A protection circuit for a battery feed circuit used in a switching system. The protection circuit is comprised of: a supervising circuit for detecting an abnormal current flowing through a battery feed resistor; and a voltage limiting circuit for clamping a voltage across the battery feed resistor when the abnormal current is detected. Further, a control circuit is employed for stopping an operational amplifier, which is a component of a conventional battery feed circuit, when the abnormal current is detected.

19 Claims, 15 Drawing Sheets
Fig. 2
Fig. 5
Fig. 9

OP₁

```
Vcc

Q₄₀

OUT

Q₄₁

Q₄₂

Q₄₃

Q₄₄

Q₄₅

21

24-2

Q₄₇

IN

Q₄₈

Q₄₉

L₁

VBB

Q₅₀

D₁

R₅₀

Q₅₁

VBB

VBB

VBB

L₁

Q₅₁

Is
```
Fig. 10

OP₁

Q₄₀

Q₄₁

Q₄₂

Q₄₃

Q₄₄

Q₄₅

Q₄₆

Q₄₇

Q₄₈

Q₄₉

V₇₁

VBB

VCC

I₀

VCC

24-1

41

31

FROM

11

VBB

VBB

VBB

VBB

VBB

R₅₀

D₁

R₅₂

R₅₂
Fig. 13
Fig. 16
Fig. 17

[Diagram of a circuit with transistors, resistors, and labels such as Q11, R11, VR, IR, 51, DETECTION CIRCUIT, and other components.]
PROTECTION CIRCUIT FOR BATTERY FEED CIRCUIT

1. Field of the Invention
The present invention relates to a switching system, more specifically it relates to a protection circuit for protecting a battery feed circuit in a line circuit from a ground fault and a false connection.

In a battery feed circuit, if a ground fault or a false connection occurs in a subscriber's line, an overcurrent flows in the battery feed circuit and, for example, burning occurs. Accordingly, a protection circuit is fitted to the battery feed circuit to protect the same when a ground fault or false connection occurs, by limiting the amount of overcurrent flowing therethrough.

2. Description of the Related Art
A prior art protection circuit is realized by inserting a well known limiting resistor between the subscriber's line and the battery feed circuit, only when a fault such as ground fault or false connection is detected, and another prior art protection circuit is realized by a plurality of auxiliary power transistors, connected in parallel with a main battery feed transistor, to cope with an overcurrent.

These two prior arts, however, have disadvantages in that, the protection circuit requires a large space for accommodating the same, and the number of discrete electric parts is increased. It should be noted that, since the protection circuits are mounted in a great number of the line circuits for each subscriber, the smaller the size and the lower the number of parts, the better.

SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide a protection circuit for a battery feed circuit, which protection circuit can be miniaturized in the form of an integrated circuit (IC). To attain the above object, the protection circuit according to the present invention is realized by a voltage limiting circuit which limits the voltage across a battery feed resistor to a predetermined value when a fault is detected.

BRIEF DESCRIPTION OF THE DRAWINGS
The above object and features of the present invention will be more apparent from the following description of the preferred embodiments with reference to the accompanying drawings, wherein:

FIG. 1 is a block diagram of a protection circuit according to a first embodiment of the present invention;
FIG. 2 is a detailed circuit diagram of the first embodiment shown in FIG. 1;
FIG. 3 is a block diagram of a protection circuit according to a second embodiment of the present invention;
FIG. 4 is a detailed circuit diagram of the second embodiment shown in FIG. 3;
FIG. 5 is a circuit diagram of an example of an application of the second embodiment of the present invention;
FIG. 6 is a circuit diagram of an example of the supervising circuit;
FIG. 7 is a circuit diagram of another type of battery feed circuit;
FIG. 8 is a block diagram including a control circuit according to the present invention and an operational amplifier.

DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 is a block diagram of a protection circuit according to a first embodiment of the present invention. In FIG. 1, R1 denotes a battery feed resistor for determining a DC current supplied to the subscriber's line. The resistor R1 is connected to a power source (not shown) via a battery feed transistor Q1. The base of the transistor Q1 is connected to the output of an operational amplifier OP1, one of the inputs of which is connected to an intermediate connecting point between resistors R3 and R5 for determining an AC impedance of the battery feed circuit.

According to the present invention, a voltage limiting circuit 12' for the resistor R1 is employed, which is controlled by a supervising circuit 11. Namely, if a fault occurs and an overcurrent is generated, the overcurrent is detected at the resistor R1 by the supervising circuit 11, and the circuit 11 commands the circuit 12' to clamp the voltage across the resistor R1 at a predetermined voltage.

FIG. 2 is a detailed circuit diagram of the first embodiment shown in FIG. 1. In FIG. 2, only a protection circuit for a protection against a ground fault is illustrated for brevity, but a protection circuit for protection against a false connection also can be mounted. In FIG. 2, in addition to the supervising circuit 11 and the voltage limiting circuit 12' comprised of transistors Q22 through Q24 and resistor R34, a battery feed circuit 10 is illustrated, which is mounted in a corresponding line circuit for a related telephone terminal equipment T connected via the subscriber's lines, i.e., the A line and the B line. The battery feed circuit 10 has a symmetric construction with respect to the A and B lines, and therefore, the following explanation will be made with reference mainly to the circuit part of the A line, i.e., the bottom half portion of the Figure.

