

(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

(13) **A1**

(22) Date de dépôt/Filing Date: 2011/03/25

(41) Mise à la disp. pub./Open to Public Insp.: 2011/09/29

(62) Demande originale/Original Application: 2 794 483

(30) Priorités/Priorities: 2010/03/26 (US12/732,371);
2010/10/06 (US61/390,434); 2011/01/26 (US61/436,379);
2011/03/07 (US61/449,882)

(51) Cl.Int./Int.Cl. *C07K 14/705* (2006.01),
A61K 38/17 (2006.01), *A61K 39/395* (2006.01),
A61K 47/50 (2017.01), *A61P 35/00* (2006.01),
A61P 37/02 (2006.01), *A61P 37/06* (2006.01),
C07K 16/28 (2006.01), *C07K 19/00* (2006.01),
G01N 33/53 (2006.01), *G01N 33/566* (2006.01)

(71) Demandeur/Applicant:
TRUSTEES OF DARTMOUTH COLLEGE, US

(72) Inventeurs/Inventors:
NOELLE, RANDOLPH J., US;
WANG, LILI, US

(74) Agent: BERESKIN & PARR LLP/S.E.N.C.R.L.,S.R.L.

(54) Titre : VISTA, UNE PROTEINE MEDIATRICE REGULATRICE DES LYMPHOCYTES T, AGENTS DE LIAISON A
VISTA ET UTILISATION ASSOCIEE

(54) Title: VISTA REGULATORY T CELL MEDIATOR PROTEIN, VISTA BINDING AGENTS AND USE THEREOF

(57) Abrégé/Abstract:

The present invention relates to a novel regulatory T cell protein. This protein, designated PD-L3 OR VISTA resembles members of the PD-L1 family, identified a novel and structurally-distinct, Ig-superfamily inhibitory ligand, whose extracellular domain bears homology to the B7 family ligand PD-L1. This molecule is designated as PD-L3 OR VISTA or V-domain Immunoglobulin Suppressor of T cell Activation (VISTA). Expression of VISTA is primarily within the hematopoietic compartment and is highly regulated on myeloid APCs and T cells. Therapeutic intervention of the VISTA inhibitory pathway represents a novel approach to modulate T cell-mediated immunity for the treatment of a wide variety of cancers, e.g., ovarian, bladder cancer and melanomas. Also, VISTA proteins, especially multimeric VISTA proteins and antibodies may be used to suppress T cell immunity in autoimmune disease, allergy, infection and inflammatory conditions, e.g. multiple sclerosis and artritic conditions such as RA.

ABSTRACT

The present invention relates to a novel regulatory T cell protein. This protein, designated PD-L3 OR VISTA resembles members of the PD-L1 family, identified a novel and structurally-distinct, Ig-superfamily inhibitory ligand, whose extracellular domain bears homology to the B7 family ligand PD-L1. This molecule is designated as PD-L3 OR VISTA or V-domain Immunoglobulin Suppressor of T cell Activation (VISTA). Expression of VISTA is primarily within the hematopoietic compartment and is highly regulated on myeloid APCs and T cells. Therapeutic intervention of the VISTA inhibitory pathway represents a novel approach to modulate T cell-mediated immunity for the treatment of a wide variety of cancers, e.g., ovarian, bladder cancer and melanomas. Also, VISTA proteins, especially multimeric VISTA proteins and antibodies may be used to suppress T cell immunity in autoimmune disease, allergy, infection and inflammatory conditions, e.g. multiple sclerosis and artritic conditions such as RA.

**VISTA REGULATORY T CELL MEDIATOR PROTEIN,
VISTA BINDING AGENTS AND USE THEREOF**

Introduction

[0001] This application claims priority to US Serial No. 12/732,371 filed March 26, 2010.

[0002] This application relates to We have discovered, characterized and functionally defined a novel, hematopoietically-restricted, structurally-distinct, Ig-superfamily inhibitory ligand designated as Y-region Immonoglobulin-containing Suppressor of T cell Activation (**VISTA**) or PD-L3. The extracellular domain bears homology to the B7 family ligand PD-L1, and like PD-L1, VISTA has a profound impact on immunity. However, unlike PD-L1, expression of VISTA is exclusively within the hematopoietic compartment. Expression is most prominent on myeloid antigen-presenting cells (APCs), although expression on CD4+ T cells and on a subset of Foxp3+ regulatory T cells (Treg) is also of significant interest. A soluble VISTA-Ig fusion protein, or VISTA expression on APCs, potently inhibits in vitro T cell proliferation, cytokine production and induces Foxp3 expression in T cells. Conversely, a newly developed anti-VISTA monoclonal antibody interfered with VISTA-induced immune suppression of T cell responses by VISTA+ APCs in vitro. Furthermore, in vivo anti-VISTA intensified the development of the T cell mediated autoimmune disease experimental allergic encephalomyelitis (EAE), and facilitated the development of a protective, tumor-specific immune response with subsequent tumor remission. Initial studies of VISTA-/- mice are revealing early indications of spontaneous inflammatory disease, and their ultimate pathologic fate will be determined. Unlike all other PD-Ligand-related molecules (e.g., B7-H3, H4, H6), the hematopoietic restriction of VISTA together with its profound suppressive activities and unique structural features, illustrates that VISTA is a novel, functionally non-redundant, central negative regulator of immunity, whose expression is primarily myeloid-restricted.

Background of the Invention

[0003] Induction of an immune response requires T cell expansion, differentiation, contraction and establishment of T cell memory. T cells must encounter antigen presenting cells (APCs) and communicate via T cell receptor (TCR)/major histocompatibility complex (MHC) interactions on APCs. Once the TCR/MHC interaction is established, other sets of receptor-ligand contacts between the T cell and the APC are required, i.e. co-stimulation via CD154/CD40 and CD28/B7.1-B7.2. The synergy between these contacts is suggested to result, *in vivo*, in a productive immune response capable of clearing pathogens and tumors, and in some cases capable of inducing autoimmunity.

[0004] Another level of control has been identified, namely regulatory T cells (Treg). This specific subset of T cells is generated in the thymus, delivered into the periphery, and is capable of constant and inducible control of T cells responses *in vitro* and *in vivo* (Sakaguchi (2000) Cell 101(5):455-8; Shevach (2000) Annu. Rev. Immunol. 18:423-49; Bluestone and Abbas (2003) Nat. Rev. Immunol. 3(3):253-7). Treg are represented by a CD4+CD25+ phenotype and also express high levels of cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), OX-40, 4-1BB and the glucocorticoid inducible TNF receptor-associated protein (GITR)(McHugh, et al. (2002) Immunity 16(2):311-23; Shimizu, et al. (2002) Nat. Immun. 3(2):135-42). Elimination of Treg cells by 5 day neonatal thymectomy or antibody depletion using anti-CD25, results in the induction of autoimmune pathology and exacerbation of T cells responses to foreign and self-antigens, including heightened anti-tumor responses (Sakaguchi, et al. (1985) J. Exp. Med. 161(1):72-87; Sakaguchi, et al. (1995) J. Immunol. 155(3):1151-64; Jones, et al. (2002) Cancer Immun. 2:1). In addition, Treg have also been involved in the induction and maintenance of transplantation tolerance (Hara, et al. (2001) J. Immunol. 166(6):3789-3796; Wood and Sakaguchi (2003) Nat. Rev. Immunol. 3:199-210), since depletion of Treg with anti-CD25 monoclonal antibodies results in ablation of transplantation tolerance and rapid graft rejection (Jarvinen, et al. (2003) Transplantation 76:1375-9). Among the receptors expressed by Treg, GITR seems to be an important component since *in vitro* or *in vivo* ligation of GITR on the surface of Treg with an agonistic

monoclonal antibody results in rapid termination of Treg activity (McHugh, et al. (2002) *supra*; Shimizu, et al. (2002) *supra*), also resulting in autoimmune pathology (Shimizu, et al. (2002) *supra*) and ablation of transplantation tolerance.

[0005] Costimulatory and co-inhibitory ligands and receptors not only provide a "2nd signal" for T cell activation, but also a balanced network of positive and negative signal to maximize immune responses against infection while limiting immunity to self. The best characterized costimulatory ligands are B7.1 and B7.2, which are expressed by professional APCs, and whose receptors are CD28 and CTLA-4 (Greenwald, R. J., Freeman, G. J., and Sharpe, A. H. (2005). *Annu Rev Immunol* 23, 515-548; Sharpe, A. H., and Freeman, G. J. (2002) *Nat Rev Immunol* 2, 116-126). CD28 is expressed by naïve and activated T cells and is critical for optimal T cell activation. In contrast, CTLA-4 is induced upon T cell activation and inhibits T cell activation by binding to B7.1/B7.2, thus impairing CD28-mediated costimulation. CTLA-4 also transduces negative signaling through its cytoplasmic ITIM motif (Teft, W. A., Kirchhof, M. G., and Madrenas, J. (2006). *Annu Rev Immunol* 24, 65-97; Teft, W. A., Kirchhof, M. G., and Madrenas, J. (2006). *Annu Rev Immunol* 24, 65-97. B7.1/B7.2 KO mice are impaired in adaptive immune response Borriello, F., Sethna, M. P., Boyd, S. D., Schweitzer, A. N., Tivol, E. A., Jacoby, D., Strom, T. B., Simpson, E. M., Freeman, G. J., and Sharpe, A. H. (1997) *Immunity* 6, 303-313; Freeman, G. J., Borriello, F., Hodes, R. J., Reiser, H., Hathcock, K. S., Laszlo, G., McKnight, A. J., Kim, J., Du, L., Lombard, D. B., and et al. (1993). *Science* 262, 907-909), whereas CTLA-4 KO mice mice can not adequately control inflammation and develop systemic autoimmune diseases (Chambers, C. A., Sullivan, T. J., and Allison, J. P. (1997) *Immunity* 7, 885-895; Tivol, E. A., Borriello, F., Schweitzer, A. N., Lynch, W. P., Bluestone, J. A., and Sharpe, A. H. (1995) *Immunity* 3, 541-547; Waterhouse, P., Penninger, J. M., Timms, E., Wakeham, A., Shahinian, A., Lee, K. P., Thompson, C B., Griesser, H., and Mak, T. W. (1995). *Science* 270, 985-988.

[0006] The B7 family ligands have expanded to include costimulatory B7-H2 (ICOS Ligand) and B7-H3, as well as co-inhibitory B7-H1 (PD-L1), B7-DC (PD-L2), B7-H4 (B7S1 or B7x), and B7-H6 Brandt, C. S., Baratin, M., Yi, E. C., Kennedy, J., Gao, Z., Fox, B., Haldeman, B., Ostrander, C. D., Kaifu, T., Chabannon, C., et al. (2009) *J Exp*

Med 206, 1495-1503; Greenwald, R. J., Freeman, G. J., and Sharpe, A. H. (2005) Annu Rev Immunol 23, 515-548.

[0007] Inducible costimulatory (ICOS) molecule is expressed on activated T cells and binds to B7-H2 Yoshinaga, S. K., Whoriskey, J. S., Khare, S. D., Sarmiento, U., Guo, J., Horan, T., Shih, G., Zhang, M., Coccia, M. A., Kohno, T., et al. (1999). Nature 402, 827-832.. ICOS is important for T cell activation, differentiation and function, as well as essential for T-helper-cell-induced B cell activation, Ig class switching, and germinal center (GC) formation Dong, C., Juedes, A. E., Temann, U. A., Shresta, S., Allison, J. P., Ruddle, N. H., and Flavell, R. A. (2001) Nature 409, 97-101; Tafuri, A., Shahinian, A., Bladt, F., Yoshinaga, S. K., Jordana, M., Wakeham, A., Boucher, L. M., Bouchard, D., Chan, V. S., Duncan, G., et al. (2001) Nature 409, 105-109; Yoshinaga, S. K., Whoriskey, J. S., Khare, S. D., Sarmiento, U., Guo, J., Horan, T., Shih, G., Zhang, M., Coccia, M. A., Kohno, T., et al. (1999) Nature 402, 827-832. . Programmed Death 1 (PD-1) on the other hand, negatively regulates T cell responses. PD-1 KO mice develop lupus-like autoimmune disease, or autoimmune dilated cardiomyopathy depending upon the genetic background Nishimura, H., Nose, M., Hiai, H., Minato, N., and Honjo, T. (1999) Immunity 11, 141-151. Nishimura, H., Okazaki, T., Tanaka, Y., Nakatani, K., Hara, M., Matsumori, A., Sasayama, S., Mizoguchi, A., Hiai, H., Minato, N., and Honjo, T. (2001) Science 291, 319-322. The autoimmunity most likely results from the loss of signaling by both ligands PD-L1 and PD-L2. Recently, CD80 was identified as a second receptor for PD-L1 that transduces inhibitory signals into T cells Butte, M. J., Keir, M. E., Phamduy, T. B., Sharpe, A. H., and Freeman, G. J. (2007) Immunity 27, 111-122. The receptor for B7-H3 and B7-H4 still remain unknown.

[0008] The best characterized costimulatory ligands are B7.1 and B7.2 and they belong to the Ig superfamily which consists of many critical immune regulators, such as the *B7 family* ligands and receptors. Ig superfamily members are expressed on professional antigen-presenting cells (APCs), and their receptors are CD28 and CTLA-4. CD28 is expressed by naïve and activated T cells and is critical for optimal T-cell activation. In contrast, CTLA-4 is induced following T-cell activation and inhibits T-cell activation by binding to B7.1/B7.2, impairing CD28-mediated costimulation. B7.1 and

B7.2 knockout (KO) mice are impaired in adaptive immune response, whereas CTLA-4 KO mice cannot adequately control inflammation and develop systemic autoimmune diseases. Over time the B7 family ligands have expanded to include costimulatory ligands such as B7-H2 (ICOS Ligand) and B7-H3, and coinhibitory ligands such as B7-H1 (PD-L1), B7-DC (PD-L2), B7-H4 (B7S1 or B7x), and B7-H6. Accordingly, additional CD28 family receptors have been identified. ICOS is expressed on activated T cells and binds to B7-H2. ICOS is a positive co-regulator, important for T-cell activation, differentiation and function. On the other hand, programmed death 1 (PD-1) negatively regulates T cell responses. PD-1 KO mice developed lupus-like autoimmune disease, or dilated cardiomyopathy. In contrast to VISTA (the immunosuppressive molecule which is the focus of present invention), the two inhibitory B7 family ligands, PD-L1 and PD-L2, have distinct expression patterns. PD-L2 is inducibly expressed on DCs and macrophages, whereas PD-L1 is broadly expressed on both hematopoietic cells and nonhematopoietic cell types. Consistent with the immune-suppressive role of PD-1 receptor, studies using PD-L1 $^{-/-}$ and PD-L2 $^{-/-}$ mice have shown that both ligands have overlapping roles in inhibiting T-cell proliferation and cytokine production. PD-L1 deficiency enhances disease progression in both the non-obese diabetic (NOD) model of autoimmune diabetes and the murine model of multiple sclerosis (experimental autoimmune encephalomyelitis ;EAE). PD-L1 $^{-/-}$ T cells produce elevated levels of the proinflammatory cytokines in both disease models. In addition, studies in NOD mice have demonstrated that the tissue expression of PD-L1 (i.e. within pancreas) uniquely contributes to its capacity of regionally controlling inflammation. PD-L1 is also highly expressed on placental syncytiotrophoblasts, which critically control the maternal immune responses to allogeneic fetus.

[0009] Given the powerful impact of this family of molecules on regulating immunity, substantial efforts in murine models of cancer have shown that protective anti-tumor immunity can be induced by targeting this family of molecules. Studies involving anti-CTLA-4 have documented enhanced therapeutic benefit in murine models and clinical trials of melanoma. Mice vaccinated with B16-GM-CSF (Gvax) promote the rejection of B16 melanomas when combined with antibody blockade of CTLA-4.

Antibodies to PD-1 as well as PD-L1 also document enhanced anti-tumor immunity and host survival in a wide range of murine tumor models. Finally, although CTLA-4 and PD-1 belong to the same family of co-inhibitory molecules, evidence suggests they use distinct nonredundant mechanisms to inhibit T-cell activation, and there is synergy in the ability of anti-CTLA-4 and anti-PD-1/L1 to enhance host survival in murine melanoma when used in combination.

[0010] Based on the foregoing, the elucidation of another novel B7 type family member and ligands and modulators thereof would be useful given the important role of these family members in regulating immunity, especially T cell immunity.

Summary of the Invention

[0011] The present invention relates to therapeutic methods that modulate the activity and/or which specifically bind or block the binding of a specific regulatory T cell protein to its counterreceptor. This protein, designated PD-L3 OR VISTA, is a novel and structurally-distinct, Ig-superfamily inhibitory ligand, whose extracellular domain bears homology to the B7 family ligand PD-L1. This molecule is referred to interchangeably herein as PD-L3 or VISTA or as V-domain Immunoglobulin Suppressor of T cell Activation (VISTA). VISTA is expressed primarily within the hematopoietic compartment and is highly regulated on myeloid APCs and T cells. Therapeutic intervention of the VISTA inhibitory pathway represents a novel approach to modulate T cell-mediated immunity for the treatment of a wide variety of cancers.

[0012] The present invention in particular relates to the use of antibodies specific to VISTA or PD-L3 to treat specific cancers including bladder cancer, ovarian cancer, and melanoma.

[0013] In addition, the present invention in particular relates to the use pf PD-L3 or VISTA proteins, especially multimeric VISTA proteins and viral vectors (e.g., adenoviral) that express same to treat conditions wherein immunosuppression is therapeutically desired such as allergy, autoimmunity and inflammatory conditions.

[0014] As disclosed infra, the expression of VISTA appears to be exclusive to the hematopoietic compartment and this protein is highly expressed on mature myeloid cells (CD11b^{bright}), with lower levels of expression on CD4⁺ T cells, T^{reg} and CD8⁺ T cells. Soluble VISTA proteins, e.g., soluble VISTA-Ig fusion protein, or VISTA expression on APCs, suppresses in vitro CD4⁺ and CD8⁺ T cell proliferation and cytokine production. It is also observed that anti-VISTA antibodies, e.g., an anti-VISTA mab (13F3) blocked VISTA-induced suppression of T cell responses by VISTA⁺ APCs in vitro. Also, it has been discovered that an anti-VISTA mab exacerbated EAE and increased the frequency of encephalitogenic Th17s in vivo. Still further, as disclosed in detail infra, it has been found that an anti-VISTA mab induces tumor remission in multiple (4) murine tumor models. VISTA expression on myeloid derived suppressor cells (MDSC) in these models is extremely high, suggesting that VISTA⁺ MDSC suppress tumor specific immunity. As shown herein, VISTA exerts immunosuppressive activities on T cells both in vitro and in vivo, in mouse and in human (in vitro only) and is an important mediator in controlling the development of autoimmunity and the immune responses to cancer. Specifically, the data show that:

[0015] (1) VISTA is a new member of the Ig superfamily and contains an Ig-V domain with distant sequence similarity to PD-L1. We disclose herein that when produced as an Ig fusion protein or when overexpressed on artificial APCs VISTA inhibits both mouse and human CD4+ and CD8+ T cell proliferation and cytokine production.

[0016] (2) VISTA expression on myeloid APCs is inhibitory for T cell responses in vitro.

[0017] VISTA expression on MDSC in the tumor microenvironment is extremely high. Phenotypic and functional analysis of many cell surface molecules previously suggested to be involved in MDSC-mediated suppression of T cells: CD115, CD124, CD80, PD-L1, and PD-L2 were expressed by MDSC but with no differences in the levels of their expression or proportion of positive cells were found between MDSC and cells

from tumor-free mice that lack immune suppressive activity. Therefore, we predict that VISTA will be the primary B7 negative regulator on MDSCs.

[0018] (4) Antibody-mediated VISTA blockade induces protective immunity to an autologous tumor.

[0019] Based thereon, VISTA appears to be a dominant, negative immune regulatory molecule on MDSCs that interferes with the development of protective anti-tumor immunity. Therefore, blocking the activity of this molecule with anti-VISTA antibodies will permit the development of protective anti-tumor immunity in humans and other mammals.

[0020] Therefore, the invention relates to methods of using soluble VISTA proteins, e.g., fusion proteins and multimeric VISTA proteins comprising multiple copies of the VISTA extracellular domain or a fragment thereof, and VISTA binding agents, e.g., small molecules and antibodies or fragments thereof, which bind or modulate (agonize or antagonize) the activity of VISTA as immune modulators and for the treatment of different cancers, e.g., bladder, ovarian and lymphoma, autoimmune disease, allergy, infection and inflammatory conditions, e.g. multiple sclerosis and arthritis.

[0021] As described in detail infra, this protein is a novel inhibitory ligand, which extracellular Ig-V domain bears homology to the two known B7 family ligands Programmed Death Ligand 1 and 2 (PD-L1 and PD-L2) and exhibits unique sequence features and distinctive expression patterns *in vitro* and *in vivo* on subsets of APCs and T cells, (which distinguishes PD-L3 or VISTA from other B7 family ligands). This protein has been shown to have a functional impact on CD4⁺ and CD8⁺ T cell proliferation and differentiation (suppresses CD4⁺ and CD8⁺ T cell proliferation, as well as cytokine production). Based on its expression pattern and inhibitory impact on T cells, PD-L3 OR VISTA apparently functions as a regulatory ligand that negatively regulates T cell responses during cognate interactions between T cells and myeloid derived APCs.

[0022] While PD-L3 OR VISTA appears to be a member of the B7 family of ligands, unlike other B7 family ligands, this molecule contains only an Ig-V domain without an

Ig-C domain, and is phylogenically closer to the B7 family receptor Programmed Death-1 (PD-1). Based thereon, PD-L3 OR VISTA, and agonists or antagonists specific thereto can be used to regulate T cell activation and differentiation, and more broadly to modulate the regulatory network that controls immune responses. In particular PD-L3 OR VISTA proteins and PD-L3 OR VISTA agonists or antagonists, preferably antibodies specific to PD-L3 OR VISTA are useful in modulating immune responses in autoimmunity, inflammatory responses and diseases, allergy, cancer, infectious disease and transplantation.

[0023] Therefore, the present invention in part relates to compositions e.g., for therapeutic, diagnostic or immune modulatory usage containing an isolated soluble PD-L3 OR VISTA protein or fusion protein, e.g., a soluble VISTA-Ig fusion protein or a multimeric VISTA protein, comprising an amino acid sequence that preferably is at least 70-90% identical to the human or murine PD-L3 OR VISTA polypeptide set forth in SEQ ID NO:2, 4 or 5 or an ortholog, or fragment thereof encoded by a gene that specifically hybridizes to SEQ ID NO:1 or 3 that modulates VISTA in vivo and a pharmaceutically acceptable carrier. In some embodiments, the soluble or multimeric VISTA protein may be directly or indirectly linked to a heterologous (non-VISTA) protein or may be expressed by a viral vector or a cell containing, e.g., a transfected immune cell such as a T cell.

[0024] The present invention also provides expression vectors comprising an isolated nucleic acid encoding a VISTA protein that is at least 70-90% identical to the human or murine VISTA amino acid sequence set forth in SEQ ID NO:2, 4 or 5 or a fragment or ortholog thereof, which optionally is fused to a sequence encoding another protein such as an Ig polypeptide, e.g., an Fc region or a reporter molecule; and host cells containing said vectors.

[0025] The present invention also specifically relates to an isolated binding agent, preferably an antibody or antibody fragment which specifically binds to a PD-L3 OR VISTA protein comprising the amino acid sequence set forth in SEQ ID NO:2, 4 or 5 or a variant, fragment or ortholog thereof. In a preferred embodiment, the binding agent

modulates (agonizes or antagonizes) VISTA activity in vitro or in vivo. In most preferred embodiments, the binding agent is an agonistic or antagonistic antibody.

[0026] The present invention further provides methods for modulating an immune cell response by contacting an immune cell in vitro or in vivo with a VISTA protein, or binding agent specific thereto, in the presence of a primary signal so that a response of the immune cell is modulated. (Interaction of r VISTA or a modulator thereof transmits a signal to immune cells, regulating immune responses. PD-L3 OR VISTA protein is expressed at high levels on myeloid antigen presenting cells, including myeloid dendritic cells (DCs) and macrophages, and at lower densities on CD4+ and CD8+ T cells. Upon immune activation, PD-L3 or VISTA expression is upregulated on myeloid APCs, but downregulated on CD4+ T cells). Therefore, the PD-L3 or VISTA nucleic acids and polypeptides of the present invention, and agonists or antagonists thereof are useful, e.g., in modulating the immune response.

[0027] In another aspect this invention provides isolated nucleic acid molecules encoding VISTA polypeptides, preferably encoding soluble fusion proteins and multimeric VISTA proteins as well as nucleic acid fragments suitable as primers or hybridization probes for the detection of PD-L3 or VISTA-encoding nucleic acids. In one embodiment, a PD-L3 or VISTA nucleic acid molecule of the invention is at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the nucleotide sequence (e.g., to the entire length of the nucleotide sequence) encoding PD-L3 or VISTA in SEQ ID NO:1 or 3 shown herein or a complement thereof.

[0028] In another embodiment, a PD-L3 or VISTA nucleic acid molecule includes a nucleotide sequence encoding a polypeptide having an amino acid sequence having a specific percent identity to the amino acid sequence of SEQ ID NO: 2, 4 or 5. In a preferred embodiment, a PD-L3 or VISTA nucleic acid molecule includes a nucleotide sequence encoding a polypeptide having an amino acid sequence at least about 71%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more identical to the entire length

of the amino acid sequence of SEQ ID NO: 2, 4 or 5 or to the extracellular domain thereof.

[0029] In another preferred embodiment, an isolated nucleic acid molecule encodes the amino acid sequence of human or murine or VISTA or a conserved region or functional domain therein. In yet another preferred embodiment, the nucleic acid molecule includes a nucleotide sequence encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2, 4 or 5. In yet another preferred embodiment, the nucleic acid molecule is at least about 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150 or more nucleotides in length. In a further preferred embodiment, the nucleic acid molecule is at least about 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150 or more nucleotides in length and encodes a polypeptide having a PD-L3 or VISTA activity or modulating PD-L3 or VISTA function (as described herein).

[0030] Another embodiment of the invention features nucleic acid molecules, preferably PD-L3 or VISTA nucleic acid molecules, which specifically detect PD-L3 or VISTA nucleic acid molecules relative to nucleic acid molecules encoding non-PD-L3 or VISTA polypeptides. For example, in one embodiment, such a nucleic acid molecule is at least about 880, 900, 950, 1000, 1050, 1100, 1150 or more nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule encoding the polypeptide shown in SEQ ID NO: 2, 4 or 5, or a complement thereof. In another embodiment, such a nucleic acid molecule is at least 20, 30, 40, 50, 100, 150, 200, 250, 300 or more nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule encoding a fragment of PD-L3 or VISTA, e.g., comprising n at least 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or more nucleotides in length, includes at least 15 (i.e., 15 contiguous) nucleotides of the disclosed nucleic acid sequence in SEQ ID NO: 1 and 3 encoding the PD-L3 or VISTA polypeptides in SEQ ID NO: 2, 4 or 5, or a complement thereof, and hybridizes under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence shown in SEQ ID NO: 1, or 3 or a complement thereof.

[0031] In still other preferred embodiments, the nucleic acid molecule encodes a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO: 2 or 4 or 5, wherein the nucleic acid molecule hybridizes to a complement of a nucleic acid molecule comprising SEQ ID NO: 1 or 3, or a complement thereof, under stringent conditions.

[0032] Another embodiment of the invention provides an isolated nucleic acid molecule which is antisense to a PD-L3 or VISTA nucleic acid molecule, e.g., is antisense to the coding strand of a PD-L3 or VISTA nucleic acid molecule as shown in SEQ ID NO: 1 or 3.

[0033] Another aspect of the invention provides a vector comprising a PD-L3 or VISTA nucleic acid molecule. In certain embodiments, the vector is a recombinant expression vector.

[0034] In another embodiment, the invention provides a host cell containing a vector of the invention. In yet another embodiment, the invention provides a host cell containing a nucleic acid molecule of the invention. The invention also provides a method for producing a polypeptide, preferably a PD-L3 or VISTA polypeptide, by culturing in a suitable medium, a host cell, e.g., a mammalian host cell such as a non-human mammalian cell, of the invention containing a recombinant expression vector, such that the polypeptide is produced.

[0035] Another aspect of this invention features isolated or recombinant PD-L3 or VISTA polypeptides (e.g., proteins, polypeptides, peptides, or fragments or portions thereof). In one embodiment, an isolated PD-L3 or VISTA polypeptide or PD-L3 or VISTA fusion protein includes at least one or more of the following domains: a signal peptide domain, an IgV domain, an extracellular domain, a transmembrane domain, and a cytoplasmic domain.

[0036] In a preferred embodiment, a PD-L3 or VISTA polypeptide includes at least one or more of the following domains: a signal peptide domain, an IgV domain, an extracellular domain, a transmembrane domain, and a cytoplasmic domain, and has an

amino acid sequence at least about 71%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence of SEQ ID NO: 2 or 4 or 5. In another preferred embodiment, a PD-L3 or VISTA polypeptide includes at least one or more of the following domains: a signal peptide domain, an IgV domain, an extracellular domain, a transmembrane domain, and a cytoplasmic domain, and has a VISTA or PD-L3 activity (as described herein).

[0037] In yet another preferred embodiment, a PD-L3 polypeptide includes at least one or more of the following domains: a signal peptide domain, an IgV domain, an extracellular domain, a transmembrane domain, and a cytoplasmic domain, and is encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a complement of a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1 or 3.

[0038] In another embodiment, the invention features fragments or portions of the polypeptide having the amino acid sequence of SEQ ID NO: 2 or 4 or 5, wherein the fragment comprises at least 15 amino acids (i.e., contiguous amino acids) of the amino acid sequence of SEQ ID NO: 2 or 4. In another embodiment, a PD-L3 or VISTA polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 2, 4 or 5. In another embodiment, the invention features a PD-L3 or VISTA polypeptide which is encoded by a nucleic acid molecule consisting of a nucleotide sequence at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a nucleotide sequence of SEQ ID NO: 1 or 3, or a complement thereof. This invention further features a PD-L3 or VISTA polypeptide which is encoded by a nucleic acid molecule consisting of a nucleotide sequence which hybridizes under stringent hybridization conditions to a complement of a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1 or 3.

[0039] The polypeptides of the present invention or portions thereof, e.g., biologically active portions thereof, can be operatively linked to a non-PD-L3 or VISTA polypeptide (e.g., heterologous amino acid sequences) to form fusion polypeptides. The invention further features antibodies, such as monoclonal or polyclonal antibodies, that

specifically bind polypeptides of the invention, preferably human PD-L3 or VISTA polypeptides.

[0040] The invention also relates to methods of selecting anti-PD-L3 or VISTA antibodies having desired functional properties from panels of monoclonal antibodies produced against this protein or a PD-L3 or VISTA-Ig fusion protein based on desired functional properties, e.g., modulating specific effects of PD-L3 or VISTA on immunity such as the suppressive effect of the protein on TCR activation, the suppressive effect of the protein on CD4 T cell proliferative responses to anti-CD3, suppression of antigen specific proliferative responses of cognate CD4 T cells, the suppressive effects of PD-L3 or VISTA on the expression of specific cytokines such as IL-2 and gamma interferon, et al. In a particularly preferred embodiment anti-PD-L3 or VISTA antibodies for use as therapeutics will be selected that in vitro, in the presence of soluble PD-L3 or VISTA-proteins, e.g., PD-L3 or VISTA-Ig fusion protein enhance the suppressive effects of PD-L3 or VISTA-Ig on PD-L3 or VISTA related immune functions. This is preferred as quite unexpectedly (shown infra) these antibodies *in vivo behave opposite to what would be expected from their in vitro effect on immunity, i.e., these anti- or VISTA monoclonal antibodies are immunosuppressive.*

[0041] In addition, the PD-L3 or VISTA polypeptides (or biologically active portions thereof) or modulators of the PD-L3 or VISTA molecules, i.e., antibodies such as selected using the foregoing methods can be incorporated into pharmaceutical compositions, which optionally include pharmaceutically acceptable carriers.

[0042] In another embodiment, a PD-L3 or VISTA protein is used as an inhibitory signal for inhibiting or decreasing immune cell activation. In this embodiment, the inhibitory signal binds to an inhibitory receptor (e.g., CTLA-4 or PD-1) on an immune cell thereby antagonizing the primary signal which binds to an activating receptor (e.g., via a TCR, CD3, BCR, or Fc polypeptide). Inhibition includes, e.g., inhibition of second messenger generation; an inhibition of proliferation; an inhibition of effector function in the immune cell, e.g., reduced phagocytosis, reduced antibody production, reduced cellular cytotoxicity, the failure of the immune cell to produce mediators, (such as

cytokines (e.g., IL-2) and/or mediators of allergic responses); or the development of anergy.

[0043] In particular embodiments, the primary signal is a ligand (e.g., CD3 or anti-CD3) that binds TCR and initiates a primary stimulation signal. Such TCR ligands are readily available from commercial sources and specific examples include anti-CD3 antibody OKT3, prepared from hybridoma cells obtained from the American Type Culture Collection, and anti-CD3 monoclonal antibody G19-4. In an alternative embodiment, a primary signal is delivered to a T cell through other mechanisms including a protein kinase C activator, such as a phorbol ester (e.g., phorbol myristate acetate), and a calcium ionophore (e.g., ionomycin, which raises cytoplasmic calcium concentrations), or the like. The use of such agents bypasses the TCR/CD3 complex but delivers a stimulatory signal to T cells. Other agents acting as primary signals can include natural and synthetic ligands. A natural ligand can include MHC with or without a peptide presented. Other ligands can include, but are not limited to, a peptide, polypeptide, growth factor, cytokine, chemokine, glycopeptide, soluble receptor, steroid, hormone, mitogen, such as PHA, or other superantigens, peptide-MHC trimers (Altman, et al. (1996) *Science* 274(5284):94-6) and soluble MHC dimers (Dal Porto, et al (1993) *Proc Natl. Acad. Sci. USA* 90: 6671-5).

[0044] Immune cells activated in accordance with the method of the instant invention can subsequently be expanded *ex vivo* and used in the treatment and prevention of a variety of diseases; e.g., human T cells which have been cloned and expanded *in vitro* maintain their regulatory activity (Groux, et al. (1997) *Nature* 389(6652):737-42). Prior to expansion, a source of T cells is obtained from a subject (e.g., a mammals such as a human, dog, cat, mouse, rat, or transgenic species thereof). T cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, spleen tissue, tumors or T cell lines. T cells can be obtained from a unit of blood collected from a subject using any number of techniques known to the skilled artisan, such as ficoll™ separation.

[0045] In another aspect, the present invention provides a method for detecting the presence of a PD-L3 or VISTA nucleic acid molecule, protein, or polypeptide in a biological sample by contacting the biological sample with an agent capable of detecting a PD-L3 OR VISTA nucleic acid molecule, protein, or polypeptide, such that the presence of a PD-L3 OR VISTA nucleic acid molecule, protein or polypeptide is detected in the biological sample. This PD-L3 OR VISTA expression can be used to detect certain disease sites such as inflammatory sites.

[0046] In another aspect, the present invention provides a method for detecting the presence of PD-L3 OR VISTA activity in a biological sample by contacting the biological sample with an agent capable of detecting an indicator of PD-L3 OR VISTA activity, such that the presence of PD-L3 OR VISTA activity is detected in the biological sample.

[0047] In another aspect, the invention provides a method for modulating PD-L3 OR VISTA activity, comprising contacting a cell capable of expressing PD-L3 OR VISTA with an agent that modulates PD-L3 OR VISTA activity, preferably an anti-PD-L3 OR VISTA antibody such that PD-L3 OR VISTA activity in the cell is modulated. In one embodiment, the agent inhibits PD-L3 OR VISTA activity. In another embodiment, the agent stimulates PD-L3 OR VISTA activity. In a further embodiment, the agent interferes with or enhances the interaction between a PD-L3 OR VISTA polypeptide and its natural binding partner(s). In one embodiment, the agent is an antibody that specifically binds to a PD-L3 OR VISTA polypeptide. In another embodiment, the agent is a peptide, peptidomimetic, or other small molecule that binds to a PD-L3 OR VISTA polypeptide.

[0048] In still another embodiment, the agent modulates expression of PD-L3 OR VISTA by modulating transcription of a PD-L3 OR VISTA gene, translation of a PD-L3 OR VISTA mRNA, or post-translational modification of a PD-L3 OR VISTA polypeptide. In another embodiment, the agent is a nucleic acid molecule having a nucleotide sequence that is antisense to the coding strand of a PD-L3 OR VISTA mRNA or a PD-L3 OR VISTA gene.

[0049] In one embodiment, the methods of the present invention are used to treat a subject having a disorder or condition characterized by aberrant, insufficient, or unwanted PD-L3 OR VISTA polypeptide or nucleic acid expression or activity by administering an agent which is a PD-L3 OR VISTA modulator to the subject. In one preferred embodiment, the PD-L3 OR VISTA modulator is a PD-L3 OR VISTA polypeptide, preferably a soluble fusion protein or multimeric VISTA protein or anti-VISTA antibody as described infra. In another embodiment the PD-L3 OR VISTA modulator is a PD-L3 OR VISTA nucleic acid molecule, e.g in an adenoviral vector. In another embodiment, the invention further provides treating the subject with an additional agent that modulates an immune response.

[0050] In still another embodiment, the invention provides a vaccine comprising an antigen and an agent that modulates (enhances or inhibits) PD-L3 OR VISTA activity. In a preferred embodiment, the vaccine inhibits the interaction between PD-L3 OR VISTA and its natural binding partner(s).

[0051] The present invention also provides diagnostic assays for identifying the presence or absence of a genetic alteration characterized by at least one of (i) aberrant modification or mutation of a gene encoding a PD-L3 OR VISTA polypeptide; (ii) misregulation of the gene; and (iii) aberrant post-translational modification of a PD-L3 OR VISTA polypeptide, wherein a wild-type form of the gene encodes a polypeptide with a PD-L3 OR VISTA activity.

[0052] In another aspect the invention provides methods for identifying a compound that binds to or modulates the activity of a PD-L3 OR VISTA polypeptide, by providing an indicator composition comprising a PD-L3 OR VISTA polypeptide having PD-L3 OR VISTA activity, contacting the indicator composition with a test compound, and determining the effect of the test compound on PD-L3 OR VISTA activity in the indicator composition to identify a compound that modulates the activity of a PD-L3 OR VISTA polypeptide.

[0053] In one aspect, the invention features a method for modulating the interaction of PD-L3 OR VISTA with its natural binding partner(s) on an immune cell comprising

contacting an antigen presenting cell which expresses PD-L3 OR VISTA with an agent selected from the group consisting of: a form of PD-L3 OR VISTA, or an agent that modulates the interaction of PD-L3 OR VISTA and its natural binding partner(s) such that the interaction of PD-L3 OR VISTA with its natural binding partner(s) on an immune cell is modulated. In a preferred embodiment, an agent that modulates the interaction of PD-L3 OR VISTA and its natural binding partner(s) is an antibody that specifically binds to PD-L3 OR VISTA. In one embodiment, the interaction of PD-L3 OR VISTA with its natural binding partner(s) is upregulated. In another embodiment, the interaction of PD-L3 OR VISTA with its natural binding partner(s) is downregulated. In one embodiment, the method further comprises contacting the immune cell or the antigen presenting cell with an additional agent that modulates an immune response.

[0054] In one embodiment, the step of contacting is performed in vitro. In another embodiment, the step of contacting is performed in vivo. In one embodiment, the immune cell is selected from the group consisting of: a T cell, a monocyte, a macrophage, a dendritic cell, a B cell, and a myeloid cell.

[0055] In another aspect, the invention pertains to a method for inhibiting or increasing activation in an immune cell comprising increasing or inhibiting the activity or expression of PD-L3 OR VISTA in a cell such that immune cell activation is inhibited or increased.

[0056] In yet another aspect, the invention pertains to a vaccine comprising an antigen and an agent that inhibits the interaction between PD-L3 OR VISTA and its natural binding partner(s).

[0057] In still another aspect, the invention pertains to a vaccine comprising an antigen and an agent that promotes the interaction between PD-L3 OR VISTA and its natural binding partner(s).

[0058] In another aspect, the invention pertains to a method for treating a subject having a condition that would benefit from upregulation of an immune response comprising administering an agent that inhibits the interaction between PD-L3 OR

VISTA and its natural binding partner(s) on immune cells of the subject such that a condition that would benefit from upregulation of an immune response is treated. In one preferred embodiment, the agent comprises a blocking antibody or a small molecule that binds to PD-L3 OR VISTA and inhibits the interaction between PD-L3 OR VISTA and its natural binding partner(s). In another embodiment, the method further comprises administering a second agent that upregulates an immune response to the subject. In another aspect, the invention pertains to a method for treating a subject having a condition that would benefit from downregulation of an immune response comprising administering an agent that stimulates the interaction between PD-L3 OR VISTA and its natural binding partner(s) on cells of the subject such that a condition that would benefit from downregulation of an immune response is treated.

[0059] For example the condition treated with the PD-L3 OR VISTA protein or binding agents is selected from the group consisting of: a tumor, a pathogenic infection, an inflammatory immune response or condition, preferably less pronounced inflammatory conditions, or an immunosuppressive disease. Specific examples include multiple sclerosis, thyroiditis, rheumatoid arthritis, diabetes type II and type I and cancers, both advanced and early forms, including metastatic cancers such as bladder cancer, ovarian cancer, melanoma, lung cancer, and other cancers wherein VISTA suppresses an effective anti-tumor response. In some case the individual may be administered cells or a viral vector that express a nucleic acid that encodes an anti-VISTA antibody or VISTA fusion protein.

[0060] In one embodiment agent comprises an antibody or a small molecule that stimulates the interaction between PD-L3 OR VISTA and its natural binding partner(s). In another embodiment, the method further comprises administering a second agent that downregulates an immune response to the subject such as a PD-L1, PD-L2 or CTLA-4 fusion protein or antibody specific thereto.

[0061] Exemplary conditions treatable using PD-L3 OR VISTA proteins, binding agents or PD-L3 OR VISTA antagonists or agonists according to the invention include by way of example transplant, an allergy, infectious disease, cancer, and inflammatory or

autoimmune disorders, e.g., an inflammatory immune disorder. Specific examples of the foregoing include type 1 diabetes, multiple sclerosis, rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, rheumatic diseases, allergic disorders, asthma, allergic rhinitis, skin disorders, gastrointestinal disorders such as Crohn's disease and ulcerative colitis, transplant rejection, poststreptococcal and autoimmune renal failure, septic shock, systemic inflammatory response syndrome (SIRS), adult respiratory distress syndrome (ARDS) and envenomation; autoinflammatory diseases as well as degenerative bone and joint diseases including osteoarthritis, crystal arthritis and capsulitis and other arthropathies. Further, the methods and compositions can be used for treating tendonitis, ligamentitis and traumatic joint injury.

[0062] In another aspect, the invention pertains to a cell-based assay for screening for compounds which modulate the activity of PD-L3 OR VISTA comprising contacting a cell expressing a PD-L3 OR VISTA target molecule with a test compound and determining the ability of the test compound to modulate the activity of the PD-L3 OR VISTA target molecule

[0063] In still another aspect, the invention pertains to a cell-free assay for screening for compounds which modulate the binding of PD-L3 OR VISTA to a target molecule comprising contacting a PD-L3 OR VISTA polypeptide or biologically active portion thereof with a test compound and determining the ability of the test compound to bind to the PD-L3 OR VISTA polypeptide or biologically active portion thereof.

[0064] In another embodiment, the invention pertains to a method of identifying a compound, e.g. an anti-PD-L3 OR VISTA antibody which modulates the effect of PD-L3 OR VISTA on T cell activation or cytokine production at a first and second antigen concentration comprising contacting a T cell expressing a PD-L3 OR VISTA target molecule with a test compound at a first antigen concentration, determining the ability of the test compound to modulate T cell proliferation or cytokine production at the first antigen concentration, contacting a T cell expressing a PD-L3 OR VISTA target molecule with the test compound at a second antigen concentration, and determining the ability of the test compound to modulate T cell proliferation or cytokine production at the

second antigen concentration, thereby identifying a compound which modulates T cell activation or cytokine production at a first and second antigen concentration.

[0065] In other specific embodiments panels of anti-PD-L3 OR VISTA antibodies and PD-L3 OR VISTA proteins are screened to select those of which inhibit or promote the effects of PD-L3 OR VISTA on CD4+ and CD8+ T cell differentiation, proliferation and/or cytokine production in vitro or in vivo.

[0066] In preferred embodiments the subject PD-L3 OR VISTA proteins, nucleic acids, and ligands specific to PD-L3 OR VISTA, preferably antibodies having desired effects on PD-L3 OR VISTA functions are used to treat conditions such as cancer, autoimmune diseases, allergy, inflammatory disorders or infection and more specifically immune system disorders such as severe combined immunodeficiency, multiple sclerosis, systemic lupus erythematosus, type I diabetes mellitus, lymphoproliferative syndrome, inflammatory bowel disease, allergies, asthma, graft-versus-host disease, and transplant rejection; immune responses to infectious pathogens such as bacteria and viruses; and immune system cancers such as lymphomas and leukemias)

Detailed Description of the Drawings

[0067] Figure 1. Sequence analysis. A. Full length amino acid sequence of murine PD-L3 OR VISTA. B. Amino acid sequence alignment of extracellular Ig domains between murine PD-L3 OR VISTA and selected B7 family ligands, including B7-H1 (PD-L1), B7-DC (PD-L2), B7-H3, and B7-H4. C Alignment of PD-L3 OR VISTA Ig domain with B7 family receptors, including PD-1, CTLA-4, CD28, BTLA, and ICOS. Ig-v domain, “....”; Ig-c domain, “__”. Alignment was performed using the MUSCLE algorithm (MULTiple Sequence Comparison by Log-Expectation). D. Sequence identity (%) of the Ig-V domains between PD-L3 OR VISTA and other B7 family ligands and receptors is calculated using ClustalW2 program. E. Sequence homology between human and murine PD-L3 OR VISTA. Identical residues are shaded in black. Highly conserved and semi-conserved residues are shaded in dark and light shade of gray respectively.

[0068] Figure 2. Phylogenetic analysis of mouse PD-L3 OR VISTA with other Immunoglobulin (Ig) superfamily members. Full-length sequence of mouse PD-L3 OR VISTA and other Ig superfamily members, including CD28, CTLA-4, ICOS, BTLA, PD-1, B7-H1 (PD-L1), B7-DC (PD-L2), B7-H2, B7-H3, B7-H4, B7-1, B7-2, BTNL2, BTNL3A3, BTNL2A2, and BTNL1A1, were analyzed using PhyML algorithm (Phylogenetic Maximum Likelihood). Branch distances were shown at tree branch joints.

[0069] Figure 3. Tissue expression and hematopoietic cell expression patterns of PD-L3 OR VISTA A. RT-PCR of full length PD-L3 OR VISTA from mouse tissues. Lanes: (1) muscle (2) heart (3) eye (4) thymus (5) spleen (6) small intestine (7) kidney (8) liver (9) brain (10) mammary gland (11) lung (12) ovary (13) bone marrow. B. RT-PCR of full-length PD-L3 OR VISTA from purified hematopoietic cell types. Lanes (1) peritoneal macrophages (2) splenic CD11b+ monocytes (3) splenic CD11c+ DCs (4) splenic CD4+ T cells (5) splenic CD8+ T cells (6) splenic B cells. C-E. Flow cytometry analysis of PD-L3 OR VISTA expression on splenic CD4+ and CD8+ T cells from thymus and spleen (C), on CD11b+ monocytes (D), and on CD11c+ DC subsets from spleen and peritoneal cavity (E). F. Splenic B cells, NK cells and granulocytes are also analyzed. G. The differential expression of PD-L3 OR VISTA on hematopoietic cells from different tissue sites, including mesenteric LN, peripheral LN, spleen, blood and peritoneal cavity. Representative data from at least 3 independent experiments are shown.

[0070] Figure 4. Gene array data of PD-L3 OR VISTA from the GNF (Genomics Institute of Novartis Research Foundation) gene array database, as well as the NCBI GEO (gene expression omnibus) database.

[0071] Figure 5. Specificity of PD-L3 OR VISTA hamster monoclonal antibodies. Mouse EL4 cell lines over-expressing either PD-L1 or PD-L3 OR VISTA fused to RFP were stained using the supernatants from hybridoma cultures and analyzed by flow cytometry. Two representative positive clones are shown.

[0072] Figure 6. Comparison of PD-L3 OR VISTA expression with other B7 family ligands on in vitro cultured spleen cells. Expression of PD-L3 OR VISTA and other B7 family ligands (i.e. PD-L1, PD-L2, B7-H3, and B7-H4) on hematopoietic cell types,

including CD4+ T cells, CD11bhi monocytes, and CD11c+ DCs were compared. Cells were either freshly isolated, or in vitro cultured for 24hrs, with and without activation. CD4+ T cells were activated with plate-bound \square CD3 (5ug/ml), CD11bhi monocytes and CD11c+ DCs were activated with IFNalpha (20 ng/ml) and LPS (200 ng/ml). Representative results from three independent experiments are shown.

[0073] Figure 7. Comparison of in vivo expression patterns of PD-L3 OR VISTA and other B7 family ligands during immunization. DO11.10 TCR transgenic mice were immunized with chicken ovalbumin (OVA) emulsified in complete Freund's adjuvant (CFA) on the flank. Draining and non-draining lymph node cells were collected 24hr post immunization, and analyzed by flow cytometry for the expression of PD-L3 OR VISTA, PD-L1 and PD-L2. Shown are representative results from at least four independent experiments. A. A population of CD11b+ cells expressing a high level of PD-L3 OR VISTA was induced at 24hr post immunization with CFA/OVA, but not with CFA alone within the draining lymph node. These cells are of mixed phenotype of F4/80+ macrophages and CD11C+ dendritic cells. B. Expression of PD-L3 OR VISTA, PD-L1 and PD-L2 on CD11bhi monocytes, CD11c+ DCs and CD4+ T cells were analyzed at 24hr post immunization.

[0074] Figure 8 Loss of PD-L3 OR VISTA expression on activated CD4+ T cells in response to immunization. DO11.10 mice were immunized with chicken ovalbumin (OVA) emulsified in complete Freund's adjuvant (CFA) on the flank. Draining and non-draining lymph node cells were collected 48hr post immunization, and analyzed for PD-L3 OR VISTA expression by flow cytometry. Shown are representative results from 2 independent experiments.

[0075] Figure 9. Immobilized PD-L3 OR VISTA-Ig fusion protein inhibited CD4+ and CD8+ T cell proliferation. A. CFSE labeled CD4+ and CD8+ T cells were stimulated by plate-bound \square CD3 with or without co-absorbed PD-L3 OR VISTA-Ig. The percentage of CFSE-low cells was quantified and shown in B. C CD4+ T cells from PD-L1 ko mice were also suppressed by PD-L3 OR VISTA-Ig. D. PD-L3 OR VISTA-Ig-mediated suppression is persistent and can act late. CD4+ T cells were activated in the

presence of PD-L3 OR VISTA-Ig or control-Ig for either 72hrs (i), or for 24hrs (ii, iii and iv). 24hr-preactivated cells were harvested and re-stimulated under specified conditions for another 48hrs. Cell proliferation was analyzed at the end of the 72hr culture. (ii) Pre-activation with PD-L3 OR VISTA-Ig and re-stimulation with antiCD3; (iii) Pre-activation with antiCD3 and re-stimulation with PD-L3 OR VISTA-Ig. (iv) Pre-activation with PD-L3 OR VISTA-Ig and re-stimulation with PD-L3 OR VISTA-Ig. Duplicated wells were analyzed for all conditions. Shown are representative results from at least four experiments.

