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(57) Abstract: The present invention provides a new trapdoor one-way function. In a general sense, some quadratic algebraic

integer z is used. One then finds a curve E and a rational map defining [z] on E. The rational map [z] is the trapdoor one-way

& function. A judicious selection of z will ensure that [z] can be efficiently computed, that it is difficult to invert, that determination
& of [z] from the rational functions defined by [z] is difficult, and knowledge of z allows one to invert [z] on a certain set of elliptic
curve points. Every rational map is a composition of a translation and an endomorphism. The most secure part of the rational map
is the endomorphism as the translation is easy to invert. If the problem of inverting the endomorphism and thus [z] is as hard as
the discrete logarithm problem in E, then the size of the cryptographic group can be smaller than the group used for RSA trapdoor

=

one-way functions.
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NEW TRAPDOOR ONE-WAY FUNCTION ON ELLIPTIC CURVES AND THEIR
APPLICATIONS TO SHORTER SIGNATURES AND ASYMMETRIC ENCRYPTION

FIELD OF THE INVENTION:

[0001]  The present invention relates to trapdoor one-way encryption functions and

cryptosystems utilising such functions.

DESCRIPTION OF THE PRIOR ART

[0002] A trapdoor one-way function (TOWF) is a publicly computable function, which
only one entity can invert. A special secret, called a private key, is required to compute the

inverse of TOWF.

[0003] The classic example of a TOWF is the RSA function based on the relationship
M =M (mod N). The public RSA function w is computed as follows: W(x) = x° mod N.
The numbers e and N are public values. The number N is chosen to be a product of two
secret distinct primes p and q. Inverting the RSA function with the private key operation w,
can be done as follows: W(y) = y* mod N, where d = (1/e) mod (p-1)(g-1) and is the private
key.

[0004]  Inverting the RSA function without the private key is believed to be a hard
problem. Factoring N to obtain the primes p, q is computationally infeasible for large values
of N and therefore the private key w = (p-1)(¢-1) also maintains secrecy. In fact, the security
of much of the online banking currently done depends on the RSA function being hard to
invert without the private key. In other words, the world generally believes that the RSA
function is a TOWF.

[0005] As a TOWF, the RSA function can be used as the basis of a cryptosystem that
performs both digital signatures and public-key encryption. To digitally sign a message M
with a trapdoor one-way function W one computes S = W(H(M)) using the private key
operation W™ and a public hash function H. The hash function has two purposes: to
compress M down to the size of digest which W can handle and to prevent some potential

attacks involving the conversion of a signature of one message to the signature of a related
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but unauthorized message. To verify a signature S of message M with a trapdoor one-way
function, one checks that H(M) = W(S).

[0006] Public-key encryption with a TOWF is somewhat the opposite to signing. Instead
of hashing, an encoding scheme E is used. To encrypt a message M, one computes a
ciphertext C = W(E(M)). To decrypt a ciphertext C, one computes M = E'(W'(C)). The
encoding function serves to adapt M to the size needed for W to be applied, and also to

prevent certam kinds of related message attacks.

[0007] An alternative cryptosystem is based on the difficulty of the discrete log problem.
A particularly robust cryptosystem, which bases its security on the discrete log problem
utilizes elliptic curves and has the advantage of reduced bandwidth compared with RSA
TWOF cryptosystems.

[0008] Whilst elliptic curve cryptosystems reduce the bandwidth compared to the RSA
TOWTF, there is still a need to minimize the bandwidth whilst maintaining the desirable
attributes of existing systems. Moreover, TOWF’s do not rely on the random number
generator and therefore in some circumstances may be easier to implement even though the

bandwidth required is greater.

[0009] It is therefore an object of the present invention to provide a TOWF cryptosystem

to obviate or mitigate the above mentioned disadvantages.

[0010]  To facilitate the understanding of the underlying principles of the present

invention, a review of the mathematical basis of these principles is set forth below.

[0011] An elliptic curve E is the set of points (x, y) that satisfy the defining equation of
the elliptic curve. The defining equation is a quadratic in y and a cubic in x, and is non-
singular. The coordinates x and y are elements of a field, which is a set of elements that can
be added, subtracted, multiplied, and divided (with the exception of zero for division).
Examples of fields include rational numbers and real numbers. There are also finite fields,
which are the fields most often used in cryptography. An example of a finite field is the set

of integers modulo a prime q.
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[0012]  Without the loss of generality, the defining equation of the elliptic curve can be in
the Weierstrass form. When the field F is derived from the integers modulo a prime q > 3,
then the Weierstrass equation takes the form y?=x" +ax + b, where a and b are elements of

the field F.

