(51) International Patent Classification:
C01B 33/07 (2006.01)
C07F 7/21 (2006.01)

(21) International Application Number:
PCT/US2020/025694

(22) International Filing Date:
30 March 2020 (30.03.2020)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
62/826,941 29 March 2019 (29.03.2019) US

(71) Applicant: THE CORETEC GROUP INC.
6804 S. Canton Ave., Ste. 150, Tulsa, Oklahoma 74136 (US).

(72) Inventors: ELGAMMAL, Ramez Ahmed;
6804 S. Canton Ave., Ste. 150, Tulsa, Oklahoma 74136 (US).
KRAFT, Michael Anthony;
6804 S. Canton Ave., Ste. 150, Tulsa, Oklahoma 74136 (US).

(74) Agent: KOZIARZ, Matthew L;

(81) Designated States (unless otherwise indicated, for every kind of national protection available):

(84) Designated States (unless otherwise indicated, for every kind of regional protection available):

Published:
— with international search report (Art. 21(3))

(54) Title: METHOD OF PREPARING CYCOSILANE

![Diagram of the method](fig1)

(57) Abstract: A method includes producing a substituted cyclosilane by combining in a solvent the following: (i) halogenated cyclosilane, (ii) at least one of tri-alkyl or tri-aryl silane, and (iii) a complexing agent that includes at least one of ammonium halide or phosphonium halide. The halogenated cyclosilane reacts to produce the substituted cyclosilane.
METHOD OF PREPARING CYCLOSILANE

BACKGROUND

[0001] Silicon-based devices are ubiquitous in electronic and other devices. The silicon in such devices is often in the configuration of a thin film or nanoparticle. These and other configurations can be manufactured in relatively high states of purity from monosilane gas using processes such as chemical vapor deposition (CVD) or plasma enhanced chemical vapor deposition (PECVD). Liquid precursors have also been considered for manufacturing silicon. For example, cyclopentasilane solution is deposited as a film and then dried and calcined to produce a silicon film. Despite the relative ease of producing silicon from liquid precursor, however, there are considerable challenges in producing the liquid precursor itself.

SUMMARY

[0002] A method according to an example of the present disclosure includes producing a substituted cyclosilane by combining in a solvent the following: (i) halogenated cyclosilane, (ii) at least one of tri-alkyl or tri-aryl silane, and (iii) a complexing agent including at least one of ammonium halide or phosphonium halide, the halogenated cyclosilane reacting to produce the substituted cyclosilane.

[0003] In a further example, the halogenated cyclosilane has five or six silicon atoms.

[0004] In a further example, (ii) is the tri-alkyl silane.

[0005] In a further example, (ii) is the tri-aryl silane.

[0006] In a further example, (iii) is the ammonium halide.

[0007] In a further example, (iii) is the phosphonium halide.

[0008] In a further example, the at least one of ammonium halide or phosphonium halide includes butyl or ethyl.

[0009] In a further example, the halogen of the halogenated cyclosilane is selected from the group consisting of chlorine, bromine, iodide, and combinations thereof.

[0010] In a further example, the halogenated cyclosilane has six silicon atoms, (ii) is the tri-alkyl silane, and (iii) is the phosphonium halide.

[0011] A method according to another example of the present disclosure includes producing a mixture by combining in a solvent the following: (i) halogenated cyclohexasilane, (ii) at least one of tri-alkyl or tri-aryl silane, and (iii) a complexing agent including at least one of ammonium halide or phosphonium halide; agitating the mixture, the halogenated
cyclohexasilane reacting in the mixture to produce substituted cyclohexasilane; and separating the substituted cyclohexasilane from the mixture to produce pure substituted cyclohexasilane.

[0012] In a further example, the agitating includes stirring.

[0013] In a further example, the separating includes distillation.

[0014] In a further example, (ii) is the tri-alkyl silane and (iii) is the phosphonium halide.

[0015] In a further example, (ii) is the tri-alkyl silane and (iii) is the ammonium halide.

[0016] In a further example, (ii) is the tri-aryl silane and (iii) is the phosphonium halide.

[0017] In a further example, (ii) is the tri-aryl silane and (iii) is the ammonium halide.

