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Predicting Depth From Image Data Using a Statistical Model

Field of the Invention
[0001] This invention relates generally to an image data processing system, and more

particularly to prediction of depth data from image data using a trained statistical model.

Background

[0002] Depth estimation from images has a long history in computer vision. Fruitful
approaches have relied on structure from motion, shape from X, binocular, and multi-
view stereo. However, most of these techniques rely on the assumption that multiple
observations of the scene of interest are available. These observations can come in the
form of multiple viewpoints, or observations of the scene under different lighting
conditions. To overcome this limitation, there has recently been a surge in the number
of works that pose the task of monocular depth estimation, where there is only a single
input image, as a supervised learning problem, for example as discussed in L. Ladicky,
J. Shi, and M. Pollefeys, “Pulling Things Out Of Perspective”, CVPR 2014, D. Eigen,
C. Puhrsch, and R. Fergus, “Depth Map Prediction From A Single Image Using A
Multi-Scale Deep Network”, NIPS 2014, and F. Liu, C. Shen, G. Lin, and I. Reid,
“Learning Depth From Single Monocular Images Using Deep Convolutional Neural
Fields”, PAMI 2015. However, the methods described in such works attempt to directly
predict the depth of each pixel in an image using models that have been trained offline
on large collections of ground truth depth data. Thus, such methods are restricted to
scenes where large image collections and their corresponding pixel depths are available.
[0003] An alternative approach that has been developed is to treat automatic depth
estimation as an image reconstruction problem during training. Humans perform well at
monocular depth estimation by exploiting cues such as perspective, scaling relative to
the known size of familiar objects, appearance in the form of lighting and shading,
occlusion, among other cues. This combination of both top-down and bottom-up cues
appears to link full scene understanding with our ability to accurately estimate depth.

Recently, a small number of published works propose deep network based methods for
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novel view synthesis and depth estimation, which do not require ground truth depth at
training time.

[0004] J. Flynn, 1. Neulander, J. Philbin, and N. Snavely, “DeepStereo: Learning To
Predict New Views From The World’s Imagery”, CVPR 2016, discusses a novel image
synthesis network called DeepStereo that generates new views by selecting pixels from
nearby neighbouring images. During training, they choose a set of images, compute
their respective camera poses (using a combination of odometry and standard structure
from motion), and then train a convolutional neural network (CNN) to predict the
appearance of a held out nearby image: the most appropriate depths are selected to
sample colours from the neighbouring images, based on plane sweep volumes. At test
time, image synthesis is performed on small overlapping patches. However, DeepStereo
is not suitable for monocular depth estimation as it requires several nearby posed
images at test time.

[0005] The Deep3D CNN discussed in J. Xie, R. Girshick, and A. Farhadi, “Deep3d:
Fully Automatic 2D-To-3D Video Conversion With Deep Convolutional Neural
Networks”, ECCV 2016 also addresses the problem of novel view synthesis in the
training stage, where their goal is to generate the corresponding right view from an
input left image (i.e. the source image) in the context of binocular stereo pairs of
images. As is well known in computer vision, binocular disparity refers to the difference
in coordinates of similar features within two stereo images, i.e. the difference in image
location of an object seen by the left and right cameras, resulting from the horizontal
separation (parallax) between the cameras. Deep3D uses binocular disparity to extract
depth information from the two-dimensional images in stereopsis. Again using an image
reconstruction loss, their method produces a distribution over all the possible disparities
for each pixel in the input left image. The pixel values of the resulting synthesized right
image are a combination of the pixels on the same scan line from the left image,
weighted by the probability of each disparity. The disadvantage of their image
formation model is that increasing the number of candidate disparity values greatly
increases the memory consumption of the algorithm, making it difficult to scale their

approach to large output resolutions.
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[0006] Similar to Deep3D, R. Garg, V. Kumar BG, and I. Reid, “Unsupervised CNN
For Single View Depth Estimation: Geometry To The Rescue”, ECCV 2016 discusses
training a CNN for monocular depth estimation using an image reconstruction loss
based on binocular stereo pairs of images in the training stage. However, the image
formation model described in Garg et al. is not fully differentiable, making training
suboptimal. To compensate, they perform a Taylor approximation to linearize their loss
resulting in an objective that is more challenging to optimize.

[0007] What is desired is an enhanced network architecture that addresses all of the
limitations of the above deep CNN based systems for depth estimation and significantly

increases the quality of the final results.

Summary of the Invention

[0008] Aspects of the present invention are set out in the accompanying claims.

[0009] According to one aspect, there is provided a computer-implemented method
comprising storing data defining a statistical model to predict depth data from colour
image data; and generating a depth image from a single input colour image by: generating
a predicted disparity map from the input colour image using the model; and calculating
corresponding estimated depth data from the predicted disparity map; wherein the model
was trained on at least one input binocular stereo pair of images, by: predicting, for each
image of the input binocular stereo pair, corresponding disparity values that enable
reconstruction of another image when applied to the image; and updating the model
based on a cost function that enforces consistency between the predicted disparity
values for each image in the stereo pair.