 Resistors R12 and R13 (B line side) comprising a voltage divider are connected between a ground GND and the B line. Similarly, for the A line, resistors R22 and R23 are connected between a power source VBB, e.g., 48 V, and the A line. When the telephone terminal T is in the off-hook state, a DC current flows from the ground GND to the power source VBB via the resistors R12 and R13, the telephone terminal T, and the resistors R23 and R22. Accordingly, a voltage VBB appears at the
intermediate connecting point between the resistors R23 and R22. On the other hand, the battery feed transistor Q21 is connected, via the battery feed resistor R21, between the A line and the power source VB. The connection point Vb is connected to a noninverting input terminal (+) of the operational amplifier OP21, the inverting input terminal (-) of which is connected to the emitter of the battery feed transistor Q21 and the base of which is connected to the output of the amplifier Q21. At the operational amplifier OP21, the voltage equal to the voltage Vb appearing at the noninverting input (+) develops at the inverting input (-), due to an imaginary short, and thus the same voltage appears as V4 at the emitter of the transistor Q21, to obtain V4 = Vb. The battery feed transistor Q21 works as a current source in which a current defined by Vb/R21 flows through the transistor Q21 as shown by I4, i.e., I4 = Vb/R21.

When viewed from the A line side, and disregarding the resistors R22 and R23, the resistance value, i.e., R₄, of the battery feed circuit 10 is expressed as follows, where V₁ denotes a voltage of the A line.

\[V₄ = V₁/R₄ \]

Since the voltage Vb is expressed as

\[V₄ = V₁/R₂₃/(R₂₂ + R₂₃) \]

R₄ can be rewritten as

\[R₄ = R₂₃/(R₂₂ + R₂₃/R₂₂) \]

which means that a DC resistance value of the battery feed circuit 10 is constant.

This is also true for the B line side. Namely, the DC resistance value, at the B line side, of the battery feed circuit 10 is made equal to the constant value of the A line side by a suitable circuit arrangement. In this case, the DC resistance values of the A and B line sides are usually made equal and selected to be a relatively low value, such as about 200 Ω.

When a speech signal is generated at the telephone equipment terminal T, an AC voltage differentially appears between the A and B lines. That is, when the voltage on the A line is increased or decreased, the voltage on the B line is decreased or increased, respectively. The AC voltage across the A and B lines is divided by the resistors R₂₂ and R₂₃ and produces a voltage V₅ at the intermediate connecting point therebetween. The voltage V₅ induces an AC voltage V₅ at the inverting input (-) of the operational amplifier OP21. On the other hand, the AC voltage on the B line is divided by the resistors R₁₂ and R₁₃ to produce a voltage V₅'. The voltage V₅' is applied to the non-inverting input (+) of an operational amplifier OP₁ to produce an identical AC voltage V₅ at the inverting input (-) thereof.

Accordingly, the AC voltages appearing at the emitters of the battery feed transistors Q₂₁ and Q₁₁ are identical to those appearing on the A and B lines, respectively, and thus an AC current (speech current) does not flow through the transistors Q₂₁ and Q₁₁. Therefore, the respective AC impedances are defined by the resistors R₂₂ and R₂₃ (A line side) and the resistors R₁₂ and R₁₃ (B line side), respectively, to obtain a relatively high constant value, such as several tens of kΩ.

In FIG. 2, the voltage limiting circuit 12 is comprised of three transistors connected in series, each having the same conductivity type (a PNP type is used in FIG. 2). The first transistor is a saturation transistor having a resistor between the base and the emitter thereof, the base receiving a first control signal, i.e., a detection current I₀. The second and third transistors are each connected in the form of a diode. If a ground fault does not occur at the A line, a detection current I₀, i.e., a first control signal, is not provided from the supervising circuit 11. Accordingly, in the voltage limiting circuit 12', a current does not flow through the transistor Q₂₂ but if a ground fault does occur at the A line side, the current I₄ is increased. The supervising circuit 11 detects the thus increased current I₄ by watching the voltage across the resistor R₂₁ and producing the detection current I₄. Accordingly, the transistor Q₂₃ is saturated and the internal resistance value is reduced. Therefore, the voltage V₅ is determined by both the base-emitter voltages (V₅BE) of the transistors Q₂₂ and Q₃₄, each connected in the form of a diode, whereby V₅ = 2 × V₅BE is obtained, and thus the current I₄ is determined as I₄ = 2 × V₅BE/R₂₁. Suppose that the voltage limiting circuit 12', comprised of the transistors Q₂₂, Q₃₃ and Q₃₄ and the resistor R₂₂, is not included, and in addition R₂₃ = R₂₂ stands, then V₅ = V₅BE/2 is obtained. In this case, the current I₄ is equal to V₅BE/2 × R₂₁ and larger than a rated current value. Under this condition, the transistor Q₂₃ and the resistor R₂₁ may be damaged by burning. In the circuit of FIG. 2, this possibility is eliminated because the voltage limiting circuit 12' is employed.

If a false connection occurs, i.e., the power source VBB comes into contact with the B line, a voltage limiting circuit identical to the above-mentioned circuit 12' will protect the battery feed transistor Q₂₁ and resistor R₂₁ from damage by burning.

Next, a protection circuit according to a second embodiment of the present invention will be explained.

Regarding the protection circuit of the first embodiment shown in FIGS. 1 and 2, the voltage limiting circuit 12' is directly incorporated into a portion where high impedance against the AC voltage is created. Accordingly, during protection against the ground fault, the voltage across the resistor R₂₂ is limited by the circuit 12' and therefore, the A and B impedance values at the A and B line sides are unbalanced. This condition is worsened because the unbalanced impedances induce an oscillation inside the battery feed circuit 10, and this undesired oscillation current is superimposed onto the DC current I₄. The protection circuit according to the present invention eliminates the above-mentioned problem of undesired oscillation.