[0018] A method according to another example of the present disclosure includes producing a substituted cyclosilane of formulation Si₆R₆, where Si is silicon and R is hydrogen, by combining in a solvent the following: (i) halogenated cyclosilane of formulation [X₆][Si₄X₄], where X₆ is a counter-ion including at least one of NR₄⁺ or PR₄⁺, wherein N is nitrogen, P is phosphorous, and R₄ is a halide, and X₄ is a halogen (ii) a compound of formula R₃SiH, where R is alkyl or aryl and H is hydrogen, and (iii) a complexing agent of formula QR₂X₂ where Q is nitrogen or phosphorous, R₃ is butyl or ethyl, and X₂ is a halogen, the halogenated cyclosilane of formulation [X₆][Si₄X₄] reacting to produce the substituted cyclosilane of formulation Si₆R₆.

[0019] In a further example, X₆ is NR₄⁺ and Q is nitrogen.

[0020] In a further example, X₆ is PR₄⁺ and Q is nitrogen.

[0021] In a further example, Q is phosphorous.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] The various features and advantages of the present disclosure will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.

[0023] Figure 1 illustrates a method of producing a cyclosilane.

DETAILED DESCRIPTION

[0024] In general, processes for producing cyclosilane compounds, such as cyclohexasilane or cyclopentasilane, involve aspects that may hinder wider scale production
and implementation. For example, the reactants are prohibitively expensive, the steps are numerous, complex, and/or yield widely varied results, the product yields are relatively low, there are undesirable gaseous byproducts and/or impurities, or the product is difficult to isolate. As will be appreciated from the following examples, the disclosed method 10 may be used to facilitate mitigation of one or more of such aspects to thereby enhance production of cyclosilane compounds.

[0025] Figure 1 schematically illustrates the example method 10 for producing a substituted cyclosilane, such as a dehalogenated, hydrogen substituted cyclosilane. Various aspects of the method 10 will be described below. It is to be understood that the examples herein are non-limiting and that for particular implementations the method 10 may be integrated in conjunction with other steps.

[0026] The method 10 generally includes combining several constituents in a base solvent. For example, the constituents are solids and are dissolved in the base solvent. The base solvent may be varied but can include one or more organic solvents, such as benzene, cyclohexane, n-hexane, n-heptane, chloroform, dichloromethane, or ether. Further examples include high boiling point ether-based solvents, such as dibutyl ether, dihexyl ether, dioctyl ether, or glycol ethers (also known as glymes, e.g. diglyme or triglyme). As an example, desirable solvents may be those that have one or more of the characteristics that the solvent is inert with respect to reacting with the constituents and the constituents have good solubility in the solvent.

[0027] As shown in Figure 1, the constituents that are combined in the solvent include: (i) halogenated cyclosilane, (ii) at least one of tri-alkyl or tri-aryl silane, and (iii) a complexing agent that includes at least one of ammonium halide or phosphonium halide. Without being bound, the order and manner of combining the constituents is not thought to be of particular importance. As an example, however, the combining may include adding the halogenated cyclosilane into the solvent until it is substantially fully dissolved, and then adding the tri-alkyl/tri-aryl silane and the complexing agent to the dissolved halogenated cyclosilane mixture until they are also substantially fully dissolved. Alternatively, separate mixtures of one or more of the constituents in the solvent may be combined to provide the reaction mixture.

[0028] In a further example, the combining is conducted at a relatively low temperature, such as in a temperature range of about 20°C to about 120°C, and at ambient pressure. In order to facilitate the reaction, the reaction mixture may also be agitated, such as by stirring. Once combined, the mixture may be held for a period of time sufficient to substantially fully carry out the reaction. As an example, the time may be at least about one
hour but may be up to about twelve hours or even up to about 48 hours. After the hold period, the substituted cyclosilane is separated from the mixture to produce relatively pure substituted cyclohexasilane. For instance, the substituted cyclosilane is separated by distillation. The end product substituted cyclosilane may have a purity of greater than 90%, or in further examples of over 98%.

[0029] In the reaction mixture the halogenated cyclosilane reacts to produce the substituted cyclosilane. For example, the tri-alkyl or tri-aryl silane serves in the reaction as a reducing agent of the halogen atoms on the halogenated cyclosilane such that hydrogen atoms from the tri-alkyl or tri-aryl silane substitute for the halogen atoms. The resulting halogenated tri-alkyl or tri-aryl silyl halide can later be removed from the reaction mixture. The complexing agent serves as a catalytic reaction initiator and is not consumed in the reaction.