[0013]  The elliptic curve E includes the points (X, y), which are all solutions to the
defining equation, and one further point, namely the pomt O at infinity. The elliptic curve E
also has a group structure, which means that the two points P and Q on the curve can be
added to form a third point P + Q. The point O is the identity of the group, meaning P+ O =
O + P =P, for all points P. Addition is associative, so that P +(Q + R)=(P+Q)+R,and
commutative, so that P+ Q = Q + R, for all points P, Q and R. Each point P has a negative
point —P, such that P + (-P) = O. When the curve equation is the Weierstrass equation of the
form y* = x° + ax + b, the negative of P = (x, y) is determined easily as —P = (¥, -y). The
formula for adding points P and Q in terms of their coordinates is only moderately

complicated involving just a handful of field operations in the field over which E is defined.

[0014] A rational function r(x,y) in two variables over a field is the ratio of two
polynomials in two variables each over the same field. So 1(x,y) = p(x,y)/q(x.y), where p and
q are polynomials in x and y. A polynomial in x and y is a sum of terms of the formax™y",
where a is a field element (possibly depending on m and n), and m and n are non-negative
integers. For example, x%y - 3y* + 1 is a polynomial in x and y. For any rational function
1(x, y) and field elements u and v, there is a value of the rational function r(x,y) at the point
(u, v). The value is a field element or the point at infinity, and is written r(u, v). The value
1(u, v) is obtained simply by substituting each occurrence of the variable x by the field
element u and each y by v, and then evaluating all the field operations such as multiplication,
addition and division. Occasionally division by zero results, which generally indicates that
the value r(u, v) is actually infinity, which is regarded as an exception because the value is
not in the field. Thus, it is possible to evaluate r(x,y) for points (x,y) on the curve. It is also
possible to define the value of r(x,y) at the point O, this enabling evaluation of r on each point

of the curve.

[0015] A rational map on an elliptic curve E is a pair of rational functions r(x,y) and

s(x,y) such that if (u, v) is a point on E, then (t, w) = (r(u, v), s(u, v)) is also a point on E.
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More generally, this needs to also hold if (u,v) is replaced by O, and furthermore if it is

acceptable for (t, w) to be O, which corresponds to t and w both being infinity.

[0016]  Rational maps on elliptic curves can actually be added just like points on the
curve. The addition rules are similar, except that instead of doing operations with field
elements, one instead does operations with rational functions, that is, with the symbolic

functions of x and y.

[0017] A rational map (r, s) on E is considered equivalent to another rational map (1', s')

on E if 1 is equivalent to r' and s is equivalent to s', as rational functions on E.

[0018] A special kind of rational map is an endomorphism. An endomorphisme e, is a
rational map e = (r, s) with the additive property, that is e(P + Q) = e(P) + &(Q) for any two
points P and Q. An important theorem in elliptic curve theory says that if e is a rational map
with the property e(O) = O, then e is also an endomorphism. This theorem considerably

simplifies the determination of whether a given rational map is an endomorphism.

[0019]  Animportant example of an endomorphism is e = [m] which is defined by e(P) =
mP, that is, the sum of m copies of the point P. Because the addition law for curve E is
defined by rational functions, then so is the iterated sum mP of m copies of P, because these
rational functions can be iterated. Therefore e(P) is a rational map. Because the addition
operation on the curve E is associative, we have e(P + Q) = m(P+Q) = m(P) + m(Q) = e(P) +

e(Q) for e =[m] Therefore, e is an endomorphism because it has the additive property.

[0020] If there is an endomorphism different than [m], then E is said to have complex
multiplication. Elliptic curves defined over finite fields always have complex multiplication.
In other words, they always have an endomorphism e which is different from [m] for all

integers m.