FIG. 3 is a block diagram of a protection circuit according to a second embodiment of the present invention. As shown in FIG. 3, the protection circuit of the second embodiment is comprised of the aforesaid supervising circuit 11, a voltage limiting circuit 12 which is slightly different from the aforesaid circuit 12', and an operational amplifier control circuit 13. The supervising circuit 11 detects the voltage across the battery feed resistor R₁ to produce a first control signal and a second control signal, I₀ and I₅, respectively.

The voltage limiting circuit 12 is connected between both ends of the battery feed resistor R₁ to limit the voltage across the battery feed resistor R₁ in accordance with the first control signal I₀ (detection current), and the operational amplifier control circuit 13 stops the operation of the amplifier OP₁ in accordance with the second control signal I₅, i.e., a stop control current. When a fault such as a ground fault or false connection occurs, an overcurrent flows and the voltage across the resistor R₁ becomes large. This large voltage
is detected by the supervising circuit 11 which then produces the first and second control signals Io and Is. Upon receiving the signal Io, the circuit 12 operates to limit the voltage across the resistor R1, and the control circuit 13 operates to stop the operation of the operational amplifier OP1 in response to the second control signal Is, and thus the current flowing through the resistor R1 is reduced. Accordingly, the resistor R1 and the transistor Q1, both defining the DC current resistance value, are protected.

In the above arrangement, the voltage limiting circuit 12 is not directly connected with the resistors R2 and R3, both defining the aforesaid AC impedance, and accordingly, the AC impedance is not varied by the addition of the circuit 12. Therefore, an imbalance in the AC impedance between the A and B lines is not created, and thus a deleterious oscillation is not generated in the battery feed circuit.

FIG. 4 is a detailed circuit diagram of the second embodiment shown in FIG. 3. It should be understood that the protection circuit of FIG. 4 is designed to cope with, for example, a ground fault, and members identical to those explained before are given the same reference numerals or symbols (as for all later figures).

The voltage limiting circuit 12 is comprised of a first saturation transistor receiving, at the base thereof, the first control signal Io, a second transistor connected in the form of a diode, both of which have the same conductivity type and are connected in series, and a third transistor having another conductivity type, the base of which is connected with the emitter of the battery feed transistor, and these three series-connected transistors are connected between the subscriber's line and the base of the battery feed transistor. Specifically, the voltage limiting circuit 12 is comprised of transistors Q25 and Q26, both of which are NPN type, a PNP type transistor Q27, and resistors R25 and R27. The transistors Q25 through Q27 are inserted between the A line and the base of the battery feed transistor Q21, and the transistor Q26 is connected in the form of a diode. Further, the base of the transistor Q27 is connected to the emitter of the transistor Q21. The operational amplifier control circuit 13 is connected between the supervising circuit 11 and the operational amplifier OP21.

The operation of the battery feed circuit 10 shown in FIG. 4 is substantially the same as that of the correspondence circuit shown in FIG. 3, in which a ground fault does not (see broken line GND) occur on the A line, the supervising circuit 11 does not provide a current Is, and accordingly, a current does not flow through the transistor Q25, and thus there is no operational change in the battery feed circuit 10.

Conversely, if a ground fault does occur on the A line, the battery feed current Ig is increased, and the related increase is detected as an increased voltage across the battery feed resistor R21 which then produces the current Ig. Accordingly, the transistor Q25 is saturated and the internal resistance value thereof is reduced. Therefore, the voltage V4 at the battery feed resistor R21 is limited to the sum of the base-emitter voltages VBE2 and VBE2 of the corresponding transistors Q26 and Q27. In this case, the ground fault current Ig is expressed as

\[Ig = V4/R21 = (V_{BE2} + V_{BE2})/R21. \]

As explained previously, where R22 = R23 stands and the transistors Q25 through Q27 and the resistor R25 are omitted, the ground fault current Ig becomes

\[V_{BB}/2 \times R21, \]

which is larger than the rated current value. Conversely, in FIG. 4, the ground fault current Ig is made small, and thus the object of the present invention is realized. In this case, the output current of the operational amplifier OP21 is very large, and therefore, the base current Ig21 of the transistor Q21 and the current flowing through the transistors Q25 through Q27 becomes large. In a condition where the currents Ig21 and Ig2 are not limited, even if the supervising circuit 11 supplies the detection signal Ig2 to the transistor Q25. The transistor Q25 remains nonsaturated, and accordingly, the voltage V4 at the resistor R21 is not reduced, and thus it is not possible to limit the ground fault current Ig.

To avoid the above-mentioned condition, during a protection against a ground fault, the supervising circuit 11 produces a second control signal, i.e., a stop control current Is, and supplies the signal to an operational amplifier control circuit 13. Accordingly, the circuit 13 turns the current source Q2F, which supplies power to the operational amplifier OP21, and thus, during the protection against a ground fault, the operation of the operational amplifier OP21 is stopped.

In the above-mentioned operation, the currents Ig21 and Ig2 are small and the ground fault current Ig is limited by the transistors Q24 through Q27 to the current Ig flowing through the resistor R25. In this case, the resistor R27 (as for a resistor R17 in FIG. 5) maintains the battery feed transistor Q21 in an active state, and the base current of Q21 flows through resistor R27. Namely, the resistor R27 acts as a hold resistor for holding the transistor Q27 in an active state.

Use of the circuit shown in FIG. 4 ensures that an imbalance in the AC impedance between the A and B line is not created, since the transistors Q25 through Q27 as the voltage limiting circuit are not connected to the resistors R22, R23 (as in FIG. 2) but to the base of the transistor Q21, and accordingly, the aforesaid undesired oscillation is not induced in the battery feed circuit.

