发明名称

煤矸石提取氧化铝的方法

摘要

本发明主要涉及一种煤矸石提取氧化铝的方法，是将煤矸石粉碎后经流化炉煅烧，磁选机除铁，除铁后的矸石与酸进行反应，得到不含有硅杂质的氯化铝溶液，含铝溶液浓缩结晶后低温煅烧，制得粗氧化铝，再将粗氧化铝与氢氧化钠反应，得到偏铝酸钠溶液，除去铁、钛杂质，向母液中加入氢氧化铝晶种并通入二氧化碳气体进行种分，得到氢氧化铝沉淀，在经过煅烧即得到冶金级氧化铝。本方法在常压下不使用任何助剂，用盐酸和硫酸直接浸溶提取氧化铝，经本发明制备的氧化铝，其含量可达99%以上，具有工艺流程简单，原料来源充足，能量消耗少，成本低廉，煤矸石的利用价值高的优点。
1. 一种煅烧石提取氧化铝的方法，其特征在于：包括如下顺序和步骤：
 a. 将煅烧石磨成≤200；
 b. 在流化炉中煅烧温度 600℃~900℃，煅烧时间 2~3 h，再用磁选机初步除铁；
 c. 将煅烧后的煅烧石置于耐酸反应釜中，加入硫酸或硫酸反应，搅拌并加热；

 ——盐酸和煅烧煅烧石加入量比例为 1:1.5~1:2.5，盐酸质量浓度百分比为 22%~31%，加热温度为 90℃~110℃，反应时间为 0.5~2 h；

 ——硫酸和煅烧煅烧石加入量比例为 1:3，硫酸质量浓度百分比为 40%~60%，加热温度为 90℃~110℃，反应时间为 0.5~2 h；

 ——酸溶后混合液降温到 90℃后放入沉降槽沉降 2 h；

 d. 渣液分离，采用分部过滤，抽滤上层液过滤到结晶釜，残渣经加水洗涤后用抽滤机将滤液送入到结晶反应釜，在反应釜中负压浓缩，浓缩后的母液放入缓冲冷却器，冷却析出结晶氧化铝或结晶硫酸铝晶体；

 e. 将结晶氧化铝或结晶硫酸铝低温煅烧，得到粗氧化铝制品；

 f. 将氢氧化钠溶液装入耐压反应釜，加入粗氧化铝，粗氧化铝和氢氧化钠的质量比例为 1:2，氢氧化钠浓度为 180~245 g/L，加热温度 130℃~220℃，粗氧化铝与氢氧化钠反应生成偏铝酸钠溶液，铁、钛杂质不与氢氧化钠反应而形成残渣；将溶液温度降低到 90℃后，放入沉降槽中沉降 2 h 后过滤；

 g. 再次渣液分离，采用分部过滤，上层液先过滤到种分仪中，清洗残渣后的滤液送入耐压反应釜；

 h. 偏铝酸钠溶液送入种分仪中，通入二氧化碳气体，控制 pH=8~10，不断搅拌，偏铝酸钠溶液发生分解生成氢氧化铝沉淀；

 i. 氢氧化铝经过滤、洗涤，得到氢氧化铝成品，滤液作为碳分母液返回到种分仪中；

 j. 将氢氧化铝高温煅烧，煅烧温度控制在 1100~1300℃，即得到冶金级氧化铝。

2. 按照权利要求 1 所述的煅烧石提取氧化铝的方法，其特征在于：结晶氧化铝的煅烧温度 300℃~500℃，煅烧时间 2 h；结晶硫酸铝的煅烧温度为 800℃~900℃，煅烧时间 2 h。

3. 按照权利要求 1 所述的煅烧石提取氧化铝的方法，其特征在于：CO₂气体气体流量为 200 ml/min。
4. 按照权利要求1所述的煤矸石提取氧化铝的方法，其特征在于：洗涤酸溶
残渣后的洗液结晶氯化铝及低温煅烧分解产生HCl气体用水吸收后，调节盐酸
浓度为22%~31%返回到酸溶反应釜中循环利用。

5. 按照权利要求1所述的煤矸石提取氧化铝的方法，其特征在于：洗涤酸溶
残渣后的洗液结晶硫酸铝及低温煅烧分解产生SO₃气体用水吸收后，调节浓度为
40%~60%返回到酸溶反应釜中循环利用。
煤矸石提取氧化铝的方法

技术领域:

本发明属于煤矸石的精细化综合利用，具体涉及一种以煤矸石为原料提取氧化铝的方法。

背景技术:

