟物是具有与诸如抗体的另一种实体的相同功能作用或活性的小分子、肽、多肽、脂质、多糖或其偶联物。

噬菌体是质粒载体，它被设计成包括源于 fd 的诸如 m13 的丝状噬菌体的复制起点。

存在多种疾病，这些疾病涉及到能在其表面上表达细胞特异性和或疾病特异性配体的病变的、改变的、或以其他方式修饰过的细胞。通过对每一种细胞的识别、选择、诊断和治疗，可以将所述配体用于实现特定疾病的识别、选择、诊断和治疗。本发明提供了包括 Fv 分子、其构建体、其片段、其片段的构建体、或构建体的片段的肽或多肽，它们都具有增强了的结合特征。这种结合特征使得所述肽或多肽分子与其他细胞相比，更有利于选择性地和或特异性地结合靶细胞。所述结合特异性和/或选择性主要是由第一高变区决定的。所述 Fv 可以是 scFv 或 dsFv。

上述 Fv 分子可用于靶定病变细胞。例如，所述病变细胞可以是癌细胞。可以通过特异性导向诊断和/或治疗的癌症类型的例子包括，但不局限于癌、肉瘤、白血病、腺癌、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤和黑素瘤。白血病、淋巴瘤、和骨髓瘤是源于骨髓和淋巴组
织的癌症，并且与不受控制的细胞生长相关。

近几年来，业已开发出了用于诊断和治疗疾病、特别是癌症的新方法。其中包括肿瘤定向方法，该方法使用可以通过多种方式筛选和生产的导向分子。用于鉴定可能的导向分子的一种方法是噬菌体展示。噬菌体展示是这样一种技术，其中，肽、多肽、抗体或蛋白是通过与噬菌体外被蛋白融合而产生在噬菌体表面进行的表达和展示而产生和选择的，编码展示蛋白的 DNA 包含在噬菌体的质粒内。通过噬菌体展示技术生产的 scFv，由通过柔性氨基酸多肽间隔片段连接的抗体重链和轻链的每一条的可变区组成 (Nissim 等，EMBO J, 13, 692-698 (1994))。

噬菌体展示文库（又被称为噬菌体肽/抗体文库，噬菌体文库，或肽/抗体文库）包括庞大的噬菌体群（通常为 10^5-10^6），每一个噬菌体颗粒具有不同的肽或多肽序列。所述肽或多肽片段可以以不同的长度构建。所述展示的肽或多肽可源于，但不一定局限于人类抗体重链或轻链。

在本发明中，将通过噬菌体展示技术生产的 scFv 抗体文库用于获得并生产导向分子。将流式细胞术，特别是荧光激活的细胞分选("FACS")用于鉴定并分离特定的噬菌体克隆，该克隆的肽或多肽能识别靶细胞。噬菌体表达的 scFv 抗体片段，可用于高亲和力克隆的体外筛选、富集和选择 (美国专利 5, 821, 337；美国专利 5, 720, 954)。因此，这种类型的文库提供了生产用于研究和临床应用的新型工具的有效手段，并且，与常规方法相比具有多种优点 (Caron 等，Cancer Supplement, 73, 1049-1056 (1994))。所述文库包括抗体分子高度多样性的潜力 (Nissim 等，EMBO J., 692-698 (1994))。在本发明中，可以将稳定的人 cDNA 用作抗体生产的连续的材料来源 (美国专利 5, 843, 439)。分子识别和选择不受候选靶蛋白的体内免疫原性的影响。

尽管噬菌体展示抗体的亲和力选择提供了用于从大型文库中富集抗原反应性 scFv 的有用方法，但是，它需要多个步骤来分离单个克隆，以及表征可溶性 scFv。可以对 scFv 本身进行修饰，以便提高其亲和力和/或抗体亲抗原性，所述修饰是通过进行保守性氨基酸取代，或生产 scFv 的片段，或所述片段的构建体实现的。
对不同的人类细胞和组织特异的本发明的 scFv 能够以药物有效量与各种药用试剂和/或放射性同位素结合、组合、融合、或连接，并且任选地与药物有效的载体组合，以便形成具有抗病和/或抗癌活性，和/或用于所述疾病的诊断目的药物-肽组合物、融合物或偶联物。

噬菌体克隆是通过被称为生物淘选的多步骤方法选择和鉴定的。生物淘选是通过以下方法进行的：将噬菌体展示蛋白配体变体（噬菌体展示文库）与一种靶一起孵育，通过洗涤技术除去未结合的噬菌体，并特异性地洗脱结合的噬菌体。对洗脱的噬菌体任选进行扩增，然后通过其他轮次的结合和任选扩增富集特定序列的库，有利于具有表现出对所述靶的最佳结合能力的抗体片段的噬菌体克隆。在经过若干轮次之后，对单一的噬菌体克隆进行表征，并且通过对噬菌体毒粒的相应 DNA 进行测序，确定由所述克隆展示的肽的序列。

用这种方法获得 scFv 又被称为前导化合物。前导化合物被定义为这样一种化合物，它的最终形式包括一个核心肽或多肽。所述前导化合物可以修饰和/或扩增，但是它必须保留所述核心肽或多肽或它的某种保守性修饰形式。例如，通过氨基酸取代进行的修饰可以在 Fv 的 N-末端、羧基末端、或任一种 CDR 区进行，或者在其上游或下游区进行。修饰还可以包括，但不局限于融合蛋白，与药物或毒素偶联，构建多聚体，和扩展成完整的抗体分子。用于本发明的一种优选类型的前导化合物是作为生物淘选方法的最终产物获得的 scFv。

本发明的一种实施方案提供了本发明肽或多肽的至少一种非天然修饰。所述非天然修饰可以使得所述肽或多肽的免疫原性更高或更低。非天然修饰包括，但不限于联联肽（peptoid）修饰、半肽修饰、环肽修饰、N-末端修饰、C-末端修饰、肽键修饰、主链修饰、和残基修饰。

抗原特异性噬菌体抗体的选择，在很大程度上取决于对固定化单抗原的生物淘选。只有有限的选择是用完整细胞作靶进行的。在本发明中，将完整细胞用于选择能识别白血病细胞表面决定簇的特异抗体，其中，所述特异性抗体是以前未知的或未表征过的。该方法不能方便地调整抗原浓度或除去不希望的显性抗体反应性。另外，与具有较高亲和力的克隆相比，所述噬菌体可以富集能展示多拷贝 scFv 的克隆。不过，该方法的所述优点使得它成为用于分离新型人类抗体分子
的非常有价值的工具。

本发明的一种实施方案提供了包括 Fv 分子、其构建体、其片段或片段的构建体的肽或多肽，它能结合具有第一种和第二种状态的第一种细胞上的未知配体，其中，所述结合是在第二种状态下实现的，而基本上不能在第一种状态下实现，通过免疫交叉反应性，特异性地或多选择性地结合第二种细胞上的配体，并且，其中的 Fv 是 scFvs 或 dsFv，且任选具有一个或多个标记。

另一种实施方案提供了本发明的肽或多肽，其中，所述肽或多肽与所述第二种细胞的配体的选择性或/或特异性结合，主要是由第一高变区决定的。

另一种实施方案提供了本发明的肽或多肽，其中，所述第一高变区是具有选自 SEQ ID NOs : 8-24 的氨基酸序列的 CDR3 区。

另一种实施方案提供了本发明的肽或多肽，其中，所述第一高变区是具有选自 SEQ ID NOs : 8-24 的氨基酸序列的 CDR3 区，并且，其中的结合选择性或特异性其次受到第二高变区和/或第三高变区和/或分别位于所述第一、第二和第三高变区侧翼的一个或多个上游区和/或一个或多个下游区的影响。

另一种实施方案提供了由本发明的肽或多肽结合的第二种细胞的配体。一种这样的双细胞选择方法基于以下原理：巨核细胞是源于骨髓中的造血干细胞的大型多核细胞。血小板能破坏巨核细胞细胞质，并进入外周血液。在体外，有多种细胞因子能直接影响干细胞。例如，血小板生成素能通过直接增加干细胞向巨细胞的分化提高血小板数。因此，所述细胞能表达同样出现在不成熟的细胞中的若干细胞表面标记。

恶性血细胞（白血病和淋巴瘤）以能表达通常存在于部分分化造血祖细胞中的细胞表面蛋白的不成熟的细胞为特征。因此，血小板是用于鉴定在病变的或恶性血细胞上表达的不成熟的细胞表面标记的诱人的来源。在下面披露的一种方法中，将特定细胞，例如，但不局限于具有未知配体的血小板用于最初的生物筛选步骤。随后的克隆选择是用需要的靶细胞进行的，所述靶细胞的表面标记是未知的，例如，但不局限于 AML 细胞。在该方法中，通过在血小板上进行生物筛选获得的噬菌体克隆，可以提供用于识别和结合位于感兴趣的病变细胞或
恶性血细胞上的配体的工具。

上述靶细胞包括从分离的组织中获得的细胞。所述分离的组织可以是病变的组织，更具体地讲，是癌组织。癌组织可源于任何形式的恶性肿瘤，包括但不限于癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、肝细胞瘤、精原细胞瘤和黑素瘤。

除了上述生物淘选方法之外，另一种方法是基于能结合一种细胞上的配体的肽或多肽的分离，所述肽或多肽是通过直接在所述配体上淘选确定的。

本发明提供了包括 Fv 分子、其构建体、两者的片段、或片段的构建体的肽或多肽。一种构建体可以是多聚体（例如，双抗体、三抗体、四抗体）或完整大小的 Ig 分子。一种片段可以是小体或微体。所有衍生的构建体和片段保留了增强的结合特征，以便相对其他细胞而言，更有利于选择性和/或特异性地结合靶细胞。所述结合选择性和/或特异性主要是由第一高变区决定的，并且其中的 Fv 是 scFv 或 dsFv，并且任选具有一个或多个标记。

在本发明的一种实施方案中，将一个标记插入或附着在 Fv 肽或多肽上，以便有助于所述肽或多肽的制备和鉴定，并且有助于诊断。随后可以将所述标记从所述分子上除去。所述标记可以是，但不局限于以下标记：AU1，AU5，BTag，c-myc，FLAG，Glu-Glu，HA，His6，HSV，HTTPHH，IRS，KT3，蛋白 C，S·Tag®，T7，V5，VSV-G（Jarvik 和 Telmer，Ann. Rev. Gen.，32，601-618 (1998)），和 KAK（赖氨酸-丙氨酸-赖氨酸）。所述标记优选是 c-myc 或 KAK。

可以用长度为 0-20 个氨基酸残基的间隔片段，将本发明 Fv 分子的两个可变链连接或结合在一起。所述间隔片段可以是分支的或不分支的。所述接头优选为 0-15 个氨基酸残基，最优选的接头是(Gly·Ser)n，以便产生单链 Fv ("scFv")。ScFv 可以从噬菌体展示文库中获得。

Fv 分子本身由第一条链和第二条链组成，每一条链都包括第一、第二和第三高变区。位于轻链和重链的可变结构域内的高变环被称为互补决定区 (CDR)。重链和轻链的每一条都具有 CDR1，CDR2 和 CDR3 区。据信，所述区能形成抗原结合位点，并可以进行特异性修饰，以便产生增强了的结合活性。大部分可变区的本质是所述重链的 CDR3 区。CDR3 区被理解为 Ig 分子的最暴露的区域，并且正如业已证实的和
本文所提供的，是主要决定所观察到的选择性和/或特异性结合特征的位点。

本发明的一种实施方案提供了包括 Fv 分子、其构建体、两者的片段、或片段的构建体的肽或多肽，它具有增强了的结合特征，以便相对所述结合位点基本上不存在和/或不表达的部位的细胞而言，更有利于与包括一种细胞的靶位上的基本上暴露的和/或超量表达的位点选择性地和/或特异性地结合，其中，所述结合选择性和特异性主要是由第一高变区决定的，并且其中的 Fv 是 scFv 或 dsFv，并且任选具有一个或多个标记。

本发明的另一种实施方案提供了一种肽或多肽，其中，所述第一高变区是具有选自 SEQ ID NOs：8-24 氨基酸序列的 CDR3 区。

本发明的另一种实施方案提供了一种肽或多肽，其中，所述第一高变区是具有选自 SEQ ID NOs：8-24 氨基酸序列的 CDR3 区。并且，其中的结合选择性和特异性其次受到第二高变区和/或第三高变区和/或分别位于所述第一、第二和第三高变区侧翼的一个或多个上游区和/或一个或多个下游区的影响，其中，所述第二和第三高变区分别是 CDR2 和 CDR1 区。

本发明的一种实施方案提供了能结合作为激活的、兴奋的、修饰的、改变的、失调的或病变的细胞的靶细胞的肽或多肽。本发明的另一种实施方案提供了作为癌细胞的靶细胞。所述靶细胞可以选自，但不限于癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤和黑素瘤。在一种优选实施方案中，所述癌细胞是白血病细胞，在一种最优选的实施方案中，所述白血病细胞是 AML 细胞。

本发明的肽或多肽还可以是 Fv 的任何构建体或修饰过的构建体，它保留了所述重链和/或轻链的一个或多个高变区，并且具有选择性的和/或特异性的结合特征。构建体或修饰过的构建体包括，但不限于 scFv、dsFv、scFv 的多聚体，如二聚体，三聚体和四聚体等（又被称为双抗体、三抗体、四抗体），以及完整抗体，以及可以构建的它们的任何其他多聚体，并且它掺入了所述抗体的一个或多个高变结构域。本发明的肽或多肽还是具有原始构建体的某些或全部结合特征的任何构建体或修饰过的构建体的片段。

本发明的肽或多肽还是具有原始构建体的某些或全部选择性和/
或特异性结合特征的片段的构建体。本文所披露的 Fv 可能选择性地和/or 特异性地结合靶细胞，并且可以与抗癌剂或抗病剂组合，或偶联。

本发明的肽、多肽、其片段、其构建体和 Fv 分子的构建体的片段可以在原核或真核表达系统中制备。在本发明的一种实施方案中，所述真核表达系统是哺乳动物表达系统，并且在所述哺乳动物表达系统中生产的肽或多肽在纯化之后，基本上不含哺乳动物污染物。本文所定义的真核细胞系统是指通过遗传工程方法生产肽或多肽的表达系统，其中，所述宿主细胞是真核细胞。在本发明的另一种实施方案中，用于生产本发明的肽或多肽的原核系统将大肠杆菌用作表达载体的宿主。在所述大肠杆菌系统中生产的肽或多肽，在纯化之后基本上不含大肠杆菌污染蛋白。使用原核表达系统可能会导致在本发明所提供的某些或所有序列的 N-末端添加甲硫氨酸残基。在肽或多肽生产之后，除去 N-末端甲硫氨酸能够通过本领域普遍公知的方法全面表达所述肽或多肽，例如，但不限于在合适条件下使用气单胞菌属氨基肽酶（美国专利 5,763,215）。

本发明提供了基于本发明 Fv 肽的 scFv 的生产。掺入到用于在原核细胞中克隆并扩增 scFv 的载体中的启动子可以由多种候选启动子中选择。启动子是一种 DNA 序列，它位于结构基因上游，并且能够控制基因的表达。启动子存在于生物的天然状态的染色体中，并且还可以通过工程方法整合到原核或真核表达载体上。通过工程方法掺入目标 DNA 片段的特定基因座上的启动子，能够对感兴趣的基因进行细调的和精确控制的表达。在本发明中，将若干种启动子用于包括编码选择的 Fv 的基因在内的构建体上。启动子包括，但不限于以下启动子：deo，P1-P2，osmB，λ P1，β-lac-U5，SRα5 和 CMV 早期启动子。Deo 是双链 DNA 质粒，它在导入合适的大肠杆菌宿主之后，使得所述宿主能够在组成型的大肠杆菌衍生的脱氧核糖核酸启动子 deo P1-P2 的控制下表达编码希望的天然存在的多肽或多肽类似物的 DNA。在美国专利 5,795,776（Fischer, 1998 年 8 月 18 日）和美国专利 5,945,304（Fischer, 1999 年 8 月 31 日）中提供了更全面的说明。

大肠杆菌 osmB 启动子的表达是由渗透压调控的。具有这种启动子的载体可用于在大肠杆菌宿主中，在 osmB 启动子的控制下生产高水平的多种重组真核和原核多肽。在美国专利 5,795,776（Fischer, 1998
年 8 月 18 日)和美国专利 5, 945, 304 (Fischer, 1999 年 8 月 31 日) 提供了更全面的说明。

λ P6 是由热不稳定性阻遏子 CI 调控的 λ 噬菌体启动子。更全面的讨论可以参见 Hendrix 等 Lambda II, Cold Spring Harbor Laboratory (1983)。

β-lac-U5 是 lacZ 启动子 (Gilbert 和 Muller-Hill, PNAS (US), 58, 2415 (1967))。

SR.5 是哺乳动物 cDNA 表达系统，它由猿猴病毒 40 (SV40) 早期启动子和 1 型人 T-细胞白血病病毒长的末端重复的 R-U5 片段组成。该表达系统在多种类型的细胞中的活性比 SV40 早期启动子高 1-2 个数量级 (Takebe 等, Molecular and Cellular Biology, 8, 466-472 (1988))。

在本发明的一种优选实施方案中，用于诱导原核细胞中的噬菌粒系统的启动子选自 deo, osmB, λ P6, β-lac-U5, 和 CMV 启动子。在本发明的一种更优选的实施方案中，将 β-lac-U 启动子用于在大肠杆菌中诱导噬菌粒系统。在最优选的实施方案中，使用 CMV 启动子。

在本发明的一种实施方案中，本发明的肽或多肽包括：(a)仅存在于编码序列中但在成熟蛋白中缺乏的前导序列；(b) 大小为 135-145 个氨基酸的重链的可变区，包括进行修饰的 4-12 个氨基酸的第一高变区；(c) ≤20 个氨基酸的间隔区，该间隔区可以缩短或消除；(d) 同样要进行下文所述的特殊修饰的轻链的可变区；(e) 紧随其后的一个标记序列，该序列任选存在于最终可注射制品中。ScFv 中的间隔片段的长度通常约为 15 个氨基酸残基，使两条可变区链（重链和轻链）能折叠成有效的 Fv 结构域。功能性 Fv 结构域保留了选择性和/或特异性增强了的结合活性。

在另一种实施方案中，在上述 (d) 之后是一种标记序列或标记，可将其用于偶联、诊断和/或鉴定目的。在本实施方案中，将所述标记
设计成连接本发明的肽或多肽和用于治疗或诊断靶细胞的试剂。

ScFv 的间隔区可以是线性的或分支的，并且通常以多个结构式 (Gly:Ser) 形式由甘氨酸和丝氨酸残基组成，并且长度通常为总共 0-20 个氨基酸，优选 0-15 个氨基酸，并且是线性的。通过根据需要改变间隔片段长度，可以获得多种多聚体。在本发明的实施方案中，所述间隔片段的长度为 0-5 个氨基酸。在另一种实施方案中，所述间隔片段的长度小于 3 个氨基酸（详细说明见下文）。

下面是本发明 scFv 分子的氨基酸序列的例子：

```
ATGAAATACCCATGCCCAGCCAGCCGCTGATGTATTTATGTAGTCCGCGGCCAGCCGCCG
ATGGCCAGGTCACGTGGAGCTGCTGGGAGGCTCTGCTGTAAGCCTGGGAGGCTGGTCCCTG
M.A.E.V.Q.L.V.E.S.G.G.G.V.R.P.G.G.S.G.
AGACTTCCTCTGCAAGCCTGGTATTCCTGTCATTGATGTTGACATGCTGGTCCCGC
CAAGTCCTAGGAGAAGGTGGTTCGGTCGGTATTGAATGCTGGTACAGAACA
GTTATGCAAGCCTGGTGAGGCGCCATGCACCATCTCCAGAGAACAAGCCACGACACTCC
CTGATCTGGCAAGAAGACGTCTGGAGGCAGGACGCCAGGGTGATTACGGGCAAGAAGA
ATGAGGGCATCCCTGATGTGTGCGCACAGTAACCCCGTGCACCTGACAGGAGGAC
ATGAGGGCGAGCAGGAGCTGGAGCTGGGAGGCTCTGCTGTAAGCCTGGGAGGCTGGTCCCTG
GTTTACGGCGAGGCTGGAGCTGGCAGCGGTACGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGC
```

在前导序列下面加点划线。V 区是由粗体氨基酸序列编码的。这种特定的克隆源于种系 Vm3-DP32；不过，每一个克隆的种系取决于其
具体来源（参见下文）。用方框圈起来的氨基酸序列编码 V\textsubscript{H}-CDR3，所有克隆的高变区都源于该文库。连接 V\textsubscript{H} 和 V\textsubscript{L} 区的间隔区，是由通过序列表示的氨基酸编码的柔性多肽。最后，示出了 V\textsubscript{L} 区。所有克隆中的融合的 V\textsubscript{L} 片段都源于种系 IGLV3S1 的单个未突变过的 V 基因，在这里，紧随其后的是 c-myc 标记，在它下面加波浪线。其完整的氨基酸序列与 SBQ ID NO : 25 相同。

首先由所述文库的提供者用未经免疫过的人外周血淋巴细胞的重排的 V- 基因，通过 PCR 制备 V\textsubscript{H} 片段的所有组成成分（来自 49 个种系）（被称为“幼稚组成成分”）。可以通过同源性测定（Blast 检索），使用下列网站之一鉴定 V\textsubscript{H} 序列的起源（种系）：

可以用若干方法中的一种优化抗体的结合特征。优化抗体以便获得与原始前导化合物相比具有更高结合亲和力的方法是基于取代前导化合物中的氨基酸残基，以便导入更高的可变性，或延长该序列。例如，整个原有的 V\textsubscript{L} 区可以利用来自不同抗体亚型的 V\textsubscript{L} 区取代。

优化结合亲和力的另一种方法是构建噬菌体展示诱变文库。在噬菌体展示诱变文库中，合成了寡核苷酸，以便 V\textsubscript{H} 和 V\textsubscript{L} CDR3 内的核心序列的每一种氨基酸序列分别用任何其他的氨基酸取代，优选以本领域已知的保守方式取代。本发明提供了展示在噬菌体上的一套特殊的抗体 scFv，其中，所展示的抗体片段和可溶性抗体片段可以从具有相同生物学活性的噬菌体毒粒中提取。

用于本发明的噬菌体展示文库是用未经免疫过的人外周血淋巴细胞构建的，并且用靶细胞表面上的以前未表达过的和未纯化过的抗原选择所述 Fv 片。在本文中，以前未表达过的和未纯化过的抗原，表示存在于在进行本项研究之前没有通过生物化学或分子方法鉴定、表达、分离或纯化过的细胞表面上的配体，并且它是通过观察到的与分离的抗体片段的选择性和/或特异性结合在本研究中发现或预测的。

本发明的 scFv 表现出对靶细胞的增强了的结合力。所述增强了的结合是针对特定表面标记的。特定表面标记是这样的分子，它能整合在细胞膜中，并且能够接触循环的识别分子。表面标记的存在，使得人们能够通过本文所披露的生物润选技术开发出噬菌体展示技术。在本发明中，用特定的表面标记表征并区分各种细胞类型，并且用作各种形式的 FvS 的结合位点。可以根据其特有的表面标记区分各种造血
细胞类型。类似地，病变细胞或癌细胞所具有的表面标记是所述细胞类型和阶段所特有的。

可以通过两种不同的生物淘选方法实现 scFv 克隆的筛选：
1. 利用病变细胞或癌细胞作为靶细胞直接筛选，和
2. 使用诸如处在第二种状态，例如激活的、兴奋的、修饰的、改变的、或失调的状态的第一种，如正常细胞逐步选择，以便处在第二种状态下的第一种细胞的结合位点包括一个基本上暴露的或展示的未知配体。通过免疫交叉反应性，所得到的克隆在随后的淘选步骤或筛选步骤之后可以选择性地和/或特异性地结合在第二种细胞上的新的和未知的配体。在经过进一步的任选扩增和随后的纯化之后，可以由所述纯化的识别分子的识别位点构建导向分子，该分子对第二种细胞上的未知配体具有选择性和/或特异性。

在本发明的一种实施方案中，所述第一种细胞可以是正常细胞，所述第一种状态是激活的状态，而第二种状态是激活的、兴奋的、修饰的、改变的、或失调的状态。在所述逐步选择中的第二种细胞可以是人类细胞。在本发明的一种优选实施方案中，在所述逐步选择中的第二种细胞是病变细胞。在本发明的一种更优选的实施方案中，在所述逐步选择中的第二种细胞是癌细胞，例如，但不限于癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤和黑素瘤。

在一种更优选的实施方案中，所述第二种细胞是白血病细胞。在一种最优选的实施方案中，所述第二种细胞是 AML 细胞。

本发明的一种更优选的实施方案提供了一种肽或多肽，其中，所述肽或多肽与第二种细胞上的配体的选择性和/或特异性结合，主要是由第一高变区决定的。在另一种更优选的实施方案中，所述第一高变区是由 SEQ ID NOs : 8-24 的氨基酸序列的 CDR3。

在本发明的另一种实施方案中，本发明提供了由本发明的肽或多肽的第二种细胞的配体。另一种实施方案提供了能识别并结合由本发明的肽或多肽结合的配体的任何分子。

对癌细胞的增强了的结合，最有可能是由于相对在正常细胞中的表达而言，所述配体在癌细胞中的超量表达和/或结合位点的暴露而导致的。在本文中，术语配体的超量表达被定义为在正常情况下在特定的细胞类型和/或细胞周期的特定阶段的沉默的基因的表达或其产
物，或一种基因的增加了的表达，该基因在特定细胞类型的正常的、非恶性状况下是以基础水平表达的。

在本发明的一种更优选的实施方案中，所述生物筛选方法的靶细胞包含在细胞悬浮液中。造细胞是以悬浮液形式获得的，并且进行生物筛选，包括将噬菌体文库与血细胞悬浮液混合，然后用若干种缓冲液洗涤。从所述人类细胞中提取噬菌体，扩增，并且确定展示抗体片段序列。

在本发明的另一种更优选的实施方案中，所述血细胞悬浮液包括白血病细胞。在一种最优选的实施方案中，所述血细胞悬浮液包括 AML 细胞。在本发明的另一种实施方案中，所述靶细胞源于分离的器官或其部分。

在本发明的另一种实施方案中，所述靶细胞或所述第二种细胞源于一种细胞系。可以对细胞系进行培养和操作，以便它们有助于确定 Fv 克隆的结合特征。另外，可以将细胞系用于开发诊断试剂盒。

在一种优选实施方案中，所述细胞系是造血细胞系，例如，但不限于以下细胞系：Jurkat，Molt-4，HS-602，U937，TF-1，THP-1，KG-1，ML-2 和 HUT-78 细胞系。

在本发明的一种优选实施方案中，将 CDR3 区构建、插入、连接或融合在 84 个盒 (SEQ ID NOs：30-113) 中的任意一个内或任意一个上。在一种更优选的实施方案中，将 CDR3 区构建、插入、连接或融合在 49 个盒 (SEQ ID NOs：30-32，35，37-39，41，43，45，46，48，51，54，57，59-68，70，71，76-85，87，89-92，94，97，99，103，106，112 和 113) 中的任意一个内或任意一个上。在一种最优选的实施方案中，将 CDR3 区构建、插入、连接或融合在 SEQ ID NOs：61 的盒的 C-末端，或与它具有至少 90% 序列相似性的上述序列中的任意一个上。

在一种实施方案中，所述盒的氨基酸序列表面上是固定的，而所述取代的、插入的、或附着的序列可以是高度可变的。所述盒可以由若干个结构域组成，其中的每一个结构域包括一种对最终构建体重要的功能。本发明的一种具体实施方案的盒从 N-末端开始包括构架区 1 (FRI)，CDRI，构架区 2 (FR2)，CDR2，和构架区 3 (FR3)。

在本发明的一种的实施方案中，可以取代所述盒内的不同的区。例如，可以通过非保守性或优选保守性氨基酸取代，取代或修饰所述
盒内的 CDR2 和 CDR1 高变区。更具体地讲，选自 SEQ ID NOs：30-113
或其片段的连续氨基酸盒的 CDR2 和 CDR1 区，可分别用 SEQ ID NOs：
115 和 114 取代。更具体地讲，选自 SEQ ID NOs：30-32, 35, 37-
39, 41, 43, 45, 46, 48, 51, 54, 57, 59-68, 70, 71, 76-85, 87,
89-92, 94, 97, 99, 103, 106, 112 和 113 或其片段的连续氨基酸
盒的 CDR2 和 CDR1 区，可分别用 SEQ DD NOs：115 和 114 取代。