[0010] Training the model may further comprise computing, for each image of the
stereo pair, projected disparity values based on the corresponding disparity values. The
projected disparity values may be computed for one image of the stereo pair by
sampling the predicted disparity values of the first image, and applying the predicted
disparity values of the other image to the sampled data. The cost function may include a
disparity consistency component to enforce consistency between the predicted disparity

values and the projected disparity values computed for each image of the stereo pair.
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[0011] A reconstruction module of the model may reconstruct the second image in the
stereo pair by applying the corresponding predicted disparity values to shift sampled
image pixels of the first image in the stereo pair. The cost function may further include
a reconstructed appearance matching component to minimize an image reconstruction
error between the reconstructed image and the corresponding input image. Sampling
may comprise bilinear interpolation.

[0012] The cost function may further include a smoothness component to encourage
local smoothness in the corresponding predicted disparity values. The cost function
may implement a weighted sum of the disparity consistency component, the smoothness
component, and the reconstructed appearance matching component

[0013] The statistical model may comprise a convolutional neural network, CNN,
including a structured arrangement of processing nodes, each processing node having at
least one parameter value. The convolutional neural network may be trained by back-
propagating components of the cost function.

[0014] Training the model may further comprise up-sampling and up-convolving the
input image data at a plurality of spatial resolutions and predicting corresponding
disparity values at each spatial resolution, wherein the model is updated based on a cost
function that enforces consistency between the predicted disparity values at each spatial
resolution for each image in the stereo pair. The cost function may comprise a weighted
enforcement of consistency between the predicted disparity values depending on the
spatial resolution.

[0015] The binocular stereo pairs of training images may be captured at the same time
by respective cameras with a known camera focal length and at a known baseline
distance apart. The binocular stereo pairs of training images may be rectified and
temporally aligned stereo pairs. The digital images may be annotated with metadata
defining attributes of the respective camera that captured the image.

[0016] The colour image data may be captured by a camera. The model may be
configured to receive large resolution images.

[0017] Advantageously, the present invention provides a fully convolutional model that

does not require any depth data, and is instead trained to synthesize depth as an
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intermediate. It learns to predict the pixel level correspondence between pairs of
rectified stereo images that have a known camera baseline.
[0018] Additionally, embodiments provide:

a network architecture that performs end-to-end unsupervised monocular depth
estimation with a novel training loss that incorporates a left-right disparity consistency
constraint inside the network;

an evaluation of several different training losses and image formation models
highlighting the effectiveness of the described approach; and

a model that generalizes to other different datasets.

[0019] According to another aspect, the present invention provides an unsupervised
deep neural network for monocular depth estimation, where there is only a single input
image, and where no assumptions about the scene geometry or types of objects present
are made. Instead of using aligned ground truth depth data, which may not be available
in particular implementation contexts or may be costly to obtain, the present invention
exploits the ease with which binocular stereo data can be captured. According to yet
another aspect, the learning module implements a loss function that enforces
consistency between the predicted depth maps from each camera view during training,
leading to improved predictions. The resulting output depth data is superior to fully
supervised baselines, despite the omission of ground truth depth information in the
training stage. Furthermore, the trained model can generalize to datasets not seen during
training and still produce visually plausible depth maps.

[0020] In other aspects, there are provided apparatus and systems configured to perform
the methods as described above. In a further aspect, there is provided a computer
program comprising machine readable instructions arranged to cause a programmable

device to carry out the methods as described above.

Brief Description of the Drawings

[0021] There now follows, by way of example only, a detailed description of
embodiments of the present invention, with references to the figures identified below.
[0022] Figure 1 is a block diagram showing the main components of an image

processing system according to an embodiment of the invention.
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[0023] Figure 2 is a schematic illustration of a section of an exemplary CNN.

[0024] Figure 3, which comprises Figures 3A and 3B, is a flow diagram illustrating the
main processing steps performed by the training module to train a single image depth
prediction CNN, according to an embodiment.

[0025] Figure 4 is a block flow diagram schematically illustrating processing and data
components of an example CNN in a training iteration, according to an embodiment.
[0026] Figure 5 is a flow diagram for an exemplary process of generating and
processing depth data from a single source image using the trained CNN according to
an embodiment.

[0027] Figure 6 is a diagram of an example of a computer system on which one or more

of the functions of the embodiments may be implemented.

Description of Embodiments

[0028] Figure 1 is a block diagram of an example system 1 for predicting and
processing depth data from colour image data. As illustrated, the system 1 includes an
image processing system 3 having a depth data generator module 5 that may receive
colour image data captured from a camera 7, such as an RGB image describing RGB
values for pixels forming objects in the captured view. The digital images may be
annotated with metadata defining attributes of the respective camera that captured the
image. The depth data generator module 5 uses a disparity predictor 9 of a trained
convolutional neural network (CNN) module 11 to generate a predicted binocular
disparity map directly from the received colour image data of the single source image.
The generated binocular disparity values are representative of the difference in image
location of a detected object or feature in the captured source image and a predicted
image location of the object or feature in a corresponding notional binocular stereo
view, if the source image was one of a pair of stereo images captured by a calibrated
pair of binocular stereo cameras. The depth data generator module 5 computes depth
information from the binocular disparity map output by the disparity predictor 9.

