(51) International Patent Classification 6: A61B 17/24, A61M 25/00, 31/00

(21) International Application Number: PCT/US96/04799
(22) International Filing Date: 5 April 1996 (05.04.96)
(30) Priority Data: 08/417,018 5 April 1995 (05.04.95) US
(71) Applicant: DUKE UNIVERSITY [US/US]; 230 North Building, Research Drive, P.O. Box 90083, Durham, NC 27708-0083 (US).
(72) Inventors: RIDINGER, Mark, T.; Duke University Medical Center, P.O. Box 3808, Durham, NC 27710 (US). SUHOCKI, Paul, V.; Duke University Medical Center, P.O. Box 3808, Durham, NC 27710 (US).


Published
With international search report.

(54) Title: IMPROVED DEVICES FOR REMOVING FIBRIN SHEATHS FROM CATHETERS

(57) Abstract

A medical device (10) adapted especially to remove biological material (e.g., fibrin sheath) from the distal end of a patient internal catheter that includes a tubular element (12), a central wire (14) positioned within the tubular element, a snare wire (16) attached at one end (16a) to the central wire so as to form an acute angle therewith, and at its other end (16b) to the tubular member. The snare wire includes a proximally extending segment which follows a course of about 360 degrees about the distal end (12a) of the tubular member, and thus may be positioned adjacent the catheter's distal end. By effecting relative rotation between the central wire and the tubular member (for example, by rotating the central wire about its longitudinal axis while maintaining the tubular member stationary) will cause the snare wire segment to wrap around the catheter's distal end. Thereafter, manipulation of the device so as to advance the wrapped snare wire segment in a distal direction will strip the biological material from the distal end of the catheter.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GE</td>
<td>Georgia</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LR</td>
<td>Liberia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LT</td>
<td>Lithuania</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LV</td>
<td>Latvia</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>ML</td>
<td>Mali</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MN</td>
<td>Mongolia</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
IMPROVED DEVICES FOR REMOVING FIBRIN SHEATHS FROM CATHETERS

RELATED APPLICATIONS

This application may be deemed to be related to U.S. Patent Application Serial No. ---,--- (Atty. Dkt. 1579-79) filed even date herewith in the name of the same inventors as the present application, the entire content of which is expressly incorporated hereinto by reference.

FIELD OF INVENTION

The present invention relates generally to the field of medical devices. More particularly, the present invention relates to the field of snares used during medical procedures to remove material from a patient. In its preferred embodiments, the present invention is especially adapted to remove fibrin sheaths from the distal ends of intravascular catheters.

BACKGROUND AND SUMMARY OF THE INVENTION

Catheters formed of a biocompatible plastics material are sometimes implanted in patients to relieve various symptoms and/or to assist in medical procedures. For example, central venous catheters have been implanted into a patient's vein during vascular surgery. One problem associated with such implanted catheters, however, is that a fibrin sheath (which is a deposit of fibrin and platelets) may form on the implanted catheter, initially at the entrance site into the vein and then along the length of the catheter.
While it usually takes weeks to months for the fibrin sheath to form, it has been reported to form in as little as 24-48 hours following implant.

The fibrin sheath can cause catheter dysfunction, usually being manifested by the physician being able to infuse through, but not to aspirate from, the catheter. Intraluminal urokinase may then be administered several times to exclude the possibility of intraluminal clotting. If intraluminal urokinase treatment is ineffective, fluoroscopy may then be performed to allow the physician to evaluate catheter tip location and to obtain evidence of fibrin sheath formation.

Once the presence and extent of the fibrin sheath have been identified, the physician must take the necessary steps to remove the sheath from the implanted catheter. While it is conceivable that the implanted catheter may be removed and replaced surgically, it is more desirable for the fibrin sheath to be removed without surgical removal of the implanted catheter.

