Offshore deployment device for an installation vessel (4) with a deck (5) to deploy a hydrocarbon transfer pipe (2) composed of several pipe segments (3). The device comprising a trolley hoist lifting means (10), installed in a tower (6) to lift a pipe segment from an horizontal position into a vertical position, an assembly platform (8), where a segment is connected to a previously launched transfer pipe string, the assembly platform being provided with a clamping device that is supported on the installation vessel and adapted to support the weight of the previously launched pipe string during assembling, wherein the hydrocarbon transfer pipe is a flexible hose string composed of several flexible hose segments, the flexible hose string being guided from a vertical position into an inclined or a horizontal position via a hose string guide element (15) which is placed under the assembly platform.
Published:

With international search report (Art. 21(3))
Vertical offshore flexible pipeline assembly

Field of the invention

The invention relates to a device for an installation vessel with a deck to deploy a hydrocarbon transfer pipe composed of several pipe segments, the device comprising a trolley hoist lifting means, installed in a tower to lift a pipe segment from an horizontal position into a vertical position, an assembly platform, where a segment is connected to a previously launched transfer pipe string, the assembly platform being provided with a clamping device that is supported on the installation vessel and adapted to support the weight of the previously launched pipe string during assembling. The present invention also relates to an offshore flexible hose installation method going from a vertical position to a horizontal position when deployed in the sea.

Background of the invention

Installation methods and devices for laying pipes from a vertical position to a horizontal position are already known, and described in various publications. In the international patent application WO2006085739 there is provided a method for installing an offshore pipeline where the weight of an accessory and a launched pipeline connected to the accessory is transferred from a clamping device to a controlled load hoisting device while the accessory and launched pipeline remain in a firing line. After disengaging the clamping device from the pipeline, the clamping device is moved out of the firing line. The accessory and launched pipeline are lowered along the firing line by the controlled load hoisting device.

In US6361250, there is provided a system and method to lay sub-sea pipelines at great depth. There is provided a tower which is particularly suitable for laying rigid pipes at depths up to 3000 m, with maximum loading of 600 tons. Rigid pipes are laid without plastic deformation, flexible pipes can also be handled. The carriages used are individually motorized, and operate on e.g. a rack and pinion, permitting the pipes to be moved and held in position. Conveniently, welding takes place at deck level. Demountable tower sections allow one tower to be used on another ship when necessary.
Further, in patent application US2007/0189857, there is disclosed a pipe laying tower with an upper clamping element vertically displaceable along a frame, and a lower clamping element supported on a vessel support structure. As the lower clamping element is not part of the J-lay frame, but is supported on the vessel support structure, the weight of the tower itself is reduced. This allows easy mounting of the lightweight frame portions and reduces modifications and structural reinforcements. Integration of the lower clamping block on the vessel support structure provides a low vertical center of gravity, reducing the motion-induced support loads on the vessel and providing for increased stability.

Such systems, however, require very good metocean conditions; the handling is time consuming and hence they provide expensive solutions. According to the present invention, there is provided a device and an offshore installation method to install a flexible hose offshore, which offer a large operation window as the operation can keep on going under high sea states such as for instance a sea state of 3 meters significant wave height.

The system according to the invention presents solutions that also increase the safety during installation, ease the access to personnel, and facilitate the key operations during installation.

Summary of the Invention

The system, according to the present invention, enables the assembly and deployment of interconnected hose segments by using an offshore installation vessel. The interconnected hose segments form a flexible hose which can be used for offshore hydrocarbon (crude oil, liquefied gas, etc.) transfer between two offshore units. The system can accommodate several hose sizes and can accommodate specifically flexible hose segments with truncated hose ends.

The offshore flexible hose installation method is transfers hose segments from a vertical position at the upper deck of the installation vessel to a horizontal floating position when deployed in the sea to form an hose string. The deployment of the hose is
carried out using the J-lay installation method going from a vertical to a horizontal position, the hose string floating at the sea surface.