[0029] The CNN 11 includes a dynamic structured arrangement of processing nodes,
each node having a corresponding weight parameter. The structure and weights defining

the CNN 11 are updated by a training module 13 during a training stage. In this
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embodiment, the processing nodes of the CNN 11 are arranged into three main
components:

- an encoder 12 that includes nodes and layers to: process input image data
and output encoded data indicative of objects or features in the input image;

- a decoder 14 that includes nodes and layers to: process the encoded data
from the encoder 12, perform up-convolution and up-sampling to output
scaled data at an increased spatial resolution, output predicted disparity
maps, such as the predicted disparity map from input encoded data output by
the disparity predictor 9, and output projected views by applying the
predicted disparity maps to input image data; and

- aloss module 19 that includes nodes and layers to: compute a training loss
that is used to update the CNN 11, the training loss comprising disparity
smoothness and left-right disparity consistency cost terms computed from
the disparity maps output by the decoder 14, and an appearance matching
cost term computed from comparison of a projected view to the
corresponding input view.

[0030] As will be described in greater detail below, the training module 13 trains the
convolutional neural network (CNN) module 11 based on binocular stereo pairs of
images 15, retrieved for example from a database 17 of training images. The binocular
stereo pairs of images 15 include a left view 15a and a right view 15b that are captured
at the same time by respective binocular stereo cameras with a known camera focal
length and at a known baseline distance apart, whereby depth data may be computed
from the predicted binocular disparity values output by the disparity predictor 9. The
training module 13 optimises a loss function implemented by a loss module 19 of the
CNN module 11 and as a result, trains the disparity predictor 9 to accurately and
efficiently generate the predicted binocular disparity map directly from colour pixel
values of a single source image.

[0031] It should be appreciated that the CNN module 11, training module 13, and depth
data generator module 5 may be combined into a single module or divided into
additional modules, and the image processing module 3 may include additional

components, such as a memory 21 to store model data of the trained CNN module 11.
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The system 1 may also include other components, sub-components, modules, and
devices commonly found in a computing system/device, which are not illustrated in
Figure 1 for clarity of the description.

[0032] The depth information output by the image processing system 3 may be
provided to one or more depth data processing modules 23 for further data processing.
The depth data processing modules 23 may be configured to output data and/or control
signals to an output device 25 based on the processed depth data. The nature and
arrangement of the depth data processing modules will be specific to the
implementation context of the system 1. Purely by way of exemplary concrete
implementations: the depth maps may be predicted from captured image data relating to
synthetic object insertion in computer graphics; determining synthetic depth of field in
computational photography; generating control instructions for robotic grasping;
outputting depth as a cue in human body pose estimation; determining strong cues for
hand pose estimation in human computer interaction; automatic 2D to 3D conversion
for film video data; low cost obstacle avoidance sensors for autonomous cars; small
form factor, single camera, depth sensing, endoscopes for surgery; single camera 3D
reconstruction; improved pose estimation for VR headsets; obstacle avoidance and path
mapping for the blind; size and volume estimation for object metrology. It should be
appreciated that the training data 17 may comprise stereo image pairs 15 of views
specific to the particular implementation context.

[0033] Figure 2 is a schematic illustration of the decoder 14 and training loss module 19
sections of an exemplary CNN according to the present embodiment. The exemplary
layers of the CNN 11 are set out in Table 1 below, which is based on the fully
convolutional architecture by N. Mayer, E. llg, P. Hausser, P. Fischer, D. Cremers, A.
Dosovitskiy, and T. Brox, “A Large Dataset To Train Convolutional Networks For
Disparity, Optical Flow, And Scene Flow Estimation”, CVPR 2016, but adapted to
include several modifications that enable the network to be trained without requiring
ground truth depth data. In the illustrated example, the CNN consists of 31 million
parameters that are learned by the system in the training stage, where ‘k’ is the kernel
size, ‘s’ is the stride, ‘channels’ is the number of input and output channels of each

layer, ‘in’ and ‘out’ are the input and output downscaling factor for each layer relative
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to the input image respectively, and ‘input’ corresponds to the input of each layer where
‘+’ means concatenation and ‘*’ corresponds to a 2x upsampling of the corresponding

layer.

Encoder |k |s |channels |in out | Inputlayer
layer

convl 7 12 |3/32 1 2 left

convlb 7 |1 [32/32 2 2 convl

conv2 5 (2 |32/64 2 4 convlb

conv2b 5 |1 |o64/64 4 4 conv2

conv3 3 |2 |64/128 4 8 conv2b

conv3b 3 |1 |128/128 8 8 conv3

conv4 3 12 |128/256 8 16 conv3b

conv4b 3 |1 |256/256 16 16 conv4

conv>S 3 12 |256/512 16 32 conv4b

conv5b 3 |1 |512/512 |32 32 convS

convo 3 12 |512/512 |32 64 conv5Sb

conv6ob 3 |1 |512/512 |64 64 conv6

conv7 3 12 |512/512 |64 128 | conv6b

conv7b 3 |1 |512/512 128 | 128 | conv7?

