WO 2006/020390 A2 || 0000000 0 000 0 0 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘f L
International Bureau

(43) International Publication Date
23 February 2006 (23.02.2006)

IR
0 |0 O O 1 RO R O 0

(10) International Publication Number

WO 2006/020390 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/US2005/026571

(22) International Filing Date: 25 July 2005 (25.07.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

10/910,861 2 August 2004 (02.08.2004) US

(71) Applicant (for all designated States except US): EX-
TREME NETWORKS, INC. [US/US]; 3585 Monroe
Street, Santa Clara, CA 95051 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VILLAIT, Anil
[IN/US]; 20780 4th Street #8, Saratoga, CA 95070 (US).
YIP, Michael [US/US]; 108 Hawthorne Avenue, Los

(74)

(81)

(84)

Altos, CA 94022 (US). ZHONG, Yeeping [US/US]; 602
Aberdeen Way, Milpitas, CA 95035 (US).

Agents: CALDWELL, Gregory, D. et al.; Blakely
Sokoloff Taylor & Zafman, 7th Floor, 12400 Wilshire
Boulevard, Los Angeles, CA 90025-1026 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: COMPUTING SYSTEM REDUNDANCY AND FAULT TOLERANCE

00

HWY
component
214

(

!

I

HW
component
224

PRIMARY

220

(57) Abstract: A computing environment
includes a number of nodes, one of which is a
primary node that controls the operation of the
computing environment and another of which
is a backup node that is capable of controlling
operation of the computing environment. The
primary node includes a hardware management
module (HMM) that controls hardware components
in the computing environment. The HMM also
detects and reports events relating to the hardware
components. The primary node further includes
a software management module (SMM) that
controls instances of software components of the
computing environment, and detects and reports
events related to the same. A node management
module (NMM) in the primary node elects the
node as the primary from among the number
of nodes. The NMM receives the reports of
events from the HMM and SMM, and selectively
transfers operational control of the computing
environment to a backup node in response to the
reports. A configuration management module
(CMM) transfers a configuration of the computing
environment to the backup node. A replication
library is used in transferring a state of each of the
instances of software components to the backup
node.

SECONDARY

WO 2006/020390 A2 I} H10 Y NDVYH0 AT YK 00 R0 AR

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, For two-letter codes and other abbreviations, refer to the "Guid-
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, ance Notes on Codes and Abbreviations" appearing at the begin-
RO, SE, S, SK, TR), OAPI (BF, BJ, CE CG, CI, CM, GA, ning of each regular issue of the PCT Gazette.
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

WO 2006/020390 PCT/US2005/026571

COMPUTING SYSTEM REDUNDANCY AND FAULT TOLERANCE

TECHNICAL FIELD
[0001] The invention generally relates to the field of computing systems. In particular, the

invention relates to fault-tolerance and redundancy in computing equipment.

BACKGROUND

[0002] The high demand of e-commerce and Internet applications require networks to
exhibit the same reliability as the public switched telephone network. Faulttolerance and
redundancy have become critical differentiators for networking equipment. High ‘
availability networks must continue to operate when components fail unexpectedly and
also during planned network upgrades or changes. Redundancy protects the nework in
both situations. By eliminating single points of failure network designers can create highly
resilient networks for mission-critical applications. But high availability networks require
more than just redundant hardware. The network must also have the ability to optimize the
use of those redundant components. Network software must take into consideration the
impact of component failures on the protocols that enable communications within a
network.

[0003] Fig. 1 illustrates a computing environment 100 comprising a network switch
architecture. The architecture includes a number of switch modules 110-140, each
interconnected with the others via a switch fabric and system management module (FMM)
15 0 FMM 150 is responsible for switching data traffic among switch modules to which it
is connected, as well as controlling operation and management of the network switch
architecture.

[0004] A switch module has ports to connect the switch module to communication media
that provide the physical layer connection in a communications network. The switch
modules may include other components that provide other functionality, such as the ability
to switch and filter local data traffic without forwarding such traffic to switch fabric and

system management module 150.

