(54) 发明名称
阳极处理彩绘方法

(57) 摘要
本发明涉及一种阳极处理彩绘方法，其包含下列步骤：提供一金属工件；阳极处理该金属工件，使该金属工件的表面形成皮膜层，该皮膜层上形成多个毛细孔，于该皮膜层上利用多个电子喷墨喷嘴，以打印方式喷涂多个染料，该等染料渗入该皮膜层的该等毛细孔内，而于该皮膜内形成彩绘图案；对形成该彩绘图案的该皮膜层进行封孔处理。通过阳极处理后的彩绘层，可增加其硬度，减少刮伤或撞伤，而可保持美观度。
1. 一种阳极处理彩绘方法，包含下列步骤：
 提供一金属工件；
 阳极处理该金属工件，使该金属工件的表面形成皮膜层，该皮膜层上形成多个毛细孔；
 于该皮膜层上利用多个电子喷墨喷嘴，而以打印方式喷涂多个染料，该等染料渗入该皮膜层的该等毛细孔内，而于该皮膜层内形成彩绘图案；及
 对形成该彩绘图案的该皮膜层进行封孔处理。
2. 如权利要求1所述的阳极处理彩绘方法，其特征在于：所述染料是由黑色油性溶剂型墨水、绿色油性溶剂型墨水、红色油性溶剂型墨水及黄色油性溶剂型墨水所组成。
3. 如权利要求1所述的阳极处理彩绘方法，其特征在于：所述阳极处理为装饰性阳极处理、半硬膜阳极处理、硬膜性阳极处理、超硬膜阳极处理或润滑性阳极处理。
4. 如权利要求1所述的阳极处理彩绘方法，其特征在于：所述工件为铝金属、铝合金、镁金属、镁合金、钛金属、钛合金、钽金属或钽合金。
5. 如权利要求1所述的阳极处理彩绘方法，其特征在于：所述电子喷墨喷嘴为压电式喷墨喷嘴，当通电时，该压电式喷嘴的压晶体管产生变形而推挤出该等染料。
6. 如权利要求1所述的阳极处理彩绘方法，其特征在于：所述电子喷墨喷嘴为热感应式喷墨喷嘴，当通电时，该热感应式喷墨喷嘴将该等染料气泡化，藉以产生压力以将该染料挤出。
7. 如权利要求1所述的阳极处理彩绘方法，其特征在于：所述电子喷墨喷嘴为静电式喷墨喷嘴，当通电时，该静电式喷墨喷嘴使该染料带电，并通过控制电场以导引该染料行进方向。
阳极处理彩绘方法

技术领域

本发明涉及一种彩绘方法，特别涉及一种阳极处理彩绘方法。

背景技术

一般电子 3C 产品，如手机或笔记本电脑，其所使用的外表面，为求轻便便宜，多以工程塑料所制成。而为求美观，于外壳表面多半喷涂涂料，使其形成彩绘图案。然而，由于塑料壳体硬度不足，容易受到刮伤或破损。因此，市面上便有业者提供手机等电子产品包膜等服务。然而经包膜后的成品缺乏使用上的手感，因此并不能被大多数的使用者接受。为增强外壳硬度，并可保持轻量化的情况下，使用铝合金或铝镁合金等金属作为产品外壳的 3C 产品亦大量出现于市场上。

然而，一般铝合金很容易氧化，而氧化层虽有一定钝化作用，然长期曝露的结果，氧化层会脱落，丧失保护作用。而阳极处理的目的即利用其易氧化的特性，通过电化学方法控制氧化层的生成，以防止铝材进一步氧化，同时增加表面的机械性质，另一目的则可通过不同化成反应，产生色泽以增进美观。

目前习知的阳极处理流程主要包含脱脂、浸蚀、中和、阳极处理及封孔等程序。其中，脱脂是将铝合金工件置于加温脱脂液中，洗去铝合金表面的油污，浸蚀是将铝合金工件浸在碱液中，去除铝合金表面旧有的自然氧化膜，并产生氢氧除去物理吸着的油脂，中和是将铝合金工件浸泡于硝酸液中，以中和碱洗表面的黑渍，阳极处理是将铝合金工件置于电解槽中，接上阳极，通以前直流电，使电解液发生电解作用，而使铝合金表面逐渐氧化，形成具适当色泽的多孔性氧化膜，封孔是将阳极处理后铝合金表面多孔性氧化膜的小孔封没，达到光滑、耐磨、防蚀的性能。