[0021] A powerful theorem of elliptic curve theory says that any endomorphism e is
equivalent to a unique rational map of the form (r(x), cyr'(x)), where r(x) is a rational function
of a single variable, ¢ is a constant field element, and r'(x) is the derivate of r(x). This result
is not at all obvious, but if e is in the form (f(x,y), g(x,y)), it is not too difficult to determine

r(x), as outlined below.
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[0022]  Toillustrate, one replaces each occurrence of y* in f(x, y) with a polynomial that
is linear or constant iny. For example, if the curve’s defining equation is yr=x +ax+b,
then each y* can be replaced by % + ax + b, which is constant in'y. Apply this as many times
as necessary so that the numerator and denominator do not have any powers of y higher than
1, in other words they are linear in'y. The modified f(x,y) has the form (a(x) + b(x) y)/ (c(x)
+ d(x)y), where a, b, ¢, and d are polynomial functions, not to be confused with previous uses
of these variables. The y can be eliminated from the denominator by multiplying the top and
bottom by (c(x) - d(x) y), which gives c(x)* - d(x)* y* = c(x)” - d(x)* (x3 + ax + b) in the
bottom. The y* in the numerator can also be eliminated. This gives a form g(x) + h(x) y
where g(x) and h(x) are rational functions in x. It can be proven that h(x) = 0, because as e is
an endomorphism we have e(-P) = -(P), so e(x,-y) = -e(x,y), thus g(x) + h(x) y = g(x) — h(x)
y, for all (x,y) on the curve. So now we have found r(x) as g(x). Itis clear that r(x) found in

this way 1s unique.

[0023] Similarly, the rational function g(x,y) can be expressed as a linear function h(x) +
y k(x) where h(x) and k(x) are rational functions of x, and it can be shown that h(x) = 0 by
similar reasons. This means that k(x) can be determined, which provides a means to find the
constant ¢ in the form (i(x), cyr'(x)). Alternately, ¢ could be found by differentiating r(x), and

then evaluating e at a some point P to solve for c.

[0024]  Every endomorphism has an action on an elliptic curve group that corresponds to
a quadratic algebraic integer. A quadratic algebraic integer z is a complex number such that
7% + uz + v = 0 for some integers u and v. The endomorphism e corresponds to this algebraic
integer 1f ¢® + [u]z + [v] = [0], where the addition here is the addition of rational maps, as
explained above. In this case, we can write e = [z], where [ ] indicates the rational map

corresponding to a rational integer.

[0025] All real integers are quadratic algebraic integers, and the endomorphism [m]
corresponds to the integer m. A quadratic algebraic integer that is not a real integer is the
complex number i, the square root of -1, which satisfies quadratic equation i#+1=0. For
each quadratic algebraic integer that is not a real integer, there are only a limited set of
elliptic curves that have [z] as an endomorphism. Known results give theoretical procedures

for determining such curves, as well as a way of determining [z] as a rational map.
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[0026]  Generally, the degree of endomorphism e is the number of points P such that e(P)
= 0. More precisely, this is called the separable degree of e. The actual degree is the product
of the separable degree and something else called the inseparable degree. When e is
expressed in its canonical form as (r(x),cyr'(x)), the degree of the numerator of r(x) is the
degree of e, and the degree of the denominator of r(x) is one less. (Here we assume the
numerator and denominator of 1(x) to be co-prime) Furthermore, for e = [z], we generally
have the degree of ¢ as |z|°. The degree of the endomorphism [m], for example, is thus |m|* =

2
m.

[0027] In conventional elliptic curve cryptography, the endomorphism [m] is evaluated

frequently. The number m represents a private key, and [m|P = mP represents a public key.
The function [m] can be computed efficiently, even for a large value of m, much faster than
one could add up the m? terms that would appear in the fully expanded polynomial forms of
the numerator and denominators of 1(x) for [m]. The crucial observation here is that a large

degree endomorphism can be efficiently computed.

[0028]  The following example lists every possible endomorphism of degree 2 on any
elliptic curve. This list is complete up to equivalence of rational maps and elliptic curves.
These are taken from Silverman's Advance Topics in the Arithmetic Elliptic Curves

(Silverman’s).

[0029]  The first is e = [z] =[1+1], defined on the curve E :

b
z22x ~ 2°x?

2 2 _
yr=x+x,as e(x,y)=£_._—x +1 ____y(x 1))

Notice that z appears as a rational function defining the action of e, so e is only defined when
E is defined over a field F that contains a value corresponding to z. (This comment also

applies to the two endomorphism e below)

[0030]  The second is e = [z] = [V(-2)], defined on E :

2

2 2
yz = x® +4x? +2x, as: e(x,y):(x +4x+2 y(x 2)}

z%x z23x?
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[0031] Thethirdise=[z] = [(1 + \(-7))/2], defined on E :

y? =x* -35x+98, as:

e(x,y)z(x +x(z2-2)-70-2)" W(x+2°-2)"+7(-2) ))

2 (x+2° -2) ’ 2(x+z°=2)°

SUMMARY OF THE INVENTION

[0032]  The inventors have recognized that it is possible to use the attributes of elliptic
curve cryptosystems to obtain a TOWF that provides a robust cryptosystem with a reduced
bandwidth.