Presently, there are basically two approaches which may be employed without removal of the implanted catheter. The first approach involves introducing percutaneously a goose-neck snare (e.g., a snare device generally disclosed in U.S. Patent No. 5,171,233 to Amplatz et al, the entire content of which is incorporated expressly hereinto by reference) into the patient's groin area. The snare is then advanced through the patient's femoral vein to the catheter implant
site, at which time it is manipulated so that the snare encircles the
distal end of the implanted catheter so that the fibrin sheath may be
stripped therefrom. While the fibrin sheath which is stripped from
the distal end of the implanted catheter travels to the patient’s lung,
surgical removal has been shown to result in embolization as well.

Another technique that has been employed to strip fibrin
sheaths from the distal ends of implanted catheters is to introduce a
J-tipped wire intraluminally through the implanted catheter.
Rotation of the J-tipped wire about the distal end of the implanted
catheter will thus strip a portion of the fibrin sheath therefrom.
While this technique is advantageous since the implanted catheter
serves as a guide passageway (i.e., separate incisions to access the
femoral vein are unnecessary), the J-tipped wire is typically only
capable of removing less than all of the fibrin sheath from the
implanted catheter due to its size limitations.

What has been needed in this art, therefore, is a medical
device which is capable of being guided intraluminally through an
implanted catheter, but which is capable of removing substantially
all of the fibrin sheath that may have formed at the catheter’s distal
end. It is towards fulfilling such a need that the present invention is
directed.

Broadly, the present invention is embodied in medical devices
having a snare loop for removing patient-internal biological material
from an implanted catheter (e.g., a fibrin sheath which may form at
the distal end of a venous catheter) which may be inserted intraluminally through the catheter during a medical procedure. The tubular member has a length sufficient to allow its distal end portion extend beyond the distal end of the patient-internal catheter. A central wire element is movably positioned within the elongate tubular member and has a sufficient length so that its terminal end portion extends distally beyond said distal end of said tubular member.

Importantly, a snare wire is provided such that one of its ends is attached to the central wire with the other end attached to the distal end of said tubular member after completing approximately 360° wrap around the tubular member between the ends. The snare wire, between its attached ends, will include a segment which extends proximally at an acute angle and may therefore be located upon manipulation of the device adjacent the distal end of the patient-internal catheter. Relative rotation between the central wire and the tubular member (e.g., by rotating the central wire about its longitudinal axis while maintaining the tubular member stationary or vice versa) causes said snare wire segment to be wrapped around said distal end of the patient-internal catheter. Distal advancement of this wrapped snare wire segment relative to said distal end of the patient-internal catheter will therefore strip the biological material therefrom.
Further aspects and advantages of this invention will become more clear after careful consideration is given to the following detailed description of the preferred exemplary embodiment thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

Reference will hereinafter be made to the accompanying drawings wherein like reference numerals throughout the various FIGURES denote like structural elements, and wherein;

FIGURE 1 is a schematic perspective view of a preferred medical snare device embodying the present invention; and

FIGURES 2A-2C are schematic elevational views showing a sequence of the device depicted in FIGURE 1 during use.

DETAILED DESCRIPTION OF THE PREFERRED EXEMPLARY EMBODIMENTS

One preferred embodiment of a medical snare device 10 according to the present invention is shown in accompanying FIGURE 1. The snare device 10 is depicted schematically as being positioned intraluminally within a venous catheter VC, it being understood that the distal end region of venous catheter VC will in use be implanted within a patient's vein. The distal end section of the venous catheter VC is depicted in accompanying FIGURE 1 as
having a fibrin sheath FS extending proximally along the catheter's exterior surface.

The snare device 10 is generally comprised of an elongate
5 tubular member 12 and a central wire element 14 which is movably positioned within the lumen of the tubular member 12. Each of the tubular member 12 and central wire element 14 is of sufficient length to allow the physician to intraluminally insert them as a unit through the venous catheter VC so that the distal end 12a of the tubular body 12 is capable of extending distally beyond the distal end of the venous catheter VC, and so that the terminal end 14a of the central wire element 14 is capable of being extended beyond the distal end 12a of the tubular member (e.g., to achieve relative positioning as shown in FIGURE 1).