[0076] Figure 10. Similar inhibitory effect of PD-L1-Ig and PD-L3 OR VISTA-Ig fusion proteins on CD4+ T cell proliferation. Bulk purified CD4+ T cells were CFSE labeled and stimulated with plate-bound anti-CD3 together with titrated amount of PD-L1-Ig or PD-L3 OR VISTA-Ig fusion proteins. CFSE dilution was analyzed at 72hrs and the percentage of CFSElow cells was quantified. Duplicated wells were analyzed for all conditions. Shown are representative results from 2 independent experiments.

[0077] Figure 11. Suppressive impact of PD-L3 OR VISTA-Ig on the proliferation of naïve and memory CD4+ T cells. A. Naïve (CD25-CD44lowCD62Lhi) and memory (CD25-CD44hiCD62Llow) CD4+ T cell subsets were sorted, CFSE labeled, and stimulated with plate-bound anti-CD3 (2.5 µg/ml) together with PD-L3 OR VISTA-Ig or control-Ig at indicated ratios. Cell proliferation was analyzed at 72hrs by examining the CFSE division profile. The percentage of proliferated cells, as determined by percentage of CFSElow cells, is calculated and shown in B. Duplicated wells were analyzed for all conditions. Shown are representative results from two independent experiments.

[0078] Figure 12. PD-L3 OR VISTA-Ig fusion protein suppressed early TCR activation and cell proliferation, but did not directly induce apoptosis. Bulk purified CD4+ T cells were stimulated with plate-bound anti-CD3 together with PD-L3 OR VISTA-Ig or control-Ig at 1-2 ratio (2.5 µg/ml and 5 µg/ml respectively). Cells were analyzed at 24hr and 48hrs for the expression of CD69, CD62L, and CD44 by flow cytometry. Cells were also stained for early apoptosis marker annexin-V, and cell death

marker 7-Aminoactinomycin D (7-AAD). Shown are representative results from two independent experiments.

[0079] Figure 13. PD-L3 OR VISTA-Ig inhibited cytokine production by CD4+ and CD8+ T cells. A-B. Bulk purified CD4+ T cells were stimulated with plate-bound anti-CD3, and PD-L3 OR VISTA-Ig or control-Ig at stated ratios. Culture supernatants were collected after 24hrs and 48hrs. Levels of IL-2 and IFN γ were analyzed by ELISA. C-D. CD4+ T cells were sorted into naïve (CD25-CD44lowCD62Lhi) and memory (CD25-CD44hiCD62Llow) cell populations. Cells were stimulated with plate-bound \square CD3 and PD-L3 OR VISTA-Ig or control-Ig at a ratio of 1:2. Culture supernatants were collected at 48hrs and analyzed for the level of IL-2 and IFN γ by ELISA. E. Bulk purified CD8+ T cells were stimulated with plate-bound \square CD3, and PD-L3 OR VISTA-Ig or control-Ig at indicated ratios. IFN γ in the culture supernatant was analyzed by ELISA. For all conditions, supernatant for six duplicated wells were pooled for ELISA analysis. Shown are representative results from at least three experiments.

[0080] Figure 14. PD-L3 OR VISTA-Ig-mediated suppression could overcome a moderate level of costimulation provided by CD28, but was completely reversed by a high level of costimulation, as well as partially rescued by exogenous IL-2. A-B. CD4+ T cells were activated by plate-bound \square CD3 together with either PD-L3 OR VISTA-Ig or control-Ig at 1-1 ratio and 1-2 ratios. For cytokine rescue, soluble mIL-2, mIL7, mIL15 and mIL-23 (all at 40ng/ml) were added to the cell culture (A). To examine the effects of costimulation, \square CD28 (1 μ g/ml) was immobilized together with \square CD3 and Ig proteins at indicated ratios (B). Cell proliferation was analyzed at 72hr by examining CFSE division profiles. C-D. To examine the suppressive activity of PD-L3 OR VISTA in the presence of lower levels of costimulation, titrated amounts of \square CD28 were coated together with anti-CD3 (2.5 μ g/ml) and PD-L3 OR VISTA-Ig fusion proteins or control-Ig fusion protein (10 μ g/ml) to stimulate CD4+ T cell proliferation. Cell proliferation was analyzed at 72hr. Percentages of proliferated CFSElow cells were quantified and shown in D. Duplicated wells were analyzed for all conditions. Representative CFSE profiles from three independent experiments are shown.

[0081] Figure 15. PD-L3 OR VISTA expressed on antigen presenting cells suppressed CD4 T cell proliferation. A-C The CHO cell line that stably expresses MHCII molecule I-Ad and costimulation molecule B7-2 was used as the parent cell line. Cells were transduced with retrovirus expressing either PD-L3 OR VISTA-RFP or RFP control molecules. Transduced cells were sorted to achieve homogenous level of expression. To test their ability as antigen presenting cells, CHO-PD-L3 OR VISTA or CHO-RFP cells were mitomycin C treated and mixed with OVA-specific transgenic CD4+ T cells D011.10, in the presence of titrated amount of OVA peptide. Proliferation of D011 cells was analyzed at 72hrs, either by CFSE division profiles (A-B), or by tritium incorporation (C). D. bone marrow derived dendritic cells were transduced with RFP or B7B-H5-RFP retrovirus during 10-day culture period. Transduced CD11c+ RFP+ DCs and non-transduced CD11c+ RFP- DCs were sorted and used to stimulate OVA-specific transgenic CD4+ T cells OTII in the presence of titrated amount of OVA peptide. Cell proliferation was analyzed on day3 by examining CFSE division. For all experiments, duplicated wells were analyzed for all conditions, and representative results from three independent experiments are shown.

[0082] Figure 16. Surface expression level of PD-L3 OR VISTA in retrovirally transduced bone marrow derived DCs. Bone marrow derived DCs (BMDC) were cultured in the presence of GM-CSF (20ng/ml) and transduced with either RFP or PD-L3 OR VISTA-RFP retrovirus as described in Methods. On day 10, surface expression level of PD-L3 OR VISTA were analyzed on cultured BMDCs, and compared to freshly-isolated peritoneal macrophages.

[0083] Figure 17 shows that anti-PDL3 mAb exhibits efficacy in a passive transfer EAE model. In this adoptive transfer EAE model, donor SJL mice were immunized with CFA and PLP peptide. On day 10, total lymphocytes from draining LN were isolated, and cultured in vitro with PLP peptide, IL-23 (20 ng/ml) and anti-IFNg (10 μ g/ml) for 4 days. Expanded CD4 T cells were then purified and adoptively transferred into naïve recipient mice. Disease progression was monitored and scored with: 0, no disease; 0.5 loss of tail tone; 1: limp tail; 2: limp tail + hind limb paresis; 2.5: 1 hind limb paralysis; 3: both hind

limb paralysis; 3.5: forelimb weakness; 4: hind limb paralysis+ unilateral forelimb paralysis. Mice were sacrificed when disease score reached 4. *, mice were sacrificed.

[0084] Figure 18 shows that anti-PD-L3 OR VISTA antibodies exhibit efficacy (reduce symptoms of arthritis) in a collagen-induced arthritis animal model.

[0085] Figure 19 shows that VISTA expressed on antigen-presenting cells suppressed CD4+ T cell proliferation.

[0086] Figure 20 shows that an anti-VISTA antibody inhibited tumor growth in mice transplanted with MB49 tumor cells.

[0087] Figure 21 shows the antitumor effect of VISTA mabs in four different mouse anti-tumor models.

[0088] Figure 22 shows the potentiating effect of VISTA mabs on the efficacy of a CD40/TLR agonist vaccine.

[0089] Figure 23 shows VISTA expression on CNS cells.

[0090] Figure 24 shows the impact of VISTA on the fate and function of T cells in an EAE model.

Detailed Description of the Invention

***Definitions**

[0091] Prior to describing the invention in more detail the following definitions are provided.

[0092] As used herein, the term "immune cell" includes cells that are of hematopoietic origin and that play a role in the immune response. Immune cells include lymphocytes, such as B cells and T cells; natural killer cells; and myeloid cells, such as monocytes, macrophages, eosinophils, mast cells, basophils, and granulocytes.

[0093] As used herein, the term "T cell" includes CD4+ T cells and CD8+ T cells. The term T cell also includes both T helper 1 type T cells and T helper 2 type T cells.

[0094] The term "antigen presenting cell" includes professional antigen presenting cells (e.g., B lymphocytes, monocytes, dendritic cells, and Langerhans cells) as well as other antigen presenting cells (e.g., keratinocytes, endothelial cells, astrocytes, fibroblasts, and oligodendrocytes).

[0095] The term 'antigen' herein refers to antigen wherein the modulation of the immune response thereto may be therapeutically desired. In the case of a desired enhanced immune response to particular antigens of interest, such antigens include, but are not limited to, infectious disease antigens for which a protective immune response may be elicited are exemplary. For example, the antigens from HIV under consideration are the proteins gag, env, pol, tat, rev, nef, reverse transcriptase, and other HIV components. The E6 and E7 proteins from human papilloma virus are also under consideration. Furthermore, the EBNA1 antigen from herpes simplex virus is also under consideration. Other viral antigens for consideration are hepatitis viral antigens such as the S, M, and L proteins of hepatitis B virus, the pre-S antigen of hepatitis B virus, and other hepatitis, e.g., hepatitis A, B, and C, viral components such as hepatitis C viral RNA; influenza viral antigens such as hemagglutinin, neuraminidase, nucleoprotein, M2, and other influenza viral components; measles viral antigens such as the measles virus fusion protein and other measles virus components; rubella viral antigens such as proteins E1 and E2 and other rubella virus components; rotaviral antigens such as VP7sc and other rotaviral components; cytomegaloviral antigens such as envelope glycoprotein B and other cytomegaloviral antigen components; respiratory syncytial viral antigens such as the RSV fusion protein, the M2 protein and other respiratory syncytial viral antigen components; herpes simplex viral antigens such as immediate early proteins, glycoprotein D, and other herpes simplex viral antigen components; varicella zoster viral antigens such as gpl, gpII, and other varicella zoster viral antigen components; Japanese encephalitis viral antigens such as proteins E, M-E, M-E-NS1, NS 1, NS 1-NS2A, 80% E, and other Japanese encephalitis viral antigen components; rabies viral antigens such as rabies glycoprotein, rabies nucleoprotein and other rabies viral antigen components; West

Nile virus prM and E proteins; and Ebola envelope protein. See *Fundamental Virology*, Second Edition, eds. Knipe, D. M. and, Howley P. M. (Lippincott Williams & Wilkins, New York, 2001) for additional examples of viral antigens. In addition, bacterial antigens are also disclosed. Bacterial antigens which can be used in the compositions and methods of the invention include, but are not limited to, pertussis bacterial antigens such as pertussis toxin, filamentous hemagglutinin, pertactin, FIM2, FIM3, adenylate cyclase and other pertussis bacterial antigen components; diphtheria bacterial antigens such as diphtheria toxin or toxoid and other diphtheria bacterial antigen components; tetanus bacterial antigens such as tetanus toxin or toxoid and other tetanus bacterial antigen components; streptococcal bacterial antigens such as M proteins and other streptococcal bacterial antigen components; Staphylococcal bacterial antigens such as IsdA, IsdB, SdrD, and SdrE; gram-negative bacilli bacterial antigens such as lipopolysaccharides, flagellin, and other gram-negative bacterial antigen components; *Mycobacterium tuberculosis* bacterial antigens such as mycolic acid, heat shock protein 65 (HSP65), the 30 kDa major secreted protein, antigen 85A, ESAT-6, and other mycobacterial antigen components; *Helicobacter pylori* bacterial antigen components; pneumococcal bacterial antigens such as pneumolysin, pneumococcal capsular polysaccharides and other pneumococcal bacterial antigen components; *haemophilus influenza* bacterial antigens such as capsular polysaccharides and other *haemophilus influenza* bacterial antigen components; anthrax bacterial antigens such as anthrax protective antigen, anthrax lethal factor, and other anthrax bacterial antigen components; the F1 and V proteins from *Yersinia pestis*; rickettsiae bacterial antigens such as rmps and other rickettsiae bacterial antigen components. Also included with the bacterial antigens described herein are any other bacterial, mycobacterial, mycoplasmal, rickettsial, or chlamydial antigens. Examples of protozoa and other parasitic antigens include, but are not limited to, *plasmodium falciparum* antigens such as merozoite surface antigens, sporozoite surface antigens, circumsporozoite antigens, gamete/gamete surface antigens, blood-stage antigen pf 1 55/RESA and other plasmodial antigen components; *toxoplasma* antigens such as SAG-1, p30 and other toxoplasma antigen components; *schistosomae* antigens such as glutathione-S-transferase, paramyosin, and other schistosomal antigen components; *leishmania* major and other *leishmaniae* antigens such as gp63,

lipophosphoglycan and its associated protein and other leishmanial antigen components; and trypanosoma cruzi antigens such as the 75-77 kDa antigen, the 56 kDa antigen and other trypanosomal antigen components. Examples of fungal antigens include, but are not limited to, antigens from *Candida* species, *Aspergillus* species, *Blastomyces* species, *Histoplasma* species, *Coccidioidomycosis* species, *Malassezia furfur* and other species, *Exophiala werneckii* and other species, *Piedraia hortai* and other species, *Trichosporum beigelii* and other species, *Microsporum* species, *Trichophyton* species, *Epidermophyton* species, *Sporothrix schenckii* and other species, *Fonsecaea pedrosoi* and other species, *Wangiella dermatitidis* and other species, *Pseudallescheria boydii* and other species, *Madurella grisea* and other species, *Rhizopus* species, *Absidia* species, and *Mucor* species. Examples of prion disease antigens include PrP, beta-amyloid, and other prion-associated proteins.

[0123]In addition to the infectious and parasitic agents mentioned above, another area for desirable enhanced immunogenicity to a non-infectious agent is in the area of dysproliferative diseases, including but not limited to cancer, in which cells expressing cancer antigens are desirably eliminated from the body. Tumor antigens which can be used in the compositions and methods of the invention include, but are not limited to, prostate specific antigen (PSA), breast, bladder, ovarian, testicular, melanoma, telomerase; multidrug resistance proteins such as P-glycoprotein; MAGE-1, alpha fetoprotein, carcinoembryonic antigen, mutant p53, papillomavirus antigens, gangliosides or other carbohydrate-containing components of melanoma or other tumor cells. It is contemplated by the invention that antigens from any type of tumor cell can be used in the compositions and methods described herein. The antigen may be a cancer cell, or immunogenic materials isolated from a cancer cell, such as membrane proteins. Included are survivin and telomerase universal antigens and the MAGE family of cancer testis antigens. Antigens which have been shown to be involved in autoimmunity and could be used in the methods of the present invention to induce tolerance include, but are not limited to, myelin basic protein, myelin oligodendrocyte glycoprotein and proteolipid protein of multiple sclerosis and CII collagen protein of rheumatoid arthritis.

[0124] The antigen may be a portion of an infectious agent such as HZV-1, EBV, HBV, influenza virus, SARS virus, poxviruses, malaria, or HSV, by way of non-limiting examples, for which vaccines that mobilize strong T-cell mediated immunity (via dendritic cells) are needed.

[0125] The term "tumor" denotes at least one cell or cell mass in the form of a tissue neoformation, in particular in the form of a spontaneous, autonomous and irreversible excess growth, which is more or less disinhibited, of endogenous tissue, which growth is as a rule associated with the more or less pronounced loss of specific cell and tissue functions. This cell or cell mass is not effectively inhibited, in regard to its growth, by itself or by the regulatory mechanisms of the host organism, e.g. melanoma or carcinoma. Tumor antigens not only include antigens present in or on the malignant cells themselves, but also include antigens present on the stromal supporting tissue of tumors including endothelial cells and other blood vessel components.

[0096] As used herein, the term "immune response" includes T cell-mediated and/or B cell-mediated immune responses that are influenced by modulation of T cell costimulation. Exemplary immune responses include B cell responses (e.g., antibody production) T cell responses (e.g., cytokine production, and cellular cytotoxicity) and activation of cytokine responsive cells, e.g., macrophages. As used herein, the term "downmodulation" with reference to the immune response includes a diminution in any one or more immune responses, while the term "upmodulation" with reference to the immune response includes an increase in any one or more immune responses. It will be understood that upmodulation of one type of immune response may lead to a corresponding downmodulation in another type of immune response. For example, upmodulation of the production of certain cytokines (e.g., IL-10) can lead to downmodulation of cellular immune responses.

[0097] As used herein, the term "costimulatory receptor" includes receptors which transmit a costimulatory signal to an immune cell, e.g., CD28 or ICOS. As used herein, the term "inhibitory receptors" includes receptors which transmit a negative signal to an immune cell

[0098] As used herein, the term "costimulate", with reference to activated immune cells, includes the ability of a costimulatory molecule to provide a second, non-activating, receptor-mediated signal (a "costimulatory signal") that induces proliferation or effector function. For example, a costimulatory signal can result in cytokine secretion, e.g., in a T cell that has received a T cell-receptor-mediated signal. Immune cells that have received a cell receptor-mediated signal, e.g., via an activating receptor, are referred to herein as "activated immune cells."

[0099] An inhibitory signal as transduced by an inhibitory receptor can occur even if a costimulatory receptor (such as CD28 or ICOS) is not present on the immune cell and, thus, is not simply a function of competition between inhibitory receptors and costimulatory receptors for binding of costimulatory molecules (Fallarino et al. (1998) *J. Exp. Med.* 188:205). Transmission of an inhibitory signal to an immune cell can result in unresponsiveness, anergy or programmed cell death in the immune cell. Preferably, transmission of an inhibitory signal operates through a mechanism that does not involve apoptosis.

[00100] As used herein the term "apoptosis" includes programmed cell death which can be characterized using techniques which are known in the art. Apoptotic cell death can be characterized, e.g., by cell shrinkage, membrane blebbing, and chromatin condensation culminating in cell fragmentation. Cells undergoing apoptosis also display a characteristic pattern of internucleosomal DNA cleavage.

[00101] The term "autoimmunity" or "autoimmune disease or condition" herein An "autoimmune disease" herein is a disease or disorder arising from and directed against an individual's own tissues or a co-segregate or manifestation thereof or resulting condition therefrom. Examples of autoimmune diseases or disorders include, but are not limited to arthritis (rheumatoid arthritis such as acute arthritis, chronic rheumatoid arthritis, gouty arthritis, acute gouty arthritis, chronic inflammatory arthritis, degenerative arthritis, infectious arthritis, Lyme arthritis, proliferative arthritis, psoriatic arthritis, vertebral arthritis, and juvenile-onset rheumatoid arthritis, osteoarthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, and

ankylosing spondylitis), inflammatory hyperproliferative skin diseases, psoriasis such as plaque psoriasis, guttate psoriasis, pustular psoriasis, and psoriasis of the nails, dermatitis including contact dermatitis, chronic contact dermatitis, allergic dermatitis, allergic contact dermatitis, dermatitis herpetiformis, and atopic dermatitis, x-linked hyper IgM syndrome, urticaria such as chronic allergic urticaria and chronic idiopathic urticaria, including chronic autoimmune urticaria, polymyositis/dermatomyositis, juvenile dermatomyositis, toxic epidermal necrolysis, scleroderma (including systemic scleroderma), sclerosis such as systemic sclerosis, multiple sclerosis (MS) such as spino-optical MS, primary progressive MS (PPMS), and relapsing remitting MS (RRMS), progressive systemic sclerosis, atherosclerosis, arteriosclerosis, sclerosis disseminata, and ataxic sclerosis, inflammatory bowel disease (IBD) (for example, Crohn's disease, autoimmune-mediated gastrointestinal diseases, colitis such as ulcerative colitis, colitis ulcerosa, microscopic colitis, collagenous colitis, colitis polyposa, necrotizing enterocolitis, and transmural colitis, and autoimmune inflammatory bowel disease), pyoderma gangrenosum, erythema nodosum, primary sclerosing cholangitis, episcleritis), respiratory distress syndrome, including adult or acute respiratory distress syndrome (ARDS), meningitis, inflammation of all or part of the uvea, iritis, choroiditis, an autoimmune hematological disorder, rheumatoid spondylitis, sudden hearing loss, IgE-mediated diseases such as anaphylaxis and allergic and atopic rhinitis, encephalitis such as Rasmussen's encephalitis and limbic and/or brainstem encephalitis, uveitis, such as anterior uveitis, acute anterior uveitis, granulomatous uveitis, nongranulomatous uveitis, phacoantigenic uveitis, posterior uveitis, or autoimmune uveitis, glomerulonephritis (GN) with and without nephrotic syndrome such as chronic or acute glomerulonephritis such as primary GN, immune-mediated GN, membranous GN (membranous nephropathy), idiopathic membranous GN or idiopathic membranous nephropathy, membrano- or membranous proliferative GN (MPGN), including Type I and Type II, and rapidly progressive GN, allergic conditions, allergic reaction, eczema including allergic or atopic eczema, asthma such as asthma bronchiale, bronchial asthma, and auto-immune asthma, conditions involving infiltration of T cells and chronic inflammatory responses, chronic pulmonary inflammatory disease, autoimmune myocarditis, leukocyte adhesion deficiency, systemic lupus erythematosus (SLE) or systemic lupus erythematoses such as

cutaneous SLE, subacute cutaneous lupus erythematosus, neonatal lupus syndrome (NLE), lupus erythematosus disseminatus, lupus (including nephritis, cerebritis, pediatric, non-renal, extra-renal, discoid, alopecia), juvenile onset (Type I) diabetes mellitus, including pediatric insulin-dependent diabetes mellitus (IDDM), adult onset diabetes mellitus (Type II diabetes), autoimmune diabetes, idiopathic diabetes insipidus, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, tuberculosis, sarcoidosis, granulomatosis including lymphomatoid granulomatosis, Wegener's granulomatosis, agranulocytosis, vasculitides, including vasculitis (including large vessel vasculitis (including polymyalgia rheumatica and giant cell (Takayasu's) arteritis), medium vessel vasculitis (including Kawasaki's disease and polyarteritis nodosa), microscopic polyarteritis, CNS vasculitis, necrotizing, cutaneous, or hypersensitivity vasculitis, systemic necrotizing vasculitis, and ANCA-associated vasculitis, such as Churg-Strauss vasculitis or syndrome (CSS)), temporal arteritis, aplastic anemia, autoimmune aplastic anemia, Coombs positive anemia, Diamond Blackfan anemia, hemolytic anemia or immune hemolytic anemia including autoimmune hemolytic anemia (AIHA), pernicious anemia (anemia perniciosa), Addison's disease, pure red cell anemia or aplasia (PRCA), Factor VIII deficiency, hemophilia A, autoimmune neutropenia, pancytopenia, leukopenia, diseases involving leukocyte diapedesis, CNS inflammatory disorders, multiple organ injury syndrome such as those secondary to septicemia, trauma or hemorrhage, antigen-antibody complex-mediated diseases, anti-glomerular basement membrane disease, anti-phospholipid antibody syndrome, allergic neuritis, Bechet's or Behcet's disease, Castleman's syndrome, Goodpasture's syndrome, Reynaud's syndrome, Sjogren's syndrome, Stevens-Johnson syndrome, pemphigoid such as pemphigoid bullous and skin pemphigoid, pemphigus (including pemphigus vulgaris, pemphigus foliaceus, pemphigus mucus-membrane pemphigoid, and pemphigus erythematosus), autoimmune polyendocrinopathies, Reiter's disease or syndrome, immune complex nephritis, antibody-mediated nephritis, neuromyelitis optica, polyneuropathies, chronic neuropathy such as IgM polyneuropathies or IgM-mediated neuropathy, thrombocytopenia (as developed by myocardial infarction patients, for example), including thrombotic thrombocytopenic purpura (TTP) and autoimmune or immune-mediated thrombocytopenia such as

idiopathic thrombocytopenic purpura (ITP) including chronic or acute ITP, autoimmune disease of the testis and ovary including autoimmune orchitis and oophoritis, primary hypothyroidism, hypoparathyroidism, autoimmune endocrine diseases including thyroiditis such as autoimmune thyroiditis, Hashimoto's disease, chronic thyroiditis (Hashimoto's thyroiditis); or subacute thyroiditis, autoimmune thyroid disease, idiopathic hypothyroidism, Grave's disease, polyglandular syndromes such as autoimmune polyglandular syndromes (or polyglandular endocrinopathy syndromes), paraneoplastic syndromes, including neurologic paraneoplastic syndromes such as Lambert-Eaton myasthenic syndrome or Eaton-Lambert syndrome, stiff-man or stiff-person syndrome, encephalomyelitis such as allergic encephalomyelitis or encephalomyelitis allergica and experimental allergic encephalomyelitis (EAE), myasthenia gravis such as thymoma-associated myasthenia gravis, cerebellar degeneration, neuromyotonia, opsoclonus or opsoclonus myoclonus syndrome (OMS), and sensory neuropathy, multifocal motor neuropathy, Sheehan's syndrome, autoimmune hepatitis, chronic hepatitis, lupoid hepatitis, giant cell hepatitis, chronic active hepatitis or autoimmune chronic active hepatitis, lymphoid interstitial pneumonitis, bronchiolitis obliterans (non-transplant) vs NSIP, Guillain-Barre syndrome, Berger's disease (IgA nephropathy), idiopathic IgA nephropathy, linear IgA dermatosis, primary biliary cirrhosis, pneumonocirrhosis, autoimmune enteropathy syndrome, Celiac disease, Coeliac disease, celiac sprue (gluten enteropathy), refractory sprue, idiopathic sprue, cryoglobulinemia, amyotrophic lateral sclerosis (ALS; Lou Gehrig's disease), coronary artery disease, autoimmune ear disease such as autoimmune inner ear disease (AGED), autoimmune hearing loss, opsoclonus myoclonus syndrome (OMS), polychondritis such as refractory or relapsed polychondritis, pulmonary alveolar proteinosis, amyloidosis, scleritis, a non-cancerous lymphocytosis, a primary lymphocytosis, which includes monoclonal B cell lymphocytosis (e.g., benign monoclonal gammopathy and monoclonal gammopathy of undetermined significance, MGUS), peripheral neuropathy, paraneoplastic syndrome, channelopathies such as epilepsy, migraine, arrhythmia, muscular disorders, deafness, blindness, periodic paralysis, and channelopathies of the CNS, autism, inflammatory myopathy, focal segmental glomerulosclerosis (FSGS), endocrine ophthalmopathy, uveoretinitis, chorioretinitis, autoimmune hepatological disorder, fibromyalgia, multiple

endocrine failure, Schmidt's syndrome, adrenalitis, gastric atrophy, presenile dementia, demyelinating diseases such as autoimmune demyelinating diseases, diabetic nephropathy, Dressler's syndrome, alopecia areata, CREST syndrome (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyl), and telangiectasia), male and female autoimmune infertility, mixed connective tissue disease, Chagas' disease, rheumatic fever, recurrent abortion, farmer's lung, erythema multiforme, post-cardiotomy syndrome, Cushing's syndrome, bird-fancier's lung, allergic granulomatous angiitis, benign lymphocytic angiitis, Alport's syndrome, alveolitis such as allergic alveolitis and fibrosing alveolitis, interstitial lung disease, transfusion reaction, leprosy, malaria, leishmaniasis, kypanosomiasis, schistosomiasis, ascariasis, aspergillosis, Sampter's syndrome, Caplan's syndrome, dengue, endocarditis, endomyocardial fibrosis, diffuse interstitial pulmonary fibrosis, interstitial lung fibrosis, idiopathic pulmonary fibrosis, cystic fibrosis, endophthalmitis, erythema elevatum et diutinum, erythroblastosis fetalis, eosinophilic fasciitis, Shulman's syndrome, Felty's syndrome, floriasis, cyclitis such as chronic cyclitis, heterochronic cyclitis, iridocyclitis, or Fuch's cyclitis, Henoch-Schonlein purpura, human immunodeficiency virus (HIV) infection, echovirus infection, cardiomyopathy, Alzheimer's disease, parvovirus infection, rubella virus infection, post-vaccination syndromes, congenital rubella infection, Epstein-Barr virus infection, mumps, Evan's syndrome, autoimmune gonadal failure, Sydenham's chorea, post-streptococcal nephritis, thromboangitis obliterans, thyrotoxicosis, tabes dorsalis, choroiditis, giant cell polymyalgia, endocrine ophthalmopathy, chronic hypersensitivity pneumonitis, keratoconjunctivitis sicca, epidemic keratoconjunctivitis, idiopathic nephritic syndrome, minimal change nephropathy, benign familial and ischemia-reperfusion injury, retinal autoimmunity, joint inflammation, bronchitis, chronic obstructive airway disease, silicosis, aphthae, aphthous stomatitis, arteriosclerotic disorders, asperniogenesis, autoimmune hemolysis, Boeck's disease, cryoglobulinemia, Dupuytren's contracture, endophthalmia phacoanaphylactica, enteritis allergica, erythema nodosum leprosum, idiopathic facial paralysis, chronic fatigue syndrome, febris rheumatica, Hamman-Rich's disease, sensoneural hearing loss, haemoglobinuria paroxysmata, hypogonadism, ileitis regionalis, leucopenia, mononucleosis infectiosa, transverse myelitis, primary idiopathic myxedema, nephrosis, ophthalmia sympathica,

orchitis granulomatosa, pancreatitis, polyradiculitis acuta, pyoderma gangrenosum, Quervain's thyreoiditis, acquired splenic atrophy, infertility due to antispermatozoan antibodies, non-malignant thymoma, vitiligo, SCID and Epstein-Barr virus-associated diseases, acquired immune deficiency syndrome (AIDS), parasitic diseases such as Leishmania, toxic-shock syndrome, food poisoning, conditions involving infiltration of T cells, leukocyte-adhesion deficiency, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, diseases involving leukocyte diapedesis, multiple organ injury syndrome, antigen-antibody complex-mediated diseases, antiglomerular basement membrane disease, allergic neuritis, autoimmune polyendocrinopathies, oophoritis, primary myxedema, autoimmune atrophic gastritis, sympathetic ophthalmia, rheumatic diseases, mixed connective tissue disease, nephrotic syndrome, insulitis, polyendocrine failure, peripheral neuropathy, autoimmune polyglandular syndrome type I, adult-onset idiopathic hypoparathyroidism (AOIH), alopecia totalis, dilated cardiomyopathy, epidermolysis bullosa acquisita (EBA), hemochromatosis, myocarditis, nephrotic syndrome, primary sclerosing cholangitis, purulent or nonpurulent sinusitis, acute or chronic sinusitis, ethmoid, frontal, maxillary, or sphenoid sinusitis, an eosinophil-related disorder such as eosinophilia, pulmonary infiltration eosinophilia, eosinophilia-myalgia syndrome, Loffler's syndrome, chronic eosinophilic pneumonia, tropical pulmonary eosinophilia, bronchopneumonic aspergillosis, aspergilloma, or granulomas containing eosinophils, anaphylaxis, seronegative spondyloarthritides, polyendocrine autoimmune disease, sclerosing cholangitis, sclera, episclera, chronic mucocutaneous candidiasis, Bruton's syndrome, transient hypogammaglobulinemia of infancy, Wiskott-Aldrich syndrome, ataxia telangiectasia, autoimmune disorders associated with collagen disease, rheumatism, neurological disease, ischemic re-perfusion disorder, reduction in blood pressure response, vascular dysfunction, angiogenesis, tissue injury, cardiovascular ischemia, hyperalgesia, cerebral ischemia, and disease accompanying vascularization, allergic hypersensitivity disorders, glomerulonephritides, reperfusion injury, reperfusion injury of myocardial or other tissues, dermatoses with acute inflammatory components, acute purulent meningitis or other central nervous system inflammatory disorders, ocular and orbital inflammatory disorders, granulocyte transfusion-associated syndromes, cytokine-

induced toxicity, acute serious inflammation, chronic intractable inflammation, pyelitis, pneumonocirrhosis, diabetic retinopathy, diabetic large-artery disorder, endarterial hyperplasia, peptic ulcer, valvulitis, and endometriosis

[00102] The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include squamous cell cancer, lung cancer (including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous carcinoma of the lung), cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer (including gastrointestinal cancer), pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer, as well as B-cell lymphoma (including low grade/follicular non-Hodgkin's lymphoma (NHL); small lymphocytic (SL) NHL; intermediate grade/follicular NHL; intermediate grade diffuse NHL; high grade immunoblastic NHL; high grade lymphoblastic NHL; high grade small non-cleaved cell NHL; bulky disease NHL; mantle cell lymphoma; AIDS-related lymphoma; and Waldenstrom's Macroglobulinemia); chronic lymphocytic leukemia (CLL); acute lymphoblastic leukemia (ALL); Hairy cell leukemia; chronic myeloblastic leukemia; multiple myeloma and post-transplant lymphoproliferative disorder (PTLD).

[00103] The phrase "allergic disease" refers to a disease involving allergic reactions. More specifically, an "allergic disease" is defined as a disease for which an allergen is identified, where there is a strong correlation between exposure to that allergen and the onset of pathological change, and where that pathological change has been proven to have an immunological mechanism. Herein, an immunological mechanism means that leukocytes show an immune response to allergen stimulation. Examples of allergens include mite antigens and pollen antigens. Representative allergic diseases include bronchial asthma, allergic rhinitis, atopic dermatitis, and pollen and insect allergies.

Allergic diathesis is a genetic factor that can be inherited by the children of allergic parents. Familial allergic diseases are also called atopic diseases, and the causative, genetically transmitted factor is atopic diathesis. "Atopic dermatitis" is a general term for an atopic disease, especially diseases accompanied by dermatitis symptoms. Preferred examples include allergic condition is selected from the group consisting of eczema, allergic rhinitis, hay fever, urticaria, and food allergies. Allergic conditions include eczema, allergic rhinitis or coryza, hay fever, bronchial asthma, urticaria (hives) and food allergies, and other atopic conditions.

"Asthma"--refers to a disorder of the respiratory system characterized by inflammation, narrowing of the airways and increased reactivity of the airways to inhaled agents. Asthma is frequently, although not exclusively associated with atopic or allergic symptoms.

[00104] The phrase "inflammatory conditions or inflammatory disease" herein includes chronic or acute inflammatory diseases, including a disease or condition selected from the group comprising: rheumatic diseases (including but not limited to rheumatoid arthritis, osteoarthritis, psoriatic arthritis) spondyloarthropathies (including but not limited to ankylosing spondylitis, reactive arthritis, Reiter's syndrome), crystal arthropathies (including but not limited to gout, pseudogout, calcium pyrophosphate deposition disease), Lyme disease, polymyalgia rheumatica; connective tissue diseases (including but not limited to systemic lupus erythematosus, systemic sclerosis, polymyositis, dermatomyositis, Sjogren's syndrome); vasculitides (including but not limited to polyarteritis nodosa, Wegener's granulomatosis, Churg-Strauss syndrome); inflammatory conditions including consequences of trauma or ischaemia, sarcoidosis; vascular diseases including atherosclerotic vascular disease, atherosclerosis, and vascular occlusive disease (including but not limited to atherosclerosis, ischaemic heart disease, myocardial infarction, stroke, peripheral vascular disease), and vascular stent restenosis; ocular diseases including uveitis, corneal disease, iritis, iridocyclitis, and cataracts;

[00105] The term cancer amenable for treatment by the present invention include, but not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid

malignancies. More particular examples of such cancers include bladder, ovarian, melanoma, squamous cell cancer, lung cancer (including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous carcinoma of the lung), cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer (including gastrointestinal cancer), pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer, as well as B-cell lymphoma (including low grade/follicular non-Hodgkin's lymphoma (NHL); small lymphocytic (SL) NHL; intermediate grade/follicular NHL; intermediate grade diffuse NHL; high grade immunoblastic NHL; high grade lymphoblastic NHL; high grade small non-cleaved cell NHL; bulky disease NHL; mantle cell lymphoma; AIDS-related lymphoma; and Waldenstrom's Macroglobulinemia); chronic lymphocytic leukemia (CLL); acute lymphoblastic leukemia (ALL); Hairy cell leukemia; chronic myeloblastic leukemia; and post-transplant lymphoproliferative disorder (PTLD), as well as abnormal vascular proliferation associated with phakomatoses, edema (such as that associated with brain tumors), and Meigs' syndrome. Preferably, the cancer is selected from the group consisting of breast cancer, colorectal cancer, rectal cancer, non-small cell lung cancer, non-Hodgkins lymphoma (NHL), renal cell cancer, prostate cancer, liver cancer, pancreatic cancer, soft-tissue sarcoma, kaposi's sarcoma, carcinoid carcinoma, head and neck cancer, melanoma, ovarian cancer, mesothelioma, and multiple myeloma. In an exemplary embodiment (see working examples) the cancer is an early advanced (including metastatic) bladder, ovarian or melanoma. In another embodiment the cancer is colorectal cancer. The cancerous conditions amenable for treatment of the invention include metastatic cancers wherein VISTA expression by myeloid derived suppressor cells suppress antitumor responses and anti-invasive immune responses. The method of the present invention is particularly suitable for the treatment of vascularized tumors.

[0018] The invention is also suitable for treating cancers in combination with chemotherapy or radiotherapy or other biologics and for enhancing the activity thereof,

i.e., in individuals wherein VISTA expression by myeloid derived suppressor cells suppress antitumor responses and the efficacy of chemotherapy or radiotherapy or biologic efficacy. Any chemotherapeutic agent exhibiting anticancer activity can be used according to the present invention. Preferably, the chemotherapeutic agent is selected from the group consisting of alkylating agents, antimetabolites, folic acid analogs, pyrimidine analogs, purine analogs and related inhibitors, vinca alkaloids, epipodophyllotoxins, antibiotics, L-Asparaginase, topoisomerase inhibitor, interferons, platinum coordination complexes, anthracenedione substituted urea, methyl hydrazine derivatives, adrenocortical suppressant, adrenocorticosteroids, progestins, estrogens, antiestrogen, androgens, antiandrogen, and gonadotropin-releasing hormone analog. More preferably, the chemotherapeutic agent is selected from the group consisting of 5-fluorouracil (5-FU), leucovorin (LV), irinotecan, oxaliplatin, capecitabine, paclitaxel and doxetaxel. Two or more chemotherapeutic agents can be used in a cocktail to be administered in combination with administration of the anti-VEGF antibody. One preferred combination chemotherapy is fluorouracil-based, comprising 5-FU and one or more other chemotherapeutic agent(s). Suitable dosing regimens of combination chemotherapies are known in the art and described in, for example, Saltz et al. (1999) Proc ASCO 18:233a and Douillard et al. (2000) Lancet 355:1041-7. The biologic may be another immune potentiators such as antibodies to PD-L1, PD-L2, CTLA-4 and PD-L1, PD-L2, CTLA-4 fusion proteins as well as cytokines, growth factor antagonists and agonists, hormones and anti-cytokine antibodies.

[00106] Depending upon the form of the PD-L3 OR VISTA molecule that binds to a receptor, a signal can be either transmitted (e.g., by a multivalent form of a PD-L3 OR VISTA molecule that results in crosslinking of the receptor or by a soluble form of PD-L3 OR VISTA that binds to Fc receptors on antigen presenting cells) or inhibited (e.g., by a soluble, monovalent form of a PD-L3 OR VISTA molecule or a soluble form of PD-L3 OR VISTA that is altered using methods known in the art such that it does not bind to Fc receptors on antigen presenting cells), e.g., by competing with activating forms of PD-L3 OR VISTA molecules for binding to the receptor. However, there are instances in

which a soluble molecule can be stimulatory. The effects of the various modulatory agents can be easily demonstrated using routine screening assays as described herein.

[00107] As used herein, the term "activating receptor" includes immune cell receptors that bind antigen, complexed antigen (e.g., in the context of MHC molecules), or antibodies. Such activating receptors include T cell receptors (TCRs), B cell receptors (BCRs), cytokine receptors, LPS receptors, complement receptors, and Fc receptors.

[00108] For example, T cell receptors are present on T cells and are associated with CD3 molecules. T cell receptors are stimulated by antigen in the context of MHC molecules (as well as by polyclonal T cell activating reagents). T cell activation via the TCR results in numerous changes, e.g. protein phosphorylation, membrane lipid changes, ion fluxes, cyclic nucleotide alterations, RNA transcription changes, protein synthesis changes, and cell volume changes.

[00109] The term "B cell receptor" (BCR) as used herein includes the complex between membrane Ig (mIg) and other transmembrane polypeptides (e.g., Ig alpha and Ig beta) found on B cells. The signal transduction function of mIg is triggered by crosslinking of receptor molecules by oligomeric or multimeric antigens. B cells can also be activated by anti-immunoglobulin antibodies. Upon BCR activation, numerous changes occur in B cells, including tyrosine phosphorylation.

[00110] The term "Fc receptor" (FcRs) include cell surface receptors for the Fc portion of immunoglobulin molecules (Igs). Fc receptors are found on many cells which participate in immune responses. Among the human FcRs that have been identified so far are those which recognize IgG (designated Fc gamma. R), IgE (Fc epsilon RI), IgA (Fc alpha R), and polymerized IgM/A (Fc.mu. .alpha. R). FcRs are found in the following cell types: Fc epsilon R I (mast cells), Fc epsilon. RII (many leukocytes), Fc alpha. R (neutrophils), and Fc mu alpha. R (glandular epithelium, hepatocytes) (Hogg, N. (1988) Immunol. Today 9:185-86). The widely studied Fc gamma Rs are central in cellular immune defenses, and are responsible for stimulating the release of mediators of inflammation and hydrolytic enzymes involved in the pathogenesis of autoimmune disease (Unkeless, J. C (1988) Annu. Rev. Immunol. 6:251-87). The Fc gammaRs

provide a crucial link between effector cells and the lymphocytes that secrete Ig, since the macrophage/monocyte, polymorphonuclear leukocyte, and natural killer (NK) cell Fc gamma Rs confer an element of specific recognition mediated by IgG. Human leukocytes have at least three different receptors for IgG: h Fc gamma. RI (found on monocytes/macrophages), hFc gamma RII (on monocytes, neutrophils, eosinophils, platelets, possibly B cells, and the K562 cell line), and Fc.gamma. III (on NK cells, neutrophils, eosinophils, and macrophages).

[00111] With respect to T cells, transmission of a costimulatory signal to a T cell involves a signaling pathway that is not inhibited by cyclosporin A. In addition, a costimulatory signal can induce cytokine secretion (e.g., IL-2 and/or IL-10) in a T cell and/or can prevent the induction of unresponsiveness to antigen, the induction of anergy, or the induction of cell death in the T cell.

[00112] As used herein, the term "inhibitory signal" refers to a signal transmitted via an inhibitory receptor molecule on an immune cell. Such a signal antagonizes a signal via an activating receptor (e.g., via a TCR, CD3, BCR, or Fc molecule) and can result, e.g., in inhibition of: second messenger generation; proliferation; or effector function in the immune cell, e.g., reduced phagocytosis, antibody production, or cellular cytotoxicity, or the failure of the immune cell to produce mediators (such as cytokines (e.g., IL-2) and/or mediators of allergic responses); or the development of anergy.

[00113] As used herein, the term "unresponsiveness" includes refractivity of immune cells to stimulation, e.g., stimulation via an activating receptor or a cytokine. Unresponsiveness can occur, e.g., because of exposure to immunosuppressants or high doses of antigen.

[00114] As used herein, the term "anergy" or "tolerance" includes refractivity to activating receptor-mediated stimulation. Such refractivity is generally antigen-specific and persists after exposure to the tolerizing antigen has ceased. For example, anergy in T cells (as opposed to unresponsiveness) is characterized by lack of cytokine production, e.g., IL-2. T cell anergy occurs when T cells are exposed to antigen and receive a first signal (a T cell receptor or CD-3 mediated signal) in the absence of a second signal (a

costimulatory signal). Under these conditions, reexposure of the cells to the same antigen (even if reexposure occurs in the presence of a costimulatory molecule) results in failure to produce cytokines and, thus, failure to proliferate. Anergic T cells can, however, mount responses to unrelated antigens and can proliferate if cultured with cytokines (e.g., IL-2). For example, T cell anergy can also be observed by the lack of IL-2 production by T lymphocytes as measured by ELISA or by a proliferation assay using an indicator cell line. Alternatively, a reporter gene construct can be used. For example, anergic T cells fail to initiate IL-2 gene transcription induced by a heterologous promoter under the control of the 5' IL-2 gene enhancer or by a multimer of the API sequence that can be found within the enhancer (Kang et al. (1992) *Science* 257:1134).

[00115] Modulation of a costimulatory signal results in modulation of effector function of an immune cell. Thus, the term "PD-L3 OR VISTA activity" includes the ability of a PD-L3 OR VISTA polypeptide to bind its natural binding partner(s), the ability to modulate immune cell costimulatory or inhibitory signals, and the ability to modulate the immune response.

[00116] Modulation of an inhibitory signal in an immune cell results in modulation of proliferation of and/or cytokine secretion by an immune cell.

[00117] As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

[00118] As used herein, an "antisense" nucleic acid molecule comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule, complementary to an mRNA sequence or complementary to the coding strand of a gene. Accordingly, an antisense nucleic acid molecule can hydrogen bond to a sense nucleic acid molecule.

[00119] As used herein, the term "coding region" refers to regions of a nucleotide sequence comprising codons which are translated into amino acid residues, whereas the

term "noncoding region" refers to regions of a nucleotide sequence that are not translated into amino acids (e.g., 5' and 3' untranslated regions).

[00120] As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid molecule to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated. Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" or simply "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" may be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

[00121] As used herein, the term "host cell" is intended to refer to a cell into which a nucleic acid molecule of the invention, such as a recombinant expression vector of the invention, has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It should be understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

[00122] As used herein, a "transgenic animal" refers to a non-human animal, preferably a mammal, more preferably a mouse, in which one or more of the cells of the animal includes a "transgene". The term "transgene" refers to exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, for example directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal.

[00123] As used herein, a "homologous recombinant animal" refers to a type of transgenic non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

[00124] As used herein, an "isolated protein" refers to a protein that is substantially free of other proteins, cellular material and culture medium when isolated from cells or produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized.

[00125] An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the PD-L3 OR VISTA protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of PD-L3 OR VISTA protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of PD-L3 OR VISTA protein having less than about 30% (by dry weight) of non-PD-L3 OR VISTA protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-PD-L3 OR VISTA protein, still more preferably less than about 10% of non-PD-L3 OR VISTA protein, and most preferably less than about 5% non-PD-L3 OR VISTA protein. When the PD-L3 OR VISTA protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture

medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.

[00126] The language "substantially free of chemical precursors or other chemicals" includes preparations of PD-L3 OR VISTA protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of PD-L3 OR VISTA protein having less than about 30% (by dry weight) of chemical precursors or non-PD-L3 OR VISTA chemicals, more preferably less than about 20% chemical precursors or non-PD-L3 OR VISTA chemicals, still more preferably less than about 10% chemical precursors or non-PD-L3 OR VISTA chemicals, and most preferably less than about 5% chemical precursors or non-PD-L3 OR VISTA chemicals.

[00127] The term "antibody", as used herein, includes an "antigen-binding portion" of an antibody (or simply "antibody portion"), as well as whole antibody molecules. The term "antigen-binding portion", as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., PD-L3 OR VISTA). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Examples of binding fragments encompassed within the term "antigen-binding portion" of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody; (v) a dAb fragment (Ward et al. (1989) *Nature* 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988) *Science* 242:423-

426; and Huston et al. (1988) Proc Natl. Acad. Sci. USA 85:5879-5883; and Osbourn et al. 1998 Nat. Biotechnol. 16:778). Such single chain antibodies are also intended to be encompassed within the term "antigen-binding portion" of an antibody. Any VH and VL sequences of specific scFv can be linked to human immunoglobulin constant region cDNA or genomic sequences, in order to generate expression vectors encoding complete IgG molecules or other isotypes. VH and VL can also be used in the generation of Fab, Fv, or other fragments of immunoglobulins using either protein chemistry or recombinant DNA technology. Other forms of single chain antibodies, such as diabodies are also encompassed. Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger, P. et al. (1993) Proc Natl. Acad. Sci. USA 90:6444-6448; Poljak, R. J. et al. (1994) Structure 2:1121-1123).

[00128] Still further, an antibody or antigen-binding portion thereof may be part of a larger immunoadhesion molecules, formed by covalent or noncovalent association of the antibody or antibody portion with one or more other proteins or peptides. Examples of such immunoadhesion molecules include use of the streptavidin core region to make a tetrameric scFv molecule (Kipriyanov, S. M. et al. (1995) Hum. Antibodies Hybridomas 6:93-101) and use of a cysteine residue, a marker peptide and a C-terminal polyhistidine tag to make bivalent and biotinylated scFv molecules (Kipriyanov, S. M. et al. (1994) Mol Immunol. 31:1047-1058). Antibody portions, such as Fab and F(ab')2 fragments, can be prepared from whole antibodies using conventional techniques, such as papain or pepsin digestion, respectively, of whole antibodies. Moreover, antibodies, antibody portions and immunoadhesion molecules can be obtained using standard recombinant DNA techniques, as described herein.

[00129] Antibodies may be polyclonal or monoclonal; xenogeneic, allogeneic, or syngeneic; or modified forms thereof, e.g., humanized, chimeric, etc Preferably, antibodies of the invention bind specifically or substantially specifically to PD-L3 OR VISTA molecules. The terms "monoclonal antibodies" and "monoclonal antibody

composition", as used herein, refer to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of an antigen, whereas the term "polyclonal antibodies" and "polyclonal antibody composition" refer to a population of antibody molecules that contain multiple species of antigen binding sites capable of interacting with a particular antigen. A monoclonal antibody composition, typically displays a single binding affinity for a particular antigen with which it immunoreacts.

[00130] The term "humanized antibody", as used herein, is intended to include antibodies made by a non-human cell having variable and constant regions which have been altered to more closely resemble antibodies that would be made by a human cell. For example, by altering the non-human antibody amino acid sequence to incorporate amino acids found in human germline immunoglobulin sequences. The humanized antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs. The term "humanized antibody", as used herein, also includes antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.

[00131] An "isolated antibody", as used herein, is intended to refer to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds PD-L3 OR VISTA is substantially free of antibodies that specifically bind antigens other than PD-L3 OR VISTA). Moreover, an isolated antibody may be substantially free of other cellular material and/or chemicals.

[00132] An "oligomerization domain" herein refers to a domain that when attached to a VISTA extracellular domain or fragment thereof, facilitates oligomerization. Said oligomerization domains comprise self-associating .alpha.-helices, for example, leucine zippers, that can be further stabilized by additional disulfide bonds. The domains are designed to be compatible with vectorial folding across a membrane, a process thought to

facilitate *in vivo* folding of the polypeptide into a functional binding protein. Examples thereof are known in the art and include by way of example coiled GCN4, and COMP.