FIG. 5 is a circuit diagram of an example of an application of the second embodiment of the present invention. In this example, the protection circuit can cope with not only a ground fault on the A line, but also with a false connection of the B line to the power source VBB, e.g., VBB = 48 V. In FIG. 5, reference numeral 12-1 is a voltage limiting circuit which contains transistors Q15, Q16, and Q17 and resistors R13 and R17, and reference numeral 13-1 represents an operational amplifier control circuit.

In FIG. 5, the construction and the operation of the battery feed circuit 10 for the A and B lines are substantially the same as those explained before with reference to FIGS. 2 and 4. Also, the construction and the operation of the voltage limiting circuit 12-2, containing the transistors Q25, Q26, Q27 and the resistors R25 and R27, and the control circuit 13-2, are identical to those explained before with reference to FIG. 4.

The voltage limiting circuit 12-1 comprised of the transistors Q15, Q16, Q17 and the resistors R15 and R17 is used for protection against an overcurrent produced when a false connection occurs. As shown in the figure, the transistors Q15 through Q17 are connected between the B line and the base of the transistor Q11, the transistor Q14 is connected in the form of a diode, and the transistor Q17 is connected, at the base thereof, with the emitter of the battery feed transistor Q11.
In FIG. 5, when a false connection does not occur, a detection current I_{d} is not absorbed by the supervising circuit 11, and accordingly, a current is not provided from the transistor Q_{11}, and thus there is no change in the operation of the battery feed circuit 10. Conversely, if a false connection occurs on the B line, the battery feed current I_{fl} is increased, and this increase is detected as an increased voltage across the battery feed resistor R_{11} by the supervising circuit 11, which absorbs the detection current I_{d}. Accordingly, the transistor Q_{15} is saturated and the internal resistance value thereof is reduced. Therefore, the voltage V_{A1} across the resistor R_{11} is limited to the sum of the base-emitter voltages V_{BE16} and V_{BE17} of the respective transistors Q_{16} and Q_{17}. In this case, a false current I_{C} is expressed as follows.

$$I_{C} = \frac{V_{A1} \cdot R_{11}}{(V_{BE16} + V_{BE17}) \cdot R_{11}}$$

A current I_{C}, when the transistors Q_{15} through Q_{17} and the resistor R_{12} is omitted, is $V_{BB}/2 \times R_{11}$ (when $R_{12} = R_{13}$) and is larger than the rated current value. Nevertheless, in the circuit of FIG. 5, the current I_{C} is reduced to the above defined value, and thus the purpose of the present invention is realized.

In this case, as already mentioned, the supervising circuit 11 must also supply a second control signal, i.e., a stop control current I_{s}, to the control circuit 13-1, at the same time as the detection current I_{d} is absorbed by the circuit 11, so that the circuit 13-1 turn the current source OFF, which supplies power to the operational amplifier OP_{11}, and thus, the operation of the amplifier OP_{11} is stopped.

When the circuit shown in FIG. 5 is used, an imbalance in the AC impedance between the A and B line sides is not created, since the transistors Q_{15} through Q_{17} as the voltage limiting circuit are not connected to the resistors R_{12}, R_{13} (as in FIG. 2) to the base of the transistor Q_{11}, and accordingly, the aforesaid undesired oscillation is not induced in the battery feed circuit during the protection against a false connection.

FIG. 6 is a circuit diagram of an example of the supervising circuit. Reference characters R_{11} and R_{12} denote the aforesaid battery feed resistors, Q_{13} through Q_{16} are transistors, R_{33} and R_{34} are resistors, and M_{34}, M_{33}, M_{32}, M_{31}, M_{30}, M_{29}, M_{28}, M_{27}, M_{26}, M_{25}, and M_{24} are current mirror circuits.

When a ground fault occurs, an overcurrent flows through the battery feed resistor R_{11}, and in response to this overcurrent, a voltage which is the same as the voltage across the battery feed resistor R_{12} is generated, via the transistors Q_{33} and Q_{34}, at the resistor R_{34} forming an emitter circuit of the transistor Q_{34}. The generated voltage causes the mirror circuit M_{24} to be made ON and output a current I_{1} therefrom. An identical current I_{1} is output therefrom to the mirror circuit M_{26}, and accordingly, the circuit M_{31} is made ON and an identical current is given to M_{31}. This current flows via the transistor Q_{33} and creates a voltage drop across the resistor R_{33}, and this voltage drop is compared with a threshold voltage V_{th} at a comparator comprised of the transistors Q_{33} and Q_{34}. When the current voltage also exceeds the threshold voltage V_{th}, a signal is output to the mirror circuit M_{30} to make M_{30} ON and thus output the detection current I_{2}. The current I_{2} is supplied, as explained with reference to FIGS. 4 and 5, to the voltage limiting circuit 12 upon the detection of a ground fault.

When a false connection occurs, an overcurrent flows through the battery feed resistor R_{11} and a voltage which is the same as the voltage across R_{11} is generated, via the transistors Q_{31} and Q_{32}, at the resistor R_{32} forming the emitter circuit of the transistor Q_{32}. This generated voltage causes a current I_{2} to flow from the mirror circuit M_{31}, and a current I_{2} identical to the above current I_{2} is output, via the transistor Q_{36}, to the mirror circuit M_{36}. Accordingly, a current I_{3} is output via the transistor Q_{37} to the mirror circuit M_{37} to produce a voltage drop across the resistor R_{35}. When the voltage drop exceeds the threshold voltage V_{th} at the comparator (Q_{38}, Q_{39}), a current flowing through the transistor Q_{39} is drawn from the mirror circuit M_{32}, an identical current is output to the mirror circuit M_{32}, and an internal current I_{3} is obtained. The current I_{3} is output, as previously explained in FIG. 5, to the voltage limiting circuit 12-1 when a false connection occurs.