10 Important to the present invention, the snare device 10 includes a snare wire 16 formed of a flexible metal or plastics wire, thread or the like. The snare wire 16 has its distal end 16a physically attached to the central wire element 14 so as to form an acute angle therewith and its proximal end 16b physically attached (e.g., via biocompatible epoxy, heat-welding, imbedding or the like) to the tubular member 12 at or near its distal end 12a. The ends 16a, 16b are thus axially separated from one another along the length of the device 10 so as to form a snare loop collectively with the terminal end 12a of the tubular member and that length of the central wire element 14 extending therebeyond. As shown, the snare wire 16, between the ends 16a and 16b is preferably wrapped approximately
360° around the tubular member 12 so that the end 16b faces distally.

The relative diameters of the central wire 14 and the snare wire 16 are dependent in large part upon the particular medical procedure in which the device 10 of this invention is intended to be employed. It is preferred, however, that the diameters of the central wire 14 and the snare wire 16 each be within the range of about 0.001 to about 0.040 inch. Moreover, it is preferred that the snare wire 16 have a lesser diameter as compared to the central wire element 16 so that the former is relatively more flexible, while the latter is relatively more stiff. Therefore, it is preferred that the ratio of the central wire diameter to the snare wire diameter be between about 1.1:1 to about 10.0:1.

The snare wire 16 is of sufficient length between its ends 16a, 16b such that a segment 16c thereof may be positioned proximally of the end 16b adjacent the distal end of the venous catheter. With the snare wire segment 16c positioned in such a manner, the physician may rotate the central wire element 14 about its longitudinal axis within the lumen of the tubular member 12 as shown by arrow A₁ in FIGURE 2A. Relative rotation between the central wire element 14 and the tubular member 12 (e.g., rotation of the central wire element 14 while maintaining the tubular member 12 stationary) will thereby cause the snare wire segment 16c to be wrapped or twisted more or less helically about the exterior surface of the venous catheter's distal end as shown in FIGURE 2B. The several turns of the wrapped
snare wire segment 16c will thus be brought into contact with the fibrin sheath FS at the distal end of the venous catheter VC. As such, advancement of the central wire 14 and/or the tubular member 12 in a distal direction (arrow A₂ in FIGURE 2C) will, in turn, cause the wrapped snare wire segment 16c to be moved distally along the exterior surface of the distal end of the venous catheter VC thereby stripping the fibrin sheath FS therefrom.

Although the central wire element 14 has been depicted in the accompanying drawing FIGURES as including an eyelet 14a at its terminal end, it will be appreciated that the eyelet 14a is not critically necessary since the end 16a of the snare wire 16 may be bonded to the central wire's terminal end via biocompatible epoxy, solder, or the like. Furthermore, the central wire 14 and the snare wire 16 may be formed as a single (unitary) monofilament wire, instead of the separate, but connected, wires as shown in the accompanying drawing FIGURES.

Therefore, while the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
WHAT IS CLAIMED IS:

1. A medical device comprising:
   an elongate tubular member;
   a central wire positioned within said tubular member;
   a snare wire having one end attached to a terminal end
   of said central wire to form an acute angle therewith,
   and another end attached to a distal end of said
   tubular member, said snare wire between said one
   and another ends being wrapped about an exterior
   surface of said distal end of said tubular
   member, wherein relative rotation between said
   central wire and said tubular member causes said
   snare wire to wrap around said distal end of said
   tubular member.

2. A medical device as in claim 1, wherein said snare wire is
   wrapped about 360° about said distal end of said tubular member.

3. A medical device as in claim 1, wherein said central wire is
   axially and rotationally moveable within said tubular member.

4. A medical device as in claim 1, wherein said snare wire has
   a length sufficient to establish a segment between said one and
   another ends which extends proximally of said distal end of said
   tubular member.
5. A medical device as in claim 1 or 4, wherein said one end of said snare wire is bonded to a terminal end of said central wire.