WO 2006/020390 PCT/US2005/026571

[0005] The switch modules are further connected to each other via a duplicate, or
redundant, switch fabric and system management module (FMM) 160. A FMM is a key
component of the network switch architecture, and so it is replicated in the illustrated
architecture to ensure continued operation of the network switch if the FMMs fails. FMM
150 is elected as a primary FMM, and the other FMM 160 is elected as a backup FMM. If
a software or hardware fault occurs in the primary FMM 150, the primary FMM 150
transfers operational control of the network switch architecture to the backup FMM 160,
which becomes the new primary FMM. The primary FMM 150 becomes the new
secondary, or backup, FMM. This transfer of control is referred to herein as “failover”. If
the fault condition in the new backup FMM 150 is resolved, the new primary FMM 160
may transfer operational control back to the new backup FMM 150, which becomes the
primary FMM 150 once again. This transfer of control is referred to herein as “failback”.
[0006] The network switch architecture illustrated in computing system 100 may be
implemented in a single network switching device, such as a chassis-based network switch
device. Such a device has, for example, a common backplane to which each switch
module and FMM is connected. Each switch module and FMM may be implemented on a
separate “blade” inserted into a different slot of the chassis to connect to the backplane.
The backplane thus interconnects the inserted switch modules to the inserted FMMs.
Alternatively, one or more FMM may be implemented as an integral part of the chassis-
based network switch device. In another embodiment, a FMM could be integrated with a
switch module on a single blade.

[0007] While the architecture illustrated in Fig. 1 shows only two FMMs, it is appreciated
that additional FMMs may be included in the architecture as well. Such FMMs are
considered standby FMMs, and provide for yet further redundancy and faulttolerance in
the network switch architecture. For example, if the primary and the secondary FMMs
experience a fault, a third, standby, FMM, can become the primary FMM so that the
network switch architecture remains operational.

[0008] The network switch architecture illustrated in computing environment 100 may be
implemented as a number of interconnected stackable network switch devices, wherein
each switch module is implemented in a separate unit in the stack. A switch fabric and

system management module (e.g., FMM 150) may be integrated with a switch module in a
2

WO 2006/020390 PCT/US2005/026571

unit in the stack, or may be implemented as a separate standalone unit in the stack.
External cabling connects the units in the stack.
[0009] The network switch architecture illustrated in computing system 100 may
alternatively be implemented as a cluster of network devices interconnected by a netwak,
such as a local area network (LAN) that communicate with each other using, for example,
standard TCP/IP transport protocols. In such as embodiment, the FMMs, even though
loosely coupled by interconnected LAN segments, act together in a coordinated fasion to
deliver common switch fabric and system management services for the switch modules in
the cluster. Each switch module is connected to at least two different FMMs so that the
failure of one FMM does not cause the switch module to fail.
SUMMARY
[0010] A method and apparatus for failover from a primary node to a backup node is
described. The primary node includes a hardware management module (HMM) that
controls hardware components in the computing environment. The HMM also detects and
reports events relating to the hardware components. The primary node further includes a
software management module (SMM) that controls instances of software components of
the computing environment, and detects and reports related events. A node management
module (NMM) receives the reports of events from the HMM and SMM, and selectively
transfers operational control of the computing environment to the backup node in response
to the reports. A configuration management module (CMM) transfers a configuration of
the computing environment to the backup node so that if a failover occurs, the backup
node does not have to recreate the configuration of the computing system. A replication

_ library is used in transferring a state of each of the instances of software components to the
backup node, so that if a failover occurs, this state information does not need to be
regenerated.

BRIEF DESCRIPTION OF THE DRAWINGS

[oo11] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings in which:

Fig. 1 illustrates a network switching device in which an embodiment of the
invention is practiced.

Fig. 2 illustrates a block diagram of an embodiment of the invention.
3

WO 2006/020390 PCT/US2005/026571

Fig. 3 illustrates a flow diagram of an embodiment of the invention.

DETAILED DESCRIPTION

[0012] The invention is an implementation of a redundant, fault tolerant computing system
that transfers control from a primary node to a backup node in the computing system when
the primary node encounters a hardware or software problem, or when transfer of control is
dictated by a management module of the computing system, for example, in response to
input received from a user. It is contemplated that failover from the primary node to the
backup node can be accomplished without loss of data. For example, in a computing
system that comprises a network switch architecture in which separate, redundant switch
fabric and system management modules (FMMs) are the primary and backup nodes, it is
contemplated that failover can be achieved in a mamer such that any established data
traffic flows will continue to be processed by the network switch architecture without
packet loss occurring.