[00133] The α -helical coiled coil is probably the most widespread subunit oligomerization motif found in proteins. Accordingly, coiled coils fulfill a variety of different functions. In several families of transcriptional activators, for example, short leucine zippers play an important role in positioning the DNA-binding regions on the DNA (Ellenberger et al., 1992, Cell 71:1223-1237). Coiled coils are also used to form oligomers of intermediate filament proteins. Coiled-coil proteins furthermore appear to play an important role in both vesicle and viral membrane fusion (Skehel and Wiley, 1998, Cell 95:871-874). In both cases hydrophobic sequences, embedded in the membranes to be fused, are located at the same end of the rod-shaped complex composed of a bundle of long α -helices. This molecular arrangement is believed to cause close membrane apposition as the complexes are assembled for membrane fusion. The coiled coil is often used to control oligomerization. It is found in many types of proteins, including transcription factors such as, but not limited to GCN4, viral fusion peptides, SNARE complexes and certain tRNA synthetases, among others. Very long coiled coils are found in proteins such as tropomyosin, intermediate filaments and spindle-pole-body components. Coiled coils involve a number of α -helices that are supercoiled around each other in a highly organized manner that associate in a parallel or an antiparallel orientation. Although dimers and trimers are the most common. The helices may be from the same or from different proteins. The coiled-coil is formed by component helices coming together to bury their hydrophobic seams. As the hydrophobic seams twist around each helix, so the helices also twist to coil around each other, burying the hydrophobic seams and forming a supercoil. It is the characteristic interdigitation of side chains between neighbouring helices, known as knobs-into-holes packing, that defines the structure as a coiled coil. The helices do not have to run in the same direction for this type of interaction to occur, although parallel conformation is more common. Antiparallel conformation is very rare in trimers and unknown in pentamers, but more common in intramolecular dimers, where the two helices are often connected by a short loop. In the extracellular space, the heterotrimeric coiled-coil protein laminin plays an

important role in the formation of basement membranes. Other examples are the thrombospondins and cartilage oligomeric matrix protein (COMP) in which three (thrombospondins 1 and 2) or five (thrombospondins 3, 4 and COMP) chains are connected. The molecules have a flower bouquet-like appearance, and the reason for their oligomeric structure is probably the multivalent interaction of the C-terminal domains with cellular receptors. The yeast transcriptional activator GCN4 is 1 of over 30 identified eukaryotic proteins containing the basic region leucine zipper (bZIP) DNA-binding motif (Ellenberger et al., 1992, *Cell* 71:1223-1237). The bZIP dimer is a pair of continuous alpha helices that form a parallel coiled-coil over their carboxy-terminal 34 residues and gradually diverge toward their amino termini to pass through the major groove of the DNA binding site. The coiled-coil dimerization interface is oriented almost perpendicular to the DNA axis, giving the complex the appearance of the letter T. bZIP contains a 4-3 heptad repeat of hydrophobic and nonpolar residues that pack together in a parallel alpha-helical coiled-coil (Ellenberger et al., 1992, *Cell* 71:1223-1237). The stability of the dimer results from the side-by-side packing of leucines and nonpolar residues in positions a and d of the heptad repeat, as well as a limited number of intra- and interhelical salt bridges, shown in a crystal structure of the GCN4 leucine zipper peptide (Ellenberger et al., 1992, *Cell* 71:1223-1237). Another example is CMP (matrilin-1) isolated from bovine tracheal cartilage as a homotrimer of subunits of Mr 52,000 (Paulsson and Heinegard, 1981, *Biochem J.* 197:367-375), where each subunit consists of a vWFA1 module, a single EGF domain, a vWFA2 module and a coiled coil domain spanning five heptads (Kiss et al., 1989, *J. Biol. Chem.* 264:8126-8134; Hauser and Paulsson, 1994, *J. Biol. Chem.* 269:25747-25753). Electron microscopy of purified CMP showed a bouquet-like trimer structure in which each subunit forms an ellipsoid emerging from a common point corresponding to the coiled coil (Hauser and Paulsson, 1994, *J. Biol. Chem.* 269:25747-25753). The coiled coil domain in matrilin-1 has been extensively studied. The trimeric structure is retained after complete reduction of interchain disulfide bonds under non-denaturing conditions (Hauser and Paulsson, 1994, *J. Biol. Chem.* 269:25747-25753). Yet another example is Cartilage Oligomeric Matrix Protein (COMP). A non-collagenous glycoprotein, COMP, was first identified in cartilage (Hedbom et al., 1992, *J. Biol. Chem.* 267:6132-6136). The protein is a 524 kDa

homopentamer of five subunits which consists of an N-terminal heptad repeat region (cc) followed by four epidermal growth factor (EGF)-like domains (EF), seven calcium-binding domains (T3) and a C-terminal globular domain (TC). According to this domain organization, COMP belongs to the family of thrombospondins. Heptad repeats (abcdefg).sub.n with preferentially hydrophobic residues at positions a and d form helical coiled-coil domains (Cohen and Parry, 1994, *Science* 263:488-489). Recently, the recombinant five-stranded coiled-coil domain of COMP (COMPcc) was crystallized and its structure was solved at 0.2 nm resolution (Malashkevich et al., 1996, *Science* 274:761-765).

[00134] The term "family" when referring to the polypeptide and nucleic acid molecules of the invention is intended to mean two or more polypeptide or nucleic acid molecules having a common structural domain or motif and having sufficient amino acid or nucleotide sequence homology as defined herein. Such family members can be naturally or non-naturally occurring and can be from either the same or different species. For example, a family can contain a first polypeptide of human origin, as well as other, distinct polypeptides of human origin or alternatively, can contain homologues of non-human origin, e.g., monkey polypeptides. Members of a family may also have common functional characteristics.

[00135] For example, the family of PD-L3 OR VISTA polypeptides of the present invention preferably comprises least one "signal peptide domain". As used herein, a "signal sequence" or "signal peptide" includes a peptide containing about 15 or more amino acids which occurs at the N-terminus of secretory and membrane bound polypeptides and which contains a large number of hydrophobic amino acid residues. For example, a signal sequence contains at least about 10-30 amino acid residues, preferably about 15-25 amino acid residues, more preferably about 18-20 amino acid residues, and even more preferably about 19 amino acid residues, and has at least about 35-65%, preferably about 38-50%, and more preferably about 40-45% hydrophobic amino acid residues (e.g., Valine, Leucine, Isoleucine or Phenylalanine). Such a "signal sequence", also referred to in the art as a "signal peptide", serves to direct a polypeptide containing such a sequence to a lipid bilayer, and is cleaved in secreted and membrane bound

polypeptides. As described infra a signal sequence was identified in the amino acid sequence of native human PD-L3 OR VISTA and was also identified in the amino acid sequence of native mouse PD-L3 OR VISTA

[00136] In another embodiment of the invention, a PD-L3 OR VISTA polypeptide of the present invention is identified based on the presence of a "transmembrane domain". As used herein, the term "transmembrane domain" includes an amino acid sequence of about 15 amino acid residues in length which spans the plasma membrane. More preferably, a transmembrane domain includes about at least 20, 25, 30, 35, 40, or 45 amino acid residues and spans the plasma membrane. Transmembrane domains are rich in hydrophobic residues, and typically have an alpha-helical structure. In a preferred embodiment, at least 50%, 60%, 70%, 80%, 90%, 95% or more of the amino acids of a transmembrane domain are hydrophobic, e.g., leucines, isoleucines, tyrosines, or tryptophans. Transmembrane domains are described in, for example, Zagotta, W. N. et al. (1996) *Annu. Rev. Neurosci.* 19:235-263.

The transmembrane domain region of PDL3 are identified herein (see e.g., Figure 1).

[00137] In another embodiment, a PD-L3 OR VISTA molecule of the present invention is identified based on the absence of an "IgC domain" and the presence of an "IgV domain" in the polypeptide or corresponding nucleic acid molecule. As used herein, IgV and IgC domains are recognized in the art as Ig superfamily member domains. These domains correspond to structural units that have distinct folding patterns called Ig folds. Ig folds are comprised of a sandwich of two beta sheets, each consisting of antiparallel beta strands of 5-10 amino acids with a conserved disulfide bond between the two sheets in most, but not all, domains. IgC domains of Ig, TCR, and MHC molecules share the same types of sequence patterns and are called the C1 set within the Ig superfamily. Other IgC domains fall within other sets. IgV domains also share sequence patterns and are called V set domains. IgV domains are longer than C-domains and form an additional pair of beta strands. The amino acid residues of the native human and murine PD-L3 OR VISTA polypeptide, constituting the IgV domains can be seen in Figure 1. The presence

of an IgV domain is likely required for binding of PD-L3 OR VISTA to its natural binding partner(s)

[00138] In another embodiment, a PD-L3 OR VISTA molecule of the present invention is identified based on the presence of a "extracellular domain" in the polypeptide or corresponding nucleic acid molecule. As used herein, the term "extracellular domain" represents the N-terminal amino acids which extend as a tail from the surface of a cell. An extracellular domain of the present invention includes an IgV domain and may include a signal peptide domain. (See Figure 1).

[00139] In still another embodiment, a PD-L3 OR VISTA molecule of the present invention is identified based on the presence of a "cytoplasmic domain" in the polypeptide or corresponding nucleic acid molecule. As used herein, the term "cytoplasmic domain" represents the C-terminal amino acids which extend as a tail into the cytoplasm of a cell. predicted to comprise cytoplasmic domains.

[00140] In a preferred embodiment, the PD-L3 OR VISTA molecules of the invention include at least one or more of the following domains: a signal peptide domain, an IgV domain, an extracellular domain, a transmembrane domain, and a cytoplasmic domain.

[00141] Isolated polypeptides of the present invention, preferably PD-L3 OR VISTA polypeptides, have an amino acid sequence sufficiently identical to the amino acid sequence of SEQ ID NO: 2 or 4, or 5 or are encoded by a nucleotide sequence sufficiently identical to SEQ ID NO: 1 or 3 or fragment or complement thereof. As used herein, the term "sufficiently identical" refers to a first amino acid or nucleotide sequence which contains a sufficient or minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain) amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences share common structural domains or motifs and/or a common functional activity. For example, amino acid or nucleotide sequences which share common structural domains have at least 30%, 40%, or 50% homology, preferably 60% homology, more preferably 70%-80%, and even more preferably 90-95% homology across the amino acid sequences of the domains and contain at least one and preferably

two structural domains or motifs, are defined herein as sufficiently identical. Furthermore, amino acid or nucleotide sequences which share at least 30%, 40%, or 50%, preferably 60%, more preferably 70-80%, or 90-95% homology and share a common functional activity are defined herein as sufficiently identical.

[00142] As used interchangeably herein, "PD-L3 OR VISTA activity", "biological activity of PD-L3 OR VISTA" or "functional activity of PD-L3 OR VISTA", refers to an activity exerted by a PD-L3 OR VISTA protein, polypeptide or nucleic acid molecule on a PD-L3 OR VISTA-responsive cell or tissue, or on a PD-L3 OR VISTA polypeptide binding partner, as determined *in vivo*, or *in vitro*, according to standard techniques. These activities include modulating CD4+ and CD8+ T cell proliferation and cytokine production. In another embodiment, a PD-L3 OR VISTA activity is a direct activity, such as an association with a PD-L3 OR VISTA binding partner. As used herein, a "target molecule" or "binding partner" is a molecule with which a PD-L3 OR VISTA polypeptide binds or interacts in nature, i.e., expressed on a T cell, such that PD-L3 OR VISTA-mediated function is achieved. Alternatively, a PD-L3 OR VISTA activity is an indirect activity, such as a cellular signaling activity mediated by the PD-L3 OR VISTA polypeptide. The biological activities of PD-L3 OR VISTA are described herein. For example, the PD-L3 OR VISTA polypeptides and PD-L3 OR VISTA agonists or antagonists of the present invention can have one or more of the following activities: (1) suppresses or promotes CD4+ and CD8+ T cell proliferation, (2) suppresses or promotes cytokine production (3) functions as a regulatory ligand that negatively regulates T cell responses during cognate interactions between T cells and myeloid derived APCs (4) negatively regulates CD4+ T cell responses by suppressing early TCR activation and arresting cell division, but with minimum direct impact on apoptosis, (5) suppresses or promotes antigen-specific T cell activation during cognate interactions between APCs and T cells and/or (6) suppresses or promotes T cell-mediated immune responses; (7) modulate activation of immune cells, e.g., T lymphocytes, and (8) modulate the immune response, e.g., inflammatory immune response of an organism, e.g., a mouse or human organism.

[00143] Accordingly, another embodiment of the invention features isolated PD-L3 OR VISTA proteins and polypeptides that modulate one or more PD-L3 OR VISTA activities. These polypeptides will include PD-L3 OR VISTA polypeptides having one or more of the following domains: a signal peptide domain, an IgV domain, an extracellular domain, a transmembrane domain, and a cytoplasmic domain, and, preferably, a PD-L3 OR VISTA activity.

[00144] Additional preferred PD-L3 OR VISTA polypeptides may have at least one extracellular domain, and one or more of a signal peptide domain, an IgV domain, an transmembrane domain, and a cytoplasmic domain, and are, preferably, encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising a complement of the nucleotide sequence of SEQ ID NO: 1 or 3 herein. The nucleotide and amino acid sequences sequence of the exemplified isolated human and murine PD-L3 OR VISTA cDNA and the predicted amino acid sequence of the human PD-L3 OR VISTA polypeptide are contained in the sequence listing herein.

[00145] Human VISTA or PD-L3 OR VISTA was identified as an upregulated molecule in a T cell transcriptional profiling screen. Our characterization of an identical 930 bp gene product recovered from a murine CD4⁺ T-cell cDNA library confirmed the size and sequence. Silico-sequence and structural analysis predicts a type I transmembrane protein of 309 amino acids upon maturation. Its extracellular domain contains a single extracellular Ig-V domain of 136 amino acids, which is linked to a 23-amino acid stalk region, a 21-residue transmembrane segment, and a 97-amino acid cytoplasmic domain. The cytoplasmic tail of VISTA does not contain any signaling domains. A BLAST sequence search with the VISTA Ig-V domain identified PD-L1 of the B7 family as the closest evolutionarily related protein with a borderline significant e-value score. A structure based sequence alignment of VISTA with the B7 family members PD-L1, PD-L2, B7-H3, and B7-H4 highlights several amino acids that are systematically conserved in all Ig-V domain proteins.

[00146] Various aspects of the invention are described in further detail in the following subsections:

[0127] I. PD-L3 OR VISTA Isolated Nucleic Acid Molecules

[00147] One aspect of the invention pertains to isolated nucleic acid molecules that encode PD-L3 OR VISTA polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes to identify PD-L3 OR VISTA-encoding nucleic acid molecules (e.g., PD-L3 OR VISTA mRNA) and fragments for use as PCR primers for the amplification or mutation of PD-L3 OR VISTA nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g. cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.

[00148] The term "isolated nucleic acid molecule" includes nucleic acid molecules which are separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. For example, with regards to genomic DNA, the term "isolated" includes nucleic acid molecules which are separated from the chromosome with which the genomic DNA is naturally associated. Preferably, an "isolated" nucleic acid molecule is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid molecule) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated PD-L3 OR VISTA nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid molecule is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium, when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.

[00149] A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 1,3, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or portion of the nucleic acid sequence of SEQ ID NO: 1, or 3 as a hybridization probe, PD-L3 OR VISTA nucleic acid molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, J. et al. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).

[00150] Moreover, a nucleic acid molecule encompassing all or a portion of SEQ ID NO: 1, 3, or an ortholog or variant can be isolated by the polymerase chain reaction (PCR) using synthetic oligonucleotide primers designed based upon the sequence of SEQ ID NO: 1,2, 3, 4 or 5.

[00151] A nucleic acid molecule of the invention can be amplified using cDNA, mRNA or, alternatively, genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid molecule so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to PD-L3 nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

[00152] In a preferred embodiment, an isolated PD-L3 OR VISTA encoding nucleic acid molecule of the invention comprises the nucleotide sequence shown in SEQ ID NO: 1, or 3, or a fragment thereof. In another embodiment the nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of the nucleotide sequence shown in SEQ ID NO: 1, or 3, or a portion of any of these nucleotide sequences. A nucleic acid molecule which is complementary to the nucleotide sequence shown in SEQ ID NO: 1, or 3, is one which is sufficiently complementary to the nucleotide sequence shown in SEQ ID NO: 1, or 3 such that it can hybridize to the nucleotide sequence shown in SEQ ID NO: 1, or 3 respectively, thereby forming a stable duplex.

[00153] In still another preferred embodiment, an isolated nucleic acid molecule of the present invention comprises a nucleotide sequence which is at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the entire length of the nucleotide sequence shown in SEQ ID NO: 1 or 3, or a portion of any of these nucleotide sequences.

[00154] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the nucleic acid sequence of SEQ ID NO: 1, or 3, for example, a fragment which can be used as a probe or primer or a fragment which encodes a portion of a PD-L3 OR VISTA polypeptide, e.g., a biologically active portion of a PD-L3 OR VISTA-polypeptide. The nucleotide sequences determined from the cloning of the human PD-L2 gene allow for the generation of probes and primers designed for use in identifying and/or cloning other PD-L2 family members, as well as PD-L3 OR VISTA homologues from other species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12 or 15, preferably about 20 or 25, more preferably about 30, 35, 40, 45, 50, 55, 60, 65, or 75 consecutive nucleotides of a sense sequence of SEQ ID NO: 1, or 3; of an anti-sense sequence of SEQ ID NO: 1, 3, or a naturally occurring allelic variant or mutant of SEQ ID NO: 1, or 3.

[00155] In one embodiment, a nucleic acid molecule of the present invention comprises a nucleotide sequence which is greater than about 50-100, 100-150, 150-200, 200-250, 250-300, 300-350, 350-400, 400-450, 450-500, 500-550, 550-600, 600-650, 650-700, 700-750, 750-800, 800-850, 850-900, 900-950 or more nucleotides in length and hybridizes under stringent hybridization conditions to a nucleic acid molecule of SEQ ID NO: 1, or 3, or the complement thereof. In a further embodiment, a nucleic acid molecule of the present invention comprises a nucleotide sequence which is greater than about 880-900, 900-950, 950-1000, 1000-1050, 1050-1100, 1100-1150 or more nucleotides in length and hybridizes under stringent hybridization conditions to a nucleic acid molecule of SEQ ID NO: 1 or 3, or the complement thereof. In yet another embodiment, a nucleic acid molecule of the present invention comprises a nucleotide sequence which is greater than 50-100, 100-150, 150-200, 200-250, 250-300 or more

nucleotides in length and hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the coding region in SEQ ID NO: 1 or 3, or a complement thereof. In yet a further embodiment, a nucleic acid molecule of the present invention comprises a nucleotide sequence which is greater than about 50-100, 100-150, 150-200, 200-250, 250-300, 300-350, 350-400, 400-450, 450-500, 500-550, 550-600, 600-650, 650-700, 700-750, 750-800, 850-900, 900-950, or more nucleotides in length, includes at least about 15 (i.e., 15 contiguous) nucleotides of the sequence comprising the coding region of SEQ ID NO: 1 or 3, or a complement thereof, and hybridizes under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence shown in SEQ ID NO: 1, or 3 a complement thereof.

[00156] Probes based on the PD-L3 OR VISTA nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous polypeptides. In preferred embodiments, the probe further comprises a label group attached thereto, e.g., the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissue which misexpress a PD-L3 OR VISTA polypeptide, such as by measuring a level of a PD-L3 OR VISTA-encoding nucleic acid in a sample of cells from a subject e.g., detecting PD-L3 OR VISTA mRNA levels or determining whether a genomic PD-L3 OR VISTA gene has been mutated or deleted.

[00157] A nucleic acid fragment encoding a "biologically active portion of a PD-L3 OR VISTA polypeptide" can be prepared by isolating a portion of the nucleotide sequence of SEQ ID NO: 1, or 3 which encodes a polypeptide having a PD-L3 OR VISTA biological activity (e.g., the ability to bind to its natural binding partner(s) and/or modulate immune cell activity), expressing the encoded portion of the PD-L3 OR VISTA polypeptide (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the PD-L3 OR VISTA polypeptide.

[00158] The invention further encompasses nucleic acid molecules that differ from the nucleotide sequence shown in SEQ ID NO: 1, or 3 due to degeneracy of the genetic code and thus encode the same PD-L3 OR VISTA polypeptides as those encoded by the

nucleotide sequence shown in SEQ ID NO: 1, or 3. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a polypeptide having an amino acid sequence shown in SEQ ID NO: 2, 4 or 5.

[00159] In addition to the PD-L3 OR VISTA nucleotide sequences shown in SEQ ID NO: 1, and 3, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the PD-L3 OR VISTA polypeptides may exist within a population (e.g., the human population). Such genetic polymorphism in the PD-L3 OR VISTA genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules which include an open reading frame encoding a PD-L3 OR VISTA polypeptide, preferably a mammalian PD-L3 OR VISTA polypeptide, and can further include non-coding regulatory sequences, and introns.

[00160] Allelic variants of human or mouse PD-L3 OR VISTA include both functional and non-functional PD-L3 OR VISTA polypeptides. Functional allelic variants are naturally occurring amino acid sequence variants of the human or mouse PD-L3 OR VISTA polypeptide that maintain the ability to bind natural PD-L3 OR VISTA binding partner(s) and/or modulate CD4+ and CD8+ T cell proliferation and cytokine production and lymphocyte activation. Functional allelic variants will typically contain only conservative substitution of one or more amino acids of SEQ ID NO: 2, 4 or 5, or substitution, deletion or insertion of non-critical residues in non-critical regions of the polypeptide.

[00161] Non-functional allelic variants are naturally occurring amino acid sequence variants of the human or mouse PD-L3 OR VISTA polypeptide that do not have the ability to either bind natural PD-L3 OR VISTA binding partners, and/or modulate any of the PD-L3 OR VISTA activities described herein. Non-functional allelic variants will typically contain a non-conservative substitution, deletion, or insertion or premature truncation of the amino acid sequence of SEQ ID NO: 2, 4 or 5, or a substitution, insertion or deletion in critical residues or critical regions of the polypeptide, e.g., in an IgV domain.

[00162] The present invention further provides non-human, non-mouse orthologs of the human or mouse PD-L3 OR VISTA polypeptide. Orthologs of the human or mouse PD-L3 OR VISTA polypeptide are polypeptides that are isolated from non-human, non-mouse organisms and possess the same binding activity and/or lymphocyte activation-modulating activity, and ability to modulate CD4+ and CD8+ T cell proliferation and cytokine production as the human and murine PD-L3 OR VISTA polypeptides disclosed herein. Orthologs of the human or mouse PD-L3 polypeptide can readily be identified as comprising an amino acid sequence that is substantially identical to SEQ ID NO: 2, 4 or 5.

[00163] Moreover, nucleic acid molecules encoding other PD-L3 OR VISTA family members and, thus, which have a nucleotide sequence which differs from the PD-L3 OR VISTA sequences of SEQ ID NO: 1, or 3 are intended to be within the scope of the invention. For example, another PD-L3 OR VISTA cDNA can be identified based on the nucleotide sequence of mouse or human PD-L3 OR VISTA. Moreover, nucleic acid molecules encoding PD-L3 OR VISTA polypeptides from different species, and which, thus, have a nucleotide sequence which differs from the PD-L3 OR VISTA sequences of SEQ ID NO: 1, or 3 are intended to be within the scope of the invention. For example, a monkey PD-L3 OR VISTA cDNA can be identified based on the nucleotide sequence of the mouse or human PD-L3 OR VISTA.

[00164] Nucleic acid molecules corresponding to natural allelic variants and homologues of the PD-L3 OR VISTA cDNAs of the invention can be isolated based on their homology to the PD-L2 nucleic acids disclosed herein using the cDNAs disclosed herein, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. Nucleic acid molecules corresponding to natural allelic variants and homologues of the PD-L3 OR VISTA cDNAs of the invention can further be isolated by mapping to the same chromosome or locus as the PD-L3 OR VISTA gene.

[00165] Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15, 20, 25, 30 or more nucleotides in length and hybridizes under

stringent conditions to the nucleic acid molecule comprising the coding region of the nucleotide sequence of SEQ ID NO: 1 or 3. In other embodiment, the nucleic acid is at least 700, 750, 800, 850, 880-900, 900-950, 950-1000, 1000-1050, 1050-1100, 1100-1150 or more nucleotides in length.

[00166] As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences that are significantly identical or homologous to each other remain hybridized to each other. Preferably, the conditions are such that sequences at least about 70%, more preferably at least about 80%, even more preferably at least about 85% or 90% identical to each other remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, Ausubel et al., eds., John Wiley & Sons, Inc (1995), sections 2, 4 and 6. Additional stringent conditions can be found in Molecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989), chapters 7, 9 and 11. A preferred, non-limiting example of stringent hybridization conditions includes hybridization in 4 times or 6 times sodium chloride/sodium citrate (SSC), at about 65-70 degrees C (or hybridization in 4 times SSC plus 50% formamide at about 42-50 degrees C.) followed by one or more washes in 1 X SSC, at about 65-70 degrees C. A further preferred, non-limiting example of stringent hybridization conditions includes hybridization at 6 times SSC at 45 degrees C., followed by one or more washes in 0.2 times SSC, 0.1% SDS at 65 degrees C. A preferred, non-limiting example of highly stringent hybridization conditions includes hybridization in 1 times SSC, at about 65-70 degrees C (or hybridization in 1 times SSC plus 50% formamide at about 42-50 degrees C.) followed by one or more washes in 0.3 times SSC, at about 65-70 degrees C. A preferred, non-limiting example of reduced stringency hybridization conditions includes hybridization in 4 times or 6 times SSC, at about 50-60 degrees C (or alternatively hybridization in 6 times SSC plus 50% formamide at about 40-45 degrees C.) followed by one or more washes in 2 times SSC, at about 50-60 degrees C. Ranges intermediate to the above-recited values, e.g., at 65-70 degrees C or at 42-50 degrees C are also intended to be encompassed by the present invention. SSPE (1 times SSPE is 0.15M

NaCl, 10 mM NaH₂PO₄, and 1.25 mM EDTA, pH 7.4) can be substituted for SSC (1 times SSC is 0.15M NaCl and 15 mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes each after hybridization is complete. The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10 degrees C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m(degrees C.)=2(# of A+T bases)+4(# of G+C bases). For hybrids between 18 and 49 base pairs in length, T_m(degrees C.)=81.5+16.6(log₁₀[Na⁺])+0.41(%G+C)-(600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na⁺] for 1 times SSC=0.165 M). It will also be recognized by the skilled practitioner that additional reagents may be added to hybridization and/or wash buffers to decrease non-specific hybridization of nucleic acid molecules to membranes, for example, nitrocellulose or nylon membranes, including but not limited to blocking agents (e.g., BSA or salmon or herring sperm carrier DNA), detergents (e.g., SDS), chelating agents (e.g., EDTA), Ficoll, PVP and the like. When using nylon membranes, in particular, an additional preferred, non-limiting example of stringent hybridization conditions is hybridization in 0.25-0.5M NaH₂PO₄, 7% SDS at about 65 degrees C., followed by one or more washes at 0.02M NaH₂PO₄, 1% SDS at 65 degrees C., see e.g., Church and Gilbert (1984) Proc. Natl. Acad. Sci. USA 81:1991-1995 (or alternatively 0.2 times SSC, 1% SDS).

[00167] Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID NO: 1, or 3 or corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (i.e., encodes a natural polypeptide).

[00168] In addition to naturally-occurring allelic variants of the PD-L3 OR VISTA sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of SEQ ID NO: 1 or 3, thereby leading to changes in the amino acid sequence of the encoded PD-L3 OR

VISTA polypeptides, without altering the functional ability of the PD-L3 OR VISTA polypeptides. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in the sequence of SEQ ID NO: 1, or 3. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of PD-L3 OR VISTA (e.g., the sequence of SEQ ID NO: 2, 4 or 5) without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity. For example, amino acid residues that are conserved among the PD-L3 OR VISTA polypeptides of the present invention, e.g., those present in an extracellular domain, are predicted to be particularly unamenable to alteration. Furthermore, additional amino acid residues that are conserved between the PD-L3 OR VISTA polypeptides of the present invention and other members of the PD-L3 OR VISTA family are not likely to be amenable to alteration.

[00169] Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding PD-L3 OR VISTA polypeptides that contain changes in amino acid residues that are not essential for activity. Such PD-L3 OR VISTA polypeptides differ in amino acid sequence from SEQ ID NO: 2, 4 or 5, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence at least about 71%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ID NO: 2, 4 or 5.

[00170] An isolated nucleic acid molecule encoding a PD-L3 or VISTA polypeptide identical to the polypeptide of SEQ ID NO: 2, 4 or 5 can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO: 1 or 3 such that one or more amino acid substitutions, additions or deletions are introduced into the encoded polypeptide. Mutations can be introduced into SEQ ID NO: 1 or 3 by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been

defined in the art. These families include amino acids with basic side chains (e.g. lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a PD-L3 OR VISTA polypeptide is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a PD-L3 OR VISTA coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for PD-L3 OR VISTA biological activity to identify mutants that retain activity. Following mutagenesis of SEQ ID NO: 1, or 3, the encoded polypeptide can be expressed recombinantly and the activity of the polypeptide can be determined.

[00171] In a preferred embodiment, a mutant PD-L3 OR VISTA polypeptide can be assayed for the ability to bind to and/or modulate the activity of a natural PD-L3 OR VISTA binding partner, to modulate intra- or intercellular signaling, modulate activation of T lymphocytes, and/or modulate the immune response of an organism.

[00172] Yet another aspect of the invention pertains to isolated nucleic acid molecules encoding a PD-L3 OR VISTAPD-L3 OR VISTA OR VISTA fusion proteins. Such nucleic acid molecules, comprising at least a first nucleotide sequence encoding a PD-L3 OR VISTAPD-L3 OR VISTA OR VISTA protein, polypeptide or peptide operatively linked to a second nucleotide sequence encoding a non-PD-L3 OR VISTA protein, polypeptide or peptide, can be prepared by standard recombinant DNA techniques.

[00173] In addition to the nucleic acid molecules encoding PD-L3 OR VISTA polypeptides described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a polypeptide, e.g., complementary to the coding strand of a double-stranded cDNA

molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire PD-L3 OR VISTA coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding a PD-L3 OR VISTA. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding PD-L. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (also referred to as 5' and 3' untranslated regions). Given the coding strand sequences encoding human or mouse PD-L3 OR VISTAPD-L3 OR VISTA OR VISTA disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of PD-L3 OR VISTA mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of PD-L3 OR VISTA mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of PD-L3 OR VISTA OR VISTA mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid molecule of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid molecule (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxymethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridin- e, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-

galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiacytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

[00174] The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a PD-L3 OR VISTAPD-L3 OR VISTA OR VISTA polypeptide to thereby inhibit expression of the polypeptide, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention include direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the

antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

[00175] In yet another embodiment, the antisense nucleic acid molecule of the invention is an .alpha.-anomeric nucleic acid molecule. An .alpha.-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual .beta.-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).

[00176] In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haseloff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave PD-L3 OR VISTA mRNA transcripts to thereby inhibit translation of PD-L3 OR VISTA OR VISTA mRNA. A ribozyme having specificity for a PD-L3 OR VISTA-encoding nucleic acid can be designed based upon the nucleotide sequence of a PD-L3 OR VISTA cDNA disclosed herein (i. e., SEQ ID NO: 1 or 3). For example, a derivative of a *Tetrahymena* L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a PD-L3 OR VISTAPD-L3 OR VISTA OR VISTA-encoding mRNA. See, e.g., Cech et al., U.S. Pat. No. 4,987,071 and Cech et al., U.S. Pat. No. 5,116,742. Alternatively, PD-L3 OR VISTA mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J. W. (1993) *Science* 261:1411-1418.

[00177] Alternatively, PD-L3 or VISTA gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the PD-L3 or VISTA (e.g., the PD-L3 or VISTA promoter and/or enhancers; to form triple helical

structures that prevent transcription of the PD-L3 gene in target cells. See generally, Helene, C (1991) *Anticancer Drug Des.* 6(6):569-84; Helene, C et al. (1992) *Ann. N.Y. Acad. Sci.* 660:27-36; and Maher, L. J. (1992) *Bioessays* 14(12):807-15.

[00178] In yet another embodiment, the PD-L3 or VISTA nucleic acid molecules of the present invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acid molecules can be modified to generate peptide nucleic acids (see Hyrup, B. and Nielsen, P. E. (1996) *Bioorg. Med. Chem.* 4(1):5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup and Nielsen (1996) *supra* and Perry-O'Keefe et al. (1996) *Proc Natl. Acad. Sci. USA* 93:14670-675.

[00179] PNAs of PD-L3 OR VISTA nucleic acid molecules can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antogene agents for sequence-specific modulation of gene expression by, for example, inducing transcription or translation arrest or inhibiting replication. PNAs of PD-L3 OR VISTA nucleic acid molecules can also be used in the analysis of single base pair mutations in a gene (e.g., by PNA-directed PCR clamping); as 'artificial restriction enzymes' when used in combination with other enzymes (e.g., S1 nucleases (Hyrup and Nielsen (1996) *supra*)); or as probes or primers for DNA sequencing or hybridization (Hyrup and Nielsen (1996) *supra*; Perry-O'Keefe et al. (1996) *supra*).

[00180] In another embodiment, PNAs of PD-L3 OR VISTA can be modified (e.g., to enhance their stability or cellular uptake), by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of PD-

L3 OR VISTA nucleic acid molecules can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes (e.g., RNase H and DNA polymerases), to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup and Nielsen (1996) *supra*). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup and Nielsen (1996) *supra* and Finn P. J. et al. (1996) *Nucleic Acids Res.* 24 (17):3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs, e.g., 5'- (4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used as a bridge between the PNA and the 5' end of DNA (Mag, M. et al. (1989) *Nucleic Acids Res.* 17:5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn P. J. et al. (1996) *supra*). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser, K. H. et al. (1975) *Bioorganic Med. Chem. Lett.* 5:1119-1124).

[00181] In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors *in vivo*), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) *Proc Natl. Acad. Sci. USA* 86:6553-6556; Lemaitre et al. (1987) *Proc Natl. Acad. Sci. USA* 84:648-652; PCT Publication No. WO 88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (See, e.g., Krol et al. (1988) *Biotechniques* 6:958-976) or intercalating agents (See, e.g., Zon (1988) *Pharm. Res.* 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule (e.g., a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent).

[00182] Alternatively, the expression characteristics of an endogenous PD-L3 OR VISTA gene within a cell line or microorganism may be modified by inserting a

heterologous DNA regulatory element into the genome of a stable cell line or cloned microorganism such that the inserted regulatory element is operatively linked with the endogenous PD-L3 OR VISTA gene. For example, an endogenous PD-L3 OR VISTA gene which is normally "transcriptionally silent", i.e., a PD-L3 OR VISTA gene which is normally not expressed, or is expressed only at very low levels in a cell line or microorganism, may be activated by inserting a regulatory element which is capable of promoting the expression of a normally expressed gene product in that cell line or microorganism. Alternatively, a transcriptionally silent, endogenous PD-L3 OR VISTA gene may be activated by insertion of a promiscuous regulatory element that works across cell types.

[00183] A heterologous regulatory element may be inserted into a stable cell line or cloned microorganism, such that it is operatively linked with an endogenous PD-L3 OR VISTA gene, using techniques, such as targeted homologous recombination, which are well known to those of skill in the art, and described, e.g., in Chappel, U.S. Pat. No. 5,272,071; PCT publication No. WO 91/06667, published May 16, 1991.

II. Isolated PD-L3 OR VISTA Polypeptides and Anti-PD-L3 OR VISTA Antibodies

[00184] One aspect of the invention pertains to isolated PD-L3 OR VISTA polypeptides, and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise anti-PD-L3 OR VISTA antibodies. In one embodiment, native PD-L3 OR VISTA polypeptides can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, PD-L3 OR VISTA polypeptides are produced by recombinant DNA techniques. Alternative to recombinant expression, a PD-L3 OR VISTA protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.

[00185] An "isolated" or "purified" polypeptide or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the PD-L3 OR VISTA polypeptide is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The

language "substantially free of cellular material" includes preparations of PD-L3 OR VISTA polypeptide in which the polypeptide is separated from cellular components of the cells from which it is isolated or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of PD-L3 OR VISTA polypeptide having less than about 30% (by dry weight) of non-PD-L3 OR VISTA protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-PD-L3 OR VISTA protein, still more preferably less than about 10% of non-PD-L3 OR VISTA protein, and most preferably less than about 5% non-PD-L3 OR VISTA protein. When the PD-L3 OR VISTA polypeptide or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.

[00186] The language "substantially free of chemical precursors or other chemicals" includes preparations of PD-L3 OR VISTA polypeptide in which the polypeptide is separated from chemical precursors or other chemicals which are involved in the synthesis of the polypeptide. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of PD-L3 OR VISTA polypeptide having less than about 30% (by dry weight) of chemical precursors or non-PD-L3 OR VISTA chemicals, more preferably less than about 20% chemical precursors or non-PD-L3 OR VISTA chemicals, still more preferably less than about 10% chemical precursors or non-PD-L3 OR VISTA chemicals, and most preferably less than about 5% chemical precursors or non-PD-L3 OR VISTA chemicals.

[00187] As used herein, a "biologically active portion" of a PD-L3 OR VISTA polypeptide includes a fragment of a PD-L3 OR VISTA polypeptide which participates in an interaction between a PD-L3 OR VISTA molecule and a non-PD-L3 OR VISTA molecule, e.g., a natural ligand of PD-L3 OR VISTA. Biologically active portions of a PD-L3 OR VISTA polypeptide include peptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of the PD-L3 OR VISTA polypeptide, e.g., the amino acid sequence shown in SEQ ID NO: 2, 4 or 5,

which include fewer amino acids than the full length PD-L3 OR VISTA polypeptides, and exhibit at least one activity of a PD-L3 OR VISTA polypeptide. Typically, biologically active portions comprise a domain or motif with at least one activity of the PD-L3 OR VISTA polypeptide, e.g., modulating (suppressing) CD4 T cell proliferative responses to anti-CD3, suppression of the proliferative response of cognate CD4 T cells in an antigen specific manner, effects on the expression of specific cytokines, et al. A biologically active portion of a PD-L3 OR VISTA polypeptide can be a polypeptide which is, for example, 25, 50, 75, 100, 125, 150, 175, 200, 225 or more amino acids in length. Biologically active portions of a PD-L3 OR VISTA polypeptide can be used as targets for developing agents which modulate a PD-L3 OR VISTA-mediated activity, e.g., immune cell activation.

[00188] In one embodiment, a biologically active portion of a PD-L3 OR VISTA polypeptide comprises at least a portion of an extracellular domain. It is to be understood that a preferred biologically active portion of a PD-L3 OR VISTA polypeptide of the present invention may contain at least a portion of an extracellular domain (e.g., comprising an IgV), and one or more of the following domains: a signal peptide domain, a transmembrane domain, and a cytoplasmic domain. Moreover, other biologically active portions, in which other regions of the polypeptide are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native PD-L3 OR VISTA polypeptide.

[00189] In a preferred embodiment, the PD-L3 OR VISTA polypeptide has an amino acid sequence shown in SEQ ID NO: 2, 4 or 5. In other embodiments, the PD-L3 OR VISTA polypeptide is substantially identical to SEQ ID NO: 2, 4 or 5, and retains the functional activity of the polypeptide of SEQ ID NO: 2, 4 or 5, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described above.

[00190] The nucleic acid and polypeptide sequences of the present invention can further be used as a "query sequence" to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul et al.

(1990) J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to PD-L3 OR VISTA nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=100, wordlength=3 to obtain amino acid sequences homologous to PD-L3 OR VISTA polypeptide molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See the internet website for the National Center for Biotechnology Information.

[00191] The invention also provides PD-L3 OR VISTA chimeric or fusion proteins. As used herein, a PD-L3 OR VISTA "chimeric protein" or "fusion protein" comprises a PD-L3 OR VISTA polypeptide operatively linked to a non-PD-L3 OR VISTA polypeptide. A "PD-L3 OR VISTA polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a PD-L3 OR VISTA molecule, whereas a "non-PD-L3 OR VISTA polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a polypeptide which is not substantially homologous to the PD-L3 OR VISTA polypeptide, e.g., a polypeptide which is different from the PD-L3 OR VISTA polypeptide and which is derived from the same or a different organism. Within a PD-L3 OR VISTA fusion protein, the PD-L3 OR VISTA polypeptide can correspond to all or a portion of a PD-L3 OR VISTA polypeptide. In a preferred embodiment, a PD-L3 OR VISTA fusion protein comprises at least one biologically active portion of a PD-L3 OR VISTA polypeptide. In another preferred embodiment, a PD-L3 OR VISTA fusion protein comprises at least two domains of a PD-L3 OR VISTA polypeptide. Within the fusion protein, the term "operatively linked" is intended to indicate that the PD-L3 OR VISTA polypeptide and the non-PD-L3 OR VISTA polypeptide are fused in-frame to each other. The non-PD-L3 OR VISTA polypeptide can be fused to the N-terminus or C-terminus of the PD-L3 OR VISTA polypeptide and corresponds to a moiety that alters the solubility, binding affinity, stability, or valency of the PD-L3 OR VISTA polypeptide.

[00192] For example, in one embodiment, the fusion protein is a GST-PD-L3 OR VISTA fusion protein in which the PD-L3 OR VISTA sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant PD-L3 OR VISTA. In another embodiment, the fusion protein is a PD-L3 OR VISTA polypeptide containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of PD-L3 OR VISTA can be increased through use of a heterologous signal sequence. In a preferred embodiment, the fusion protein is an Ig-PD-L3 OR VISTA fusion protein in which the PD-L3 OR VISTA sequences are fused to a portion of an Ig molecule. The Ig portion of the fusion protein can include an immunoglobulin constant region, e.g., a human C_{gamma}1 domain or a C_{gamma}4 domain (e.g., the hinge, CH₂, and CH₃ regions of human IgG gamma1 or human IgG gamma4 (see, e.g., Capon et al., U.S. Pat. Nos. 5,116,964; 5,580,756; 5,844,095, and the like). A

resulting fusion protein may have altered PD-L3 OR VISTA solubility, binding affinity, stability and/or valency (i.e., the number of binding sites per molecule) and may increase the efficiency of protein purification.

[00193] Particularly preferred PD-L3 OR VISTA Ig fusion proteins include an extracellular domain portion of PD-L3 OR VISTA coupled to an immunoglobulin constant region (e.g., the Fc region). The immunoglobulin constant region may contain genetic modifications which reduce or eliminate effector activity inherent in the immunoglobulin structure. For example, DNA encoding an extracellular portion of a PD-L3 OR VISTA polypeptide can be joined to DNA encoding the hinge, CH₂, and CH₃ regions of human IgG gamma1 and/or IgG gamma4 modified by site-directed mutagenesis, e.g., as taught in WO 97/28267. The PD-L3 OR VISTA fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject *in vivo*. The PD-L3 OR VISTA fusion proteins can be used to affect the bioavailability of a PD-L3 OR VISTA binding partner. Use of PD-L3 OR VISTA fusion proteins may be useful therapeutically for the treatment of conditions or disorders that would benefit from modulation of the immune response. Moreover, the PD-L3 OR VISTA-fusion proteins of the invention can be used as immunogens to produce anti-PD-

L3 OR VISTA antibodies in a subject, to purify PD-L3 OR VISTA-binding proteins, and in screening assays to identify molecules which inhibit the interaction of PD-L3 OR VISTA with its natural binding partner,

[00194] Preferably, a PD-L3 OR VISTA chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques.

[00195] The present invention also pertains to variants of the PD-L3 OR VISTA polypeptides which function as either PD-L3 OR VISTA agonists (mimetics) or as PD-L3 OR VISTA antagonists. Variants of the PD-L3 OR VISTA polypeptides can be generated by mutagenesis, e.g., discrete point mutation or truncation of a PD-L3 OR VISTA polypeptide. An agonist of the PD-L3 OR VISTA polypeptides can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of a PD-L3 OR VISTA polypeptide. An antagonist of a PD-L3 OR VISTA polypeptide can inhibit one or more of the activities of the naturally occurring form of the PD-L3 OR VISTA polypeptide by, for example, competitively modulating a PD-L3 OR VISTA-mediated activity of a PD-L3 OR VISTA polypeptide. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the polypeptide has fewer side effects in a subject relative to treatment with the naturally occurring form of the PD-L3 OR VISTA polypeptide.

[00196] In one embodiment, variants of a PD-L3 OR VISTA polypeptide which function as either PD-L3 OR VISTA agonists (mimetics) or as PD-L3 OR VISTA antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of a PD-L3 OR VISTA polypeptide for PD-L3 OR VISTA polypeptide agonist or antagonist activity. In one embodiment, a variegated library of PD-L3 OR VISTA variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of PD-L3 OR VISTA variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential PD-

L3 OR VISTA sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of PD-L3 OR VISTA sequences therein. There are a variety of methods which can be used to produce libraries of potential PD-L3 OR VISTA variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential PD-L3 OR VISTA sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S. A. (1983) *Tetrahedron* 39:3; Itakura et al. (1984) *Annu. Rev. Biochem.* 53:323; Itakura et al. (1984) *Science* 198:1056; Ike et al. (1983) *Nucleic Acids Res.* 11:477).

[00197] In addition, libraries of fragments of a PD-L3 OR VISTA polypeptide coding sequence can be used to generate a variegated population of PD-L3 OR VISTA fragments for screening and subsequent selection of variants of a PD-L3 OR VISTA polypeptide. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a PD-L3 OR VISTA coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the PD-L3 OR VISTA polypeptide.

[00198] Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of PD-L3 OR VISTA polypeptides. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the

gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify PD-L3 OR VISTA variants (Arkin and Youvan (1992) Proc Natl. Acad. Sci. USA 89:7811-7815; Delagrange et al. (1993) Protein Eng. 6(3):327-331).

[00199] In addition to PD-L3 OR VISTA polypeptides consisting only of naturally-occurring amino acids, PD-L3 OR VISTA peptidomimetics are also provided. Peptide analogs are commonly used in the pharmaceutical industry as non-peptide drugs with properties analogous to those of the template peptide. These types of non-peptide compounds are termed "peptide mimetics" or "peptidomimetics" (Fauchere, J. (1986) Adv. Drug Res. 15:29; Veber and Freidinger (1985) TINS p.392; and Evans et al. (1987) J. Med. Chem 30:1229) and are usually developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to therapeutically useful peptides can be used to produce an equivalent therapeutic or prophylactic effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a biological or pharmacological activity), such as human or mouse PD-L3 OR VISTA, but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: --CH₂NH--, --CH₂S--, --CH₂--CH₂--, --CH.dbd.CH-- (cis and trans), --COCH₂--, --CH(OH)CH₂--, and --CH₂SO--, by methods known in the art and further described in the following references: Spatola, A. F. in Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins Weinstein, B., ed., Marcel Dekker, New York, p. 267 (1983); Spatola, A. F., Vega Data (March 1983), Vol. 1, Issue 3, "Peptide Backbone Modifications"; Morley, J. S. (1980) Trends. Pharm. Sci. pp.463-468; Hudson, D. et al. (1979) Int. J. Pept. Prot. Res. 14:177-185 (--CH₂NH--, CH₂CH₂--); Spatola, A. F. et al. (1986) Life. Sci. 38:1243-1249 (--CH₂--S); Hann, M. M. (1982) J. Chem. SoC Perkin. Trans. I 307-314 (--CH--CH--, cis and trans); Almquist, R. G. et al. (1980) J. Med.

Chem. 23:1392-1398 (—COCH₂—); Jennings-White, C et al. (1982) Tetrahedron Lett. 23:2533 (—COCH₂—); Szelke, M. et al., European Patent Application No. EP 45665 (1982) CA: 97:39405 (—CH(OH)CH₂—); Holladay, M. W. et al. (1983) Tetrahedron Lett. 24:4401-4404 (—C(OH)CH₂—); and Hruby, V. J. (1982) Life Sci. 31:189-199 (—CH₂—S—).

A particularly preferred

non-peptide linkage is —CH₂NH—. Such peptide mimetics may have significant advantages over polypeptide embodiments, including, for example: more economical production, greater chemical stability, enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), altered specificity (e.g., a broad-spectrum of biological activities), reduced antigenicity, and others. Labeling of peptidomimetics usually involves covalent attachment of one or more labels, directly or through a spacer (e.g., an amide group), to non-interfering position(s) on the peptidomimetic that are predicted by quantitative structure-activity data and/or molecular modeling. Such non-interfering positions generally are positions that do not form direct contacts with the macromolecules(s) to which the peptidomimetic binds to produce the therapeutic effect. Derivitization (e.g., labeling) of peptidomimetics should not substantially interfere with the desired biological or pharmacological activity of the peptidomimetic.

[00200] Systematic substitution of one or more amino acids of a PD-L3 OR VISTA amino acid sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) can be used to generate more stable peptides. In addition, constrained peptides comprising a PD-L3 OR VISTA amino acid sequence or a substantially identical sequence variation can be generated by methods known in the art (Rizo and Giersch (1992) Annu. Rev. Biochem. 61:387.); for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide. The amino acid sequences of the PD-L3 OR VISTA polypeptides identified herein will enable those of skill in the art to produce polypeptides corresponding to PD-L3 OR VISTA peptide sequences and sequence variants thereof. Such polypeptides can be produced in prokaryotic or eukaryotic host cells by expression of polynucleotides encoding a PD-L3 OR VISTA peptide sequence, frequently as part of a larger polypeptide. Alternatively, such peptides can be synthesized by chemical

methods. Methods for expression of heterologous polypeptides in recombinant hosts, chemical synthesis of polypeptides, and in vitro translation are well known in the art. Certain amino-terminal and/or carboxy-terminal modifications and/or peptide extensions to the core sequence can provide advantageous physical, chemical, biochemical, and pharmacological properties, such as: enhanced stability, increased potency and/or efficacy, resistance to serum proteases, desirable pharmacokinetic properties, and others. Peptides can be used therapeutically to treat disease, e.g., by altering costimulation in a patient.

[00201] An isolated PD-L3 OR VISTA polypeptide, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that bind PD-L3 OR VISTA using standard techniques for polyclonal and monoclonal antibody preparation. A full-length PD-L3 OR VISTA polypeptide can be used or, alternatively, the invention provides antigenic peptide fragments of PD-L3 OR VISTA for use as immunogens. In one embodiment, an antigenic peptide of PD-L3 OR VISTA comprises at least 8 amino acid residues of the amino acid sequence shown in SEQ ID NO: 2, 4 or 5 and encompasses an epitope of PD-L3 OR VISTA such that an antibody raised against the peptide forms a specific immune complex with the PD-L3 OR VISTA polypeptide. Preferably, the antigenic peptide comprises at least 10 amino acid residues, more preferably at least 15 amino acid residues, even more preferably at least 20 amino acid residues, and most preferably at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of PD-L3 OR VISTA that are located in the extracellular domain of the polypeptide, e.g., hydrophilic regions, as well as regions with high antigenicity.

[00202] A PD-L3 OR VISTA immunogen typically is used to prepare antibodies by immunizing a suitable subject (e.g., rabbit, goat, mouse, or other mammal) with the immunogen. An appropriate immunogenic preparation can contain, for example, recombinantly expressed PD-L3 OR VISTA polypeptide or a chemically synthesized PD-L3 OR VISTA polypeptide. The preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent.

Immunization of a suitable subject with an immunogenic PD-L3 OR VISTA preparation induces a polyclonal anti-PD-L3 OR VISTA antibody response.

[00203] Accordingly, another aspect of the invention pertains to anti-PD-L3 OR VISTA antibodies. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site which specifically binds (immunoreacts with) an antigen, such as a PD-L3 OR VISTA. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab')2 fragments which can be generated by treating the antibody with an enzyme such as pepsin. The invention provides polyclonal and monoclonal antibodies that bind PD-L3 OR VISTA molecules. The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of PD-L3 OR VISTA. A monoclonal antibody composition thus typically displays a single binding affinity for a particular PD-L3 OR VISTA polypeptide with which it immunoreacts.