6. A medical device as in claim 1 or 4, wherein said terminal end of said central wire includes an eyelet, and wherein said one end of said snare wire is attached to said eyelet.

7. A medical device as in claim 6, wherein said one end of said snare wire is bonded to said eyelet.

8. A medical device as in claim 1, wherein said central wire and said snare wire are unitary.

9. A medical device as in claim 1, wherein said central wire and said snare wire each have a diameter in the range between about 0.001 to about 0.040 inch.

10. A medical device as in claim 9, wherein a ratio of the central wire diameter to the snare wire diameter is between about 1.1:1 to about 10.0:1.

11. A medical device for removing biological material from a distal end of a patient-internal catheter comprising:

   an elongate tubular member for intraluminal insertion within the patient-internal catheter and having a length sufficient to allow a distal end portion of said
tubular member to extend beyond the distal end of the patient-internal catheter;

a central wire element positioned within said elongate tubular member and having a terminal end portion which extends distally beyond said distal end of said tubular member;

a snare wire having one end attached to said central wire to form an acute angle therewith, and another end attached to said distal end of said tubular member at a position proximally of said one end; wherein

said snare wire includes a segment thereof between said one and another ends which follows a course which is wrapped about said tubular member and extends in a proximal direction so as to be located adjacent the distal end of the patient-internal catheter; and wherein

relative rotation between said central wire and said tubular member causes said snare wire segment to be wrapped around said distal end of the patient-internal catheter such that distal advancement of said wrapped snare wire segment relative to said distal end of the patient-internal catheter strips the biological material therefrom.
12. A medical device as in claim 11, wherein said segment of
said snare wire follows a course so as to be wrapped about 360° about
the tubular member.

13. A medical device as in claim 11, wherein said one end of
said snare wire is bonded to a terminal end of said central wire.

14. A medical device as in claim 11, wherein said central wire
includes an eyelet at a terminal end thereof, and wherein said one
end of said snare wire is attached to said eyelet.

15. A medical device as in claim 14, wherein said one end of
said snare wire is bonded to said eyelet.

16. A medical device as in claim 11, wherein said central wire
and said snare wire are unitary.

17. A medical device as in claim 11, wherein said central wire
and said snare wire each have a diameter between about 0.001 to
about 0.040 inch.

18. A medical device as in claim 17, wherein a ratio of the
central wire diameter to the snare wire diameter is between about
1.1:1 to about 10.0:1.

19. A procedure for removing a fibrin sheath from a distal end
of a venous catheter comprising:
(i) intraluminally advancing a medical device having a tubular member, a central wire positioned within said tubular member and a snare wire connected at one end to said central wire and at another end to said tubular member;

(ii) manipulating said medical device to position a segment of said snare wire proximally of said another end thereof adjacent the fibrin sheath at the distal end of the venous catheter;

(iii) effecting relative rotation between said central wire and said tubular member to cause said snare wire segment to wrap around the distal end of the venous catheter; and then

(iv) causing said wrapped snare wire segment to advance in a distal direction relative to the distal end of the venous catheter to thereby strip the fibrin sheath therefrom.

20. The procedure as in claim 19, wherein step (iii) is practiced by rotating said central wire about its longitudinal axis while maintaining said tubular member stationary.

21. The procedure as in claim 19, wherein step (iv) is practiced by advancing at least one of said central wire and said tubular member in a distal direction.
22. The procedure as in claim 19, wherein step (iv) is practiced by advancing said central wire in a distal direction while maintaining said tubular member stationary.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) : A61B 17/24; A61M 25/00; 31/00
US CL : 604/52, 267; 606/113
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)
APS, STIC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US, A, 5,342,371 (WELTER ET AL.) 30 August 1994, note Figs. 1-4.</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search: 24 MAY 1996
Date of mailing of the international search report: 21 JUN 1996

Authorized officer: A. T. NGUYEN

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Fax: (703) 305-3230
Telephone: (703) 308-2154

Form PCT/ISA/210 (second sheet)(July 1992)*