The ON-OFF control of the operational amplifiers OP_{21} and OP_{11} can be effected by the second control signals, i.e., the stop control currents, which can be produced in the same manner as the aforesaid currents I_{1} and I_{2}, which stop control currents are output to the respective control circuits 13-1 and 13-2, which make the corresponding current sources OFF to stop the operation of the operational amplifiers.

FIG. 7 is a circuit diagram of another type of battery feed circuit. The battery feed circuit is equipped with resistors R_{41}, R_{42}, R_{43}, and R_{44} and a capacitor C_{0}. The battery feed circuit of FIG. 7 contains the protection circuit shown in FIG. 2.

The supervising circuit 11 issues an indication to the operator that a short-circuit exists in the battery feed circuit. According to the indication, the operator starts the restoration of the circuit from a ground fault or a false connection condition. Notice, the restoration process is not the object of the present invention.

Next, a detailed explanation of the operational amplifier control circuit will be given. The inventors experimented with two methods of realizing the function of the operational amplifier control circuit 13 of FIG. 4 (same as the circuits 13-1 and 13-2 of FIG. 5). Namely, in one method, they connected a limiting resistor in series with the output of the operational amplifier, and in the other method, they cut off the power source (V_{CC}, V_{BB}) for the operational amplifier; i.e., when the operational amplifier is to be stopped, the power source is cut off.

The first method, had a defect in that the limiting resistor was not suitable for practical use; since such a limiting resistor must have a considerably high resistance, and such a high resistance value element is not easily fabricated in a large scale integration circuit (LSI).

The second method, had a defect in that the manufacturing process became complicated, since first a relatively wide power line must be partially removed and then an analog switch must be inserted into the removed part. Further, it is not preferable to cut off the power line, since the thus cut power line is liable to induce noise.

Under the above circumstance, the present inventors proposed a control circuit (13, 13-1, 13-2) which can smoothly stop or limit the output current of the operational amplifier and can be constructed with a simple design.

FIG. 8 is a block diagram of a control circuit according to the present invention and an operational ampli-
In the figure, the operational amplifier OP1 (same for OP11 and OP21) includes a differential input stage 21, a high gain amplifier stage 22, an output stage 23, and a current source 24 providing a driving current ID for driving the above-mentioned three stages 21, 22, and 23. The driving current ID can be made ON or OFF by a current stopping means 30. The current stopping means 30 corresponds to the aforesaid operational amplifier control circuit 13 (13-1, 13-2) and receives the second control signal, i.e., the stop control current IS (see IS in FIG. 4, and IS1, IS2 in FIG. 5).

The operational amplifier OP1 is supplied with a driving current from the current source 24 and then performs the required operational amplifying function. Taking this into consideration, the driving current ID from the current source 24 is stopped to stop the operation of the operational amplifier per se, and thus the current stopping means 30 is incorporated into the well known operational amplifier OP1.

Accordingly, the operation of the operational amplifier can be smoothly stopped without using the aforesaid limiting resistor at the output of the operational amplifier or inserting the aforesaid analog switch into the power line (Vcc, Vbb).

FIG. 9 is a circuit diagram of an operational amplifier incorporating an example of an operational amplifier control circuit according to the present invention. A well known differential input stage 21 is comprised of transistors Q46 and Q47, a well known high gain amplifier stage 22 is comprised of transistors Q42, Q43, and Q46, and a well known output stage 23 is comprised of transistors Q40 and Q41. Further, a well known current source 24 is provided with a constant current source 24-1, comprised of a current mirror circuit 41, and a current supply element 24-2 connected therewith via a current line L1. The supply element 24-2 is provided with a current mirror circuit 42. The constant current source 24-1 contains a diode D1 which produces the aforesaid driving current ID having a value which is determined by a division of the forward voltage of the diode D1 by the resistance value of a resistor R50. The driving current ID is given to each of the stages (21, 22, 23), via the current supply element 24-2, to drive the same.

The current stopping means 30, i.e., the operational amplifier control circuit 13 (13-1, 13-2), is schematically shown as a bypassing means 31. The bypassing means 31 is made conductive by the second control signal, i.e., the stop control current IS, to bypass the current flowing through an input transistor Q51 of the current mirror circuit 41. Accordingly, the driving current ID flowing through an output transistor Q50 is also stopped, and thus the operation of the operational amplifier OP1 is stopped.

FIG. 10 is detailed circuit diagram of an operational amplifier and control circuit of FIG. 9. Namely, as shown in FIG. 10, the bypassing means 31 of FIG. 9 is specifically realized as a transistor Q52, to which the stop control current IS is input at the base thereof, to saturate the transistor Q52, and thus the collector-emitter voltage VCE is reduced, for example, to about 0.1 V through 0.2 V. Accordingly, the aforesaid forward voltage, usually about 0.7 V, of the diode D1 is not applied to the resistor R50, and thus the driving current ID is not generated. As a result, the operation of the operational amplifier OP1 is stopped by the stop control current IS.

Note, a commercially available operational amplifier is not equipped with an external terminal suitable for connection with the bypassing means 31 (transistor Q52 and resistor R52), and thus it is advisable to prefabricate the bypassing means 31 during the LSI process of the related circuit. Further, the LSI package should be provided with an input terminal (pin) for receiving the current IS.

Next, the case of a B line ground fault will be discussed. Although it appears no problem arises in the case of an occurrence of a B line ground fault, in practice, a problem arises due to the presence of the operational amplifier OP1 (OP11), as explained below.