It is therefore an object of the present invention to provide a device for an installation vessel with a deck to deploy a hydrocarbon transfer pipe which is a flexible hose string composed of several flexible hose segments that are assembled one to the other on an assembly platform. According to the invention the flexible hose string is guided from a vertical position into an inclined or a horizontal position via a hose string guide element which is placed under the assembly platform. A particularity of the hose string guide element is that it takes the out of plane bending loads of the tension in the hose string due to wave, wind and current and that it limits the bending radius of the hose string when going from a vertical position to a horizontal position.

A further aspect of the present invention provides a trolley hosting means which include a first and a second hosting means, so that an upended hose segment can be positioned and assembled with the first hoisting means, while reloading a new hose segment to be assembled with a second hoisting means.

The present invention also provides an offshore flexible hose installation method comprising the steps of:

- providing an installation vessel with a tower, equipped with hoist lifting means with at least one trolley, a hose string clamping mechanism and a hose string guide means,
- positioning and up-ending a hose segment so that it is in a vertical position,
- lowering the up-ended hose segment end and connecting it to the hose string that is clamped in the clamping mechanism,
- open the clamp and lower the connected hose segment through the clamps into the hose string guide mechanism, while guiding at the same moment the part of the hose string end that is near the installation vessel from a vertical position into an inclined or horizontal position via the hose string guide mechanism.

In accordance with a further aspect of the present invention, an offshore flexible hose installation method comprises the steps of:

- providing an installation vessel with a tower, equipped with hoist lifting means with at least two trolleys, a hose string clamping mechanism and a hose string guide means,
- positioning and up-ending a hose segment with one trolley so that it is in a vertical position,
- horizontally displacing the trolley from its predetermined position to another predetermined position and the other trolley from its predetermined position to another predetermined position,
- getting the hose segment in line with the clamped hose segment connected to a hose string,
- assembling the hose segment to the clamped hose segment and,
- simultaneously positioning and up-ending a new hose segment.

Further, the device enables displacing the dual trolley hoist lifting means from one position to another so that the installation of a subsequent hose segment can start as soon as the previous hose segment is up ended and installed in line with the clamped hose string.

Another advantage of a device according to the present invention is that the whole device is a removable device that can be mounted on different installation vessels.

Brief description of the drawings:

The invention will be further described below in connection with exemplary embodiments with reference to the accompanying drawings, wherein:

FIG. 1 shows a side view of a general embodiment of the device for laying a flexible line composed of several hose segments from an installation vessel according to the present invention,

FIGS. 2 to 4 show the different main steps of the offshore flexible hose installation method, the hose passing from a vertical position to a horizontal position when deployed in the sea according to the present invention.

FIGS. 5a and 5b show detailed views of the clamping and holding means of the assembling platform of the present invention, and

FIG. 6 shows a detailed view of the hose string guide element in the last step of the installation method according to the present invention.
FIG. 1 shows a side view of a general embodiment of the device laying a flexible line 2 composed of several hose segments 3 from an installation vessel 4 according to the present invention.

On the deck 5 of the installation vessel 4 there is a tower 6 provided with a dual 5 trolley hoist lifting means 10 that enables to up-end the hose segments 3. The hoist lifting means 10 lifts the hose segment 3 to the bolting location and aligns the hose segments 3 along all axes with the clamped hose 3c in the assembly platform 8. Close alignment with the clamped hose 3c is very important due to the tight tolerances of the bolt holes between the two hose segments 3 and 3c. Before the hose segment 3 is up-ended by the 10 hoist lining means 10, a lining hub 9 is provided at the hose segment extremity and is connected to the lining means 10. The hub 9 and hose segment 3 are preinstalled in a gutter 14. While the hose segment 3 is up loaded by the hoisting means 10, it is contained and guided by the guiding system or gutter 14. Once the top extremity of segment 3 reaches a certain height, it is then contained in a locking hatch 18 to avoid the hose segment from swaying. Thereby, the top extremity of the hose segment and the lower hose end are both restricted from moving in all directions in every steps of the installation. Hence, the guiding means 14, 18 prevents the hose segment 3 from moving or dangling in unwanted directions due to vessel motions and is further useful to position the bottom of the up-ended hose segment 3 exactly in line with the clamped hose segment 3c at the assembly platform 8.

The combined operation of the tower 6, the dual trolley hoist lifting means 10 and the guiding means 14, 18 constrains the hose top- and bottom ends along all axes during up-ending and bolting, which renders the operation much safer.