[0033]  In one aspect, the present invention provides a crypto graphic system operating on
an elliptic curve E of order n. The cryptosystem has an endomorphism [z] corresponding to a
quadratic algebraic integer z that has the form 72 +uz + v =0, where u and v are secret
integers, and v is relatively prime to n; a public key operation to apply the endomorphism (z]
to cryptographic data x to obtain modified data x’; and a private key operation to apply [-
w][u] + [z] to the modified data x” in order to obtain the data x, where w is an integer and wv

=1 mod n.

[0034]  In another aspect, the present invention provides method for performing
cryptographic operations in a cryptographic system operating on an elliptic curve E of order
n. The method comprises the steps of deriving an endomorphism [z] corresponding to a
quadratic algebraic integer z that has the form 7 +uz + v =0, where u and v are secret
integers, and v is relatively prime to n; applying a public key operation using the
endomorphism [z] to cryptographic data x to obtain modified data x’; and applying a private
key operation using [-w][u] + [z] to the modified data X’ in order to obtain the data x, where

w is an integer and wv =1 mod n.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0035]  An embodiment of the invention will now be described by way of example only

with reference to the accompanying drawings, in which:
[0036] Figure 1 is a schematic representation of a crypto graphic exchange scenario.

[0037] Figure 2 1s a schematic representation showing an application of a trapdoor one-

way function.

[0038]  Figure 3 is a schematic representation showing an application of the trapdoor one-

way function of Figure 2 for encryption.

[0039]  Figure 4 is a schematic representation showing an application of the trapdoor one-

way function of Figure 2 for digital signatures.

[0040] Figure 5 is a schematic representation showing an application of the trapdoor one-

way function of Figure 2 for aggregated signatures.

[0041]  Figure 6 is a schematic representation showing an application of the trapdoor one-
way function of Figure 2 for aggregated signatures with a single message and multiple

trapdoor one-way functions for multiple signers.

DETAILED DESCRIPTION OF THE INVENTION

[0042] Referring therefore to Figure 1, a cryptosystem 10 has a first entity 12, and a
second entity 14 that communicate via a communication channel 16. The first entity 12 and
second entity 14 each have a cryptographic module 15 that applies public key functions or
private key functions 18 available to both entities 12, 14. Each entity 12, 14 will utilize the
key functions 18 with the TOWF to obtain encryption/decryption or signing/verifying as

described above.

[0043]  In order to implement such a system, it is necessary to determine a suitable TOWF
with corresponding public key functions and private key functions. The inventors have

recognized that a suitable TOWF may be obtained by use of a quadratic algebraic integer z.

-8-
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One then finds a curve E and rational map defining [z] on E. The rational map [z] is the
TOWEF. Judicious selection of z will ensure that it has the necessary cryptographic attributes,

namely:
(a) [z] can be efficiently computed
(b) that {z] is difficult to invert
(c) determination of z from the rational functions defining [Z] is difficult, and
(d) knowledge of z allows one to invert [z] on a certain set of elliptic curve points.

[0044] More generally, one can use a rational map r between two different curves E and
E'. The rational map can be used as a TOWF. For ease of implementation, however, 1t is

more convenient to use E =E'. A rational map from E to E is the preferred implementation.

[0045] Because every rational map (i.e. from E to E) is a composition of a translation and
an endomorphism, where the translation is easy to determine and mnvert, the most secure part
of the rational map is the endomorphism. Therefore an endomorphism is the preferred

implementation of the rational map.

[0046]  The inventors have recognized that one potential way to calculate the trapdoor
inverse, for inverting z, is to use the quadratic equation for z: ZZ+uz+v=0,whereuand v
are integers. Dividing this equation by vz gives (z +u)/v + (1/z) = 0. Hence (/z)=-(z+
u)/v. Now, (1/z) is not generally a quadratic algebraic integer. More precisely, if z has
degree greater than 1, then (1/z) is not a quadratic algebraic integer. Therefore, there 1s no
endomorphism that inverts [z]. Instead there is a dual endomorphism [z'] = [- (z +w)], which
satisfies [z][z] = [v]. In a specific field F, the order n of the elliptic curve E can sometimes
be relatively prime to v, which means there is an integer w such that wv =1 mod n. This

means that [w] acts as an inverse of [v] for the points of E defined over F.