煤矸石俗称矸石，是在成煤过程中与煤层伴生的一种含碳量低、比较坚硬的黑色岩石，在煤炭生产过程中成为废弃物。据统计，我国煤矿煤矸石的年年堆存量达30亿t，占用土地约5500万 hm²，而煤矿排放矸石量仍以每年约115亿t的速度递增；煤矸石中含有大量的铝资源，在我国铝资源严重缺乏的前提下，能够将这部分“化废为宝”，已成为影响经济效益和社会效益的重要问题。

与本发明相关的方法主要有以下几种：CN91110937.4公开了“用煤矸石制备硫酸铝”的方法，该方法将煤矸石粉碎到60~80目，用浓度40~70%（重量）的硫酸在反应器中混合，搅拌，通蒸汽升温至反应器压力为3.5~6千克/平方厘米，恒压反应4~6小时，沉降去渣，取其清液中和至无游离酸，再将清液蒸发浓缩结晶。该方法未经磁选机除铁，反应时会增加硫酸的消耗，而且反应时间4~6小时，时间长增加了能源的消耗。沉降去渣后的中和使反应的碱消耗量增加。
CN94110302.2公开了“用煤矸石制备氢氧化铝工艺”的方法，该方法将煤矸石粉碎，加酸浸取，加聚丙酰胺溶液，真空抽滤，蒸发浓缩，真空抽滤，用水溶解并控制温度，加入铝粉，加碳酸盐，调节PH值，再次真空抽滤，用水洗涤烘干得氢氧化铝。该法以铝粉为还原剂将Fe³⁺还原为Fe²⁺，然后加入碳酸铵析出氢氧化铝，除去物料中含铁物质，在生成氢氧化铝时铁离子易吸附于氢氧化铝上，使氢氧化铝纯度变低。
CN01207204.3公开了“综合利用煤矸石生产氢氧化铝和电解铝”的方法，该方法使用煤矸石煅烧后产生得粉煤灰作为原料，加入适量石灰乳和纯碱，使氧化钠含量控制在3~5%，温度控制在80℃，产物过滤，得到的偏酸钠溶液加入少量石灰乳溶液，加压蒸煮，过滤得到精偏酸钠溶液，在溶液中通入CO₂气体，生成Al(OH)₃沉淀。该方法加入的石灰乳，易使反应生成碳酸钙沉淀，不利于制备高纯氧化铝。

发明内容:

本发明的目的就在于针对上述现有技术的不足，提供一种污染小，工艺简单，氧化铝产率高的煤矸石提取氧化铝的方法。

本发明的目的是通过以下技术方案实现的：
将煤矸石机械粉磨至≤200目，放入流化炉中煅烧，煅烧温度600℃~900℃，
煅烧时间2~3h，煅烧后的煤矸石灰用磁选机初步除铁；

将初步除铁后的煤矸石灰置于反应釜中加入盐酸或硫酸进行酸浸，加入的盐酸
质量浓度为22%~31%或硫酸质量浓度为40%~60%，盐酸与煅烧煤矸石灰的
质量比为1:1.5~1:2.5，硫酸与煅烧煤矸石灰加入质量比为1:3，加热温度为
90℃~110℃，反应时间为0.5~2h，酸溶后混合液降温到90℃后放入沉降槽沉降
2h，采用分部过滤，抽滤上部溶液到结晶反应釜中，残渣经加水洗涤后用抽滤机
将滤液送入到结晶反应釜；在反应釜中负压浓缩，浓缩后的母液放入缓冲冷却罐
，冷却析出结晶氯化铝或结晶硫酸铝晶体；将结晶氯化铝或结晶硫酸铝放入高温炉
煅烧，结晶氯化铝的煅烧温度300℃~500℃，煅烧时间2h；结晶硫酸铝的煅烧温
度为800℃~900℃，煅烧时间2h。煅烧后得到粗氧化铝，煅烧生成的HCl或SO3
气体在吸收塔内循环吸收后配制成浓度为22%~31%盐酸溶液或浓度为40%~60%
硫酸溶液，在酸溶中循环使用。

将氢氧化钠溶液放入耐压反应釜中，浓度180~240g/L，将粗氧化铝粉磨到
200目左右，加入到氢氧化钠溶液中，粗氧化铝与氢氧化钠质量比1:2，加热温
度130℃~220℃；氧化铝与氢氧化钠反应生成偏铝酸钠溶液，铁、钛等不溶物以
残渣形式弃掉；将溶液温度降低到90℃后，放入沉降槽中沉降2h后过滤，采用
分部过滤，经过滤后得到精制液，沉淀物为残渣，残渣经几次洗涤、沉降、回收，
洗渣后的洗液返回到耐压反应釜中重复利用；将反应生成的偏铝酸钠精制液置于
种分仪中，并通入CO2气体，CO2气体气流流量200ml/min，控制PH=8~10，并
不断搅拌，偏铝酸钠分解生成氢氧化铝沉淀；将氢氧化铝过滤，得到氢氧化铝晶
体和碳酸钠溶液；氢氧化铝经过洗涤得到成品氢氧化铝，偏铝酸钠与碳酸钠混合
溶液返回种分仪作碳酸钠。