[00204] Polyclonal anti-PD-L3 OR VISTA antibodies can be prepared as described above by immunizing a suitable subject with a PD-L3 OR VISTA immunogen, e.g., a PD-L3 OR VISTA-Ig fusion protein. The anti-PD-L3 OR VISTA antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized PD-L3 OR VISTA. If desired, the antibody molecules directed against PD-L3 OR VISTA can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as protein A chromatography to obtain the IgG fraction. At an appropriate time after immunization, e.g, when the anti-PD-L3 OR VISTA antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein (1975) *Nature* 256:495-497 (see also Brown et al. (1981) *J. Immunol.* 127:539-46; Brown et al. (1980) *J. Biol. Chem.* 255:4980-83; Yeh et al. (1976) *Proc Natl. Acad. Sci. USA* 73:2927-31; and Yeh et al. (1982) *Int. J. Cancer* 29:269-75), the more recent human B cell hybridoma technique (Kozbor et al.

(1983) *Immunol. Today* 4:72), the EBV-hybridoma technique (Cole et al. (1985) *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96) or trioma techniques. The technology for producing monoclonal antibody hybridomas is well known (see generally Kenneth, R. H. in *Monoclonal Antibodies: A New Dimension In Biological Analyses*, Plenum Publishing Corp., New York, N.Y. (1980); Lerner, E. A. (1981) *Yale J. Biol. Med.* 54:387-402; Gefter, M. L. et al. (1977) *Somatic Cell Genet.* 3:231-36). Briefly, an immortal cell line (typically a myeloma) is fused to lymphocytes (typically splenocytes) from a mammal immunized with a PD-L3 OR VISTA immunogen as described above, and the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds PD-L3 OR VISTA. Any of the many well known protocols used for fusing lymphocytes and immortalized cell lines can be applied for the purpose of generating an anti-PD-L3 OR VISTA monoclonal antibody (see, e.g., Galfre, G. et al. (1977) *Nature* 266:55052; Gefter et al. (1977) *supra*; Lerner (1981) *supra*; and Kenneth (1980) *supra*). Moreover, the ordinarily skilled worker will appreciate that there are many variations of such methods which also would be useful. Typically, the immortal cell line (e.g., a myeloma cell line) is derived from the same mammalian species as the lymphocytes. For example, murine hybridomas can be made by fusing lymphocytes from a mouse immunized with an immunogenic preparation of the present invention with an immortalized mouse cell line. Preferred immortal cell lines are mouse myeloma cell lines that are sensitive to culture medium containing hypoxanthine, aminopterin and thymidine ("HAT medium"). Any of a number of myeloma cell lines can be used as a fusion partner according to standard techniques, e.g., the P3-NS1/1-Ag4-1, P3-x63-Ag8.653 or Sp2/O-Ag14 myeloma lines. These myeloma lines are available from ATCC. Typically, HAT-sensitive mouse myeloma cells are fused to mouse splenocytes using polyethylene glycol ("PEG"). Hybridoma cells resulting from the fusion are then selected using HAT medium, which kills unfused and unproductively fused myeloma cells (unfused splenocytes die after several days because they are not transformed). Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind PD-L3 OR VISTA, e.g., using a standard ELISA assay.

[00205] Specific methods for producing antibodies that bind PD-L3 OR VISTA can be effected using methods known in the art and as described in the examples. Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal anti-PD-L3 antibody can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with PD-L3 OR VISTA to thereby isolate immunoglobulin library members that bind PD-L3 OR VISTA. Kits for generating and screening phage display libraries are commercially available

[00206] As noted these antibodies are screened to identify those that bind to specific epitopes of PD-L3 OR VISTA, e.g. in the IgV domain or other specific domains and/or to select antibodies possessing high affinity and avidity to PD-L3 OR VISTA protein. In addition these antibodies are screened to identify those of which modulate specific functions and effects of PD-L3 OR VISTA on immunity and immune cells in vitro and in vivo. For example assays can be conducted to ascertain the modulatory effect, if any, of a particular anti-PD-L3 OR VISTA antibody on immune functions negatively regulated by PD-L3 OR VISTA including cytokine production by CD4+ or CD8+ T cells, CD28 costimulation, CD4+ T cell proliferation, and the proliferation of naïve and memory CD4+ T cells, et al. In a preferred embodiment assays are conducted to identify potential therapeutic anti-PD-L3 OR VISTA antibodies which in vitro, when the presence of PD-L3 OR VISTA-Ig enhance the suppression by PD-L3 OR VISTA-Ig as these anti-PD-L3 OR VISTA antibodies behave oppositely in vivo, i.e., they are immunosuppressive. The invention encompasses anti-VISTA antibodies and use thereof that specifically bind to the 136 amino acid extracellular domain, e.g., to amino acids 1-50, 50-100, 100-136, antibodies that specifically bind the IgV, antibodies that specifically bind the stalk region, antibodies that specifically bind the transmembrane region and antibodies that specifically bind the cytoplasmic region of VISTA. These specific regions are identified in the application.

[00207] Additionally, recombinant anti-PD-L3 OR VISTA antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. Such chimeric and humanized monoclonal antibodies can be

produced by recombinant DNA techniques known in the art, for example using methods described in Robinson et al., International Application No. PCT/US86/02269; Akira et al., European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al., European Patent Application 173,494; Neuberger et al., PCT International Publication No. WO 86/01533; Cabilly et al., U.S. Pat. No. 4,816,567; Cabilly et al., European Patent Application 125,023; Better et al. (1988) *Science* 240:1041-1043; Liu et al. (1987) *Proc Natl. Acad. Sci. USA* 84:3439-3443; Liu et al. (1987) *J. Immunol.* 139:3521-3526; Sun et al. (1987) *Proc Natl. Acad. Sci. USA* 84:214-218; Nishimura et al. (1987) *Cancer Res.* 47:999-1005; Wood et al. (1985) *Nature* 314:446-449; Shaw et al. (1988) *J. Natl. Cancer Inst.* 80:1553-1559; Morrison, S. L. (1985) *Science* 229:1202-1207; Oi et al. (1986) *Biotechniques* 4:214; Winter, U.S. Pat. No. 5,225,539; Jones et al. (1986) *Nature* 321:552-525; Verhoeven et al. (1988) *Science* 239:1534; and Beidler et al. (1988) *J. Immunol.* 141:4053-4060.

[00208] An anti-PD-L3 OR VISTA antibody (e.g., monoclonal antibody) can be used to isolate PD-L3 OR VISTA by standard techniques, such as affinity chromatography or immunoprecipitation. An anti-PD-L3 OR VISTA antibody can facilitate the purification of natural PD-L3 OR VISTA from cells and of recombinantly produced PD-L3 OR VISTA expressed in host cells. Moreover, an anti-PD-L3 OR VISTA antibody can be used to detect PD-L3 OR VISTA polypeptide (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the PD-L3 OR VISTA polypeptide. Anti-PD-L3 OR VISTA antibodies can be used diagnostically to monitor polypeptide levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein

isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ^{125}I , ^{131}I , ^{35}S or ^{3}H .

III. Recombinant Expression Vectors and Host Cells

[00209] Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid molecule encoding a PD-L3 OR VISTA polypeptide (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

[00210] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression

vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel (1990) *Methods Enzymol.* 185:3-7. Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cells and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., PD-L3 OR VISTA polypeptides, mutant forms of PD-L3 OR VISTA polypeptides, fusion proteins, and the like).

[00211] The recombinant expression vectors of the invention can be designed for expression of PD-L3 OR VISTA polypeptides in prokaryotic or eukaryotic cells. For example, PD-L3 OR VISTA polypeptides can be expressed in bacterial cells such as *E. coli*, insect cells (using baculovirus expression vectors), yeast cells, or mammalian cells. Suitable host cells are discussed further in Goeddel (1990) *supra*. Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase. Purified fusion proteins can be utilized in PD-L3 OR VISTA activity assays (e.g., direct assays or competitive assays described in detail below), or to generate antibodies specific for PD-L3 OR VISTA polypeptides, for example. In another embodiment, the PD-L3 OR VISTA expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYEpSec1 (Baldari et al. (1987) *EMBO J.* 6:229-234), pMfA (Kurjan and Herskowitz (1982) *Cell* 30:933-943), pJRY88 (Schultz et al. (1987) *Gene* 54:113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (Invitrogen Corp, San

Diego, Calif.). Alternatively, PD-L3 OR VISTA polypeptides can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of polypeptides in cultured insect cells (e.g., Sf9 cells) include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39). In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J. et al., Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

[00212] In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) Proc Natl. Acad. Sci. USA 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example by the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the α -fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).

[00213] The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to PD-L3 OR VISTA mRNA. Regulatory sequences operatively linked to a nucleic acid molecule cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific, or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid, or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes, see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, *Reviews--Trends in Genetics*, Vol. 1(1) 1986.

[00214] Another aspect of the invention pertains to host cells into which a PD-L3 OR VISTA nucleic acid molecule of the invention is introduced, e.g., a PD-L3 OR VISTA nucleic acid molecule within a recombinant expression vector or a PD-L3 OR VISTA nucleic acid molecule containing sequences which allow it to homologously recombine into a specific site of the host cell's genome. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. A host cell can be any prokaryotic or eukaryotic cell. Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host

cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a PD-L3 OR VISTA polypeptide. Accordingly, the invention further provides methods for producing a PD-L3 OR VISTA polypeptide using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of the invention (into which a recombinant expression vector encoding a PD-L3 OR VISTA polypeptide has been introduced) in a suitable medium such that a PD-L3 OR VISTA polypeptide is produced. In another embodiment, the method further comprises isolating a PD-L3 OR VISTA polypeptide from the medium or the host cell.

[00215] The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which PD-L3 OR VISTA-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous PD-L3 OR VISTA sequences have been introduced into their genome or homologous recombinant animals in which endogenous PD-L3 OR VISTA sequences have been altered. Such animals are useful for studying the function and/or activity of a PD-L3 OR VISTA and for identifying and/or evaluating modulators of PD-L3 OR VISTA activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, and the like. A transgene is exogenous DNA which is integrated into the

genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a "homologous recombinant animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous PD-L3 OR VISTA gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal. A transgenic animal of the invention can be created by introducing a PD-L3 OR VISTA-encoding nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. The PD-L3 OR VISTA cDNA sequence of SEQ ID NO: 1 or 4 can be introduced as a transgene into the genome of a non-human animal. Alternatively, a nonhuman homologue of a human PD-L3 OR VISTA gene, such as a monkey or rat PD-L3 OR VISTA gene, can be used as a transgene. Alternatively, a PD-L3 OR VISTA gene homologue, such as another PD-L3 OR VISTA family member, can be isolated based on hybridization to the PD-L3 OR VISTA cDNA sequences of SEQ ID NO: 1, or 3 (described further in subsection I above) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably linked to a PD-L3 OR VISTA transgene to direct expression of a PD-L3 OR VISTA polypeptide to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al., U.S. Pat. No. 4,873,191 by Wagner et al. and in Hogan, B., *Manipulating the Mouse Embryo*, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of a PD-L3 OR VISTA transgene in its genome and/or expression of PD-L3 OR VISTA mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding a PD-L3 OR

VISTA polypeptide can further be bred to other transgenic animals carrying other transgenes.

[00216] To create a homologous recombinant animal, a vector is prepared which contains at least a portion of a PD-L3 OR VISTA gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the PD-L3 OR VISTA gene. The PD-L3 OR VISTA gene can be a human or murine gene (e.g., the cDNA of SEQ ID NO: 1 or 3)

[00217] In another embodiment, transgenic non-human animals can be produced which contain selected systems which allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, see, e.g., Lakso et al. (1992) Proc Natl. Acad. Sci. USA 89:6232-6236. Another example of a recombinase system is the FLP recombinase system of *S. cerevisiae* (O'Gorman et al. (1991) Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected polypeptide are required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected polypeptide and the other containing a transgene encoding a recombinase.

[00218] Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. (1997) Nature 385:810-813 and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter G0 phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to the morula or blastocyst stage and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

IV. Pharmaceutical Compositions

[00219] The PD-L3 OR VISTA molecules, e.g., the PD-L3 OR VISTA nucleic acid molecules, fragments of PD-L3 OR VISTA polypeptides, and anti-PD-L3 OR VISTA antibodies (also referred to herein as "active compounds" or "modulating agents") of the invention can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, polypeptide, or antibody and a carrier, e.g., a pharmaceutically acceptable carrier. As used herein the language "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

[00220] As noted such compositions may additionally comprise a desired antigen, e.g., a tumor antigen or another immune modulatory compounds such as Toll like receptor agonists, type 1 interferon such as alpha and beta interferons and CD40 agonists such as agonistic CD40 antibodies and antibody fragments, preferably anti-human CD40 agonistic antibodies and antibody fragments or other immune enhancers or suppressors such as PD-L1, PD-L2, CTLA4 fusion proteins and antibodies specific thereto..

[00221] In some preferred embodiments, the composition or PD-L3 OR VISTA based therapy may further include an antigen or other immune agonist. When present in the composition or therapy, the antigen may be administered in an amount that, in combination with the other components of the combination, is effective to generate an immune response against the antigen. For example, the antigen can be administered in an amount from about 100 .mu.g/kg to about 100 mg/kg. In some embodiments, the antigen may be administered in an amount from about 10 .mu.g/kg to about 10 mg/kg. In some embodiments, the antigen may be administered in an amount from about 1 mg/kg to about 5 mg/kg. The particular amount of antigen that constitutes an amount effective to

generate an immune response, however, depends to some extent upon certain factors such as, for example, the particular antigen being administered; the particular agonist being administered and the amount thereof; the particular agonist being administered and the amount thereof; the state of the immune system; the method and order of administration of the agonist and the antigen; the species to which the formulation is being administered; and the desired therapeutic result. Accordingly, it is not practical to set forth generally the amount that constitutes an effective amount of the antigen. Those of ordinary skill in the art, however, can readily determine the appropriate amount with due consideration of such factors.

[0176]The antigen can be any material capable of raising a Th1 immune response, which may include one or more of, for example, a CD8+ T cell response, an NK T cell response, a .gamma./.delta. T cell response, or a Th1 antibody response. Suitable antigens include but are not limited to peptides; polypeptides; lipids; glycolipids; polysaccharides; carbohydrates; polynucleotides; prions; live or inactivated bacteria, viruses or fungi; and bacterial, viral, fungal, protozoal, tumor-derived, or organism-derived antigens, toxins or toxoids.

[0177]Furthermore, certain currently experimental antigens, especially materials such as recombinant proteins, glycoproteins, and peptides that do not raise a strong immune response, can be used in connection with adjuvant combinations of the invention. Exemplary experimental subunit antigens include those related to viral disease such as adenovirus, AIDS, chicken pox, cytomegalovirus, dengue, feline leukemia, fowl plague, hepatitis A, hepatitis B, HSV-1, HSV-2, hog cholera, influenza A, influenza B, Japanese encephalitis, measles, parainfluenza, rabies, respiratory syncytial virus, rotavirus, wart, and yellow fever.

[0178]In one embodiment, the antigen may be a cancer antigen or a tumor antigen. The terms cancer antigen and tumor antigen are used interchangeably and refer to an antigen that is differentially expressed by cancer cells. Therefore, cancer antigens can be exploited to differentially target an immune response against cancer cells. Cancer

antigens may thus potentially stimulate tumor-specific immune responses. Certain cancer antigens are encoded, though not necessarily expressed, by normal cells. Some of these antigens may be characterized as normally silent (i.e., not expressed) in normal cells, those that are expressed only at certain stages of differentiation, and those that are temporally expressed (e.g., embryonic and fetal antigens). Other cancer antigens can be encoded by mutant cellular genes such as, for example, oncogenes (e.g., activated ras oncogene), suppressor genes (e.g., mutant p53), or fusion proteins resulting from internal deletions or chromosomal translocations. Still other cancer antigens can be encoded by viral genes such as those carried by RNA and DNA tumor viruses.

[0179] Examples of tumor antigens include MAGE, MART-1/Melan-A, gp100, Dipeptidyl peptidase IV (DPPUV), adenosine deaminase-binding protein (ADAbp), cyclophilin b, Colorectal associated antigen (CRC)-C017-1A/GA733, Carcinoembryonic Antigen (CEA) and its antigenic epitopes CAP-1 and CAP-2, etv6, am11, Prostate Specific Antigen (PSA) and its antigenic epitopes PSA-1, PSA-2, and PSA-3, prostate-specific membrane antigen (PSMA), T-cell receptor/CD3-.zeta. chain, MAGE-family of tumor antigens (e.g., MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A5, MAGE-A6, MAGE-A7, MAGE-A8, MAGE-A9, MAGE-A10, MAGE-A11, MAGE-A12, MAGE-Xp2 (MAGE-B2), MAGE-Xp3 (MAGE-B3), MAGE-Xp4 (MAGE-B4), MAGE-C1, MAGE-C2, MAGE-C3, MAGE-C4, MAGE-C5), GAGE-family of tumor antigens (e.g., GAGE-1, GAGE-2, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7, GAGE-8, GAGE-9), BAGE, RAGE, LAGE-1, NAG, GnT-V, MUM-1, CDK4, tyrosinase, p53, MUC family, HER2/neu, p21ras, RCAS1, .alpha.-fetoprotein, .epsilon.-cadherin, .alpha.-catenin, .beta.-catenin, .gamma.-catenin, p120ctn, gp10.sup.Pmel117, PRAME, NY-ESO-1, cdc27, adenomatous polyposis coli protein (APC), fodrin, Connexin 37, Ig-idiotype, p15, gp75, GM2 and GD2 gangliosides, viral products such as human papilloma virus proteins, Smad family of tumor antigens, Imp-1, PIA, EBV-encoded nuclear antigen (EBNA)-1, brain glycogen phosphorylase, SSX-1, SSX-2 (HOM-MEL-40), SSX-3, SSX-4, SSX-5, SCP-1 and CT-7, and c-erbB-2.

[0180] Cancers or tumors and specific tumor antigens associated with such tumors (but

not exclusively), include acute lymphoblastic leukemia (etv6, aml1, cyclophilin b), B cell lymphoma (Ig-idiotype), glioma (E-cadherin, .alpha.-catenin, .beta.-catenin, .gamma.-catenin, p120ctn), bladder cancer (p21ras), biliary cancer (p21ras), breast cancer (MUC family, HER2/neu, c-erbB-2), cervical carcinoma (p53, p21ras), colon carcinoma (p21ras, HER2/neu, c-erbB-2, MUC family), colorectal cancer (Colorectal associated antigen (CRC)-CO17-1A/GA733, APC), choriocarcinoma (CEA), epithelial cell cancer (cyclophilin b), gastric cancer (HER2/neu, c-erbB-2, ga733 glycoprotein), hepatocellular cancer (.alpha.-fetoprotein), Hodgkins lymphoma (Imp-1, EBNA-1), lung cancer (CEA, MAGE-3, NY-ESO-1), lymphoid cell-derived leukemia (cyclophilin b), melanoma (p5 protein, gp75, oncofetal antigen, GM2 and GD2 gangliosides, Melan-A/MART-1, cdc27, MAGE-3, p21ras, gp100.sup.Pmel117), myeloma (MUC family, p21ras), non-small cell lung carcinoma (HER2/neu, c-erbB-2), nasopharyngeal cancer (Imp-1, EBNA-1), ovarian cancer (MUC family, HER2/neu, c-erbB-2), prostate cancer (Prostate Specific Antigen (PSA) and its antigenic epitopes PSA-1, PSA-2, and PSA-3, PSMA, HER2/neu, c-erbB-2, ga733 glycoprotein), renal cancer (HER2/neu, c-erbB-2), squamous cell cancers of the cervix and esophagus (viral products such as human papilloma virus proteins), testicular cancer (NY-ESO-1), and T cell leukemia (HTLV-1 epitopes).

[00222] A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic

[00223] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL.TM. (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, and sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

[00224] Sterile injectable solutions can be prepared by incorporating the active compound (e.g., modulating agents such as a PD-L3 OR VISTA nucleic acid molecule, a fragment of a PD-L3 OR VISTA polypeptide, an anti-PD-L3 OR VISTA antibody, or a combination of an anti-PD-L3 OR VISTA antibody and an anti-PD-L1 antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a

powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

[00225] Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

[00226] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

[00227] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

[00228] The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention

enemas for rectal delivery. In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, InC Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.

[00229] It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

[00230] Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals. The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves

a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

[00231] As defined herein, a therapeutically effective amount of protein or polypeptide (i.e., an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight. The skilled artisan will appreciate that certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments.

[00232] In a preferred example, a subject is treated with antibody, protein, or polypeptide in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks. It will also be appreciated that the effective dosage of antibody, protein, or polypeptide used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein.

[00233] The present invention encompasses agents which modulate expression or activity of PD-L3 OR VISTA. An agent may, for example, be a small molecule. For example, such small molecules include, but are not limited to, peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than

about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds. It is understood that appropriate doses of small molecule agents depends upon a number of factors within the scope of knowledge of the ordinarily skilled physician, veterinarian, or researcher. The dose(s) of the small molecule will vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, if applicable, and the effect which the practitioner desires the small molecule to have upon the nucleic acid or polypeptide of the invention.

[00234] Exemplary doses include milligram or microgram amounts of the small molecule per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram). It is furthermore understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. Such appropriate doses may be determined using the assays described herein. When one or more of these small molecules is to be administered to an animal (e.g., a human) in order to modulate expression or activity of a polypeptide or nucleic acid of the invention, a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.

[00235] Further, an antibody (or fragment thereof) may be conjugated to a therapeutic moiety such as a cytotoxin, a therapeutic agent or a radioactive metal ion. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide,

tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

[00236] The conjugates of the invention can be used for modifying a given biological response, the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such polypeptides may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, alpha-interferon, beta-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors. Techniques for conjugating such therapeutic moiety to antibodies are well known.

[00237] The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see U.S. Pat. No. 5,328,470) or by stereotactic injection (see, e.g., Chen et al. (1994) Proc Natl. Acad. Sci. USA 91:3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery

vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system. The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

V. Uses and Methods of the Invention

[00238] The PD-L3 OR VISTA molecules, e.g., the PD-L3 OR VISTA nucleic acid molecules, polypeptides, polypeptide homologues, and antibodies and antibody fragments described herein can be used in one or more of the following methods: a) screening assays; b) predictive medicine (e.g., diagnostic assays, prognostic assays, and monitoring clinical trials); and c) methods of treatment (e.g., therapeutic and prophylactic, e.g., by up- or down-modulating the immune response). As described herein, a PD-L3 OR VISTA polypeptide of the invention has one or more of the following activities: 1) binds to and/or modulates the activity of its natural binding partner(s), 2) modulates intra- or intercellular signaling, 3) modulates activation of T lymphocytes, 4) modulates the immune response of an organism, e.g., a mammalian organism, such as a mouse or human. The isolated nucleic acid molecules of the invention can be used, for example, to express PD-L3 OR VISTA polypeptide (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect PD-L3 OR VISTA mRNA (e.g., in a biological sample) or a genetic alteration in a PD-L3 OR VISTA gene, and to modulate PD-L3 OR VISTA activity, as described further below. The PD-L3 OR VISTA polypeptides can be used to treat conditions or disorders characterized by insufficient or excessive production of a PD-L3 OR VISTA polypeptide or production of PD-L3 OR VISTA inhibitors. In addition, the PD-L3 OR VISTA polypeptides can be used to screen for naturally occurring PD-L3 OR VISTA binding partner(s), to screen for drugs or compounds which modulate PD-L3 OR VISTA activity, as well as to treat conditions or disorders characterized by insufficient or excessive production of PD-L3 OR VISTA polypeptide or production of PD-L3 OR VISTA polypeptide forms which have decreased, aberrant or unwanted activity compared to PD-L3 OR VISTA wild-type polypeptide (e.g., immune system disorders such as severe combined immunodeficiency, multiple sclerosis, systemic lupus erythematosus, type I

diabetes mellitus, lymphoproliferative syndrome, inflammatory bowel disease, allergies, asthma, graft-versus-host disease, and transplant rejection; immune responses to infectious pathogens such as bacteria and viruses; and immune system cancers such as lymphomas and leukemias). Moreover, the anti-PD-L3 OR VISTA antibodies of the invention can be used to detect and isolate PD-L3 OR VISTA polypeptides, regulate the bioavailability of PD-L3 OR VISTA polypeptides, and modulate PD-L3 OR VISTA activity, e.g., by modulating the interaction between PD-L3 OR VISTA and its natural binding partner(s)

A. Screening Assays:

[00239] The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) which bind to PD-L3 OR VISTA polypeptides, have a stimulatory or inhibitory effect on, for example, PD-L3 OR VISTA expression or PD-L3 OR VISTA activity, or have a stimulatory or inhibitory effect on the interaction between PD-L3 OR VISTA and its natural binding partner(s).

[00240] In one embodiment, the invention provides assays for screening candidate or test compounds which bind to the PD-L3 OR VISTA protein or polypeptide or biologically active portion thereof, e.g., modulate the ability of the PD-L3 OR VISTA polypeptide to interact with its natural binding partner(s). In another embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of a PD-L3 OR VISTA protein or polypeptide or biologically active portion thereof. In a preferred embodiment, the invention provides assays for screening candidate or test compounds which have a stimulatory or inhibitory effect on immune functions negatively regulated by PD-L3 OR VISTA such as are identified herein or based on its effect on the interaction of between PD-L3 OR VISTA and its natural binding partner(s). These PD-L3 OR VISTA related functions include by way of example inhibiting cytokine production (e.g., IL-2, gamma interferon by T cells, suppressing moderate CD28 costimulation, inhibiting CD4+ and CD8+ T cell proliferation, suppressing proliferation of naïve and memory CD4+ T cells, and

suppressing TCR activation without inducing apoptosis. The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the 'one-bead one-compound' library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam, K. S. (1997) *Anticancer Drug Des.* 12:145).

[00241] In one embodiment, an assay is a cell-based assay in which a cell which expresses a PD-L3 OR VISTA polypeptide or biologically active portion thereof is contacted with a test compound, and the ability of the test compound to modulate PD-L3 OR VISTA activity is determined. Determining the ability of the test compound to modulate PD-L3 OR VISTA activity can be accomplished by monitoring, for example, the ability of PD-L3 OR VISTA to bind to its natural binding partner(s), and modulate immune cell activity. The immune cell can be, e.g., a T cell, a B cell, or a myeloid cell. Determining the ability of the test compound to modulate PD-L3 OR VISTA binding to its counter-receptor (to be determined) can be accomplished, for example, by coupling PD-L3 OR VISTA with a radioisotope or enzymatic label to monitor the ability of a test compound to modulate PD-L3 OR VISTA binding to T cells which express the PD-L3 OR VISTA counter-receptor. Determining the ability of the test compound to bind PD-L3 OR VISTA can be accomplished, for example, by coupling the compound with a radioisotope or enzymatic label such that binding of the compound to PD-L3 OR VISTA can be determined by detecting the labeled PD-L3 OR VISTA compound in a complex.

[00242] It is also within the scope of this invention to determine the ability of a compound to interact with PD-L3 OR VISTA without the labeling of any of the interactants. For example, a microphysiometer can be used to detect the interaction of a compound with PD-L3 OR VISTA without the labeling of either the compound or the PD-L3 OR VISTA (McConnell, H. M. et al. (1992) *Science* 257:1906-1912). As used herein, a "microphysiometer" (e.g., Cytosensor) is an analytical instrument that measures

the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between a compound and PD-L3 OR VISTA.

[00243] In another embodiment, an assay is a cell-based assay comprising contacting a T cell expressing a PD-L3 OR VISTA binding partner with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the PD-L3 OR VISTA binding partner. Determining the ability of the test compound to modulate the activity of a PD-L3 OR VISTA binding partner can be accomplished, for example, by determining the ability of the PD-L3 OR VISTA polypeptide to bind to or interact with the PD-L3 OR VISTA binding partner.

[00244] Determining the ability of the PD-L3 OR VISTA polypeptide, or a biologically active fragment thereof, to bind to or interact with a PD-L3 OR VISTA binding partner, can be accomplished by one of the methods described above for determining direct binding. In a preferred embodiment, determining the ability of the PD-L3 OR VISTA polypeptide to bind to or interact with a PD-L3 OR VISTA binding partner can be accomplished by determining the activity of the binding partner. For example, the activity of the binding partner can be determined by detecting induction of a cellular second messenger (e.g., tyrosine kinase or phosphatase activity), detecting catalytic/enzymatic activity of an appropriate substrate, detecting the induction of a reporter gene (comprising a target-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a target-regulated cellular response. For example, determining the ability of the PD-L3 OR VISTA polypeptide to bind to or interact with a natural PD-L3 OR VISTA binding partner, can be accomplished by measuring the ability of a compound to modulate immune cell costimulation or inhibition in a proliferation assay, or by interfering with the ability of a PD-L3 OR VISTA polypeptide to bind to antibodies that recognize a portion of the PD-L3 OR VISTA polypeptide. In one embodiment, compounds that modulate T cell activation can be identified by determining the ability of a compound to modulate T cell proliferation or cytokine production. In a preferred embodiment, compounds that modulate T cell activation can be identified by determining the ability of a compound to

modulate T cell proliferation or cytokine production at more than one antigen concentration.

[00245] In yet another embodiment, an assay of the present invention is a cell-free assay in which a PD-L3 OR VISTA polypeptide or biologically active portion thereof is contacted with a test compound and the ability of the test compound to bind to the PD-L3 OR VISTA polypeptide or biologically active portion thereof is determined. Preferred biologically active portions of the PD-L3 OR VISTA polypeptides to be used in assays of the present invention include fragments which participate in interactions with non-PD-L3 OR VISTA molecules, e.g., at least a portion of an extracellular domain which binds to a PD-L3 OR VISTA binding partner. Binding of the test compound to the PD-L3 OR VISTA polypeptide can be determined either directly or indirectly as described above.

[00246] In another embodiment, the assay is a cell-free assay in which a PD-L3 OR VISTA polypeptide or biologically active portion thereof is contacted with a test compound and the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the PD-L3 OR VISTA polypeptide or biologically active portion thereof is determined. Determining the ability of the test compound to modulate the activity of a PD-L3 OR VISTA polypeptide can be accomplished, for example, by determining the ability of the PD-L3 OR VISTA polypeptide to bind to a PD-L3 OR VISTA binding partner by one of the methods described above for determining direct binding. The cell-free assays of the present invention are amenable to use of both soluble and/or membrane-bound forms of polypeptides (e.g., PD-L3 OR VISTA polypeptides or biologically active portions thereof, or binding partners to which PD-L3 OR VISTA binds). In the case of cell-free assays in which a membrane-bound form a polypeptide is used (e.g., a cell-surface PD-L3 OR VISTA), it may be desirable to utilize a solubilizing agent such that the membrane-bound form of the polypeptide is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton.RTM. X-100, Triton.RTM. X-114, Thesit, Isotridecypoly(ethylene glycol ether)n, 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-

propane sulfonate (CHAPSO), or N-dodecyl.dbd.N,N-dimethyl-3-ammonio-1-propane sulfonate.

[00247] In more than one embodiment of the above assay methods of the present invention, it may be desirable to immobilize either PD-L3 OR VISTA or its binding partner to facilitate separation of complexed from uncomplexed forms of one or both of the polypeptides, as well as to accommodate automation of the assay. Binding of a test compound to a PD-L3 OR VISTA polypeptide, or interaction of a PD-L3 OR VISTA polypeptide with its binding partner in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided which adds a domain that allows one or both of the polypeptides to be bound to a matrix. For example, glutathione-S-transferase/PD-L3 OR VISTA fusion proteins or glutathione-S-transferase/binding partner fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with the test compound or the test compound and either the non-adsorbed binding partner polypeptide or PD-L3 OR VISTA polypeptide, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtitre plate wells are washed to remove any unbound components, the matrix is immobilized in the case of beads, and complex formation is determined either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of PD-L3 OR VISTA binding or activity determined using standard techniques. Other techniques for immobilizing polypeptides on matrices can also be used in the screening assays of the invention. In an alternative embodiment, determining the ability of the test compound to modulate the activity of a PD-L3 OR VISTA polypeptide can be accomplished by determining the ability of the test compound to modulate the activity of a molecule that functions downstream of PD-L3 OR VISTA, e.g., by interacting with the cytoplasmic domain of a PD-L3 OR VISTA binding partner. For example, levels of second messengers, the activity of the interacting molecule on an appropriate target, or

the binding of the interactor to an appropriate target can be determined as previously described.

[00248] In another embodiment, modulators of PD-L3 OR VISTA expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of PD-L3 OR VISTA mRNA or polypeptide in the cell is determined. The level of expression of PD-L3 OR VISTA mRNA or polypeptide in the presence of the candidate compound is compared to the level of expression of PD-L3 OR VISTA mRNA or polypeptide in the absence of the candidate compound. The candidate compound can then be identified as a modulator of PD-L3 OR VISTA expression based on this comparison if the change is statistically significant.

[00249] In yet another aspect of the invention, the PD-L3 OR VISTA polypeptides can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and Brent WO94/10300), to identify other polypeptides which bind to or interact with PD-L3 OR VISTA ("PD-L3 OR VISTA-binding proteins", "PD-L3 OR VISTA binding partners", or "PD-L3 OR VISTA-bp") and are involved in PD-L3 OR VISTA activity. Such PD-L3 OR VISTA-binding proteins are also likely to be involved in the propagation of signals by the PD-L3 OR VISTA polypeptides or PD-L3 OR VISTA targets as, for example, downstream elements of a PD-L3 OR VISTA-mediated signaling pathway. Alternatively, such PD-L3 OR VISTA-binding polypeptides may be PD-L3 OR VISTA inhibitors. The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a PD-L3 OR VISTA polypeptide is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified polypeptide ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" polypeptides are able to interact, *in vivo*, forming a PD-L3 OR VISTA-dependent

complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the polypeptide which interacts with the PD-L3 OR VISTA polypeptide.

[00250] In another aspect, the invention pertains to a combination of two or more of the assays described herein. For example, a modulating agent can be identified using a cell-based or a cell-free assay, and the ability of the agent to modulate the activity of a PD-L3 OR VISTA polypeptide can be confirmed *in vivo*, e.g., in an animal such as an animal model for cellular transformation and/or tumorigenesis.

[00251] This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a PD-L3 OR VISTA modulating agent, an antisense PD-L3 OR VISTA nucleic acid molecule, a PD-L3 OR VISTA-specific antibody, or a PD-L3 OR VISTA binding partner) can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

B. Detection Assays

[00252] Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and

(iii) aid in forensic identification of a biological sample. These applications are described in the subsections below.

1. Chromosome Mapping

[00253] Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the PD-L3 OR VISTA nucleotide sequences, described herein, can be used to map the location of the PD-L3 OR VISTA genes on a chromosome. The mapping of the PD-L3 OR VISTA sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease. Briefly, PD-L3 OR VISTA genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the PD-L3 OR VISTA nucleotide sequences. Computer analysis of the PD-L3 OR VISTA sequences can be used to predict primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the PD-L3 OR VISTA sequences will yield an amplified fragment. Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes (D'Eustachio, P. et al. (1983) *Science* 220:919-924). Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.

[00254] PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the PD-L3 OR VISTA nucleotide sequences to design oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes. Other mapping strategies which can similarly be used to map a PD-L3 OR VISTA sequence to its chromosome include *in situ* hybridization (described in Fan, Y. et al. (1990) Proc Natl. Acad. Sci. USA 87:6223-27), pre-screening with labeled flow-sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries.

[00255] Fluorescence *in situ* hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical such as colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases will suffice to get good results in a reasonable amount of time. For a review of this technique, see Verma et al., *Human Chromosomes: A Manual of basic Techniques* (Pergamon Press, New York 1988). Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

[00256] Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Ultimately, complete sequencing of genes from several individuals can be

performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms. 2. Tissue Typing

[00257] The PD-L3 OR VISTA sequences of the present invention can also be used to identify individuals from minute biological samples. Furthermore, the sequences of the present invention can be used to provide an alternative technique which determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the PD-L3 OR VISTA nucleotide sequences described herein can be used to prepare two PCR primers from the 5' and 3' ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.

[00258] Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the present invention can be used to obtain such identification sequences from individuals and from tissue. The PD-L3 OR VISTA nucleotide sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences of SEQ ID NO: 1 or 4 can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers which each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO: 3 or 6 are used, a more appropriate number of primers for positive individual identification would be 500-2000.

[00259] If a panel of reagents from PD-L3 OR VISTA nucleotide sequences described herein is used to generate a unique identification database for an individual, those same reagents can later be used to identify tissue from that individual. Using the

unique identification database, positive identification of the individual, living or dead, can be made from extremely small tissue samples.

[00260] 3. Use of PD-L3 OR VISTA Sequences in Forensic Biology DNA-based identification techniques can also be used in forensic biology. The sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" (i.e., another DNA sequence that is unique to a particular individual). As mentioned above, actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments. Sequences targeted to noncoding regions of SEQ ID NO: 1 or 3 are particularly appropriate for this use as greater numbers of polymorphisms occur in the noncoding regions, making it easier to differentiate individuals using this technique. Examples of polynucleotide reagents include the PD-L3 OR VISTA nucleotide sequences or portions thereof, e.g., fragments derived from the noncoding regions of SEQ ID NO: 1 or 3 having a length of at least 20 bases, preferably at least 30 bases. The PD-L3 OR VISTA nucleotide sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an in situ hybridization technique, to identify a specific tissue, e.g., lymphocytes. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such PD-L3 OR VISTA probes can be used to identify tissue by species and/or by organ type. In a similar fashion, these reagents, e.g., PD-L3 OR VISTA primers or probes can be used to screen tissue culture for contamination (i.e., screen for the presence of a mixture of different types of cells in a culture).

C Predictive Medicine

[00261] The present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for

determining PD-L3 OR VISTA polypeptide and/or nucleic acid expression as well as PD-L3 OR VISTA activity, in the context of a biological sample (e.g., blood, serum, cells, or tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant or unwanted PD-L3 OR VISTA expression or activity. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with PD-L3 OR VISTA polypeptide, nucleic acid expression or activity. For example, mutations in a PD-L3 OR VISTA gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with PD-L3 OR VISTA polypeptide, nucleic acid expression or activity.

[00262] Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of PD-L3 OR VISTA in clinical trials. These and other agents are described in further detail in the following sections.

1. Diagnostic Assays

[00263] An exemplary method for detecting the presence or absence of PD-L3 OR VISTA polypeptide or nucleic acid in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting PD-L3 OR VISTA polypeptide or nucleic acid (e.g., mRNA or genomic DNA) that encodes PD-L3 OR VISTA polypeptide such that the presence of PD-L3 OR VISTA polypeptide or nucleic acid is detected in the biological sample. A preferred agent for detecting PD-L3 OR VISTA mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to PD-L3 OR VISTA mRNA or genomic DNA. The nucleic acid probe can be, for example, the PD-L3 OR VISTA nucleic acid set forth in SEQ ID NO: 1, or 3, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to PD-L3 OR VISTA mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein. A preferred agent for detecting PD-L3 OR VISTA polypeptide is an antibody capable of binding to

PD-L3 OR VISTA polypeptide, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')2) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i. e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin. The term "biological sample" is intended to include tissues, cells, and biological fluids isolated from a subject, as well as tissues, cells, and fluids present within a subject. That is, the detection method of the invention can be used to detect PD-L3 OR VISTA mRNA, polypeptide, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of PD-L2 mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of PD-L3 OR VISTA polypeptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. In vitro techniques for detection of PD-L3 OR VISTA genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of PD-L3 OR VISTA polypeptide include introducing into a subject a labeled anti-PD-L3 OR VISTA antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. In one embodiment, the biological sample contains polypeptide molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a serum sample isolated by conventional means from a subject. In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting PD-L3 OR VISTA polypeptide, mRNA, or genomic DNA, such that the presence of PD-L3 OR VISTA polypeptide, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of PD-L3

OR VISTA polypeptide, mRNA or genomic DNA in the control sample with the presence of PD-L3 OR VISTA polypeptide, mRNA or genomic DNA in the test sample.

[00264] The invention also encompasses kits for detecting the presence of PD-L3 OR VISTA in a biological sample. For example, the kit can comprise a labeled compound or agent capable of detecting PD-L3 OR VISTA polypeptide or mRNA in a biological sample; means for determining the amount of PD-L3 OR VISTA in the sample; and means for comparing the amount of PD-L3 OR VISTA in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect PD-L3 OR VISTA polypeptide or nucleic acid.

2. Prognostic Assays

[00265] The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant or unwanted PD-L3 OR VISTA expression or activity. As used herein, the term "aberrant" includes a PD-L3 OR VISTA expression or activity which deviates from the wild type PD-L3 OR VISTA expression or activity. Aberrant expression or activity includes increased or decreased expression or activity, as well as expression or activity which does not follow the wild type developmental pattern of expression or the subcellular pattern of expression. For example, aberrant PD-L3 OR VISTA expression or activity is intended to include the cases in which a mutation in the PD-L3 OR VISTA gene causes the PD-L3 OR VISTA gene to be under-expressed or over-expressed and situations in which such mutations result in a non-functional PD-L3 OR VISTA polypeptide or a polypeptide which does not function in a wild-type fashion, e.g., a polypeptide which does not interact with a PD-L3 OR VISTA binding partner, or one which interacts with a non-PD-L3 OR VISTA binding partner. As used herein, the term "unwanted" includes an unwanted phenomenon involved in a biological response such as immune cell activation. For example, the term unwanted includes a PD-L3 OR VISTA expression or activity which is undesirable in a subject.

[00266] The assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with a misregulation in PD-L3 OR VISTA polypeptide activity or nucleic acid expression, such as an autoimmune disorder, an immunodeficiency disorder, an immune system disorder such as autoimmunity, allergic or inflammatory disorder or cancer. Thus, the present invention provides a method for identifying a disease or disorder associated with aberrant or unwanted PD-L3 OR VISTA expression or activity in which a test sample is obtained from a subject and PD-L3 OR VISTA polypeptide or nucleic acid (e.g., mRNA or genomic DNA) is detected, wherein the presence of PD-L3 OR VISTA polypeptide or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant or unwanted PD-L3 OR VISTA expression or activity. As used herein, a "test sample" refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., cerebrospinal fluid or serum), cell sample, or tissue.

[00267] Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, polypeptide, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant or unwanted PD-L3 OR VISTA expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for an autoimmune disorder, immunodeficiency disorder, immune system cancer, or allergic or inflammatory disorder. Thus, the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant or unwanted PD-L3 OR VISTA expression or activity in which a test sample is obtained and PD-L3 OR VISTA polypeptide or nucleic acid expression or activity is detected (e.g., wherein the abundance of PD-L3 OR VISTA polypeptide or nucleic acid expression or activity is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant or unwanted PD-L3 OR VISTA expression or activity). The methods of the invention can also be used to detect genetic alterations in a PD-L3 OR VISTA gene, thereby determining if a subject with the altered gene is at risk for a disorder.

characterized by misregulation in PD-L3 OR VISTA polypeptide activity or nucleic acid expression, such as an autoimmune disorder, an immunodeficiency disorder, an immune system cancer, an allergic disorder, or an inflammatory disorder. The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a PD-L3 OR VISTA gene. Furthermore, any cell type or tissue in which PD-L3 OR VISTA is expressed may be utilized in the prognostic assays described herein.

[00268] 3. Monitoring of Effects During Clinical Trials Monitoring the influence of agents (e.g., drugs) on the expression or activity of a PD-L3 OR VISTA polypeptide (e.g., the modulation of cell proliferation and/or migration) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase PD-L3 OR VISTA gene expression, polypeptide levels, or upregulate PD-L3 OR VISTA activity, can be monitored in clinical trials of subjects exhibiting decreased PD-L3 OR VISTA gene expression, polypeptide levels, or downregulated PD-L3 OR VISTA activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease PD-L3 OR VISTA gene expression, polypeptide levels, or downregulate PD-L3 OR VISTA activity, can be monitored in clinical trials of subjects exhibiting increased PD-L3 OR VISTA gene expression, polypeptide levels, or PD-L3 OR VISTA activity. As noted PD-L3 OR VISTA is expressed on many hematopoietic cell types including APCs (macrophages and myeloid dendritic cells), and CD4+ T cells, and more specifically is expressed on CD11c⁺ DCs, CD4⁺ T cells (including both Foxp3⁺ effector T cells and Foxp3⁺ nTregs), CD8⁺ T cells, and Gr1⁺ granulocytes, and expressed at low levels on B cells and NK cells In such clinical trials, the expression or activity of a PD-L3 OR VISTA gene, and preferably, other genes that have been implicated in, for example, a PD-L3 OR VISTA-associated disorder can be used as a "read out" or marker of the phenotype of a particular cell.

[00269] For example, and not by way of limitation, genes, including PD-L3 OR VISTA, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) which modulates PD-L3 OR VISTA activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on PD-L3 OR VISTA-associated disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of PD-L3 OR VISTA and other genes implicated in the PD-L3 OR VISTA-associated disorder, respectively. The levels of gene expression (e.g., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of polypeptide produced, by one of the methods as described herein, or by measuring the levels of activity of PD-L3 OR VISTA or other genes. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during treatment of the individual with the agent. In a preferred embodiment, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, polypeptide, peptide, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) including the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a PD-L3 OR VISTA polypeptide, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the PD-L3 OR VISTA polypeptide, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the PD-L3 OR VISTA polypeptide, mRNA, or genomic DNA in the pre-administration sample with the PD-L3 OR VISTA polypeptide, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of PD-L3 OR VISTA to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of PD-L3 OR VISTA to

lower levels than detected, i.e., to decrease the effectiveness of the agent. According to such an embodiment, PD-L3 OR VISTA expression or activity may be used as an indicator of the effectiveness of an agent, even in the absence of an observable phenotypic response.

D. Methods of Treatment

[00270] The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder characterized by insufficient or excessive production of PD-L3 OR VISTA protein or production of PD-L3 OR VISTA protein forms which have decreased or aberrant activity compared to PD-L3 OR VISTA wild type protein. Moreover, the anti-PD-L3 OR VISTA antibodies of the invention can be used to detect and isolate PD-L3 OR VISTA proteins, regulate the bioavailability of PD-L3 OR VISTA proteins, and modulate PD-L3 OR VISTA activity e.g., by modulating the interaction of PD-L3 OR VISTA with its counter receptor.

1. Prophylactic Methods

[00271] In one aspect, the invention provides a method for preventing in a subject, a disease or condition associated with an aberrant or unwanted PD-L3 OR VISTA expression or activity, by administering to the subject a PD-L3 OR VISTA polypeptide or an agent which modulates PD-L3 OR VISTA expression or at least one PD-L3 OR VISTA activity. Subjects at risk for a disease or disorder which is caused or contributed to by aberrant or unwanted PD-L3 OR VISTA expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the PD-L3 OR VISTA aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of PD-L3 OR VISTA aberrancy, for example, a PD-L3 OR VISTA polypeptide, PD-L3 OR VISTA agonist or PD-L3 OR VISTA antagonist (e.g., an anti-PD-L3 OR VISTA antibody) agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein.

2. Therapeutic Methods

[00272] An important aspect of the invention pertains to methods of modulating PD-L3 OR VISTA expression or activity or interaction with its natural binding partners. Relevant to therapy PD-L3 OR VISTA has been demonstrated to inhibit CD28 costimulation, to inhibit TCR activation of immune cells, to inhibit proliferation of activated immune cells (CD4+ and CD8+ T cells), to inhibit cytokine production by T cells (IL-2, gamma interferon) and to transmit an inhibitory signal to immune cells. Accordingly, the activity and/or expression of PD-L3 OR VISTA, as well as the interaction between PD-L3 OR VISTA and its binding partner(s) on T cells can be modulated in order to modulate the immune response. Because PD-L3 OR VISTA binds to inhibitory receptors (on T cells), upregulation of PD-L3 OR VISTA activity should result in downregulation of immune responses, whereas downregulation of PD-L3 OR VISTA activity should result in upregulation of immune responses. In a preferred embodiment, PD-L3 OR VISTA binds to inhibitory receptors. As noted previously, counterintuitively PD-L3 OR VISTA specific antibodies produced by Applicant which in vitro (in the presence of PD-L3 OR VISTA-Ig) enhance the suppressive activities of PD-L3 OR VISTA-Ig fusion proteins (i.e., these antibodies enhance the suppression of PD-L3 OR VISTA related activities such as effects of PD-L3 OR VISTA on cytokine production, T cell proliferation, differentiation or activation and other functions noted previously), behave oppositely to what would be expected in vivo, i.e., these antibodies have been found to be immunosuppressive in vivo.

[00273] Modulatory methods of the invention involve contacting a cell with a PD-L3 OR VISTA polypeptide or agent that modulates one or more of the activities of PD-L3 OR VISTA polypeptide activity associated with the cell, e.g., an agent that modulates expression or activity of PD-L3 OR VISTA and/or modulates the interaction of PD-L3 OR VISTA and its natural binding partner(s). An agent that modulates PD-L3 OR VISTA polypeptide activity can be an agent as described herein, such as a nucleic acid or a polypeptide, a naturally-occurring binding partner of a PD-L3 OR VISTA polypeptide a PD-L3 OR VISTA antibody, a PD-L3 OR VISTA agonist or antagonist, a peptidomimetic of a PD-L3 OR VISTA agonist or antagonist, a PD-L3 OR VISTA

peptidomimetic, or other small molecule. Soluble forms of PD-L3 OR VISTA may also be used to interfere with the binding of PD-L3 OR VISTA to any of its natural binding partner(s) or ligands.

[00274] An agent that modulates the expression of PD-L3 OR VISTA is, e.g., an antisense nucleic acid molecule, triplex oligonucleotide, ribozyme, or recombinant vector for expression of a PD-L3 OR VISTA polypeptide. For example, an oligonucleotide complementary to the area around a PD-L3 OR VISTA polypeptide translation initiation site can be synthesized. One or more antisense oligonucleotides can be added to cell media, typically at 200 mug/ml, or administered to a patient to prevent the synthesis of a PD-L3 OR VISTA polypeptide. The antisense oligonucleotide is taken up by cells and hybridizes to a PD-L3 OR VISTA mRNA to prevent translation. Alternatively, an oligonucleotide which binds double-stranded DNA to form a triplex construct to prevent DNA unwinding and transcription can be used. As a result of either, synthesis of PD-L3 OR VISTA polypeptide is blocked. When PD-L3 OR VISTA expression is modulated, preferably, such modulation occurs by a means other than by knocking out the PD-L3 OR VISTA gene.

[00275] Agents which modulate expression, by virtue of the fact that they control the amount of PD-L3 OR VISTA in a cell, also modulate the total amount of PD-L3 OR VISTA activity in a cell. In one embodiment, the agent modulates PD-L3 OR VISTA stimulates one or more PD-L3 OR VISTA activities. Examples of such stimulatory agents include active PD-L3 OR VISTA polypeptide and a nucleic acid molecule encoding PD-L3 OR VISTA that has been introduced into the cell. In another embodiment, the agent inhibits one or more PD-L3 OR VISTA activities. Examples of such inhibitory agents include antisense PD-L3 OR VISTA nucleic acid molecules, anti-PD-L3 OR VISTA antibodies, PD-L3 OR VISTA inhibitors, and compounds identified in the subject screening assays. In a further preferred embodiment, an inhibitory agent is a combination of an anti-PD-L3 OR VISTA antibody and an anti-PD-L1 or anti-PD-L2 antibody. These modulatory methods can be performed in vitro (e.g., by contacting the cell with the agent) or, alternatively, by contacting an agent with cells in vivo (e.g., by administering the agent to a subject). As such, the present invention provides methods of

treating an individual afflicted with a condition or disorder that would benefit from up- or down-modulation of a PD-L3 OR VISTA polypeptide, e.g., a disorder characterized by unwanted, insufficient, or aberrant expression or activity of a PD-L3 OR VISTA polypeptide or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) PD-L3 OR VISTA expression or activity. In another embodiment, the method involves administering a PD-L3 OR VISTA polypeptide or nucleic acid molecule as therapy to compensate for reduced, aberrant, or unwanted PD-L3 OR VISTA expression or activity.