在本发明的一种优选实施方案中，所述肽或多肽包括一个重链和
一个轻链，并且每一条链包括第一、第二和第三高变区，它们分别是
CDR3、CDR2 和 CDR1 区。所述结合选择性和特异性特别是由一条链的
CDR3 区决定的，可能是由轻链的 CDR3 区决定的，并且优选是由重链
的 CDR3 区决定的，并且其次是由轻链的 CDR2 和 CDR1 区决定的，并且
优选由重链的 CDR2 和 CDR1 区决定。所述结合选择性和特异性还受到
位于所述第一、第二和/或第三高变区侧翼的上游或下游区的辅助影
响。

在一种优选实施方案中，所述肽或多肽的 CDR3 区具有选自 SEQ ID
NOs：8-24 的氨基酸序列。

在一种更优选的实施方案中，所述重链的 CDR3 区具有选自 SEQ ID
NOs：8-24 的氨基酸序列，CDR2 具有与 SEQ ID NO：115 相同的氨基
酸序列，而 CDR1 区具有与 SEQ ID NO：114 相同的氨基酸序列。

在一种最优选的实施方案中，CDR3 区具有与 SEQ ID NOs：8 相
同的氨基酸序列。

除了重链和轻链之外，Fv 包括一个具有 0-20 个氨基酸残基的柔性
间隔片段。该间隔片段可以是分支链或直链。该间隔片段的两种可能
的序列与 SEQ ID NOs：123 和 124 相同。

本发明的一种优选实施方案是具有与 SEQ ID NO：8 相同的 CDR3
序列和与 SEQ ID NO：25 相同的完整 scFv 序列的 scFv。

本发明的另一种优选实施方案是具有与 SEQ ID NO：20 相同的 CDR3
序列和与 SEQ ID NO：203 相同的完整 scFv 序列的 scFv。

本发明的一种最优选的实施方案中，CDR3、CDR2 和 CDR1 区分
别具有氨基酸序列 SEQ ID NOs：8, 115 和 114。

在本发明的一种实施方案中，Fv 肽包括可变重链的 CDR1 和 CDR2
区，它本身所包括的一个盒具有选自 SEQ ID NOs：30-113 的氨基酸
序列；CDR3 区,优选可变重链的 CDR3 区,它具有选自 SEQ ID NO: 8-24 的氨基酸序列；位于 CDR3 区侧翼的上游区,它具有 SEQ ID NO: 117 的氨基酸序列；位于 CDR3 区侧翼的下游区,它具有 SEQ ID NO: 116 的氨基酸序列；具有 SEQ ID NO: 123 或 124 的 0-20 个氨基酸残基的间隔片段；序列为 SEQ ID NO: 7 的可变轻链区。

类似地,在另一种实施方案中,位于 CDR2 区侧翼的上游区具有 SEQ ID NO: 119 的氨基酸序列,位于 CDR2 区侧翼的下游区具有 SEQ ID NO: 118 的氨基酸序列；位于 CDR1 区侧翼的上游区具有 SEQ ID NO: 121 的氨基酸序列；而位于 CDR1 区侧翼的下游区具有 SEQ ID NO: 120 的氨基酸序列。

本发明的一种优选实施方案提供了一种肽或多肽,其中,所述第二和第三高变区分别是 CDR2 和 CDR1 高变区,并且,其中的 CDR3 氨基酸序列是 SEQ ID NO: 8, 其中的 CDR2 氨基酸序列是 SEQ ID NO: 115, 其中的 CDR1 氨基酸序列是 SEQ ID NO: 114, 其中的位于 CDR3 区侧翼的上游区具有 SEQ ID NO: 117 的氨基酸序列,其中的位于 CDR3 区侧翼的下游区具有 SEQ ID NO: 116 的氨基酸序列,其中的位于 CDR2 区侧翼的上游区具有 SEQ ID NO: 119 的氨基酸序列,其中的位于 CDR2 区侧翼的下游区具有 SEQ ID NO: 118 的氨基酸序列,其中的位于 CDR1 区侧翼的上游区具有 SEQ ID NO: 121 的氨基酸序列,而其中的位于 CDR1 区侧翼的下游区具有 SEQ ID NO: 120 的氨基酸序列。

本发明的另一种优选实施方案提供了一种 Fv 分子,它包括具有第一、第二和第三高变区的第一条链,和具有第一、第二和第三高变区的第二条链,其中,第一条链的高变区之一具有选自 SEQ ID NO: 8-24 的氨基酸序列,并且,其中第二条链的高变区之一具有选自 SEQ ID NO: 1-6 和 125-202 的氨基酸序列,并且,其中的第一、第二和第三高变区分别是 CDR3, CDR2 和 CDR1 区,并且,其中的 Fv 是 scFv 或 dsFv,并且选择性地具有一个或多个标记。

本发明的另一种实施方案提供了一种肽或多肽, (i) 其中,所述第一条链和第二条链各自包括选自 SEQ ID NOs: 8-24 的第一高变区; 或 (ii) 其中,所述第一条链和第二条链的第一高变区选自 SEQ ID NOs: 8-24 并与之相同; 或 (iii) 其中,所述第一条链的第一高变区选自 SEQ ID NOs: 8-24, 而所述第二条链的第一高变区选自 SEQ ID NOs: 1-6。
和 125-202; 或 (iv) 其中, 所述第一条链的第一高变区选自 SEQ ID NOS: 1-6 和 125-202, 而所述第二条链的第一高变区选自 SEQ ID NOS: 8-24。

另一种实施方案提供了本发明的肽或多肽，其中，所述第一条链的第二和第三高变区分别是 SEQ ID NOS: 114 和 115。

对于本文所披露和详细说明的所有 < 25 个氨基酸残基的氨基酸序列（例如，CDR 区，CDR 侧翼区）来说，可以被理解为和视为本发明的另一种实施方案的是，所述氨基酸序列在其范围内包括一个或两个氨基酸取代，并且所述取代优选是保守性氨基酸取代。对于本文所披露和详细说明的所有 > 25 个氨基酸残基的氨基酸序列来说，可以被理解为和视为本发明的另一种实施方案的是，所述氨基酸序列在其范围内包括与原始序列具有 > 90% 序列相似性的氨基酸序列（Altschul 等, Nucleic Acids Res., 25, 3389-3402 (1997)）。相似或同源氨基酸被定义为具有相似特性的不相同，例如，酸性、碱性、芳族、大小、带正电荷或带负电荷、极性、非极性的氨基酸。

百分氨基酸相似性或同源性或序列相似性是通过比较两种不同肽或多肽的氨基酸序列确定的。对两种序列进行比对，通常通过使用为此而设计的多种计算机程序中的一种进行比对，并且，比较每一个位置上的氨基酸残基。然后确定氨基酸相同性或同源性。然后应用一种算法确定百分氨基酸相似性。通常，优选比较氨基酸序列，因为这大大提高了检测肽、多肽或蛋白分子之间的精密关系的灵敏度。蛋白比较，要考虑保守性氨基酸取代的存在，而如果不相同的氨基酸具有类似的物理和/或化学特性的话，错配可能导致正的得分（Altschul 等, Nucleic Acids Res., 25, 3389-3402 (1997)）。

在本发明的一种实施方案中，轻链和重链各自的三个高变区可以在两条链之间相互交换，并且在所述链内和/或链之间的三个高变位置之间相互交换。

本领域普通技术人员可以理解的是，验证本发明肽或多肽的特异性和/或选择性结合必须使用合适的阴性对照。合适的阴性对照可以是肽或多肽，其氨基酸序列几乎与本发明的肽或多肽相同，唯一的差别是高变 CDR3 区。另一种合适的阴性对照可以是与本发明的肽或多肽具有相同的大小和/或总体三维结构，但是具有完全不相关的氨基酸序列。
的肽或多肽。另一种合适的阴性对照可以是与本发明的肽或多肽相比具有完全不同的物理和化学特征的肽或多肽。用于开发本发明的阴性对照被命名为 N14，它具有与 SEQ ID NO : 28 相同的 CDR3 序列，和 C181，它具有与 SEQ ID NO : 29 相同的 CDR3 序列。不过，其他的阴性对照可能同样适用。

另一种实施方案提供了编码本发明的 Fv 肽或多肽的核酸分子，优选 DNA 分子。

在本发明的一种优选实施方案中，为了优化 Fv 的选择性结合，可以将赋予 Fv 的主要结合选择性和/或特异性的 CDR3 序列转移到任何其他的重链种系中。更具体地讲，可将其转移到 84 种可能的重链种系中的一个上。这 84 个种系 (SEQ ID NOs : 30-113) 包括 (a) 其中所称的噬菌体克隆是原始分离的种系，(b) 在所述噬菌体展示文库中提供的 48 种其他的种系，和 (c) 在本发明中申明的 35 种其他种系 (Tomlinson 等，J. Mol. Biol. 227 (3) ：776-798 (1992))。CDR3 区的局部线性或三维环境与 CDR3 区本身一致，可能在引导或促进正确的 CDR3 结合方面发挥作用。例如，本发明还包括具有 SEQ ID NOs : 8-24，125 所述的任何 CDR3 序列的肽，并且源于 49 种种系序列的任意一种 (SEQ ID NOs : 3032, 35, 37-39, 41, 43, 45, 46, 48, 51, 54, 57, 59-68, 70, 71, 76-85, 87, 89-92, 94, 97, 99, 103, 106, 112 和 113)。

种系 DP-32 是本发明若干种克隆的盒。该种系的 C-末端业已用一种共有序列取代，以便有利于噬菌体展示文库制备。SEQ ID NO: 61 的羧基末端氨基酸业已被 SEQ ID NO: 122 的 7 个氨基酸序列所取代。

本发明的 Fvs 的 CDR3 区可以包括能特异性结合 AML 细胞的核心序列 **/61/ /Lys Phe Pro。在表 2 中示出了所述 CDR3 区的八种例子。尽管所述基序在每一种情况下与 CDR3 区的三个 N-末端氨基酸残基吻合，它还可位于 CDR3 区的其他部位。另外，所述基序是被用于建造或构建更大的结合或导向或识别分子的一部分的锚定或结合区或被单独用作导向载体的结合基序。

在本发明的另一种实施方案中，提供了一种结合基序，它包括氨基酸序列 R1-X Phe Pro-R2，其中，R1 和 R2 各自包括 0-15，优选 1-9 个氨基酸残基，并且，其中的 X 是 Arg，Gly 或 Lys。最优选的是
CDR3 包括氨基酸序列 R₁-X Phe Pro-R₂。其中，R₁和 R₂ 各自包括 0-15 个氨基酸残基，并且，其中的 X 是 Arg，Gly 或 Lys。

在本发明的肽或多肽的另一种优选实施方案中，可以在所述肽的 C-末端或 N-末端添加 1-1000 个氨基酸，而所述肽保持了它的生物学活性。在本发明的一种优选实施方案中，可以在所述肽或多肽的 C-末端或 N-末端添加 150-500 个氨基酸，而所述肽保留了它的生物学活性。在本发明的一种优选实施方案中，可以在所述肽或多肽的 C-末端或 N-末端添加 800-1000 个氨基酸，而所述肽或多肽保留了它的生物学活性。

延长所述核心氨基酸序列的一种例子是通过用一种前导化合物作为 Ig 的核心建造完整大小的免疫球蛋白 Ig，例如，所述完整大小的 Ig 可能属于免疫球蛋白类型，它可以通过补体或细胞裂解活性的激活诱导内源细胞裂解活性（例如，IgG1，IgG2 或 IgG3）。所述完整大小的 Ig 可能属于具有强力结合抗体（例如 IgG4）的免疫球蛋白类型。在结合时，所述完整大小的 Ig 能够以多种方式中的一种或多种起作用，例如，通过作为身体防御机制的标志启动免疫反应，传导细胞内细胞信号，或导致对靶细胞的破坏。

本发明的一种优选实施方案提供了作为重组多肽表达的，并且是在真核细胞系统中生产的 Ig 分子。在本发明的一种优选实施方案中，所述 Ig 多肽是 IgG 多肽，并且它是在哺乳动物细胞系统中生产的。在一种更优选的实施方案中，所述哺乳动物细胞系统包括 CMV 启动子。

在本发明的一种优选实施方案中，所述 IgG 分子包括位于轻链和重链上的 CDR3，CDR2 和 CDR1 高变区。在本发明的一种更优选的实施方案中，所述 Fv 分子包括分别具有 SEQ ID NOs：8，115 和 114 的 CDR3，CDR2 和 CDR1 区。所述 CDR3，CDR2 和 CDR1 区可以是所述重链的和轻链的。

本发明的另一种优选实施方案提供了具有与 SEQ ID NO：27 相同序列的轻链和与 SEQ ID NO：26 相同的序列的重链，或与它们具有至少 90%的序列相似性的重链和轻链的 IgG 分子。在本发明的一种最优选的实施方案中，IgG 的两个重链是相同的，而 IgG 的两条轻链是相同的。

在另一种实施方案中，本发明的肽被构建成能折叠成多价 Fv 形
式。

本发明提供了包括 scFv 分子的 Y1 或 Y17 胺或多胺。在本文中，scFv 被定义为由人抗体的重链可变区和人抗体的轻链可变区组成的分子，所述抗体可以相同或不同，并且，其中重链的可变区与轻链的可变区结合、连接、融合或共价附着或缔合。

Y1 和 Y17 scFv 构建体可以是 scFv 分子的多聚体（例如，二聚体、三聚体和四聚体等），它整合了 Y1 或 Y17 抗体的一个或多个高变结构域。所有 scFv 衍生的构建体和片段都保留了增强的结合特征，以便相对其他细胞而言，更有利于选择性地和/或特异性地结合靶细胞。所述结合选择性和/或特异性主要是由高变区决定的。

轻链和重链可变区内的高变环被定义为互补决定区（CDR）。在重链和轻链内各自具有 CDR1、CDR2 和 CDR3 区。其中变化程度最高的是重链的 CDR3 区。CDR3 区被认为是 Ig 分子的最暴露的区，并且正如本文所披露的，它是主要决定所观察到的选择性和/或特异性结合特征的位点。

可以构建本发明的 Y1 和 Y17 胺，以便折叠成多价 Fv 形式。构建 Y1 和 Y17 多聚体形式，以便改善结合亲和力和特异性，并且延长在血液中的半衰期。

Kipriyanov SM 等，Hum Antibodies Hybridomas，1995；6（3）：93-101。在另一种方法中，为了制备二聚体、三聚体和四聚体，在感兴趣的蛋白内导入一个游离半胱氨酸，用具有不同数量（2-4）马来酰
亚胺基团的基于肽的交联接头交换感兴趣的蛋白和所述游离半胱氨酸。Cochran JR 等，Immunity， 2000 Mar；12 (3)：241-50。

在该系统中，设计能展示 scFvs 的噬菌体文库（如上文所述），它能折叠成一种抗体的 Fv 区的单价形式。另外，同样如上文所述，所述构建体适合细菌表达。遗传工程方法生产的 scFvs，包括通过连续编码的 15 个氨基酸柔性肽间隔片段连接的重链和轻链可变区。优选的间隔片段为 (Gly:Ser)。该间隔片段的长度及其氨基酸组成提供了一种不大的间隔片段，它使得 V\(_{H}\) 和 V\(_{L}\) 区能折叠成有功能的 Fv 结构域，它提供了对其靶的有效结合能力。

本发明涉及通过本领域任何已知方法制备的 Y1 和 Y17 多聚体。生产多聚体，特别是二聚体的一种优选方法利用半胱氨酸残基在两个单体之间形成二硫键。在本实施例中，二聚体是通过在 scFvs 的羧基末端添加半胱氨酸形成的（被称为 Y1-cys scFv 或 Y1 二聚体），以便有利于二聚体的形成。在制备所述 DNA 构建体（参见实施例 2D 和 6D）并用于转染之后，Y1 二聚体在生产体系中表达，并且在体外重新折叠。通过 SDS-PAGE、HPLC 和 FACS 分析所述蛋白。进行所述抗体的两升的批量发酵。在大肠杆菌菌株 BL21 中表达 Y1-cys 之后，在精氨酸中重新折叠，在重新折叠之后，通过 Q-琼脂糖和凝胶过滤（sephadex 75）进行透析和纯化。通过 SDS-PAGE（非还原性）和凝胶过滤检测到了两个峰。分别收集所述两个峰，并且通过 FACS 分析。通过 FACS 检查与 Jurkat 细胞结合的单体和二聚体。对于相同水平的染色来说，二聚体的结合只需要单体抗体数量的 1/100，这表明所述二聚体具有更高的抗体亲和力。确定用于二聚体重新折叠的条件，并且在透析、层析和凝胶过滤步骤之后，生产出含有 > 90% 的二聚体 (mg 量) 的材料。在氧化条件下，通过凝胶过滤和 SDS-PAGE 分析表征了纯化的二聚体。通过放射性受体分析，ELISA 和 FACS 分析证实了二聚体的结合能力。

CONY1 scF 抗体片段源于 Y1 scFv。除去编码 Y1 scFv 的 myc 标记的 DNA 序列，并且用编码赖氨酸-丙氨酸-赖氨酸(KAK)的合成寡核苷酸 DNA 序列取代。

为了比较 scFv 单体（又称为 CONY1）与 Y1 二聚体的结合，在体外用 KG-1 细胞进行结合竞争实验。另外，所述实验还比较了完整 Y1 IgG 与 scFv Y1 单体的结合。为了进行本研究，用生物素标记 Y1 IgG。本
研究发现，Y1 IgG 能与 IgG Y1-生物素竞争。不相关的人 IgG 不能与
标记过的 Y1 IgG 竞争。Y1 scFvs (5 μg 和 10 μg) 能部分与 Y1 IgG-
生物素 (50 ng) 竞争。还证实了 1 ng 的 IgGY1-FITC 与 KG-1 细胞 (无血
清) 的结合程度与 1 μg scFv-FITC 的结合程度相同，不过，在有血清
的条件下，大部分 Y1 IgG 结合被 “封闭”。本研究还证实，Y1 二聚
体的结合至少比 scFv 单体的结合能力高 20 倍，这一结果是通过放射
性受体分析，ELISA 或 FACS 分析证实的。
在另一种实施方案中，除了半胱氨酸之外，在所述羧基末端添加
赖氨酸-丙氨酸-赖氨酸 (被称为 Y1-cys-kak scFv)。该 scFv 构建体
的氨基酸序列在下面再现。

1 MEVQLVESGGGVVRPGGSLRLSCAASGFTFDYAGMWWVRQ
APGGKLEWVS GINWGGSSTG 60
61 YADSVKGRFT ISRDNANSLYLQMNLSRAE DTAVV YCARM
RAPVIWGQT LVTVRGGG 120
121 SSQGSGSGGG SSELTQDPAV SVALGQTVRI TCGQGDSLRSY
YASWYQOKPG QAPVLVYIKG 180
241
181 NRPSGIPDR FSGSSSGNTA SLTITGAQAE DEADYYCNSR
DSSGHNVVFG GGTKLTVLGG 240
241 GGCKAK

Y1-cys-kak 是在细菌中在 λ-pL 载体中生产的。在 λ-pL 载体中
的表达是通过将温度提高到 42°C 诱导的。由诱导过的培养物获得包含
体，并且通过水溶液半纯化除去不希望的可溶性蛋白。通过 DTT 还原，
将所述包含体溶解在脲中，并且在体外，在基于精氨酸/0X-谷胱甘肽
的溶液中重新折叠。在重新折叠之后，对蛋白进行透析，并且通过切
向流过滤，浓缩成含有尿素/磷酸缓冲液的缓冲液。通过在 SP-柱中通
过离子层析纯化和浓缩所述蛋白。

为了获得 CONY1 scFv 和 Y1-cys-kak scFv 在大肠杆菌中更高
水平的表达，我们在 scFv 构建体的 N-末端的 2 号位置导入了编码丙氨
酸残基的氨基酸。通过这种新修饰过的构建体，我们获得了 4 倍水平
的表达。

进行 ELISA 分析，以便证实单体 (CONY1 scFv-也被称为 Y1-kak)
和二聚体 Y1-kak (半胱氨酸二聚体) 对源于血小板的抗原
GPIb (glycocalcicin) 的结合的差异。将多克隆抗单链抗体和 / 或新型
抗 Vc (源于兔) 和抗兔 HRP 用于检测与 GPIb 的结合。二聚体比单体的活性高大约 20-100 倍。例如，为了达到 0.8 的 OD 单位，将 12.8mg/ml 的单体用于与仅 0.1mg/ml 的二聚体进行比较。参见图 12。

通过 SDS-page 电泳、凝胶过滤层析、ELISA、放射性受体结合和 FACS 表征所述二聚体。由于抗体亲抗原性作用，二聚体的表观亲和力比单体高。通过 ELISA 证实了对 glycocalicin 的这种作用，通过 FACS 证实了对 KG-1 细胞的作用，并且通过在放射性受体分析中的竞争证实了这种作用。

在重新折叠和通过 Superdex 75 凝胶过滤柱纯化之后进行 HPLC，以便对所述二聚体的特征进行分析。在图 10 中，Y1-cys-kak (二聚体) 是位于左侧的第一个峰（大约 10.8 分钟），而随后的峰是单体（大约 12 分钟）。根据在相同柱上处理的蛋白大小标记，所述二聚体大约为 52kDa，而所述单体为 26kDa。通过改变重新折叠的条件（重新折叠缓冲液中氧化剂的浓度和蛋白的浓度），可以改变二聚体和单体之间的平衡。通过在 superdex 75 柱上层析，分离所述二聚体和单体。

在图 11 中，示出了具有二聚体和单体混合群体的凝胶。在还原形式下，由于两个单体之间的还原观察到了单体，并且在非还原形式下，观察到了两个群体（正如在凝胶过滤实验中所看到的），单体级份大约为 30kDa，二聚体级份大约为 60kDa。

另外，对 KG-1 细胞进行的 FACS 结合分析证实，在进行二步骤或三步骤结合分析时，二聚体比单体更敏感。直接通过 FITC 标记的二聚体表现出略高于单体（使用少 10 倍的材料）。在将二聚体用作竞争剂时，对 KG-1 细胞进行的放射性受体分析表明，二聚体的效率比单体高 30 倍。

改变间隔片段的长度是生产二聚体、三聚体和四聚体（在本领域中通常分别被称为双抗体、三抗体和四抗体）的另一种优选方法。二聚体是在连接 scFv 的两个可变链的间隔片段总体上缩短的条件下形成的。这种缩短了的间隔片段，抑制了来自相同分子的两个可变链折叠成有功能的 Fv 结构域。相反，迫使所述结构域与另一个分子的互补结构域配对，以便形成两个结合结构域。在一种优选方法中，将仅有 5 个氨基酸 (Gly,Ser) 的间隔片段用于双抗体构建。这种二聚体可以由两个相同的 scFvs 形成，或者由不同的 scFvs 的群体组成，并且保留了
亲代 scFv（s）的选择性和/或特异性增强了的活性，和/或具有提高了的结合强度或亲和力。

在一种类似形式中，三抗体是在连接 scFv 的两个可变链的间隔片段总体上缩短到少于 5 个氨基酸残基形成的，避免了来自相同分子的两个可变链折叠成有功能的 Fv 结构域。相反，三个独立的 scFv 组合形成三聚体。在一种优选方法中，三抗体是通过完全除去该柔性间隔片段获得的。所述三抗体可以由三个相同的 scFvs 构成，或由两个或三个不同的 scFvs 群构成，并且保留了亲代 scFv（s）的选择性和/或特异性增强了的活性，和/或具有提高了的结合强度或亲和力。

四抗体是在连接 scFv 的两个可变链的间隔片段总体上缩短到少于 5 个氨基酸残基的条件下以类似方式形成的，避免了来自相同分子的两个可变链折叠成有功能的 Fv 结构域。相反，四个独立的 Fv 分子组合形成四聚体。四抗体可以由四个相同的 scFvs 组成，或者由来自不同的 scFvs 群的 1-4 个独立的单位形成，并且应当保留亲代 scFv（s）的选择性和/或特异性增强了的结合活性，和/或具有提高了的结合强度或亲和力。

三抗体或四抗体是否是在间隔片段总体上少于 5 个氨基酸残基长度的条件下形成，取决于混合物中特定 scFv（s）的氨基酸序列和反应条件。

在一种优选方法中，四聚体是通过生物素/链亲和素组合形成的。制备了一种可以用生物素酶促标记的新型发酵构建体（本文称之为 Y1-生物标记或 Y1-B）。将作为 BirA 酶的底物的序列添加在 Y1-C-末端。所述 BirA 将生物素标记在该序列内的赖氨酸残基上。在大肠杆菌内克隆并表达 Y1-生物标记。分离所述包含体材料，并且重新折叠。所述折叠蛋白的纯度 > 95%，并且从 1 升培养物中获得了 > 100 mg（小规模，非优化条件）。发现这种形式的分子量类似于 scFv 的根据 HPLC、SDS-PAGE 和质谱分析的分子量。发现 Y1-生物标记是用于 FACS 分析的最稳定的试剂。不过，当在有血清的条件下检查与 KC-1 细胞结合的 Y1-生物标记时，为了获得与没有血清条件下的相当的结合需要更高的浓度（高出 10 倍）。不过，该构建体具有特异性生物素化的优点，其中，所述分子的结合位点保持完整。另外，每一个分子仅通过一种生物素标记-每一个分子在其羧基末端接受一个生物素。
对一个生物素/分子在理想位点上的有限标记，可以生产具有链亲
和素的四聚体。所述四聚体是通过与链亲素-PE 一起温育 Y1-B 形成的。

FACS 分析表明，在没有血清的条件下，通过 Y1-生物标记和链亲
和素-PE 制备的四聚体比 Y1 scFv 单体灵敏 100-1000 倍。具有链亲和
素-PE 的 Y1-生物标记四聚体表现出对 Y1-反应性细胞系 (KG-1) 之一的
特异性结合。该反应与本底结合的差别是很大的，并且具有检测少量
受体的高的灵敏度。用 Y1-SAY 四聚体对正常全血进行 FACS 评估发现，
不存在高反应性群体。单核细胞和粒细胞在较小程度上是阳性的。在
存在阳性结果的细胞系内，如 KG-1 细胞，所述四聚体的反应性至少高
出 100 倍。

然后，将所述四聚体与细胞样品一起温育。低剂量的 Y1 四聚体 (5
ng) 能很好地结合所述细胞系 (KG-1)，与以前用其他 Y1 抗体形式观察
到的结果相比，产生了高出 10-20 倍的反应。在用各种剂量的四聚体
检查阴性细胞系时，观察到了微弱的反应。

本发明的一种实施方案提供了用于鉴定能结合第一种和第二种细
胞上的未知免疫交叉反应结合位点的导向分子的方法，该方法包括 (a)
在第一种靶细胞上进行的一个或多个生物筛选步骤，所述靶细胞处于
第二种状态而不是第一种状态，基本上暴露或展示包括一个未知配体
的结合位点，以便生产第一个识别分子群；(b) 始于步骤 (a) 所得到
的识别分子库的、随后的生物筛选和/或选择步骤，所述步骤是在第二
种细胞上进行的，第二种细胞展示了包括一个与所述第一种细胞的未
知配体具有免疫交叉反应性的未知配体的结合位点，以便生产第二个
识别分子群；(c) 扩增并纯化步骤 (b) 的第二个识别分子群；和 (d)
由步骤 (c) 的纯化的识别分子的识别位点构建包括导向分子的肽或多
肽，所述导向分子对所述第二种细胞上的未知配体具有选择性和/或特
异性。

一种优选实施方案提供的一种细胞是正常细胞，所述第一种状
态是非激活的状态，而所述第二种状态是激活的、兴奋的、修饰的、
改变的或失调的状态。在一种更优选的实施方案中，所述第二种细胞
是病变细胞。在一种更优选的实施方案中，所述病变细胞是癌细胞。
癌细胞可以是，但不局限于癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓
瘤、胚细胞瘤、精原细胞瘤、和黑素瘤。在一种更优选的实施方案中，所述癌细胞是白血病细胞。在一种最优选的实施方案中，所述白血病细胞是 AML 细胞。