然而于阳极处理后，一般多以激光雕刻或 CNC 破坏表层氧化膜的方式，于铝合金工件表面形成出所需的图样，文字标示，如此所成型的图样，文字标示仅可局限于铝合金本身的色泽，无法呈现出其它颜色，且一般业界为考虑质感，氧化膜的色泽常采用无色或浅色，然如此图样，文字标示势必相当不明显。再者，其图样、文字标示是以破坏表层氧化膜的方式得来，因此图样、文字标示处势必失去硬度及保护效果。

为克服上述问题，亦有人尝试于阳极处理的工件上着上多重彩色，使图案造型更具有变化，而其方式大致有下述几种：

1. 将加工组件进行脱油、水洗，以进行阳极处理而于加工组件上形成单一颜色，于欲保留的颜色部分涂上抗腐蚀油墨，将加工组件置入有硝酸的处理槽内，将未涂上油墨表面进行表面褪色腐蚀后，再将加工组件置入盛有第二颜色染液的电解槽进行阳极处理，而于前述经硝酸进行表面褪色腐蚀的部位形成第二颜色，依此类推，依所需颜色的数量以前述相同的步骤进行处理，于重复步骤完成多种颜色时，则以有机溶剂将油墨清除，最后进行药水封口于表面形成一保护膜层，此种处理方式，其处理程序繁复，耗费较多任务时，并使用大量的染料，除使成本增加外，亦造成污染。

2. 先将加工组件进行第一次阳极处理上色程序，而于加工组件表面形成第一颜
色，再以加工切削去除方式欲上第二颜色部分切削去除，并将该部分的第一颜色去除后，再进行第二颜色的阳极处理上色程序。而除使用加工切削去除方式外，亦可采用激光进行对部分表面烧结，以去除该部位的第一颜色，依此类推，依所需颜色数量，进行相同步骤，同样最后再进行药水封口形成表面保护膜层，而此种方式，同标准时耗工及使用较多染料，而使成本增加及造成污染，且于多次进行染料上色，使各不同颜色于上色过程产生沾染，进而产生色差，导致不良品增加。

[0009] 3, 先以阳极处理的方式进行第一颜色的上色处理后，再使用褪色剂，如双氧水将部分颜色去除，再进行阳极处理进行对颜色去除部位的第二色上色处理，依此类推，最后再进行药水封口形成表面保护膜层。然而，此种工艺亦耗时耗工，及使用较多染料，而使成本增加及造成污染，且于多次进行染料上色，使各不同颜色于上色过程产生沾染，进而产生色差，亦使不良品增加。

发明内容
[0010] 本发明的主要目的，旨在提供一种阳极处理彩绘方法，其可增加彩绘层的硬度，以减少彩绘层因刮伤或撞击而使图案削损脱落的机会。
[0011] 为达上述目的，本发明的阳极处理彩绘方法，包含下列步骤：提供一金属工件，阳极处理该金属工件，使该金属工件的表面形成保护膜，该保护膜上形成多个毛细孔；于该保护膜上利用多个电子喷墨喷嘴，以打印方式喷涂多个染料，该等染料渗入于该保护膜的该等毛细孔内，而在该保护膜内形成彩绘图案；对形成该彩绘图案的该保护膜进行封孔处理。
[0012] 其中，该染料是由黑色油性溶剂型墨水、绿色油性溶剂型墨水、红色油性溶剂型墨水及黄色油性溶剂型墨水所组成。
[0013] 其中，该阳极处理可为装饰性阳极处理、半硬膜阳极处理、硬膜性阳极处理、超硬膜阳极处理或润滑性阳极处理。
[0014] 其中，该金属工件可为铝合金、铝合金、镁合金、镁合金、钛金属、钛合金、铝金属或铝合金。
[0015] 其中，该电子喷墨喷嘴为压电式喷墨喷嘴，当通电时，该压电式喷墨喷嘴之压电晶体管产生变形而推挤出该等染料。
[0016] 其中，该电子喷墨喷嘴为热感式喷墨喷嘴，当通电时，该热感式喷墨喷嘴将该等染料气泡化，藉以产生压力以将该染料挤出。
[0017] 其中，该电子喷墨喷嘴为静电式喷墨喷嘴，当通电时，该静电式喷墨喷嘴使该染料带电，并通过控制电场以导引该染料行进方向。