[0030] The reaction is further demonstrated below in Chemical Equation 1 based on halogenated cyclosilane.

CHEMICAL EQUATION 1:

\[
\begin{align*}
\left(X^* \right)_2 & \quad X^* = NR_4, PR_4 \\
& \quad X^1 = Cl, Br, I \\
R^1 & = \text{alkyl, aryl} \\
X^2 & = Cl, Br, I \\
Q & = N, P
\end{align*}
\]

[0031] In further examples, the starting halogenated cyclosilane is halogenated cyclopentasilane or halogenated cyclohexasilane. In one example, as demonstrated in the Chemical Equation I above, the halogenated cyclosilane is a halogenated cyclohexasilane salt. Neutral halogenated cyclosilanes are also contemplated. For example, \(X^* \) is \(NR_4 \) or \(PR_4 \) and the \(\left(X^1 \right)_2 \) species is not present. In further examples, the tri-alkyl or tri-aryl silane is selected from \(R^1 \) \(SiH \), where \(R^1 \) is alkyl or aryl and H is hydrogen or other substituent for the halogen of the halogenated cyclosilane. Comparatively between the alkyl and the aryl, the alkyl
facilitates reactivity and may also be of lower cost. In additional examples, the complexing agent is of formula \(QR^3\)X\(^2\), where Q is nitrogen or phosphorous, R\(^3\) is butyl or ethyl, and X\(^2\) is a halogen. For instance, the complexing agent is provided in the reaction mixture in an amount from 5 mol% to 25 mol%.

[0032] The example constituents and reaction advantageously facilitate a “one-step” synthesis, avoidance of metal (e.g., lithium) hydride constituents, and avoidance of producing silane gas (e.g., monosilane) byproduct. Moreover, it is contemplated that method 10 can facilitate scaling, including to commercial quantities, due to the one-step process and avoidance of silane gas byproduct.

[0033] The following working example demonstrates further aspects of this disclosure.

[0034] EXAMPLE 1

10 mmol of \([\text{NEt}_4]_2[\text{Si}_6\text{Cl}_{14}]\) was added to 100 mL of dibutyl ether under a blanket of \(\text{N}_2\) and a stirring rate of 600 rpm at 25 °C. To the reaction mixture was added 1 mmol of \([\text{NEt}_4]\text{Cl}\), followed immediately by addition of 140 mmol of \(\text{Et}_3\text{SiH}\). The reaction mixture was heated to 60 °C and was complete after 12 hours. \(\text{Si}_6\text{H}_{12}\) was isolated from the reaction mixture by distillation.

[0035] It is expected that that the method 10 can be scaled for larger quantities and that the relative quantities of the starting constituents can be varied for other chemistries. For instance, a molar ratio of \(\text{Si}_6\text{Cl}_{14}\) to \(\text{Et}_3\text{SiH}\) of at least 14:1 provides availability of one substituent hydrogen atom for each chlorine atom. A larger ratio may be used to enhance hydrogen atom availability, such as 15:1 or 20:1. A lower ratio could be used if fewer than all of the chlorine atoms are to be substituted for. The amount of \([\text{NEt}_4]\text{Cl}\) may also be varied. For example, a molar ratio of \([\text{NEt}_4]\text{Cl}\) to \(\text{Et}_3\text{SiH}\) of 1:140 is used. If decreased, the reaction may take longer for completion. In further examples, the ratio is at least 1:28. If the ratio is substantially increased, there may be a diminishing effect on reaction completion time, in addition to higher cost because more is used. In further examples, the ratio is no greater than about 1:28 or about 1:14.

[0036] Although a combination of features is shown in the illustrated examples, not all of them need to be combined to realize the benefits of various embodiments of this disclosure. In other words, a system designed according to an embodiment of this disclosure will not necessarily include all of the features shown in any one of the Figures or all of the portions schematically shown in the Figures. Moreover, selected features of one example embodiment may be combined with selected features of other example embodiments.
[0037] The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from this disclosure. The scope of legal protection given to this disclosure can only be determined by studying the following claims.
CLAIMS

What is claimed is:

1. A method comprising:
 producing a substituted cyclosilane by combining in a solvent the following: (i) halogenated cyclosilane, (ii) at least one of tri-alkyl or tri-aryl silane, and (iii) a complexing agent including at least one of ammonium halide or phosphonium halide, the halogenated cyclosilane reacting to produce the substituted cyclosilane.