Decoder |k |[s | channels |in out | Inputlayer
layer

upconv7 |3 |2 |[512/512 128 | 64 conv7b

iconv7 3 |1 |1024/512 |64 64 upconv7+convé
upconvb |3 |2 |[512/512 |64 32 iconv?

iconvo 3 |1 |1024/512 |32 32 upconv6+convS
upconvS |3 |2 |[512/256 |32 16 iconv6

iconv5 3 |1 |512/256 16 16 upconvS+conv4
upconv4d |3 |2 |256/128 16 8 iconv>S

iconv4 3 (1 |128/128 |8 8 upconv4-+conv3
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disp4 3 |1 |128/2 8 8 iconv4

upconv3 |3 |2 |128/64 8 4 iconv4

iconv3 3 |1 |66/64 4 4 upconv3+conv2+disp4*
disp3 3 |1 |642 4 4 iconv3

upconv2 |3 |2 |64/32 4 2 iconv3

iconv2 3 (1 |34/32 2 2 upconv2+convl1+disp3*
disp2 3 |1 3272 2 2 iconv2

upconvl |3 |2 |32/16 2 1 iconv2

iconvl 3 (1 |18/16 1 1 upconv 1+disp2*

displ 3 |1 |162 1 1 iconvl

TABLE 1

[0034] As shown, the CNN 11 includes the encoder 12 (comprising layers convl to
conv7b) and decoder 14 (comprising layers from upconv7 to displ). The decoder 14
may implement skip connections, as is known in the art, from the encoder’s activation
blocks, in order to resolve higher resolution details. In Figure 2, C refers to a
Convolution connection, UC to an Up-Convolution connection, S to a Bi-linear
Sampling connection, and US to an Up-Sampling connection. In the present exemplary
embodiment, disparity predictions are output at four different scales (labelled disp4 to
displ), which increase in spatial resolution at each of the subsequent scales. When
training the network, two disparity maps are predicted for each input image view (e.g.
the left and the right views), at each of the output scales, as indicated by the subscript s.
One disparity map is aligned with the input to the layer (e.g. a left-to-right disparity
map, d', which is aligned to the encoded data of the left view), and the other disparity
map is aligned to its corresponding stereo partner (e.g. a projected right-to-left disparity
map, d'(d"), which is aligned to a corresponding projected right view). The processing
by the decoder 14 and the loss module 19 is repeated at each of the four different output
scales.

[0035] A key advantage is that the trained system 3 produces superior depth maps by

predicting the disparity from both binocular cameras and enforcing them to be
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consistent with each other. Generating the right view with pixels from the left view
leads to a disparity map aligned with the right view (and vice versa). The training
module 13 aims to optimise the alignment of the predicted disparity map to a source
input image (in this embodiment, the left view 15a). During training, the training
module 13 has access to both the left and right stereo images 15a,15b and the training
module 13 trains the CNN 11 to estimate both left-to-right and right-to-left disparity
maps, as well as to determine corresponding projected right-to-left and left-to-right
disparity maps from the respective estimated disparity maps, and to enforce consistency
therebetween. An additional optimisation goal of the training module 13 is to train the
CNN 11 to reconstruct the corresponding left and right views by learning the disparity
maps that can shift the pixels to minimize an image reconstruction error. In this way,
given training images from a calibrated pair of binocular cameras, the image processing
system 3 learns a function that is able to reconstruct an image given the other view, and
in so doing, generates a trained model (i.e. the CNN 11) that enables prediction or
estimation of the shape of the scene that is being imaged. Given a single training image
I (e.g. the left view 15a of a training stereo image pair 15), the image processing system
3 also learns a function that can predict the per-pixel scene depth, d = f(I), treating
depth estimation as an image reconstruction problem during training.

[0036] An overview description has been given above of the components forming part
of the image processing system 3 of an embodiment. A more detailed description of the
operation of these components will now be given with reference to the flow diagram of
Figure 3, for the process of training a single image depth prediction CNN 11 according
to an embodiment, which enables the CNN 11 to be trained solely on stereo image pairs,
without requiring supervision for example in the form of corresponding ground truth
depth information. While the various steps in this flowchart are presented and described
sequentially, it should be appreciated that some or all of the steps may be executed in
different orders, may be combined or omitted, and some or all of the steps may be
executed in parallel. Further, in one or more of the example embodiments, one or more
of the steps described below may be omitted, repeated, and/or performed in a different

order.
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[0037] Reference is also made to Figure 4, which is a block flow diagram schematically
illustrating an example structured arrangement of processing nodes and layers of the
CNN 11, according to embodiments of the present invention. The up-convolution (UC)
and up-sampling (US) layers, as shown in Figure 2, are omitted from Figure 4 for
brevity but it should be appreciated that the scaled outputs from the UC and US layers
are represented by the subscript s to each of the predicted disparities and the respective
calculated cost elements.