附图说明
[0018] 图 1, 为本发明阳极处理彩绘方法较佳实施例的工艺步骤流程图；
[0019] 图 2, 为本发明阳极处理彩绘方法较佳实施例的示意图；
[0020] 图 3, 为本发明阳极处理彩绘方法较佳实施例所使用的第一电子喷墨喷嘴示意图；
[0021] 图 4, 为本发明阳极处理彩绘方法较佳实施例所使用的第二电子喷墨喷嘴示意图；
[0022]
【0022】图5，为本发明阳极处理彩绘方法较佳实施例所使用的第三电子喷墨喷嘴示意图；
【0023】图6，为本发明阳极处理彩绘方法较佳实施例所使用的印表装置示意图。

具体实施方式
【0025】下面结合说明书附图对本发明做更详细的说明，但本发明的内容并不局限于这些实施例的范围。
【0026】如图1及图2所示，其为本发明阳极处理彩绘方法较佳实施例的工艺步骤流程图及示意图。本发明阳极处理彩绘方法包含下列步骤：
【0027】S11：提供一金属工件11；
【0028】S12：阳极处理该金属工件11，使该金属工件11的表面形成一皮膜层12，该皮膜层12上形成多个毛细孔13；
【0029】S13：于该皮膜层12上利用多个电子喷墨喷嘴14，以打印方式喷涂多个染料15，该等染料15渗入该皮膜层12的该等毛细孔13内，而于该皮膜层12内形成一彩绘图案16；及
【0030】S14：对形成该彩绘图案16的该皮膜层12进行一封孔处理。
【0031】其中，该金属工件11可为任意能施以阳极处理的金属工件，如铝金属、铝合金、镁金属、镁合金、钛金属、钛合金、钽金属或铝合金。
【0032】其中，该染料15是由黑色油性溶剂型墨水、绿色油性溶剂型墨水、红色油性溶剂型墨水及黄色油性溶剂型墨水所组成。
【0033】而于进行阳极处理以前，该金属工件11则须先进行脱油、水洗、化学抛光（使用酸性或碱性药水如磷酸、硝酸、强碱进行对加工组件的表面腐蚀，去除表面杂质，呈现铝的原色）、脱脂等步骤。由于上述步骤为习知技术，故不再赘述。
【0034】其中，当进行阳极处理时，其使用的电解液及配方可为下述种类，但不以此为限：
【0035】1：硫酸液，如于Alumilite工艺时，可使用15~20%硫酸，电压值控制于14~22伏特，电流密度控制于1^1/2A/dm2，操作温度可于18~25度，处理时间可为10~60分钟左右。其皮膜厚度为3~35μm，皮膜则呈无色透明。
【0036】2：铬酸液，例如使用5~10%铬酸，电压值控制于40伏特左右，电流密度可控制于0.15~0.30A/dm2，操作温度35度左右，处理时间约为30分钟左右。皮膜厚度约2~3μm，皮膜呈灰色或灰绿色，具有良好的抗蚀性。3：草酸液，如于Eloxal GX工艺中，可使用3~5%草酸，电压值为40~60伏特，电流密度1^1/2A/dm2，操作温度为18~20度，处理时间为40~60分钟左右。其皮膜厚度约为10~65μm，皮膜呈黄色。
【0037】4：磷酸液，使用10%磷酸，电压为10~12伏特，电流密度不定，操作温度23~25度，处理时间20~30分钟左右。其皮膜厚度为1^1/2μm，颜色为无色。
【0038】此外，上述阳极处理的种类，亦可依其皮膜厚度及硬度，而可为一般性阳极处理、半硬膜阳极处理、硬膜性阳极处理、超硬膜阳极处理或为润滑性阳极处理。一般性阳极处理
的膜厚约为 6 μm 至 15 μm 左右。而真硬膜微粒处理的膜厚约为 20 μm 至 30 μm 之间，而具有优良的耐磨擦性及耐腐蚀性。硬膜性微粒处理的膜厚可达 30 μm 至 50 μm 之间，其硬度可达维氏硬度 HV500 以上。而超硬膜微粒的处理其膜厚超过 50 μm 以上，硬度亦超过 HV500 以上。而润滑性微粒处理，则以电磁方式将二硫化钼填入微粒处理皮膜的毛细孔内，于充满二硫化钼的皮膜上形成一层兼具微粒处理皮膜特性和复合。