2. The method as recited in claim 1, wherein the halogenated cyclosilane has five or six silicon atoms.

3. The method as recited in claim 1, wherein (ii) is the tri-alkyl silane.

4. The method as recited in claim 1, wherein (ii) is the tri-aryl silane.

5. The method as recited in claim 1, wherein (iii) is the ammonium halide.

6. The method as recited in claim 1, wherein (iii) is the phosphonium halide.

7. The method as recited in claim 1, wherein the at least one of ammonium halide or phosphonium halide includes butyl or ethyl.

8. The method as recited in claim 1, wherein the halogen of the halogenated cyclosilane is selected from the group consisting of chlorine, bromine, iodide, and combinations thereof.

9. The method as recited in claim 8, wherein the halogenated cyclosilane has six silicon atoms, (ii) is the tri-alkyl silane, and (iii) is the phosphonium halide.
10. A method comprising:
 producing a mixture by combining in a solvent the following: (i) halogenated
 cyclohexasilane, (ii) at least one of tri-alkyl or tri-aryl silane, and (iii) a complexing agent
 including at least one of ammonium halide or phosphonium halide;
 agitating the mixture, the halogenated cyclohexasilane reacting in the mixture to
 produce substituted cyclohexasilane; and
 separating the substituted cyclohexasilane from the mixture to produce pure substituted
 cyclohexasilane.

11. The method as recited in claim 10, wherein the agitating includes stirring.

12. The method as recited in claim 11, wherein the separating includes distillation.

13. The method as recited in claim 12, wherein (ii) is the tri-alkyl silane and (iii) is the
 phosphonium halide.

14. The method as recited in claim 12, wherein (ii) is the tri-alkyl silane and (iii) is the
 ammonium halide.

15. The method as recited in claim 12, wherein (ii) is the tri-aryl silane and (iii) is the
 phosphonium halide.

16. The method as recited in claim 12, wherein (ii) is the tri-aryl silane and (iii) is the
 ammonium halide.
17. A method comprising:

producing a substituted cyclosilane of formulation Si₉R₁₂, where Si is silicon and R is hydrogen, by combining in a solvent the following: (i) halogenated cyclosilane of formulation [X⁺][Si₉X¹₁₄], where X⁺ is a counter-ion including at least one of NRᵇ₄ or PRᵇ₄, wherein N is nitrogen, P is phosphorous, and Rᵇ is a halide, and X¹ is a halogen (ii) a compound of formula R¹₅SiH, where R¹ is alkyl or aryl and H is hydrogen, and (iii) a complexing agent of formula QR²X² where Q is nitrogen or phosphorous, R² is butyl or ethyl, and X² is a halogen, the halogenated cyclosilane of formulation [X⁺][Si₉X¹₁₄] reacting to produce the substituted cyclosilane of formulation Si₉R₁₂.

18. The method as recited in claim 17, wherein X⁺ is NRᵇ₄ and Q is nitrogen.

19. The method as recited in claim 17, wherein X⁺ is PRᵇ₄ and Q is nitrogen.

20. The method as recited in claim 17, wherein Q is phosphorous.
HALOGENATED CYCLOHEXASILANE

TRI-ALKYL OR TRI-ARYL SILANE

COMPLEXING AGENT OF AMMONIUM HALIDE OR PHOSPHONIUM HALIDE

SOLVENT

COMBINE

SUBSTITUTED CYCLOSILANE

FIG. 1
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC - C01B 33/107; C07F 7/21 (2020.01)
CPC - C01B 33/107; C07F 7/21

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
See Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
See Search History document

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2013/026453 A1 (KUNZE, K et al.) 31 January 2013; paragraphs [0005], [0010], [0042]-[0044]</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 2017/0349444 A1 (JOHANN WOLFGANG GOETHE-UNIVERSITAT) 07 December 2017; paragraphs [0001], [0027]</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "D" document cited by the applicant in the international application
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
18 May 2020 (18.05.2020)

Date of mailing of the international search report
08 JUN 2020

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-272-8300

Authorized officer
Shane Thomas
Telephone No. PCT Helpdesk: 571-272-4300

Form PCT/ISA/210 (second sheet) (July 2019)