FIGs.2 to 4 show the different main steps of the offshore flexible hose installation method going from a vertical position to a horizontal floating position when deployed in the sea.

The dual trolley hoist lifting means 10 are provided with two trolleys 11, 11' which are displaceable in a horizontal direction, each from one predetermined position 11a, 11a' to another predetermined position 11b, 11b' in order to save time during the operation. In
fact, displacing the dual trolley hoist lifting means from a position to another, enables the
installation to benefit from the reloading function. Hence, the installation method for a
new hose segment 3' can start as soon as the previous hose segment 3 is up ended and
installed in line with the clamped hose segment 3c. The displaceable dual trolley hoist
lifting means shortens the assembly time per hose segment and can make a large
difference in the total operation time.

In FIG. 3, the deck crane (not shown) has preinstalled a hose segment 3" in a gutter
14. This hose segment will be kept ended by the trolley 11, once the trolley 11 will be
displaced from location 11a to location 11b. While the trolley 11 will be displaced, so
will the trolley 11' from location 11a' to location 11b' bringing the already up loaded
hose segment 3' into position above the clamping device 13 in alignment with the
clamped hose segment 3c (not shown) for assembly. In FIGs. 2 to 4 it appears clearly that
the dual trolley hoist lifting means 10 is composed of two trolleys 11 and 11' each
connected to a hose segment 3, 3' via a lifting hub 9, 9'. Buoyancy modules 20 are
preinstalled on the hose segments.

As shown in FIGs. 5a and 5b, there is a clamping system 13 fitted in or on the
assembly platform 8. The clamping system is required to hold the assembled hose string,
or line 2 so that it is safe to bolt a new hose segment 3 to the hose string assembly 2.

During normal operating conditions, the hose string 2 first rests on the top of the
clamping system 13 and then provides a certain pressure in order to overcome the up-lift
of the hose string 2 due to relative motion between the installation vessel 4 and the hose
string. In an emergency case i.e. where the hose string has been punctured, broken or
cracked during the assembly operation, the clamp is to hold the fully assembled hose
string, about 2 km long, fully flooded with seawater. The clamp can also open wide
enough to allow buoyancy modules 20 to pass through the clamp. The buoyancy modules
are pre-installed on the hose segments 3 before bolting to the hose string 2. The clamping
and holding means of the assembly platform are composed of four plates 22 that can open
or close by rotation. The plates 22 are equipped with translating clamps 24 that squeeze
the hose segment under the action of hydraulic cylinders 21 as shown in FIG. 5b. The clamps 24 can be changed out to accommodate different hose sizes.

The assembly platform 8 also allows about 5-6 men to walk around the bolting area of the two hose segments 3 and 3c, the platform 8 providing easy access during operation and/or maintenance.

When being clamped, a hose segment must not be bent. This is ensured by the hose string guide element 15 shown in FIG. 6.

The hose string guide element 15 takes up all out of plane loads, by creating only a vertical pulling force on the clamping system 13. The hose string guide element 15 is creating a gradually curved transition of the hose string 2 from the vertical to a horizontal position. It also restricts the hose 2 from bending further than its minimum allowable bending radius. Because the sheave is rotating around a shaft 16, there will be no shaving between the hose 2 and hose string guide element 15. The system is also fitted with D-fenders 17 bolted all around the circumference of the hose string guide element 15. The function of the D-fenders is to protect the buoyancy modules from being crushed by the forces induced by the current pushing on the already assembled hose string 2. The D-fenders 17 can absorb excessive loads on the buoyancy module while inside the sheave.

The hose string guide element 15 is positioned at an angle regarding the vessel's hull. The angle chosen is the most favorable angle in relation to the wave and current directions. The hose string guide element 15 can have multiple fixed deployment angles (passive) or could be provided with bearings allowing the hose string guide element to rotate during operation (active). The hose string guide element will be supported on the deck 5 and on the hull of the installation vessel 4.