本发明的一种实施方案提供了将任选与一种药用试剂缔合或附着、偶联、组合、连接或融合的肽或多肽用于生产药物的用途。在一种优选实施方案中，所述药物具有抗病变细胞的活性。在一种更优选的实施方案中，所述活性是抗癌细胞的活性。所述癌细胞是，但不限于癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤、和黑素瘤。在一种更优选的实施方案中，所述癌细胞是白血病细胞。在一种最优选的实施方案中，所述白血病细胞是 AML 细胞。

本发明的一种实施方案提供了一种药物组合物，它包括不同单体 scFvs 的混合物和/或由不同 scFvs 构建的双抗体、三抗体或四抗体的混合物。

另一种实施方案提供了将与一种药用试剂缔合或附着、偶联、组合、连接或融合的本发明的肽或多肽用于生产药物的用途。所述药物可以具有治疗病变细胞的活性，更优选特异性治疗癌细胞。所述癌细胞可以是，但不限于癌、肉瘤、白血病、腺瘤、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤、和黑素瘤。在一种更优选的实施方案中，所述药物具有抗白血病细胞的活性。在一种最优选的实施方案中，所述药物具有治疗 AML 细胞的活性。所述药物抗所述细胞的活性，可以导致癌性生长的延缓，完全抑制所有生长，或杀伤癌细胞。

在本发明的一种实施方案中，所述药物或药物组合物的活性是抑制细胞生长。

可以将本发明的肽或多肽用于制备组合物，优选制备药物组合物，以便用于抑制癌细胞，优选白血病细胞，最优选 AML 细胞的生长。在本发明的一种优选实施方案中，可将本发明的肽或多肽用于制备用来抑制癌细胞生长的组合物，所述组合物包括至少一种对所述癌细胞具有药物配体选择性和/或特异性的化合物。

本发明的肽或多肽可以单独给患者施用，或者作为一种药物或药物组合物与药物有效量的药用试剂、药用有效的载体，以及选择性地与佐剂缔合、偶联、连接、或融合使用。所述药物组合物可以包括蛋白、稀释剂、防腐剂和抗氧化剂（参见 Osol 等 (eds.), Remington's

另一种实施方案中，所述药用试剂是通过肽键与本发明的肽或多肽连接的抗体或其片段。

在一种优选实施方案中，所述毒素是，例如 gelonin，假单胞菌属外毒素(PE)，PE40，PE38，白喉毒素，蓖麻毒蛋白，或其修饰物或衍生物。

在一种优选实施方案中，所使用的放射性同位素包括可用于定位和/或治疗的γ射线发射体，正电子发射体和X-光发射体，以及可用于治疗的β射线发射体和α射线发射体。

在本发明的一种具体实施方案中，所述治疗同位素选自 111 钋，113 钋，99m 锝，101 锝，99 锝，171 钼，127 钼，125 钼，165 镧，167 镧，168 镧，125 镭，131 镭，132 镭，81n 氢，13 氪，90 锫，213 锫，11 溴，18 氟，95 钛，97 钛，103 钛，145 钛，107 铀，203 铀，67 镓和68 镓等。

在本发明的另一种实施方案中，所述抗癌剂选自阿霉素，阿得里亚霉素，顺铂，紫杉醇，加利福霉素，长春新碱，阿糖胞苷(Ara-C)，环磷酰胺，强的松，柔红霉素，伊达比星，氟达拉滨，苯丁酸氮芥，干扰素α，羟基脲，替莫唑胺，沙利度胺和博来霉素，及其衍生物。

本发明的一种实施方案提供了抑制癌细胞生长的方法，该方法包括让所述癌细胞与一定量的本发明的肽或多肽接触。在一种优选实施方案中，所述癌细胞可以是，但不限于癌、肉瘤、白血病、腺癌、淋巴瘤、骨髓瘤、胚胎细胞瘤、精原细胞瘤和黑素瘤。在一种更优选的实施方案中，所述癌细胞是白血病细胞。在一种最优选的实施方案中，所述白血病细胞是AML细胞。本发明的一种实施方案可以对所述患者进行体内治疗和离体的治疗。本发明的一种更优选的实施方案可以对自体骨髓进行来自体内的净化，以便除去异常干细胞。

在本发明的一种更优选的实施方案中，白血病患者的血液可以通过一种系统进行离体循环，该系统包括一种抗癌剂偶联的本发明的肽或多肽。在除去结合的细胞和未结合的抗癌剂之后，可以将所述血细胞重新导入患者体内。另外，白血病患者的血液可以通过一种系统进行离体循环，该系统包括连接在一种固相上的本发明的肽或多肽。可以将通过该系统的细胞并且没有与连接在固相上的本发明的肽
或多肽结合的细胞重新导人患者体内。

在本发明的另一种优选实施方案中，将所述肽或多肽用于来自体内
的自体骨髓悬浮液中，以便在移植之前除去异常干细胞。异常干细
胞的净化可以通过让所述悬浮液通过一种固体支持物（例如，但不局
限于磁珠和亲和柱）进行，在所述固体支持物上结合了本发明的肽或
多肽（即导向分子）、构建体、片段、构建体的片段或片段的构建体。
然后可以将由此净化过的、来自体内的骨髓用于自身骨髓移植。该优
选实施方案基于在本发明中对噬菌粒克隆（Y1）的鉴定，该克隆能结
合从白血病患者骨髓中释放的干细胞，但不能结合从健康供体骨髓中
释放的干细胞。类似地，Y1噬菌粒克隆能结合通过 FACS 分析确定为异
常的胚细胞，并且能结合白血病细胞。

母细胞在本文中被定义为原代细胞，它是哺乳动物体内所有循环
细胞的前体。由于其抗细胞特征，胚细胞不以显著的数量存在于成年
生物的循环系统中。在没有外源刺激的情况下，循环胚细胞的存在，
可能表明有恶性肿瘤。例如，造血系统的恶性肿瘤，并且，其随后的
消失，可能表明恶性肿瘤疾病的减轻。

在本发明的另一种实施方案中，所述药物组合物被用于预防目
的。

在一种优选实施方案中，将本发明的两种或两种以上肽或多肽组
合成一种混合物。

在本文中，混合物被定义为包含在一种制剂内的不同类型的两种
或两种以上的分子或颗粒。所述不同类型的分子形成共价键或非共价
化学键。

在本发明的一种实施方案中，本发明的肽或多肽与一种药用试剂
连接，融合或偶联。

在本发明的另一种实施方案中，所述肽和药用试剂之间的连接是
直接连接。在本文中，两个或两个分子之间的直接连接是通过所述分
子的元件或元件组之间的化学键获得的。例如，所述化学键可以是离
子键、共价键、疏水键、亲水键、静电键或氢键。所述键可选自，但
不局限于胺、羧基、酰胺、羟基、肽和二硫键。所述直接连接可优选
蛋白酶抗性键。

在另一种实施方案中，所述肽和药用试剂之间的连接受一种接头
化合物的影响。在本说明书中，接头化合物被定义为两个或两个以上部分连接在一起的化合物。所述接头可以是直链的或支链的。分支接头化合物可以由双分支、三分支或四分支或更多分支的化合物组成。所述接头化合物可以是，但不限于二氢酸，马来酰亚胺酰肼，PDPH，羧酸酰肼和小肽。其他接头化合物的例子包括：二氢酸，如琥珀酸，戊二酸和己二酸；马来酰亚胺酰肼，如 N- [ε-马来酰亚胺乙酸]酰肼，4-[N-马来酰亚胺甲基]环己烷-1-羧基酰肼和 N- [κ-马来酰亚胺十一烷酸]酰肼；PDPH 接头，如与巯基反应性蛋白偶联的 (3- [2-吡啶基二硫]丙酰肼)。选自 2-5 个碳原子的羧酸酰肼；和使用诸如抗癌药物阿霉素的游离糖和 scFv 之间的小的肽接头直接连接。小肽包括，但不限于 AU1， AU5， BTag， c-myc， FLAG，Glu-Glu， HA， His6， HSV， HTTPHH， IRS， KT3，蛋白 C， S·Tag®，T7， V5， VSV·G，和 KAK Tag。

可以用任何已知方法施用本发明的肽和多肽，如静脉内、肌内、皮下、局部、气管内、鞘内、腹膜内、淋巴内、鼻内、舌下、口腔、直肠、阴道、呼吸道、颊、真皮内、经皮或胸膜内。

对于静脉内施用来说，所述制备优选制备成使给患者施用的剂量是从大约 0.1 mg - 大约 1000mg 所需组合物的有效用量。所述施用剂量更优选在大约 1mg - 大约 500mg 所需化合物的范围内。本发明的组合物在很大的剂量范围内是有效的，并且取决于多种因素，如要治疗的具体疾病，基于所述肽或多肽的药物组合物在患者体内的半衰期，所述药用试剂和药物组合物的物理和化学特征，所述药物组合物的施用方式，要治疗或诊断的患者的具体情况，以及被治疗医生认为是重要的其他因素。

用于口服的药物组合物可以是片剂、液体、乳液、悬浮液、糖浆、丸剂，囊片或胶囊形式。所述药物组合物还可以用器械施用。

用于局部施用的药物组合物可以是霜剂、软膏、洗液、贴剂、溶液、悬浮液或凝胶形式的。

另外，所述药物组合物可以制备成固体、液体，或持续释放制剂。含有按照本发明生产的抗体片段的组合物可以包括常见的可以药用的稀释剂或载体，片剂、丸剂、囊片和胶囊可以包括常见赋形剂，如乳糖、淀粉和硬脂酸镁。栓剂可以包括诸如蜡和甘油的赋形剂。可
注射的溶液包括无菌无热原的介质，如盐水，并且可以包括缓冲剂、稳定剂或防腐剂。还可以使用常见的肠包衣。

本发明还包括通过本领域已知的合成方法生产抗体片段的方法。

本发明的一种实施方案包括一种药物组合物，该组合物含有至少一种与显影剂附着、偶联、组合、连接或融合的本发明的肽或多肽，用于肿瘤的诊断性定位和/或显像。

本发明另一种实施方案提供了用于在治疗之前、期间或之后对治疗效果进行体外分析的试剂盒，它包括含有与指示标记分子连接的本发明的肽的显像制剂。本发明还提供了将所述显像制剂用于癌症，更具体地讲用于肿瘤的诊断定位和/或显像的方法，包括以下步骤：

(a) 让所述细胞与所述组合物接触，

(b) 测定与所述细胞结合的放射活性，和

(c) 显现所述肿瘤。

在本发明的一种优选实施方案中，所述试剂盒的显像剂是一种荧光染料，并且所述试剂盒提供了对癌症，更具体地讲与血液相关的癌症，如白血病、淋巴瘤和骨髓瘤的治疗效果的分析。利用 FACS 分析确定在疾病的不同阶段的由所述显像剂染色的细胞的百分比，和染色强度，例如，在诊断时、治疗期间、在恢复期间和复发期间。

本发明还提供了包括有效量的显影剂、本发明的肽和可以药用的载体的组合物。

在一种优选实施方案中，所述指示标记分子是本领域已知的任何已知标记，它包括，但不限于放射性同位素、X-射线不能通过的元素，顺磁离子，或荧光分子等。

在本发明的一种具体实施方案中，所述指示性放射性同位素可以是，但不限于 111 铊，113 铊，99m 铱，131 铀，131 铀，131 铀，121m 碘，122m 碘，125m 碘，155 钐，167 钐，168 钐，123 碘，123 碘，131 碘，131 碘，116 氟，33 氟，90 醋，115 醋，77 溴，19 溴，35 钡，97 钡，103 钡，105 钡，107 钡，203 钡，67 钨和 88 钍。

根据另一种优选实施方案，所述指示标记分子是荧光标记分子。根据一种更优选的实施方案，所述荧光标记分子是荧光素、藻红蛋白或罗丹明，或其修饰物或偶联物。
本发明还涉及含有有效量的本发明的显像制剂，与它连接的药用试剂和生理学上可接受的载体的组合物。

本发明还提供了用于对器官或细胞进行显像的方法，包括在使得显像剂能结合所述器官或细胞的条件下，让所述待显像的器官或细胞接触本发明的显像剂，使所结合的显像剂显像，并因此使所述器官或细胞显像。

本发明还提供了一种治疗体内器官的方法，该方法包括让要治疗的器官与本发明的组合物在所述组合物能结合所述器官的条件下接触，以使治疗所述器官。

在本发明的一种优选实施方案中，可以用所述肽或多肽治疗靶恶性肿瘤细胞，更具体地讲，治疗全血中的白血病细胞，包括监测所述细胞并使所述细胞显像，如通过 FACS 分析，将相对正常细胞而言获得了更高（例如，高 4 倍）得分的肿瘤细胞样品用于治疗。

本发明提供了对患有癌症的患者的治疗，包括给所述患者施用能有效治疗所述癌症的量的本发明的肽或多肽。在一种优选实施方案中，所述癌症选自癌、肉癌、白血病、腺癌、淋巴癌、骨髓癌、胚细胞癌、精原细胞癌和黑素瘤。在一种更优选的实施方案中，所述癌症是一种白血病。在一种最优选的实施方案中，所述白血病是 AML。

在一种最优选的实施方案中，本发明的肽或多肽能特异性地或选择性地结合 AML 细胞。本发明提供了出现在结合了本发明的肽或多肽的 AML 细胞上的配体，并且还提供了能结合所述配体的肽或多肽。

本发明的新型抗体片段或其相应的肽模拟物，被用于生产用来治疗各种疾病和状况的组合物和药物。

本发明提供了一种用于生产导向制剂的方法，包括以下步骤：

a) 通过生物淘选程序直接在靶细胞上，或通过生物淘选程序间接在处在第二种状态、而不是第一种状态的第一种靶细胞上，以及随后通过生物淘选程序直接在第二种靶细胞上分离并选择包括一个主要识别位点的一种或多型导向分子，以便生产一种或多型所述导向分子；

b) 扩增、纯化并鉴定所述一种或多型导向分子；和

c) 由所述一种或多型导向分子或所述分子的识别位点构建导向剂，其中，所述导向剂可以是肽、多肽、抗体或抗体片段或其多聚体。还可以对所述导向剂进行额外构建，以便与一种药用试剂偶联。
附着、组合、连接或融合或缔合。

在本发明的一种优选实施方案中，所述导向剂是抗病或抗癌剂。

在本发明的另一种优选实施方案中，所述药用试剂选自放射性同位素、毒素、寡核苷酸、重组蛋白、抗体片段、和抗癌剂。所述同位素可选自_{11}^{111} 钍，_{112}^{125} 钍，_{99}^{99} 铀，_{105}^{105} 铀，_{101}^{101} 铀，_{121}^{121} 钡，_{122}^{122} 钡，_{123}^{123} 硫，_{124}^{124} 硫，_{125}^{125} 硫，_{165}^{165} 锰，_{167}^{167} 锰，_{168}^{168} 锰，_{172}^{172} 碘，_{174}^{174} 碘，_{173}^{173} 碘，_{175}^{175} 碘，_{41}^{41} 锝，_{33}^{33} 锝，_{90}^{90} 锝，_{213}^{213} 锝，_{18}^{18} 锝，_{95}^{95} 锝，_{97}^{97} 锝，_{103}^{103} 锝，_{105}^{105} 锝，_{107}^{107} 锝，_{203}^{203} 锝，_{67}^{67} 锝和_{68}^{68} 锝。

在另一种实施方案中，所述毒素选自 gelonin，假单胞菌属外毒素(PE)， PE40， PE38，白喉毒素，蓖麻毒蛋白，或其修饰物或衍生物。

在本发明的另一种实施方案中，所述抗癌制剂选自阿霉素，吗啉代阿霉素(MDOX)，阿得里亚霉素，顺铂，紫杉酚，加利霉素，长春新碱，阿糖胞苷 (Ara-C)，环磷酰胺，强的松，柔红霉素，伊达比星，氟达拉宾，苯丁酸氮芥，干扰素α，羟基脲，替莫唑胺，沙利度胺和博来霉素，及其衍生物。

本发明提供了一种用于鉴定抗体片段的方法，包括：(a)生物筛选，它包括将噬菌体展示文库与源于血液的细胞一起培养；(b)洗涤，以便除去未结合的噬菌体；(c)从所述细胞中洗脱结合的噬菌体；(d)扩增所得到的结合噬菌体；和(e)测定所述结合噬菌体的展示肽序列，以便鉴定所述肽。

本发明提供了具有下式或结构的肽或多肽：

A-X-B

其中，X 是具有 3-30 个氨基酸的高变 CDR3 区；而 A 和 B 可分别是长度为 1-1000 个氨基酸的氨基酸链，其中，A 是氨基末端，B 是羧基末端。

在本发明的一种优选实施方案中，A 是 150-250 个氨基酸残基，而 B 是 350-500 个氨基酸残基。

在另一种优选实施方案中，所述肽的 CDR3 区具有 5-13 个氨基酸残基。

在另一种实施方案中，上述结构式中的 X 是选自 SEQ ID NOs：8-24 的氨基酸序列。

在本发明的另一种实施方案中，所述肽或多肽是较大的或完整抗
体的或多聚体的一部分。

在另一种实施方案中，一种二聚体分子包括两个肽或多肽，其中之一是本发明的肽或多肽。所述二聚体分子可以包括两个相同的本发明的肽或多肽。

在本发明的一种优选实施方案中，所述二聚体分子中的 X 是选自 SEQ ID NOs: 8-24 的氨基酸序列。

另一种实施方案提供了编码本发明的肽或多肽或二聚体分子的核酸分子。

本发明提供了将任选与一种药用试剂结合或附着、偶联、组合、连接或融合的所述肽或多肽用于生产药物的用途。

本发明还提供了将所述肽或多肽用于生产具有抗病变细胞，更具体地讲用于抗癌细胞的活性的药物的用途。所述癌细胞可选自癌、肉瘤、白血病、腺癌、淋巴瘤、骨髓瘤、胚细胞瘤、精原细胞瘤和黑素瘤。更具体地讲，所述癌细胞可以是白血病细胞，最具体地讲，所述白血病细胞是 AML 细胞。

在本发明中定义的，并且在下面的实施例中讨论的一种可交换的系统是一种核酸构建体，该构建体被设计成能够交换或取代所述构建体内的重新界定的可变区，而没有必要进一步操作或重建所述分子。这种系统可以快速而且方便地制备需要的核酸分子。

实施例

提供以下实施例是为了理解本发明，而不是要，并且不应当被理解成是任何方式对本发明的范围进行限定。尽管披露了具体的试剂和反应条件，但是可以进行改进，这些改进被认为包括在本发明的范围内。因此，提供下面的实施例是为了进一步说明本发明。

实施例 1:
1. 用于生物淘选方法的细胞、细菌菌株、scFv 噬菌体展示文库、细胞膜的制备和蛋白纯化。

1.1 白血病细胞的制备。由白血病患者体内获得血液样品。在 Ficoll 垫层(Iso-prep, Robbins Scientific Corp., Sunnyvale, CA, USA)上将单核细胞（原代细胞）与其他血细胞分离。以 110 × g 的
速度离心 25 分钟，收集界面上的细胞，并且用 PBS 洗涤两次。然后将细胞悬浮在 RPMI + 10% 胎牛血清（FCS）中，并且计数。为了长期保存，将 10% FCS 和 10% DMSO 添加到所述淋巴细胞中，然后在-70℃下冷冻。

1.2 固定血小板的制备。在 37℃下，温育从血库中获得的血小板浓缩物 1 小时。添加等体积的 2.0% 低聚甲醛，并且在 40℃下固定血小板 18 小时。用冷盐水洗涤血小板两次（以 2500 × g 的速度离心 10 分钟）。重新悬浮在含有 0.01% HEPES 的盐水中，并且用显微镜计数。

验证血小板对血浆 von Willebrand 因子和瑞斯托霉素的敏感性。将血浆 von Willebrand (vWF; 18 ug/ml) 和瑞斯托霉素 (0.6 mg/ml) 添加到固定的血小板中，诱导血小板聚集，并且通过 chronolog lumi-聚集仪监测。

1.3 细菌菌株 TG-1 和 HB2151：通过让细胞生长到 A_{600} 为 0.5-0.9（指数生长细胞），制备用于感染的新生细菌培养物。将大肠杆菌 TG-1 细胞用于噬菌体制备，而将大肠杆菌 HB2151 细胞用于 scFv 蛋白生产。

1.4 scFv 展示噬菌体文库来源。ScFv 文库 (Nissim 等， EMBO J., 13, 692-698 (1994)) 是在得到 MRC 许可后，由 A. Nissim 博士提供的。该文库最初是作为展示 ScFv 片段的噬菌粒文库构建的，其中 V_{i} 和 V_{j} 结构域是通过柔性多肽连接的。将展示在该噬菌粒文库中的 ScFvs 融合在所述噬菌体的次要外被蛋白 pIII 的 N-末端，然后将它亚克隆到 pHEN1 载体上 (Nissim 等， EMBO J., 13, 692-698 (1994))。首先，通过 PCR 由免疫过的人的外周血淋巴细胞的重排 V-基因制备抗体片段的所有组成成分（被称为“天然所有组成成分”）。为了使所述所有组成成分多样化，将编码长度为 4-12 个残基的重链 CDR3 的随机核苷酸序列导入具有 49 个克隆的人 V_{s} 基因片段的文库中。所有克隆中融合的 V_{s} 片段源于种系 IGLV3S1 的单一的未诱变的 V 基因，产生了大约具有 10^{s} 个克隆的单一的 pot 文库。

1.5 来自 AML 细胞的膜制剂。向含有 10^{i} 洗涤过的细胞的沉淀中添加 1 ml 冷的裂解溶液（0.3M 蔗糖，5 mM EDTA，1 mM PMSF），然后在 4℃下以 11, 000 × g 的速度离心 20 分钟。丢弃上清液，并且将沉淀重新悬浮在 TE（10 mM Tris，1 mM EDTA，1 mM PMSF）中，并且按上述方法离心。将最终的沉淀以 0.4 的 A_{260} 重新悬浮在 6 ml PBS 中，并且用于在 37℃下对三个 Maxisorb 免疫试管（NUNC）进行包被 2 小时。
在包裹之后，用 PBS 漂洗试管 3 次，然后在室温下用 MPBS (2%脱脂奶，溶解在 PBS) 中封闭 2 小时。在生物筛选之前，再用 PBS 漂洗所述试管 3 次。

实施例 2:
2. 噬菌粒颗粒的操作：生物筛选方法
2.1 噬菌粒筛选和扩增：通过四个步骤的生物筛选方法，从所述文库中筛选能表达特别感兴趣的表位的噬菌粒：
a) 使噬菌粒颗粒与一种靶位结合，更具体地讲，使所述噬菌粒颗粒与洗涤过的靶细胞或细胞膜结合
b) 除去未结合的噬菌粒颗粒，更具体地讲，通过充分洗涤除去未结合的噬菌粒颗粒
c) 洗脱结合的噬菌粒颗粒
d) 繁殖和扩增洗脱的噬菌粒颗粒，更具体地讲，在大肠杆菌中繁殖和扩增
2.2 克隆鉴定：将所述四个步骤的生物筛选方法大体上重复 3-5 次。分别繁殖所选择的噬菌粒克隆，并且通过以下方法进一步表征：
 a) DNA 测序
 b) 对与若干种细胞类型结合的噬菌体进行来自体内的比较
 c) 感染大肠杆菌 HB2151，以便生产可溶性 scFv
2.3 序列分析：使用上游引物#203743 (5′-GAAATACCTATGGCTACCG) 和下游引物#181390 (5′-TGAATTTTCTGATGAGG)，通过 PCR 扩增所述噬菌粒颗粒内的大约 800bp 的编码的 scFv DNA。使用 ABI PRISM Big Dye 终止循环测序试剂盒和上述引物，通过自动 ABI PRISM DNA 测序仪(310 Genetic Analyzer，Perkin Elmer)，从两端对 DNA 片段进行全面鉴定。将位于重链和轻链之间的柔性多肽结合区的另外两个引物，引物#191181 (5′-CGATCCGCCACGCAGAG) 及其互补引物 #191344 (5′-CTCTGGCGGTGCGCGATCG) 用于测序。

实施例 3:
3. 生物筛选方法
3.1 基础生物筛选方法：所述生物筛选方法是上述噬菌体展示技
术的一个组成部分。在本研究中开发并采用了三种生物筛选方法：

a) 方法 AM (AML 细胞膜筛选/细菌洗脱，随后进行完整 AML 细胞膜筛选/胰蛋白酶洗脱)

b) 方法 YPR (固定的人血小板筛选/酸洗脱)

c) 方法 YPNR (固定的人血小板筛选/酸洗脱)

下面详细披露上述方法

3.1.1 方法 AM

3.1.1.1 预洗涤: 在 37°C 下快速解冻在 -70°C 下保存的含有来自患者的 2 × 10^7 个冷冻 AML 细胞的 1ml 等份试样，并马上稀释到 10 ml 冷的 2% PBS-乳 (MPBS) 中。在室温 (RT) 下, 以 120 × g 的速度离心细胞 5 分钟, 重新悬浮在 MPBS 中, 并且用血细胞计计数。按 1.5 节所述制备细胞膜。

3.1.1.2 选择是通过添加 2ml 含有来自原始 Nissim 文库的 10^12 噬菌粒的 MPBS 在固定化的 AML 细胞膜上进行的。缓慢搅动所述试管 30 分钟, 然后在不搅拌的条件下再温育 90 分钟, 这两个步骤都是在室温下进行。在 AML 细胞膜上进行 3 轮筛选之后, 在完整 AML 细胞上进行 1 轮筛选。

3.1.1.3 洗涤: 为了避免未结合的噬菌粒, 将试管中的内容物倒出, 并且用 PBS、0.1% Tween 洗涤试管 10 次, 然后仅用 PBS 洗涤 10 次。

3.1.1.4 洗脱: 将指数生长的大肠杆菌 TG-1 细胞 (2 ml) 直接添加到所述试管中, 并且在 37°C 下缓慢搅拌温育 30 分钟。如上文所述, 将一份样品铺平板, 用于滴定, 并且将其余体积铺平板用于扩增。

3.1.1.5 扩增: 刮取来自所述大的平板的菌落, 并且合并。让一份样品 (大约 10^7) 的氨苄青霉素抗性大肠杆菌 TG-1 细胞在液体培养物中生长到 A_590 大约为 0.5, 然后用辅助噬菌体 (VSC-M13, Stratagene) 感染, 以便生产大型扩增的噬菌粒原种。通过 PEG 沉淀方法恢复噬菌粒(18a)。将上述扩增的 T16M1 原种 (大约 10^{11} 噬菌粒/ml) 用于随后轮次的筛选。使用前面扩增的原种的 10^{11} 噬菌粒, 将所述筛选方法再重复两轮。在固定化膜上进行的三种筛选方法的扩增原种被命名为 T16M3。

3.1.1.6 在完整细胞上进行再筛选: 将第三种膜筛选的扩增原种
T16M3 用于淘选完整 AML 细胞。选择是在含有 2 × 10^7 细胞和 10^{10} 噬菌粒 (Nissim 文库) 的集落形成单位 (CFU)，和 10^{13} 野生型噬菌体 M13 的 0.5mlMPBS 的最终体积中进行的，在 4℃下缓慢搅拌 2 小时。用 50 μl 的胰蛋白酶 -EDTA (0.25%; 0.05%) 洗脱结合的噬菌粒，然后通过添加 50 μl FCS 中和。为了滴定和扩增，使用 1 ml 大肠杆菌 TG-1 培养物 (A_{600} = 0.5)，扩增的、最终的原种被命名为 T16M3-1。

3.1.2 方法 YPR

3.1.2.1 选择：克隆选择是通过在 1 ml PBS/HEPES/1% BSA 缓冲液中，用 10^{11} 噬菌粒 (Nissim 文库) 淘选 10^8 固定人血小板完成的。