[0038] As shown in Figure 3, an iteration of the training process for a single pair of
training images 15 begins at step S3-1(L) where the CNN 11 receives colour image data
of views one of the input stereo pair, the left view in this embodiment. In this
embodiment, the CNN 11 also receives colour image data of the right view, at step S3-
1(R). The training module 13 may retrieve the two images I' and I' from training data
stored in memory 17, corresponding to the left and right colour images of a calibrated
stereo pair, captured at the same moment in time, and pass the image data to one or
more input nodes (not shown) of the CNN 11. It should be appreciated that the CNN 11
may be configured to advantageously receive and process a plurality of pairs of training
images in parallel. Preferably, although not necessarily, the stereo pair of images 15 are
rectified, whereby the images are projected onto a common image plane using a defined
transformation process, as is known in the art.

[0039] At step S3-3, the input image data of the left view is passed through the
convolutional layers of the encoder 12 to generate encoded input data, for example
representing a complex feature vector of identified objects or features in the input
image. Instead of trying to directly predict the depth from the left view image 15a, the
CNN 11 is trained to find a correspondence field, which in this embodiment is the
predicted left-to-right disparity map (d"), that when applied to the left view image 15a
enables a right view projector 415a of the CNN 11 to reconstruct a projected right view
image (or vice versa). Accordingly, at step S3-5, the encoded data output at step S3-3 is
passed through the processing nodes of the left view disparity predictor 307a, which
outputs data values of a predicted left-to-right disparity map (d's) based on the current
structure and weights. As will be described below, the CNN 11 is trained to predict a

disparity map from input data by predicting, for each image of the input binocular stereo
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pair, corresponding disparity values, and updating the CNN 11 based on a cost function
that enforces consistency between the predicted disparity values for each image in the
stereo pair. Accordingly, at step S3-5, the encoded data is also passed through the
processing nodes of the right view disparity predictor 307b, which outputs data values
of a predicted right-to-left disparity map (d') based on the current structure and weights.
[0040] Optionally, a left-to-right disparity smoothness cost (C'ys)s may be calculated
from the predicted left-to-right disparity map (d") by a L->R disparity smoothness node
413a of the loss module 13, at step S3-7. Likewise, a right-to-left disparity smoothness
cost (C'ys)s may be calculated from the predicted right-to-left disparity map (d') by a R-
>L disparity smoothness node 413b of the loss module 13, at step S3-7. The calculated
smoothness cost elements of the training loss function encourage the respective
predicted disparity maps to be locally smooth with an L1 penalty on the disparity
gradients dd. For example, the smoothness cost calculated from the predicted left
disparity map d' may be formulated as:

Chs = 3 Yisl0xdl| e 2=t + o, dt e |0y 1} | M
where n may be set to 1.0. As depth discontinuities often occur at image gradients, this
smoothness cost may be weighted with an edge aware term using the corresponding
image gradients 0/.

[0041] At step S3-9(L), a R->L disparity projector 409a samples the data values of the
predicted left-to-right disparity map (d's), and applies the predicted right-to-left disparity
map (d') to the sampled data to generate a projected right-to-left disparity map (d'(d")s).
For clarity, processing of the predicted left-to-right disparity values will be described
with reference to steps denoted with an (L) and it should be appreciated that the
correspondingly numbered processing steps are mirrored for the right-to-left disparity
values, as denoted with an (R). In this embodiment, the disparity projectors 409
implement image sampling functionality to sample input data using a disparity map,
based on the image sampler from a spatial transformer network (STN), as is known in
the art for example from M. Jaderberg, K. Simonyan, A. Zisserman, and K.
Kavukcuoglu, “Spatial Transformer Networks”, NIPS 2015. The STN uses bilinear

sampling where the output pixel is the weighted sum of four input pixels. In contrast to
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the above-mentioned approaches by Xie et al. and Garg et al., the bilinear sampler used
in this embodiment is locally fully differentiable and integrates seamlessly into the fully
convolutional architecture of the CNN 11. This means that the CNN 11 does not require
any simplification or approximation of the optimisation cost function.

[0042] To produce more robust results, the CNN 11 is trained to predict both the left
and right image disparities, based only on the left view image data 15a as input to the
convolutional loss module 13 part of the network. Accordingly, at step S3-9(L), the
projected right disparity predictor node 409a of the CNN 11 outputs a projected right
disparity map (d'(d")), based on the predicted left disparity map (d') output by the left
view disparity predictor node 407a at step S3-5(L). To ensure coherence, the loss
module 13 includes an L1 left-right disparity consistency penalty as part of the model
11. This cost is provided to drive the predicted left-view disparity map (d") to be equal
to the projected right-view disparity map (d'(d")). Thus, at step S3-11(L), a L-R disparity
consistency loss node 411a calculates a left consistency cost as:

L _ 1 |41 _ gr

ij+d;

)

[0043] At step S3-13(L), a coarse-to-fine scaler 405a of the CNN 11 generates and
outputs scaled image data of the left view, at scales s; to s,, where n=4 in the present
exemplary embodiment. For each scale s, the corresponding scaled image data of the
left view (I'y) is passed to a right view projector 415a of the decoder 14 for processing.
At step S3-15(L), the right view projector 415a generates the projected neighbouring
stereo image by sampling pixels from the scaled left view image (I%). In this
embodiment, the view projectors 415 also implement the image sampler from a spatial
transformer network (STN) as discussed above, to sample the input data using an input
disparity map.