[0047] In this case, the action of [z] on E(F) is invertible by the endomorphism [w][z'] =
[-w(z+u)]. If[z] can be found efficiently, then it is likely that [-w(z+u)] can as well. An

alternate expression for this is [-w]([u] + [z}).
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[0048]  Accordingly, it is possible to utilize the endomorphism [z] as the public key

operation and the relationship [-w][w] + [Z] as the private key operation.

[0049]  The integers u, v are maintained secret and are only available to the entity

performing the private key function.

[0050] It will be appreciated that this will be specific to the field F and will not be true for
E defined over another field F*. The points of E defined over F are sometimes indicated as

E(F) to emphasize that points with coordinates outside of F are not under consideration.

[0051] In order for [z] to be a trapdoor one-way function, it should be computationally
infeasible to determine u and v from the public definition of [z], otherwise its nverse on E(F)
is efficiently computable as [-w]([u] + [z]). Therefore, [z] needs to be given in a form that

does not allow an easy determination of u and v.

[0052] By providing [z] as a pair of rational functions, it is believed that u and v cannot
easily be determined. Typically, the first coordinate is a function of x only, so that [z] is
somewhat in canonical form (r(x), g(x, y)), then the description for evaluating r(x) may
potentially reveal the degree of the numerator of 1(x), even though the full expansion of r(x)
as a ratio of two polynomials may be infeasible due to the large number of terms. Since the
degree of [z] is v, it is possible that the description of [z] will reveal v. Therefore, to make
sure that [z] is a one-way trapdoor, it is important to ensure that u is also not revealed,

otherwise [z] could be inverted, as described above.

[0053]  According to Silverman's, determining the endomorphism ring of a general elliptic
curve is a non-trivial problem. Since v and u essentially determine the endomorphism ring,
up to an integer factor, it is generally infeasible to determine v and u from a description of the
elliptic curve alone. It is therefore plausible that from the description of a single complex
endomorphismy, it is still a non-trivial problem to determine the endomorphismring. In
particular, this means it is still plausible that determining u from the description of [z] as a

pair of rational functions is a non-trivial problem.

[0054]  Accordingly, the degree of z should be chosen such that it has a reasonably large

order. This helps to ensure that all possible values of u cannot be exhausted using the

-10 -
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relationship W < 4v. This follows from above, because z must be an imaginary complex

number.

[0055] One possible construction for [z] is based on the following observations. As
discussed above, if e = [z] = (r(x),cyr'(x)) has degree m, then 1(x) = p(x)/q(x) where p and q
are polynomials of degree m and m-1 respectively. The kemnel of e is the set of m points
elliptic O = Zy, Za, ..., Znm, such that &(Z)) = O for j from 1 tom. If Z; = (z, y;) for j from 2 to
m, then it can be assumed that q(x) = (x - 22) (X — z3) ... (X — zm). Moreover, mZ; = O, since
[2[z] = [m] where z' is the conjugate of z as determined above as mZ; = [m] Z; = [2][z] Z; =
[2] 0 =0 Furthermore, the kernel of e is a subgroup of order m in the elliptic curve E,
though not necessarily as a part of E(F). The elliptic curve, as a whole, generally has at least

m+1 such subgroups.

[0056]  Next, consider the elliptic curve containing the point B = (0, Vb). Suppose that
there is some point W such that [Z]W =B. Let W;j=W +Z, for j from 1 to m. (Note Wi =W
+Z,=W+0=W) Suppose that Wj = (wj, uj) forj=1tom. Then p(x) = d (x-w1) (X-W2)

... (%-Wn) for some constant d.

[0057]  Notice that p(x) = d (x — 1) u(x) where the roots of u(x) are essentially a rational
function of the roots of q(x). When the roots of two polynomials have a simple relationship
such as this, there is a transformation of the coefficients of the polynomial. For example if
the roots of u(x) are the squares of the roots of q(x) then u(x) = q(\Vx) q(-\x) (-1)*% 9% 1In this

way, it is seen that the ability to evaluate q(x) provides a means to evaluate u(x).

[0058] Applying the above observations, one may search for a subgroup of order min
some elliptic curve E, whose finite x-coordmnates are the zeros of a low Hamming Weight
polynomial q(x). It is desirable to have a low Hamming Weight polynomial g(x) because
they are efficient to evaluate. One would then find a point W as mentioned above, which
allows one to compute the numerator p(x) efficiently, as outlined above. Once p(x) and q(x)

can be evaluated, then r(x) can be evaluated.