使结合在室温下进行 1 小时，同时通过旋转混合样品。

3.1.2.2 细胞洗涤：通过低速离心 (3500 × g) 将血小板洗涤 5 次，并按上述方法重新悬浮。

3.1.2.3 洗脱：通过酸洗脱技术将第一轮结合的噬菌粒从固定的血小板上洗脱。

在室温下用 200 μl 10.1 M 甘氨酸 (pH 2.2) 温育所述血小板 10 分钟。在 pH 8.0 的 0.5 M Tris-HCl 中和并且离心之后，通过添加 200 μl 胰蛋白酶-EDTA (0.25%/0.05) 洗脱其余的血小板结合的噬菌体，并且通过添加 50 μl FCS 中和，通过离心除去所述细胞，收集来自酸洗脱方法和胰蛋白酶洗脱方法的洗脱噬菌体的上清液，并分别命名为 YPR (a)-1 和 YPR (t)-1 原种。然后通过添加 1ml 指数生长的 TG-1 细胞在 37℃下扩增所述原种 30 分钟。将一等份样品铺平板用于滴定，并且将余大肠杆菌细胞铺平板在 2 × TV/AMP 15 厘米的平板上。在 30℃下温育平板过夜。通过统计滴定板上的集落数量，确定在每一轮淘洗之后的产量。

3.1.2.4 扩增：按 3.1.1.5 节所述方法扩增克隆。合并来自酸洗脱方法和胰蛋白酶洗脱方法的，分别被命名为 R1 (a) 和 R1 (t) 原种的大约 10^8 噬菌粒/毫升的扩增原种，并用于随后轮次的淘选。

3.1.2.5 第二轮和第三轮淘选是按照所述 YPR 方法的第一轮淘选方法进行的，进行了以下改进：(i) 为了进行第二轮淘选，使用与 10^{12} R1 (t) 组合的 10^{12} R1 (a)，和 (ii) 洗脱是仅用甘氨酸 (pH 2.2) 进行的。所述第二轮淘选的扩增洗脱物被命名为 R2。 (iii) 为了进行第三轮生物淘选，使用 10^{12} R2，并且洗脱是按第二轮淘选方法进行的。第三轮
的扩增原种被命名为 R3。

3.1.3 YPNR 方法

3.1.3.1 生物釆选和洗涤是大体上按 YPR 方法中所述方法进行的。不过，在本发明中，(i) 洗脱是在三轮釆选的每一轮之后用甘氨酸 (pH 2.2) 进行的，和 (ii) 在第一轮釆选和扩增之后，接着进行两轮釆选，不进行扩增。第一、第二和第三轮分别被命名为 YPNR1，YPNR2 和 YPNR3。

3.2 阴性对照 scFv 克隆的篩选

3.2.1 N14 CDR3 序列：对于所有结合实验来说，从天然文库中挑选一个克隆（选择之前）。由该克隆制备噬菌体原种和被命名为 N14 的可溶性 scFv。序列分别表明，它属于 V_{4}-DP65 基因家族。由该克隆编码的 11-聚体 V_{4}-CDR3 的序列被命名为 N14 CDR3，其序列如下 (SEQ ID NO : 28):

<table>
<thead>
<tr>
<th>Phe</th>
<th>Leu</th>
<th>Thr</th>
<th>Tyr</th>
<th>Asn</th>
<th>Ser</th>
<th>Tyr</th>
<th>Glu</th>
<th>Val</th>
<th>Pro</th>
<th>Thr</th>
</tr>
</thead>
</table>

3.2.2 C181 CDR3 序列：将另一种阴性克隆 C181 用于结合分析实验。克隆 C181（对重组乙型肝炎病毒 [HBV] 颗粒有反应性）属于 V_{3}-DP35 家族，由该克隆编码的 9-聚体 V_{3}-CDR3 的序列被命名为 C181 CDR3，其序列如下 (SEQ ID NO : 29):

<table>
<thead>
<tr>
<th>Thr</th>
<th>Asn</th>
<th>Trp</th>
<th>Tyr</th>
<th>Leu</th>
<th>Arg</th>
<th>Pro</th>
<th>Leu</th>
<th>Asn</th>
</tr>
</thead>
</table>

实施例 4

4. scFv 克隆的生产、纯化、标记和表征

4.1 可溶性 scFv 的生产：将用于构建原始噬菌体文库的载体 pHEN1 设计成在 scFv 基因和 p111 基因的结合部位编码的琥珀终止密码子。因此，当通过噬菌体感染将特定克隆的载体导入大肠杆菌 HB2151（它是非抑制菌株）时，该系统能够生产可溶性 scFv，并且分泌到所述细菌细胞中 (Harrison 等，Methods in Enzymology，267，83-109 (1996))。然后可以从培养液中方便地回收 scFv。可溶性 scFvs 是在 lacZ 启动子的控制下生产的 (Gilbert 和 Muller-Hill，PNAS (US)，58，2415 (1967))，该启动子是用 IPTG 诱导的。

在所述载体的琥珀突变上游，包括一个编码 c-myc 标记的序列 (10 个氨基酸-Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu； SEQ ID NO:
123)。所表达的 scFv 的 C-末端应当具有 c-myc 标记，该标记可以用小鼠抗-c-myc 标记抗体（来自欧洲细胞培养物保藏中心(EBACC) 9E10-杂交瘤）检测。

4.2 在蛋白-A 珠亲和柱上纯化 scFv：所选择的克隆的 scFvs 和对照克隆 C181 的 scFvs 都属于 Vγ3 家族，可以在蛋白-A 亲和柱上纯化。制备来自每一种克隆的诱导培养物的周质级分(100-250 ml)，并且用蛋白-A 琼脂糖凝胶珠温育。通过酸洗脱(0.1 M 甘氨酸，pH 3.0)从所述柱中回收结合的 scFvs，然后用 pH8.0 的 Tris 中和洗脱物，通过 A280 测定确定所回收的蛋白的浓度，然后通过透析或在 C-25 琼脂糖凝胶柱上进行 PBS 缓冲液交换。

4.3 在 Sephacryl S-200 柱上纯化 N14-scFv: 阴性克隆 N14 的 scFv 属于 Vγ4 基因家族，并因此不能在蛋白-A 亲和柱上纯化。为了进行 scFv-N14 纯化，通过 60%的硫酸铵使 200ml 诱导培养物的周质级分中的总蛋白沉淀。将沉淀重新悬浮在 2ml 0.1×PBS, 5mM EDTA, 5mM PMSF 中，并且加样到 Sephacryl S-200 柱(1.5× 90cm)上，该柱用流通缓冲液预平衡过(0.1×PBS, 5mM EDTA)。分离蛋白，并且合并含有 N14-scFv 的级分（通过 SDS-PAGE 和 Western 分析检测），冷冻干燥，并且重新悬浮在 1/10 体积的水中。然后在 FACS 分析实验中，将 N14-scFv（未标记过的和 FITC-标记过的）用作阴性对照。

4.4. 用 FITC 标记纯化过的 scFvs：将来自每一种制备物的大约 1 毫克纯化的 FITC 重新悬浮在 PBS 中，并且使用 Fluoro-Tag FITC 偶联商业试剂盒(Sigma cat.#FITC-1)，按照生产商的方法偶联在 FITC 上。

4.5.5.1 纯化的和标记过的 scFv 的质量分析

4.5.5.2 在 FITC 标记之后评估结合活性，以便证实保留了 scFv 特异性（参见实施例 5）。

4.6 噬菌粒克隆的生化表征：用若干种类型的分析评估所述构建
体内，并且评估各种 scFv 制备物的纯度（参见实施例 8），所述方法包括 SDS-PAGE 质谱法（仅适用于 Y1 和 Y17 scFvs）和 HPLC。用 Western 分析和 EIA 鉴定 scFv；并且用 FACS 表征 scFv 结合。

实施例 5：
5. 结合试验
在噬菌粒和可溶性 scFv 这两种水平上评估选定克隆与细胞的结合。

5.1 在噬菌粒水平上的结合
为此，由每一个特定的克隆分别制备噬菌粒原种

5.1.1 菌落试验：在一种实验中，将来自所述生物询选方法的能感染氨苄青霉素抗性大肠杆苗的 10^7 特定噬菌粒的混合物和不具有氨苄青霉素抗性并且被用作 “阻断剂” 的 10^{11} 野生型 M13 噬菌体，与选自一组细胞类型的 10^4 细胞一起温育。在温育和洗涤之后，用胶蛋白酶洗脱结合的噬菌体，并且将一等份试样用于感染大肠杆菌 TG-1。然后将所述大肠杆菌铺平板在 2×TY/AMP 上，并且在 30°C 下温育过夜。计算并比较所获得的每一种克隆的菌落数量。所述结果提供了所述噬菌粒的结合亲和力和特异性的指标。

5.1.2 白色/兰色菌落试验：在该试验中，每一个实验包括一个内对照，将特定的噬菌粒以与上面的 5.1.1 节相同的比例，即 1/100, 与被命名为 pGEM7 的另一种对照噬菌粒（Promega Corp., Madison, Wisconsin, USA）混合。pGEM7 噬菌粒具有对氨苄青霉素的抗性。不过，它不能在其 pIII 基因的 N-末端表达任何重组多肽。在 TG-1 感染和在含有 1mM X-gal 氨苄青霉素平板上温育之后，统计菌落数量。所有获得的含有 pGEM7 的菌落是兰色的，而由特定噬菌粒获得的菌落是白色的。然后计算每一个试管的来自所述白色/兰色菌落的输入/产出比例（生长在相同平板上）的富集因数。

5.1.3 噬菌粒的 EIA
5.1.3.1 与选择的细胞结合的噬菌粒：用丙酮：甲醇（1：1）将大约 5×10^7 选择的细胞固定在 24 孔平板的表面上。该结合试验需要 10^7 噬菌粒。结合是在 37°C 下进行 1 小时，然后用 PBS/Tween (0.05%) 充分洗涤。在用 PBS 充分洗涤之后，用兔抗 M13，抗兔 IgG HRP 和底
物培养所述平板。所产生的颜色强度是通过 ELISA 平板读数器在 A495 下读出的，并且与结合的噬菌粒的含量成正比。

5.1.3.2 与固定血小板结合的噬菌粒：用 10^6 固定血小板对聚乙烯稀释定板进行包衣，并且在 4℃下培养过夜。将大约 10^10 噬菌粒用于评估结合。平板的洗涤和培养以及结合水平的测定是按上述 5.1.3.1节所述方法进行的。

5.1.4 对选自人生长激素 (hGH)、血纤蛋白原、纤连蛋白、BSA、SM(脱脂乳) 和 glycocalicin (GPIb 的蛋白水解片段) 的特定蛋白进行结合分析。结合是按以下方法分析的。用待测试的所述蛋白之一，以 2 μg/孔的用量对聚乙烯稀释定板的孔进行包被。包被是在 4℃下通过温育过夜进行的。添加大约 10^10 噬菌粒进行测试结合。在用 PBS 充分洗涤之后，用兔抗 M13、抗兔 BRP 和底物培养所述平板。通过所产生的颜色强度测定结合水平。在 A495 下测定光学密度。对每一份样品进行重复测定，并且计算平均值。

5.2 在 scFv 水平上的结合试验：通过两种不同的分析，即 EIA 分析和 FACS 分析，在若干种类型的细胞中比较在 HB2151 的质粒中产生的 scFvs 结合。

5.2.1 可溶性 scFv 的 EIA：将大约 5×10^6 AML 细胞与 5-10 μg 总蛋白一起温育。在 4℃下进行结合 1 小时，然后用小鼠抗 myc 抗体，抗小鼠 HRP 和底物进行 EIA 分析。在每一个步骤之后，通过用 PBS 洗涤细胞 3 次，除去多余的未结合的抗体。所产生的颜色的强度，是通过 ELISA 平板读数器读出的 (O. D. 495)。如上文所述，颜色强度与结合水平成正比。

5.2.2 细胞的 FACS 分析

5.2.2.1 分析通过“三步骤染色”方法染色的细胞

方法：进行 FACS 分析，以便测试并证实所选择的克隆的特异性。首先，建立“三步骤染色”方法，使用粗制提取物或纯化的未标记过的 scFv，然后使用小鼠抗 myc 抗体，最后使用 FITC 或 PE-偶联的抗小鼠抗体。

FACS 分析需要业已通过 Ficoll 纯化的并且重新悬浮在 PBS+1% BSA 中的 5-8×10^5 细胞，结合是在 4℃下进行 1 小时。在每一个步骤之后，洗涤细胞，并且重新悬浮在 PBS+1% BSA 中。在最后的染色步骤之
后，通过重新悬浮在 PBS、1% BSA、2% 甲醛中固定细胞，然后通过 FACS 读数（Becton-Dickinson）。

5.2.2.2 通过一个染色步骤用 FITC-标记的 scFv 对细胞染色：在 PBS+1% BSA 中将 FITC-标记的 scFv 与 5-8×10^5 Ficoll 纯化的细胞进行温育。结合是在 4°C 下进行 1 小时。然后洗涤细胞，并且按上述 5.2.2.1 的方法固定，并且通过 FACS 读数。

实施例 6：淘选和测序结果

6.1 AM 方法的结果

6.1.1 AM 方法的淘选结果：在下面的表格中（表 1）归纳了用于淘选的噬菌粒的估计数量（输入），和在 AM 方法中洗脱的结合噬菌粒的估计数量（产出）：

表 1. 来自方法 AM 的淘选结果

<table>
<thead>
<tr>
<th>输入原种</th>
<th>细胞来源</th>
<th>洗脱</th>
<th>产出</th>
<th>扩增的原种</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x10^11</td>
<td>AML 的膜</td>
<td>细菌 TG-1</td>
<td>3x10^7</td>
<td>T16M1</td>
</tr>
<tr>
<td>T16M1 - 10^11</td>
<td>AML 的膜</td>
<td>细菌 TG-1</td>
<td>6.4x10^7</td>
<td>T16M2</td>
</tr>
<tr>
<td>T16M2 - 10^11</td>
<td>AML 的膜</td>
<td>细菌 TG-1</td>
<td>10^8</td>
<td>T16M3</td>
</tr>
<tr>
<td>T16M3 - 10^9</td>
<td>AML 细胞</td>
<td>蛋白酶</td>
<td>2x10^6</td>
<td>T16M3.1</td>
</tr>
</tbody>
</table>

发现了通过每一次成功的淘选所获得的产量（产出）的富集。另外，当 T16M3 被用于淘选 AML 完整细胞时没有出现产量降低，这表明所结合的噬菌粒可能对所述细胞外表面上的成分具有特异性，或者该特异系统可能含有较大数量的非特异性结合噬菌粒。

6.1.2 AM 方法的克隆序列结果：尽管克隆是从 T16M1、T16M2 和 T16M3 产出的，下表提供的结果主要是来自 T16M3。1 产出原种的克隆的结果（AML 完整细胞淘选）。克隆 AM10，AM11 和 AM12 是在 T16M3 原种中鉴定的，而不是在随后的产出物中鉴定的。

在下面的表 2 中归纳了在 V\textsubscript{n}-CDR3 中展示的氨基酸序列及其在测试克隆中的频率。
表 2. 按照 AM 生物淘选方法从 T16M3 和 T16M3.1 产出物中选择的克隆。

<table>
<thead>
<tr>
<th>克隆编号</th>
<th>Vα-CDR3 3 大小</th>
<th>Vα-CDR3 序列</th>
<th>种系</th>
<th>在 T16M3 产出物中的频率</th>
<th>在 T16M3.1 产出物中的频率</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM1</td>
<td>8</td>
<td>Pro Trp</td>
<td>Thr</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pro Asp</td>
<td>Asp</td>
<td>2 3 4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pro Val</td>
<td>Thr</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pro Ile</td>
<td>Ile</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AM2</td>
<td>12</td>
<td>Gly Thr</td>
<td>Phe</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glu Thr</td>
<td>Pro</td>
<td>3 2 1</td>
<td>3 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glu Ser</td>
<td>Pro</td>
<td>4 1 2</td>
<td>4 1</td>
</tr>
<tr>
<td>AM3</td>
<td>5</td>
<td>Gly Thr</td>
<td>Phe</td>
<td>2 3 4</td>
<td>2 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arg Thr</td>
<td>Pro</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td>AM4</td>
<td>10</td>
<td>Gly Thr</td>
<td>Phe</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ser Val</td>
<td>Pro</td>
<td>3 4 2</td>
<td>3 4</td>
</tr>
<tr>
<td>AM5</td>
<td>11</td>
<td>Arg Thr</td>
<td>Pro</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arg Thr</td>
<td>Pro</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td>AM6</td>
<td></td>
<td>Arg Thr</td>
<td>Pro</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arg Thr</td>
<td>Pro</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td>AM7</td>
<td></td>
<td>Arg Thr</td>
<td>Pro</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td>AM8</td>
<td></td>
<td>Arg Thr</td>
<td>Pro</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td>AM9</td>
<td></td>
<td>Arg Thr</td>
<td>Pro</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td>AM10</td>
<td></td>
<td>Arg Thr</td>
<td>Pro</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td>AM11</td>
<td></td>
<td>Arg Thr</td>
<td>Pro</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
<tr>
<td>AM12</td>
<td></td>
<td>Arg Thr</td>
<td>Pro</td>
<td>2 1 1</td>
<td>2 1</td>
</tr>
</tbody>
</table>

氨基酸序列**PhePro** 出现在表 2 中所提供的 10 个分离的克隆中的 7 个中，并且表示其中的一个基序。另外，应当指出的是，在每一种情况下，所鉴定的基序表示 CDR3 区的 N 末端 3 个氨基酸。因此，该基序可以是一个有效的锚定或结合位点，该位点独立存在或与延伸到 CDR3 区一端或两端的其他氨基酸残基组合存在或作为较大的肽或多
肽或 Fv 分子的一部分。

可以根据核心序列 $^{15}_{15}$/clPhePro，构建对 AML 细胞具有高的结合力的其他 CDR3 区。所述 CDR3 区可以通过添加、缺失或突变，同时保持了 $^{15}_{15}$/clPhePro 核心序列来改变上述 5-12 聚体中的任意一种而构建。

本发明的 CDR3 区具有氨基酸序列 R1- $^{15}_{15}$/clPhePro-R2，其中，R1 包括 0-15 个氨基酸，优选 0-9 个，最优选 0-1 个氨基酸，而 R2 包括具有 1-15 个氨基酸，最优选 1-9 个氨基酸的氨基酸序列。R1 和 R2 是不会对 $^{15}_{15}$/clPhePro 序列对 AML 细胞的特异性结合产生负面影响的氨基酸序列。

上述克隆的轻链的 CDR3 区是相同的，并且如 SEQ ID NO: 125 所示。

6.2 YPR 和 YPNR 方法的结果

6.2.1 YPR 和 YPNR 方法的筛选结果：在下面的表格中（表 3，4）归纳了用于筛选的噬菌粒的估计数量（输入），和洗脱的结合噬菌粒的估计数量（产出）。

表 3. 来自 YPR 方法的筛选结果

<table>
<thead>
<tr>
<th>输入原种</th>
<th>洗脱</th>
<th>产出</th>
<th>扩增的原种</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nissim 文库 Y10^11</td>
<td>酸</td>
<td>10^7</td>
<td>R1(a)</td>
</tr>
<tr>
<td>合并的 (R1(a)-10^12, + R1(b)-10^13)</td>
<td>酸</td>
<td>5x10^7</td>
<td>R2</td>
</tr>
<tr>
<td>R2-10^12</td>
<td>酸</td>
<td>3x10^7</td>
<td>R3</td>
</tr>
</tbody>
</table>

表 3 表明，与第一轮的酸洗脱相比，蛋白酶洗脱的产量提高了 4 倍。

按照 YPNR 方法进行的没有扩增步骤的再筛选，降低了优先扩增噬菌粒感染或细胞感染的可能性。所得到的产量在表 4 中示出。

表 4. 来自 YPNR 方法的筛选结果

<table>
<thead>
<tr>
<th>输入原种</th>
<th>洗脱</th>
<th>产出</th>
<th>扩增的原种</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nissim 文库 Y10^11</td>
<td>酸</td>
<td>3x10^7</td>
<td>YPNR1</td>
</tr>
<tr>
<td>YPNR1-3x10^7</td>
<td>酸</td>
<td>4x10^7</td>
<td>YPNR2</td>
</tr>
<tr>
<td>YPNR2-4x10^7</td>
<td>酸</td>
<td>10^7</td>
<td>YPNR3</td>
</tr>
</tbody>
</table>
正如所预料的，表4中的结果表明在每一轮筛选之后噬菌体产量降低。使用该方法是为了防止由于扩增非特异性噬菌体而导致的偏差。

6.2.2 YPR和YPNR方法的克隆序列结果

选择来自两种方法的第三次筛选的若干克隆用于测序。在表5中示出的氨基酸序列是重链CDR3区的序列(Vλ-CDR3)。在该表中还示出了有关种系和该序列在R3产出物中的出现频率。

表5：按照YPR生物筛选方法用R3产出物选择的Y系列克隆

<table>
<thead>
<tr>
<th>克隆编号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
</tr>
<tr>
<td>Y16</td>
</tr>
<tr>
<td>Y17</td>
</tr>
<tr>
<td>Y-27</td>
</tr>
<tr>
<td>Y-44</td>
</tr>
<tr>
<td>Y-45</td>
</tr>
<tr>
<td>Y-52</td>
</tr>
</tbody>
</table>

通过YPNR方法分离的克隆同样主要是Y1。

上述克隆的轻链CDR3区是相同的，并且如SEQ ID NO:125所示。

实施例7：

7. 结合评估结果

7.1 选择的噬菌粒克隆与AML细胞(AM克隆序列)的结合：用AM
克隆进行用于评估噬菌粒结合细胞的选择试验，如实施例 5 中所披露的白色/兰色菌落试验。除了克隆 AM7 之外，没有检测到对测试细胞的优势结合。观察到了作为噬菌粒或纯化 scFv 的克隆 AM7 对所有靶细胞的显著的，但是非选择性的结合。结果证实，没有 AM 克隆系列的富集。

7.2 Y 克隆系列的结合

7.2.1 噬菌粒结合—使用固定血小板的 EIA：在用两种不同的方法进行三轮筛选之后，通过 EIA 测试噬菌体克隆与固定血小板的结合。噬菌粒原种是用每一种选择的克隆制备的，并且用两套 EIA 测试所述克隆。对每一份样品进行重复分析，并且计算其平均值。结果归纳在图 1 中，并且表明 9 个 Y 系列克隆中的 6 个出现了阳性 EIA 反应。最大程度的结合，与克隆 Y1，Y16，Y17 和 Y-27 相关。将噬菌体原种 M13（野生型噬菌体）和 E6（在 CLL 白血病细胞上选择）作阴性对照。显性克隆噬菌体 Y1 表现出对固定血小板的最强的结合，它与 Y17 一起表现出明显强于 M13 或 E6 噬菌体克隆的结合能力。

实施例 8:

8. scFvs 的详细表征和克隆结合

8.1 scFv 的结构和鉴定：用 Superdex 75 柱通过 HPLC 分析和通过质谱分析评估 Y-I 的天然构建体。前一种方法的结果表明在该制备物中存在单体，二聚体和四聚体。质谱分析的灵敏度足以鉴定预期的 26.5 kD 的分子量，并且当 c-myc 标记被裂解时，获得了 24 kD 的分子量。

不过，SDS-PAGE 的结果表明，完整的、未裂解过的分子的表观分子量为 30 kD，尽管根据核酸序列和上述质谱分析结果推测的分子量为 26.5 kD。用 c-myc-特异性抗体进行的 Western 分析，证实了 SDS-PAGE 的 30 kD 的结果，并且支持 c-myc 标记存在于完整分子末端的观点。两种方法的结果之间的差异，是由于所述方法的精确程度和 SDS-PAGE 的运行条件导致的。这些因素可以改变测试蛋白的表观分子量。

8.2 血小板选择的克隆与白血病细胞的结合：正如在前言部分所指出的，血小板细胞表面标记可以在不成熟的造血细胞上表达。血小板选择的克隆的结合，是通过 FACS 分析测试的。在对全染色之后进行 FACS 分析，随后进行 RBC 裂解或在分离-制备-(Ficoll 垫层)纯化
的单核细胞上进行。ScFv 是用每一种克隆制备的，在蛋白-A 上纯化，并且进行 FITC 标记（如 4.1-4.4 节所述）。为了能在非阻遏大肠杆菌菌株 HB2151 中生产完整的 scFv，通过 DNA 定点诱变将存在于 Y-27 克隆的 V1-CDR3 中的琥珀密码子 (TAG) 突变成编码谷氨酸 (GAG)。用于所述研究的靶细胞，是从各种患有白血病的患者的新鲜血液样品中分离的。所述样品是从以色列的三个医学中心获得的。

克隆 Y1 和 Y17 表现出对测试的白血病细胞的优势结合。而所有其他 Y 系列克隆仅产生了底水平的结合。表 6 提供了 FITC 标记的 Y-I 和 Y-17 与多种白血病细胞的结合。

表 6. Y-I 对白血病细胞的结合特异性

<table>
<thead>
<tr>
<th>scFv</th>
<th>ALL</th>
<th>AML</th>
<th>MDS</th>
<th>MM</th>
<th>TALL</th>
<th>Acute myeloid leukemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>N14/C18</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
<td>0/3</td>
</tr>
<tr>
<td>Y1</td>
<td>2/6</td>
<td>1/6</td>
<td>1/6</td>
<td>3/6</td>
<td>4/5</td>
<td>2/3</td>
</tr>
<tr>
<td>Y17</td>
<td>1/1</td>
<td>2/2</td>
<td>N.D.*</td>
<td>N.D.*</td>
<td>N.D.*</td>
<td>1/1</td>
</tr>
</tbody>
</table>

*未测定

在表 6 中以分数形式表示的结果显示患者的比例。通过 FACS 分析确定所述患者的细胞能与每一种测试抗体发生阳性反应。分子表示阳性患者的数量，分母表示测试特定 scFv/细胞类型组合的患者的总数量。Y-17 能与所有测试细胞紧密结合。因此，该结合被认为是非细胞选择性的。不过，发现 Y1 结合对若干种白血病细胞的样品，特别是急性期的样品具有高度选择性。按下述方法进一步分析了 Y1-scFv 结合。

在图 3 中示出了 Y1 与三种 AML 样品结合的代表性结果。在每一种情况下，大部分细胞群体所发出的荧光强度明显高于通过阴性对照 scFv 染色所获得的本底荧光强度。以上结果表明，对于每一位患者来说，Y1 与所述总的细胞群体中的不同部分结合。在每一个曲线图上右侧的 Y-1 峰被认为表示所述群体中 Y1-结合细胞的最低数量，该峰下面的总细胞的比例可能表示每一种样品中 Y1-结合细胞的最小比例。

8.3 Y-1 与正常血细胞的结合：根据不同的血细胞类型分析 Y1 与 Ficoll 纯化的正常血细胞的结合。尽管未检测到与正常淋巴细胞的结
合，Y1 能结合来自 9/28 受试者的纯化 Ficoll 纯化的单核细胞，来自 5/8 受试者的血小板，和来自 1/4 受试者的红血细胞 (RBC)。不过，CD14-特异性抗体能结合所有单核细胞制备物中的细胞，和很多中性粒细胞制备物中的细胞。在表 7 中提供了该分析的概况。

<table>
<thead>
<tr>
<th>抗体</th>
<th>淋巴细胞</th>
<th>单核细胞</th>
<th>中性粒细胞</th>
<th>血小板</th>
<th>RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>N14</td>
<td>0/18</td>
<td>0/4</td>
<td>0/4</td>
<td>0/3</td>
<td>0/4</td>
</tr>
<tr>
<td>Y1</td>
<td>0/28</td>
<td>9/28</td>
<td>0/4</td>
<td>5/8</td>
<td>1/4</td>
</tr>
<tr>
<td>CD14</td>
<td>0/15</td>
<td>14/14</td>
<td>8/14</td>
<td>0/5</td>
<td>0/4</td>
</tr>
</tbody>
</table>

以上结果表示通过 FACS 分析确定的正常血液样品的比例，它能与每一种测试抗体发生阳性反应。应当指出的是，尽管是在固定血小板上选择，FITC-Y1 scFv 表现出与血小板的较低的结合力。