[0044] Optionally, a right view projector 415a of the CNN 11 may reconstruct a
projected right view image by applying the predicted left-to-right disparity (d) to the
input scaled left view image data (I's), at step S3-15(L). This process can be formulated

as:

arg ming ||Ir — Il(dr)” (3)
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where d corresponds to the image disparity, a scalar value per pixel that the model 11 is
trained to predict. The reconstructed image I'(d) will be referred to as I' for brevity. A
projected left view image may be similarly generated by applying the predicted right-to-
left disparity map (d") to the input scaled right view image data (I';), at steps S3-13(R)
and S3-15(R).

[0045] At step S3-17(L), an appearance matching cost may be calculated by an R
appearance matching loss node 417a, as a combination of an L1 and single scale
Structured Similarity, SSIM, term as the photometric, image reconstruction cost

between the input image Iilj and its reconstruction iilj:

1-ssiM(1}; T}

: ) ol -1 @

Ccllp = ;Zi, j X
where N is the number of pixels in the images. In an exemplary embodiment, a
simplified SSIM with a 3 x 3 block filter is used, instead of a Gaussian, and o is set as
0.85. Computation of the SSIM term is known in the art per se, for example from
Z Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment:
From Error Visibility To Structural Similarity”, Transactions on Image Processing
2004, and need not be described further. The left appearance matching cost (Clap) may
be similarly calculated from a projected left view output by the left view projector 415b
and the corresponding scaled left view image ouput by the scaler 405, at step S3-17(R).
[0046] Having passed the left view colour image 15a and the right view colour image
15b through the CNN 11, a training loss node 419 of the loss module 13 computes a
training loss for the stereo pair of training images at the current scale, at step S3-19. In
the present embodiment, the scaled training loss is calculated as a weighted combination
of the disparity smoothness costs output at steps S3-7(L) and (R), the disparity
consistency costs output at steps S3-11(L) and (R), and the appearance matching costs
output at steps S3-17(L) and (R). This weighted combination of the three calculated cost

terms can be formulated as:
l l l
Cs:aap(cap + Cg;p) + ads(cds + Cgs) + alr(clr + CZ;‘) (5)
where C,, encourages the reconstructed image to be similar to the corresponding

training input, Cg4s enforces smooth disparities, and Cj, attempts to make the predicted

disparities from the left and right images consistent. Each of the main terms contains
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both a left and right image variant. In this exemplary embodiment involving all three
training cost elements, the left view image 15a is always passed through the CNN 11.
Since the training module 13 has access to the corresponding right view image 15b
during training, the CNN 11 can also predict a disparity map in its frame of reference. It
should be appreciated that the right view image data need not be passed through the
CNN 11 when the appearance matching cost elements are not implemented.

[0047] At step S3-21, the decoder 14 of the CNN 11 performs up-convolution of the
data output by the encoder 12 at the current scale, as well as up-sampling of the
predicted disparity maps output by the disparity predictors 407, as input to a subsequent
structured set of processing nodes to compute a scaled training loss for the next scale, as
discussed from steps S3-3 above. After a scaled training loss is computed for each
predefined scale, a final total loss is calculated by a sum node 421 of the loss module 13
at step S3-23, as a weighted sum of the individual scaled losses Cj:

C= Zg=1 AsCs (6)
where A; allows the training module 13 to be configured to weight the relative
importance of different output scales during training.

[0048] In an exemplary embodiment, the weighting of the different loss components is
set to agp = 1 and oy = 1. The possible output disparities are constrained to be between 0
and dmax using a scaled sigmoid non-linearity, where dma = 0.3 times the image width at
a given output scale. As a result of the multi-scale output, the typical disparity of
neighbouring pixels will differ by a factor of two between each scale (as the CNN 11 is
up-sampling the output by a factor of two). To correct for this, the training module 13
may scale the disparity smoothness term a4s with 7 for each scale, to get equivalent
smoothing at each level. Thus ag4s = 0.1/r, where r is the downscaling factor of the
corresponding layer with respect to the resolution of the input image that is passed into
the CNN 11 (in from Table 1).

[0049] At step S3-25, the training module 13 updates the CNN 11 by back-propagating
the weighted components of the final total training loss computed by the sum node 421
at step S3-21. For the non-linearities in the CNN 11, exponential linear units may be
used instead of the commonly used rectified liner units (ReLU), as are both known in

the art. In an exemplary embodiment, the CNN 11 is trained from scratch for 50 epochs,
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based on the technique described in D. Kingma and J. Ba, “Adam: A method for
stochastic optimization”, arXiv preprint, arXiv:1412.6980, 2014, where 3, = 0:9, B, =
0:999, and £ = 10, An initial learning rate of A = 10™ is used, which is kept constant for
the first 30 epochs before halving it every 10 epochs until the end. It should be
appreciated that the training module 13 may be configured to update the CNN 11 using
a progressive update schedule, where lower resolution image scales are optimized first.
However, the inventors have realised that optimizing all four scales at once further
advantageously leads to more stable convergence. Similarly, an identical weighting of
each scale loss can be used in the event that different weightings leads to unstable
convergence.