[0013] In general, an embodiment of the invention contemplates multiple nodes in a
computing system. A node is an electronic computing device that has the capability of
executing software routines needed to manage the computing system. In an embodiment
wherein the computing system is a network switch architecture, a node is a switch fabric
and system management module (FMM), e.g., FMMs 150 and 160 illustrated in Fig. 1. A
primary node is a node that controls the entire computing system, e.g., FMM 150 in
network switch architecture 100. FMM 150 provides all of the management functionality
for switch architecture 100 including bringing up and programming switch modules 110-
140, running protocols, for example, relating to bridging and routing data traffic through
network switch architecture 100, and configuring the network switch architecture.

[0014] A backup node is a node, e.g., FMM 160, which receives configuration
information, and hardware and process state information from the primary node, and
otherwise waits for a failover to occur. The process of transferring configuration
information and state information to the backup is referred to herein as “checkpointing”.
The primary node “checkpoints” configuration information to the backup node first, then

checkpoints the hardware and process state information thereafter.

WO 2006/020390 PCT/US2005/026571

[0015] The level of fault tolerance achieved in the computing system depends on the
degree to which the backup node maintains the same configuration information and state
information as the primary node. In the event of a failover in network switch architecture
100, for example, if the backup node 160 has the same configuration information as the
primary node 150, but does not have the layer 2 bridging and layer 3 routing state
information, data traffic likely will be interrupted since the hardware will need to be
reinitialized and all forwarding database (FDB) information will be unavailable. In such a
case, while the initialization of the backup node will take only a few seconds, it could be
that it will take at least a few minutes to relearn the information in the forwarding database
from data traffic traversing the network.

[0016] To achieve a “hitless failover”, for example, a failover from primary FMM 150 to
backup FMM 160 in network switch architecture 100 without interruption of data traffic
flows, not only the network switch architecture configuration needs to be checkpanted to
the backup FMM 160, but the essential data relating to the state of processes executing on
primary FMM 150, such as FDB tables, Virtual Local Area Network (VLAN) tables,
Internet Protocol (IP) tables, etc., is checkpointed to the backup FMM 160. Optionally, the
state of hardware components is checkpointed as well.

[0017] Each node in the computing system operates independent of the other nodes. In an
network switch architecture such as illustrated in Fig. 1, each FMM is an independent
node. One of the two FMMs is elected a primary node, the other a secondary node, so the
network switch architecture is treated as one manageable entity. In one embodiment of the
invention, a node election algorithm can be used to select a primary and backup node in
multiple network switch devices, such as a number of stackable network switch devices or
a cluster of network switch devices. If more than two nodes exist in the network switch
architecture, the node election algorithm elects standby nodes. The backup node, e.g,
FMM 160, provides for faster recovery in the event of failover by avoiding arbitration
between multiple nodes when the primary node fails.

[0018] A node may be elected as the primary node based on any number of criteria that
uniquely deﬁné a node and the node’s health, e.g., chassis or slot ID, configured priority,
quality of hardware, software functionality, data communication bandwidth, number and

health of components such as power supplies, fans, etc. With reference to Fig. 2, for each
5

WO 2006/020390 PCT/US2005/026571

node 210 and 220 in computing system 200, a respective hardware management module
(HMM) 212, 224 collects information about all relevant hardware components 214, 224
and their state and forwards the same to a respective node manager module (NMM) 211,
221, and a process, or software, management module (SMM) 213, 223 collects information
about all relevant processes 215, 225 running on the computing system and their state and
forwards the same to the appropriate NMM 211, 221. This information gathered by each
NMM can be used in the node election process.

[0019] Once a primary node is elected, fault detection occurs in much the same manner:
hardware faults are detected and reported to NMM 211 by the primary node’s HMM 212,
whether interrupt-driven techniques or polling techniques are used to detect faults) and
process failures are detected and reported to the NMM by the primary node’s SMM 213.
[0020] In one embodiment of the invention, NMM 211 in the primary node 210 maintains
status of the overall health of the computing system. NMM 211 receives device and
process state information from the HMM and SMM respectively on node 210, and from
node managers on other nodes as well, for example, NMM 221 in backup node 220. Since
the NMM 221 receives device and process state information from HMM 222 and SMM
223 and reports the same to NMM 211, NMM 211 has a complete and unified view of the
state of all hardware devices 214, 224 and software processes 215, 225 in the computing
system 200.

[0021] NMM 211 uses the health of the hardware and software components, as determined
from reports received from HMM 212, SMM 213 and NMM 221, to decide whether to
failover from primary node 210 to the secondary node 220. In one embodiment of the
invention, NMM 211 may be instructed to failover based on a user or network mamger
policy that prefers to failover versus a hardware component reset or software process
restart.