将氢氧化铝成品煅烧，煅烧温度1100℃~1300℃，得到冶金级氧化铝。

有益效果：以煤矸石为原料制备氧化铝工艺，在常压下不使用任何助溶剂，
用盐酸或硫酸直接溶出提得氧化铝，除氢氧化钠有少量消耗外，大多数可回收重
复利用，工艺简单，原料来源充足，能量消耗少。

表1 为制备的粗氧化铝及冶金级氧化铝的化学成分表。

<table>
<thead>
<tr>
<th>样品</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>煤矸石为原料制备的粗氧化铝</td>
<td>92.0</td>
<td>2.2</td>
<td>0.84</td>
</tr>
<tr>
<td>煤矸石为原料制备的冶金级氧化铝</td>
<td>99.2</td>
<td>0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>
附图说明:

图 1 煤矸石提取氧化铝工艺流程图

具体实施方式:

下面结合附图和具体实施实例进一步说明:

原料采用内蒙某热电厂使用煤矸石，其化学成分如表 2 所示。

<table>
<thead>
<tr>
<th>成分</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MgO</th>
<th>CaO</th>
<th>MnO</th>
<th>K₂O</th>
<th>TiO₂</th>
<th>P₂O₅</th>
<th>烧失量</th>
</tr>
</thead>
<tbody>
<tr>
<td>煤矸石</td>
<td>18.77</td>
<td>16.57</td>
<td>0.12</td>
<td>1.72</td>
<td>0.16</td>
<td>0.004</td>
<td>0.07</td>
<td>0.76</td>
<td>0.008</td>
<td>61.82</td>
</tr>
</tbody>
</table>

实施例 1

取 2500g 煤矸石，机械粉碎到不大于 200 目，放入流化床炉中煅烧，煅烧温度为 600℃，煅烧时间 3h，然后用磁选机初步除铁；称取初步除铁后的煤矸石灰料 500g 置于反应釜中，加入浓度为 25%的盐酸 1500ml，加热温度控制在 100℃，并不断搅拌，反应 2h。酸溶结束后，混合液降温至 90℃后放入沉降槽中，采用分部过滤，上层液直接抽滤，滤液送入结晶反应釜中，下层渣液混合物经洗涤、弃渣，洗液返回酸溶反应釜中重复使用，结晶后将结晶氯化铝分离出来。将得到的结晶氯化铝加热到 500℃，经过低温煅烧得粗氧化铝，煅烧产生氯化氢气体用水直接吸收，调节浓度到 30%返回到酸溶反应釜中重复利用。

将粗氧化铝磨细到 200 目，取磨细的粗氧化铝 100g 置于到耐压反应釜中，加入浓度为 220g/L 的氢氧化钠溶液 400ml，加热到 150℃，使粗氧化铝与氢氧化钠反应生成偏铝酸钠溶液。采用分部过滤，经渣液分离，滤液为偏铝酸钠清液，将偏铝酸钠清液用于结晶中，滤液主要含氧化铁、氧化钛，经水洗后排出滤渣，洗液返回碱溶液中重复使用。向结晶中的偏铝酸钠溶液中通入 CO₂气体进行碳分，CO₂气体流量 200ml/min，控制 PH=9.0，并不断搅拌，偏铝酸钠分解生成氢氧化铝沉淀，过滤后煅烧，煅烧温度为 1100℃，制得冶金级氧化铝。滤液作为碳分母液返回到结晶中反复利用。

实施例 2

取 2500g 煤矸石，机械粉碎到不大于 200 目，放入流化床炉中煅烧，煅烧温度为 600℃，煅烧时间 3h，然后用磁选机初步除铁；称取初步除铁后的煤矸石灰料 500g 置于反应釜中，加入浓度为 30%的盐酸 1300ml，加热温度控制在 90℃，并不断搅拌，反应 1.5h。酸溶结束后，混合液降温至 90℃后放入沉降槽中，采用分部过滤，上层液直接抽滤，滤液送入结晶反应釜中，下层渣液混合物经洗涤、弃渣，洗液返回酸溶反应釜中重复使用，结晶后将结晶氯化铝分离出来。将得到
的结晶氧化铝加热到 450℃，经过低温煅烧可到粗氧化铝，煅烧产生氯化氢气体用水直接吸收，调节浓度到 25%返回到酸溶反应釜中重复利用。