FIG. 11 is simple circuit diagram representing a battery feed circuit. The battery feed circuit 10 is substantially the same as that described previously. FIG. 12 is a schematic circuit diagram representing the circuit of FIG. 11 in which a B line ground fault has occurred. In FIGS. 11 and 12, the characters Q11, OP11, B, T, A, VCC, VBB and GND represent the same elements as in previous Figures.

In the battery feed circuit 10, if a B line ground fault occurs, the circuit is in the state shown in FIG. 12. Usually, the dynamic range in the voltage of the operational amplifier OP11 is smaller than the positive power source voltage to be actually applied to the OP11, and accordingly, a voltage higher than the ground level is used for the positive power source voltage to obtain an operational margin, which higher voltage is, for example, +5 V, i.e., VCC. Due to the higher voltage VCC, the output voltage of the operational amplifier OP11 becomes higher than the ground level by a base-emitter voltage VBE1 of the transistor Q11, and accordingly, a positive voltage, sent from the base to the collector of the Q11, appears. This produces an undesired current flowing from the output of the OP11 to the ground GND connected to the collector of the Q11. Also, an undesired current flowing from the base to the emitter of the Q11 is generated. These undesired currents may damage the battery feed transistor Q11.

The above-mentioned problem can be solved by the same measure as mentioned before with regard to the operational amplifier control circuit, i.e., the insertion of a high resistance element between the transistor Q11 and the output of the amplifier OP11. But it is very difficult to suitably set the resistance value in relation to the driving ability of the transistor Q11, and further, such a high resistance value is not suitable for an LSI circuit.

The protection circuit for limiting the current through the battery feed transistor Q11, which does not produce the disadvantage mentioned above, will be described below with reference to FIGS. 13 and 14.

FIG. 13 is a general circuit diagram of a battery feed circuit containing a protection circuit for a B line false connection. In the figure, all members, other than a ground level clamping means, are the same as those mentioned before. The clamping means can be specifically realized as a diode (referenced by D3), i.e., a voltage clamping diode. The transistor Q40 of the output stage 23 (FIG. 9) is grounded, at the base thereof, by the voltage clamping diode for D3. Alternatively, instead of the diode D3, a transistor, connected in the form of a diode, can be used (described hereinafter), and thus the output voltage of the output stage 23 can be limited to suppress the above-mentioned undesired current. As well known, the voltage, applied to the base of the Q40, can be lower than the voltage across the diode D3, i.e., the
output voltage V_0 of the amplifier OP1 is made lower than the voltage across the diode D_2 by the base-emitter voltage of the transistor Q_4. Therefore, the voltage V_0 is limited to the ground level, and the undesired current produced from the transistor Q_{11} is stopped, even if the B line is erroneously grounded.

FIG. 14 is a detailed circuit diagram of an operational amplifier containing a protection circuit for the B line ground fault. Note, the operational amplifier of FIG. 14 is slightly different from that disclosed before, but the function thereof is substantially the same as previously described. In the operational amplifier OP1 of FIG. 14, reference numeral 25 represents a bias generating circuit for the output stage 23, which circuit 25 is comprised of transistors Q_{34} and Q_{35}. The base of the transistor Q_{40} is connected to the ground GND by the voltage clamping diode D_3, to limit the potential at a point "a", relative to the ground GND, by the forward voltage V_F. Note, this voltage V_F is usually about 0.6 V through 0.7 V, when a silicon diode is used.

The output voltage V_0 of the amplifier OP11 can be expressed as follows:

$$V_0 = V_C - V_{BE_{Q40}}$$

where $V_{BE_{Q40}}$ denotes the base-emitter voltage of the transistor Q_{40}, and V_C is a voltage at the point "a". If the value $V_{BE_{Q40}}$ is equal to the forward voltage V_F, the output voltage V_0 of the amplifier OP11 can be made lower than zero volts by suitably setting the transistor Q_{40} and the diode D_3.

Accordingly, the output voltage V_0 of the amplifier OP11 does not become higher than the ground level, even if a B line ground fault occurs, which prevents the generation of the aforesaid undesired current of the transistor Q_{11}.

FIG. 15 shows another type voltage clamping diode wherein the ground level clamping means is fabricated by a transistor Q_{40} connected in the form of a diode. The transistor Q_{40} is an NPN type and the emitter thereof is grounded, and the base and the collector thereof are connected to each other. The base-emitter voltage is utilized as the clamping voltage, which is usually about 0.6 V through 0.7 V, when silicon is used. If the transistors Q_{40} and Q_{60} have the same base-emitter voltage V_{BE}, the output voltage V_0 can be set lower than zero volt. Accordingly, a same conductivity type transistor as the transistor Q_{40} is used, i.e., the NPN transistor Q_{40}. As is well known, transistors of the same conductivity type exhibit almost the same base-emitter voltage, on the same IC chip.

Finally, a circuit arrangement for ensuring protection against a B line false connection will be described below. The protection has already been explained with reference to FIG. 5.

FIG. 16 is a circuit diagram representing a part of the circuit shown in FIG. 5, and all members thereof, except for a detection circuit 51, have been already explained. Note, the detection circuit 51 has also been disclosed as the circuit of FIG. 6, except for the addition of the current mirror circuit M_{33}. When a false connection occurs on the B line side of the subscriber's line, an overcurrent flows through the battery feed resistor R_{11}, and the voltage thereacross is increased. In this case, the voltage at a point "b" is made higher than the voltage level of V_{BE} by a voltage drop produced across a resistor component contained in the false connection, which resistor component is schematically expressed by a character "r" in FIG. 16. The detection circuit 51 detects the voltage across the battery feed resistor R_{11} and the first control signal, i.e., the detection current I_{01}, is output therefrom. A current, identical to I_{01} flows through a transistor Q_{62} and through a transistor Q_{63}, and thus the transistor Q_{15} is saturated.