图 4 表示 Y1 与 Ficoll 纯化的血小板的结合 (4a) 和与单核细胞门控细胞的结合 (4b)。在单核细胞群上的变动大于在血小板上观察到的变动，计算出的平均荧光强度，分别比阴性对照高 30 倍和 5 倍。这一结果极有可能是血小板重复附着在 Ficoll 纯化的单核细胞上的特征所导致的。随后的实验表明，当在全血样品中分析时，在测试的正常单核细胞，粒细胞和 RBC 中都观察到 Y1 结合。类似地，当血小板来自血小板富集血浆 (PRP) 时，没有观察到 Y1 与血小板的结合。在相同的结合条件下 (在全血中，随后在 FACS 裂解缓冲液 [Becton Dickenson] 进行 RBC 裂解)，Y1 以类似于在 Ficoll 纯化之后获得的方式与白血病细胞结合。因此，我们可以得出这样的结论，在天然条件下，血小板或单核细胞上的 Y-I 表位是隐藏的。在 Ficoll 纯化过程中，所述表位暴露出来，使它能够被 Y1 识别，而对于白血病细胞来说，所述表位在纯化和非纯化条件下都是暴露的。

除了淋巴和骨髓系的正常造血细胞祖细胞之外，测试了 Y1 与脐带血中造血干细胞 (CD34+ 细胞) 的结合。图 5 表示 FITC 标记过的 scFv 克隆与脐带血 CD34+ 干细胞的结合结果；图 5a 表示 CD34+ 门控细胞与 FITC 标记的阴性对照 scFv 的结合结果，而图 5b 表示对 CD34+ 门控细胞与 FITC 标记的 scFv 克隆 Y1 的相同的分析结果。图 5c 表示与图 5b 中相同的 FITC 标记的 scFv 克隆 Y-I 祥品的 FSC 和 SSC 点作图分析。
该分析的结果表明，存在来自脐带血的两种 CD34+ 干细胞亚群，在表示细胞大小的前向散射 (FSC) 方面具有差异。Y1 能与这两个群体中的较小的细胞结合。在图 5b 和 5c 中用圆圈起来的部分表示能结合克隆 Y1 scFv 的 CD34+ 细胞的亚群。进一步分析表明，较小的细胞是出现在细胞群中的死亡细胞，而 Y1 结合可能表明存在由 Y1 识别细胞内配体。

还用 GM-CSF 预处理过的健康供体的外周血细胞进行了该实验（GM-CSF 处理将干细胞移植释放到血液中）。获得了类似于图 5 所示的结果。

8.4 与 AML 细胞上的各种细胞标记相比较的 Y1 scFv 的结合特异性：将来自 AML 患者的 Ficoll 纯化外周细胞和骨髓细胞的 Y1 染色与通过一组其他抗体对所述细胞的染色进行比较。在表 8 中归纳了对来自 14 位患者的样本进行的 FACS 分析的结果。应当指出的是，对包括 Y1 在内的所有测试过的标记来说，在来自各个个体的制备物中的染色细胞的频率存在显著的变异。在各种标记的结果和 Y1 的结合之间缺乏相关性，这表明 Y1 不能结合由其他测试标记结合的任何配体，并且，Y-1 配体并不构成测试过的任何细胞表面标记。

表 8. 比较 Y1 scFv 和抗体与各种细胞标记的结合

<table>
<thead>
<tr>
<th>患者</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ficoll</td>
<td>0</td>
<td>34</td>
<td>65</td>
<td>85</td>
<td>100</td>
<td>0</td>
<td>59</td>
<td>40</td>
<td>70</td>
<td>25</td>
<td>26</td>
<td>60</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>CTV</td>
<td>ND</td>
<td>88</td>
<td>100</td>
<td>83</td>
<td>100</td>
<td>72</td>
<td>20</td>
<td>86</td>
<td>75</td>
<td>24</td>
<td>76</td>
<td>40</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>CD34</td>
<td>2.5</td>
<td>0</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>93</td>
<td>40</td>
<td>67</td>
<td>55</td>
<td>17</td>
<td>60</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>CD45</td>
<td>47</td>
<td>80</td>
<td>87</td>
<td>73</td>
<td>100</td>
<td>49</td>
<td>100</td>
<td>48</td>
<td>75</td>
<td>82</td>
<td>83</td>
<td>94</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>CD11b</td>
<td>4</td>
<td>83</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6.5</td>
<td>5</td>
<td>52</td>
<td>ND</td>
<td>15</td>
<td>0</td>
<td>BM</td>
</tr>
<tr>
<td>CD13</td>
<td>PB</td>
<td>PB</td>
<td>BM</td>
<td>BM</td>
<td>BM</td>
<td>BM</td>
<td>BM</td>
<td>BM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>BM</td>
</tr>
</tbody>
</table>

*BM/PB-骨髓/外周血

20 以上结果是以在特定患者的 Ficoll 纯化的样品中细胞的百分比形式表达的，所述结果是通过 FACS 分析确定的，它与每一种独立的抗体发生阳性反应。

就结合检测所需要的 Y1 的浓度（大约 1 μg/5 × 10^3）而言，以上结
果表明，Y1 scFv 对 AML 细胞上的特定抗体具有较高的结合力。

除了表 8 所示的表示 Y1 与 AML 细胞结合的结果之外，上面我们业
已证实（表 6）Y1 还能结合起来 B-ALL 细胞在内的测试过的大多数其
他类型的白血病细胞，不过，所述其他白血病样品的样品大小是有限
的。图 6 表示 Y1 scFv 与从两位患者体内获得的前-B-ALL 与肽的结合
的 FACS 分析。采用双染色方法，使用市售 PE-标记的 CD 19（正常外
周 B 细胞的标记，图 6a，6c）或 PE-标记的 CD 34（干细胞的标记，图
6d），同时使用 FITC 标记的阴性对照 scFv 或 FITC 标记的 Y1 scFv。
图 6b 是双阴性对照。提供了由 FITC 标记的样品结合的细胞（scFv 克
隆 Y1）的荧光强度（X 轴），对比提供了阴性对照染色模式（6e 和 6f）。
图 6 的结果表明，在两种样品的每一种中的白血病、前-B-ALL 细胞的
大部分由于 Y-I 结合，对于 Y1 细胞染色来说是阳性的。

8.5 Y1-scFv 与细胞系的结合：筛选了来自恶性造血细胞系的若
干细胞系被 Y1 识别的能力。FACS 分析表明，Y1 能结合很多测试过的
细胞（表 9）。应当注意的是，仅试验了一个人 B-细胞系和一个小鼠
骨髓细胞系。重要的是，这种结合局限于指数生长细胞。处在静止期
的细胞基本上不能结合 Y1，这表明 Y1 配体表达是在所述细胞的生命周
期中受调控的。另外，在所述反应细胞之间的结合强度不同。这一发
现意味着不同细胞中的所述配体在表达水平或亲和力方面存在差异。

表 9. Y1 与造血细胞系的结合

<table>
<thead>
<tr>
<th>细胞类型</th>
<th>高反应性</th>
<th>中等反应性</th>
<th>低反应性</th>
</tr>
</thead>
<tbody>
<tr>
<td>人骨髓</td>
<td>KG-1; THP-1; U937; TF-1; MEG</td>
<td>HL-60; HEL; K-562; MC1010</td>
<td>NB-4</td>
</tr>
<tr>
<td>人B-细胞</td>
<td></td>
<td></td>
<td>Namalwa; Daudi; UMC3, RAJI</td>
</tr>
<tr>
<td>人T-细胞</td>
<td>Jurkat, Hs-602</td>
<td>CCRF-CEM; Molt-4; Hut-78;</td>
<td></td>
</tr>
<tr>
<td>小鼠骨髓</td>
<td></td>
<td></td>
<td>M1; P388D1; PU5-1.8; WEHI-274.1</td>
</tr>
</tbody>
</table>

8.6 在存在 DTT 的条件下纯化的 Y1 的结合：一旦选择了 Y1 克隆，
就进一步开发生产 scFv 的方法。Y1 批量的 FTLC 分析结果表明，所述
蛋白可以多聚体化，主要形成单体和四聚体，这两种形式之间的比例
在一种制备物与另一种制备物之间存在差别。为了获得一致的物质，
在蛋白-A琼脂糖凝胶柱上进行亲和纯化期间添加5mM DTT，然后通过PBS缓冲液交换除去。实际上，在DTT处理之后，大部分(＞90%)物质出现在单体级份中。在单体形式的Y1的结合（在存在DTT的条件下纯化，并且在HPLC上分析）和Y1形式的混合物的结合之间，不存在显著差别。

8.7 Y1是对白血病细胞特异的克隆：Y1盒属于V3-DP32种系。在实施例6中分离并详细说明了来自相同种系若干种其他克隆。所述克隆包括Y17、Y27和Y-44，所有这些克隆的一级序列（种系盒）的差别仅在于它的CDR3区。不过，Y1表现出对白血病细胞的选择性。在表10中归纳了这些克隆的CDR3序列，并且在表11中归纳了所述克隆的结合特征。

表10: V3-DP32分离的克隆的CDR3序列。

<table>
<thead>
<tr>
<th>克隆编号</th>
<th>Met</th>
<th>Arg</th>
<th>Ala</th>
<th>Pro</th>
<th>Val</th>
<th>He</th>
<th>种系盒</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V3-DP32</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Y17</td>
<td>Leu</td>
<td>Thr</td>
<td>His</td>
<td>Pro</td>
<td>Tyr</td>
<td>Phe</td>
<td>V3-DP32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y-27</td>
<td>Leu</td>
<td>Arg</td>
<td>Pro</td>
<td>Pro</td>
<td>Glu</td>
<td>Ser</td>
<td>V3-DP32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y-44</td>
<td>Thr</td>
<td>Ser</td>
<td>Lys</td>
<td>Asn</td>
<td>Thr</td>
<td>Ser</td>
<td>V3-DP32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ser</td>
<td>Lys</td>
<td>Arg</td>
<td></td>
<td>His</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表11: V3-DP32分离的克隆的结合特征

<table>
<thead>
<tr>
<th>克隆编号</th>
<th>结合特异性</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>能与很多白血病细胞结合</td>
</tr>
<tr>
<td>Y17</td>
<td>能与包括正常淋巴细胞在内的所有测试过的造血细胞结合</td>
</tr>
<tr>
<td>Y-27</td>
<td>不能与任何测试过的造血细胞结合</td>
</tr>
<tr>
<td>Y-44</td>
<td>不能与任何测试过的造血细胞结合</td>
</tr>
</tbody>
</table>
表10和11表明，尽管在四种克隆之间除了Vα-CDR3区之外，主要序列相同，但是克隆之间的结合特征明显不同。这一发现加强了Vα-CDR3区的序列在对所描述抗原的结合位点的特异性方面发挥重要作用的观点。应当指出的是，CDR3序列的长度或存在该序列的特定种系盒似乎都不是结合特异性的主要决定因素。与Y1一样，Y17和Y-27各自包括一个六聚体CDR3，并且所有三个克隆的重链都来自相同的种系。对于Y17和Y-27来说，没有证实与造血细胞的选择性结合。

实施例9

9.1三抗体的构建：通过PCR分别扩增编码原始Y1的载体pHEN-Y1的Vα区和Vβ区。对于Vα-PCR反应来说，使用有义寡核苷酸5'-AACTCGAGTTGAGCTGACACAGGACCT，和反义寡核苷酸5'-TTTGTGAACACTCATTTTTTTTGGCAGCCGACCC。对大约350bp的预期大小的cDNA产物进行纯化，测序，并且用XhoI和NotI限制酶消化。

用相同方法扩增Vβ区（使用有义寡核苷酸5'-ATGAAATACCTATTGCCTACGG和反义寡核苷酸5'-AACTCGAGACGGTGACCAGGATACC）。用NcoI和XhoI限制酶消化Vβ-PCR产物。将三重连接方法用在用NcoI-NotI预先消化过的pHEN载体上。最终的载体被命名为pTria-Y1。

在大肠杆菌转化之后，挑选若干克隆进行进一步的分析，所述分析包括DNA测序、蛋白表达、和从细胞的层质间隙中提取。在还原条件下进行SDS-PAGE分析和Western印迹分析，以便证实Y1三抗体的大小。

9.2双抗体的构建

用XhoI限制酶使上述pTria-Y1载体线性化，并且使合成的互补双链寡核苷酸（5’-TCGAGAGTTGAGGCGG和5’-TCGACCGCTCCACCTC）预先退火，并且连接到Y1重链和Y1轻链之间的XhoI位点上。这种新的载体被命名为pDia-Y1。按照说明三抗体时所披露的方法，验证其DNA序列和蛋白表达。

9.3三抗体和双抗体的表达和纯化

在大肠杆菌中的表达大体上如上文所述scFv-Y1所述。不过，从转化过的大肠杆菌细胞的层质中纯化Y1双抗体和三抗体的方法不同。scFv Y1单体形式可以在蛋白-A琼脂糖凝胶珠的亲和柱上纯化。不过,
这种方法不能有效纯化多聚体形式的 Y1。因此，用 60% 的硫酸铵使从
所述细胞中提取的蛋白质沉淀过夜，重新悬浮在水中，并且加样到
用 0.1×PBS 预平衡过的 Sephacryl-200（Pharmacia）大小排阻柱上。
收集分级，并且通过 HPLC 分析，收集含有二聚体或三聚体形式的独立
的级分，用于 FITC 标记和 FACS 分析。

9. Y1 双抗体和三抗体与细胞的结合

用“三步染色法”对 Jurkat 细胞进行 FACS 分析。首先，对粗
制提取物或纯化的未标记过的 scFv 进行染色，然后使用小鼠抗-myc
抗体，最后使用 FITC-或 PE-偶联的抗小鼠抗体。FACS 分析需要 5-8×10^4
细胞，所述细胞经过 Ficol 纯化，并且重新悬浮在 PBS+1% BSA 中。
在 4℃下进行结合 1 小时。在每一个步骤之后，洗涤细胞，并且重新悬浮
在 PBS+1% BSA 中。在最终的染色步骤之后，通过重新悬浮在 PBS，
1% BSA，2% 甲醇中固定细胞，然后通过 FACS(Becton-Dickinson)
读数。

将 Y1-scFv 的结合与双抗体和三抗体的结合加以比较。在该分析
（图 7）中，所有三种形式的结合特征非常相似，这表明在所述分子上
的上述修饰不会改变、消除或破坏 Y1 与它的配体的表观结合力。

9.5 Y1-cys-kak (半胱氨酸二聚体) 的生产

在 42℃下诱导 1 升λpL-y1-cys-kak 细胞培养液 2-3 小时。以
5000 RPM 的速度将该培养物离心 30 分钟。将沉淀重新悬浮在 180 ml TE
(50mM Tris-HCl pH 7.4，20mM EDTA) 中。添加 8 ml 的溶菌酶（来
自 5 mg/ml 的溶液），并且温育 1 小时。添加 20 ml 的 5M NaCl 和 25 ml
的 25% Triton，并且再温育 1 小时。在 4℃下以 13000 RPM 的速度离
心该混合物 60 分钟，并掉上清液。借助于组织搅拌器（或匀浆器），
将沉淀重新悬浮在 TE 中。重复该过程 3-4 次，直到包含体（沉淀物）
变成灰色/浅棕色。将所述包含体溶解在 6M 盐酸胍，0.1 M Tris pH
7.4，2 mM EDTA（溶解在 10 ml 溶解缓冲液中的 1.5 克包含体，能提
供大约 10 mg/ml 溶解蛋白）。将该溶液培养至少 4 小时。测定蛋白浓
度，并且将浓度调整到 10 mg/ml。添加 DTE 至最终浓度为 65 mM，并
且在室温下培养过夜。通过将 10 ml 蛋白稀释（逐滴稀释）到含有 0.5
M 精氨酸，0.1 M Tris pH 8，2 mM EDTA，0.9 mM GSSG 的溶液中启
动重新折叠。在大约 10℃下，将重新折叠的溶液培养 48 小时。在含有
25 mM磷酸缓冲液 pH 6, 100 mM尿素的缓冲液中透析含有所述蛋白的重新折叠的溶液, 并且浓缩到 500ml。将浓缩的/透析的溶液结合到 SP-琼脂糖凝胶柱上, 并且通过梯度 NaCl（最高达 1M）洗脱所述蛋白。

9.6 通过放射性受体结合测定(RRA), 使用 KG-1 细胞研究 S-S Y1-二聚体的亲和力, 并与 CONY1 和 Y1-IgG 进行比较。

所述分析系统包括使用放射性配体,所述配体是通过用^{125}I 进行碘化制备的, 将氯胺 T 用在 Y1-IgG 构建体上, 或者将 Bolton-Hunter 试剂用在 CONY1 (Y1 scFv) 构建体上。分析试管中每 0.2ml 溶液中含有 5×10^4 KG-1 细胞, 和具有不同数量的未标记过竞争剂的标记过的示踪剂, 溶解在 PBS + 0.1 % BSA, pH 7.4 中。在 4℃下搅拌培养 1 小时之后, 用冷缓冲液充分洗涤所述细胞, 并且用于放射性计数。

在使用标记过的 Y1-IgG 的 RRA 研究中, 使用了 2 ng/试管的^{125}I-Y1-IgG, 并且与上述三种分子中的每一种进行竞争。结果如图 8 所示。在图 8 中提供的结果表明, S-S Y1 二聚体的亲和力比 CONY1 的亲和力高 30 倍。在该实验中大体上估计的 Y1-IgG 的亲和力为 2×10^{-6} M。因此, 所述二聚体的相应的亲和力为 4×10^{-8} M。

在使用标记过的 CONY1 的第二种 RRA 研究中, 使用了 100ng/试管的^{125}I-Y1-IgG, 并且与上述三种分子中的每一种进行竞争。结果如图 9 所示。该图表明, S-S Y1 二聚体的亲和力比 CONY1 的亲和力高 20 倍。在该实验中大体上估计的 CONY1 的亲和力为 10^{-6} M。因此, 所述二聚体的相应的亲和力为 5×10^{-7} M。

9.7 对 GC (glycocalcin) 的 ELISA 分析

在 4℃下, 在 96 孔平底 maxisorp 平板上温育 100 μl 纯化的 glycocalcin 过夜, 用 PBS(0.05% tween)洗涤所述平板 3 次, 然后添加 200 ml PBS-乳 (PBS + 2%无脂乳), 在室温下温育 1 小时。用 PBS 洗涤所述平板, 并且以不同的浓度将所述单体或二聚体 (100 μ l) 添加到 PBS-乳液中, 在室温下温育 1 小时。然后洗涤所述平板, 并且添加抗-Vi 多克隆抗体 (来自免疫过的兔, Vi 来自 Y1) (在 PBS-乳中以 1: 100 的比例稀释), 温育 1 小时。洗涤所述平板, 并且添加抗-兔 HRP, 再温育 1 小时。洗涤所述平板 5 次, 并且添加 100 μ l TMB 底物, 温育大约 15 分钟, 然后添加 100 μ l 10.5 H_{2}SO_{4}, 以便终止反应。在 ELISA 读数器中, 在 450nm 波长下测定该平板的光学密度。
9.8 Y1与在原核(大肠杆菌)系统中表达的重组glycocalicin (GC)
的反应性

将编码人血小板 GP1b-glycocalicin 的 N-末端可溶性部分 (GC,
1-493 号氨基酸) 的 DNA 片段克隆到 IPTG 诱导型原核载体盒上。在 37
℃下，将获得了新构建的质粒的大肠杆菌 (BL21 DE3) 细胞生长到 O. D.
为 0.7-0.8，然后在 37℃下生长 3 小时, 以便在存在 IPTG 的条件下进行
诱导。分析加载了来自 GC 的天然半纯化人血小板或来自诱导过的和
未诱导过的细胞的大肠杆菌细胞裂解物 (总蛋白含量) 的 SDS-聚丙烯
酰胺凝胶。用 scFv Y1-生物素化的，多克隆兔抗 GC 抗体，从商业
渠道获得的人抗小鼠 CD42 单克隆抗体 (SZ2 Immunotech, PM640
Serotec, HIP1 Pharmigen, AN51 DAKO) 和抗 gp1ba 的 N-末端的多克
隆抗体 (Sc-7071, Santa Cruz) 进行 Western 印迹分析。以上两种多
克隆抗体能识别重组细菌来源的 GC 和天然人血小板来源的 GC。所述
scFv Y1 和市售抗体只能识别天然人来源的 GC，而不能识别所述细菌
来源的重组血小板 GC。

诸如糖基化和硫酸化的翻译后修饰对于与 GC 结合的 scFv 和市售
抗体来说是必需的。所述原核 (大肠杆菌) 系统缺少诸如糖基化和硫酸
化的翻译后修饰机制。

9.9 制备 Y1 的四聚体

设计一种构建体，其中，通过 PCR 将以下序列 LNDIFEAQKIEWHE
添加在 Y1 的 C-末端，并且克隆到 IPCG 诱导型表达系统中。该克隆被
命名为 Y1-生物标记。该序列是酶 BirA 的底物，在存在游离生物素的
条件下，这种酶能够将生物素共价连接到赖氨酸 (K) 残基上 (抗原特
异性 T 淋巴细胞的表型分析。Science. 1996 Oct 4; 274 (5284): 94-6, Altman JD 等)。该构建体是作为包含体在 BL21 细菌细胞中
生产的。按上述方法进行重新折叠。将该包含体溶解在胍-DTE 中。通
过在含有精氨酸-tris-EDTA 的缓冲液中稀释进行重新折叠。在透析和
浓缩之后，进行 HiTrapQ 离子交换纯化。

按照供应商的推荐，将纯化的 Y1-生物标记 scFv 与 BirA 酶 (购
自 Avidity) 和生物素一起温育。通过 HABA 测试, 分析生物素化的 Y1-
生物标记 (该分析估算出每个分子的生物素量），并且表明存在大约>0.8 生物素残余物/分子。
将生物素化的 Y1-生物标记与链亲合素-PE（藻红蛋白）一起培养，以便形成复合物，并用于采用 KG-1 细胞（Y1 阳性）的 FACS 实验。链亲合素最多能结合 4 个生物素化的 Y1-生物标记分子。由于抗体亲抗原性的提高，所述结合的灵敏度提高了至少 100 倍。

Y1-生物标记的序列如下：

1 MEVQLVESGG GVPRPGGSLR LSCAASGFTF DDYGMWSWQ
41 APGKGLWVS GNWINQGSTG YADSVKGRFT ISRDNAKNSL
81 YLQMNSLRAE DTAVYYCARM RAPV1WGQGT LVTVSRGGG
121 SGGGGSGGGS SSELTQDPAV SVALGQTVR1 TCQGDLSRSY
161 YASWVQQKPG QAPV1LV1GK NNRPSPIGPD R FSGSSGNTA
201 SLTITGAQAE DEADYYCNSR DSSGNNVVF GGTKKTLVLLG
241 GGLNDIFEAQ KIEWHE

实施例 10：完整大小 Y1-IgG1 的构建

与 Fv 形式相比，完整的 IgG 分子具有若干优点，包括在体内的较长的半衰期和诱导体内细胞反应的潜力，如由 ADCC 或 CDC（补体依赖型细胞毒性；Tomlinson, Current Opinions of Immunology, 5, 83-89 (1993)）介导的反应。通过下文披露的分子克隆方法，我们业已将 Y1 Fv 区转化成完整大小的 Y1-IgG1 分子。Y1-IgG1 构建体的构建是通过按以下顺序彼此连接 cDNA 片段完成的。

10.1 与哺乳动物表达系统相容的前导序列：设计一种可交换的系统，以便能方便地插入完整 IgG 分子所需要的 eleraents。合成了以下编码推测的前导序列的互补双链寡核苷酸，退火，并且连接到哺乳动物表达载体（受 SRα5 启动子的控制）的 XhoI 位点上。

5’
TCGACCTCATCACCATGCGCTTGCTGCTTCACTCCACCTCTCACTC
AGGACACAGGGTCTTGGGCC

和

5’
GATCGGATTGCACCAGCTGGATATCGGCCCAGGACCCTGTGCTGAGTGA
GAGGTGGAGGAGCAGCGCAGGactersATGGTGAGG.

在起始 ATG 密码子上游包括两个 Kozak 元件。另外，在所述前导序列的推测的裂解位点和 XhoI 位点导入一个内部 EcoRV 位点，以便能亚克
隆其可变区。这种修饰过的载体被命名为 pBJ-3。

10.2 将来自 Y1 scFv cDNA 序列的 V\(_\)I 编码序列插入前导序列和所述构建体轻区编码序列之间。类似地，将来自 Y1 scFv cDNA 序列的 V\(_\)E 编码序列插入前导序列和所述构建体重区编码序列之间。这一目的是通过 PCR 扩增编码起始 Y1 的载体 pHEN-Y1 实现的，以便分别获得 V\(_\)I 和 V\(_\)E 区。

10.3 将寡核苷酸 5’-TTTGATATCCAGCTGGAGTCTCGGGGGA（有义）和 5’-GCTGACCTAGGACGTCAGCTTGGT（反义）用于 V\(_\)I PCR 反应，纯化具有大约 350 bp 的预期大小的 cDNA 产物，测序，并且用 EcoRV 和 AvrII 限制酶消化。用相同的方法扩增并纯化 V\(_\)E cDNA 区，分别使用有义和反义寡核苷酸 5’-GGGATATCCAGCTTG（C/G）(A/T) GGAGTCCGGGC 和 5’-GGACTCGAGACGGTACGGTTG。

10.4 恒定区：按以下方法分别合成用于 IgG1 cDNA 的恒定 λ3 (CL-λ3) 区和恒定重区 CH1-CH3。

10.4.1 对于恒定 CL-λ3 区来说，用从正常外周 B 细胞 (CD 19+细胞) 库中提取的 mRNA 进行 RT-PCR，同时使用有义 5’-CCGTCCCTAGGTCAGCCCAAGGCTGC 和反义 5’-TTTGCGGGCGCTTCATGAACATTGTAGGGCCACTGT 恒定核苷酸。纯化具有预期大小（大约 400 bp）的 PCR 产物，测序，并且用 AvrII 和 NotI 限制酶消化。

10.4.2 对于恒定 IgG1 区 (γ链) 来说，选择在 BTG 永生化的人 B 细胞克隆 (CMV-克隆#40) 进行 PCR 扩增。证实该克隆能分泌抗人 CMV 的 IgG1，并且还证实能在体外分析中诱导 ADCC 反应。对于 CH1-CH3 cDNA 来说，合成寡核苷酸 5’-CCGTCCCTAGGTCAGCCCAAGGCTGC(T/C)TCCACCAAGGCCCCATG(G/C)GTTGCTC (有义) 和 5’-TTTCCGGCGCTTATTTACCC(A/G)(GAGACAGGGAGAGGCT (反义)，并用于 PCR 扩增。正如对 CL cDNA 编码序列所披露的，纯化预期大小（大约 1500 bp）的 PCR 产物，测序，并且用 AvrII 和 NotI 限制酶消化。

10.5 对于最终的表达载体来说，用 EcoRV-NotI 预消化的载体，EcoRV-AvrII 可变 cDNAs 和 AvrII-NotI 恒定区实施三重连接方法。用于重链和轻链表达的最终载体分别被命名为 Y-1-HC 和 Y1-LC。

10.6 根据 Y1-LC 构建另一种载体 pBJ-Y1-LP，以便能够根据嘌呤霉素抗性基因 (PAC) 进行双筛选。在该载体中，Y1-LC 质粒的新霉素抗性基因被一个编码 PAC 基因的大约 1600bp 的片段（来自 pmcc-zp 载
10.7 下面提供了 Y-1-IgG-HC 和 Y-1-IgG-LC 的开放读框（ORL）及其编码的氨基酸序列：