[0059] An illustration of how one may find such polynomials p(x), q(x) is as follows.
Note that if Z; is in the kernel of [z] then so is —Z; and thus 7 can appear as a double root of

q(x). Suppose that q(x) has a degree m that is prime. Suppose further that m is an Elkies
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prime, the precise meaning of which is not a concern for the following discussion. This
means that q(x) = s(x)? for a polynomial s(x) of degree (m-1)/2, which is a factor of the m®
division polynomial. The Schoof-Elkies-Atkin (SEA) algorithm for counting points on an
elliptic curve E(F) includes a step where a polynomial of the form s(x) is found. The
coefficients of the polynomial v(x) are found by a recursion equation. Therefore, methods
are known for copstructing such a polynomial. In the SEA algorithm, such s(x) are found for

relatively small values of m, but for the present purpose, it is advantageous to make m large.

[0060]  Another possible approach is to choose an irreducible polynomial s(x) of low
Hamming weight. Let z be one of its roots, where z is the x-coordinate of some point over
the elliptic curve E. The point may have a finite order m This finite order will hold for any
root z of s(x), by applying Galois automorphisms. Ifit is also the case that these points
arising from the roots of s(x) are closed under, that is, they form a subgroup of E, then s(x)
has the desired form. For this to happen, we would basically need a Galois automorphism g
and a point P on E such that g(P) = 2P. By searching for a g, P, and E such that this is
possible, one may be able to find a polynomial s(x) of the desired form. In practice, the y-

coordinate can be ignored because it can only take one of two values.

[0061] If the endomorphism's kernel intersects the group E(F) at only the point O, then
the action of the endomorphism e on the group E(F) is invertible. In this case, the
endomorphism e is an automorphism of the group E(F). Generally the group E(F) will be
cyclic, and in the following discussion, we assume that E(F) is cyclic. Ifeisan
automorphism of a cyclic group of order n, then an algorithm realized by the inventors
determines an integer d such that e(G) = dG, where one uses additive notation for the group.
The cost of this algorithm depends on the factorization of n - 1. It is known that random
values of n generally have a factor f that is approximately n'. Given a factor of this size, the
algorithm can determine d in a constant multiple of f steps. This is considerably faster than

172

the generic algorithms for finding d given dG. These generic algorithms take n™~ steps.

[0062]  Therefore, it is desirable that the group E(F) has order n such that n— 1 does not
have a factor f near to n'>. An alternative to choosing n in this way is simply to choose n
slightly larger, so that cost of an attack of n'* is out of reach for the adversaries under
consideration, For example, at a security level of 80 bits, such a larger n could be chosen so

that n is approximately 2*% and at a security level of 128 bits, n could be chosen so that n 1s
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approximately 2°**. However, for efficiency reasons it is preferable to use a smaller n, and
therefore it is presumed that the extra work necessary to ensuren — 1 has a size similar to n'*

will be undertaken.

[0063]  The manner in which an endomorphism e would be used 1s generally shown in
Figure 2. The first entity 12 takes anx value. It could choose one of the two corresponding y
values arbitrarily. It would then apply the public key function [z] as a rational map e = (r(x),
g(x,y)) and evaluate e(x, y) to arrive at some value (x', y"). This would be the basic public
key operation. A second entity 14 receives the message (x', y') and then applies e to get the
value (x, y) This would be the basic private key operation [-w][u] + [z]. Notice that if y is
changed to -y, the y' changes to -y, but X’ and x are unaffected. Therefore y can more or

less be ignored for all practical purposes.

[0064] To apply this to encryption as shown in Figure 3, the first entity 12 sets x {0 the
plaintext and x' to the ciphertext by application of the public key function [z]. Known
sophisticated approaches to public key encryption generally apply some randomized padding
to the plaintext x, so that, among other things, repeated encryption of the same plaintext give
different ciphertexts. The second entity 14 decrypts the ciphertext x' using the private key

function to obtain plaintext X.

[0065]  To apply this to signatures as shown in Figure 4, the second entity 14 sets x' to be
the message to be signed, and computes x as the signature by application of the private key
function. Generally some hashing is used to create x' from a longer message, which is a
standard technique for digital signatures. The first entity 12 uses the public key operation €
to confirm that e(x, y) = (', y'). The hash function is one-way, so the first entity cannot forge
a signature by starting from (x, y) and applying e to get (x', ¥'), because the next step would
be to find a message M, such that x' =Hash (M), which is considered infeasible for a one-

way hash function.