将粗氧化铝磨细到 200 目，取磨细的粗氧化铝 100g 置于到耐压反应釜中，加入浓度为 240g/L 的氢氧化钠溶液 450ml，加热到 200℃，使粗氧化铝与氢氧化钠反应生成偏铝酸钠进入溶液中。采用分部过滤，经渣液分离，滤液为偏铝酸钠清液，将偏铝酸钠清液置于种分仪中，滤渣主要含氧化铁、氧化钛，经水洗后排入滤渣，洗液返回碱溶液中重复利用。向种分仪中的偏铝酸钠溶液中通入 CO2 气体进行碳分，气体流量 200ml/min，控制 PH=8.5，并不断搅拌，偏铝酸钠分解生成氢氧化铝沉淀。过滤后煅烧制得冶金级氧化铝，滤液作为碳分母液返回种分仪中重复利用。

实施例 3

取 2500g 煤矸石，机械粉碎到 200 目，放入流化床炉中煅烧，煅烧温度为 600℃，煅烧时间 3h，然后用磁选机初步除铁，称取初步除铁后的煤矸石灰料 500g 置于反应釜中，加入浓度为 45%的硫酸 1400ml，加热温度控制 105℃，并不断搅拌，反应 1h。酸溶结束后，混合溶液降温至 90℃后放入沉淀槽中，采用分部过滤，上层液直接抽滤，滤液送入结晶反应釜中，下层渣液混合物经洗涤、弃渣，洗液返回到酸溶反应釜中重复使用，结晶后将结晶硫酸铝分离出来。将得到的结晶硫酸铝加热到 800℃，经过低温煅烧可到粗氧化铝，煅烧产生 SO2 气体用水直接吸收，调节浓度到 40%返回到酸溶反应釜中重复利用。

将粗氧化铝磨细到 200 目，取磨细的粗氧化铝 100g 置于到耐压反应釜中，加入浓度为 235g/L 的氢氧化钠溶液 300ml，加热到 150℃，使粗氧化铝与氢氧化钠反应生成偏铝酸钠进入溶液中。采用分部过滤，经渣液分离，滤液为偏铝酸钠清液，将偏铝酸钠清液置于种分仪中，滤渣主要含氧化铁、氧化钛，经水洗后排入滤渣，洗液返回碱溶液中重复利用。向种分仪中的偏铝酸钠溶液中通入 CO2 气体进行碳分，气体流量 200ml/min，控制 PH=9.5，并不断搅拌，偏铝酸钠分解生成氢氧化铝沉淀。过滤后煅烧制得冶金级氧化铝，滤液作为碳分母液返回种分仪中重复利用。

实施例 4

取 2500g 煤矸石，机械粉碎到 200 目，放入流化床炉中煅烧，煅烧温度为 600℃，煅烧时间 3h，然后用磁选机初步除铁，称取初步除铁后的煤矸石灰料 500g 置于反应釜中，加入浓度为 55%的硫酸 1200ml，加热温度控制在 110℃，并不断搅拌，反应 0.5h。酸溶结束后，混合溶液降温至 90℃后放入沉淀槽中，采用分部过滤，上层液直接抽滤，滤液送入结晶反应釜中，下层液混合物经洗涤、弃渣，洗液返回到酸溶反应釜中重复使用，结晶后将结晶硫酸铝分离出来。将得到
的结晶硫酸铝加热到 900 ℃，经过低温煅烧可到粗氧化铝，煅烧生成 SO₃ 气体用水直接吸收，调节浓度到 55% 返回到酸溶反应釜中重复利用。

将粗氧化铝磨细到 200 目，取磨细的粗氧化铝 100g 置于到耐压反应釜中，加入浓度为 245g/L 的氢氧化钠溶液 270ml，加热到 200 ℃，使粗氧化铝与氢氧化钠反应生成偏铝酸钠进入溶液中。采用分步过滤，经渣液分离，滤液为偏铝酸钠清液，将偏铝酸钠清液置于种分仪中，滤渣主要含氧化铁、氧化钛，经水洗后排出滤渣，洗液返回碱溶液中重复利用。向种分仪中的偏铝酸钠溶液中通入 CO₂ 气体进行碳分，气体流量 200ml/min,，控制 PH=10.0,，并不断搅拌，偏铝酸钠分解生成氢氧化铝沉淀。过滤后煅烧制得冶金级氧化铝，滤液作为碳分母液返回种分仪中重复利用。