[0022] As briefly described above, checkpointing is the process of state transfer from the
primary node to the backup node, to provide for fast state recovery in the event of failure
of the primary node. In one embodiment of the invention, software processes executing on
the primary node are responsible for replicating their own data and state to a peer process
on the backup node. Given this independence, such software processes can implement their

own checkpointing algorithms. For example, software routines could checkpoint data
6

WO 2006/020390 PCT/US2005/026571

synchronously or asynchronously, using reliable or unreliable data transfer protocols,
according to their own checkpointing interval or schedule, depending on factors such as the
impact that loss of relevant data would have on the health of the overall system in the event
of a failover.
[0023] Replication of the configuration and state information from the primary to backup
node is accomplished in stages, according to one embodiment of the invention. With
reference to the flow diagram in Fig. 3, once the primary node and backup node have been
elected at 310 and 320, the backup node is synchronized with the same configuration
information as maintained by the primary node, at 330. Optionally, any standby nodes
receive the configuration information as well. The backup node and any standby nodes
may either update their existing configuration with the configuration from the primary
node. Alternatively, the backup and/or the standby nodes may keep the configuration
received from the primary separate from the configuration saved at the backup/standby
node, unless, for example, a network administrator executes a command instructing the
backup and/or standby node to update or replace their configurations with the
configuration received from the primary node. The synchronization of the configuration
information ideally should occur as a single transaction or atomic operation, that is to say,
either the entire configuration of the computing system should be transferred successfully
to the backup node, or not at all.

| [0024] To simplify the checkpointing performed by each process, synchronization of
configuration information is separated from the processes and is instead handled by
configuration management module (CMM) 216 on the primary node 210, in direct
communication with CMM 226 on the backup node 220.
[0025] Once the configuration on the backup node is synchronized, any changes in the
current configuration on the primary node is checkpointed to the backup node and
incorporated into the backup node’s configuration. For example, when a user types a
command, for example, in a command line interface to the computing system, causing a
need to change the configuration of the system, the CMM 216 sends the command first to
the backup node, in particular, to CMM 226 in backup node 220. CMM 226 forwards the
command to any appropriate process 225 on the backup node, receives an

acknowledgement the command was executed on the process, and sends a response
7

WO 2006/020390 PCT/US2005/026571

indicating the configuration on the backup node has been updated. Then the command is
executed on the primary node. For example, CMM 216 may forward the command
received from the user to the appropriate process 215 where it is executed. Any resulting
change in state is then checkpointed by the process 215 to a peer process 225 running on
the backup node. If a failover occurs, the backup node will thus be ready to use the
primary’s current configuration.

[0026] The configuration maintained in a standby node, for example, in a flash memory
accessible to the standby node, may not be current if not recently updated by a network
manager performing a save operation or the like, at the time of a failover of both the
primary and backup nodes. In such a case, the standby node will use the stored
configuration.

[0027] Returning back to 330 in Fig. 3, once configuration is initially synchronized, state
information is then transferred from the primary node to the backup node at 340. The
initial transfer of state information following configuration synchronization is referred to
herein as an initial bulk checkpoint process. As indicated above, individual processes are
responsible for checkpointing their own in-memory states to the backup node.

[0028] In one embodiment of the invention, due to dependencies between processes and
the configuration of the computing system, the transfer of state information only occurs
after the configuration is synchronized, and for those processes that depeﬁd on other
processes, the transfer of a dependent process’ state information only occurs after any
processes on which it depends have transferred their state information. A process indicates
when it has completed its initial bulk checkpoint. The indication of such triggers the next
process that depends on the data that was checkpointed to proceed with its initial bulk
checkpoint. The transfer of state information is performed in this manner in order to
ensure orderly behavior of the processes.