[0066]  If the problem of inverting [z] is as hard as the discrete logarithm problem in E,
then the size of the cryptographic group can be smaller than the group used for the RSA
TOWF. For example, a 3072 bit RSA modulus is consider to be roughly as secure as an
elliptic curve defined over a 256-bit field. The security level of both these objects is

considered to be 128 bits, which is a commercial grade security level now most widely used
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across the Internet, such as for online banking. The elliptic curve trapdoor one-way function
[z], the size of signature x or basic ciphertext X' is 256 bits, whereas for RSA the size is 3072
bits.

[0067] Comparing to conventional elliptic curve cryptography (ECC), a signature for a
256-bit elliptic curve is about 512 bits long, which is twice the size of the signature for an

elliptic curve TOWF. A similar savings is possible for encryption.

[0068]  In another embodiment and application of the present invention the TOWF is
applied to the aggregation of signatures or ciphertexts. The following will be explained for

signatures, but it will be appreciated that the details for ciphertexts are quite similar.

[0069]  Aggregation of signatures means a single signature represents a multiplicity of
messages signed by a single signer, or a single message signed by a multiplicity of signers, or

a multiplicity of messages signed by a multiplicity of signers.

[0070} Referring now to Figure 5, to sign t messages my, my, ..., M a signer (e.g. first
entity 12) hashes each message and converts each hash to an elliptic curve point, yielding t
points Py, ..., P, which are then added together to yield a pont P =P, + ... + P,. The signer
then applies the inverse function ¢! to obtain the signature S = ¢'!(P), which is a single
message for multiple messages. Verification by another entity (e.g. second entity 14) consists
then of hashing the messages, converting each hash to a point, summing to a total P, and then
applying the public key 18 operation e to S by checking if e(S) = P. The advantage of doing
this over simply concatenating the messages is to achieve greater flexibility for the signer

wishing to change parts of the message, because the signing is additive.

[0071]  The procedure described above does not impose an order of signing individual
message components, i.e., signature verification is relative to an (unordered) set of signatures
signed by the same entity. It should be noted, however, that this procedure can easily be
generalized towards weighted sums of individual signatures, rather than the sum of individual
signature components Sy, ..., S, provided that the individual scalar multiples (the ‘weights’)
can be retrieved or derived by the verifying entity. This would allow the enforcement of
ordering in the signing process of these t messages, by making the weights dependent on the

applicable ordering.
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[0072]  Referring now to Figure 6, if t different signers (e.g. collectively the first entity
12) use the same elliptic curve group and have different TOWF e, ..., &, then they may form
an aggregate signature of a single message as follows. To sign a message m, the first signer
of the first entity 12 computes a hash of the message and convert the hash to an elliptic curve
point P. Then they together (i.e. all signers of the first entity 12) compute e (e (.. (o1
'(PY))), by each applying their private key operation, where signing takes place by entities 1,
2, ..., tinorder. Verification (e.g. by the second entity 14) consists of applying each of the
corresponding public key 18 operations, in reverse order, and checking whether the resulting

point P corresponds to the hash value of the signed message m.

[0073] Generally, elliptic curve endomorphisms commute, so the order in which signing
of a single message by multiple entities seems irrelevant. It should be noted, however, that
this procedure can easily be generalized such as to enforce an ordering in the signing process.
This can be realized by, for example, having each signing entity apply an offset to the

signature computed, as described below.

[0074]  Suppose the individual signature by entity i on point P is e '(P+A,), where the
elliptic curve point A; is unique for entity i. Then the ordered aggregate signature over
message m by entities 1, 2,..., tis obtained by hashing m and converting this to the elliptic
curve point P (as before), and subsequently having each of the signing entities apply his own
signing operation on the resulting value. This results in Sy=e; " (P+A,), S,=e; [(S1+AY), ...,
Si=e.'(Si.1+Ay), where S is the resulting aggregate signature. Signature verification is now a
trivial modification of the procedure described above, provided the individual offsets Ay, ...,
A, can be retrieved or derived by the verifying entity and depends on computing the sequence
Sti=ei(SO)-Ar, St2=ed(St1)-Awi, ..., S1=ex(82)-Aq, P=e,(S1)-A; and checking whether the

elliptic curve point P corresponds with the hash value of the signed message m.