[00276] Diseases treatable with the subject PD-L3 OR VISTA binding agents are identified previously and include various inflammatory, autoimmune, cancer, allergic and infectious disorders. A particularly preferred indication is multiple sclerosis.

[00277] Stimulation of PD-L3 OR VISTA activity is desirable in situations in which PD-L3 OR VISTA is abnormally downregulated and/or in which increased PD-L3 OR VISTA activity is likely to have a beneficial effect. Likewise, inhibition of PD-L3 OR VISTA activity is desirable in situations in which PD-L3 OR VISTA is abnormally upregulated and/or in which decreased PD-L3 OR VISTA activity is likely to have a beneficial effect. Exemplary agents for use in downmodulating PD-L3 OR VISTA (i.e., PD-L3 OR VISTA antagonists) include, e.g., antisense nucleic acid molecules, antibodies that recognize and block PD-L3 OR VISTA, combinations of antibodies that recognize and block PD-L3 OR VISTA and antibodies that recognize and block PD-L3 OR VISTA counter receptors, and compounds that block the interaction of PD-L3 OR VISTA with its naturally occurring binding partner(s) on an immune cell (e.g., soluble, monovalent PD-L3 OR VISTA molecules; soluble forms of PD-L3 OR VISTA molecules that do not bind Fc receptors on antigen presenting cells; soluble forms of PD-L3 OR VISTA binding partners; and compounds identified in the subject screening assays). Exemplary agents for use in upmodulating PD-L3 OR VISTA (i.e., PD-L3 OR VISTA agonists) include, e.g., nucleic acid molecules encoding PD-L3 OR VISTA polypeptides, multivalent forms of PD-L3 OR VISTA, compounds that increase the expression of PD-

L3 OR VISTA, compounds that enhance the interaction of PD-L3 OR VISTA with its naturally occurring binding partners and cells that express PD-L3 OR VISTA.

[00278] 3. Downregulation of Immune Responses

[00279] There are numerous embodiments of the invention for upregulating the inhibitory function of a PD-L3 OR VISTA polypeptide to thereby downregulate immune responses. Downregulation can be in the form of inhibiting or blocking an immune response already in progress, or may involve preventing the induction of an immune response. The functions of activated immune cells can be inhibited by downregulating immune cell responses or by inducing specific anergy in immune cells, or both. For example, in embodiments where PD-L3 OR VISTA binds to an inhibitory receptor, forms of PD-L3 OR VISTA that bind to the inhibitory receptor, e.g., multivalent PD-L3 OR VISTA on a cell surface, can be used to downmodulate the immune response. In one embodiment of the invention, an activating antibody used to stimulate PD-L3 OR VISTA activity is a bispecific antibody. For example, such an antibody can comprise a PD-L3 OR VISTA binding site and another binding site which targets a cell surface receptor on an immune cell, e.g., a T cell, a B cell, or a myeloid cell. In one embodiment, such an antibody, in addition to comprising a PD-L3 OR VISTA binding site, can further comprise a binding site which binds to a B cell antigen receptor, a T cell antigen receptor, or an Fc receptor, in order to target the molecule to a specific cell population. Selection of this second antigen for the bispecific antibody provides flexibility in selection of cell population to be targeted for inhibition. Agents that promote a PD-L3 OR VISTA activity or which enhance the interaction of PD-L3 OR VISTA with its natural binding partners (e.g., PD-L3 OR VISTA activating antibodies or PD-L3 OR VISTA activating small molecules) can be identified by their ability to inhibit immune cell proliferation and/or effector function, or to induce anergy when added to an in vitro assay. For example, cells can be cultured in the presence of an agent that stimulates signal transduction via an activating receptor. A number of art-recognized readouts of cell activation can be employed to measure, e.g., cell proliferation or effector function (e.g., antibody production, cytokine production, phagocytosis) in the presence of the activating agent. The ability of a test agent to block this activation can be readily determined by

measuring the ability of the agent to effect a decrease in proliferation or effector function being measured. In one embodiment, at low antigen concentrations, PD-L3 OR VISTA immune cell interactions inhibit strong B7-CD28 signals. In another embodiment, at high antigen concentrations, PD-L3 OR VISTA immune cell interactions may reduce cytokine production but not inhibit T cell proliferation. Accordingly, the ability of a test compound to block activation can be determined by measuring cytokine production and/or proliferation at different concentrations of antigen.

[00280] In one embodiment of the invention, tolerance is induced against specific antigens by co-administering an antigen with a PD-L3 OR VISTA agonist. For example, tolerance can be induced to specific polypeptides. In one embodiment, immune responses to allergens or foreign polypeptides to which an immune response is undesirable can be inhibited. For example, patients that receive Factor VIII frequently generate antibodies against this clotting factor. Co-administration of an agent that stimulates PD-L3 OR VISTA activity or interaction with its natural binding partner, , with recombinant factor VIII (or physically linking PD-L3 OR VISTA to Factor VIII, e.g., by cross-linking) can result in immune response downmodulation.

[00281] In one embodiment, a PD-L3 OR VISTA agonist and another agent that can block activity of costimulatory receptors on an immune cell can be used to downmodulate immune responses. Exemplary molecules include: agonists forms of other PD ligands, soluble forms of CTLA-4, anti-B7-1 antibodies, anti-B7-2 antibodies, or combinations thereof. Alternatively, two separate peptides (for example, a PD-L3 OR VISTA polypeptide with blocking forms of B7-2 and/or B7-1 polypeptides), or a combination of antibodies (e.g., activating antibodies against a PD-L3 OR VISTA polypeptide with blocking anti-B7-2 and/or anti-B7-1 monoclonal antibodies) can be combined as a single composition or administered separately (simultaneously or sequentially) to downregulate immune cell mediated immune responses in a subject. Furthermore, a therapeutically active amount of one or more peptides having a PD-L3 OR VISTA polypeptide activity, along with one or more polypeptides having B7-1 and/or B7-1 activity, can be used in conjunction with other downmodulating reagents to influence immune responses. Examples of other immunomodulating reagents include

antibodies that block a costimulatory signal (e.g., against CD28 or ICOS), antibodies that activate an inhibitory signal via CTLA4, and/or antibodies against other immune cell markers (e.g., against CD40, CD40 ligand, or cytokines), fusion proteins (e.g., CTLA4-Fc or PD-1-Fc), and immunosuppressive drugs (e.g., rapamycin, cyclosporine A, or FK506). The PD-L3 OR VISTA polypeptides may also be useful in the construction of therapeutic agents which block immune cell function by destruction of cells. For example, portions of a PD-L3 OR VISTA polypeptide can be linked to a toxin to make a cytotoxic agent capable of triggering the destruction of cells to which it binds.

[00282] For making cytotoxic agents, polypeptides of the invention may be linked, or operatively attached, to toxins using techniques that are known in the art. A wide variety of toxins are known that may be conjugated to polypeptides or antibodies of the invention. Examples include: numerous useful plant-, fungus- or even bacteria-derived toxins, which, by way of example, include: various A chain toxins, particularly ricin A chain; ribosome inactivating proteins such as saporin or gelonin; alpha-sarcin; aspergillin; restrictocin; and ribonucleases such as placental ribonuclease, angiogenic, diphtheria toxin, or pseudomonas exotoxin. A preferred toxin moiety for use in connection with the invention is toxin A chain which has been treated to modify or remove carbohydrate residues, deglycosylated A chain. (U.S. Pat. No. 5,776,427).

[00283] Infusion of one or a combination of such cytotoxic agents (e.g., PD-L3 OR VISTA ricin (alone or in combination with PD-L1-ricin), into a patient may result in the death of immune cells, particularly in light of the fact that activated immune cells that express higher amounts of PD-L3 OR VISTA binding partners, . For example, because PD-1 is induced on the surface of activated lymphocytes, a PD-L3 OR VISTA polypeptide can be used to target the depletion of these specific cells by Fc-R dependent mechanisms or by ablation by conjugating a cytotoxic drug (e.g., ricin, saporin, or calicheamicin) to the PD-L3 OR VISTA polypeptide. In one another embodiment, the toxin can be conjugated to an anti-PD-L3 OR VISTA antibody in order to target for death PD-L3 OR VISTA-expressing antigen-presenting cell. In a further embodiment, the PD-L3 OR VISTA-antibody-toxin can be a bispecific antibody. Such bispecific antibodies are useful for targeting a specific cell population, e.g., using a marker found only on a

certain type of cell, e.g., B lymphocytes, monocytes, dendritic cells, or Langerhans cells. Downregulating immune responses by activating PD-L3 OR VISTA activity or the PD-L3 OR VISTA- immune cell interaction (and thus stimulating the negative signaling function of PD-L3 OR VISTA) is useful in downmodulating the immune response, e.g., in situations of tissue, skin and organ transplantation, in graft-versus-host disease (GVHD), or allergies, or in autoimmune diseases such as systemic lupus erythematosus and multiple sclerosis. For example, blockage of immune cell function results in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by immune cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which promotes the activity of PD-L3 OR VISTA or the interaction of PD-L3 OR VISTA with its natural binding partner(s), on immune cells (such as a soluble, multimeric form of a PD-L3 OR VISTA polypeptide) alone or in conjunction with another downmodulatory agent prior to or at the time of transplantation can inhibit the generation of a costimulatory signal. Moreover, promotion of PD-L3 OR VISTA activity may also be sufficient to anergize the immune cells, thereby inducing tolerance in a subject.

[00284] To achieve sufficient immunosuppression or tolerance in a subject, it may also be desirable to block the costimulatory function of other molecules. For example, it may be desirable to block the function of B7-1 and B7-2 by administering a soluble form of a combination of peptides having an activity of each of these antigens or blocking antibodies against these antigens (separately or together in a single composition) prior to or at the time of transplantation. Alternatively, it may be desirable to promote inhibitory activity of PD-L3 OR VISTA and inhibit a costimulatory activity of B7-1 and/or B7-2. Other downmodulatory agents that can be used in connection with the downmodulatory methods of the invention include, for example, agents that transmit an inhibitory signal via CTLA4, soluble forms of CTLA4, antibodies that activate an inhibitory signal via CTLA4, blocking antibodies against other immune cell markers, or soluble forms of other receptor ligand pairs (e.g., agents that disrupt the interaction between CD40 and CD40 ligand (e.g., anti CD40 ligand antibodies)), antibodies against cytokines, or immunosuppressive drugs. For example, activating PD-L3 OR VISTA activity or the

interaction of PD-L3 OR VISTA with its natural binding partner(s), is useful in treating autoimmune disease. Many autoimmune disorders are the result of inappropriate activation of immune cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive immune cells may reduce or eliminate disease symptoms. Administration of agents that promote activity of PD-L3 OR VISTA or PD-L3 OR VISTA interaction with its natural binding partner(s), may induce antigen-specific tolerance of autoreactive immune cells which could lead to long-term relief from the disease. Additionally, co-administration of agents which block costimulation of immune cells by disrupting receptor-ligand interactions of B7 molecules with costimulatory receptors may be useful in inhibiting immune cell activation to prevent production of autoantibodies or cytokines which may be involved in the disease process. The efficacy of reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythematosus in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., *Fundamental Immunology*, Raven Press, New York, 1989, pp. 840-856).

[00285] Inhibition of immune cell activation is useful therapeutically in the treatment of allergies and allergic reactions, e.g., by inhibiting IgE production. An agent that promotes PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s) can be administered to an allergic subject to inhibit immune cell-mediated allergic responses in the subject. Stimulation PD-L3 OR VISTA activity or interaction with its natural binding partner(s), can be accompanied by exposure to allergen in conjunction with appropriate MHC molecules. Allergic reactions can be systemic or local in nature, depending on the route of entry of the allergen and the pattern of deposition of IgE on mast cells or basophils. Thus, immune cell-mediated allergic responses can be inhibited locally or systemically by administration of an agent that promotes PD-L3 OR VISTA activity or PD-L3 OR VISTA- immune cell interactions.

[00286] Inhibition of immune cell activation through stimulation of PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s), may also be important therapeutically in pathogenic infections of immune cells (e.g., by viruses or bacteria). For example, in the acquired immune deficiency syndrome (AIDS), viral replication is stimulated by immune cell activation. Stimulation of PD-L3 OR VISTA activity may result in inhibition of viral replication and thereby ameliorate the course of AIDS.

[00287] Downregulation of an immune response via stimulation of PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s), may also be useful in treating an autoimmune attack of autologous tissues. Thus, conditions that are caused or exacerbated by autoimmune attack (e.g., heart disease, myocardial infarction or atherosclerosis) may be ameliorated or improved by increasing PD-L3 OR VISTA activity or PD-L3 OR VISTA biding to its natural binding partner. It is therefore within the scope of the invention to modulate conditions exacerbated by autoimmune attack, such as autoimmune disorders (as well as conditions such as heart disease, myocardial infarction, and atherosclerosis) by stimulating PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its counter receptor.

4. Upregulation of Immune Responses

[00288] Inhibition of PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s), as a means of upregulating immune responses is also useful in therapy. Upregulation of immune responses can be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through inhibition of PD-L3 OR VISTA activity is useful in cases of infections with microbes, e.g., bacteria, viruses, or parasites, or in cases of immunosuppression. For example, in one embodiment, an agent that inhibits PD-L3 OR VISTA activity, e.g., a non-activating antibody (i.e., a blocking antibody) against PD-L3 OR VISTA, or a soluble form of PD-L3 OR VISTA, is therapeutically useful in situations where upregulation of antibody and cell-mediated responses, resulting in more rapid or thorough clearance of a virus, bacterium, or parasite, would be beneficial. These

conditions include viral skin diseases such as Herpes or shingles, in which case such an agent can be delivered topically to the skin. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of such agents systemically. In certain instances, it may be desirable to further administer other agents that upregulate immune responses, for example, forms of B7 family members that transduce signals via costimulatory receptors, in order further augment the immune response.

[00289] Alternatively, immune responses can be enhanced in an infected patient by removing immune cells from the patient, contacting immune cells in vitro with an agent that inhibits the PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s), and reintroducing the in vitro-stimulated immune cells into the patient. In another embodiment, a method of enhancing immune responses involves isolating infected cells from a patient, e.g., virally infected cells, transfecting them with a nucleic acid molecule encoding a form of PD-L3 OR VISTA that cannot bind its natural binding partner(s), such that the cells express all or a portion of the PD-L3 OR VISTA molecule on their surface, and reintroducing the transfected cells into the patient. The transfected cells may be capable of preventing an inhibitory signal to, and thereby activating, immune cells in vivo.

[00290] A agent that inhibits PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s), can be used prophylactically in vaccines against various polypeptides, e.g., polypeptides derived from pathogens. Immunity against a pathogen, e.g., a virus, can be induced by vaccinating with a viral polypeptide along with an agent that inhibits PD-L3 OR VISTA activity, in an appropriate adjuvant. Alternately, a vector comprising genes which encode for both a pathogenic antigen and a form of PD-L3 OR VISTA that blocks PD-L3 OR VISTA interaction with immune cells can be used for vaccination. Nucleic acid vaccines can be administered by a variety of means, for example, by injection (e.g., intramuscular, intradermal, or the biolistic injection of DNA-coated gold particles into the epidermis with a gene gun that uses a particle accelerator or a compressed gas to inject the particles into the skin (Haynes et al. (1996) J. Biotechnol. 44:37)). Alternatively, nucleic acid vaccines can be administered by

non-invasive means. For example, pure or lipid-formulated DNA can be delivered to the respiratory system or targeted elsewhere, e.g., Payers patches by oral delivery of DNA (Schubbert (1997) Proc Natl. Acad. Sci. USA 94:961). Attenuated microorganisms can be used for delivery to mucosal surfaces (Sizemore et al. (1995) Science 270:29).

[00291] In another embodiment, the antigen in the vaccine is a self-antigen. Such a vaccine is useful in the modulation of tolerance in an organism. Immunization with a self antigen and an agent that blocks PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner can break tolerance (i.e., interfere with tolerance of a self antigen). Such a vaccine may also include adjuvants such as alum or cytokines (e.g., GM-CSF, IL-12, B7-1, or B7-2). In one embodiment, an agent which inhibits PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s), can be administered with class I MHC polypeptides by, for example, a cell transfected to coexpress a PD-L3 OR VISTA polypeptide or blocking antibody and MHC class I α chain polypeptide and beta2 microglobulin to result in activation of T cells and provide immunity from infection. For example, viral pathogens for which vaccines are useful include: hepatitis B, hepatitis C, Epstein-Barr virus, cytomegalovirus, HIV-1, HIV-2, tuberculosis, malaria and schistosomiasis.

[00292] In another application, inhibition of PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s), , can be useful in the treatment of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, or carcinoma) can be transfected with a nucleic acid molecule that inhibits PD-L3 OR VISTA activity. These molecules can be, e.g., nucleic acid molecules which are antisense to PD-L3 OR VISTA, or can encode non-activating anti-PD-L3 OR VISTA antibodies. These molecules can also be the variable region of an anti-PD-L3 OR VISTA antibody. If desired, the tumor cells can also be transfected with other polypeptides which activate costimulation (e.g., B7-1 or B7-2). The transfected tumor cells are returned to the patient, which results in inhibition (e.g., local inhibition) of PD-L3 OR VISTA activity Alternatively, gene therapy techniques can be used to target a tumor cell for transfection *in vivo*.

[00293] Stimulation of an immune response to tumor cells can also be achieved by inhibiting PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s), by treating a patient with an agent that inhibits PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s). Preferred examples of such agents include, e.g., antisense nucleic acid molecules, antibodies that recognize and block PD-L3 OR VISTA, and compounds that block the interaction of PD-L3 OR VISTA with its naturally occurring binding partner(s) on an immune cell (e.g., soluble, monovalent PD-L3 OR VISTA molecules; soluble forms of PD-L3 OR VISTA molecules that do not bind to Fc receptors on antigen presenting cells; soluble forms of PD-L3 OR VISTA binding partner(s); and compounds identified in the subject screening assays). In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to express sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I .alpha. chain polypeptide and beta2 microglobulin polypeptide or an MHC class II .alpha. chain polypeptide and an MHC class II .beta. chain polypeptide to thereby express MHC class I or MHC class II polypeptides on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with an PD-L3 OR VISTA inhibiting polypeptide or antisense nucleic acid induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II-associated polypeptide, such as the invariant chain, can also be cotransfected with a DNA encoding a PD-L3 OR VISTA inhibiting polypeptide or antisense nucleic acid to promote presentation of tumor associated antigens and induce tumor specific immunity. Expression of B7-1 by B7-negative murine tumor cells has been shown to induce T cell mediated specific immunity accompanied by tumor rejection and prolonged protection to tumor challenge in mice (Chen, L. et al. (1992) Cell 71:1093-1102; Townsend, S. E. and Allison, J. P. (1993) Science 259:368-370; Baskar, S. et al. (1993) Proc Natl. Acad. Sci. 90:5687-5690). Thus, the induction of an immune cell-mediated immune response in a human subject can be sufficient to overcome tumor-specific tolerance in the subject. In another embodiment, the immune response can be stimulated by the inhibition of PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s), ,

such that preexisting tolerance is overcome. For example, immune responses against antigens to which a subject cannot mount a significant immune response, e.g., tumor-specific antigens, can be induced by administering an agent that inhibits the activity of PD-L3 OR VISTA activity or the ability of PD-L3 OR VISTA to bind to its natural binding partner, can be used as adjuvants to boost responses to foreign antigens in the process of active immunization.

[00294] In one embodiment, immune cells are obtained from a subject and cultured ex vivo in the presence of an agent that inhibits PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s), to expand the population of immune cells. In a further embodiment the immune cells are then administered to a subject. Immune cells can be stimulated to proliferate in vitro by, for example, providing the immune cells with a primary activation signal and a costimulatory signal, as is known in the art. Various forms of PD-L3 OR VISTA polypeptides or agents that inhibit PD-L3 OR VISTA activity can also be used to costimulate proliferation of immune cells. In one embodiment, immune cells are cultured ex vivo according to the methods described in PCT Application No. WO 94/29436. The costimulatory molecule can be soluble, attached to a cell membrane or attached to a solid surface, such as a bead.

[00295] In an additional embodiment, in performing any of the methods described herein, it is within the scope of the invention to upregulate an immune response by administering one or more additional agents. For example, the use of other agents known to stimulate the immune response, such as cytokines, adjuvants, or stimulatory forms of costimulatory molecules or their ligands can be used in conjunction with an agent that inhibits PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with its natural binding partner(s), .

E. Identification of Cytokines Modulated by Modulation of PD-L3 OR VISTA Activity or PD-L3 OR VISTA-Interactions with its Counter Receptor on T cells

[00296] The PD-L3 OR VISTA molecules described herein can be used to identify cytokines which are produced by or whose production is enhanced or inhibited in immune cells in response to modulation of PD-L3 OR VISTA activity or PD-L3 OR

VISTA interaction with its natural binding partner(s). Immune cells can be suboptimally stimulated *in vitro* with a primary activation signal, for example, T cells can be stimulated with phorbol ester, anti-CD3 antibody or preferably, antigen, in association with an MHC class II molecule, and given a costimulatory signal, e.g., by a stimulatory form of B7 family antigen, for instance by a cell transfected with nucleic acid encoding a B7 polypeptide and expressing the peptide on its surface, or by a soluble, stimulatory form of the peptide. The cells can then be contacted with cells expressing PD-L3 OR VISTA (e.g., antibodies against PD-L3 OR VISTA). Known cytokines released into the media can be identified by ELISA or by the ability of an antibody which blocks the cytokine to inhibit immune cell proliferation or proliferation of other cell types that are induced by the cytokine. For example, an IL-4 ELISA kit is available from Genzyme (Cambridge, Mass.), as is an IL-7 blocking antibody. Blocking antibodies against IL-9 and IL-12 are available from Genetics Institute (Cambridge, Mass.). The effect of stimulating or blocking PD-L3 OR VISTA activity or the interaction of PD-L3 OR VISTA and its binding partner(s) on the cytokine profile can then be determined. As noted *supra* and shown in the examples PD-L3 OR VISTA apparently suppresses the expression of IL-2 and gamma interferon by immune cells.

[00297] An *in vitro* immune cell costimulation assay as described above can also be used in a method for identifying novel cytokines which can be modulated by modulation of PD-L3 OR VISTA activity. For example, where stimulation of the CD28/CTLA4 pathway seems to enhance IL-2 secretion, stimulation of the ICOS pathway seems to enhance IL-10 secretion (Hutloff et al. (1999) *Nature* 397:263). If a particular activity induced upon costimulation, e.g., immune cell proliferation, cannot be inhibited by addition of blocking antibodies to known cytokines, the activity may result from the action of an unknown cytokine. Following costimulation, this cytokine can be purified from the media by conventional methods and its activity measured by its ability to induce immune cell proliferation.

[00298] To identify cytokines which may play a role in the induction of tolerance, an *in vitro* T cell costimulation assay as described above can be used. In this case, T cells would be given the primary activation signal and contacted with a selected cytokine, but

would not be given the costimulatory signal. After washing and resting the immune cells, the cells would be rechallenged with both a primary activation signal and a costimulatory signal. If the immune cells do not respond (e.g., proliferate or produce cytokines) they have become tolerized and the cytokine has not prevented the induction of tolerance. However, if the immune cells respond, induction of tolerance has been prevented by the cytokine. Those cytokines which are capable of preventing the induction of tolerance can be targeted for blockage in vivo in conjunction with reagents which block B lymphocyte antigens as a more efficient means to induce tolerance in transplant recipients or subjects with autoimmune diseases. For example, one could administer a cytokine blocking antibody to a subject along with an agent that promotes PD-L3 OR VISTA activity or PD-L3 OR VISTA interaction with a binding partner.

[00299] Thus, to summarize a novel member of the Programmed Death Ligand (PDL) family has now been identified which is expressed by Treg cells. This novel protein has been designated PD-L3 OR VISTA. The receptors of this PD-L family are type I transmembrane proteins containing a single IgV domain, while the ligands are type I transmembrane proteins expressing both an IgV and an IgC extracellular domains. Like other members of the PDL family, PD-L3 OR VISTA co-stimulates α CD3 proliferation of T cells in vitro. In addition, the expression of PD-L3 OR VISTA is increased in α CD3 activated Treg and reduced in the presence of α GITR.

[00300] A second, TNF-like, protein has also been identified as being upregulated upon α CD3/ α GITR stimulation. This protein has been designated Treg-sTNF. These proteins may be involved in contact-dependent and paracrine suppression of immunity and therefore are useful for modulating (e.g., inhibiting or stimulating) an immune response and in the treatment of diseases and conditions involving Treg signaling. For example, the PD-L3 OR VISTA protein can be used as a co-stimulatory signal for stimulating or enhancing immune cell activation. PD-L3 OR VISTA proteins and PD-L3 OR VISTA binding agents and PD-L3 OR VISTA agonists and antagonists are especially useful in treating immune conditions wherein regulation of T cell immunity is desired, e.g., modulation of T cell activation, differentiation and proliferation, and in particular

modulation of CD4+ and CD8+ T cell proliferation, cytokine production, and T cell responses during cognate interactions between T cells and myeloid derived APCs.

[00301] This invention is further illustrated by the following examples, which should not be construed as limiting.

Examples

[00302] The following Materials and Methods were used in the examples which follow: Materials and Methods

Expression Profiling

[00303] To facilitate comparisons with established expression profiles of Treg cells, standard growth and activation conditions were employed (McHugh, et al. (2002) *supra*). Briefly, fresh isolated Treg cells (~96% positive) were inoculated at 10⁶/mL into complete RPMI medium supplemented with 10% fetal bovine serum and 100 units IL-2 in a 24-well plate precoated with anti-CD3 with or without anti-GITR (DTA-1)(Shimizu, et al. (2002) *supra*). The cells were cultured at 37°C for 0 and 12 hours, RNA was purified and subsequently analyzed using an Affymetrix® mouse genome A430 oligonucleotide array.

[00304] By comparing the data from resting or activated CD4+CD25+ T cell groups, gene expression patterns were found to be similar to those established in the art (Gavin, et al. (2002) *supra*; McHugh, et al. (2002) *supra*). To identify genes regulated by GITR signaling, gene expression profiles were compared between the different cell populations with or without anti-GITR treatment. A list of known as well as unknown genes were compiled including the previously uncharacterized PD-L3 OR VISTA and Treg-sTNF.

Mice

[00305] C57BL/6 mice, and OTII CD4 transgenic mice were purchased from the Jackson Laboratory. FoxP3-GFP reporter mice were as previously described Fontenot, J. D., Rasmussen, J. P., Williams, L. M., Dooley, J. L., Farr, A. G., and Rudensky, A. Y. (2005). Regulatory T cell lineage specification by the forkhead transcription factor foxp3. *Immunity* 22, 329-341 and were generously provided by Alexander Rudensky, University of Washington School of Medicine, Seattle, WA. PD-1 KO mice were generously provided by Dr. Tasuku Honjo (Kyoto University, Japan) Nishimura, H., Nose, M., Hiai, H., Minato, N., and Honjo, T. (1999). Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. *Immunity* 11, 141-151; Nishimura, H., Okazaki, T., Tanaka, Y., Nakatani, K., Hara, M., Matsumori, A., Sasayama, S., Mizoguchi, A., Hiai, H., Minato, N., and Honjo, T. (2001). Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. *Science* 291, 319-322. All animals were maintained in a pathogen-free facility at Dartmouth Medical School.

Abs, cell lines, and reagent:

[00306] Antibodies α CD3 (2C11), α CD28 (PV-1), α CD4 (GK1.5), α CD8 (53-6.7), α CD11b (M1/70), α F4/80 (BM8), α CD11c (N418), α NK1.1 (PK136), α Gr1 (RB6-8C5), α PD-L1 (MIN5), α PD-L2 (TY25), α B7-H3 (M3.2D7), α B7-H4 (188) were purchased from Ebioscience. LPS (Sigma), recombinant murine IFN- β (Peprotech), human IL-2 (Peprotech), soluble PD-L1-Ig fusion protein (R&D systems) were used at indicated concentrations.. Complete Freund's adjuvant (CFA) and chicken ovalbumin (OVA) were purchased from Sigma. The CHO cell line expressing MHCII molecule I-Ad and costimulatory molecule B7-2 was kindly provided by Dr. Arlene Sharpe (Harvard Medical School).

Molecular cloning of PD-L3 OR VISTA, retrovirus production and retroviral transduction of cells

[00307] Full length PD-L3 OR VISTA was cloned from purified murine CD4+ T cells. Total RNA was isolated from CD4+ T cells using Qiagen RNAmini kit. cDNA was

generated using Bio-Rad iScript™ cDNA synthesis kit. Full-length PD-L3 OR VISTA was amplified and cloned into the ECorI - XhoI site of a retroviral vector pMSCV-IRES-GFP Zhang, X., and Ren, R. (1998). Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 92, 3829-3840, in which the IRES-GFP fragment was replaced by RFP, thus resulting in a fusion protein of PD-L3 OR VISTA fused to the N-terminus of RFP. Helper free retroviruses were generated in HEK293T cells by transient transfection of the PD-L3 OR VISTA-RFP retroviral vector together with an ecotropic packaging vector pCL-Eco (IMGENEX corp.). Retroviral transduction of murine T cell line EL4 cells, or bone marrow derived DCs were carried out by spin infection at 2000rpm at RT for 45min in the presence of 8 µg/ml polybrene (Sigma).

Production of PD-L3 OR VISTA-Ig fusion protein

[00308] The extracellular domain of PD-L3 OR VISTA (amino acid 32-190) was amplified and cloned into the SpeI-BamHI sites of the parental vector CDM7B Hollenbaugh, D., Douthwright, J., McDonald, V., and Aruffo, A. (1995). J Immunol Methods 188, 1-7... This vector contains the mutant form of constant and hinge regions of human IgG1, which has much reduced binding to Fc receptors. The resulting vector CDM7B-PD-L3 OR VISTA was co-transfected with a DHFR expression vector pSV-dhfr (McIvor, R. S., and Simonsen, C. C. (1990)). Nucleic Acids Res 18, 7025-7032 into the CHO (dhfr-) cell line (ATCC #CRL-9096). Stable CHO cell clones that express PD-L3 OR VISTA-Ig were selected in medium MEM-alpha w/o nucleotides (Invitrogen). Further amplification with 0.5-1 µM methotrexate (Sigma M9929) yielded clones expressing high levels of soluble PD-L3 OR VISTA-Ig fusion protein. The fusion protein was further purified from culture supernatant using standard protein-G column affinity chromatography.

Generation of PD-L3 OR VISTA monoclonal antibodies

[00309] Armenian hamsters were immunized 4x times with EL4 cells over-expressing PD-L3 OR VISTA-RFP weekly, then boosted with PD-L3 OR VISTA-Ig fusion protein emulsified in CFA. Four weeks after the boost, hamsters were boosted again with soluble PD-L3 OR VISTA-Ig fusion protein. Four days after the last boost, hamster spleen cells were harvested and fused to the myeloma cell line SP2/0-Ag14 (ATCC #CRL-1581) using standard hybridoma fusion techniques Shulman, M., Wilde, C. D., and Kohler, G. (1978). A better cell line for making hybridomas secreting specific antibodies. *Nature* 276, 269-270. Hybridoma clones that secret PD-L3 OR VISTA specific antibodies were selected after limiting dilution and screened by both ELISA and flow cytometric methods.

RNA and RT-PCR

[00310] Total RNA from various mouse tissue samples or purified hematopoietic cell types were collected by using TrizolTM (Invitrogen) method following company's instructions. cDNAs were prepared by using the iScriptTM cDNA synthesis kit (Bio-Rad). Equal amount of tissue cDNAs (10ng) were used for RT-PCR reactions to amplify full-length PD-L3 OR VISTA. PCR products were viewed after running through a 1% agarose gel.

Flow Cytometry

[00311] Flow cytometry analysis was performed on FACSCAN using CellQuest software (BD Bioscience). Data analysis was performed using FlowJo software (Treestar).

Cell Preparation

[00312] Total CD4+ T cells were isolated from naive mice using total CD4+ T cell isolation kit (Miltenyi). When indicated, enriched CD4+ T cells were flow sorted into naïve (CD44low CD25- CD62Lhi) and memory (CD44hi CD25- CD62Llow) populations. For in vitro proliferation assays, CD4+ T cells were labeled with 5 uM CFSE (Molecular Probes) for 10 min at 37C, and washed twice before being stimulated.

In vitro plate-bound T cell activation assay

[00313] Purified CD4+ T cells (100,000 cells per well) were cultured in 96x flat-bottom well plates, in the presence of anti-CD3 (clone 2C11) and either PD-L3 OR VISTA-Ig or control-Ig at indicated concentration ratios. For example, for a full-range titration, the 96- well plates were coated with 2.5 μ g/ml of α CD3 mixed together with 1.25 μ g/ml (ratio 2:1), 2.5 μ g/ml (ratio 1:1), 5 μ g/ml (ratio 1:2), or 10 μ g/ml (ratio 1:4) PD-L3 OR VISTA-Ig or control-Ig protein in PBS at 4°C overnight. Wells were washed 3 times with PBS before adding CD4+ T cells. Replicate cultures were in complete RPMI 1640 medium supplemented with 10% FBS, 10 mM HEPES, 50 μ M β -ME, Penicillin/Streptomycin/L-Glutamine. When indicated, either 100U/ml human IL-2 (PeproTech) or titrated amount of \square CD28 (clone PV-1, Bio X cell) were coated together with \square CD3 to rescue the inhibitory effects of PD-L3 OR VISTA-Ig. Cultures were analyzed on day 3 for CFSE profiles, or according to a time course as indicated.

Culture of bone marrow derived DCs, retroviral transduction, and stimulation of transgenic CD4+ T cells

[00314] Bone marrow derived DCs were generated as described Lutz, M. B., Kukutsch, N., Ogilvie, A. L., Rossner, S., Koch, F., Romani, N., and Schuler, G. (1999). An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. *J Immunol Methods* 223, 77-92; Son, Y. I., Egawa, S., Tatsumi, T., Redlinger, R. E., Jr., Kalinski, P., and Kanto, T. (2002). A novel bulk-culture method for generating mature dendritic cells from mouse bone marrow cells. *J Immunol Methods* 262, 145-157 with some modifications. Briefly, on day 0, bone marrow cells were isolated from tibia and femur by flushing with 27G needle. After red blood cell lysis, 1-2 \times 10⁶ bone-marrow cells were resuspended in 1 ml complete RPMI 1640 medium containing 20 ng/ml GM-CSF (Peprotech Inc), in 6x well cell culture plates (Nunc, Inc.). 2 ml supernatant containing either RFP or PD-L3 OR VISTA-RFP retrovirus was added to the bone marrow cells. Polybrene (Sigma) was also added at a final concentration 8 μ g/ml. Infection was carried out by spinning the plate at 2000 rpm for 45min at RT. Cells were then cultured for another 2 hours before fresh medium were

added. Similar infection procedure was repeated on day+1, day+3, day+5, and day+7. Loosely adherent cells (90% are CD11c+) were collected on day+10 and CD11c+ RFP+ double positive cells were sorted and used to stimulate transgenic OT-II CD4+ T cells. For OT-II T cell proliferation assays, 100,000 CFSE-labeled OT-II CD4+ T cells were cultured in 96 well round-bottom plates with 30,000 sorted RFP+ or PD-L3 OR VISTA-RFP+ BMDCs, in the presence of titrated amount of synthetic OVA323-339 peptide (Anaspec). Proliferation of OT-II T cells were analyzed at 72hrs by examining CFSE profiles.

Expression studies of PD-L3 OR VISTA in response to immunization

[00315] To immunize transgenic mice DO11.10, 300 µg OVA (Sigma) were emulsified in CFA (200 µl), and injected subcutaneously into the flanks of mice. The draining and non-draining inguinal lymph nodes were harvested at indicated time points. Single cell suspensions were prepared and analyzed for the expression of PD-L3 OR VISTA and other surface markers by flow cytometry.

Inhibitory Activity of PD-L3 OR VISTA.

[00316] The inhibitory activity of PD-L1 was revealed by using antigen presenting cells over-expressing PD-L1 in vitro with CD4+ and CD8+ T cell antigen receptor transgenic T cells and antigen stimulation (Carter, et al. (2002) Eur. J. Immunol. 32:634-43). Similarly, the lentivector disclosed herein, which expresses the full-length PD-L3 OR VISTA, is transduced into cell lines expressing class II major histocompatibility complex (MHC) and class I MHC. The response of TEa Tg or the 2C transgenic T cells to antigen presented by empty vector-transduced or PD-L3 OR VISTA-transduced antigen presenting cells is determined according to established methods.

[00317] Protein Expression. Expression patterns in lymphoid, monocyte and dendritic cell subsets, as well as non-hemoatopoietic tissues, is determined by RT-PCR and western blot analysis using standard protocols in combination with the rabbit α PD-L3 OR VISTA antibody disclosed herein.

[00318] Monoclonal Antibody Production. PD-L3 OR VISTA was overexpressed in the murine B cell line A20, and the recombinant cell line was used to immunize Armenian hamsters. After 5x cell immunization, hamsters were boosted with purified PD-L3 OR VISTA-Ig fusion protein emulsified in CFA. Four weeks later, a final boost was provided with soluble PD-L3 OR VISTA-Ig. Subsequently, fusions of hamster splenocytes with SP2/0 cells were performed on day 4. Sixteen different clones were identified that recognized PD-L3 OR VISTA-Ig fusion protein by ELISA, as well as stained PD-L3 OR VISTA but not PD-L1 overexpressed on the murine T cell line EL4. Eleven of the clones were successfully subcloned and prepared for evaluation of their ability to stain endogenous PD-L3 OR VISTA on cells and tissues, and to block PD-L3 OR VISTA functions.

Proliferation Assays:

[00319] In vitro CD4 T cell proliferation assays was designed to screen PD-L3 OR VISTA mAb activity. In this assay, T cells were stimulated by immobilized anti-CD3 in microplate wells, which crosslinks T cell receptors. Using a PD-L3 OR VISTA-ig fusion protein, which is composed of the extracellular domain of PD-L3 OR VISTA fused to the Fc portion of human IgG, the activity of PD-L3 OR VISTA mAb was detected in two different configurations. First, when mAb was co-immobilized with α CD3, it potently inhibited T cell proliferation, only in the presence of added soluble PD-L3 OR VISTA-Ig fusion protein. This activity was dependent upon the ability of PD-L3 OR VISTA-Ig to bind to the immobilized mAb in the well. Using this form of the assay, clones were identified that were of high, intermediate or low suppressive activity. Second, when mAb was added as a soluble reagent to the assay, it exerted potent suppressive activity on T cell proliferation, by synergizing with the immobilized PD-L3 OR VISTA-Ig fusion protein. In this form of assay, clones were identified that were of various suppressive activities.

EXAMPLE 1: Cloning and sequence analysis of PD-L3 OR VISTA.

[00320] PD-L3 OR VISTA and Treg-sTNF were identified by global transcriptional profiling of resting Treg, Treg activated with α CD3, and Treg activated with

α CD3/ α GITR. α GITR was selected for this analysis as triggering of GITR on Treg has been shown to extinguish their contact-dependent suppressive activity (Shimizu, et al. (2002) *supra*). PD-L3 OR VISTA and Treg-sTNF were identified on AFFIMETRIX® DNA arrays based on their unique expression patterns (Table 1). PD-L3 OR VISTA exhibited an increase in expression in α CD3 activated Treg and reduced expression in the presence of α GITR; and Treg-sTNF exhibited a α CD3/ α GITR-dependent increase in expression.

[00321] Purified CD4+CD25+ T cells were stimulated in culture overnight with none, α CD3, or α CD3/ α GITR, and RNA isolated for real-time PCR analysis. Expression listed is relative to actin.

TABLE 1

mRNA	Relative Expression		
	None	α CD3	α CD3/ α GITR
PD-L3 OR VISTA	6	10	7
T ^{reg} -sTNF	0.2	0.3	1.5

[00322] Affymetrix analysis of activated vs. resting CD25+ CD4+ nTregs revealed the expression of a gene product (RIKEN cDNA 4632428N05, or 4632428N05Rik) with unknown function but with sequence homology to the Ig superfamily.

[00323] More specifically, a 930 bp gene product was cloned from the CD4+ T cell cDNA library, which matched the predicted size and sequence. Silico-sequence and structural analysis predicts a transmembrane protein of 309 amino acids upon maturation, with an extracellular domain of 159 amino acids, a transmembrane domain of 22 amino acids and a cytoplasmic tail of 95 amino acids (Figure 1A). Amino acid sequence alignment reveals an extracellular Immunoglobulin (Ig)-V like domain homologous to B7 family ligands such as PD-L1, PD-L2, B7-H3 and B7-H4, as well as to the B7 family

receptors (i.e. PD-1, CTLA-4, CD28, BTLA, ICOS) (Figure 1B-C). Although the sequence identity of the Ig-V domains between B7 family ligands and receptors in general is not very high (<40%), the Ig-V domain of 4632428N05Rik bears the highest homology with B7 family ligands PD-L1 and PD-L2. Sequence alignment also reveals several highly conserved cysteines (Figure 1B) that are important for intra-chain disulfide bond formation, which is characteristic of the B7 family ligands Sica et al., (2003).
Immunity 18, 849-861.

[00324] The extracellular domain of 4632428N05Rik contains only the Ig-V domain but lacks the Ig-C domain (Figure 1B-C). This unique feature is characteristic of the B7 family receptors, and distinguishes 4632428N05Rik from all other B7 family ligands, which contain both Ig-V and Ig-C domains Freeman, G. J. (2008). Proc Natl Acad Sci U S A 105, 10275-10276; Lazar-Molnar et al., (2008). Proc Natl Acad Sci U S A 105, 10483-10488; Lin et al., (2008), Proc Natl Acad Sci U S A 105, 3011-3016; Schwartz et al., (2001), Nature 410, 604-608.; Stamper et al., (2001), Nature 410, 608-61.
Consistently, the phylogenetic analysis using PhyML algorithm (Phylogenetic Maximum Likelihood) placed 4632428N05Rik in a closer evolutionary distance with B7 family receptors, in particular with PD-1, than the B7 family ligands (Figure 2) Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696-704 . However, the cytoplasmic tail of PD-L3 OR VISTA does not contain any signaling domains (e.g. ITIM, ITAM or ITSM), which are the signature domains of B7 family receptors Sharpe, A. H., and Freeman, G. J. (2002). The B7-CD28 superfamily. Nat Rev Immunol 2, 116-126 . It is therefore hypothesized that despite its close evolutionary relationship with the inhibitory receptor PD-1, 4632428N05Rik represents a novel member of the B7 ligand family. Based on these structural and phylogenetic characteristics, this molecule was named PD-1-eXpressed as Ligand (PD-L3 OR VISTA). PD-L3 OR VISTA is also highly conserved between the mouse and human orthologs, sharing 77% sequence identity (Figure 1D).

[00325] The nucleic acid sequence encoding mouse PD-L3 OR VISTA is set forth herein as SEQ ID NO:1 and the mouse PD-L3 OR VISTA protein sequence is set forth as SEQ ID NO:2.

[00326] The human homolog of PD-L3 OR VISTA is located on chromosome 10 (72.9 Mb) and composed of 6 exons thereby generating a transcript of 4689 bases in length coding for a 311 residue protein. The human homolog mRNA coding sequence is provided in GENBANK accession number NM_022153 and protein sequence give as NP_071436. The nucleic acid sequence encoding human PD-L3 OR VISTA is set forth herein as SEQ ID NO:3 and the human PD-L3 OR VISTA protein sequence is set forth as SEQ ID NO:4. Mouse and human genes share 74% homology and are 68% identical at the protein level. Homologs were also identified in *Rattus norvegicus* on chromosome 20 (27.7 Mb; GENBANK accession number BC098723), as well as *Fugu rubripes* and *Danio rerio*. In particular embodiments, PD-L3 OR VISTA proteins of the present share the common amino acid sequence set forth in SEQ ID NO:5.

EXAMPLE 2: Expression Studies of PD-L3 OR VISTA by RT-PCR Analysis and Flow Cytometry

[00327] As shown in the experiments in Figure 3, RT-PCR analysis was used to determine the mRNA expression pattern of PD-L3 OR VISTA in mouse tissues (Figure 3A). PD-L3 OR VISTA is mostly expressed on hematopoietic tissues (spleen, thymus, bone marrow), or tissues with ample infiltration of leukocytes (i.e. lung). Weak expression was also detected in non-hematopoietic tissues (i.e. heart, kidney, brain, and ovary). Analysis of several hematopoietic cell types reveals expression of PD-L3 OR VISTA on peritoneal macrophages, splenic CD11b+ monocytes, CD11c+ DCs, CD4+ T cells and CD8+ T cells, but lower expression level on B cells (Figure 3B). This expression pattern is also largely consistent with the GNF (Genomics Institute of Novartis Research Foundation) gene array database Su et al., (2002), Proc Natl Acad Sci U S A 99, 4465-4470 , as well as NCBI GEO (gene expression omnibus) database (Figure 4A-D).

[00328] In order to study the protein expression, PD-L3 OR VISTA specific hamster 8D8 and 6E7 monoclonal antibodies were produced. The specificity is demonstrated by positive staining on PD-L3 OR VISTA-overexpressing murine EL4 T cells, but negative staining on PD-L1-overexpressing EL4 cells (Figure 5).

[00329] Both polyclonal and monoclonal antibodies were raised against PD-L3 OR VISTA. Using a rabbit anti-PD-L3 OR VISTA antibody, PD-L3 OR VISTA protein was localized to lymphoid organs and prominently found in brain tissue. Of the monoclonal antibodies identified, the specificity of α PD-L3 OR VISTA clone 8D8 was further evaluated. In this analysis, clone 8D8 was tested for binding against a panel of PD-L like-Ig fusion protein molecules including CTLA-4, PD-1, PD-L1, PD-L2, B7-1, B7-2, PD-L3 OR VISTA and hIg. The results of this analysis indicated that 8D8 α PDL-3 was highly specific for PD-L3 OR VISTA.

[00330] Specifically, using the anti-PD-L3 OR VISTA mAb clone 8D8, PD-L3 OR VISTA expression was analyzed on hematopoietic cells by flow cytometry. Foxp3GFP knock-in reporter mice were used to distinguish CD4+ nTregs (34). In peripheral lymphoid organs (spleen and lymph nodes), significant expression is seen on all CD4+ T cell subsets (see total CD4+ T cells, or Foxp3- naïve T cells and Foxp3+ nTreg cells, and memory CD4+ T cells), whereas CD8+ T cells express markedly lower amount of surface PD-L3 OR VISTA (Figure 3C). In thymus, PD-L3 OR VISTA expression is negative on CD4+CD8+ double positive thymocytes, low on CD4 single positive cells, and detectable on CD8 single positive cells. Next, a strong correlation of high PD-L3 OR VISTA expression with CD11b marker can be seen for both splenic and peritoneal cells, including both F4/80 macrophages and myeloid CD11c+ DCs (Figure 3D-E). On the other hand, B cells and NK cells are mostly negative for PD-L3 OR VISTA expression. A small percentage of Gr-1+ granulocytes also express PD-L3 OR VISTA (Figure 3F).

[00331] A differential expression pattern is shown on the same lineage of cells from different lymphoid organs (Figure 3G). For CD4+ T cells and CD11b intermediate monocytes, the expression level follows the pattern of mesenteric lymph node > peripheral LN and spleen > peritoneal cavity and blood. This pattern is less pronounced for CD11bhi cells. This data suggests that PD-L3 OR VISTA expression on certain cell types might be regulated by cell maturity and/or tissue microenvironment.

[00332] In addition to freshly isolated cells, PD-L3 OR VISTA expression was analyzed on splenic CD4+ T cells, CD11bhi monocytes and CD11c+ DCs upon in vitro

culture with and without activation (Figure 6). Spleen cells were either cultured with medium, or with anti-CD3 (for activating T cells), or with IFN α and LPS (for activating monocytes and DCs) for 24hrs before being analyzed for the expression of PD-L3 OR VISTA and other B7 family ligands (e.g. PD-L1, PD-L2, B7-H3 and B7-H4). This comparison revealed distinctive expression patterns between these molecules. PD-L3 OR VISTA expression is quickly lost on all cell types upon in vitro culture, regardless of the activation status. In contrast, PD-L1 expression is upregulated on CD4+ T cells upon stimulation, or on CD11bhi monocytes and CD11c+ DCs upon culture in medium alone, and further enhanced in the face of stimulation. The expression of PD-L2, B7-H3 and B7-H4 are not prominent under the culture conditions used. The loss of PD-L3 OR VISTA expression in vitro is unique when compared to other B7 family ligands, but might reflect non-optimal culture conditions that fail to mimic the tissue microenvironment.

[00333] To address how PD-L3 OR VISTA expression might be regulated *in vivo*, CD4 TCR transgenic mice DO11.10 were immunized with the cognate antigen chicken ovalbumin (OVA) emulsified in complete Freund's adjuvant (CFA). At 24hrs after immunization, cells from the draining lymph node were analyzed for PD-L3 OR VISTA expression (Figure 7A). Immunization with antigen (CFA/OVA) but not the adjuvant alone drastically increased the CD11b+ PD-L3 OR VISTA+ myeloid cell population, which contained a mixed population of F4/80+ macrophages and CD11c+ DCs. Further comparison with PD-L1 and PD-L2 reveals that even though PD-L1 has the highest constitutive expression level, PD-L3 OR VISTA is the most highly upregulated during such an inflammatory immune response (Figure 7B). Collectively, these data strongly suggest that the expression of PD-L3 OR VISTA on myeloid APCs is tightly regulated by the immune system, which might contribute to its role in controlling immune responses and regulating T cell immunity.

[00334] In contrast to its increased expression on APCs, PD-L3 OR VISTA expression is diminished on activated DO11.10 CD4+ T cells at a later time point upon immunization (i.e. at 48hr but not at 24hr) (Figure 8). This result suggests that PD-L3 OR

VISTA expression on CD4 T cells in vivo may be regulated by its activation status and cytokine microenvironment during an active immune response.

EXAMPLE 3: Functional Impact of PD-L3 OR VISTA Signaling on CD4+ and CD8+ T Cell Responses

[00335] A PD-L3 OR VISTA-Ig fusion protein was produced to examine the regulatory roles of PD-L3 OR VISTA on CD4+ T cell responses. The PD-L3 OR VISTA-Ig fusion protein contains the extracellular domain of PD-L3 OR VISTA fused to the human IgG1 Fc region. When immobilized on the microplate, PD-L3 OR VISTA-Ig but not control Ig suppressed the proliferation of bulk purified CD4+ and CD8+ T cells in response to plate-bound anti-CD3 stimulation, as determined by arrested cell division (Figure 9A-B). The PD-L3 OR VISTA Ig fusion protein did not affect the absorption of anti-CD3 antibody to the plastic wells, as determined by ELISA (data not shown), thus excluding the possibility of non-specific inhibitory effects. PD-1 KO CD4+ T cells were also suppressed (Figure 9C), indicating that PD-1 is not the receptor for PD-L3 OR VISTA. The inhibitory effect of PD-L1-Ig and PD-L3 OR VISTA-Ig was also directly compared (Figure 10). When titrated amounts of Ig fusion proteins were absorbed to the microplates together with anti-CD3 to stimulate CD4+ T cells, PD-L3 OR VISTA-Ig showed similar inhibitory efficacy as PD-L1-Ig fusion protein.

[00336] Since bulk purified CD4+ T cells contain various subsets, the impact of PD-L3 OR VISTA-Ig on sorted naïve (CD25-CD44lowCD62Lhi) and memory (CD25-CD44hiCD62Llow) CD4+ T cell subsets was evaluated (Figure 11). It is shown that PD-L3 OR VISTA can suppress the proliferation of both subsets, albeit with much less efficacy on the memory cells.