Accordingly, a voltage V_R across the resistor R_{11} is expressed as follows:

$$V_R = V_{BE_{16}} + V_{BE_{17}} + V_{CE_{15(SAT)}}$$

where $V_{BE_{16}}$ and $V_{BE_{17}}$ denote the base-emitter voltages of the corresponding transistors Q_{16} and Q_{17}, and $V_{CE_{15(SAT)}}$ is a collector-emitter saturation voltage of the transistor Q_{15}. Therefore, the current flowing through the resistor R_{11} is limited to the value expressed as follows.

$$I_{R} = (V_{BE_{16}} + V_{BE_{17}} + V_{CE_{15(SAT)}})/R_{11}$$

As mentioned above, if a false connection occurs, due to the resistor component r, the collector-emitter voltage $V_{CE_{33}}$ of the transistor Q_{33} can be fully maintained, so that the mirror circuit can M_{33} operate normally. Conversely, if the false connection occurs when the resistor component is omitted, the voltage at the point "b" in FIG. 16 becomes substantially equal to the voltage of V_{BE}. In this case, the collector-emitter voltage $V_{CE_{15}}$ of the transistor Q_{15} cannot be fully obtained, and thus the mirror circuit M_{33} cannot operate normally. Accordingly, it is not possible to saturate transistor Q_{15}, and thus the transistor Q_{15} cannot operate to limit the voltage V_R across the battery feed resistor R_{11}. Namely, an overcurrent continues to flow.

From the above viewpoint, the present inventors further propose a circuit arrangement of the protection circuit which will firmly suppress an overcurrent even if a false connection occurs, which false connection does not include the resistor component (r).

FIG. 17 depicts a circuit arrangement of a protection circuit to cope with a false connection not including a resistor component. The difference between FIG. 17 and FIG. 16 is that the order of arrangement of the transistors Q_{15}-Q_{16}-Q_{17} in FIG. 16 is changed to Q_{16}-Q_{15}-Q_{17} in FIG. 17. Thus, FIG. 17 illustrates the saturation transistor Q_{17} being sandwiched between transistors Q_{16} and Q_{17}.

When the false connection occurs and the resistor component ($r=0$) is not included, the collector-emitter voltage of the transistor Q_{15} comprising the mirror circuit M_{33} becomes nearly equal to the base-emitter voltage of the transistor Q_{16} connected in the form of a diode. The voltage across the battery feed resistor R_{11}, when an overcurrent flows therethrough, is detected by the detection circuit 51, and the thus-detected current I_{01} is output to the transistor Q_{62} comprising the mirror circuit M_{33}. An identical current I_{01} is output through the transistor Q_{63} to saturate transistor Q_{15}.

The voltage V_R across the battery feed resistor R_{11} is limited by the sum of the base-emitter voltages of the respective transistors Q_{17} and Q_{16} and the collector-emitter saturation voltage of the transistor Q_{15}. The transistor Q_{15} is a saturation transistor, and the resistor R_{15} connected between the base and emitter of Q_{15} is used to divert a surplus current which is not needed for the saturation of Q_{15}. The transistor Q_{16} is connected
between the B line and the transistor Q₁₆, and thus the transistors Q₁₆, Q₁₅, and Q₁₇ operate to limit the detection current I₀₁ flowing through the mirror circuit M₂₃. Under normal conditions, the voltage across the resistor R₁₁ is low, and accordingly, the detection current I₀₁ is not produced from the detection circuit S₁, and therefore, a current does not flow through the transistors Q₂₆ and Q₆₃, and thus the transistor Q₁₅ is not saturated, and the voltage across the resistor R₁₁ is not limited. When a false connection occurs on the B line which does not include a resistor component (r = 0), an overcurrent flows through the resistor R₁₁ and the voltage thereacross is increased, and thus the detection current I₀₁ is supplied to the transistor Q₂₆. At this time, the voltage at the point "b" is substantially equal to the base-emitter voltage of the transistor Q₁₆ connected in the form of a diode, and accordingly, the collector-emitter voltage can be fully ensured. Therefore, a current, identical to the I₀₁ flowing through the Q₂₆, also flows through the transistor Q₆₃, and thus the transistor Q₁₅ is saturated.

Note that, as mentioned previously, the operation of the aforesaid operational amplifier (not shown in FIG. 17) is stopped by turning the current source (24-1) thereof OFF under the control of the aforesaid control circuit (13-1).

Further, the voltage V₉ across the battery feed resistor R₁₁ is expressed as:

\[V₉ = V_{BE17} + V_{BE16} + V_{CE15S47} \]

where \(V_{BE17} \) and \(V_{BE16} \) denote the base-emitter voltages of the transistor Q₁₇ and Q₁₆, and \(V_{CE15S47} \) is the collector-emitter saturation voltage of the transistor Q₁₅. Therefore, the battery feed current I₀ flowing through the resistor R₁₁ is limited as

\[I₀ = (V_{BE17} + V_{BE16} + V_{CE15S47}) / R₁₁ \]

This is the same as the I₀ obtained in the circuit of FIG. 16, when a false connection includes the resistor component r.

As explained above in detail, the present invention provides a protection circuit for a battery feed circuit in a switching system. The protection circuit can counteract a ground fault and/or false connection to limit an overcurrent flowing through each battery feed resistor. The protection circuit can be fabricated as an IC, and therefore, the protection circuit can have a very small size and a low power consumption.