The combination of up-ending and constraining the both ends of the hose segments allows the operation to continue until high sea states, such as for instance a sea state of 3 meters significant wave height. This results in a large operation window and smaller chances of downtime.
Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art, and consequently, it is intended that the claims be interpreted to cover such modifications and equivalents.
CLAIMS

1. Offshore deployment device for an installation vessel (4) with a deck (5) to deploy a hydrocarbon transfer pipe (2) composed of several pipe segments (3), the device comprising a trolley hoist lifting means (10), installed in a tower (6) to lift a pipe segment (3) from an horizontal position into a vertical position, an assembly platform (8), where a segment (3) is connected to a previously launched transfer pipe string (2), the assembly platform (8) being provided with a clamping device (13) that is supported on the installation vessel (4) and adapted to support the weight of the previously launched pipe string (2) during assembling, characterized in that the hydrocarbon transfer pipe is a flexible hose string (2) composed of several flexible hose segments (3), the flexible hose string being guided from a vertical position into an inclined or a horizontal position via a hose string guide element (15) which is placed under the assembly platform.

2. Device according to claim 1, characterized in that the guide element (15) is placed at least partly above water level.

3. Device according to claim 1 or 2, characterized in that the hose string guide element (15) is a guiding sheave rotatable around horizontal axis

4. Device according to any of the claims 1-3, characterized in that the hose string guide element (15) is provided with elements (17) that absorbs the out of plane bending loads in the hose string resulting from wave, wind and currents loads that are acting on the hose string.

5. Device according to any of the claims 1-4, characterized in that the hose string guide element (15) is adjustable around a vertical axis so that the firing line of the hose string can be adjusted or varied with regard to the length axis of the installation vessel.

6. Device according to any of the preceding claims, characterized in that the trolley hoist lifting means (10) comprises a dual trolley hosting means which include a first and a second hosting means, so that an upended hose segment (3') can be positioned
and assembled with the first hoisting means, while reloading a new hose segment (3")
to be assembled with the second hosting means.

7. Device according to claim 6, characterized in that two trolleys (11, 11') are installed
on the dual trolley hoist lifting means (10), the trolleys (11, 11') being displaceable in a
horizontal direction, each from one predetermined position (11a, 11a') to another
predetermined position (1lb, 1lb').

8. Device according any of the preceding claims, characterized in that the hose
segments are provided with a lifting hub (9, 9') to connect the hose segments to the
hoisting means (10).

9. Device according to any of the preceding claims, characterized in that the hose
segments are preinstalled in a guiding system (14, 14').

10. Device according to any of the preceding claims, characterized in that a hose
segments are upended using two guiding systems (14, 18).

11. Device according to any of the preceding claims, characterized in that the clamping
device (13) is provided with clamps (22, 24) which can accommodate variable diameter
hose segments.

12. Device according to claim 11, characterized in that the clamps can open wide
enough to allow buoyancy modules (20) attached to the hose segment (3) to pass
through.

13. Device according to claim 11 or 12, characterized in that the clamping device (13)
can grip and support the weight of a fully assembled hose string (2) fully flooded with
seawater in emergency cases.

14. Device according to any of the claims 11-13, characterized in that the clamping and
the flexible hose holding device (13) form an integral unit.
15. Device according to any of the preceding claims, characterized in that it is a removable device.

16. Offshore installation method for a flexible hose string comprising multiple hose segments, comprising the steps of:
- providing an installation vessel (4) with a tower (6), equipped with hoist lifting means (10) with at least one trolley (11, 11'), a hose string clamping mechanism and a hose string guide means (15),
- positioning and up-ending a hose segment (3) so that it is in a vertical position
- lowering the up-ended hose segment end and connecting it to the hose string that is clamped in the clamping mechanism
- opening the clamping mechanism and lowering the connected hose segment through via the clamping mechanism into the hose string guide mechanism, while guiding at the same moment the part of the hose string end that is near the installation vessel from a vertical position into an inclined or horizontal position via the hose string guide means (15).