[00337] To further understand the mechanism of PD-L3 OR VISTA-mediated suppression, the expression of early TCR activation markers and apoptosis were measured following T cell activation in the presence or absence of PD-L3 OR VISTA-Ig. Consistent with the negative impact on cell proliferation, there is a global suppression on the expression of the early activation markers CD69, CD44, and CD62L (Figure 12A). On the other hand, the PD-L3 OR VISTA-Ig fusion protein did not induce

apoptosis. On the contrary, less apoptosis (as determined by the percentage of annexin V+ 7AAD- cells) was seen in the presence of PD-L3 OR VISTA or VISTA-Ig than the control-Ig, at both early (24hr) and later stage (48hr) of TCR activation (Figure 12B). For example, at 24hr time point, on total “ungated” population, ~27% cells were apoptotic in the presence of PD-L3 OR VISTA or VISTA-Ig, but ~39% control cells were apoptotic. When examining the cells within the live cell R1 gate, it is apparent that PD-L3 OR VISTA or VISTA-Ig strongly inhibited activation-induced-cell-death (ACID), because about 72.6% control cells became apoptotic whereas only 43.5% cells were apoptotic when treated with PD-L3 OR VISTA or VISTA-Ig. Similar results were seen for the 48hr time point. Therefore, it appears that PD-L3 OR VISTA or VISTA negatively regulates CD4+ T cell responses by suppressing early TCR activation and arresting cell division, but with minimum direct impact on apoptosis. This mechanism of suppression is similar to that of B7-H4 Sica, G. L., Choi, I. H., Zhu, G., Tamada, K., Wang, S. D., Tamura, H., Chapoval, A. I., Flies, D. B., Bajorath, J., and Chen, L. (2003). B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. *Immunity* 18, 849-861.

[00338] A 2-step assay was developed to determine whether PD-L3 OR VISTA or VISTA-Ig can suppress pre-activated CD4 T cells, and how persistent its suppressive effect is. It is shown that the suppressive effect of PD-L3 OR VISTA or VISTA-Ig fusion protein persists after its removal at 24hr post activation (Figure 9D). In addition, both naive and pre-activated CD4+ T cells could be suppressed by PD-L3 OR VISTA or VISTA-Ig (Figure 9Di, 9Dii and 9Diii).

[00339] Next, the impact of PD-L3 OR VISTA or VISTA-Ig on CD4+ T cell cytokine production was analyzed. PD-L3 OR VISTA or VISTA-Ig suppressed the production of Th1 cytokines IL-2 and IFN α from bulk purified CD4+ T cell culture (Figure 13A-B). The impact of PD-L3 OR VISTA or VISTA was further tested on separate naïve (CD25-CD44lowCD62Lhi) and memory (CD25-CD44hiCD62Llow) CD4+ T cell populations. It is shown that memory CD4+ T cells are the major source for cytokine production within the CD4+ T cell compartment, and PD-L3 OR VISTA or VISTA can suppress this production (Figure 13C-D). Similar inhibitory effect of PD-L3 OR VISTA or VISTA on IFN α production from CD8+ T cells was also shown (Figure 13E). This

inhibitory effect of PD-L3 OR VISTA or VISTA on cytokine production by CD4+ and CD8+ T cells is consistent with the hypothesis that PD-L3 OR VISTA or VISTA is an inhibitory ligand that down-regulates immune responses.

[00340] Next, studies were designed to determine the factors that are able to overcome the inhibitory effect of PD-L3 OR VISTA or VISTA. Given that PD-L3 OR VISTA or VISTA suppressed IL-2 production, and IL-2 is critical for T cell survival and proliferation, we hypothesize that IL-2 might circumvent the inhibitory activity of PD-L3 OR VISTA or VISTA. As shown in Figure 14A, exogenous IL-2, but not IL-15, IL-7, or IL-23, partially reversed the suppressive effect of PD-L3 OR VISTA or VISTA-Ig on cell proliferation. The incomplete rescue by high levels of IL-2 indicates that PD-L3 OR VISTA or VISTA signaling targets broader T cell activation pathways than simply IL-2 production. On the other hand, potent co-stimulation signal provided by anti-CD28 agonistic antibody completely reversed PD-L3 OR VISTA or VISTA-Ig mediated suppression (Figure 14B), whereas intermediate levels of costimulation is still suppressed by PD-L3 OR VISTA or VISTA signaling (Figure 14C). This result suggests that PD-L3 OR VISTA or VISTA-mediated immune suppression would be more effective under less inflammatory conditions, but will be inevitably overwhelmed by strong positive costimulatory signals. In this regard, PD-L3 OR VISTA or VISTA shares this feature with other suppressive B7 family ligands such as PD-L1 and B7-H4 Sica et al., (2003), Immunity 18, 849-861.; Carter et al., (2002), Eur J Immunol 32, 634-643.

[00341] In addition to PD-L3 OR VISTA or VISTA-Ig fusion protein, it is necessary to confirm that PD-L3 OR VISTA or VISTA expressed on APCs can suppress antigen-specific T cell activation during cognate interactions between APCs and T cells. For this purpose, PD-L3 OR VISTA or VISTA-RFP or RFP control protein was over-expressed via retroviral transduction in an artificial antigen presenting cell line (CHO-APC) that stably expresses MHCII and B7-2 molecules Latchman et al., (2001), Nat Immunol 2, 261-268. One problem in expressing PD-L3 OR VISTA or VISTA in CHO is that the majority of PD-L3 OR VISTA or VISTA failed to localize to the cell surface, perhaps due to the alien environment that lacks support for PD-L3 OR VISTA or VISTA surface localization (data not shown). Although there are no clear motifs present on the

cytoplasmic tail of PD-L3 OR VISTA or VISTA to suggest the mode of regulation, we speculate that the tail might play a role for its intracellular localization. Consequently, a tail-less PD-L3 OR VISTA or VISTA mutant was designed and was found to successfully localize to CHO cell surface (data not shown).

[00342] To stimulate T cell response, CHO-PD-L3 OR VISTA or VISTA or CHO-RFP cells were incubated together with DO11.10 CD4+ T cells in the presence of antigenic OVA peptide. As shown in Figure 15 A-C, CHO-PD-L3 OR VISTA or VISTA induced less proliferation of DO11.10 cells than CHO-RFP cells. This suppressive effect is more pronounced at lower peptide concentrations, consistent with the notion that a stronger stimulatory signal would overcome the suppressive impact of PD-L3 OR VISTA or VISTA.

[00343] In addition, the inhibitory effect of full-length PD-L3 OR VISTA or VISTA on natural APCs was confirmed. In vitro cultured bone marrow derived dendritic cells (BMDC) do not express high level of PD-L3 OR VISTA or VISTA (Figure 16). PD-L3 OR VISTA or VISTA-RFP or RFP was expressed in BMDCs by retroviral transduction during the 10 day culture period. Transduced cells were sorted to homogeneity based on RFP expression. The expression level of PD-L3 OR VISTA or VISTA on transduced DCs was estimated by staining with anti-PD-L3 OR VISTA or VISTA mab, and found to be similar to the level on freshly isolated peritoneal macrophages, thus within the physiological expression range (Figure 16). Sorted BMDCs were then used to stimulate OVA-specific transgenic CD4+ T cells (OTII) in the presence of OVA peptide (Figure 15D). It is shown therein that the expression of PD-L3 OR VISTA or VISTA on BMDCs suppressed the cognate CD4+ T cell proliferative responses. This result is consistent with previous data using PD-L3 OR VISTA or VISTA-Ig fusion protein and CHO-APC cells, suggesting that PD-L3 OR VISTA or VISTA can suppress T cell-mediated immune responses.

EXAMPLE 4: Evaluation of Anti-PD-L3 OR VISTA or VISTA Antibodies in Multiple Sclerosis Animal Model (EAE)

[00344] Because the □PD-L3 OR VISTA or VISTA mAbs *in vivo* appeared to suppress T cell responses, □PD-L3 OR VISTA or VISTA was tested to evaluate if it can inhibit a T cell-mediated autoimmune disease. Using the Experimental Allergic Encephalomyelitis (EAE) model, the functional impact of □PDL-L3 mAbs on inflammatory diseases was determined. EAE is a widely used murine model of the human autoimmune disease multiple sclerosis. EAE can be induced by either immunization with myelin antigens in adjuvant or by adoptive transfer of myelin-specific T cells, which results in inflammatory infiltrates of various effector T cells and B cells, and demyelination of central nervous systems.

[00345] α PDL-L3 mAb was tested in the passive EAE model to avoid induction of anaphylaxis due to the injection of large amount of mAb as foreign antigen. In this adoptive transfer EAE model, donor SJL mice were immunized with CFA and PLP peptide. On day 10, total lymphocytes from draining LN were isolated, and cultured *in vitro* with PLP peptide, IL-23 (20 ng/ml) and anti-IFNg (10 μ g/ml) for 4 days. Expanded CD4 T cells were then purified and adoptively transferred into naïve recipient mice. This analysis indicated that α PDL-L3 mAb delayed disease onset, as well as reduced disease severity, thereby shifting the disease progression curve significantly (Figure 17). In addition, it reduced severity in a large percentage of the mice and greatly increased survival from around 22% to over 75%. This demonstrated activity of α PDL-L3 mAb in EAE is consistent with the *in vitro* data, and demonstrates the use of this reagent as a novel immunoregulatory reagent in various inflammatory diseases.

[00346] EXAMPLE 5: EXPRESSION OF VISTA IN THE CNS

[00347] The expression of VISTA in the CNS was also effected. These assays revealed that in mice with disease, VISTA expression is markedly reduced (from 76% \rightarrow 33%) on the CD11b+ cells (Fig 23), consistent with the hypothesis that the loss of VISTA may be permissive for enhanced inflammation. This is interesting, and likely functionally important when we contrast inflammatory myeloid cells herein, with the MDSC in tumors that express extremely high levels of VISTA. It has been reported that EAE mice have elevated numbers of myeloid derived suppressor cells (CD11b+Ly-6Chigh MDSC)

in the spleen which are potently suppressive for T cell activation and may temper disease³². Our data strongly support the hypothesis that VISTA may play a role in myeloid-mediated suppression in EAE.

[00348] EXAMPLE 6: The impact of VISTA on the fate and function of T cells in EAE.

[00349] We also conducted experiments assaying the effect of VISTA on the fate and function of T cells in EAE. We wanted to assess if VISTA alters the development of pathogenic, encephalitogenic T cells, clonal T cell expansion, T cell polarity, longevity, and conversion of Teff → Treg. We studied the impact of VISTA blockade on T cell fate in EAE. Consistent with the higher disease score, analysis of CNS at the end of disease course confirmed significantly more IL17A-producing CD4+ T cell infiltration (from 0.66 → 11%) in 13F3 (□ VISTA) treated group (Fig. 24).

[00350] EXAMPLE 7: PD-L3 OR VISTA or VISTA Transgenic and Knock-Out Mice

[00351] Using Lentiviral infection of embryos, four transgenic mice ubiquitously expressing PD-L3 OR VISTA or VISTA have been produced. These mice express full-length PD-L3 OR VISTA or VISTA under the control of the human elongation factor 1 promoter. These mice were generated using lentiviral vector pWPT. Similar to other PD-L1 family members (Appay, et al. (2002) *J. Immunol.* 168:5954-8), it is contemplated that PD-L3 OR VISTA or VISTA will function as a negative regulator *in vivo* while functioning to co-stimulate αCD3 T cell proliferation *in vitro*. In this respect, these mice are expected to spontaneously develop autoimmunity and *in vivo* immune responses in the PD-L3 OR VISTA or VISTA transgenic mice (*i.e.*, humoral immune responses, T cell priming, etc.) are evaluated to assess systemic autoimmune disease development.

[00352] For knock-out mice, PD-L3 OR VISTA or VISTA is inactivated by homologous recombination. A BAC clone containing full-length PD-L3 OR VISTA or VISTA sequence was purchased from INVITROGEN™ (Carlsbad, CA). A PD-L3 OR VISTA or VISTA targeting vector was generated by inserting a 1.6 kb fragment located

at the 5' side of the second exon of PD-L3 OR VISTA or VISTA gene upstream the neomycin gene and the 5 kb fragment located at the 3' side of the third exon of PD-L3 OR VISTA or VISTA gene downstream the neomycin gene. B6-derived embryonic stem (ES) cells are electroporated with PD-L3 OR VISTA or VISTA targeting vector and recombined clones are selected. Selected clones are then injected into C57BL/6 blastocysts and the resulting chimeric male offspring are mated to FLP-deleter mice to remove the neomycin cassette. Transmission of the targeted allele in the offspring is determined by PCR from genomic DNA. The second and the third exon contain the PD-L3 OR VISTA or VISTA domain, therefore, the resulting mice have only the inactivated form of the PD-L3 OR VISTA or VISTA molecule.

[00353] The overall immune capacity of PD-L3 OR VISTA or VISTA deficient mice is determined as with other PD-L-/- mice, including assessment of T cell responses to antigen, humoral immune responses, overt autoimmunity (e.g., Systemic Lupus Erythematosus, inflammatory bowel disease), and increased susceptibility to induced autoimmune disease (experimental autoimmune encephalomyelitis) (Chen (2004) *supra*).

[00354] EXAMPLE 8: PD-L3 OR VISTA or VISTA Specific Antibodies Tested in Collagen-Induced Arthritis Animal Model

[00355] As shown in the experiments in Figure 18, male DBA/1J mice were immunized at the base of their tail with 100 µl of emulsion containing 100 µg chick type-II collagen (C-II) in CFA (mycobacterium tuberculosis 3.5 mg/ml) and boosted IP with 100 µg aqueous C-II on day 21 post-immunization. Mice of each treatment group (n=6) were either untreated (NT-black circles), injected with 300 µg hamster IgG (Ham Ig-black squares) or injected with 300 µg of monoclonal-antibody "7c9" (red triangle) or "13F3" (green triangle), as indicated. Injections were given every 2 days. Arthritic swelling was scored on a scale of 0-4 for each paw of each mouse on the days indicated. The arthritis score shown is the total score of all paws of mice in each treatment group divided by the number of mice in the group.

[00356] EXAMPLE 9: VISTA blockade by a specific VISTA monoclonal antibody enhances T cell responses in vitro.

[00357] A VISTA-specific mab (13F3) was identified which neutralizes VISTA-mediated suppression (Fig. 19). CD11b^{hi} myeloid APCs were purified from naïve mice to stimulate OT-II transgenic CD4⁺ T cells in the presence or absence of 13F3. Consistent with its neutralizing effect, 13F3 enhanced T cell proliferation stimulated by CD11b^{hi} myeloid cells, which were shown to express high levels of VISTA.

[00358] EXAMPLE 10: Anti-VISTA enhances anti-tumor immunity.

[00359] Because of the capacity of anti-VISTA to enhance T cell activation, we assessed whether anti-VISTA would enhance the protective immune response to an immunogenic tumor. A model in which we have a great deal of experience is the bladder carcinoma, MB49. MB49 expresses male antigen, and thus it is modestly immunogenic in female mice, although, it will grow and kill female mice if there is no immune intervention. To test the efficacy of α VISTA therapy, female mice were administered MB49 tumor cells subcutaneously (sq) and treated with α VISTA. Days thereafter, the size of the tumor was measured until the mice had to be euthanized. As can be readily seen in Figure 20 anti-VISTA therapy greatly impairs tumor growth. We believe that this is due to the ability of anti-VISTA to intensify cell-mediated immune (CMI) responses.

[00360] EXAMPLE 11: Effect of α VISTA on Tumor Regression in 4 Murine Tumor Models.

[00361] Experiments in the immunogenic bladder carcinoma tumor MB49 have shown that neutralization of VISTA using mab 13F3 and protects host from tumor growth. The data indicates that VISTA has a considerable negative immunoregulatory role in the microenvironment of a tumor because of its extremely high expression of MDSCs. Studies examining the effect of anti-mouse VISTA on the growth of immunogenic (MB49) and highly non-immunogenic (B16) tumor models will further confirm the efficacy of α VISTA therapy, shed light on the mechanism of action, and provide the basis for selecting the optimal dose and timing. The rationale for each tumor model is detailed below.

[00362] MB49 in female mice: We have already shown efficacy in this murine model. MDSCs in this model also express elevated levels of VISTA (not shown). In this model,

Tumor Name	Tumor Type	Host	Groups	ASSAYS
MB49	Bladder Carcinoma	B6 Female	<input type="checkbox"/> VISTA Control Ig	Tumor growth Survival Immune/ Autoimmune Assays
MB49	Bladder Carcinoma	B6 Male		
B16.F10	Melanoma	B6 Male or female		
ID8	Ovarian Cancer	B6 Female		

due to the presence of H-Y antigen, the MB49 tumor is modestly immunogenic. Since we know anti-VISTA therapy is effective, we will use this model as a "positive" control to determine dosing (1-100 ug/mouse; and timing (day of tumor inoculation, or 4, 7, 10 days after tumor; therapeutic intervention) of anti-VISTA therapy.

[00363] MB49 in male mice: Using doses and timing effective in female mice, the efficacy of anti-VISTA therapy in male mice (in which the tumor is less immunogenic) is determined.

[00364] B16 melanoma: Anti-CTLA-4 mab was shown highly effective in this model, and represents a non-immunogenic tumor where the mouse model has been valuable for predicting success in humans. Dosing regimes and timing will be similar to those shown to be effective in the MB49 model.

[00365] ID8 Ovarian carcinoma: It is in this model, that VISTA expression has been shown to be extremely high on MDSCs. Mice bearing ID8 tumor are treated with α VISTA at the time of tumor inoculum or at day 5, 15, 25 post inoculation.

[00366] Methods. B6 WT mice are used to determine the optimal dose and timing of anti-VISTA treatment for the remission of all murine tumor models noted. The models to be used are listed in the above table.

[00367] The readout for this dose and timing assay are tumor growth kinetics. For MB49 and B16 studies, all tumor studies are done via intradermal (i.d.) inoculation and therefore tumor size can be readily measured. Tumor measurements is collected every 2-3 days using a caliper. In each of these models, the impact of anti-VISTA or control antibody will be tested for its ability to slow tumor growth or facilitate tumor regression. Growth of ID8 will be followed using a luciferase transduced ID8 and whole body imaging using an IVIS Workstation. In addition, host survival will also be determined.

[00368] Data on tumor growth is expressed as mean tumor volume \pm SEM and differences between groups will be analyzed by two-tailed ANOVA. Probability (p) values less than 0.05 is considered statistically significant. Survival data is analyzed using the Kaplan-Meier method with the Wilcoxon rank test and the log-rank test used to verify the significance of the difference in survival between groups. In the B16 models, frequencies of mice that develop vitiligo is determined.

[00369] Using these methods slowed tumor growth and/or tumor regression in mice treated with anti-VISTA mAb is obtained as compared with mice treated with control ab in several of the non-immunogenic tumor models. It has already been shown that anti-VISTA treatment delays tumor growth in an immunogenic tumor model. As each of these tumor models have their own specific growth kinetics and, anticipated dependency on VISTA to confer tumor growth and suppress immunity, mice will be administered mab either at the time of tumor inoculum or at times thereafter. Additionally, at least 3 different concentrations of um VISTA mab is tested to determine the optimal dose for therapeutic benefit.

[00370] As shown in Figure 21A-E, VISTA mab treatment reduced tumor growth in all 4 of these tumor models wherein mice were inoculated either sq with A. MB49 , B. MCA105, or C. EG7 tumor cells, or D. ip with ID8-luciferase tumor cells, and treated with VISTA mab 13F3 every other day (300 μ g) beginning on day +1. Subcutaneous tumor growth was monitored. For ID8-luciferase tumor, mice were imaged on day 30 using Xenogen IVIS. E. VISTA expression on myeloid leukocytes in tumor-bearing mice was also determined. Draining LN and tumor tissues (ascites) were analyzed for

VISTA expression. These findings show that VISTA expressed on MDSC is a major suppressive molecule that interferes with the development of protective anti-tumor immunity, and □VISTA relieves this suppressive activity allowing immune intervention and slowing growth of tumor. These findings also support the conclusion that VISTA on myeloid cells in autoimmune disease plays a pivotal function in regulating the extent of inflammation.

[00371] EXAMPLE 12: Synthesis of Oligomeric VISTA and VISTA fusion proteins useful for the treatment of autoimmunity.

[00372] Soluble VISTA-Ig in vitro is not suppressive nor can its binding to cells be readily detected. By contrast, this molecule bound to plastic is profoundly suppressive. In addition, studies using VISTA-Ig in vivo did not show overt activity (data not shown). With respect to these studies the VISTA-Ig that was created has mutations in the CH2-CH3 domain precluding FcR binding, and therefore is not cytophilic in vivo. Recent studies have shown that tetrameric PD-L1 bound 100X higher (K_d 6×10^{-8} M) than monomeric PD-L126 to PD-1, and that binding to cells was readily detectable. Tetrameric PD-L1 was not tested in vivo, but in vitro it was shown to block the functional suppression by native PD-L1. Using similar methods oligomers are made that will target the VISTA pathway and elicit potent immunosuppressive activity in vitro and in vivo.

[00373] Such oligomers are constructed using the monomeric extracellular domain of VISTA or a fragment thereof, e.g., at least 50, 75, 100, 125, 150, 175 or 200 amino acids long which extracellular domain or a portion thereof is used as the building blocks for oligomer. In these methods the inventors take advantage of the well-established MHC tetramer technologies. In these methods the VISTA ectodomain construct or a fragment is linked to the N-terminus of a variety of oligomerization domains (identified *supra*) in order to generate a series of VISTA complexes with valencies that span from divalent to heptavalent.

[00374] Thereby, a series of non-covalent oligomers is created based on high affinity coiled-coil domains that direct the stable formation of dimeric, trimeric, tetrameric,

pentameric and heptameric assemblies. These oligomeric constructs are expressed in a host cell, e.g., *E. coli*. When expression is effected in *E. coli* the expressed oligomers are then refolded and purified from inclusion bodies using standard laboratory protocols. This approach has routinely produced high quality material for biological and structural analysis, including MHC-peptide complexes and trimeric GITRL66. The isolated oligomeric proteins are then assessed by SDS-PAGE, analytical gel filtration, analytical ultracentrifugation and mass spectrometry. These quality control measures ensure the availability of homogeneous, well-characterized materials for *in vitro* and *in vivo* studies. The parallel organization of these constructs results in molecules in which the valency is equal to the oligomeric state since each individual VISTA complex is positioned to productively interact with cell surface bound VISTA receptor. The above constructs possess extreme stability and homogeneity of oligomeric state. (Non-covalent coiled-coil oligomerization domains typically exhibit melting temperatures that exceed 100° C, except for the heptamer sequence which exhibits a melting temperature of 95° C.

[00375] In addition dimeric VISTA-Ig is tetramerized that is either cytophilic or not cytophilic. The Fc fusion constructs of VISTA in frame with the IgG1 Fc (both wild-type IgG1 and the existing non-FcR-binding IgG1) are modified with an N-terminal BirA site for enzymatic biotinylation and cloned into the pIRES2-EGFP vector. Enzymatic biotinylation will allow specific, single residue modification and orientation upon avidin multimerization. This approach has been used for the generation of numerous Ig-fusion proteins, including B7-1, PD-L1, PD-L2 and TIM-3. The expressed proteins are then enzymatically biotinylated *in vitro*, purified by size exclusion HPLC, and tetramerized using PE-Avidin. The resulting tetramers which are cytophilic or not, are assessed *in vivo*.

[00376] These engineered multimeric VISTA proteins are useful in treating autoimmunity and other conditions wherein intervention in the VISTA pathway and immunosuppression is therapeutically warranted.

[00377] EXAMPLE 13: VISTA adenoviral vectors for inducing immune suppression.

[00378] Gene transfer using recombinant adeno-associated virus (AAV) has seen great technological development in gene therapy. Specifically, AAV-mediated gene delivery of PD-L1 gene, or CTLA4-Ig and CD40-Ig has achieved therapeutic efficacy in autoimmune disease models of lupus and cardiac transplantation. These methods will be used to deliver either full length VISTA, or oligomeric VISTA ectodomains, and their therapeutic effects are assessed in the EAE model. Recombinant adenovirus vector expressing either full-length murine VISTA, or oligomeric VISTA ectodomain, is created using the Adeno-XTM Expression System (Clontech) according to the manufacturer's instructions. Briefly, VISTA is cloned into an E1 and E3-deleted, pAdDEST-based expression vector, under the control of the human cytomegalovirus (CMV) promoter. VISTA and control lacZ expressing adenovirus are then purified from cell lysates. For systemic overexpression of VISTA, adenovirus is administered to mice by intravenous tail vein injection (1×10^9 plaque-forming units [Pfu]) either prior to or shortly after disease induction via immunization, or after disease onset. The control mice will receive 100 μ l PBS. Disease development and alterations are monitored in both SJL mice and C57BL/6 mice, which exhibit different disease progression pattern, and which represent two distinct forms of clinical manifestation of human MS patients.

[00379] EXAMPLE 14: Functional studies with engineered proteins and adenoviral vectors

[00380] Mice are also administered (5-100 μ g of protein/mouse \times 3 weekly) with engineered VISTA and/or adenoviral vectors. Following administration, T cell expansion, differentiation, as well as EAE development is determined.

[00381] EXAMPLE 15: Structural Studies on VISTA and Determining Molecular Determinants of VISTA Function

[00382] Affinity, specificity, oligomeric state, and the formation and localization of organized signaling complexes are critical contributors to immune function. All of these features impact signaling and immune regulation, as the organization of the receptor-ligand ectodomains directly controls the recruitment, organization and function of non-covalently associated cytoplasmic signaling and scaffolding molecules. The high

resolution crystal structure of VISTA is determined using techniques including bacterial, insect and mammalian expression systems, as well as high-throughput crystallization and structure determination approaches. To validate the crystallographically-observed disulfide bonding pattern, we will exploit high resolution mass spectrometry using approaches that successfully supported our published studies of TIM-3 and human DcR359. Based on these structural results, a series of mutants with altered oligomeric properties is designed, as well as mutants in the vicinity of any perturbed regions of the VISTA IgV domain. These mutant proteins will provide additional direct mechanistic insight into VISTA function and should be useful in therapeutics wherein immunosuppression is desired such as the autoimmune, allergic and inflammatory diseases identified herein. These mutants, especially oligomers are tested in in vitro systems and are assessed in animal autoimmune and inflammatory disease models in order to assess the immunosuppressive effect on disease progression, disease remission or in protecting the animal from developing the autoimmune or inflammatory condition.

[00383] These oligomeric VISTA proteins will activate the VISTA pathway and function as a target of immune intervention in autoimmunity. This intervention will suppress immunity and exert a therapeutic benefit on autoimmune disease and other conditions wherein autoimmune suppression is desired. This is accomplished by administering the oligomerized VISTA proteins in different autoimmune and inflammatory models such as the EAE and collagen-induced arthritis animal models. In addition, as discussed above, adenoviral vectors that over-express full-length VISTA or VISTA oligomers are constructed and tested in vivo. These studies will confirm the immunosuppressive effects of VISTA oligomers.

[00384] Example 16: Experiments Using Conditional Over-expressing VISTA Transgenic Mouse Strain (VISTA transgenic mouse strain: R26StopFLVISTA (VISTA)).

[00385] A targeting construct containing the full-length cDNA of VISTA preceded by a loxP-flanked STOP cassette, has been targeted into the ubiquitously expressed ROSA26 locus. Multiple correctly targeted R26StopFL-VISTA pups were born, and

bred onto the CMV-Cre deleter strain⁶⁰. Preliminary data in the VISTA x CMV-cre confirm GFP and heightened VISTA expression. Studies on the immune status of these mice (T cell responses to antigen, antibody titers, etc) will confirm a suppressed phenotype. The VISTA strain will be interbred with CD4-cre, CD11c-cre, and Lys-Cre to determine if the lineage location of VISTA expression influences suppression. The phenotype and function of the T cells is also determined and it is determined if over-expression of VISTA results in the generation of aTreg. In these studies Tregs from OVA-immune cre x VISTA strain are adoptively transferred into WT hosts, to see if antigen immunization in the presence of over-expressed VISTA induces antigen-specific Tregs. This should verify that VISTA impacts Treg differentiation.

[00386] In addition, studies are effected in the EAE model whereby the impact of VISTA protein on different lineages (by interbreeding with CD4-, CD11c-, Lys-cre) with respect to disease development is assessed. Assuming that disease can be suppressed by lineage restricted overexpression of VISTA mutants or in the CMV x VISTA mutant the temporal control of disease development is also using Cre-ERT2 x VISTA⁶¹. Through the administration of tamoxifen we can induce overexpression of VISTA prior to, or at disease initiation or at peak disease to determine if VISTA can impact on the induction and/or effector phases of immunity. Using BM chimeric mice, temporally-restricted overexpression of VISTA can be restricted to the hematopoietic compartment. For an appreciation of controlling the window of time VISTA is overexpressed, VISTA is genetically turned on, then serologically turned off with the administration of anti-VISTA mab. These studies will determine where and when VISTA has to act to control the development and progression of autoimmune disease.

[00387] Example 17:Effect of anti-VISTA antibodies CD40/TLR Agonist Vaccine

[00388] As shown in Figure 22, experiments were conducted that assayed the effect of anti-VISTA antibodies on vaccine efficacy. These results show that anti-VISTA enhances the therapeutic efficacy of a CD40/TLR vaccine. C57BL/6 mice were challenged with 1X10⁵ metastatic B16.F10 melanoma cells s.q. Four days later, mice were vaccinated with 100 μ g of the tumor associated antigen Δ V, 100 μ g α CD40 FGK45

(CD40 agonistic antibody) and 100 μ g S-27609(TLR7 agonist) with or without anti-VISTA (200 ug x 3/week). Growth of tumor was monitored by caliper measurements.

[00389] Having described the invention the following claims are provided. These claims are intended to cover all generic and specific features described herein, and all statements of the scope which, as a matter of language, might be said to fall there between.

What is claimed is:

1. An isolated, or recombinant immunosuppressive multimeric VISTA protein or conjugate thereof that comprises at least two copies of a polypeptide which is at least 90% identical to the extracellular domain of the human or murine VISTA polypeptide in SEQ ID NO:2 or 4 or which contains at least two copies of a polypeptide which is at least 90% identical to a fragment of the extracellular domain of said VISTA polypeptide which is at least 50 amino acids long.
2. The isolated, or recombinant immunosuppressive multimeric VISTA protein or conjugate thereof of claim 1 wherein the fragment of the extracellular domain of said VISTA polypeptide which is at least 75 amino acids long.
3. The isolated, or recombinant immunosuppressive multimeric VISTA protein or conjugate thereof of claim 1 wherein the fragment of the extracellular domain of said VISTA polypeptide which is at least 100 amino acids long.
4. The isolated, or recombinant immunosuppressive multimeric VISTA protein or conjugate thereof of claim 1 wherein the fragment of the extracellular domain of said VISTA polypeptide which is at least 125 amino acids long.
5. The isolated multimeric VISTA protein or conjugate of claim 1 which comprises at least three copies of said extracellular domain or fragment thereof.
6. The isolated multimeric VISTA protein or conjugate of claim 1 which comprises at least four copies of said extracellular domain or fragment thereof.
7. The isolated multimeric VISTA protein or conjugate of claim 1 which comprises at least five copies of said extracellular domain or fragment thereof.
8. The isolated multimeric VISTA protein or conjugate of claim 1 which comprises at least six copies of said extracellular domain or fragment thereof.

9. . The isolated multimeric VISTA protein or conjugate of claim 1 wherein the extracellular domain or fragment is attached to the N-terminus of an oligomerization domain.
10. The isolated or recombinant VISTA protein or conjugate of claim 6 wherein the oligomerization domain is selected from GCN4, COMP, SNARE, CMP, MAT, LLR containing 1 NLRC, NOD2 nucleotide-binding NLRC2, LRR containing 1 NLRC NOD2 nucleotide-binding NLRC2; and PSORAS1.
11. A pharmaceutically acceptable composition comprising an isolated or recombinant VISTA protein or conjugate according to any one of claims 1-10.
12. The pharmaceutically acceptable composition of claim 11 which comprises at least one other immunosuppressive agent selected from PD-1, PD-L1, PD-L2, CTLA4 and ICOS proteins and antibodies specific to any of the foregoing. (RANDY PLEASE REVIEW THE LIST)
13. A method of eliciting immunosuppression in an individual in need thereof comprising administering an isolated or recombinant VISTA multimeric protein or adenoviral vector expressing a VISTA protein or a composition according to any one of claims 1-12.
14. A method of treating an individual with an allergic, inflammatory or autoimmune disorder comprising administering a therapeutically effective amount of an isolated or recombinant VISTA multimeric protein or composition according to any one of claims 1-12.i
15. The method of claim 13 or 14 wherein said isolated or recombinant VISTA protein is expressed by a cell that expresses said protein under the control of regulatable promoter.
16. The method of claim 15 wherein said multimeric VISTA expressing cell is an allogeneic T cell.

17. The method of claim 15 wherein the multimeric VISTA expressing cell also comprises a suicide gene that provides for the cell to be killed under specific conditions.
18. The method of claim 14 wherein the allergic, inflammatory or autoimmune disorder is selected from psoriasis, dermatitis, atopic dermatitis; systemic scleroderma, sclerosis; Crohn's disease, ulcerative colitis; respiratory distress syndrome, adult respiratory distress syndrome; ARDS); dermatitis; meningitis; encephalitis; uveitis; colitis; glomerulonephritis; eczema, asthma, atherosclerosis; leukocyte adhesion deficiency; rheumatoid arthritis; systemic lupus erythematosus (SLE); diabetes mellitus (e.g. Type I diabetes mellitus or insulin dependent diabetes mellitus); multiple sclerosis; Reynaud's syndrome; autoimmune thyroiditis; allergic encephalomyelitis; Sjorgen's syndrome; juvenile onset diabetes; tuberculosis, sarcoidosis, polymyositis, granulomatosis and vasculitis; pernicious anemia (Addison's disease); central nervous system (CNS) inflammatory disorder; multiple organ injury syndrome; hemolytic anemia, cryoglobulinemia or Coombs positive anemia; myasthenia gravis; antigen-antibody complex mediated diseases; anti-glomerular basement membrane disease; antiphospholipid syndrome; allergic neuritis; Graves' disease; Lambert-Eaton myasthenic syndrome; pemphigoid bullous; pemphigus; autoimmune polyendocrinopathies; Reiter's disease; stiff-man syndrome; Behcet disease; giant cell arteritis; immune complex nephritis; IgA nephropathy; IgM polyneuropathies; immune thrombocytopenic purpura (ITP) and autoimmune thrombocytopenia
19. The method of claim 14 wherein the disease is selected from arthritis, rheumatoid arthritis, acute arthritis, chronic rheumatoid arthritis, gouty arthritis, acute gouty arthritis, chronic inflammatory arthritis, degenerative arthritis, infectious arthritis, Lyme arthritis, proliferative arthritis, psoriatic arthritis, vertebral arthritis, and juvenile-onset rheumatoid arthritis, osteoarthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, and ankylosing spondylitis), inflammatory hyperproliferative skin diseases, psoriasis such as plaque psoriasis, guttate psoriasis, pustular psoriasis, and psoriasis of the nails, dermatitis including contact dermatitis, chronic contact dermatitis, allergic dermatitis, allergic contact dermatitis, dermatitis herpetiformis, and atopic dermatitis, x-linked hyper IgM syndrome, urticaria

such as chronic allergic urticaria and chronic idiopathic urticaria, including chronic autoimmune urticaria, polymyositis/dermatomyositis, juvenile dermatomyositis, toxic epidermal necrolysis, scleroderma, systemic scleroderma, sclerosis, systemic sclerosis, multiple sclerosis (MS), spino-optical MS, primary progressive MS (PPMS), relapsing remitting MS (RRMS), progressive systemic sclerosis, atherosclerosis, arteriosclerosis, sclerosis disseminata, and ataxic sclerosis, inflammatory bowel disease (IBD), Crohn's disease, colitis, ulcerative colitis, colitis ulcerosa, microscopic colitis, collagenous colitis, colitis polyposa, necrotizing enterocolitis, transmural colitis, autoimmune inflammatory bowel disease, pyoderma gangrenosum, erythema nodosum, primary sclerosing cholangitis, episcleritis, respiratory distress syndrome, adult or acute respiratory distress syndrome (ARDS), meningitis, inflammation of all or part of the uvea, iritis, choroiditis, an autoimmune hematological disorder, rheumatoid spondylitis, sudden hearing loss, IgE-mediated diseases such as anaphylaxis and allergic and atopic rhinitis, encephalitis, Rasmussen's encephalitis, limbic and/or brainstem encephalitis, uveitis, anterior uveitis, acute anterior uveitis, granulomatous uveitis, nongranulomatous uveitis, phacoantigenic uveitis, posterior uveitis, autoimmune uveitis, glomerulonephritis (GN), idiopathic membranous GN or idiopathic membranous nephropathy, membrano- or membranous proliferative GN (MPGN), rapidly progressive GN, allergic conditions, autoimmune myocarditis, leukocyte adhesion deficiency, systemic lupus erythematosus (SLE) or systemic lupus erythematoses such as cutaneous SLE, subacute cutaneous lupus erythematosus, neonatal lupus syndrome (NLE), lupus erythematosus disseminatus, lupus (including nephritis, cerebritis, pediatric, non-renal, extra-renal, discoid, alopecia), juvenile onset (Type I) diabetes mellitus, including pediatric insulin-dependent diabetes mellitus (IDDM), adult onset diabetes mellitus (Type II diabetes), autoimmune diabetes, idiopathic diabetes insipidus, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, tuberculosis, sarcoidosis, granulomatosis including lymphomatoid granulomatosis, Wegener's granulomatosis, agranulocytosis, vasculitides, including vasculitis (including large vessel vasculitis (including polymyalgia rheumatica and giant cell (Takayasu's) arteritis), medium vessel vasculitis (including Kawasaki's disease and polyarteritis nodosa), microscopic polyarteritis, CNS vasculitis; necrotizing, cutaneous, or hypersensitivity vasculitis,

systemic necrotizing vasculitis, and ANCA-associated vasculitis, such as Churg-Strauss vasculitis or syndrome (CSS)), temporal arteritis, aplastic anemia, autoimmune aplastic anemia, Coombs positive anemia, Diamond Blackfan anemia, hemolytic anemia or immune hemolytic anemia including autoimmune hemolytic anemia (AIHA), pernicious anemia (anemia perniciosa), Addison's disease, pure red cell anemia or aplasia (PRCA), Factor VIII deficiency, hemophilia A, autoimmune neutropenia, pancytopenia, leukopenia, diseases involving leukocyte diapedesis, CNS inflammatory disorders, multiple organ injury syndrome such as those secondary to septicemia, trauma or hemorrhage, antigen-antibody complex-mediated diseases, anti-glomerular basement membrane disease, anti-phospholipid antibody syndrome, allergic neuritis, Bechet's or Behcet's disease, Castleman's syndrome, Goodpasture's syndrome, Reynaud's syndrome, Sjogren's syndrome, Stevens-Johnson syndrome, pemphigoid such as pemphigoid bullous and skin pemphigoid, pemphigus (including pemphigus vulgaris, pemphigus foliaceus, pemphigus mucus-membrane pemphigoid, and pemphigus erythematosus), autoimmune polyendocrinopathies, Reiter's disease or syndrome, immune complex nephritis, antibody-mediated nephritis, neuromyelitis optica, polyneuropathies, chronic neuropathy such as IgM polyneuropathies or IgM-mediated neuropathy, thrombocytopenia, thrombotic thrombocytopenic purpura (TTP), idiopathic thrombocytopenic purpura (ITP), autoimmune orchitis and oophoritis, primary hypothyroidism, hypoparathyroidism, autoimmune thyroiditis, Hashimoto's disease, chronic thyroiditis (Hashimoto's thyroiditis); subacute thyroiditis, autoimmune thyroid disease, idiopathic hypothyroidism, Grave's disease, polyglandular syndromes such as autoimmune polyglandular syndromes (or polyglandular endocrinopathy syndromes), paraneoplastic syndromes, including neurologic paraneoplastic syndromes such as Lambert-Eaton myasthenic syndrome or Eaton-Lambert syndrome, stiff-man or stiff-person syndrome, encephalomyelitis, allergic encephalomyelitis, experimental allergic encephalomyelitis (EAE), myasthenia gravis, thymoma-associated myasthenia gravis, cerebellar degeneration, neuromyotonia, opsoclonus or opsoclonus myoclonus syndrome (OMS), and sensory neuropathy, multifocal motor neuropathy, Sheehan's syndrome, autoimmune hepatitis, chronic hepatitis, lupoid hepatitis, giant cell hepatitis, chronic active hepatitis or autoimmune chronic active hepatitis, lymphoid interstitial

pneumonitis, bronchiolitis obliterans (non-transplant) vs NSIP, Guillain-Barre syndrome, Berger's disease (IgA nephropathy), idiopathic IgA nephropathy, linear IgA dermatosis, primary biliary cirrhosis, pneumonocirrhosis, autoimmune enteropathy syndrome, Celiac disease, Coeliac disease, celiac sprue (gluten enteropathy), refractory sprue, idiopathic sprue, cryoglobulinemia, amyotrophic lateral sclerosis (ALS; Lou Gehrig's disease), coronary artery disease, autoimmune ear disease such as autoimmune inner ear disease (AGED), autoimmune hearing loss, opsoclonus myoclonus syndrome (OMS), polychondritis such as refractory or relapsed polychondritis, pulmonary alveolar proteinosis, amyloidosis, scleritis, a non-cancerous lymphocytosis, a primary lymphocytosis, which includes monoclonal B cell lymphocytosis (e.g., benign monoclonal gammopathy and monoclonal gammopathy of undetermined significance, MGUS), peripheral neuropathy, paraneoplastic syndrome, channelopathies such as epilepsy, migraine, arrhythmia, muscular disorders, deafness, blindness, periodic paralysis, and channelopathies of the CNS, autism, inflammatory myopathy, focal segmental glomerulosclerosis (FSGS), endocrine ophthalmopathy, uveoretinitis, chorioretinitis, autoimmune hepatological disorder, fibromyalgia, multiple endocrine failure, Schmidt's syndrome, adrenalitis, gastric atrophy, presenile dementia, demyelinating diseases such as autoimmune demyelinating diseases, diabetic nephropathy, Dressler's syndrome, alopecia areata, CREST syndrome (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyl), and telangiectasia), male and female autoimmune infertility, mixed connective tissue disease, Chagas' disease, rheumatic fever, recurrent abortion, farmer's lung, erythema multiforme, post-cardiotomy syndrome, Cushing's syndrome, bird-fancier's lung, allergic granulomatous angiitis, benign lymphocytic angiitis, Alport's syndrome, alveolitis such as allergic alveolitis and fibrosing alveolitis, interstitial lung disease, transfusion reaction, leprosy, malaria, leishmaniasis, kyanosomiasis, schistosomiasis, ascariasis, aspergillosis, Sampter's syndrome, Caplan's syndrome, dengue, endocarditis, endomyocardial fibrosis, diffuse interstitial pulmonary fibrosis, interstitial lung fibrosis, idiopathic pulmonary fibrosis, cystic fibrosis, endophthalmitis, erythema elevatum et diutinum, erythroblastosis fetalis, eosinophilic faciitis, Shulman's syndrome, Felty's syndrome, flariasis, cyclitis such as chronic cyclitis, heterochronic cyclitis, iridocyclitis, or Fuch's cyclitis, Henoch-Schonlein

purpura, human immunodeficiency virus (HIV) infection, echovirus infection, cardiomyopathy, Alzheimer's disease, parvovirus infection, rubella virus infection, post-vaccination syndromes, congenital rubella infection, Epstein-Barr virus infection, mumps, Evan's syndrome, autoimmune gonadal failure, Sydenham's chorea, post-streptococcal nephritis, thromboangiitis obliterans, thyrotoxicosis, tabes dorsalis, chorioiditis, giant cell polymyopathy, endocrine ophthalmopathy, chronic hypersensitivity pneumonitis, keratoconjunctivitis sicca, epidemic keratoconjunctivitis, idiopathic nephritic syndrome, minimal change nephropathy, benign familial and ischemia-reperfusion injury, retinal autoimmunity, joint inflammation, bronchitis, chronic obstructive airway disease, silicosis, aphthae, aphthous stomatitis, arteriosclerotic disorders, aspergillosis, autoimmune hemolysis, Boeck's disease, cryoglobulinemia, Dupuytren's contracture, endophthalmitis phacoanaphylactica, enteritis allergica, erythema nodosum leprosum, idiopathic facial paralysis, chronic fatigue syndrome, febris rheumatica, Hamman-Rich's disease, sensoneural hearing loss, haemoglobinuria paroxysmata, hypogonadism, ileitis regionalis, leucopenia, mononucleosis infectiosa, transverse myelitis, primary idiopathic myxedema, nephrosis, ophthalmia sympathica, orchitis granulomatosa, pancreatitis, polyradiculitis acuta, pyoderma gangrenosum, Quervain's thyroiditis, acquired spastic atrophy, infertility due to antispermatozoan antibodies, non-malignant thyroplasty, vitiligo, SCID and Epstein-Barr virus-associated diseases, acquired immune deficiency syndrome (AIDS), parasitic diseases such as Leishmania, toxic-shock syndrome, food poisoning, conditions involving infiltration of T cells, leukocyte-adhesion deficiency, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, diseases involving leukocyte diapedesis, multiple organ injury syndrome, antigen-antibody complex-mediated diseases, antiglomerular basement membrane disease, allergic neuritis, autoimmune polyendocrinopathies, oophoritis, primary myxedema, autoimmune atrophic gastritis, sympathetic ophthalmia, rheumatic diseases, mixed connective tissue disease, nephrotic syndrome, insulitis, polyendocrine failure, peripheral neuropathy, autoimmune polyglandular syndrome type I, adult-onset idiopathic hypoparathyroidism (AOIH), alopecia totalis, dilated cardiomyopathy, epidermolysis bullosa acquisita (EBA), hemochromatosis, myocarditis, nephrotic syndrome, primary sclerosing cholangitis,

purulent or nonpurulent sinusitis, acute or chronic sinusitis, ethmoid, frontal, maxillary, or sphenoid sinusitis, an eosinophil-related disorder such as eosinophilia, pulmonary infiltration eosinophilia, eosinophilia-myalgia syndrome, Loffler's syndrome, chronic eosinophilic pneumonia, tropical pulmonary eosinophilia, bronchopneumonic aspergillosis, aspergilloma, or granulomas containing eosinophils, anaphylaxis, seronegative spondyloarthritides, polyendocrine autoimmune disease, sclerosing cholangitis, sclera, episclera, chronic mucocutaneous candidiasis, Bruton's syndrome, transient hypogammaglobulinemia of infancy, Wiskott-Aldrich syndrome, ataxia telangiectasia, autoimmune disorders associated with collagen disease, rheumatism, neurological disease, ischemic re-perfusion disorder, reduction in blood pressure response, vascular dysfunction, angiogenesis, tissue injury, cardiovascular ischemia, hyperalgesia, cerebral ischemia, and disease accompanying vascularization, allergic hypersensitivity disorders, glomerulonephritides, reperfusion injury, reperfusion injury of myocardial or other tissues, dermatoses with acute inflammatory components, acute purulent meningitis or other central nervous system inflammatory disorders, ocular and orbital inflammatory disorders, granulocyte transfusion-associated syndromes, cytokine-induced toxicity, acute serious inflammation, chronic intractable inflammation, pyelitis, pneumonocirrhosis, diabetic retinopathy, diabetic large-artery disorder, endarterial hyperplasia, peptic ulcer, vasculitis, and endometriosis

20. The multimeric VISTA protein of any one of claims 1-10 wherein the multimeric VISTA protein is directly or indirectly attached to an Ig protein.

21. An isolated antibody or antibody fragment that specifically binds to an epitope comprised in the extracellular domain of the VISTA protein in SEQ ID NO:2 or 4 which exhibits antitumor or antimetastatic activity in a human subject or a murine antitumor model.

22. The antibody of claim 21 that binds an epitope comprised in residues 1-20, 20-40, 30-50, 60-80, 70-90, 80-100, 90-110, 100-120, 11-130 or 120-136 of the extracellular domain.

23. An isolated antibody or antibody fragment that specifically binds to an epitope comprised in the IgV, stalk region, cytoplasmic region or transmembrane region of human or rodent VISTA.
24. An isolated antibody or antibody fragment that specifically binds to an epitope comprised in the extracellular domain, IgV, stalk region, cytoplasmic region or transmembrane region of the VISTA protein in SEQ ID NO:2 or 4 that elicits one of the following activities:
 - (i) upregulates cytokines;
 - (ii) induces expansion of T cells,
 - (iii) promotes antigenic specific T cell immunity;
 - (iv) promotes CD4+ and/or CD8+ T cell activation
25. The antibody of claim 24 which in the presence of PD-L3 OR VISTA or VISTA-Ig in vitro enhances the suppressive activity of PD-L3 OR VISTA or VISTA-Ig in vitro and suppresses PD-L3 OR VISTA or VISTA activity in vivo.
26. A method for modulating an immune cell response in vitro or in vivo comprising contacting an immune cell with a multimeric VISTA protein according to any one of claims 1-10 in the presence of a primary signal so that a response of the immune cell is modulated.
27. A method for modulating an immune cell response in vitro or in vivo comprising contacting an immune cell with an antibody according to any one of claims 21-25 in the presence of a primary signal so that a response of the immune cell is modulated.
28. A method of regulating T cell responses during cognate interactions between T cells and myeloid derived APCs by administering to a subject in need thereof an effective amount of a multimeric VISTA protein, or antibody specific to VISTA.

29. A method of identifying the counter receptor for human or rodent VISTA comprising screening a panel of B7 family members or a panel of T cell secreted or surface proteins for proteins that specifically bind to said human or rodent VISTA protein.
30. A method of treating a cancer in a patient in need thereof by administering an effective amount of an antibody according to any one of claims 21-25 that enhances antitumor immunity by suppressing the immunosuppressive activity of VISTA expressed by myeloid dendritic suppressor cells.
31. The method of claim 28 wherein the patient prior to treatment is found to express elevated levels of VISTA protein on immune cells.
32. A method of enhancing the efficacy of radiotherapy, chemotherapy or an anti-cancer biologic comprising administering to a patient in need thereof an effective amount of an antibody according to any one of claims 21-25 in a therapeutic regimen including the administration of radiotherapy, chemotherapy or an anti-cancer biologic.
33. The method of claim 30 wherein the patient prior to treatment has a cancer that does not respond to said radiotherapy, chemotherapy or an anti-cancer biologic.
34. A method of potentiating the efficacy of an antiviral, antibacterial or antitumor vaccine comprising a viral, tumor or bacterial antigen comprising further administering an effective amount of an antibody according to any one of claims 21-25 prior to or after vaccine administration in order to boost immunity.
35. A method of treating a cancer selected from bladder, ovarian, melanoma, wherein said cancer is in early (non-metastatic) or metastatic form comprising administering an effective amount of an antibody according to any one of claims 21-25.
36. A method of treating an inflammatory, autoimmune, cancerous, allergic or infectious disorder comprising administering an effective amount of an immunosuppressive VISTA protein, VISTA binding protein (antibody or antibody fragment) or VISTA agonist or antagonist.

37. The method of claim 34 wherein the disorder treated is selected from type 1 diabetes, multiple sclerosis, rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, rheumatic diseases, allergic disorders, asthma, allergic rhinitis, skin disorders, Crohn's disease, ulcerative colitis, transplant rejection, poststreptococcal and autoimmune renal failure, septic shock, systemic inflammatory response syndrome (SIRS), adult respiratory distress syndrome (ARDS) and envenomation; autoinflammatory diseases, osteoarthritis, crystal arthritis, capsulitis, arthropathies, tendonitis, ligamentitis and traumatic joint injury.