We claim:

1. A protection circuit for a battery feed circuit, the battery feed circuit having A and B subscriber's lines for supplying a DC current from a supply to telephone terminal equipment, battery feed resistors connected to the A and B subscriber's lines, respectively, battery feed transistors, each having an emitter connected to one of the battery feed resistors, and operational amplifiers, each having an output connected to the base of one of the battery feed transistors, for applying predetermined voltages at the emitter of the battery feed transistor connected thereto, said protection circuit comprising:
 a supervising circuit, operatively connected to at least one of the battery feed resistors; and
 b at least one voltage limiting circuit, operatively connected to said supervising circuit and a corresponding subscriber's line, for clamping a fixed voltage across the battery feed resistor connected to the corresponding subscriber's line, upon receipt of the first control signal from said supervising circuit.

2. A protection circuit as set forth in claim 1, wherein the corresponding subscriber's line is operatively connected to the input terminals of a corresponding operational amplifier, and
 wherein said at least one voltage limiting circuit is connected between the corresponding subscriber's line and one of the input terminals of the corresponding operational amplifier.

3. A protection circuit as set forth in claim 1, wherein a corresponding battery feed transistor is connected to the corresponding subscriber's line via one of the battery feed resistors, and
 wherein said at least one voltage limiting circuit is connected between the corresponding subscriber's line and the base of a corresponding battery feed transistor.

4. A protection circuit as set forth in claim 3, wherein the corresponding subscriber's line is operatively connected to a corresponding operational amplifier, wherein said supervising circuit issues a second control signal when an abnormal current flows through at least one of the battery feed resistors, and
 wherein said protection circuit further comprises an operational amplifier control circuit for stopping the operation of the corresponding operational amplifier upon receiving the second control signal from said supervising circuit.

5. A protection circuit as set forth in claim 4, further comprising at least one hold resistor, operatively connected to the base of the corresponding battery feed transistor, to hold the corresponding battery feed transistor in an active state after stoppage of the corresponding operational amplifier.

6. A protection circuit as set forth in claim 1, wherein said protection circuit is operatively connected to the A subscriber's line, thereby providing protection against a ground fault on the A subscriber's line.

7. A protection circuit as set forth in claim 1, wherein said protection circuit is operatively connected to the B subscriber's line, thereby providing protection against a false connection between a battery and the B subscriber's line.

8. A protection circuit as set forth in claim 2, wherein said voltage limiting circuit comprises:
 a first, second and third transistors having substantially identical conductivities and connected in series, the first transistor being a saturation transistor having a base and an emitter, the base operatively connected to receive the first control signal, and each of the second and third transistors connected in the form of a diode, and
 a saturation resistor connected between the base and emitter of the first transistor.

9. A protection circuit as set forth in claim 3, wherein said voltage limiting circuit comprises:
 a first transistor having a base operatively connected to receive the first control signal;
4,862,309

15 a second transistor, connected as a diode in series with said first transistor, said first and second transistors having a first conductivity type; and a third transistor having a second conductivity type and a base operatively connected to the emitter of the corresponding battery feed transistor.

10. A protection circuit as set forth in claim 4, wherein the corresponding operational amplifier has a differential input stage, a high gain amplifier stage, an output stage, and a current source for supplying a driving current to the differential input, high gain amplifier and output stages, and wherein said operational amplifier control circuit comprises current stopping means for turning the driving current ON and OFF.

11. A protection circuit as set forth in claim 10, wherein the current source of the corresponding operational amplifier has a constant current source comprising a current mirror circuit having an input transistor.

16 connected to a positive power source and a base, and wherein said ground level clamping means comprises a voltage clamp diode connected between ground and the base of the first output transistor.

15. A protection circuit as set forth in claim 14, wherein said voltage clamp diode comprises a voltage clamp transistor connected in the form of a diode, having a conductivity type identical to the conductivity type of the first output transistor, and wherein said operational amplifier is fabricated on a single IC chip with the voltage clamp transistor.

16. A protection circuit as set forth in claim 9, wherein said first transistor is sandwiched by said second and third transistors, whereby said first transistors can be saturated when a false connection occurs between the B subscriber's line and the supply of the DC current, even if the B subscriber's line has a resistor component equal to zero.

17. A protection circuit as set forth in claim 4, wherein said voltage limiting circuit comprising: a first transistor having a base operatively connected to receive the first control signal; a second transistor, connected as a diode in series with said first transistor, said first and second transistors having a first conductivity type; and a third transistor having a second conductivity type and a base operatively connected to the emitter of the corresponding battery feed transistor.

18. A protection circuit as set forth in claim 17, wherein said third transistor has a collector connected to the base of the corresponding battery feed transistor, and wherein said third transistor has an emitter connected to an emitter of said second transistor.

19. A protection circuit as set forth in claim 17, wherein the corresponding operational amplifier has a differential input stage, a high gain amplifier stage, an output stage, and a current source for supplying a driving current to the differential input, high gain amplifier and output stages, and wherein said operational amplifier control circuit comprises current stopping means for turning the driving current ON and OFF.

* * * * *
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO.: 4,862,309
DATED: August 29, 1989
INVENTOR(S): Tojo et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Col. 1, line 53, change "shown," to --shown--;

Col. 5, line 40, change "Q_{26} is" to --Q_{26} is--;

Col. 6, line 19, change "tat" to --that--;

Col. 7, line 29, change "turn" to --turns--;

Col. 7, line 60, change "current voltage also" to --voltage drop--;

Col. 15, line 34, change "comprising means" to --clamping means--;

Col. 15, line 40, before "on" insert --during a ground fault--;

Col. 16, line 15, change "first tranistors" to --first transistor--.

Signed and Sealed this
Third Day of July, 1990

Attest:

HARRY F. MANBECK, JR.
Attesting Officer
Commissioner of Patents and Trademarks