[0039] 如图 3、图 4 及图 5 所示，其为本发明微粒处理彩绘方法较佳实施例所使用的第一电子喷墨喷嘴示意图、第二电子喷墨喷嘴示意图及第三电子喷墨喷嘴示意图。该等电子喷墨喷嘴 141 依其种类可分为：

[0040] 1：电式喷墨喷嘴 141 : 其使用针点式的喷墨技术，类似汽车引擎油塞的动力推挤，从墨水槽将墨水推出，其使用压晶体管 1411（石英晶体）的导电性，通电后电流供压晶体管 1411 产生固定的电源频率，将墨水推出喷嘴。

[0041] 2：热感式喷墨喷嘴 142 : 其原理是利用热能的方式，对于印刷头 1421（喷头）上一层薄膜的墨水加热，使其沸腾产生气泡，再透过气泡的压力，将墨水推挤而出。

[0042] 3：静电式喷墨喷嘴 143 : 其墨水形成的墨流经一喷嘴头 1431 加压喷出，振动、分解成小墨滴后，经过一电场板 1432，由于静电作用，小墨滴于飞越此电场后不论荷电与否，均直前飞行，于通过一电磁场分离板 1433 时，电荷量大的墨滴会受到较强的吸引，而曲折较大的幅度。反之，则偏折较小，而不带电的墨滴将积于集墨沟内回收。

[0043] 而当进行封孔处理时，其是将皮膜层 12 的毛细孔 13 封住成为不具吸附性的表面，或将药剂等物质渗入孔内，以改变或改进皮膜层特性。封孔过程包括溶解氧化物或氢氧化物再沉淀（reprecipitation）于孔内，或将其它物质沉积于孔内，而形成具有特性的致密表面。而封孔操作除在水中进行之外，亦可在重铬酸溶液中进行，以提高抗蚀性。

[0044] 由于该染料 15 所形成的彩绘图案 16 经封孔处理后是封闭于皮膜层 12 内，而可使彩绘图案 16 具有抗刮及耐磨的特性，可供使用者长时间放心使用，使外壳外观仍可维持一定的质量。

[0045] 如图 6 所示，其为本发明微粒处理彩绘方法较佳实施例所使用的印表装置示意图。其中，该微粒处理彩绘方法可使用任何形式的喷墨打印机 2 加以打印，其可将经微粒处理完成后的金属工件设于打印机的工件承架台 21 上，再经由工件承架台 21 的带动将金属工件 11 驱入于打印机工作区域内，进而完成彩绘流程。

[0046] 综上所述，本发明微粒处理方法，其功效在于可改进习知设置于塑料外观件的彩绘层容易刮伤膜损，及习知微粒处理的工件不易作多彩处理的问题。

[0047] 唯，以上所述者，仅为本发明的较佳实施例而已，并非用以限定本发明实施的范围，在不脱离本发明的精神与范围下所作的均等变化与修饰，皆应涵盖于本发明的专利范围内。
提供一金属工件

阳极处理该金属工件，使该金属工件的表面形成一皮膜层，该皮膜层上形成多个毛细孔

于该皮膜层上利用多个喷墨喷嘴，以列印方式喷涂多个染料，该等染料渗入该皮膜层的该等毛细孔内，而于该皮膜层内形成一彩绘图案

对形成该彩绘图案的该皮膜层进行一封孔处理
图 3
图 6