38. The method of claim 34 wherein the disorder treated is multiple sclerosis or rheumatoid arthritis.

39. The method of claim 25 wherein the disorder is a cancer selected from sarcoma, melanoma, lymphoma, leukemia, bladder cancer, ovarian cancer, neuroblastoma, or carcinoma.

40. The method of claim 25 wherein the disorder is a infectious disorder selected from hepatitis B, hepatitis C, Epstein-Barr virus, cytomegalovirus, HIV-1, HIV-2, tuberculosis, malaria and schistosomiasis.

41. A method of selecting for anti-PD-L3 OR VISTA or VISTA antibodies having potential use as a therapeutic or immune modulatory agent comprising:

(i) immunizing immune cells or a host with a PD-L3 OR VISTA protein or immunogenic fragment or conjugate containing;

(ii) selecting lymphoid cells which express antibodies that specifically bind to PD-L3 or VISTA;

(iii) selecting anti-PD-L3 OR VISTA or VISTA antibodies or antibody fragments from those obtained in (ii) having potential use as a therapeutic or immune modulatory agents based on their ability to inhibit or enhance one or more of the following activities of PD-L3 OR VISTA or VISTA:

(1) suppression of T cell activation or differentiation;

(2) suppression of CD4+ or CD8+ T cell proliferation, or

(3) suppression of cytokine production by T cells.

40. An anti-PD-L3 OR VISTA or VISTA antibody or fragment produced according to claim 39 or a humanized, chimeric or single chain variant thereof.

41. A pharmaceutical composition comprising an anti-PD-L3 OR VISTA antibody according to any one of claims 21-25.

42. A method of modulating Treg cells in a subject in need thereof comprising administering a multimeric VISTA protein or anti-VISTA antibody according to any one of claims 21-25..

43. A method of using an antibody to VISTA to release the suppressive effect of VISTA on immunity.

44. The method of claim 43 wherein the treated patient has been found to express elevated levels of VISTA prior to treatment.

45. The method of claim 43 or 44 wherein VISTA levels are monitored after treatment in order to assess that the immune response has been enhanced.

46. A method of using an antibody to VISTA according to any one of claims 21-25 to enhance cell mediated immunity in a subject in need thereof.

47. A method of treating or preventing inflammation in a subject in need thereof comprising administering an antibody to VISTA.

48. The method of claim 47 wherein the subject has rheumatoid arthritis.

49. A method of treating a cell mediated autoimmune disease comprising administering an effective amount of an antibody to VISTA.

50. The method of claim 49 wherein the cell mediated autoimmune disease is selected from multiple sclerosis, EAE, diabetes type I, oophoritis, and thyroiditis.
51. The method of claim 43 that further includes the administration of another immune modulator and/or an antigen.
52. The method of claim 51 wherein the immune modulator is a TLR agonist (TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11 agonist), is a type 1 interferon (alpha interferon, beta interferon), or is a CD40 agonist .

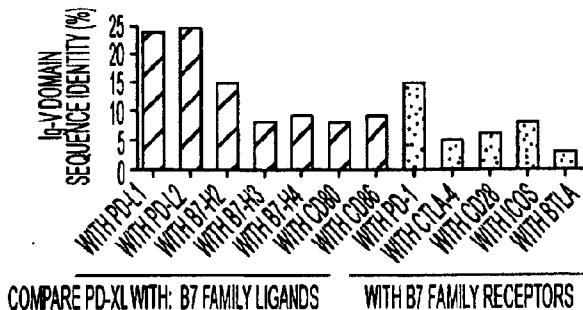
FULL LENGTH SEQUENCE OF MURINE PD-XL
 MGVPAVPEASSPRWGTLLAIFLAASRGLVAAFKVTTPYSLYVCPEGQNA 50
 TLTCRILGPVSKGHGDVTIYKTWYLSSRGEVQMCKEHRPIRNFTLQLQHH 100
 GSHLKANASHDQPQKHGLELASDHGNFSITLRNTPRDSGLYCCLVIEL 150
 KNHHPEQRFYGSMELQVAGKGSGSTCMASNEQDSDSITAAALATGACIV 200
 GILCLPLLLLWVYKQRQVASHRRAQELVRMDSSNTQGIENPGFETTPPFQ 250
 GMPEAKTRPPLSYVAQRQPSESGRYLLSDPSTLSPPGPGDVFFPSLDV 300
 PDSPNSEAI*

FIG. 1A

ALIGNMENT OF EXTRACELLULAR DOMAINS OF MURINE PD-XL WITH B7-H1 (PD-L1), B7-DC (PD-L2), B7-H3, AND B7S1.

PD-XL	-----EKVTTTPYSLYVC-----PEGONATLICRELGPVSKGHGDVTIYKTWYLSSRGEVQ
B7-H1 (PD-L1)	-----FIRITAPKDLTV-----EYGSNIVFMCRF-----PVEREQLLALVVVWEKE-DEQ--
B7-DC (PD-L2)	L-----FIRITAPKKEVYTV-----DVGSSTVSEEDCE-----DRRE
B7-H3 (CD276)	-----VSVQVSEDPVVA-----LVDITDAFEFQSF-----SPEPGFSLAQLNLIWQLT-DTKQL
B7-H4 (B7S1)	-----LIIGEGESGKHFITVTTFTSAGNIGEDGTECIS-----EPDIKLNGIVIOWLKE-GIKGL
PD-XL	-----CKEHRPIRN-FTLQLQHKGSHLKANASHDQPQKHGLELASDHGNFSITLRNTPRDSSE
B7-H1 (PD-L1)	-----VIQFVAGEEDLKPQHSNFRG-----RASILPKDQILK-----GAIALQITDKEKIODAS
B7-DC (PD-L2)	-----CTELEGIRASLQKVENDTLSQSERATILEDQEPL-----GKALPHIPSQVQVRSQ
B7-H3 (CD276)	-----VHESFTEGRD-----DGSAYSN-----RTAALFPDQIIVQ-----ENASDRLQQRVVTDEG
B7-H4 (B7S1)	-----VHEFKEGKDDLSQMEMFAG-----RTAUFADQWV-----GNAISPLKMWQLTDAAS
PD-XL	-----LPGGIM-----LELQNHPEQRF-----YGSMELOVOAGKG-----
B7-H1 (PD-L1)	-----VCCGILSYGGA-DYKRFITLKVNAPYRKINQQTISVDP-----TSEHELICOA-EGYPEAE
B7-DC (PD-L2)	-----QPRGALICGAAWDYKYLTVGKQASYMRIDTRHLLEVPG-----TGEVQELICOA-RGYPLAE
B7-H3 (CD276)	-----SMTGTSIQLDF-DSAAVSLQVAPYSK-----PSMTLEPNKDLRPGNMVTTTCSSYQGYPEAE
B7-H4 (B7S1)	-----TYTGYIERTSKGKGNANLEYKIGAFSM-----PEINVDYN-----ASSESLRCEAPRWFPQIT
PD-XL	-----SGST-----MASNEQDSDSITA
B7-H1 (PD-L1)	-----VINTN-----SDHQPVSGKRSVITSRTEGMLLNVTSIIRVNATANDVYEETIWRISOPGQONHTA
B7-DC (PD-L2)	-----VSNQN-----VSVPANTSHIRTPEGLYQVTSVRLKPQPSRNESCTFWNAHMKELTSA
B7-H3 (CD276)	-----VFMKD-----GQGVPLTGNVTTISQMANERGLFDVHSVLRVVLGANGTYSCLVNPVLQQDAHG
B7-H4 (B7S1)	-----VAAASQVDQGANFSEVSNTISFELNSEVTMKVVSVLYNVTINNTYSCMENDIAK--ATG
PD-XL	-----A-----
B7-H1 (PD-L1)	-----ELIIPELPATHPPQNRTH-----
B7-DC (PD-L2)	-----IIDPLSRMEEPKVPRTW-----
B7-H3 (CD276)	-----SVTITGQPLTFPPPEA-----
B7-H4 (B7S1)	-----DIKVTDSEVKRRSQLQLLNSG

FIG. 1B


SUBSTITUTE SHEET (RULE 26)

ALIGNMENT OF EXTRACELLULAR DOMAINS OF MURINE PD-XL WITH
RECEPTORS PD-1, CTLA-4, CD28, BTLA, AND ICOS.

PD-XL	---FKVTPY-----SLYVCPGQNATEICRILGPVSKGHDVITIYKTWYLSSRGE
PD-1	-SGWLLLEVNPNGPWRSLTFYPAWLTVSEGANATFESLS-----NWSEDLM
CTLA-4	-EAIQVTQPS-----VVLASSHG-VASPPQEYS-----PSHNTDE
CD28	-----RSNAEFPNCD-----
BTLA	EKATKRNDDECPVQLTITRNSKQSARTGELFKTQCPVK-----YCVHRPN
ICOS	--EINGSADH-----RMFSFHNG-GVQIISKYP-----ETVQOLK
PD-XL	VQMCKEHRPIR---NFTLQHLQHGSHLKANASHDQPOKEGEELASDHGNFSJTLRNVT
PD-1	LNWNRLSPSNQ-----TEKQAAFCNGLSQPVQDARFOQIQLPN---RHDFHNNILDTR
CTLA-4	VRVTVLRQTND---QMTEVCATTFTEKNTVGFLDYPFCSGTNE---SRVNETIQGLR
CD28	-----GDEDN-----ETVTERLWNLH
BTLA	VTWCKHNGTICVPLEVSPQLYTSWEENQSPVVFVLHFKPIHESDNGSYSCSTNENQVIN
ICOS	MRLFREREVLC--ELT---KTKGSGNAVSIKNPMLCLYMESN---NSVSEFLNNPD
PD-XL	PRDSGLYCCLVIELKNHHPEQRFYGSMELQVQAGKCGSTCMASNEQDSDSITAA-----
PD-1	RNDSGIHLCL---GAISLMPKAKIEES-----PSAELVVTTERILETSTRYPSPSK
CTLA-4	AVDTGLVLC---KVELMYPPPFYFVGM-----GNGTQIYVIDPEPCPDSD-----
CD28	VNHTDIYFC---KIEFMYPFPYLDNE-----RSNGTITHIKKHLCHTQSSPKL--
BTLA	SHSVTIEVRERTQNSSEHPLITVSDI-----PDATNASGPSTMEEPGRTWLLY--
ICOS	SSQGSYIIFC---SLSIFDPPPFQERN-----LGGYLYHIYESQLCCQLKLWL-----
PD-XL	-----
PD-1	PEERFQGM
CTLA-4	-----
CD28	-----
BTLA	-----
ICOS	-----

FIG. 1C

SEQUENCE IDENTITY (%) OF Ig-V DOMAINS BETWEEN PD-XL AND
SELECTED B7 FAMILY LIGANDS AND RECEPTORS

COMPARE PD-XL WITH: B7 FAMILY LIGANDS WITH B7 FAMILY RECEPTORS

FIG. 1D

SUBSTITUTE SHEET (RULE 26)

SEQUENCE ALIGNMENT OF MURINE AND HUMAN PD-XL

FIG. 1E

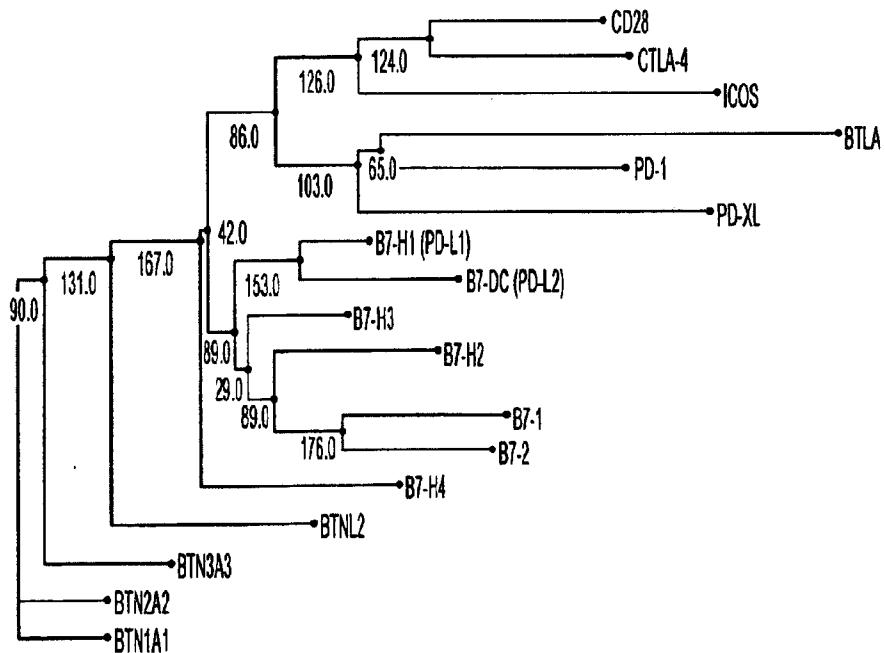


FIG. 2

SUBSTITUTE SHEET (RULE 26)

FIG. 3A

FIG. 3B

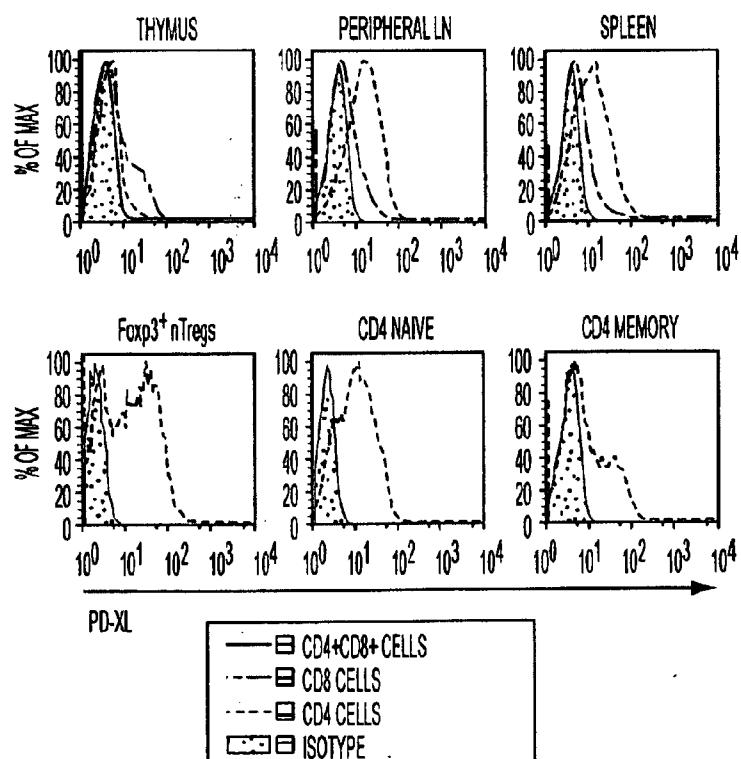


FIG. 3C

SUBSTITUTE SHEET (RULE 26)

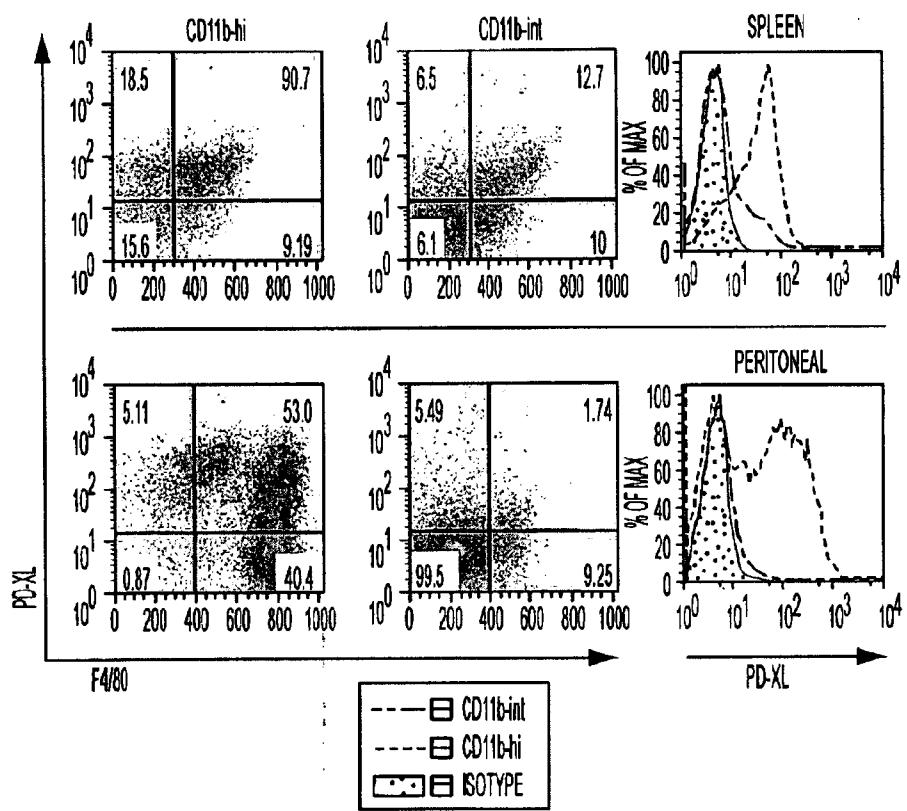


FIG. 3D

SUBSTITUTE SHEET (RULE 26)

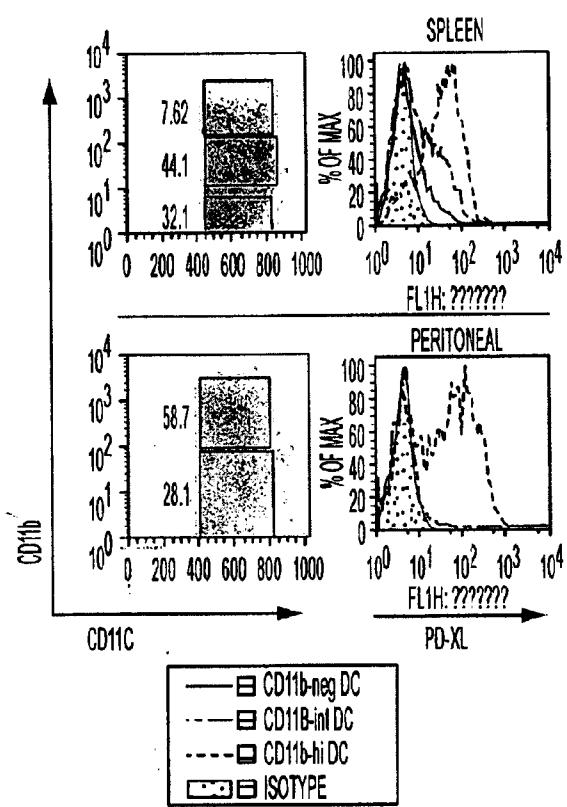


FIG. 3E

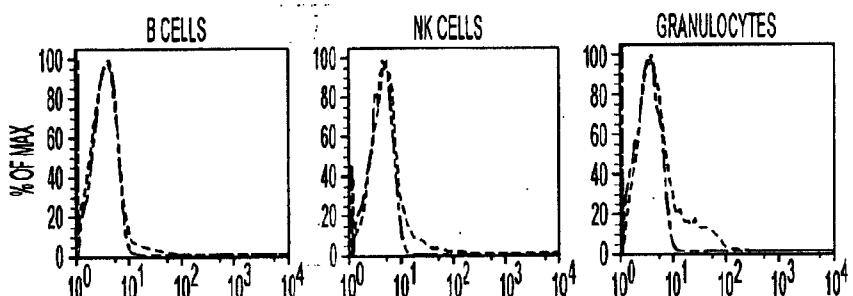


FIG. 3F

SUBSTITUTE SHEET (RULE 26)

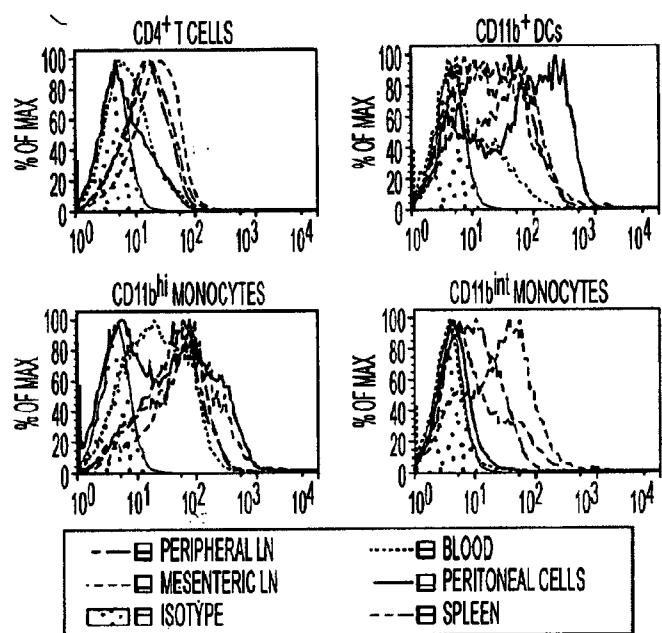


FIG. 3G

SUBSTITUTE SHEET (RULE 26)

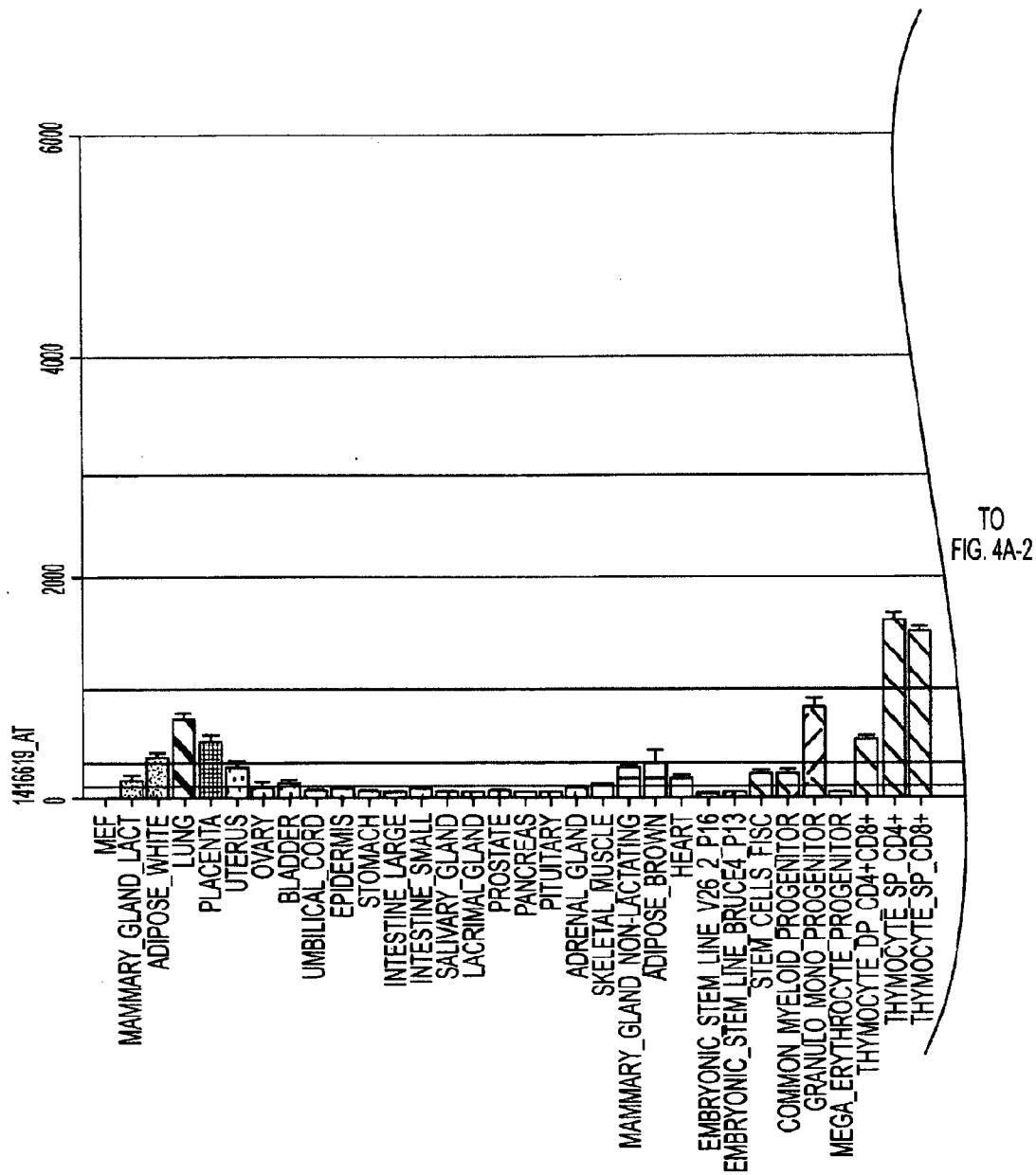


FIG. 4A-1

SUBSTITUTE SHEET (RULE 26)

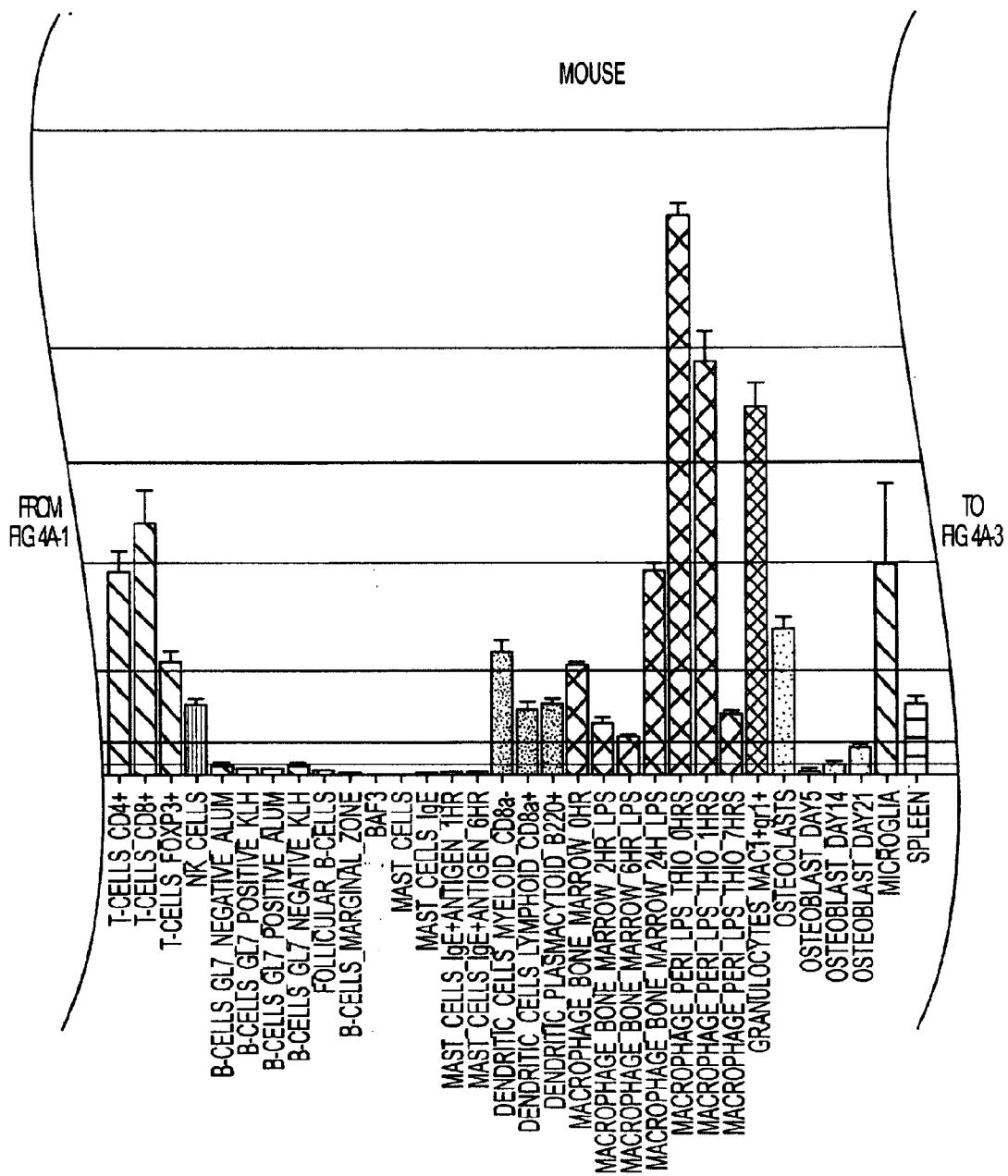


FIG. 4A-2

SUBSTITUTE SHEET (RULE 26)

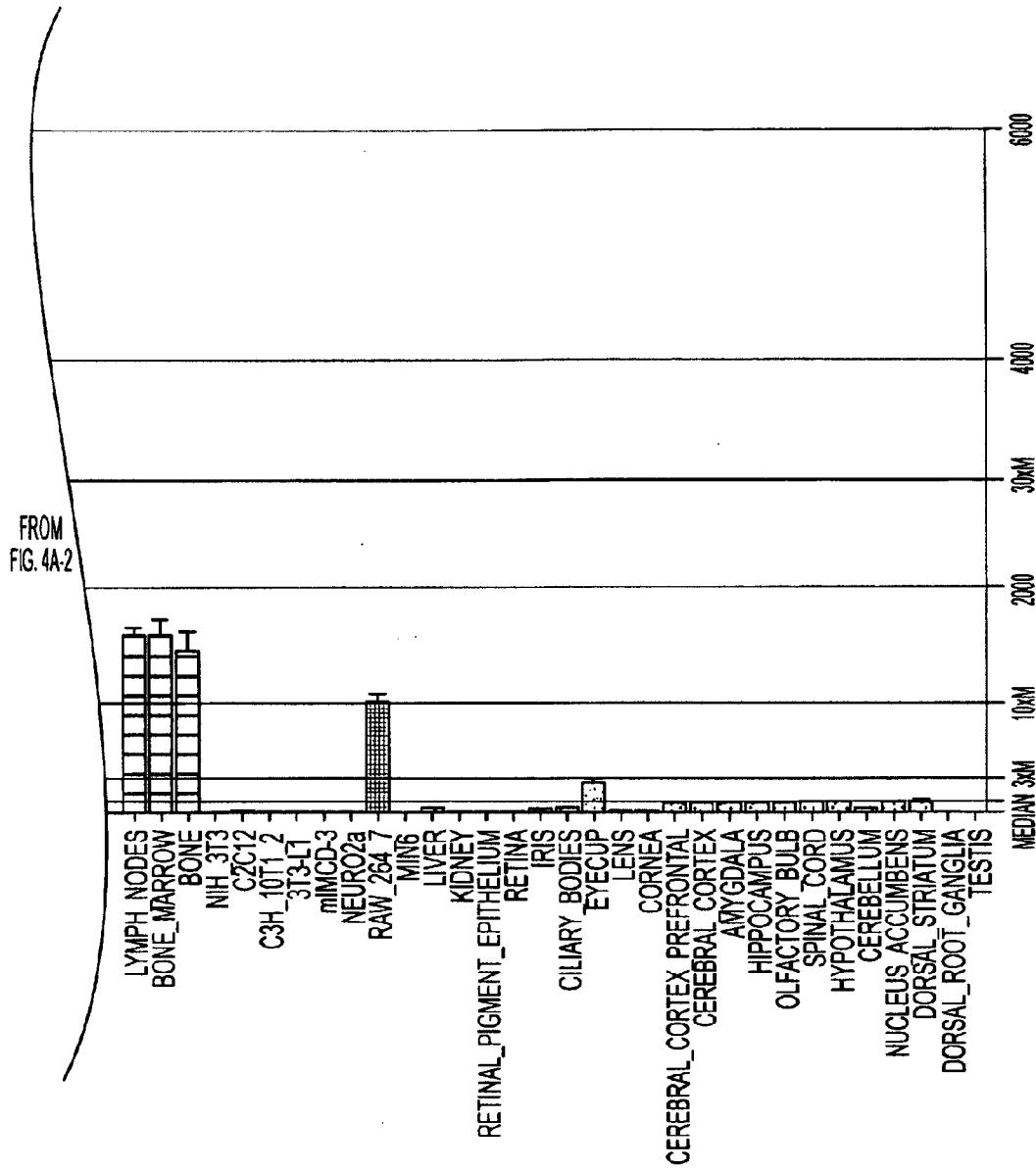


FIG. 4A-3

SUBSTITUTE SHEET (RULE 26)

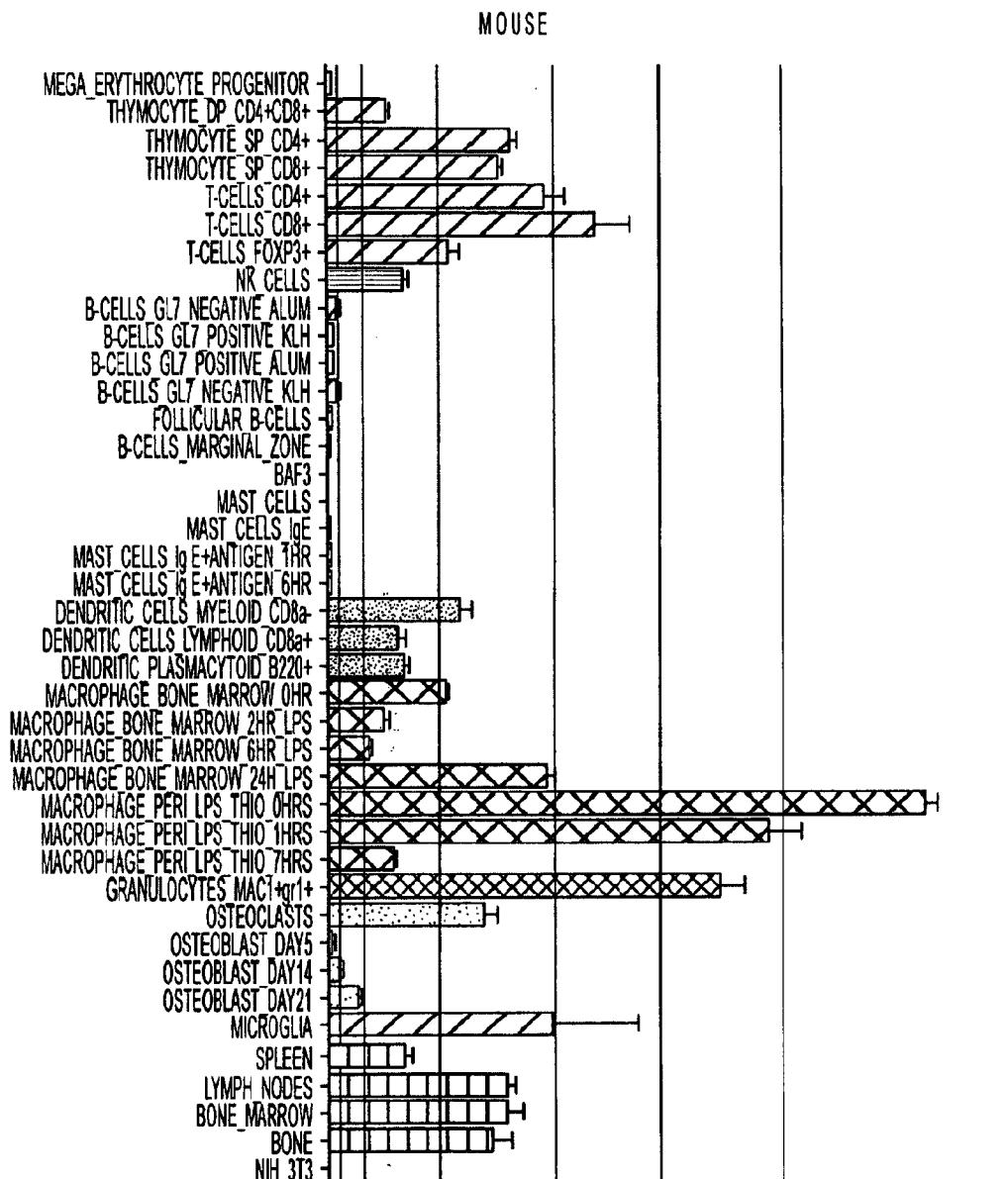


FIG. 4B

SUBSTITUTE SHEET (RULE 26)

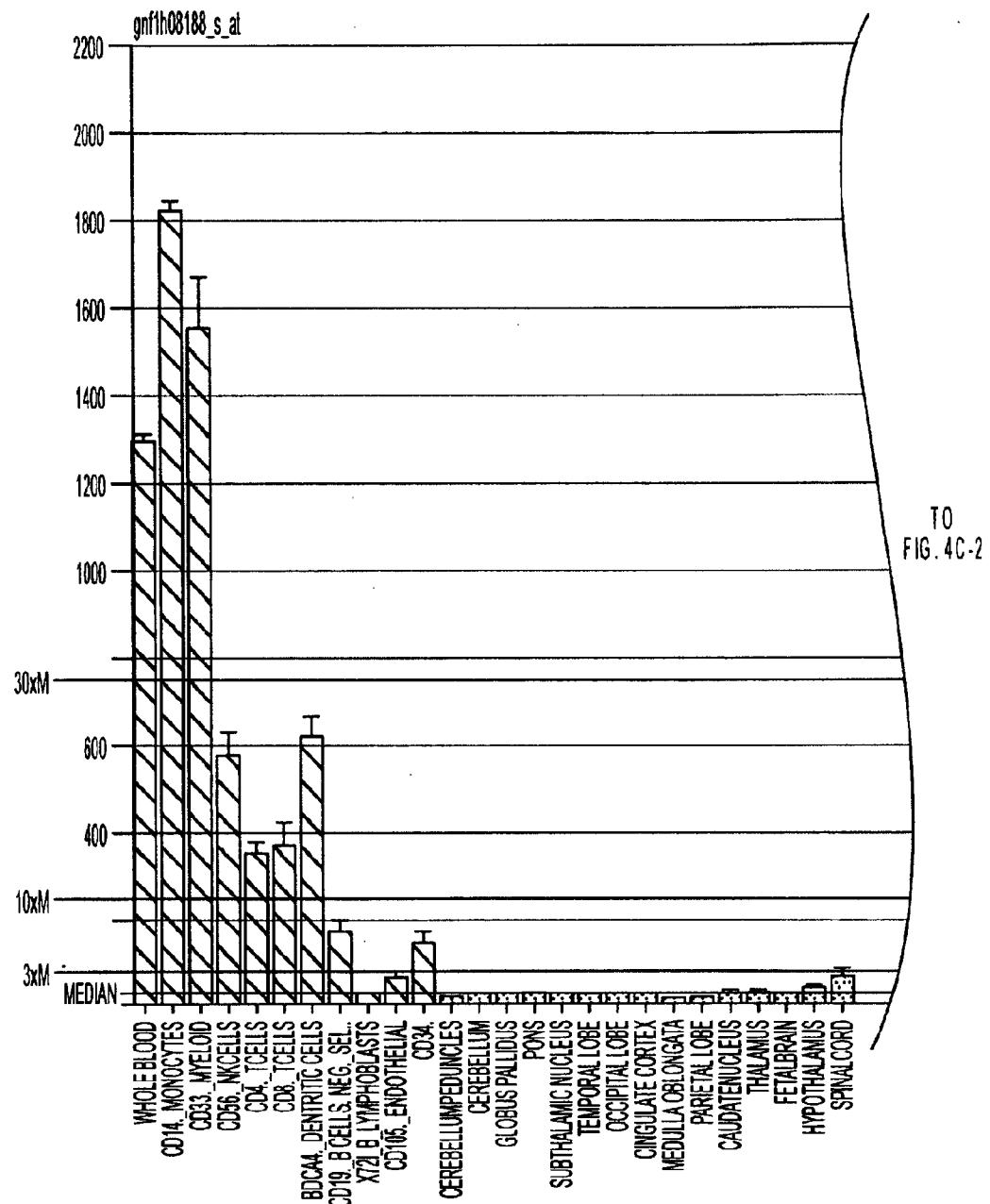
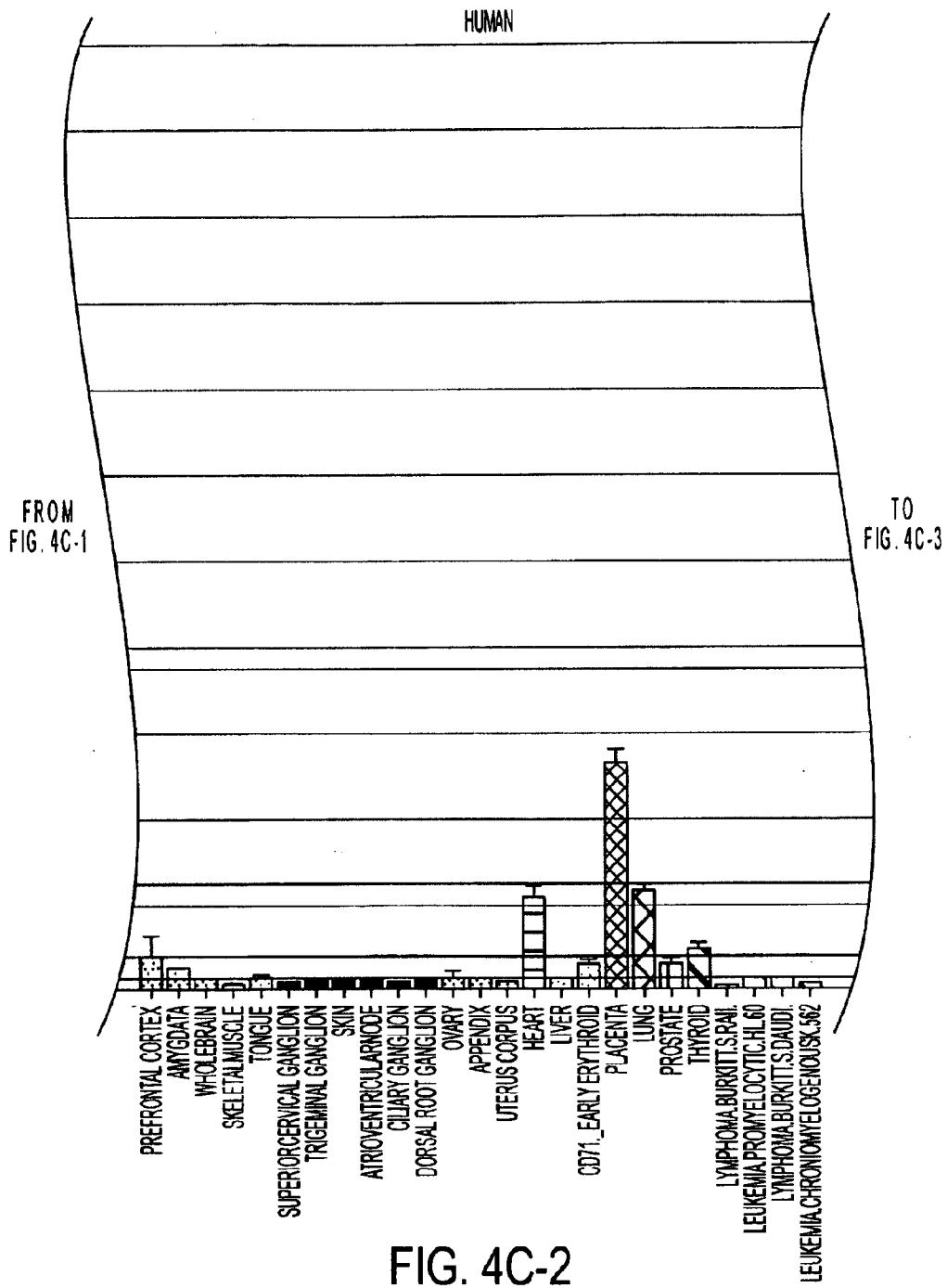



FIG. 4C-1

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

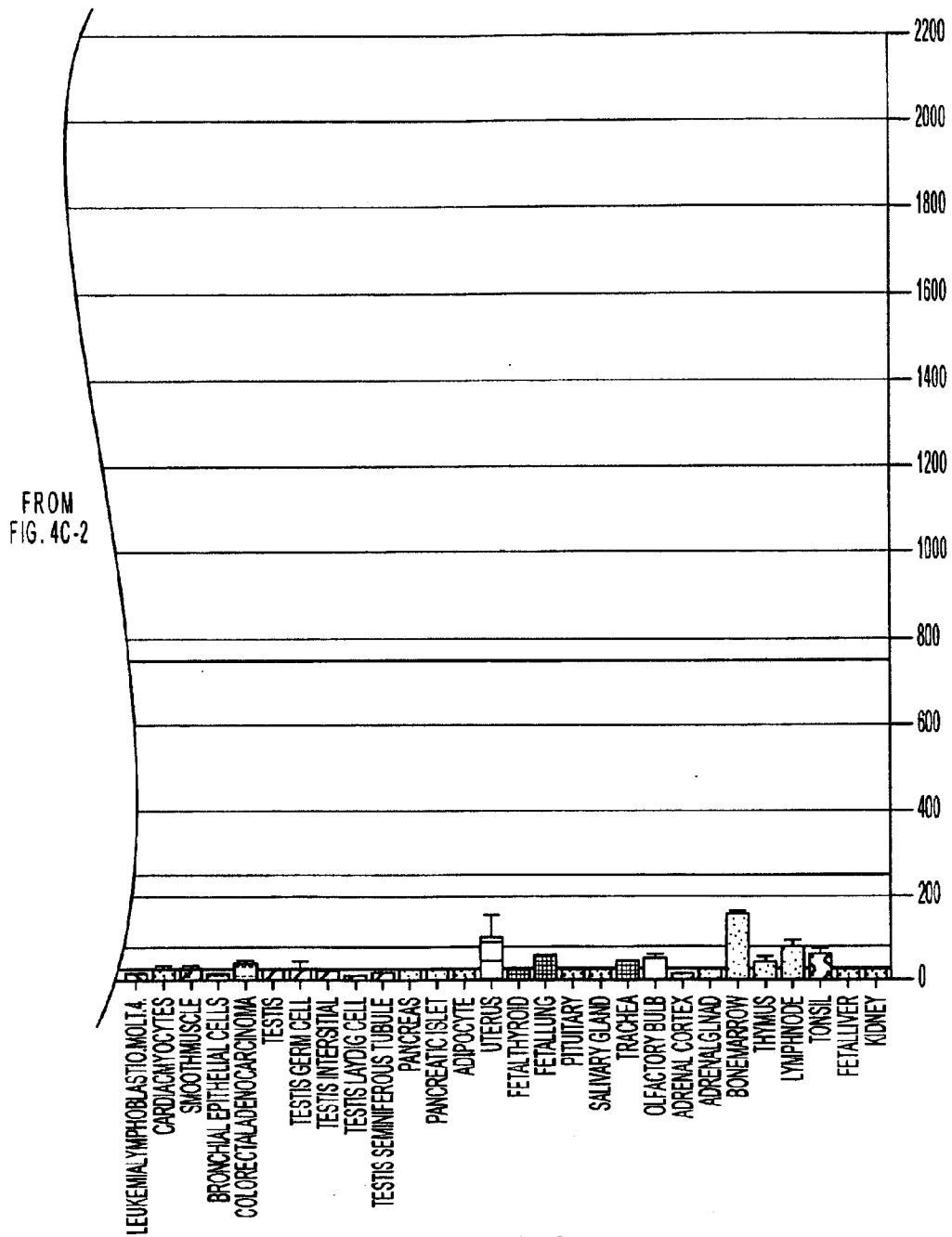


FIG. 4C-3

SUBSTITUTE SHEET (RULE 26)

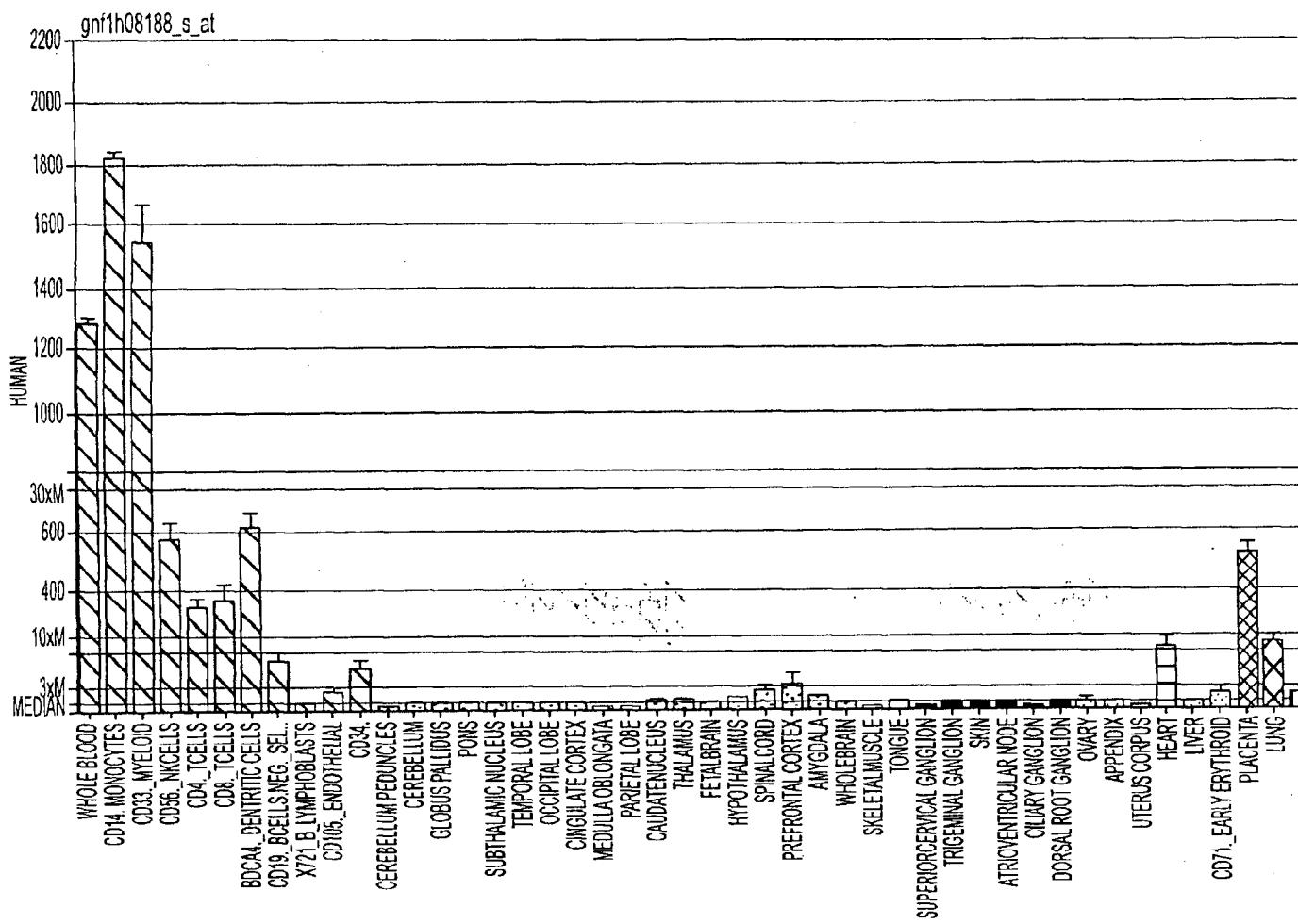


FIG. 4D

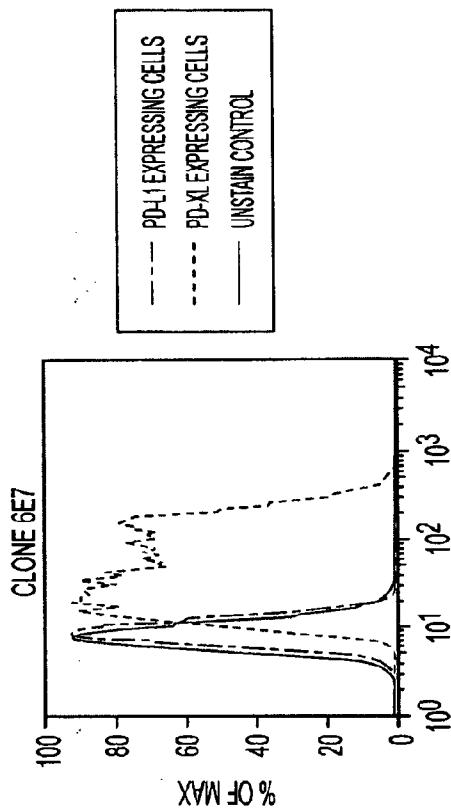
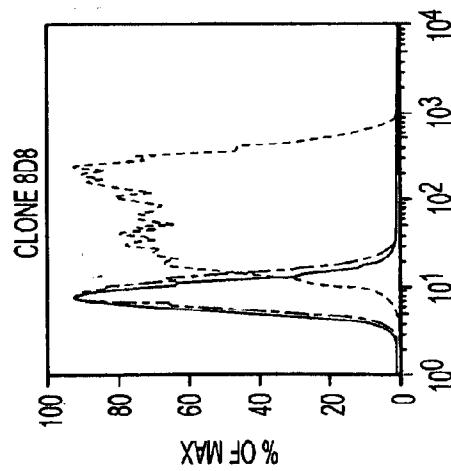