17. Offshore installation method for a flexible hose string comprising multiple hose segments, comprising the steps of:
- providing an installation vessel (4) with a tower (6), equipped with hoist lifting means (10) with at least two trolleys (11, 11'), a hose string clamping mechanism (13) and a hose string guide means (15),
- positioning and up-ending a hose segment (3) with one trolley (11) so that it is in a vertical position,
- horizontally displacing the trolley (11) from its predetermined position (11a) to another predetermined position (11b) and the other trolley (11') from its predetermined position (11a') to another predetermined position (11b')
- getting the hose segment (3) in line with the clamped hose segment (3c) connected to hose string (2) using the second trolley (11')
- assembling the hose segment (3) and the clamped hose segment (3c) and
- simultaneously positioning and up-ending a new hose segment (3').
18. Method according to claim 17 wherein displacing the dual trolley hoist lifting means (10) from a position to another enables starting the installation method for a hose segment (3’) as soon as the previous hose segment (3) is up-ended and positioned in line with the clamped hose segment (3c) connected to hose string (2).

19. Method according to any of claim 16 to 18 wherein during installation, the hose segments are constrained in all directions.

20. Offshore deployment device comprising a deck (5), an assembly platform (8) for clamping a pipe segment (3,3’) in a vertical orientation in a clamping member (13), two substantially parallel up righting guide elements (14,14’) pivotable between a substantially horizontal support position and a vertical transfer position for each supporting a pipe segment (3,3’), and a lifting device (10) having a transverse track and comprising two trolleys (11,11’) displaceable along said track, each trolley (11,11’) attachable to respective upper end of a pipe section (3,3’) that is supported on an up righting guide element (14,14’), wherein each pipe segment in a substantially vertical position can be moved via the respective trolley (11,11’) along the transverse track, from a vertical transfer position at a distance from the clamping member to an assembly position at or near the clamping member (13).
Fig 4
Fig 6
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. F16L1/19 F16L1/20 F16L1/225

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F16L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 020 257 AI (6AZ DE FRANCE [FR]) 10 December 1980 (1980-12-10) page 4 - page 14; figures</td>
<td>1-4, 6-20</td>
</tr>
<tr>
<td>X</td>
<td>US 3 440 826 A (KLINE KENNETH A) 29 April 1969 (1969-04-29) the whole document</td>
<td>1, 2, 4, 6-16</td>
</tr>
<tr>
<td>X</td>
<td>US 2003/231931 AI (MOSZKOWSKI MARK [US] ET AL) 18 December 2003 (2003-12-18) the whole document</td>
<td>1, 2, 4, 5, 8, 9, 11-16</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 054 332 AI (RSV GUSTO ENG BV [NL]) 23 June 1982 (1982-06-23) page 5 - page 9; figures</td>
<td>1, 2, 4, 5, 8, 9, 12-16</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.
* See patent family annex.

* Special categories of cited documents:
 - *A* document defining the general state of the art which is not considered to be of particular relevance
 - *E* earlier document but published on or after the international filing date
 - *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - *O* document referring to an oral disclosure, use, exhibition or other means
 - *P* document published prior to the international filing date but later than the priority date claimed
 - *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - *Z* document member of the same patent family

Date of the actual completion of the international search
1 December 2010

Date of mailing of the international search report
07/12/2010

Name and mailing address of the ISA:
European Patent Office, P B 50158 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3016

Authorized officer
Popescu, Alexandru
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 1 265 017 Al (SEA OF SOLUTIONS B V [NL]) 11 December 2002 (2002-12-11) the whole document</td>
<td>1,5</td>
</tr>
</tbody>
</table>
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Q** Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. **□** Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. **□** Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This international Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. **□** As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. **X** As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. **□** As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. **□** No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- **□** The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.
- **□** The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- **□** No protest accompanied the payment of additional search fees.
This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-16, 19
 Offshore deployment device for controlling and limiting the pipe bending during the deployment.

2. claims: 17-20
 Offshore deployment device comprising an efficient pipe/hose segments loading device.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ES 8103333 A1</td>
<td>16-05-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2458020 A1</td>
<td>26-12-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 801622 A</td>
<td>02-12-1980</td>
</tr>
<tr>
<td>US 3440826 A</td>
<td>29-04-1969</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2003231931 A1</td>
<td>18-12-2003</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 57149687 A</td>
<td>16-09-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 59014671 B</td>
<td>05-04-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 8006816 A</td>
<td>16-07-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 814278 A</td>
<td>17-06-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4433938 A</td>
<td>28-02-1984</td>
</tr>
<tr>
<td>EP 1265017 A1</td>
<td>11-12-2002</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>