10.7.1 Y-1-IgG-HC 的 ORF（V\textsubscript{H} C\textsubscript{H}1 C\textsubscript{H}2 C\textsubscript{H}3）

```plaintext
ATGCCGCTGGGCCTGGCTCGCTCCACCTCCCTCTCACTCGACCAAGCTGCTCTGCGGAT
M A W A L L E T T L L T L L T Q D T G S W A D
1
ATCCACGCTGGTGGATCTGGGAGGATGGTGACGCCCTGGGGCTCCCTGAGAATCTCCC
I Q L V E S G G G V R P G G S L R L S
21
TGTCAGCCTTGGATTCACTTTTGATGATTATGCAAGAGCTGCTGTCGCCCAAGCTCCA
C A A S G Y T P D D Y G M S W V R Q P F
41
GGAGGGGCCTGGAGTGGGTCTCTGCTATTATTGGATATGTGTIGAGCTACAGTATGCA
G K G L E W V S G I N W N G G S T G Y A
61
GACTCTGTCGAAAGGCCGATTTCACACTTCTCTAGAAACAGCCACAGACTCTCCTGATCTG
D S V K G R F T I S R D N A K N S L Y L
81
AAATAGAAGCTCTGAAAGGCCGAAAGCCCTGATTACCTTGCAAGAGATGAGGCT
Q M N S L R A E D T A V Y V C A R M A
101
CCTTGATTTGGCGCTACCTGCTACCGCTCTCGATGCTCTCCACCAAGGCCCA
F V I W G Q G T L V T V S A S T K P
121
TGCTCTTCGCCCCTGCGACTCTCAAGACCTCTGGGAGGCCAGCGGCTCTGCGC
S V F P L A P S S S K S T G T A A L G
141
TGCTGGCTGACAGCTACTCTCCCACAGCGTACGCGCTGTAGCTCAGCGCCCTGG
C L V K D Y F P S P V T V S W N S G A L
161
ACAGCCGCTCTACACCCCTCCCCTGCTCTCAGTACCTCTACGACTCTCCTCA
A C S G V H T F P A V L Q S S G L Y S L S
181
AGGCTGGTGAGCGGCTACCCACGAGCCTTTGGGGACACCGGACACCACTCTGCAACGTGAA
S V V T V P S S S L G T Q T Y I C N V N
201
CAGAGCGCCACACCGAAGGGCTGTGACAAGAGATGTGACGCCAAACTCTTGGGACAACG
H K P S N T V D K R V E P S K C D K T
221
CACACTTGCCACACCCGACTGAACTCTTGGGGTGCTGTGACAGCTCCTCTCTTG
H T C P P C P A P E L L G G P S V F L P
241
CCCGCAAAAAACGAAAGCCGGACACCTCTATGTTCTCCCGGAACCTCTTAGACAGCTGTG
P P E P K D T L M I S R T P E V T C V V
261
GTGAGCTGTGAGCCACAGGAAACCCGGAGGATCTGACAAGGTCACCTGGTACGGGCTGGA
G V D S H E D P E V K F N W Y V D G V E
281
GTGACATATGGCAGAAAGCAGGCAACGCTGAGGAAAGAAGACACAGCTACGTTGTC
V H N A K T K P R E E Q Y N S T Y R V V
301
AGGCTCGTACACCCGCTCGCCACCGGACTCAGCTGGAATGGGAAAGGATACAGGCAAGGCT
961
```
10.7.2 Y1-IgG-LC 的 ORF (V_{i}, C_{i})

1

1

5

对前导序列加上下划线。V_{i} 和 V_{i} 区别是由粗体氨基酸序列编码的，随后是 IgG1（对于重链而言）或 λ3（对于轻链而言）恒定区序列。

10.8 Y1 重链和轻链在 CHO 细胞中的表达

将载体 Y1-HC 和 Y1-LC 分别用于转染和选择能表达所述重链或轻链的稳定细胞。在 G418 上选择和细胞生长之后，通过下文所述的捕获
EIA 分析和 Western 印迹分析上清液中分泌的蛋白，以便证实 IgGl 表
10.8.1 捕获 EIA 分析：预先用小鼠抗人 IgGl Fc (Sigma)对 96
5
并
10
15
20
25
30
40
50
60
70
80
90
100
培养基中再培养2天。在蛋白G-琼脂糖凝胶柱(Pharmacia)上纯化分泌的抗体。结合是在pH7.0的20mM磷酸钠缓冲液中进行的；洗脱是用pH2.5-3.0的0.1M甘氨酸进行的。通过UV吸收值测定纯化抗体的数量；通过SDS-PAGE分析纯度。在非变性条件下，完整的IgG抗体具有其预期的160kD的分子量。在变性凝胶中，重链和轻链分别具有55和28kD的预期分子量。

10.9.4 完整大小Y1-IgG分子的结合：进行结合实验，以便确定Y1-IgG分子的结合水平，并且与scFv-Y1分子的结合水平进行比较。采用两步骤染色方法，其中，让5ngY1-IgG与RAJI细胞（阴性对照，图7a）和Jurkat细胞（Y1阳性细胞，图7b）起反应。为了检测，使用PE标记的山羊抗人IgG。类似地，让1μgscFv-Y1与Jurkat细胞起反应（图7c），并且将P1-标记的兔抗scFv用于检测。结果表明，Y1-IgG和scFv-Y1都能结合Jurkat细胞，为了获得类似于Y1-IgG的检测水平需要高出大约10^3倍的scFv-Y1分子。

表格的简要说明

表1：来自方法AM的凋选结果。归纳了四个连续步骤的AM生物凋选方法的用于凋选的估算噬菌粒数量（输入），和洗脱的结合噬菌粒的估计数量（产出）。列举了每一种产出结果的细胞来源和洗脱介质，以及用于区分每一种毒粒的独立的原种的术语。

表2：按照AM生物凋选方法选择的克隆。归纳了CDR3区中的氨基酸数量（Vn-CDR3大小），和分离的不同类型克隆的CDR3氨基酸序列。另外，提供了在两种AM生物凋选产物T16M3和T16M3.1产物中每一种类型克隆的频率。

表3：来自YPR方法的凋选结果。归纳了用于凋选的噬菌粒的估计数量（输入），和洗脱的结合噬菌粒的估计数量（产出）。列举了每一种产出结果的洗脱介质，以及用于区分每一种独立的原种的术语。

表4：来自YPNR方法的凋选结果。归纳了三个连续步骤的YPNR生物凋选方法的用于凋选的噬菌粒的估计数量（输入）和洗脱的结合噬菌粒的估计数量（产出）。列举了每一种产出结果的洗脱介质，以及用于区分每一种不同原种的术语。

表5：用R3产出物按照YPR生物凋选方法选择的Y-系列克隆。在R3产出原种中鉴定了若干不同的克隆，提供了所鉴定克隆的Vn-CDR3
区所包含的氨基酸残基数量和氨基酸序列，以及种类名称。

表6：Y1对白血病细胞的结合特异性。提供了三种不同scFv克隆
的结合实验的结果，通过FACS分析证实，每一种克隆能与主要含有七
种不同类型的白血病细胞的每一种的细胞混合物起反应。所述结果表
示患者的比例，所述患者的细胞通过FACS分析证实能够与每一种测试
抗体发生阳性反应。分子表示阳性患者的数量，而分母表示测试特定
scFv/白血病细胞类型组合的患者的总数。

表7：scFv与Ficoll纯化的正常白细胞结合的FACS分析。分别
分析三种scFv克隆与五种不同的Ficoll纯化的正常白细胞类型的结
合。所述结合结果表示正常白细胞样品的比例，所述样品通过FACS分析
证实能与每一种测试抗体起阳性反应。

表8：Y1 scFv和抗体与各种细胞标记结合的比较。提供了通过Y1
和一组其他抗体染色的scFv分析结果。制备来自ANE患者的Ficoll
纯化的外周和骨髓细胞，并且在AML细胞上对比研究了Y1scFv的结
合特异性和各种细胞标记的结合特异性。结果以特定患者的Ficoll纯
化的样品中细胞的百分比形式表示，所述细胞通过FACS分析证实能与
每一种Fv起阳性反应。用四种其他抗体进行比较：(1)CD13-粒细
胞和单核细胞标记；(2)CD14-单核细胞和中性粒细胞的标记；(3)
CD33-正常骨髓细胞和白血病骨髓细胞的标记；和(4)CD34-干细胞标
记。

表9：Y1与造血细胞系的结合。进行FACS分析，以便确定Y1scFv
与不同类型人白血病细胞系的结合，以及与一种鼠细胞系的结合。列
举了Y1能阳性结合（反应性）或不能结合（无反应性）的细胞系。

表10：Vα3-DP32分离的克隆的CDR3序列。

按照不同的生物筛选和选择方法，分离了基于DP32种系的若干个
克隆。Y1，Y17，Y-27和Y-44是在用血小板生物筛选选择期间
鉴定的(YPR和YPNR方法)。提供所述每一种克隆的Vα-CDR3区序列。

表11：Vα3-DP32分离的克隆的结合特征。通过FACS分析检测了
DP32-衍生克隆与若干种造血细胞的结合特异性。

业已结合特定实施例方案，材料和数据对本发明进行了说明。正如
本领域技术人员可以理解的，可以获得使用或制备本发明的各个方
面的替代方案。所述替代方案被认为包括在由以下权利要求书所限定的
本发明的期望和构思范围内。
序列表

生物技术通用公司

1

PRT

人（Homo sapiens）

Ser Ser Tyr Thr Ser Ser Thr Leu Val
1 5 10

2

PRT

人

Ser Ser Tyr Thr Ser Ser Thr Leu Gly
1 5 10

3

PRT

人

Gln Ser Tyr Asp Ser Asn Leu Arg Val
1 5
<210> 4
<211> 8
<212> PRT
<213> 人

<400> 4
Gln Glu Leu Asn Ser Tyr Pro Thr
1 5

<210> 5
<211> 11
<212> PRT
<213> 人

<400> 5
Asn Ser Arg Asp Ser Ser Gly Phe Glu Leu Val
1 5 10

<210> 6
<211> 9
<212> PRT
<213> 人

<400> 6
Gln Glu Ala Asn Ser Phe Pro Ile Thr
1 5

<210> 7
<211> 111
<212> PRT
<213> 人

<400> 7
<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser</td>
<td>Glu</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td>Val</td>
<td>Ser</td>
<td>Val</td>
<td>Ala</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Tyr</td>
<td>Gln</td>
<td>Gln</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Asn</td>
<td>Asn</td>
<td>Arg</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Asn</td>
<td>Thr</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Glu</td>
<td>Ala</td>
<td>Asp</td>
<td>Tyr</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Phe</td>
<td>Gly</td>
<td>Gly</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

<210>	8
<211>	6
<212>	PRT
<213>	人
<400>	8

Met | Arg | Ala | Pro | Val | Ile |
| 1 | 5 |

<210>	9
<211>	8
<212>	PRT
<213>	人
<400>	9

Pro | Trp | Asp | Asp | Val | Thr | Pro | Pro |
| 1 | 5 |

<p>| <210> | 10 |</p>
<table>
<thead>
<tr>
<th>10</th>
<th>Gly Phe Pro Arg Ile Thr Pro Pro Ser Ala Glu Ile</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

| 5 | 10 |

| 5 | 1 |

| 5 | 10 |

| 5 | 1 |

| 5 | 10 |
Arg Phe Pro Met Arg His Glu Lys Thr Asn Tyr
1 5 10

<210> 14
<211> 8
<212> PRT
<213> 人

<400> 14
Arg Phe Pro Pro Thr Ala Thr Ile
1 5

<210> 15
<211> 7
<212> PRT
<213> 人

<400> 15
Thr Gln Arg Arg Asp Leu Gly
1 5

<210> 16
<211> 11
<212> PRT
<213> 人

<400> 16
Lys Phe Pro Gly Gly Thr Val Arg Gly Leu Lys
1 5 10

210 17
211 12
212 PRT
213 人

400 17
Gly Phe Pro Val Ile Val Glu Glu Arg Gln Ser Thr
1 5 10

210 18
211 10
212 PRT
213 人

400 18
Arg Phe Pro Gln Arg Val Asp Asn Arg Val
1 5 10

210 19
211 8
212 PRT
213 人

400 19
Thr Gly Gln Ser Ile Lys Arg Ser
1 5
<210> 20

<211> 6

<212> PRT

<213> 人

20

Leu Thr His Pro Tyr Phe
1 5

<210> 21

<211> 6

<212> PRT

<213> 人

21

Leu Arg Pro Pro Gln Ser
1 5

<210> 22

<211> 11

<212> PRT

<213> 人

22

Thr Ser Lys Asn Thr Ser Ser Lys Arg His
1 5 10
23
Arg Tyr Tyr Cys Arg Ser Ser Asp Cys Thr Val Ser
1 5 10

24
Phe Arg Arg Met Glu Thr Val Pro Ala Pro
1 5 10

25
Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15

Ala Gln Pro Ala Met Ala Glu Val Gin Leu Val Glu Ser Gly Gly Gly
20 25 30

Val Val Arg Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
<table>
<thead>
<tr>
<th></th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe</td>
<td>Thr</td>
<td>Phe</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Gly</td>
<td>Leu</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Tyr</td>
<td>Ala</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Lys</td>
<td>Asn</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Ala</td>
<td>Val</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Gly</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Gly</td>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Ser</td>
<td>Val</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Arg</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Asp</td>
<td>Arg</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Gly</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Asp</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Asn</td>
<td>Gly</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> 26
<211> 464
<212> PRT
<213> 人

<400> 26

Met Ala Trp Ala Leu Leu Leu Leu Thr Leu Leu Thr Gln Asp Thr Gly
 1 5 10 15

Ser Trp Ala Asp Ile Gln Leu Val Glu Ser Gly Gly Gly Val Val Arg
 20 25 30

Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45

Asp Asp Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60

Glu Trp Val Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly Tyr Ala
 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
 85 90 95

Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110

Tyr Tyr Cys Ala Arg Met Arg Ala Pro Val Ile Trp Gly Gln Gly Thr
 115 120 125

Leu Val Thr Val Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro
 130 135 140

Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly
 145 150 155 160

Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn
 165 170 175

Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln
 180 185 190

Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Thr Val Pro Ser Ser
 195 200 205

Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser
 210 215 220

Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp Lys Thr
 225 230 235 240

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Gly Pro Ser
Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg
260 265 270

Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro
275 280 285

Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala
290 295 300

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val
305 310 315 320 330

Ser Val Leu Thr Val Leu His Glu Asp Trp Leu Asn Gly Lys Glu Tyr
325 330 335

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr
340 345 350

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu
355 360 365

Pro Pro Ser Arg Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys
370 375 380

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
385 390 395 400

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Ser Pro Val Leu Asp
405 410 415

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Ser Ser
420 425 430

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala
435 440 445

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys
450 455 460

<210> 27

<211> 233

<212> PRT

<213> 人
Met Ala Trp Ala Leu Leu Leu Leu Thr Leu Leu Thr Gln Asp Thr Gly
1 5 10 15

Ser Trp Ala Asp Ala Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala
20 25 30

Leu Gly Gln Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg Ser
35 40 45

Tyr Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu
50 55 60

Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe
65 70 75 80

Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala
85 90 95

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser
100 105 110

Gly Asn His Val Phe Gly Gly Thr Thr Thr Leu Thr Val Leu Gly
115 120 125

Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu
130 135 140

Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe
145 150 155 160

Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val
165 170 175

Lys Ala Gly Val Glu Thr Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys
180 185 190

Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser
195 200 205

His Lys Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu
210 215 220

Lys Thr Val Ala Pro Thr Glu Cys Ser
225 230
<211> 11
<212> PRT
<213> 人

<400> 28

Phe Leu Thr Tyr Asn Ser Tyr Glu Val Pro Thr
1 5 10

<210> 29
<211> 9
<212> PRT
<213> 人

<400> 29

Thr Asn Trp Tyr Leu Arg Pro Leu Asn
1 5

<210> 30
<211> 98
<212> PRT
<213> 人

<400> 30

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Pro Gly Ala
1 5 10 15

Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Tyr
20 25 30

Tyr Met His Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
35 40 45
Gly Leu Val Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Glu Lys Phe
50 55 60
Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

<table>
<thead>
<tr>
<th>Ala</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> 31
<211> 98
<212> PRT
<213> 人

<table>
<thead>
<tr>
<th>400</th>
</tr>
</thead>
</table>
| Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15 |
| Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ile Phe Thr Asp Tyr
20 25 30 |
| Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Glu Leu Gly Trp Met
35 40 45 |
| Gly Arg Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe
50 55 60 |
| Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80 |
| Thr Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr Tyr Cys
85 90 95 |

<table>
<thead>
<tr>
<th>Ala</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> 32
<211> 98
<212> PRT

<213> 人

<400> 32

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu
20 25 30
Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
35 40 45
Gly Gly Phe Asp Pro Glu Asp Gly Thr Ile Tyr Ala Gln Lys Phe
50 55 60
Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Thr

<210> 33

<211> 98

<212> PRT

<213> 人

<400> 33

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly Tyr
20 25 30
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

112
<table>
<thead>
<tr>
<th>Gly</th>
<th>Arg</th>
<th>Ile</th>
<th>Asn</th>
<th>Pro</th>
<th>Asn</th>
<th>Ser</th>
<th>Gly</th>
<th>Gly</th>
<th>Thr</th>
<th>Asn</th>
<th>Tyr</th>
<th>Ala</th>
<th>Gln</th>
<th>Lys</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Gly</td>
<td>Arg</td>
<td>Val</td>
<td>Thr</td>
<td>Ser</td>
<td>Thr</td>
<td>Arg</td>
<td>Asp</td>
<td>Thr</td>
<td>Ser</td>
<td>Ile</td>
<td>Ser</td>
<td>Thr</td>
<td>Ala</td>
<td>Tyr</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td>70</td>
<td></td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Glu</td>
<td>Leu</td>
<td>Ser</td>
<td>Arg</td>
<td>Leu</td>
<td>Ser</td>
<td>Arg</td>
<td>Asp</td>
<td>Asp</td>
<td>Val</td>
<td>Val</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Arg</td>
<td></td>
</tr>
</tbody>
</table>

| 34 |
| 98 |
| PRT |
| 人 |

| Gln | Val | Gln | Leu | Val | Gln | Ser | Gly | Ala | Glu | Val | Lys | Lys | Pro | Gly | Ala |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | | | | | | | | | | | | | | |
| Ser | Val | Lys | Val | Ser | Cys | Lys | Ala | Ser | Gly | Tyr | Thr | Phe | Thr | Gly | Tyr |
| 20 | | | 25 | | | | | | | | | | | |
| Tyr | Met | His | Trp | Val | Arg | Gln | Ala | Pro | Gly | Gln | Gly | Leu | Glu | Trp | Met |
| 35 | | | | | | | | | | | | | |
| Gly | Trp | Ile | Asn | Pro | Asn | Ser | Gly | Thr | Asn | Tyr | Ala | Gln | Lys | Phe |
| 50 | | | | | | | | | | | | | |
| Gln | Gly | Arg | Val | Thr | Met | Thr | Arg | Asp | Thr | Ser | Ile | Ser | Thr | Ala | Tyr |
| 65 | | | 70 | | 75 | | | | | | | | |
| Met | Glu | Leu | Ser | Arg | Leu | Arg | Ser | Asp | Asp | Thr | Ala | Val | Tyr | Tyr | Cys |
| 85 | | | | | | | | | | | | | |
| Ala | Arg | | | | | | | | | | | | | |

| 35 |
| 98 |
PRT

人

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly Tyr
20 25 30
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe
50 55 60
Gln Gly Trp Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Arg Leu Arg Ser Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg

36

98

PRT

人

X

(1) ...(98)

Xaa

36
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gln</td>
<td>Val</td>
<td>Gln</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Lys</td>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td>Tyr</td>
<td>Met</td>
<td>His</td>
<td>Trp</td>
<td>Val</td>
</tr>
<tr>
<td>Gly</td>
<td>Trp</td>
<td>Ile</td>
<td>Asn</td>
<td>Pro</td>
</tr>
<tr>
<td>Gln</td>
<td>Gly</td>
<td>Arg</td>
<td>Val</td>
<td>Thr</td>
</tr>
<tr>
<td>Met</td>
<td>Glu</td>
<td>Leu</td>
<td>Ser</td>
<td>Arg</td>
</tr>
</tbody>
</table>

| | 85 | 90 | 95 |
| Ala | Arg |

\[<210> \ 37\]
\[<211> \ 98\]
\[<212> \ PRT\]
\[<213> \ 人\]

\[<400> \ 37\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gln</td>
<td>Val</td>
<td>Gln</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Lys</td>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td>Cys</td>
<td>Met</td>
<td>His</td>
<td>Trp</td>
<td>Val</td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Val</td>
<td>Cys</td>
<td>Pro</td>
</tr>
<tr>
<td>Gln</td>
<td>Ala</td>
<td>Arg</td>
<td>Val</td>
<td>Thr</td>
</tr>
<tr>
<td>Met</td>
<td>Glu</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
</tr>
</tbody>
</table>

| | 85 | 90 | 95 |

115
Val Arg

<210> 38
<211> 98
<212> PRT
<213> 人

<400> 38

Gln Met Gln Leu Val Gln Ser Gly Pro Glu Val Lys Lys Pro Gly Thr
 1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Phe Thr Phe Thr Ser Ser
 20 25 30
Ala Val Gln Trp Val Arg Gln Ala Arg Gly Gln Arg Leu Glu Trp Ile
 35 40 45
Gly Trp Ile Val Val Gly Ser Gly Asn Thr Asn Tyr Ala Gln Lys Phe
 50 55 60
Gln Glu Arg Val Thr Ile Thr Arg Asp Met Ser Thr Ser Thr Ala Tyr
 65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ala

<210> 39
<211> 98
<212> PRT
<213> 人

<400> 39
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gly Leu Glu Trp Met
35 40 45

Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg

<210> 40

<211> 98

<212> PRT

<213> 人

<400> 40

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gly Leu Glu Trp Met
35 40 45

Gly Arg Ile Ile Pro Ile Leu Gly Ile Ala Asn Tyr Ala Gln Lys Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg
<210> 41
<211> 98
<212> PRT
<213> 人

<400> 41
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30
Ala Met His Trp Val Arg Gln Ala Pro Gly Gin Arg Leu Glu Trp Met
35 40 45
Gly Trp Ile Asn Ala Gly Asn Gly Asn Thr Lys Tyr Ser Gin Lys Phe
50 55 60
Gln Gly Arg Val Thr Ile Thr Arg Asp Thr Ser Ala Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg

<210> 42
<211> 98
<212> PRT
<213> 人

<400> 42
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
<table>
<thead>
<tr>
<th>Ser</th>
<th>Val</th>
<th>Lys</th>
<th>Val</th>
<th>Ser</th>
<th>Cys</th>
<th>Lys</th>
<th>Ala</th>
<th>Ser</th>
<th>Gly</th>
<th>Tyr</th>
<th>Thr</th>
<th>Phe</th>
<th>Thr</th>
<th>Ser</th>
<th>Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ala</th>
<th>Met</th>
<th>His</th>
<th>Trp</th>
<th>Val</th>
<th>Arg</th>
<th>Gln</th>
<th>Ala</th>
<th>Pro</th>
<th>Gly</th>
<th>Gln</th>
<th>Arg</th>
<th>Leu</th>
<th>Gly</th>
<th>Leu</th>
<th>Trp</th>
<th>Met</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gly</th>
<th>Trp</th>
<th>Ser</th>
<th>Asn</th>
<th>Ala</th>
<th>Gln</th>
<th>Gly</th>
<th>Asn</th>
<th>Thr</th>
<th>Lys</th>
<th>Tyr</th>
<th>Ser</th>
<th>Gln</th>
<th>Gly</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gln</th>
<th>Gly</th>
<th>Arg</th>
<th>Val</th>
<th>Thr</th>
<th>Ile</th>
<th>thr</th>
<th>Arg</th>
<th>Asp</th>
<th>Thr</th>
<th>Ser</th>
<th>Ala</th>
<th>Ser</th>
<th>Thr</th>
<th>Ala</th>
<th>Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Met</th>
<th>Glu</th>
<th>Leu</th>
<th>Ser</th>
<th>Leu</th>
<th>Arg</th>
<th>Ser</th>
<th>Glu</th>
<th>Asp</th>
<th>Met</th>
<th>Ala</th>
<th>Val</th>
<th>Tyr</th>
<th>Tyr</th>
<th>Cys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ala</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210>	43
<211>	98
<212>	PRT
<213>	人

| <400> | 43 |

<table>
<thead>
<tr>
<th>Gln</th>
<th>Val</th>
<th>Gln</th>
<th>Leu</th>
<th>Val</th>
<th>Gln</th>
<th>Ser</th>
<th>Gly</th>
<th>Ser</th>
<th>Gly</th>
<th>Leu</th>
<th>Lys</th>
<th>Pro</th>
<th>Gly</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ser</th>
<th>Val</th>
<th>Lys</th>
<th>Val</th>
<th>Ser</th>
<th>Cys</th>
<th>Lys</th>
<th>Ala</th>
<th>Ser</th>
<th>Gly</th>
<th>Tyr</th>
<th>Thr</th>
<th>Phe</th>
<th>Thr</th>
<th>Ser</th>
<th>Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ala</th>
<th>Met</th>
<th>Asn</th>
<th>Trp</th>
<th>Val</th>
<th>Arg</th>
<th>Gln</th>
<th>Ala</th>
<th>Pro</th>
<th>Gly</th>
<th>Gln</th>
<th>Gly</th>
<th>Leu</th>
<th>Gly</th>
<th>Leu</th>
<th>Trp</th>
<th>Met</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gly</th>
<th>Trp</th>
<th>Ile</th>
<th>Asn</th>
<th>Thr</th>
<th>Gly</th>
<th>Asn</th>
<th>Thr</th>
<th>Tyr</th>
<th>Ala</th>
<th>Gln</th>
<th>Gly</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thr</th>
<th>Gly</th>
<th>Arg</th>
<th>Phe</th>
<th>Val</th>
<th>Phe</th>
<th>Ser</th>
<th>Leu</th>
<th>Asp</th>
<th>Thr</th>
<th>Ser</th>
<th>Val</th>
<th>Ser</th>
<th>Thr</th>
<th>Ala</th>
<th>Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leu</th>
<th>Gln</th>
<th>Ile</th>
<th>Cys</th>
<th>Ser</th>
<th>Leu</th>
<th>Ala</th>
<th>Glu</th>
<th>Asp</th>
<th>Thr</th>
<th>Ala</th>
<th>Val</th>
<th>Tyr</th>
<th>Tyr</th>
<th>Cys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ala</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

119
Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30
Ala Met Asn Trp Val Arg Gln Ala Pro Gly Gin Gly Leu Glu Glu Trp Met
35 40 45
Gly Trp Ile Asn Thr Asn Thr Gly Asn Pro Thr Tyr Ala Gin Gly Phe
50 55 60
Thr Gly Arg Phe Val Phe Ser Leu Asp Thr Ser Val Ser Thr Ala Tyr
65 70 75 80
Leu Gln Ile Ser Ser Leu Lys Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg
<table>
<thead>
<tr>
<th></th>
<th>Asp</th>
<th>Ile</th>
<th>Asn</th>
<th>Trp</th>
<th>Val</th>
<th>Arg</th>
<th>Gin</th>
<th>Ala</th>
<th>Thr</th>
<th>Gly</th>
<th>Gln</th>
<th>Gly</th>
<th>Leu</th>
<th>Glu</th>
<th>Trp</th>
<th>Met</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gly</th>
<th>Trp</th>
<th>Met</th>
<th>Asn</th>
<th>Pro</th>
<th>Asn</th>
<th>Ser</th>
<th>Gly</th>
<th>Thr</th>
<th>Gly</th>
<th>Tyr</th>
<th>Ala</th>
<th>Gln</th>
<th>Lys</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| | Gln | Gly | Arg | Val | Thr | Met | Thr | Arg | Asn | Thr | Ser | Ile | Ser | Thr | Ala | Tyr | |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| 65 | | | | | | | | | | | | | | | | |
| 70 | | | | | | | | | | | | | | | | |
| 75 | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |

<table>
<thead>
<tr>
<th></th>
<th>Met</th>
<th>Glu</th>
<th>Leu</th>
<th>Ser</th>
<th>Ser</th>
<th>Leu</th>
<th>Arg</th>
<th>Ser</th>
<th>Glu</th>
<th>Asp</th>
<th>Thr</th>
<th>Ala</th>
<th>Val</th>
<th>Tyr</th>
<th>Tyr</th>
<th>Cys</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ala</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210>	46
<211>	98
<212>	PRT
<213>	人

| <400> | 46 |

<table>
<thead>
<tr>
<th>Gln</th>
<th>Val</th>
<th>Gln</th>
<th>Leu</th>
<th>Val</th>
<th>Gln</th>
<th>Ser</th>
<th>Gly</th>
<th>Ala</th>
<th>Glu</th>
<th>Val</th>
<th>Lys</th>
<th>Lys</th>
<th>Pro</th>
<th>Gly</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ser</th>
<th>Val</th>
<th>Lys</th>
<th>Val</th>
<th>Ser</th>
<th>Cys</th>
<th>Lys</th>
<th>Ala</th>
<th>Ser</th>
<th>Gly</th>
<th>Tyr</th>
<th>Thr</th>
<th>Phe</th>
<th>Thr</th>
<th>Ser</th>
<th>Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gly</th>
<th>Ile</th>
<th>Ser</th>
<th>Trp</th>
<th>Val</th>
<th>Arg</th>
<th>Gin</th>
<th>Ala</th>
<th>Pro</th>
<th>Gly</th>
<th>Gin</th>
<th>Gly</th>
<th>Leu</th>
<th>Glu</th>
<th>Trp</th>
<th>Met</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gly</th>
<th>Trp</th>
<th>Ile</th>
<th>Ser</th>
<th>Ala</th>
<th>Tyr</th>
<th>Asn</th>
<th>Gly</th>
<th>Asn</th>
<th>Thr</th>
<th>Asn</th>
<th>Tyr</th>
<th>Ala</th>
<th>Gln</th>
<th>Lys</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| Gln | Gly | Arg | Val | Thr | Met | Thr | Thr | Asp | Thr | Ser | Thr | Ser | Thr | Thr | Ala | Tyr | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| 65 | | | | | | | | | | | | | | | | |
| 70 | | | | | | | | | | | | | | | | |
| 75 | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |

<table>
<thead>
<tr>
<th>Met</th>
<th>Glu</th>
<th>Leu</th>
<th>Arg</th>
<th>Ser</th>
<th>Leu</th>
<th>Arg</th>
<th>Ser</th>
<th>Asp</th>
<th>Thr</th>
<th>Ala</th>
<th>Val</th>
<th>Tyr</th>
<th>Tyr</th>
<th>Cys</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ala</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| <210> | 47 |
<211> 92

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30
Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Trp Ile Ser Ala Tyr Asn Gly Asn Thr Asn Tyr Ala Gln Lys Leu
50 55 60
Gln Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala
85 90

<210> 48

<211> 98

<212> PRT

<213> 人

<400> 48

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Ile Ile Asn Pro Ser Gly Gly Ser Thr Ser Tyr Ala Gln Lys Phe
50 55 60
<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gln</td>
<td>1</td>
</tr>
<tr>
<td>Gly</td>
<td>5</td>
</tr>
<tr>
<td>Arg</td>
<td>10</td>
</tr>
<tr>
<td>Val</td>
<td>15</td>
</tr>
<tr>
<td>Thr</td>
<td>20</td>
</tr>
<tr>
<td>Met</td>
<td>25</td>
</tr>
<tr>
<td>Thr</td>
<td>30</td>
</tr>
<tr>
<td>Arg</td>
<td>35</td>
</tr>
<tr>
<td>Gln</td>
<td>40</td>
</tr>
<tr>
<td>Leu</td>
<td>45</td>
</tr>
<tr>
<td>Val</td>
<td>50</td>
</tr>
<tr>
<td>Gln</td>
<td>55</td>
</tr>
<tr>
<td>Leu</td>
<td>60</td>
</tr>
<tr>
<td>Gly</td>
<td>65</td>
</tr>
<tr>
<td>Arg</td>
<td>70</td>
</tr>
<tr>
<td>Val</td>
<td>75</td>
</tr>
<tr>
<td>Met</td>
<td>80</td>
</tr>
<tr>
<td>Thr</td>
<td>85</td>
</tr>
<tr>
<td>Ser</td>
<td>90</td>
</tr>
<tr>
<td>Thr</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>1</td>
</tr>
<tr>
<td>Arg</td>
<td>5</td>
</tr>
<tr>
<td>Gln</td>
<td>10</td>
</tr>
<tr>
<td>Val</td>
<td>15</td>
</tr>
<tr>
<td>Gly</td>
<td>20</td>
</tr>
<tr>
<td>Arg</td>
<td>25</td>
</tr>
<tr>
<td>Thr</td>
<td>30</td>
</tr>
<tr>
<td>His</td>
<td>35</td>
</tr>
<tr>
<td>Trp</td>
<td>40</td>
</tr>
<tr>
<td>Val</td>
<td>45</td>
</tr>
<tr>
<td>Arg</td>
<td>50</td>
</tr>
<tr>
<td>Pro</td>
<td>55</td>
</tr>
<tr>
<td>Ser</td>
<td>60</td>
</tr>
<tr>
<td>Gly</td>
<td>65</td>
</tr>
<tr>
<td>Arg</td>
<td>70</td>
</tr>
<tr>
<td>Thr</td>
<td>75</td>
</tr>
<tr>
<td>Ser</td>
<td>80</td>
</tr>
<tr>
<td>Thr</td>
<td>85</td>
</tr>
<tr>
<td>Ser</td>
<td>90</td>
</tr>
<tr>
<td>Thr</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Met Tyr Tyr Cys</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ala Arg</td>
</tr>
<tr>
<td></td>
<td><210> 52</td>
</tr>
<tr>
<td></td>
<td><211> 96</td>
</tr>
<tr>
<td></td>
<td><212> PRT</td>
</tr>
<tr>
<td></td>
<td><213> 人</td>
</tr>
<tr>
<td></td>
<td><400> 52</td>
</tr>
<tr>
<td></td>
<td>Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu</td>
</tr>
<tr>
<td></td>
<td>1 5 10 15</td>
</tr>
<tr>
<td></td>
<td>Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Ala</td>
</tr>
<tr>
<td></td>
<td>20 25 30</td>
</tr>
<tr>
<td></td>
<td>Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu</td>
</tr>
<tr>
<td></td>
<td>35 40 45</td>
</tr>
<tr>
<td></td>
<td>Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser</td>
</tr>
<tr>
<td></td>
<td>50 55 60</td>
</tr>
<tr>
<td></td>
<td>Leu Lys Ser Arg Leu Thr Ile Ser Lys Ser Gln Val</td>
</tr>
<tr>
<td></td>
<td>65 70 75 80</td>
</tr>
<tr>
<td></td>
<td>Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr</td>
</tr>
<tr>
<td></td>
<td>85 90 95</td>
</tr>
</tbody>
</table>

	<210> 53
	<211> 99
	<212> PRT
	<213> 人
	<400> 53
	Gln Ile Thr Leu Lys Glu Ser Gly Pro Thr Leu Val Lys Pro Thr Glu
	1 5 10 15
	Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser

125
<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glu</td>
<td>Trp</td>
<td>Cys</td>
</tr>
<tr>
<td>35</td>
<td>Gly</td>
<td>Trp</td>
<td>Ile</td>
</tr>
<tr>
<td>40</td>
<td>Arg</td>
<td>Gln</td>
<td>Pro</td>
</tr>
<tr>
<td>45</td>
<td>Gly</td>
<td>Lys</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Glu</td>
<td>Trp</td>
</tr>
<tr>
<td>50</td>
<td>Ala</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>55</td>
<td>Tyr</td>
<td>Trp</td>
<td>Asn</td>
</tr>
<tr>
<td>60</td>
<td>Asp</td>
<td>Lys</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td>Tyr</td>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Lys</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td>70</td>
<td>Leu</td>
<td>Thr</td>
<td>Ile</td>
</tr>
<tr>
<td>75</td>
<td>Thr</td>
<td>Lys</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td>Thr</td>
<td>Ser</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td>Asn</td>
<td>Gln</td>
<td>Val</td>
</tr>
<tr>
<td>80</td>
<td>Val</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Thr</td>
<td>Met</td>
</tr>
<tr>
<td>85</td>
<td>Thr</td>
<td>Asn</td>
<td>Met</td>
</tr>
<tr>
<td>90</td>
<td>Asp</td>
<td>Pro</td>
<td>Val</td>
</tr>
<tr>
<td>95</td>
<td>Asp</td>
<td>Thr</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td>Thr</td>
<td>Tyr</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
<td>Cys</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ala</td>
<td>His</td>
<td>Arg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>PRT</td>
</tr>
<tr>
<td></td>
<td>人</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96</td>
</tr>
</tbody>
</table>
<212> PRT

<213> 人

<400> 55
Gln Val Thr Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln
1 5 10 15
Thr Leu Thr Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser
20 25 30
Gly Met Arg Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu
35 40 45
Trp Leu Ala Arg Ile Asp Trp Asp Asp Lys Phe Tyr Ser Thr Ser
50 55 60
Leu Lys Thr Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val
65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr
85 90 95

<210> 56
<211> 100
<212> PRT

<213> 人

<400> 56
Gln Ile Thr Leu Lys Glu Ser Gly Pro Thr Leu Val Lys Pro Thr Gln
1 5 10 15
Thr Leu Thr Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser
20 25 30
Gly Val Gly Val Gly Val Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu
35 40 45
Trp Leu Ala Leu Ile Tyr Trp Asn Asp Asp Lys Arg Tyr Ser Pro Ser
50 55 60
Leu Lys Ser Arg LeuThr Ile Thr Lys Asp Thr Ser Lys Asn Gln Val
65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr
85 90 95
Cys Ala His Arg
100

<210> 57
<211> 100
<212> PRT
<213> 人

<400> 57
Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp His
20 25 30
Tyr Met Asp Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Gly Arg Thr Arg Asn Lys Ala Asn Ser Tyr Thr Thr Glu Tyr Ala Ala
50 55 60
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Ser Lys Asn Ser
65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr
85 90 95
Tyr Cys Ala Arg
100

<210> 58
<211> 100
<212> PRT
<213> 人
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glu</td>
<td>Val</td>
<td>Gln</td>
<td>Leu</td>
<td>Leu</td>
<td>Glu</td>
<td>Ser</td>
</tr>
<tr>
<td>2</td>
<td>Gly</td>
<td>Gly</td>
<td>Gly</td>
<td>Leu</td>
<td>Val</td>
<td>Gln</td>
<td>Pro</td>
</tr>
<tr>
<td>3</td>
<td>Gly</td>
<td>10</td>
<td>15</td>
<td>Ser</td>
<td>Leu</td>
<td>Arg</td>
<td>Leu</td>
</tr>
<tr>
<td>4</td>
<td>Ser</td>
<td>Cys</td>
<td>Ala</td>
<td>Ala</td>
<td>Ser</td>
<td>Gly</td>
<td>Phe</td>
</tr>
<tr>
<td>5</td>
<td>Thr</td>
<td>Phe</td>
<td>Ser</td>
<td>Asp</td>
<td>His</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>Tyr</td>
<td>Met</td>
<td>Ser</td>
<td>Trp</td>
<td>Val</td>
<td>Arg</td>
</tr>
<tr>
<td>7</td>
<td>Gln</td>
<td>Ala</td>
<td>Ala</td>
<td>Ser</td>
<td>Gly</td>
<td>Lys</td>
<td>Gly</td>
</tr>
<tr>
<td>8</td>
<td>Leu</td>
<td>Gly</td>
<td>Leu</td>
<td>Val</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>Gly</td>
<td>Leu</td>
<td>Ile</td>
<td>Arg</td>
<td>Asn</td>
<td>Lys</td>
<td>Ala</td>
</tr>
<tr>
<td>10</td>
<td>Ala</td>
<td>Asn</td>
<td>Ser</td>
<td>Tyr</td>
<td>Thr</td>
<td>Thr</td>
<td>Glu</td>
</tr>
<tr>
<td>11</td>
<td>Tyr</td>
<td>Ala</td>
<td>Ala</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>12</td>
<td>Ser</td>
<td>Val</td>
<td>Lys</td>
<td>Gly</td>
<td>Arg</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td>13</td>
<td>Ile</td>
<td>Ser</td>
<td>Arg</td>
<td>Glu</td>
<td>Asp</td>
<td>Ser</td>
<td>Lys</td>
</tr>
<tr>
<td>14</td>
<td>Asn</td>
<td>Thr</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Leu</td>
<td>Tyr</td>
<td>Leu</td>
<td>Gln</td>
<td>Met</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>16</td>
<td>Leu</td>
<td>Lys</td>
<td>Thr</td>
<td>Glu</td>
<td>Asp</td>
<td>Leu</td>
<td>Ala</td>
</tr>
<tr>
<td>17</td>
<td>Val</td>
<td>Tyr</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<400> 59

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp His
20 25 30

Tyr Met Ser Trp Val Arg Gln Ala Ala Ser Gly Lys Gly Leu Gly
35 40 45

Gly Leu Ile Arg Asn Lys Ala Asn Ser Tyr Thr Thr Glu Tyr Ala Ala
50 55 60

Ser Val Lys Gly Arg Leu Thr Ile Ser Arg Glu Asp Ser Lys Asn Thr
65 70 75 80

Leu Tyr Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu Ala Val Tyr
85 90 95 100

<400> 59

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp His
20 25 30

Tyr Met Ser Trp Val Arg Gln Ala Ala Ser Gly Lys Gly Leu Gly
35 40 45

Gly Leu Ile Arg Asn Lys Ala Asn Ser Tyr Thr Thr Glu Tyr Ala Ala
50 55 60

Ser Val Lys Gly Arg Leu Thr Ile Ser Arg Glu Asp Ser Lys Asn Thr
65 70 75 80

Leu Tyr Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu Ala Val Tyr

<210> 59

<211> 100

<212> PRT

<213> 人
<table>
<thead>
<tr>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr Cys Ala Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

210	60
211	98
212	PRT
213	人

| 400 | 60 |
| Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Arg |
| 1 | 5 | 10 | 15 |
| Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr |
| 20 | 25 | 30 |
| Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val |
| 35 | 40 | 45 |
| Ser Gly Ile Ser Trp Asn Ser Gly Ser Ile Gly Tyr Ala Asp Ser Val |
| 50 | 55 | 60 |
| Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr |
| 65 | 70 | 75 |
| Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr Tyr Cys |
| 85 | 90 | 95 |

| Ala Lys |

<p>| 400 | 61 |
| 210 | 61 |
| 211 | 98 |
| 212 | PRT |
| 213 | 人 |</p>
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu</td>
<td>Val</td>
<td>Gln</td>
<td>Leu</td>
<td>Val</td>
<td>Glu</td>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Arg</td>
<td>Leu</td>
<td>Ser</td>
<td>Cys</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Met</td>
<td>Ser</td>
<td>Trp</td>
<td>Val</td>
<td>Arg</td>
<td>Gln</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Ile</td>
<td>Asn</td>
<td>Trp</td>
<td>Asn</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Gly</td>
<td>Arg</td>
<td>Phe</td>
<td>Thr</td>
<td>Ile</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Gln</td>
<td>Met</td>
<td>Asn</td>
<td>Ser</td>
<td>Ala</td>
<td>Glu</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Arg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Glu Val Gln Leu Val Glu Ser Gly Gly Val Val Arg Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr
20 25 30
Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Ala Lys Asn Ser Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr His Cys
85 90 95

Ala Arg
Ala Lys

<210> 63
<211> 98
<212> PRT
<213> 人

<400> 63

Gln Val Gln Leu Val Glu Ser Gly Gly Leu Val Lys Pro Gly Gly
 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr
 20 25 30
Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val
 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg

<210> 64
<211> 100
<212> PRT
<213> 人

<400> 64
<table>
<thead>
<tr>
<th>Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Ala</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Gly Arg Ile Lys Ser Lys Thr Asp Gly Thr Thr Asp Tyr Ala Ala</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Thr Ala Val Tyr</td>
<td>85</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>Tyr Cys Thr Thr</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> 65
<211> 98
<212> PRT
<213> 人

<400> 65

<table>
<thead>
<tr>
<th>Glu Val Gln Leu Val Glu Ser Gly Gly Gly Gly Leu Val Val Lys Pro Gly Gly</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Leu Arg Leu Ser Cys Pro Ala Ser Gly Phe Thr Phe Ser Asn His</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Ser Tyr Ile Ser Gly Asp Ser Gly Tyr Thr Asn Tyr Ala Asp Ser Val</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Lys Gly Arg Phe Thr Ile Ser Arg Asp Ala Asn Asn Ser Pro Tyr</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
85 90 95

Val Lys

<table>
<thead>
<tr>
<th></th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>PRT</td>
</tr>
<tr>
<td></td>
<td>人</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>213</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu Val Gin Leu Val Glu Ser Gly Gly Leu Val Gin Pro Gly Gly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn His</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr Thr Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Tyr Ser Ser Gly Asn Ser Gly Tyr Thr Asn Tyr Ala Asp Ser Val</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys Gly Arg Phe Thr Ile Ser Arg Asp Ala Lys Asn Ser Leu Tyr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val Lys</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>67</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>213</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>67</th>
</tr>
</thead>
</table>
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Ser
20 25 30
Asp Met Asn Trp Val His Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Gly Val Ser Trp Asn Gly Ser Arg Thr His Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Ile Ile Ser Arg Asp Asn Ser Arg Asn Thr Leu Tyr
65 70 75 80
Leu Gln Thr Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Val Arg

<210> 68
<211> 97
<212> PRT
<213> 人

<400> 68
Glu Val Gln Leu Val Glu Thr Gly Gly Gly Leu Ile Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn
20 25 30
Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Val Ile Tyr Ser Gly Gly Ser Thr Tyr Ala Asp Ser Val Lys
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu
65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala
<table>
<thead>
<tr>
<th></th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210>	69
<211>	97
<212	PRT
<213	人

|<400>| 69 |

| Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly |
| 1 | | 5 | 10 | 15 |
| Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn |
| 20 | 25 | | 30 |
| Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val |
| 35 | 40 | | 45 |
| Ser Val Ile Tyr Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys |
| 50 | 55 | | 60 |
| Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu |
| 65 | 70 | 75 | 80 |
| Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala |
| 85 | 90 | 95 | |
| Arg | | | |
<400> 70

Glu Val Glu Leu Val His Ser Gly Gly Gly Leu Val Glu Val Glu Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Ala Met His Trp Val Arg Glu Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Ala Ile Gly Thr Gly Gly Tyr Tyr Tyr Ala Asp Ser Val Lys
50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu
65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala
85 90 95

Arg

<210> 71

<211> 97

<212> PRT

<213> 人

<400> 71

Glu Val Glu Leu Val Glu Leu Ser Gly Gly Gly Leu Val Glu Val Glu Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Ala Met His Trp Val Arg Glu Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Ala Ile Gly Thr Gly Gly Tyr Tyr Tyr Ala Asp Ser Val Lys
50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu
65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala
85 90 95
Arg

<210> 72
<211> 98
<212> PRT
<213> 人

<400> 72
Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ser Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ala Met His Trp Val Arg Glu Ala Pro Gly Lys Gly Leu Gly Tyr Val
35 40 45
Ser Ala Ile Ser Ser Asn Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Val Gln Met Ser Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Val Arg

<210> 73
<211> 35
<212> PRT
<213> 人

<400> 73
Thr Phe Ser Ser Tyr Ala Met His Trp Val Arg Gln Ala Pro Gly Lys
1 5 10 15
Gly Leu Glu Tyr Val Ser Ala Ile Ser Ser Asn Gly Gly Ser Thr Tyr
20 25 30

Tyr Ala Asp
35

<210> 74
<211> 98
<212> PRT
<213> 人

<400> 74
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Ser Asn Ser Lys Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg

<210> 75
<211> 98
<212> PRT
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Ser Asn Ser Lys Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg

<213> 人

<400> 76
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val

<210> 76
<211> 98
<212> PRT
<213> 人
<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lys</td>
<td>Gly</td>
<td>Arg</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Leu</td>
<td>Gln</td>
<td>Met</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ala Arg

<210> 77

<211> 98

<212> PRT

<213> 人

<table>
<thead>
<tr>
<th></th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glu</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ser</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ala</td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ser</td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lys</td>
</tr>
<tr>
<td>65</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Leu</td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

Ala Lys

<210> 78

<211> 97
<table>
<thead>
<tr>
<th>Residue</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly</td>
<td></td>
</tr>
<tr>
<td>1 5 10 15</td>
<td></td>
</tr>
<tr>
<td>Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr</td>
<td></td>
</tr>
<tr>
<td>20 25 30</td>
<td></td>
</tr>
<tr>
<td>Asp Met His Trp Val Arg Gln Ala Thr Gly Lys Gly Leu Glu Trp Val</td>
<td></td>
</tr>
<tr>
<td>35 40 45</td>
<td></td>
</tr>
<tr>
<td>Ser Ala Ile Gly Thr Ala Gly Asp Thr Tyr Tyr Pro Gly Ser Val Lys</td>
<td></td>
</tr>
<tr>
<td>50 55 60</td>
<td></td>
</tr>
<tr>
<td>Gly Arg Phe Thr Ile Ser Arg Glu Asn Ala Lys Asn Ser Leu Tyr Leu</td>
<td></td>
</tr>
<tr>
<td>65 70 75 80</td>
<td></td>
</tr>
<tr>
<td>Gln Met Asn Ser Leu Arg Ala Gly Asp Thr Ala Val Tyr Tyr Cys Ala</td>
<td></td>
</tr>
<tr>
<td>85 90 95</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residue</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly</td>
<td></td>
</tr>
<tr>
<td>1 5 10 15</td>
<td></td>
</tr>
<tr>
<td>Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr</td>
<td></td>
</tr>
<tr>
<td>20 25 30</td>
<td></td>
</tr>
<tr>
<td>Glu Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val</td>
<td></td>
</tr>
<tr>
<td>35 40 45</td>
<td></td>
</tr>
<tr>
<td>Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val</td>
<td></td>
</tr>
</tbody>
</table>
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg

<210> 80
<211> 98
<212> PRT
<213> 人

<400> 80
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Thr Leu Tyr
65 70 75
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Lys

<210> 81
<211> 98
<212> PRT

<213> 人

<400> 81

Gln Val Gln Leu Val Glu Gly Gly Val Val Gln Pro Gly Arg
 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg

<210> 82

<211> 98

<212> PRT

<213> 人
Ser Tyr Ile Ser Ser Ser Ser Thr Ile Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg

<210> 83
<211> 97
<212> PRT
<213> 人

<400> 83
Glu Asp Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Pro Ser Cys Ala Ala Ser Gly Phe Ala Phe Ser Ser Tyr
20 25 30
Val Leu His Trp Val Arg Ala Pro Gly Lys Gly Pro Glu Trp Val
35 40 45
Ser Ala Ile Gly Thr Gly Gly Thr Tyr Tyr Ala Asp Ser Val Met
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Lys Ser Leu Tyr Leu
65 70 75 80
Gln Met Asn Ser Leu Ile Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala
85 90 95

Arg

<210> 84
<211> 98
<table>
<thead>
<tr>
<th>Residue</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr</td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Trp Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Val Trp Val</td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Ser Arg Ile Asn Ser Asp Gly Ser Ser Thr Thr Tyr Ala Asp Ser Val</td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Lys Gly Arg Phe Thr Ile Ser Arg Asp Ala Lys Asn Thr Leu Tyr</td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys</td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

Additional text:

85
98
PRT
人
85
50 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg

<210> 86

<211> 97

<212> PRT

<213> 人

<400> 86

Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Leu Leu Lys Pro Ser Glu
1 5 10 15

Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr
20 25 30

Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile
35 40 45

Gly Glu Ile Ile His Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys
50 55 60

Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Glu Phe Ser Leu
65 70 75 80

Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95

Arg

<210> 87

<211> 97
Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Leu Leu Lys Pro Ser Glu
Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Leu Leu Lys Pro Ser Glu
Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Leu Leu Lys Pro Ser Glu

Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr
Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr
Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr

Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile
Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile
Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile

Gly Glu Ile Asn His Ser Thr Asn Tyr Asn Pro Ser Leu Lys
Gly Glu Ile Asn His Ser Thr Asn Tyr Asn Pro Ser Leu Lys
Gly Glu Ile Asn His Ser Thr Asn Tyr Asn Pro Ser Leu Lys

Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu

Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala

Arg

Arg

Arg

Arg
<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ser Arg Ala Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Asn Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Cys Cys Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Arg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> 89
<211> 99
<212> PRT
<213> 人

<table>
<thead>
<tr>
<th></th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gln Leu Gln Leu Gln Glu Ser Gly Ser Gly Leu Val Lys Pro Ser Gln</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thr Leu Ser Leu Thr Cys Ala Val Ser Gly Gly Ser Ile Ser Ser Gly</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gly Tyr Ser Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu</td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trp Ile Gly Tyr Ile Tyr His Ser Gly Ser Thr Tyr Tyr Asn Pro Ser</td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leu Lys Ser Arg Val Thr Ile Ser Val Asp Arg Ser Lys Asn Gln Phe</td>
</tr>
<tr>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr</td>
</tr>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Cys Ala Arg</td>
<td></td>
</tr>
</tbody>
</table>

<210> 90
<211> 99
<212> PRT
<table>
<thead>
<tr>
<th></th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln</td>
<td>1 5 10 15</td>
</tr>
<tr>
<td>Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Ser Ile Ser Ser Gly</td>
<td>20 25 30</td>
</tr>
<tr>
<td>Gly Tyr Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu</td>
<td>35 40 45</td>
</tr>
<tr>
<td>Trp Ile Gly Tyr Ile Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser</td>
<td>50 55 60</td>
</tr>
<tr>
<td>Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe</td>
<td>65 70 75 80</td>
</tr>
<tr>
<td>Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr</td>
<td>85 90 95</td>
</tr>
<tr>
<td>Cys Ala Arg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>99</td>
</tr>
<tr>
<td>PRT</td>
<td></td>
</tr>
<tr>
<td>人</td>
<td></td>
</tr>
</tbody>
</table>
Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe
65
Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
85
Cys Ala Arg

<210> 92
<211> 98
<212> PRT
<213> 人

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 5 10 15
Thr Leu Ser Leu Thr Cys Ala Val Ser Gly Tyr Ser Ile Ser Ser Gly
20 25 30
Tyr Tyr Trp Gly Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp
35 40 45
Ile Gly Ser Ile Tyr His Ser Gly Ser Thr Tyr Tyr Asn Pro Ser Leu
50 55 60
Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser
65 70 75 80
Leu Lys Leu Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg

<210> 93
<211> 98
<212> PRT
<table>
<thead>
<tr>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gln, Val, Gln, Leu, Gln, Glu, Ser, Gly, Pro, Gly, Leu, Val, Lys, Pro, Ser, Glu]</td>
</tr>
<tr>
<td>Thr, Leu, Ser, Leu, Thr, Cys, Thr, Val, Ser, Gly, Tyr, Ser, Ile, Ser, Ser, Gly</td>
</tr>
<tr>
<td>Tyr, Tyr, Trp, Gly, Trp, Ile, Arg, Gln, Pro, Pro, Gly, Lys, Gly, Leu, Glu, Trp</td>
</tr>
<tr>
<td>Ile, Gly, Ser, Ile, Tyr, His, Ser, Gly, Ser, Thr, Tyr, Tyr, Asn, Pro, Ser, Leu</td>
</tr>
<tr>
<td>Lys, Ser, Arg, Val, Thr, Ile, Ser, Val, Asp, Thr, Ser, Lys, Asn, Gln, Phe, Ser</td>
</tr>
<tr>
<td>Leu, Lys, Leu, Ser, Ser, Val, Thr, Ala, Ala, Asp, Thr, Ala, Val, Tyr, Tyr, Cys</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala, Arg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gln, Val, Gln, Leu, Gln, Glu, Ser, Gly, Pro, Gly, Leu, Val, Lys, Pro, Ser, Asp]</td>
</tr>
<tr>
<td>Thr, Leu, Ser, Leu, Thr, Cys, Ala, Val, Ser, Gly, Tyr, Ser, Ile, Ser, Ser, Ser</td>
</tr>
<tr>
<td>Asn, Trp, Trp, Gly, Trp, Ile, Arg, Gln, Pro, Pro, Gly, Lys, Gly, Leu, Glu, Trp</td>
</tr>
<tr>
<td>Ile, Gly, Tyr, Ile, Tyr, Tyr, Ser, Gly, Ser, Thr, Tyr, Tyr, Asn, Pro, Ser, Leu</td>
</tr>
</tbody>
</table>
Lys Ser Arg Val Thr Met Ser Val Asp Thr Ser Lys Asn Gln Phe Ser
65 70 75 80
Leu Lys Leu Ser Ser Val Thr Ala Val Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg

<210> 95
<211> 98
<212> PRT
<213> 人

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
1 5 10 15
Thr Leu Ser Leu Thr Cys Ala Val Ser Gly Ser Tyr Ser Ile Ser Ser Ser
20 25 30
Asn Trp Trp Gly Trp Ile Arg Gin Pro Pro Gly Lys Gly Leu Glu Trp
35 40 45
Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Ile Tyr Tyr Asn Pro Ser Leu
50 55 60
Lys Ser Arg Val Thr Met Ser Val Asp Thr Ser Lys Asn Gln Phe Ser
65 70 75 80
Leu Lys Leu Ser Ser Val Thr Ala Val Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg

<210> 96
<211> 98
<212> PRT
<213> 人

<400> 96

Gln Val Leu Gln Leu Gln Glu Ser Gly Leu Val Lys Pro Ser Glu
1 5 10

Thr Leu Ser Leu Thr Cys Val Val Ser Gly Ser Ile Ser Ser Ser
20 25 30

Asn Trp Trp Ser Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp
35 40 45

Ile Gly Glu Ile Tyr His Ser Gly Asn Pro Asn Tyr Asn Pro Ser Leu
50 55 60

Lys Ser Arg Val Thr Ile Ser Ile Asp Lys Ser Lys Asn Gln Phe Ser
65 70 75 80

Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg

<210> 97
<211> 98
<212> PRT
<213> 人

<400> 97

Gln Val Gln Leu Gln Leu Gln Glu Ser Gly Leu Val Lys Pro Ser Glu
1 5 10

Thr Leu Ser Leu Thr Cys Val Val Ser Gly Ser Ile Ser Ser Ser
20 25 30

Asn Trp Trp Ser Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp
35 40 45

Ile Gly Glu Ile Tyr His Ser Gly Ser Pro Asn Tyr Asn Pro Ser Leu
50 Lys Ser Arg Val Thr Ile Ser Val Asp Lys Ser Lys Asn Gln Phe Ser 65
55 Leu Lys Leu Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys 80
60 Ala Arg

<210> 98
<211> 98
<212> PRT
<213> 人

<400> 98

1 Gln Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Pro Gly
2 Thr Leu Ser Leu Thr Cys Ala Val Ser Gly Ser Ile Ser Ser Ser
3 Asn Trp Trp Ser Trp Val Arg Gin Pro Pro Gly Lys Gly Leu Glu Trp
4 Ile Gly Glu Ile Tyr His Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu
5 Lys Ser Arg Val Thr Ile Ser Val Asp Lys Ser Lys Asn Gin Phe Ser
6 Leu Lys Leu Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Cys Cys
80
85 Ala Arg

<210> 99
<211> 98
<212> PRT
<213> 人

<400> 99

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gly
1 5 10 15
Thr Leu Ser Leu Thr Cys Ala Val Ser Gly Gly Ser Ile Ser Ser Ser
20 25 30
Asn Trp Trp Ser Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp
35 40 45
Ile Gly Glu Ile Tyr His Ser Gly Thr Asn Tyr Asn Pro Ser Leu
50 55 60
Lys Ser Arg Val Thr Ile Ser Val Asp Ser Lys Asn Gln Phe Ser
65 70 75 80
Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg

<210> 100

<211> 99

<212> PRT

<213> 人

<400> 100

Gln Leu Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Ser
20 25 30
Ser Tyr Tyr Trp Gly Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu
35 40 45
Trp Ile Gly Ser Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser
50 55 60
Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe
65 70 75
Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
85 90 95
Cys Ala Arg

<210> 101
<211> 99
<212> PRT
<213> 人

<400> 101
Gln Leu Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Ser Ile Ser Ser Ser
20 25 30
Ser Tyr Tyr Trp Gly Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu
35 40 45
Trp Ile Gly Ser Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser
50 55 60
Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn His Phe
65 70 75
Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
85 90 95
Cys Ala Arg

<210> 102
<211> 97
<212> PRT
<213> 人
Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr
20 25 30
Tyr Trp Ser Trp Ile Arg Gln Pro Ala Gly Lys Gly Leu Glu Trp Ile
35 40 45
Gly Arg Ile Tyr Thr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys
50 55 60
Ser Arg Val Thr Asn Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
65 70 75 80
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95

Arg

<210> 103

<211> 97

<212> PRT

<213> 人
<table>
<thead>
<tr>
<th></th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peptide Sequence 1

<table>
<thead>
<tr>
<th></th>
<th>104</th>
</tr>
</thead>
<tbody>
<tr>
<td><210></td>
<td>104</td>
</tr>
<tr>
<td><211></td>
<td>97</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>人</td>
</tr>
</tbody>
</table>

Peptide Sequence 2

<table>
<thead>
<tr>
<th></th>
<th>104</th>
</tr>
</thead>
<tbody>
<tr>
<td><400></td>
<td>104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Ser Val Ser Ser Tyr</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr Trp Ser Trp Ile Arg Glu Pro Pro Gly Lys Gly Leu Glu Trp Ile</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Met Gln Phe Ser Leu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peptide Sequence 3

<table>
<thead>
<tr>
<th></th>
<th>105</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Asp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>70</th>
<th>75</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Met Gln Phe Ser Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr
20 25 30

Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys
50 55 60

Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
65 70 75 80

Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95

Arg

<210> 106

<211> 98

<212> PRT

<213> 人

<400> 106

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Pro Gly Glu
1 5 10 15

Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
20 25 30

Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
35 40 45

Gly Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Phe
50 55 60

Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr
65 70 75 80

Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95

Ala Arg
<210> 107
<211> 98
<212> PRT
<213> 人

<400> 107

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
 1 5 10 15

Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
 20 25 30

Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45

Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
 50 55 60

Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Pro Ile Ser Thr Ala Tyr
 65 70 75 80

Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
 85 90 95

Ala Arg

<210> 108
<211> 98
<212> PRT
<213> 人

<400> 108

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
 1 5 10 15

Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
 20 25 30

Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
50 55 60

Gln Gly Gln Val Thr Ile Ser Ala Asp Ser Ile Ser Thr Ala Tyr
65 70 75 80

Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95

Ala Arg

<210> 109

<211> 98
<212> PRT

<213> 人

Glu Val Gln Leu Leu Gln Ser Ala Ala Glu Val Lys Arg Pro Gly Glu
1 5 10 15

Ser Leu Arg Ile Ser Cys Lys Thr Ser Gly Tyr Ser Phe Thr Ser Tyr
20 25 30

Trp Ile His Trp Val Arg Gln Met Pro Gly Lys Glu Leu Glu Trp Met
35 40 45

Gly Ser Ile Tyr Pro Gly Asn Ser Asp Thr Arg Tyr Ser Pro Ser Phe
50 55 60

Gln Gly His Val Thr Ile Ser Ala Asp Ser Ser Ser Ser Thr Ala Tyr
65 70 75 80

Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Ala Ala Met Tyr Tyr Cys
85 90 95

Val Arg

<210> 110

<211> 98
<212> PRT
<table>
<thead>
<tr>
<th>Residue</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residue</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Residue</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Residue</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Residue</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Residue</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

Ala Arg

<table>
<thead>
<tr>
<th>Residue</th>
<th>110</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residue</th>
<th>98</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residue</th>
<th>111</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residue</th>
<th>98</th>
</tr>
</thead>
</table>

PRT

<table>
<thead>
<tr>
<th>Residue</th>
<th>111</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residue</th>
<th>98</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residue</th>
<th>98</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residue</th>
<th>111</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residue</th>
<th>98</th>
</tr>
</thead>
</table>
Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95

Ala Arg

<210> 112
<211> 101
<212> PRT
<213> 人

Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gin
1 5 10 15

Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn
20 25 30

Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Ser Arg Gly Leu Glu
35 40 45

Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala
50 55 60

Val Ser Val Lys Ser Arg Ile Thr Ile Asn Pro Asp Thr Ser Lys Asn
65 70 75 80

Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val
85 90 95

Tyr Tyr Cys Ala Arg
100

<210> 113
<211> 87
<212> PRT
<213> 人

<400> 113
<table>
<thead>
<tr>
<th></th>
<th>Arg</th>
<th>Lys</th>
<th>Leu</th>
<th>Gly</th>
<th>Ala</th>
<th>Ser</th>
<th>Val</th>
<th>Lys</th>
<th>Val</th>
<th>Ser</th>
<th>Arg</th>
<th>Lys</th>
<th>Ala</th>
<th>Ser</th>
<th>Ser</th>
<th>Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Thr</th>
<th>Phe</th>
<th>Thr</th>
<th>Ser</th>
<th>Tyr</th>
<th>Asp</th>
<th>Ile</th>
<th>His</th>
<th>Cys</th>
<th>Val</th>
<th>Arg</th>
<th>Gln</th>
<th>Ala</th>
<th>Pro</th>
<th>Gly</th>
<th>Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gly</th>
<th>Leu</th>
<th>Lys</th>
<th>Gly</th>
<th>Trp</th>
<th>Met</th>
<th>Gly</th>
<th>Ile</th>
<th>Tyr</th>
<th>Ser</th>
<th>Gly</th>
<th>Asn</th>
<th>Gly</th>
<th>Lys</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gly</th>
<th>Tyr</th>
<th>Ala</th>
<th>Gln</th>
<th>Lys</th>
<th>Phe</th>
<th>Gln</th>
<th>Arg</th>
<th>Val</th>
<th>Thr</th>
<th>Met</th>
<th>Thr</th>
<th>Arg</th>
<th>Asp</th>
<th>Met</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Thr</th>
<th>Ser</th>
<th>Thr</th>
<th>Ala</th>
<th>Tyr</th>
<th>Met</th>
<th>Glu</th>
<th>Leu</th>
<th>Ser</th>
<th>Ser</th>
<th>Gln</th>
<th>Arg</th>
<th>Ser</th>
<th>Glu</th>
<th>Asp</th>
<th>Ile</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asp</th>
<th>Val</th>
<th>Tyr</th>
<th>Tyr</th>
<th>Cys</th>
<th>Ala</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
</tbody>
</table>

<210> 114
<211> 5
<212> PRT
<213> 人

Asp | Tyr | Gly | Met | Ser |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> 115
<211> 17
<212> PRT
<213> 人

Gly | Ile | Asn | Trp | Asn | Gly | Ser | Thr | Gly | Tyr | Al | Tyr | Ala | Asp | Ser | Val | Lys |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Gly

<210> 116
<table>
<thead>
<tr>
<th><211></th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>人</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trp Gly Gln Gly Thr Leu Val Thr Val Ser Arg</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>117</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>11</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>人</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>117</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>118</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>11</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>人</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>118</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>119</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>8</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>人</td>
</tr>
</tbody>
</table>
Gly Lys Gly Leu Glu Trp Val Ser
1
5

Trp Val Arg Gln Ala Pro
1
5

Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp
1
5
10

Ala Val Tyr Tyr Cys Ala Arg
1
5

167
<211> 20
<212> PRT
<213> 人

<400> 123
1 5 10 15
Gly Gly Gly Ser
 20

<210> 124
<211> 15
<212> PRT
<213> 人

<400> 124
1 5 10 15
<210> 125
<211> 9
<212> PRT
<213> 人

<400> 125
Asn Ser Arg Asp Ser Ser Gly Asn His
1 5
<210> 126
<211> 8
<212> PRT
Ala Ala Trp Asp Asp Ser Leu Val
1 5

Met Gln Ser Ile Gln Leu Pro Thr
1 5

Met Gln Ser Ile Gln Leu Pro Ala Thr
1 5

Ala Ala Trp Asp Asp Gly Leu Ser Leu Val
1 5 10

<210> 130

<211> 10

<212> PRT

<213> 人

<400> 130

Ala Ala Trp Asp Asp Ser Leu Ser Gly Val
1 5 10

<210> 131

<211> 11

<212> PRT

<213> 人

<400> 131

Asn Ser Arg Asp Ser Ser Gly Ser Val Arg Val
1 5 10

<210> 132

<211> 9

<212> PRT

<213> 人

<400> 132

Leu Leu Tyr Tyr Gly Gly Ala Tyr Val
1 5

<210> 133

<211> 11

<212> PRT
<213> 人

<400> 133
Asn Ser Arg Asp Ser Ser Gly Val Ser Arg Val
1 5 10

<210> 134
<211> 10
<212> PRT
<213> 人

<400> 134
Ala Ala Trp Asp Asp Leu Pro Tyr Val
1 5 10

<210> 135
<211> 12
<212> PRT
<213> 人

<400> 135
Ala Ala Trp Asp Asp Leu Cys Pro Glu Phe Val
1 5 10

<210> 136
<211> 11
<212> PRT
<213> 人

<400> 136
Ala Ala Trp Asp Asp Ser Leu Ala Trp Phe Val
1 5 10

<210> 137
<211> 10
<212> PRT
<213> 人

<400> 137
Leu Ala Trp Asp Thr Ser Pro Arg Trp Val
1 5 10

<210> 138
<211> 10
<212> PRT
<213> 人

<400> 138
Thr Ala Trp Asp Asp Ser Leu Ala Val Val
1 5 10

<210> 139
<211> 11
<212> PRT
<213> 人

<400> 139
Asn Ser Arg Asp Ser Gly Asn His Arg Val
1 5 10

<210> 140
<211> 9
<212> PRT
<213> 人

<400> 140
Gln Gln Tyr Gly Ser Ser Gln Arg Thr
 1 5
<210> 141
<211> 10
<212> PRT
<213> 人

<400> 141
Ala Ala Trp Asp Asp Ser Leu Arg Leu Val
 1 5 10
<210> 142
<211> 9
<212> PRT
<213> 人

<400> 142
Met Gln Gly Thr His Trp Arg Pro Thr
 1 5
<210> 143
<211> 9
<212> PRT
<213> 人

<400> 143

173
Met Gln Gly Lys His Trp Pro Leu Thr
1 5

<210> 144

<211> 9

<212> PRT

<213> 人

<400> 144

Ala Ala Trp Asp Asp Ser Leu Gly Phe
1 5

<210> 145

<211> 9

<212> PRT

<213> 人

<400> 145

Met Gln Gly Thr His Arg Arg Ala Thr
1 5

<210> 146

<211> 9

<212> PRT

<213> 人

<400> 146

Met Gln Ala Leu Gln Thr Pro Leu Thr
1 5

<210> 147

<211> 9
<212> PRT

<213> 人

<400> 147

Met Arg Gly Thr His Arg Arg Ala Thr
1 5

<210> 148

<211> 9

<212> PRT

<213> 人

<400> 148

Met Gln Gly Thr His Trp His Pro Thr
1 5

<210> 149

<211> 8

<212> PRT

<213> 人

<400> 149

Met Gln Ala Leu Gln Ser Pro Thr
1 5

<210> 150

<211> 10

<212> PRT

<213> 人
<table>
<thead>
<tr>
<th>Peptide</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala Ala Trp Asp Asp Ser Leu Ala Phe Val</td>
<td>1 5 10</td>
</tr>
<tr>
<td>Met Gin Ala Leu Gin Thr Pro Thr</td>
<td>1 5</td>
</tr>
<tr>
<td>Gln Gln Ser Tyr Ser Thr Arg Thr</td>
<td>1 5</td>
</tr>
<tr>
<td>Met Gin Gly Thr His Trp Pro Phe Thr</td>
<td>1 5</td>
</tr>
</tbody>
</table>
<211> 9
<212> PRT
<213> 人

<400> 154
Met Gln Gly Thr His Trp Pro Ala Thr
1 5
<210> 155
<211> 10
<212> PRT
<213> 人

<400> 155
Ala Ala Trp Asp Asp Ser Leu Arg Ser Val
1 5 10
<210> 156
<211> 9
<212> PRT
<213> 人

<400> 156
Ala Ala Trp Asp Asp Ser Leu Leu Val
1 5
<210> 157
<211> 11
<212> PRT
<213> 人
<table>
<thead>
<tr>
<th>Sequence</th>
<th>157</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp</td>
<td>Trp</td>
</tr>
<tr>
<td>Asp</td>
<td>Asn</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
</tr>
<tr>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td>Val</td>
<td>Pro</td>
</tr>
<tr>
<td>Val</td>
<td>10</td>
</tr>
</tbody>
</table>

| 158 |
Met	Gln
Ala	Leu
Gln	Ser
Pro	Ala
Thr	5

| 159 |
Met	Gln
Ala	Leu
Gln	Thr
Pro	Val
Thr	5

| 160 |
Ala	Ala
Ala	Trp
Asp	Asp
Ser	Leu
Ser	Ala
Tyr	Val
10	

| 161 |
Ala	Ala
Ala	Trp
Asp	Asp
Ser	Leu
Ser	Ser
Tyr	Val
10	
<210> 11
<211> PRT
<212> 人

<400> 161
Asn Ser Arg Asp Ser Ser Gly Arg Val Asn Val
1 5 10

<210> 162
<211> 8
<212> PRT
<213> 人

<400> 162
Met Gin Ala Leu Arg Thr Arg Thr
1 5

<210> 163
<211> 11
<212> PRT
<213> 人

<400> 163
Ala Ala Trp Asp Asp Ser Leu Phe Tyr Pro Val
1 5 10

<210> 164
<211> 9
<212> PRT
<213> 人
Sequence Table

<table>
<thead>
<tr>
<th></th>
<th>164</th>
<th>165</th>
<th>166</th>
<th>167</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acids</td>
<td>Met</td>
<td>Gln</td>
<td>Gly</td>
<td>Thr</td>
</tr>
<tr>
<td>Position</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>10</th>
<th>9</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acids</td>
<td>Trp</td>
<td>Arg</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>167</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acids</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Position</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>167</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acids</td>
<td>Met</td>
<td>Gln</td>
</tr>
<tr>
<td>Position</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td><210></td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td><211></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
<td></td>
</tr>
<tr>
<td><213></td>
<td>人</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>168</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Trp</td>
<td>Asp</td>
</tr>
<tr>
<td>Asp</td>
<td>Ser</td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>Val</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>169</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>9</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>人</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>169</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cys</td>
<td>Ser</td>
</tr>
<tr>
<td>Tyr</td>
<td>Ala</td>
</tr>
<tr>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td>Val</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>8</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>人</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gln</td>
<td>Gln</td>
</tr>
<tr>
<td>Asp</td>
<td>Tyr</td>
</tr>
<tr>
<td>Asn</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>171</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>10</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>人</td>
</tr>
</tbody>
</table>
Val Leu Tyr Met Gly Ser Gly Ser Ala Val
1 5 10

Met Gln Arg Ile Glu Phe Pro Asn Thr
1 5

Ala Ala Trp Asp Asp Ser Leu Ala Cys Ala Val
1 5 10

Gln Gln Ala Asn Ser Phe Arg Thr
1 5
 Ala Ala Trp Asp Asp Ser Leu Ser Arg Pro Val
 1 5 10
 Ala Ala Trp Asp Asp Ser Leu Tyr Asn Val
 1 5 10
 Ala Ala Trp Asp Asp Ser Leu Asn Arg Asn Val
 1 5 10
 Ala Ala Trp Asp Asp Ser Leu Asn Arg Asn Val
 1 5 10
 Ala Ala Trp Asp Asp Ser Leu Asn Arg Asn Val
 1 5 10
Met Gln Val Leu Gln Thr Arg Thr
1 5

178

179

8

PRT

人

Met Gln Ala Leu Gln Thr Arg Thr
1 5

179

180

8

PRT

人

180

Gln Gln Ser Tyr Ser Thr Arg Met
1 5

181

8

PRT

人

181

Met Gln Ala Leu Gln Thr Leu Thr
<210> 182

<400> 182
Met Arg Ala Leu Gln Thr Pro Thr
1 5

<210> 183

<400> 183
Ala Ala Trp Asp Asp Ser Leu Pro Gly Tyr Val
1 5 10

<210> 184

<400> 184
Ala Ala Trp Asp Asp Ser Leu Gly Phe Val
1 5 10

<210> 185

<211> 10

<212> PRT

<213> 人
 Ala Ala Trp Asp Asp Ser Leu Phe Leu Val
1 5 10

Met Gln Ser Ile Gln Leu Arg Thr
1 5

Ala Ala Trp Asp Asp Ser Leu Ser Ile Val
1 5 10

185

8

PRT

186

8

PRT

187

8

PRT

188

8

PRT

188
<table>
<thead>
<tr>
<th>Met Gln Gly Thr His Trp Pro Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5 189</td>
</tr>
<tr>
<td><210> 189</td>
</tr>
<tr>
<td><211> 8</td>
</tr>
<tr>
<td><212> PRT</td>
</tr>
<tr>
<td><213> 人</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Met Gln Ala Leu His Thr Arg Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5 190</td>
</tr>
<tr>
<td><210> 190</td>
</tr>
<tr>
<td><211> 9</td>
</tr>
<tr>
<td><212> PRT</td>
</tr>
<tr>
<td><213> 人</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asn Ser Arg Asp Ser Ser Gly Ser Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5 191</td>
</tr>
<tr>
<td><210> 191</td>
</tr>
<tr>
<td><211> 9</td>
</tr>
<tr>
<td><212> PRT</td>
</tr>
<tr>
<td><213> 人</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gln Gln Tyr Gly Ser Ser Pro Tyr Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5 192</td>
</tr>
<tr>
<td><210> 192</td>
</tr>
<tr>
<td><211> 8</td>
</tr>
</tbody>
</table>
<212> PRT
<213> 人

<400> 192
Gln Gln Ser Tyr Ser Thr Arg Thr
1 5

<210> 193
<211> 9
<212> PRT
<213> 人

<400> 193
Gln Gln Ala Asn Ser Phe Ala Ala Thr
1 5

<210> 194
<211> 9
<212> PRT
<213> 人

<400> 194
Gln Gln Ala Asn Ser Phe Pro Ala Ala Thr
1 5

<210> 195
<211> 10
<212> PRT
<213> 人

<400> 195
Val Leu Tyr Met Gly Ser Gly Val Tyr Val
1 5 10

<210> 196

<211> 11

<212> PRT

<213> 人

<400> 196

Ala Ala Trp Asp Asp Ser Leu Trp Ser Ala Val
1 5 10

<210> 197

<211> 12

<212> PRT

<213> 人

<400> 197

Ala Ala Trp Asp Asp Ser Leu Pro Arg Arg Leu Val
1 5 10

<210> 198

<211> 11

<212> PRT

<213> 人

<400> 198

Ala Ala Trp Asp Asp Ser Leu Pro Ser Gly Val
1 5 10

<210> 199

<211> 8
<212> PRT

<213> 人

<400> 199
Met Gln Ala Leu Gln Thr Leu Thr
1 5

<210> 200

<211> 10

<212> PRT

<213> 人

<400> 200
Ala Ala Trp Asp Asp Gly Leu Leu Arg Val
1 5 10

<210> 201

<211> 10

<212> PRT

<213> 人

<400> 201
Ala Ala Trp Asp Ser Leu Ala Leu Val
1 5 10

<210> 202

<211> 11

<212> PRT

<213> 人
Asn Ser Arg Asp Ser Ser Gly Phe Gln Leu Val
1 5 10

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15

Ala Gln Pro Ala Met Ala Glu Val Gln Leu Val Glu Ser Gly Gly Gly
20 25 30

Val Val Arg Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
35 40 45

Phe Thr Phe Asp Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly
50 55 60

Lys Gly Leu Glu Trp Val Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr
65 70 75 80

Gly Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asn
85 90 95

Ala Lys Asn Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
100 105 110

Thr Ala Val Tyr Cys Ala Arg Leu Thr His Pro Tyr Phe Trp Gly
115 120 125

Gln Gly Thr Leu Val Thr Val Ser Arg Gly Gly Gly Gly Ser Gly Gly
130 135 140

Gly Gly Ser Gly Gly Gly Gly Ser Ser Glu Leu Thr Gln Asp Pro Ala
145 150 155 160
<table>
<thead>
<tr>
<th></th>
<th>Val</th>
<th>Ser</th>
<th>Val</th>
<th>Ala</th>
<th>Leu</th>
<th>Gly</th>
<th>Gln</th>
<th>Thr</th>
<th>Val</th>
<th>Arg</th>
<th>Ile</th>
<th>Thr</th>
<th>Cys</th>
<th>Gly</th>
<th>Asp</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ser</th>
<th>Leu</th>
<th>Arg</th>
<th>Ser</th>
<th>Tyr</th>
<th>Tyr</th>
<th>Ala</th>
<th>Ser</th>
<th>Trp</th>
<th>Tyr</th>
<th>Gln</th>
<th>Gln</th>
<th>Lys</th>
<th>Pro</th>
<th>Gly</th>
<th>Gln</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ala</th>
<th>Pro</th>
<th>Val</th>
<th>Leu</th>
<th>Val</th>
<th>Ile</th>
<th>Tyr</th>
<th>Gly</th>
<th>Lys</th>
<th>Asn</th>
<th>Asn</th>
<th>Arg</th>
<th>Pro</th>
<th>Ser</th>
<th>Gly</th>
<th>Ile</th>
</tr>
</thead>
<tbody>
<tr>
<td>195</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td></td>
</tr>
</tbody>
</table>

| | Pro | Asp | Arg | Phe | Ser | Gly | Ser | Ser | Gly | Ser | Gly | Asn | Thr | Ala | Ser | Leu | Thr |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 210 | | | | | | | | | | | | | | | | |
| 215 | | | | | | | | | | | | | | | | |
| 220 | | | | | | | | | | | | | | | | |

<table>
<thead>
<tr>
<th></th>
<th>Ile</th>
<th>Thr</th>
<th>Gly</th>
<th>Ala</th>
<th>Gln</th>
<th>Ala</th>
<th>Glu</th>
<th>Asp</th>
<th>Glu</th>
<th>Ala</th>
<th>Asp</th>
<th>Tyr</th>
<th>Tyr</th>
<th>Cys</th>
<th>Asn</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Arg</th>
<th>Asp</th>
<th>Ser</th>
<th>Ser</th>
<th>Gly</th>
<th>Asn</th>
<th>His</th>
<th>Val</th>
<th>Val</th>
<th>Phe</th>
<th>Gly</th>
<th>Gly</th>
<th>Gly</th>
<th>Thr</th>
<th>Lys</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>245</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Thr</th>
<th>Val</th>
<th>Leu</th>
<th>Gly</th>
<th>Ala</th>
<th>Ala</th>
<th>Ala</th>
<th>Ala</th>
<th>Glu</th>
<th>Glu</th>
<th>Lys</th>
<th>Leu</th>
<th>Ile</th>
<th>Ser</th>
<th>Glu</th>
<th>Asp</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Leu</th>
<th>Asn</th>
<th>Gly</th>
<th>Ala</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
图 2

对照 scFv

Y-1 scFv

2c. 3号患者

2b. 2号患者

2a. 1号患者
儿童

成人

--- Y-1 scFv --- 对照 scFv

图 5
图 7

对照抗体

Y-1 抗体
图 8

图 8

Fig. 1

1.0 μg IgG = 0.2 μg 二聚体 = 6 μg CONY1
图 9
y1-ckak的Superdex75曲线
图 11
图 12
抗-GPIbα抗体的表位

图 13
Y17 scFv

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15
Ala Gln Pro Ala Met Ala Glu Val Gln Leu Val Glu Ser Gly Gly Gly
20 25 30
Val Val Arg Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
35 40 45
Phe Thr Phe Asp Asp Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly
50 55 60
Lys Gly Leu Glu Trp Val Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr
65 70 75 80
Gly Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn
85 90 95
Ala Lys Asn Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
100 105 110
Thr Ala Val Tyr Tyr Cys Ala Arg Leu Thr His Pro Tyr Phe Trp Gly
115 120 125
Gln Gly Thr Leu Val Thr Val Ser Arg Gly Gly Gly Gly Gly Ser Gly
130 135 140
Gly Gly Ser Gly Gly Gly Gly Gly Ser Ser Glu Leu Thr Gln Asp Pro Ala
145 150 155 160
Val Ser Val Ala Leu Gly Glu Thr Val Arg Ile Thr Cys Gln Gly Asp
165 170 175
Ser Leu Arg Ser Tyr Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln
180 185 190
Ala Pro Val Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile
195 200 205
Pro Asp Arg Phe Ser Gly Ser Ser Gly Asn Thr Ala Ser Leu Thr
210 215 220
Ile Thr Gly Ala Gln Ala Glu Asp Ala Asp Tyr Tyr Cys Asn Ser
225 230 235 240
Arg Asp Ser Gly Asn His Val Val Phe Gly Gly Gly Thr Lys Leu
245 250 255
Thr Val Leu Gly Ala Ala Ala Glu Gln Leu Ile Ser Glu Glu Asp
260 265 270
Leu Asn Gly Ala Ala
275

图 14