[0029] As an example, in the computing environment contemplated in Fig.1, CMM 216
first checkpoints configuration from the primary node, e.g., FMM 150, to backup node,
e.g., FMM 160. If HMM 212 is a process that depends on CMM 216, only after CMM 216
completes checkpointing configuration does HMM 212 checkpoint its state to counterpart
HMM 222. A software component, for example, a VLAN manager process, that depends

on process HMM 212 then checkpoints its state to backup node 160, and so on.
8

WO 2006/020390 PCT/US2005/026571

[0030] At 350, once a process has transferred all of its state information to the backup
node, any new changes in state related to the process will be checkpointed immediately.
This is referred to herein as incremental checkpointing. Unless the primary node detects a
fault condition, failure event, or instructions to failover to the secondary node at 360, an
embodiment of the invention continues incremental checkpointing of configuration data
and state information, as described above. If a fault condition or instructions are received
to perform a failover to the backup node, a failover to the backup node occurs at 370.
[0031] As indicated above, processes in the primary node are responsible for
checkpointing their state to their peer processes in the backup node. This checkpointing
process is made easier by virtue of the fact that any related configuration information is
first checkpointed by CMM 216 to CMM 226. Further easing the requirements on the
program developer responsible for providing functionality in a software component to
checkpoint its data, a replication libraty (RL) 230 provides for communication between
software components and optionally hardware components on the primary node and on the
secondary node. For example, in one embodiment of the invention, RL 230 automatically
establishes a message connection, either reliable or unreliable, between peer software
components on the primary and backup nodes.
[0032] Additionally, RL 230 provides a communication protocol via which the peer
processes communicate, for example, layered over IPML. The RL 230 optionally contains
a number of other routines that help provide a robust programmatic interface for peer
processes to communicate, for example:

reporting of synchronization progress between the primary and secondary

nodes;

monitoring synchronization progress of each peer process on the nodes; and

managing process dependency for initial bulk checkpointing.
[0033] It should be noted that reference in the specification to "‘one embodiment” or “an
embodiment” means that a particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in various places in the specification
are not necessarily all referring to the same embodiment.

\

WO 2006/020390 PCT/US2005/026571

[0034] Some portions of the detailed description are presented, for example, in terms of
algorithms and symbolic representations of operations on data within a computer memory.
These algorithmic descriptions and representations are the means used by those skilled in
the data processing arts to most effectively convey the substance of their work to others
skilled in the art.

[0035] An algorithm is herein, and generally, conceived to be a sequence of steps leading
to a desired result. The steps are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally for reasons of common usage,
to refer to these signals as binary digits, values, elements, symbols, characters, terms,
numbers, or the like.

[0036] It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated or otherwise apparent from the
discussion throughout the description, discussions using terms such as "processing" or
"computing" or "calculating" or "determining" or "displaying" or the like, refer to the
action and processes of a computer system, or similar electronic computing device, that
manipulates and transforms data represented as physical (electronic) quantities within the
computer system's registers and memories into other data similarly represented as physical
quantities within the computer system memories or registers or other such information
storage, transmission or display devices.

[0037] The invention also relates to apparatuses for performing the operations herein.
These apparatuses may be specially constructed for the required purposes, or may
comprise a general-purpose computer selectively activated or reconfigured by a computer
program stored ih the computer. Such a computer program may be stored in a machine-
readable storage medium, such as, but not limited to, any type of magnetic or other disk
storage media including floppy disks, optical storage media, CD-ROMs, and magnetic-
optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs,
EEPROMs, magnetic or optical cards, flash memory devices; electrical, optical, acoustical

or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals,
10

WO 2006/020390 PCT/US2005/026571

etc.), or any type of media suitable for storing electronic instructions, and each coupled to a
computer system bus.

[0038] The algorithms and displays presented herein are not inherently related to any
particular computer or other apparatus. Various general-purpose systems may be used
with programs in accordance with the teachings herein, or it may prove convenient to
construct more specialized apparatus to perform the required method steps. In addition,
the present invention is not described with reference to any particular programming
language. It will be appreciated that a variety of programming languages may be used to

implement the teachings of the invention as described herein.

11

WO 2006/020390 PCT/US2005/026571

CLAIMS:

What is claimed is:

1. In a computing environment having a plurality of nodes, one of which is a primary
node controlling operation of the computing environment and another of which is a backup
node capable of controlling operation of the computing environment, the primary node
comprising:

a hardware management module that controls a plurality of hardware components of the
computing environment, and detects and reports events related thereto;

a software management module that controls a plurality of instances of software
components of the computing environment, and detects and reports events related thereto;
a node management module that elects the primary node from among the plurality of
nodes, receives the reports of events from the hardware and software management
modules, and selectively transfers operational control of the computing environment to the
backup node responsive to the received reports of events;

a configuration management module that transfers a configuration of the computing
environment to the backup node; and

a replication library for use in transferring a state of each of the instances of software

components to the backup node.