[0050] Figure 5 is a flow diagram for an exemplary process of generating and
processing depth data from a single source image using the trained CNN 11 according
to an embodiment. At step S6-1, colour image data of a single source image is received
by the depth data generator 5, for example from the camera 7. At step S6-3, using a
single forward pass through the trained CNN 11, the disparity at the finest scale level
for the left image, d', is output by the trained L-R view disparity predictor 407a as the
predicted disparity map (corresponding to displ from Table 1). As a result of the
upsampling by the coarse-to-fine scaler 405 in the CNN 11, the output predicted
disparity map is the same resolution as the input image. It should be appreciated that the
right-to-left disparity, d', is not used in the depth data generation stage.

[0051] At step S6-5, the depth data generator 5 creates a depth image consisting
predicted depth values for each pixel in the source image, computed from the predicted
disparity map output at step S6-3. Given the baseline distance, b, between the stereo
cameras used to capture the training data 15, and the associated camera focal length, f,
the depth data generator 5 can recover the estimated depth values from the predicted

disparity, as:
j—pL
d=bZ %)

[0052] At step S6-7, the depth image is passed to a depth data processing module 23 to

be processed depending on the specific implementation context of the system 1.
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Computer Systems

[0053] The entities described herein, such as the image processing system 3 and/or the
individual modules of the image processing system 3, may be implemented by computer
systems such as computer system 1000 as shown in Figure 6. Embodiments of the
present invention may be implemented as programmable code for execution by such
computer systems 1000. After reading this description, it will become apparent to a
person skilled in the art how to implement the invention using other computer systems
and/or computer architectures.

[0054] Computer system 1000, which may be a personal computer, a laptop, a
computing terminal, a smart phone, a tablet computer, or the like, includes one or more
processors, such as processor 1004. Processor 1004 may be any type of processor,
including but not limited to a special purpose or a general-purpose digital signal
processor. Processor 1004 is connected to a communication infrastructure 1006 (for
example, a bus or network). Various software implementations are described in terms of
this exemplary computer system. After reading this description, it will become apparent
to a person skilled in the art how to implement the invention using other computer
systems and/or computer architectures.

[0055] Computer system 1000 also includes a user input interface 1003 connected to
one or more input device(s) 1005 and a display interface 1007 connected to one or more
display(s) 1009. Input devices 1005 may include, for example, a pointing device such as
a mouse or touchpad, a keyboard, a touchscreen such as a resistive or capacitive
touchscreen, etc. After reading this description, it will become apparent to a person
skilled in the art how to implement the invention using other computer systems and/or
computer architectures, for example using mobile electronic devices with integrated
input and display components.

[0056] Computer system 1000 also includes a main memory 1008, preferably random
access memory (RAM), and may also include a secondary memory 610. Secondary
memory 1010 may include, for example, a hard disk drive 1012 and/or a removable
storage drive 1014, representing a floppy disk drive, a magnetic tape drive, an optical
disk drive, etc. Removable storage drive 1014 reads from and/or writes to a removable

storage unit 1018 in a well-known manner. Removable storage unit 1018 represents a
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floppy disk, magnetic tape, optical disk, etc., which is read by and written to by
removable storage drive 1014. As will be appreciated, removable storage unit 1018
includes a computer usable storage medium having stored therein computer software
and/or data.

[0057] In alternative implementations, secondary memory 1010 may include other
similar means for allowing computer programs or other instructions to be loaded into
computer system 1000. Such means may include, for example, a removable storage unit
1022 and an interface 1020. Examples of such means may include a program cartridge
and cartridge interface (such as that previously found in video game devices), a
removable memory chip (such as an EPROM, or PROM, or flash memory) and
associated socket, and other removable storage units 1022 and interfaces 1020 which
allow software and data to be transferred from removable storage unit 1022 to computer
system 1000. Alternatively, the program may be executed and/or the data accessed from
the removable storage unit 1022, using the processor 1004 of the computer system
1000.

[0058] Computer system 1000 may also include a communication interface 1024.
Communication interface 1024 allows software and data to be transferred between
computer system 1000 and external devices. Examples of communication interface
1024 may include a modem, a network interface (such as an Ethernet card), a
communication port, a Personal Computer Memory Card International Association
(PCMCIA) slot and card, etc. Software and data transferred via communication
interface 1024 are in the form of signals 1028, which may be electronic,
electromagnetic, optical, or other signals capable of being received by communication
interface 1024. These signals 1028 are provided to communication interface 1024 via a
communication path 1026. Communication path 1026 carries signals 1028 and may be
implemented using wire or cable, fibre optics, a phone line, a wireless link, a cellular
phone link, a radio frequency link, or any other suitable communication channel. For
instance, communication path 1026 may be implemented using a combination of
channels.