[0075]  Above, a modification of the original scheme is described such as to enforce an
ordering of the signing process using offsets A; that are unique for each of the signing
entities. It will be seen that variations hereof are possible, such as defining Si=e;'(f(P,1))
rather than  S;=e; '(P+A;), where f is a mapping on E with the property that one can
efficiently re-compute P from f(P,i) and public information associated with signing entity 1.
The ordered signing of a single message by multiple entities could be useful for signing off,

for example, projects in a large organization, where multiple signatures are required and a
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project needs to be signed off by authorized parties involved in a particular hierarchical order

(e.g., bottom-up).

[0076]  Although the invention has been described with reference to certain specific
embodiments, various modifications thereof will be apparent to those skilled in the art
without departing from the spirit and scope of the invention as outlined in the claims
appended hereto. The entire disclosures of all references recited above are incorporated

herein by reference.
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What is claimed is:

1. A cryptographic system operating on an elliptic curve E of order n, said cryptosystem

10
11

12
13

14
15
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18
19

20
21
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23
24
25

26
27

28
29

having an endomorphism [z] corresponding to a quadratic algebraic integer z that has
the form 7% + uz + v = 0, where u and v are secret integers, and v is relatively prime to
n; a public key operation to apply said endomorphism [z] to cryptographic data X to
obtain modified data x’; and a private key operation to apply [-w][u] + [z] to said
modified data x° m order to obtain said data x, where w is an integer and wv = 1 mod

n

. A cryptographic system according to claim 1 wherein said integer z is a complex

number having real and imaginary components.

. A cryptographic system according to claim 1 wherein said endomorphism [z] is

represented as a rational map.

. A cryptographic system according to claim 1 wherein said cryptographic data x

comprises a message m, said public key operation operates to encrypt said message m
to obtain an encrypted message m’, and said private key operation operates to decrypt
said encrypted message m’ to obtain said message m, said public key operation
performed by a first entity and said private key operation performed by a second

entity, said first and second entities being part of said cryptographic system.

. A cryptographic system according to claim 1 wherein said data X’ comprises a

message m for signature by a first entity of said cryptographic system, said private
key operation operates on said message m to obtain a signature s, and said public key
operation operates on said signature s by a second entity of said cryptographic system
to verify said signature, said message m being originally generated by said second

entity.

. A cryptographic system according to claim 5 wherein said message m is generated

from a hash function applied to an original message M.

. A cryptographic system according to claim 1 wherein said cryptographic data x

comprises a plurality of messages to receive a signature by a first entity of said
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10.

11.

12.

13.

14.

cryptographic system, said private key operation operating on a combination of said
plurality of messages to obtain said signature, and said public key operation being
used by a second entity of said cryptographic system to verify said signature and

thereby verify each said plurality of messages.

A method for performing cryptographic operations in a crypto graphic system
operating on an elliptic curve E of order n, said method comprising the steps of
deriving an endomorphism [z] corresponding to a quadratic algebraic integer z that
has the form z2 + uz + v = 0, where u and v are secret integers, and v is relatively
prime to n; applying a public key operation using said endomorphism [z] to
cryptographic data x to obtain modified data x; and applying a private key operation
using [-w][u] + [2] to said modified data x’ in order to obtain said data x, where w 1S

an integer and wv =1 mod n.

A method according to claim 8 wherein said integer z is a complex number having

real and imaginary components.

A method according to claim 8 wherein said endomorphism [z] is represented as a

rational map.

A method according to claim 8 wherein said cryptographic data x comprises a
message m, application of said public key operation encrypts said message m to
obtain an encrypted message m’, and application of said private key operation

decrypts said message m from said encrypted message m’.

A method according to claim 8 wherein said data x* comprises a message m for
signature; said private key operation operates on said message m to obtain a signature

s, and said public key operation operates on said signature s to verify same.

A method according to claim 12 wherein said message m is generated from a hash

function applied to an original message M.

A method according to claim 8 wherein said cryptographic data x comprises a
plurality of messages to receive a signature, said private key operation operates on a

combination of said plurality of messages to obtain said signature, and said public key

-18-
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operation operating on said signature to verify same and thereby verify each said

plurality of messages.

A method according to claim 8 wherein said data x comprises a message to be signed
by a plurality of signers, said private key operation comprising a plurality of
operations corresponding to each said signer, said private key operations being
applied successively to said message to obtain a signature, said public key operation
comprising a plurality of operations corresponding to each said signer, said public key
operations being applied successively in opposite order to said private key operations

to verify said signature.
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