2. The primary node of claim 1, wherein the primary node comprises a network
device management module and the plurality of nodes comprise at least one other network

device management module.

3. The primary node of claim 2, wherein the computing environment is a chassis-
based network device comprising the network device management module and the at least
one other network device management module, and wherein the primary node controlling
operation of the computing environment comprises the network device management

module controlling operation of the chassis-based network device.

12

WO 2006/020390 PCT/US2005/026571

4. The primary node of claim 2, wherein the computing environment includes a
plurality of stackable network devices, wherein one of the network devices comprises the
network device management module and another stackable network device comprises the
at least one other network device management module, and wherein the primary node
controlling operation of the computing environment comprises the network device

management module controlling operation of the plurality of network devices in the stack.

5. The primary node of claim 2, wherein the computing environment includes a
cluster of network devices, wherein one of the network devices in the clustercomprises the
network device management module and another network device in the cluster comprises
the at least one other network device management module, and wherein the primary node
controlling operation of the computing environment comprises the network device

management module controlling operation of the network devices in the cluster.

6. The primary node of claim 1, wherein the hardware management module that
controls a plurality of hardware components of the computing environment comprises a

hardware device manager that controls switch modules of a network switch device.

7. The primary node of claim 1, wherein the software management module that
controls a plurality of instances of software components of the computing environment
comprises a process manager routine that controls instances of switching protocols in a

network device.

13

WO 2006/020390 PCT/US2005/026571

8. The primary node of claim 1, wherein the node management module that
selectively transfers operational control of the computing environment to the backup node
responsive to the received reports of events transfers operational controlto the backup
node responsive to receiving a report of a failure event from one of the software

management module and the hardware management module.

9. In a computing system having a plurality of nodes, one of which is a primary node
controlling operation of the computing environment and another of which is a backup node
capable of controlling operation of the computing system, a method of transferring
operating control from the primary node to the backup node, the method comprising:
electing the primary node and the backup node from among the plurality of nodes;
transferring a configuration of the computing Asystem from the primary node to the backup
node; '

transferring a state for each of instances of hardware and software components in the
computing system from the primary node to the backup node;

detecting at the primary node and reporting to the backup node events relating to the
hardware and software components of the computing system; and

transferring operational control of the computing environmert to the backup node
responsive to the backup node receiving a report indicating a failure event in one of an

instance of a hardware or software component.

10. The method of claim 9, wherein electing the primary node and the backup node
from among the plurality of nodes comprises electing a first network management module
in a network switch device as a primary node and a second network management module

in the network switch device as the backup node.

11. The method of claim 10, wherein transferring a configuration of the computing
system from the primary node to the backup node comprises transferring a configuration

file maintained by the first network management module to the second network

14

WO 2006/020390 PCT/US2005/026571

management module, the configuration file providing content indicating the configuration

of the network switch.

12. The method of claim 11, wherein the network switch device comprises one of a
chassis-based network switch device, a plurality of stackable network switch devices, and a

cluster of network switch devices.

13. A primary node comprising:

a hardware management means for controlling a plurality of hardware components of a
computing environment, and detecting events related to the hardware components;

a software management means for controlling a plurality of instances of software
components of the computing environment, and detecting events relating to the instances;
a node management means for electing the primary node from among the plurality of
nodes, the primary node tracking the aforesaid events;

a means for transferring operational control of the computing environment to the backup
node responsive to the tracking of the events;

a configuration management means for maintaining and transferring a configuration of the
computing environment to the backup node; and

a replication means for transferring a state of each of the hardware components and

instances of software components to the backup node.

15

WO 2006/020390

SWITCH
MODULE
110

PCT/US2005/026571

120

130

Fig. 1

SWITCH
FABRIC AND
SYSTEM
MANAGEMENT
150

140

SWITCH
FABRIC AND
SYSTEM
MANAGEMENT
160

WO 2006/020390 PCT/US2005/026571
2/3

H/W
component
214

!
1

H/W
component
224

SECONDARY
220

WO 2006/020390

[M]
(e}

350

360

370

PCT/US2005/026571
3/3

310

ELECT PRIMARY NODE —

¢ 320

ELECT BACKUP NODE T

!

SYNC CONFIGURATION OF |\~ 330
PRIMARY, BACKUP

L 340

INITIAL TRANSFER OF T
PROCESS STATE INFO

-

INCREMENTAL TRANSFER

DETECT FAILURE
EVENT?

'

FAILOVER TO BACKUP NODE

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