[0059] The terms "computer program medium" and "computer usable medium" are

used generally to refer to media such as removable storage drive 1014, a hard disk
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installed in hard disk drive 1012, and signals 1028. These computer program products
are means for providing software to computer system 1000. However, these terms may
also include signals (such as electrical, optical or electromagnetic signals) that embody
the computer program disclosed herein.

[0060] Computer programs (also called computer control logic) are stored in main
memory 1008 and/or secondary memory 1010. Computer programs may also be
received via communication interface 1024. Such computer programs, when executed,
enable computer system 1000 to implement embodiments of the present invention as
discussed herein. Accordingly, such computer programs represent controllers of
computer system 1000. Where the embodiment is implemented using software, the
software may be stored in a computer program product 1030 and loaded into computer
system 1000 using removable storage drive 1014, hard disk drive 1012, or
communication interface 1024, to provide some examples.

[0061] Alternative embodiments may be implemented as control logic in hardware,
firmware, or software or any combination thereof. For example, the trained CNN
module 11 may be implemented in hardware and/or software as a standalone entity for
installation as a component in an image processing system, and may further include the
training module functionality and/or the depth data generator functionality.

[0062] It will be understood that embodiments of the present invention are described
herein by way of example only, and that various changes and modifications may be
made without departing from the scope of the invention. For example, the above
embodiments implement the trained statistical model as a deep convolutional neural
network. As those skilled in the art will appreciate, the underlying aspects of the
training process may be applicable to other forms of statistical models suitable for
processing image data to generate a predicted depth map, such as random forest and
derivatives.

[0063] Reference in this specification to “one embodiment” are not necessarily all
referring to the same embodiment, nor are separate or alternative embodiments mutually
exclusive of other embodiments. In particular, it will be appreciated that aspects of the
above discussed embodiments can be combined to form further embodiments.

Similarly, various features are described which may be exhibited by some embodiments
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and not by others. Yet further alternative embodiments may be envisaged, which

nevertheless fall within the scope of the following claims.
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Claims

1. A computer-implemented method comprising:
storing data defining a statistical model to predict depth data from colour image
data; and
generating a depth image from a single input colour image by:
generating a predicted disparity map from the input colour image using the
model; and
calculating corresponding estimated depth data from the predicted disparity
map;
wherein the model was trained on at least one input binocular stereo pair of
images by:
predicting, for each image of the input binocular stereo pair,
corresponding disparity values that enable reconstruction of another image when
applied to the image; and
updating the model based on a cost function that enforces consistency

between the predicted disparity values for each image in the stereo pair.

2. The method of claim 1, wherein training the model further comprises:
computing, for each image of the stereo pair, projected disparity values based on

the corresponding disparity values.

3. The method of claim 2, wherein the projected disparity values are computed for
one image of the stereo pair by sampling the predicted disparity values of the first
image, and applying the predicted disparity values of the other image to the sampled
data.

4. The method of claim 2 or 3, wherein the cost function includes a disparity
consistency component to enforce consistency between the predicted disparity values

and the projected disparity values computed for each image of the stereo pair.
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5. The method of any preceding claim, further comprising reconstructing
the second image in the stereo pair by applying the corresponding predicted disparity

values to shift sampled image pixels of the first image in the stereo pair.

6. The method of claim 3 or 5, wherein said sampling comprises bilinear
interpolation.
7. The method of claim 5 or 6, wherein the cost function further includes a

reconstructed appearance matching component to minimize an image reconstruction

error between the reconstructed image and the corresponding input image.

8. The method of claim 7, wherein the cost function further includes a smoothness
component to encourage local smoothness in the corresponding predicted disparity

values.

9. The method of claim 8, wherein the cost function implements a weighted sum of
the disparity consistency component, the smoothness component, and the reconstructed

appearance matching component.

10.  The method of any preceding claim, wherein the statistical model comprises a
convolutional neural network, CNN, including a structured arrangement of processing

nodes, each processing node having at least one weight value.

11. The method of claim 10, wherein the convolutional neural network is trained by

back-propagating components of the cost function.

12.  The method of any preceding claim, further comprising:
up-sampling and up-convolving the input image data at a plurality of spatial
resolutions; and

predicting corresponding disparity values at each spatial resolution;



1207 21

10

15

20

25

24
wherein the model is updated based on a cost function that enforces
consistency between the predicted disparity values at each spatial resolution for each

image in the stereo pair.

13. The method of claim 12, wherein the cost function comprises a weighted
enforcement of consistency between the predicted disparity values depending on the

spatial resolution.

14.  The method of any preceding claim, wherein the binocular stereo pairs of
images are captured at the same time by respective cameras with a known camera focal
length and at a known baseline distance apart, whereby corresponding depth data is

computed from the predicted disparity values.

15. The method of claim 14, wherein the binocular stereo pairs of images are

rectified and temporally aligned stereo pairs.

16. The method of claim 15, wherein the digital images are annotated with metadata

defining attributes of the respective camera that captured the image.

17.  The method of any preceding claim, wherein the colour image data is captured
by a camera.
18.  An apparatus or system comprising means for performing the method of any one

of claims 1 to 17.

19. A storage medium comprising machine readable instructions stored thereon for
causing a computer system to perform a method in accordance with any one of claims 1

to 17.
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