FIG. 5

SUBSTITUTE SHEET (RULE 26)

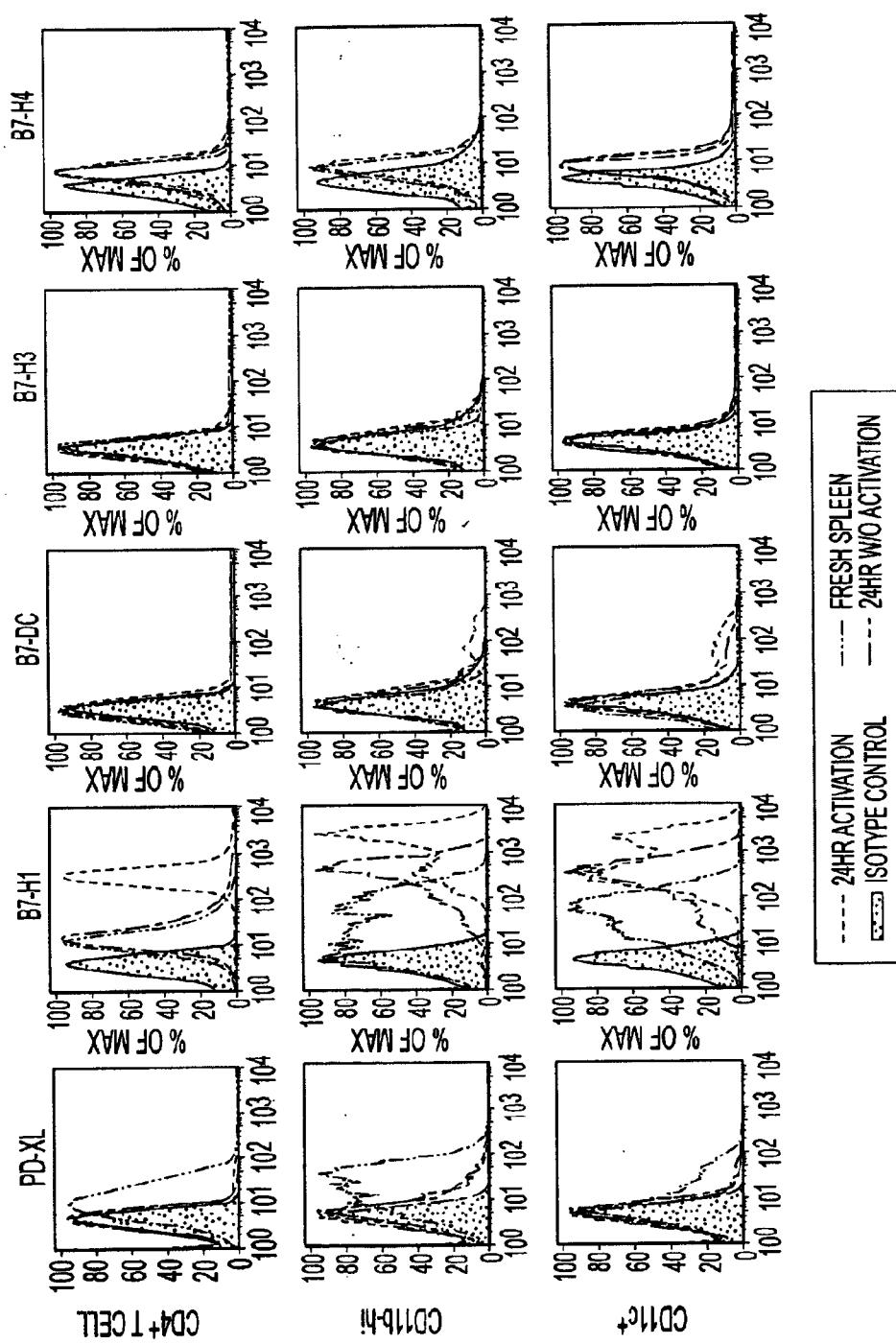


FIG. 6

SUBSTITUTE SHEET (RULE 26)

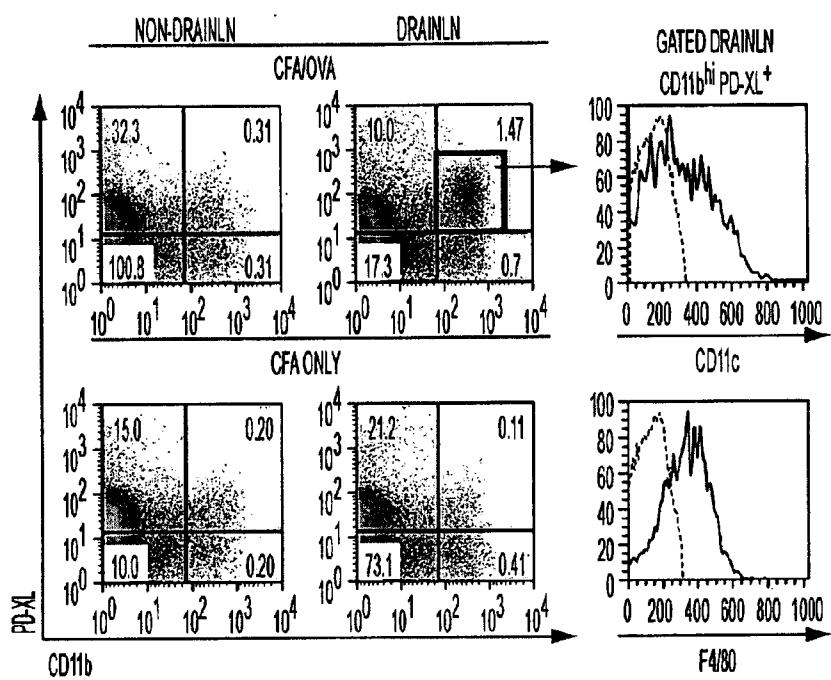


FIG. 7A

SUBSTITUTE SHEET (RULE 26)

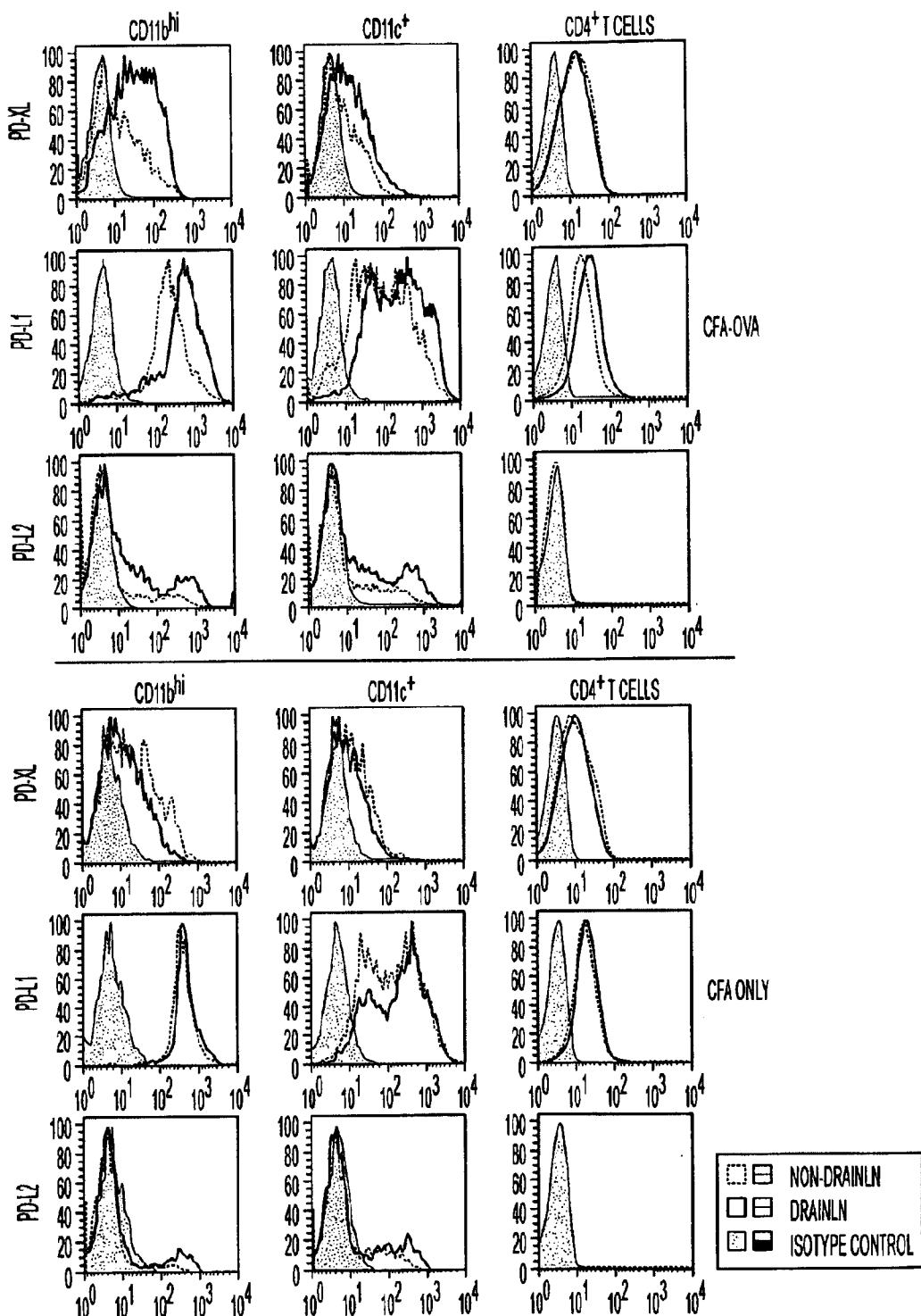
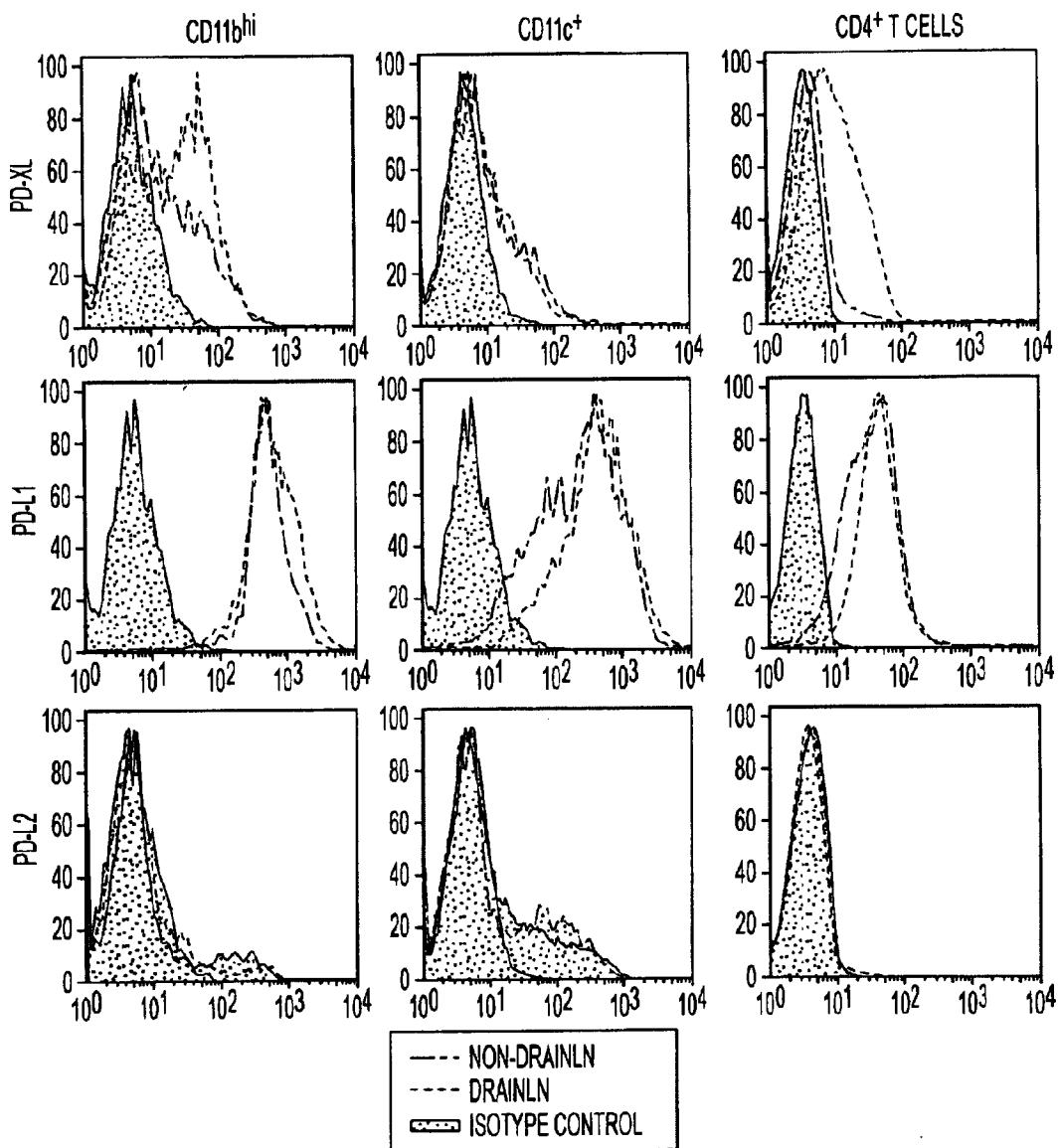



FIG. 7B

SUBSTITUTE SHEET (RULE 26)

FIG. 8**SUBSTITUTE SHEET (RULE 26)**

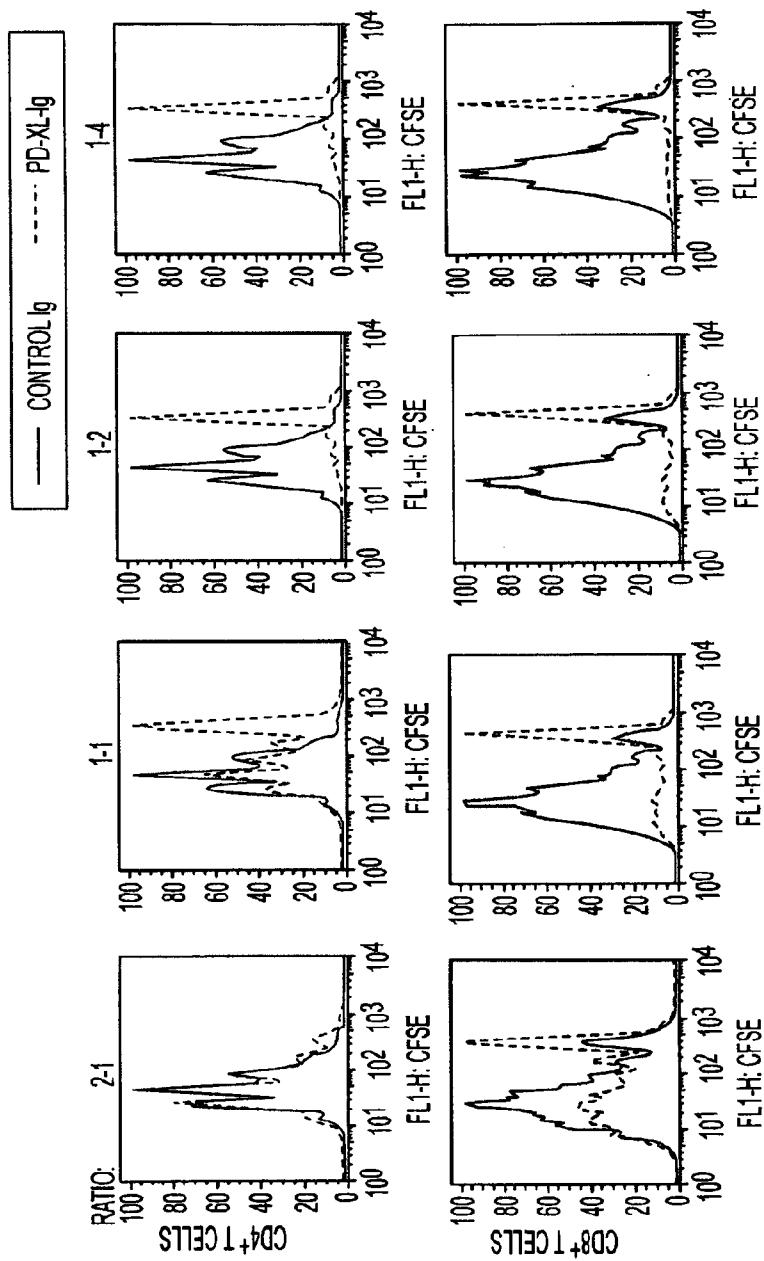


FIG. 9A

SUBSTITUTE SHEET (RULE 26)

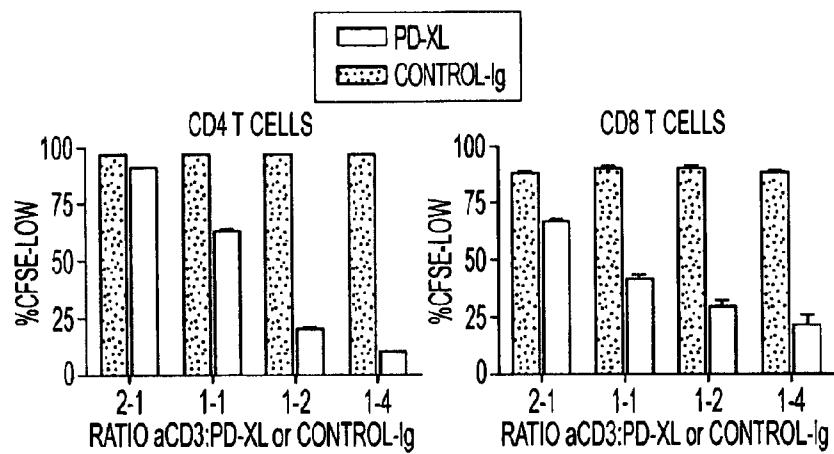


FIG. 9B

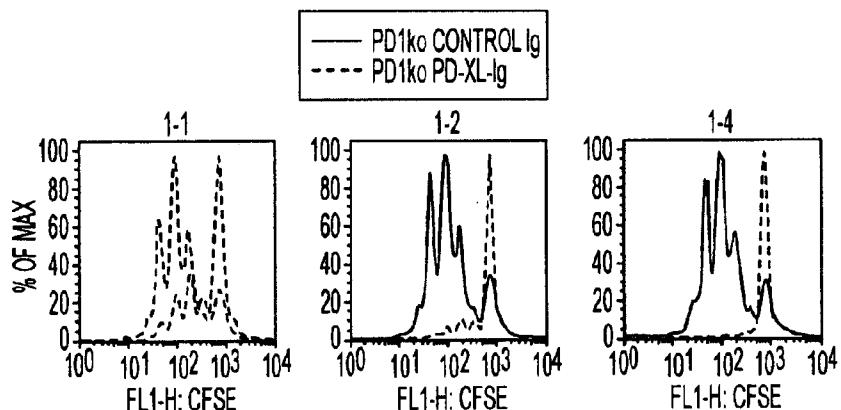


FIG. 9C

SUBSTITUTE SHEET (RULE 26)

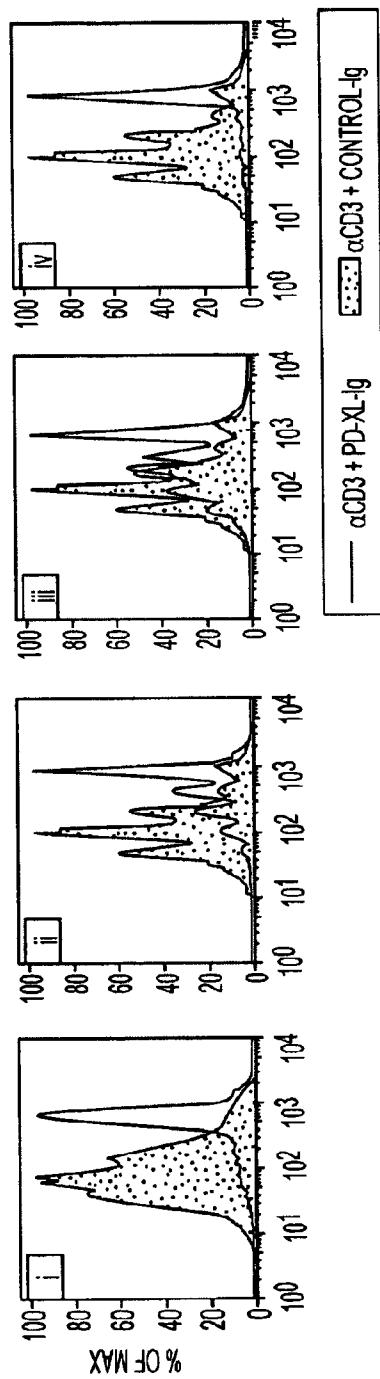


FIG. 9D

SUBSTITUTE SHEET (RULE 26)

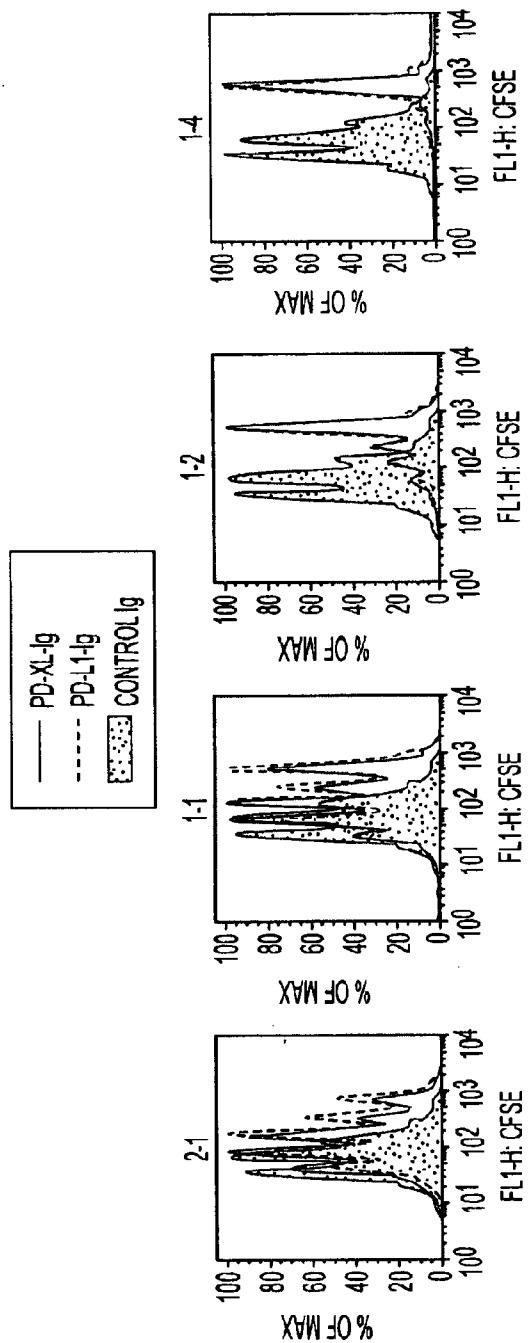


FIG. 10

SUBSTITUTE SHEET (RULE 26)

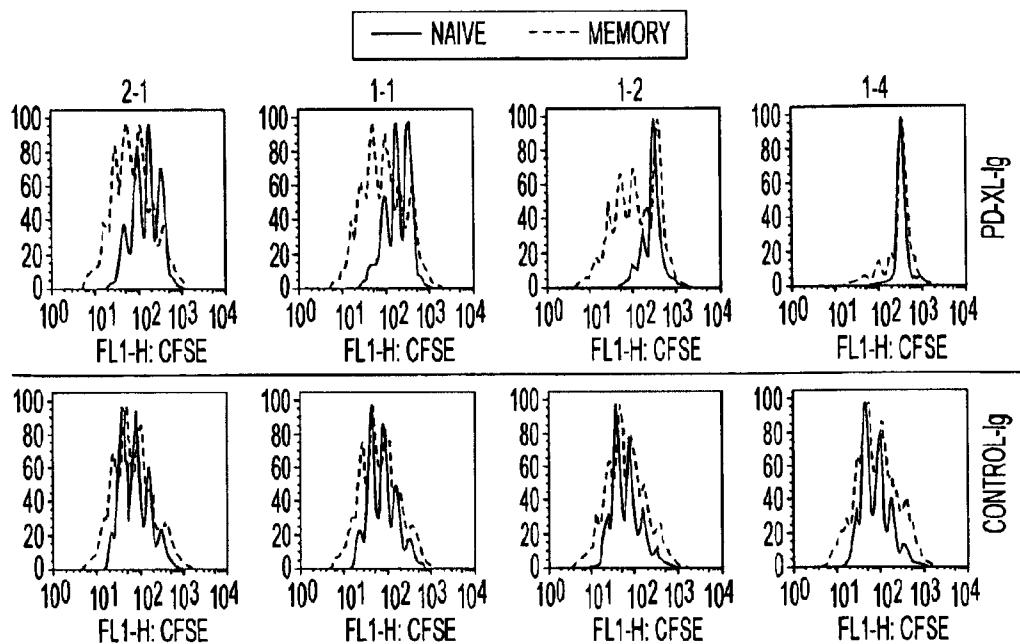


FIG. 11A

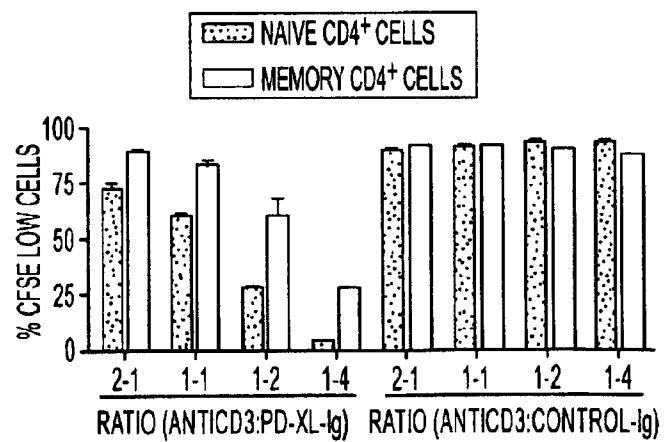


FIG. 11B

SUBSTITUTE SHEET (RULE 26)

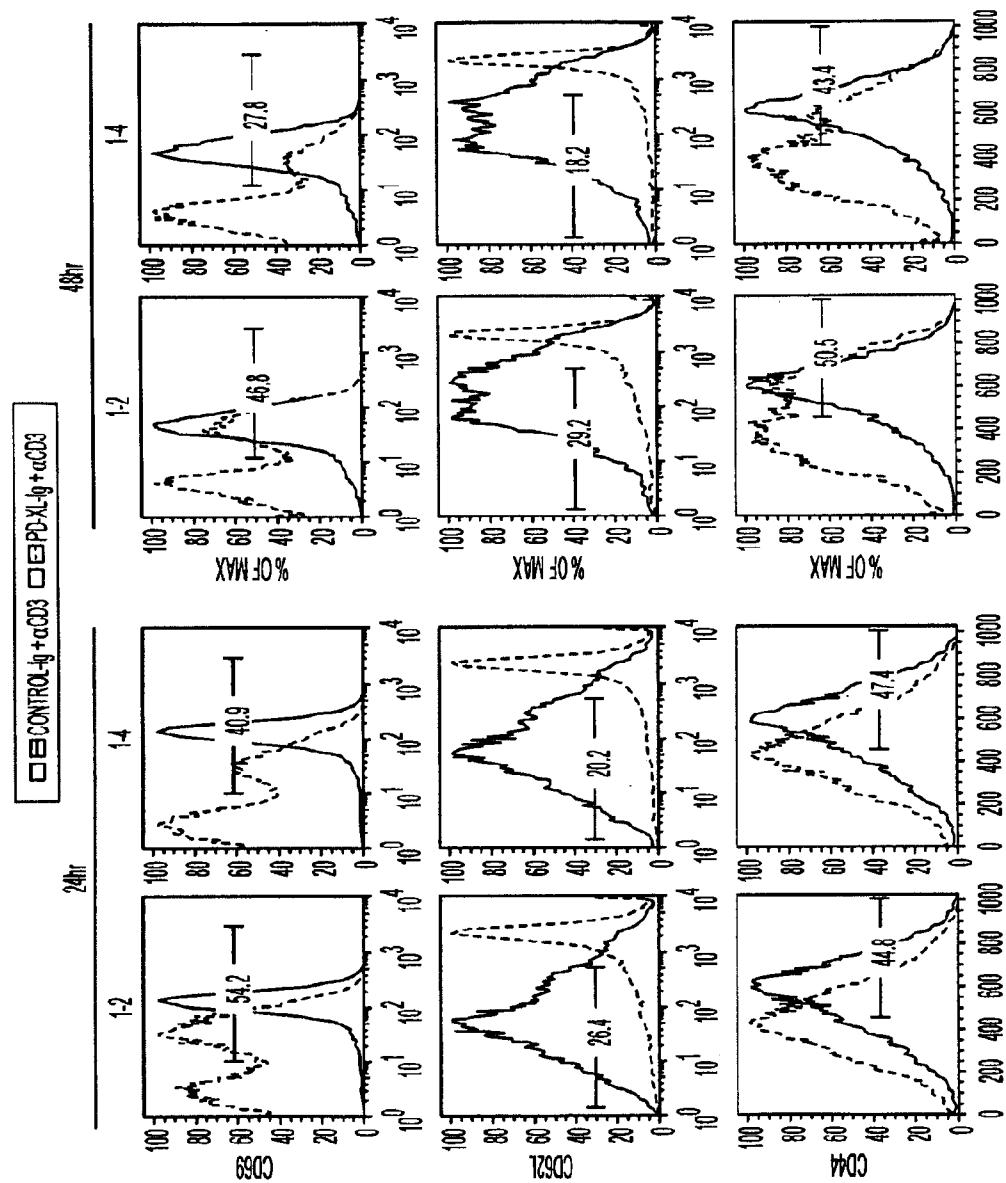


FIG. 12A

SUBSTITUTE SHEET (RULE 26)

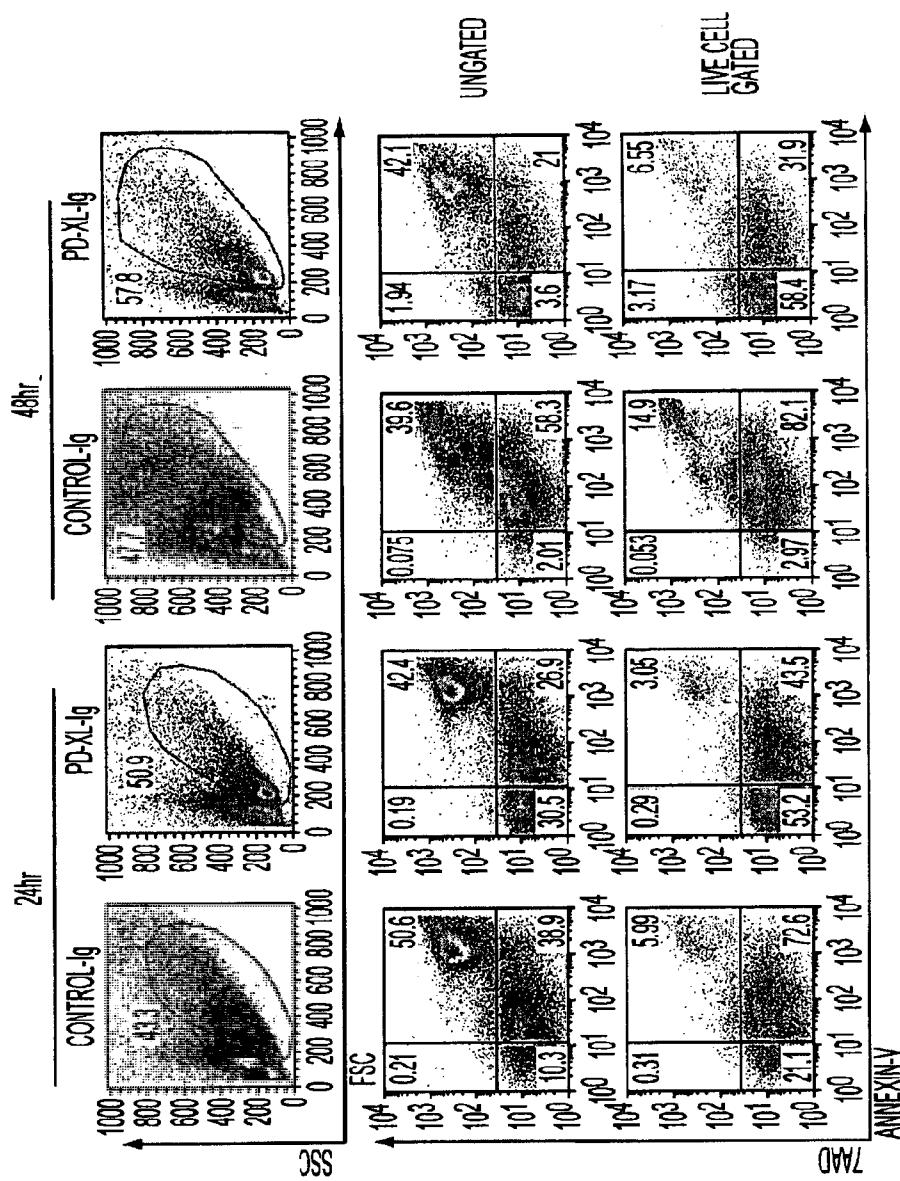


FIG. 12B

SUBSTITUTE SHEET (RULE 26)

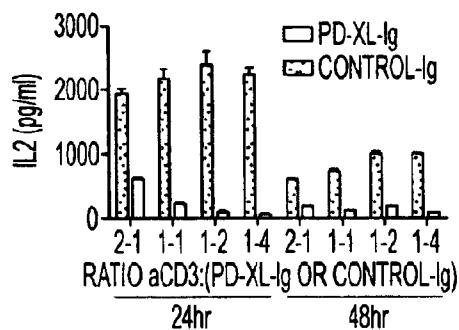


FIG. 13A

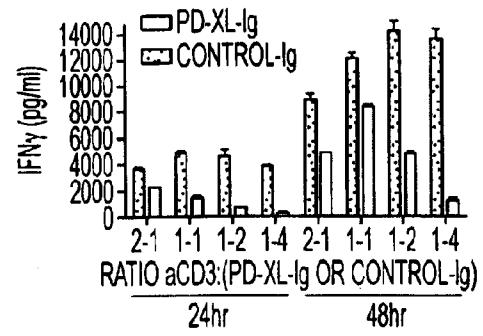


FIG. 13B

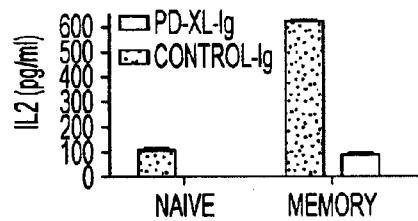


FIG. 13C

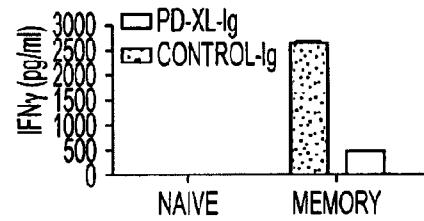


FIG. 13D

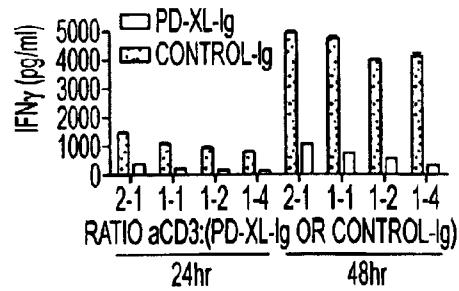


FIG. 13E

SUBSTITUTE SHEET (RULE 26)

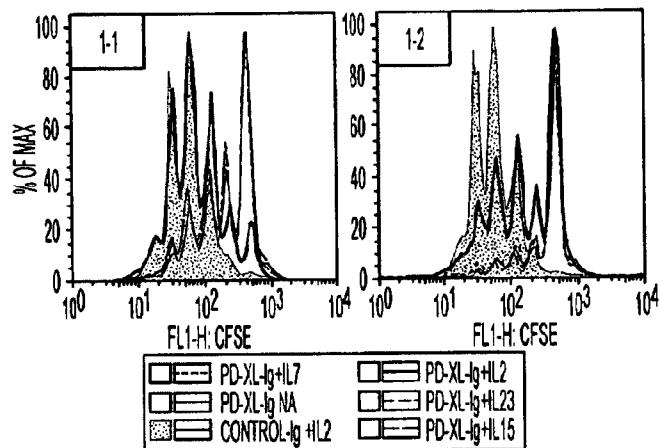


FIG. 14A

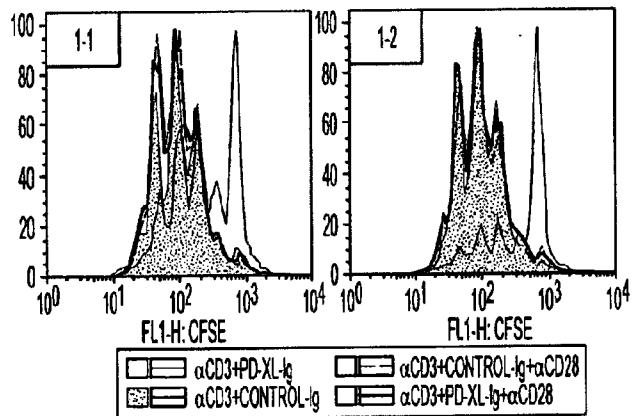


FIG. 14B

SUBSTITUTE SHEET (RULE 26)

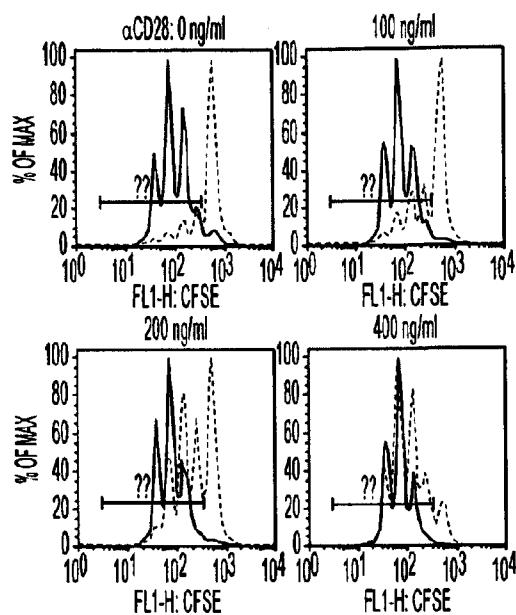


FIG. 14C

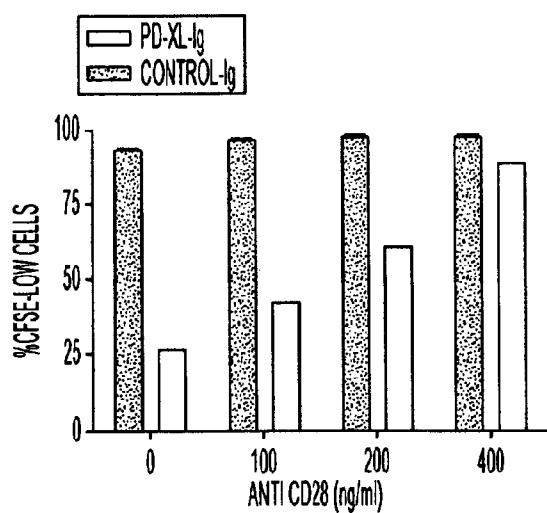


FIG. 14D

SUBSTITUTE SHEET (RULE 26)

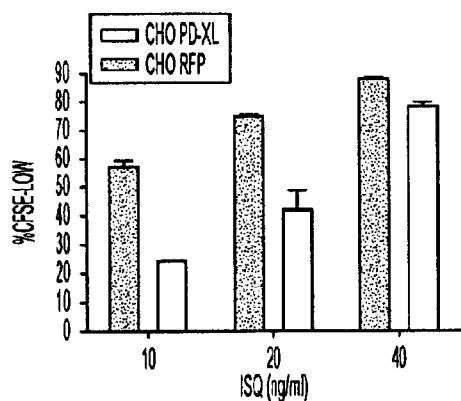
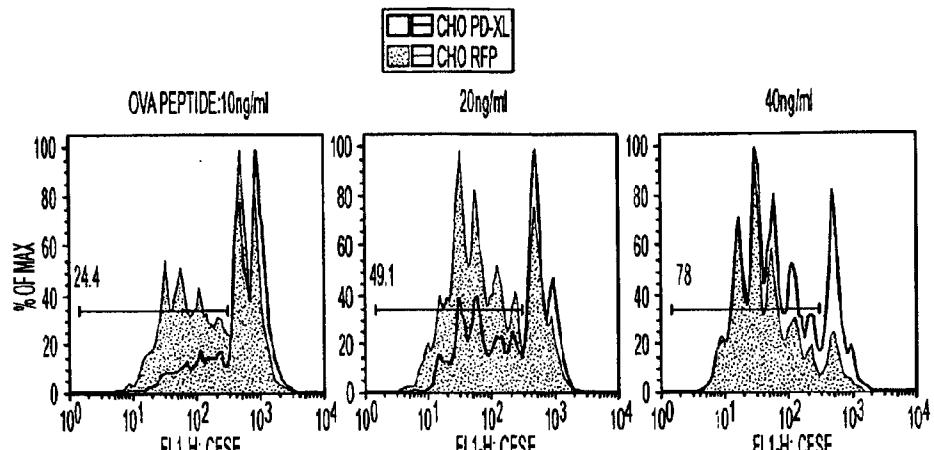



FIG. 15B

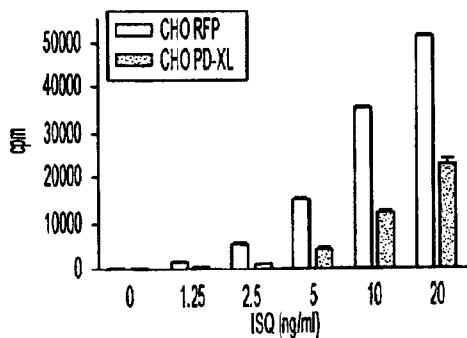


FIG. 15C

SUBSTITUTE SHEET (RULE 26)

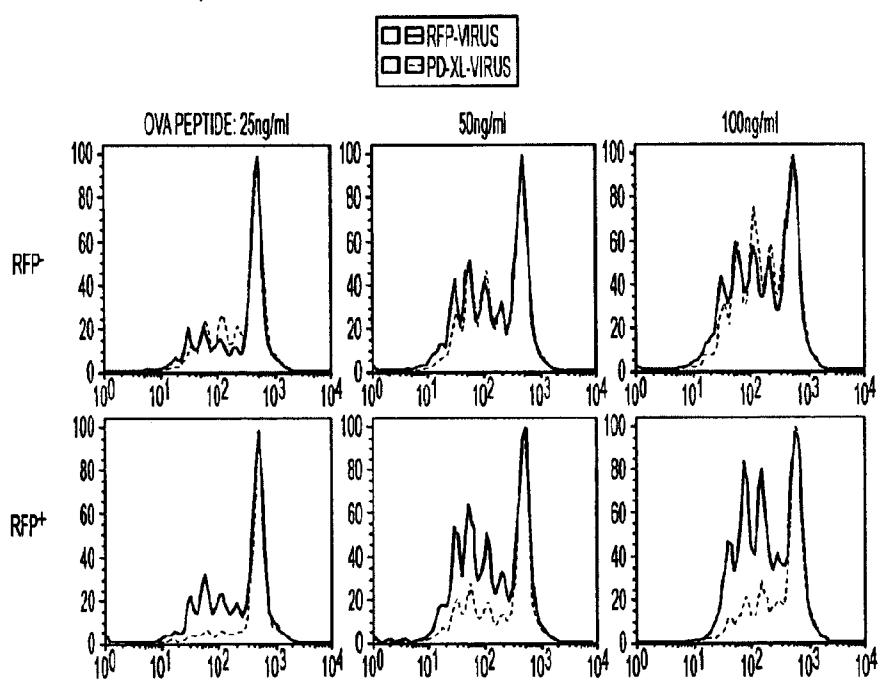


FIG. 15D

SUBSTITUTE SHEET (RULE 26)

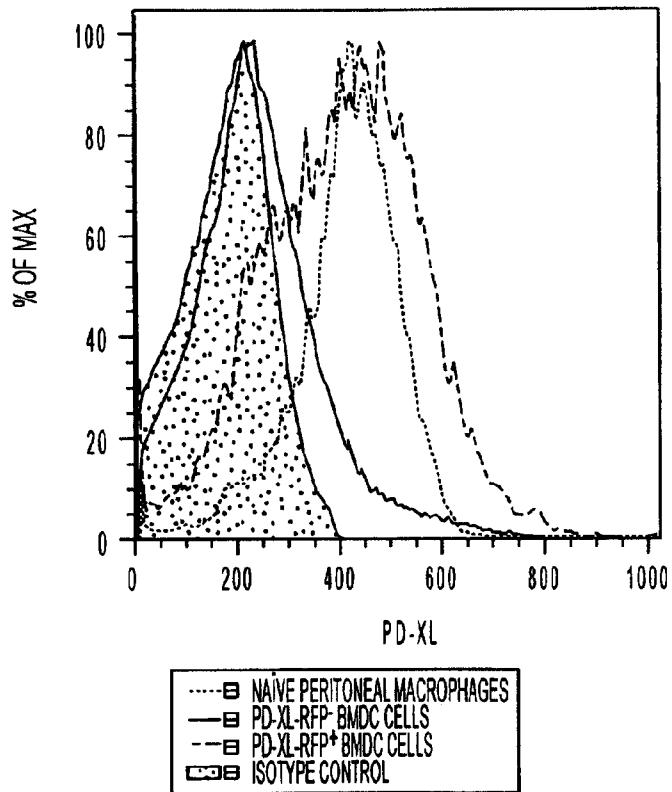


FIG. 16

SUBSTITUTE SHEET (RULE 26)

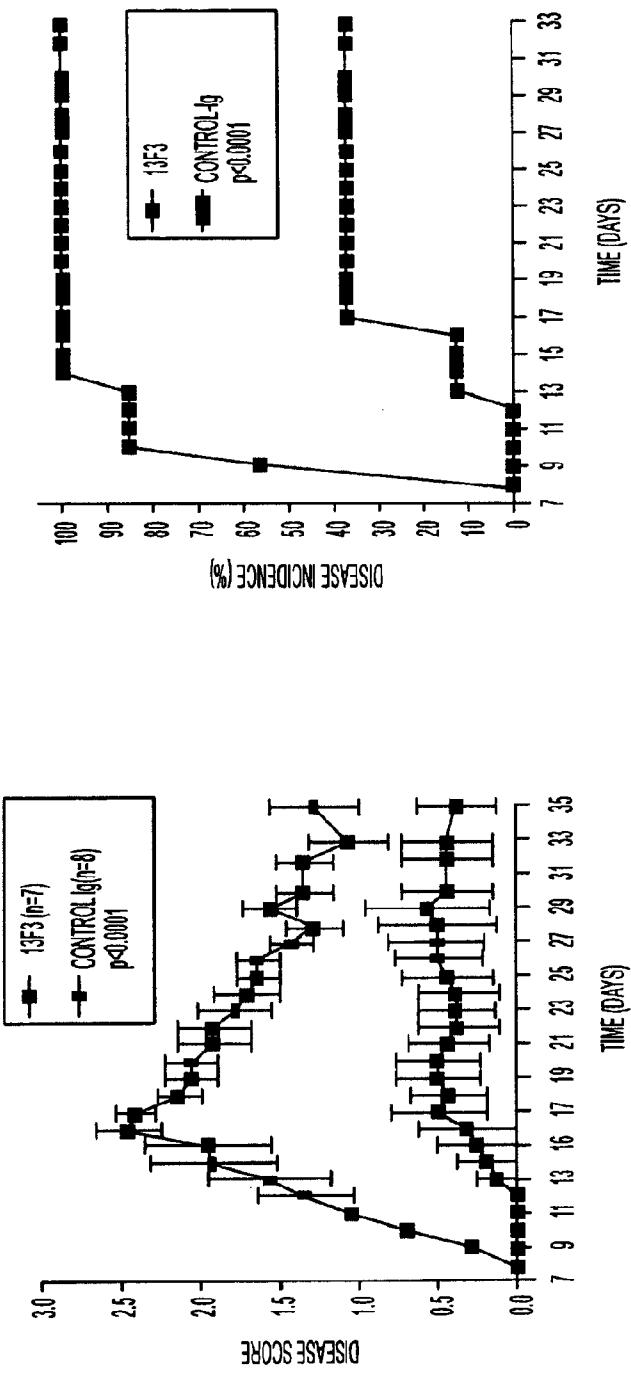


FIG. 17

SUBSTITUTE SHEET (RULE 26)

ANTI-PD-L3 ANTIBODIES TESTED IN COLLAGEN-INDUCED ARTHRITIS ANIMAL MODEL

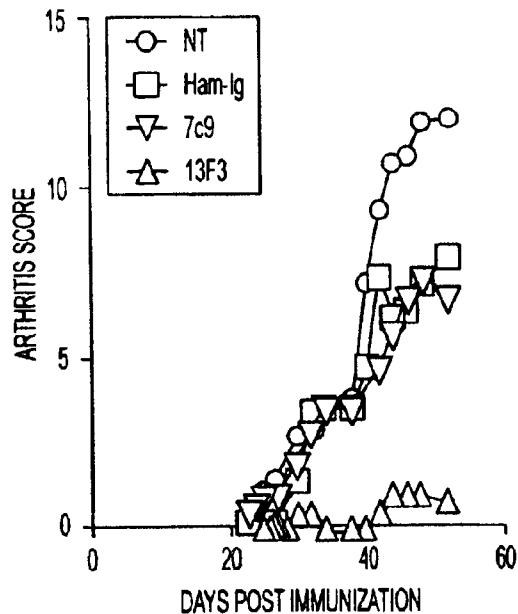


FIG. 18

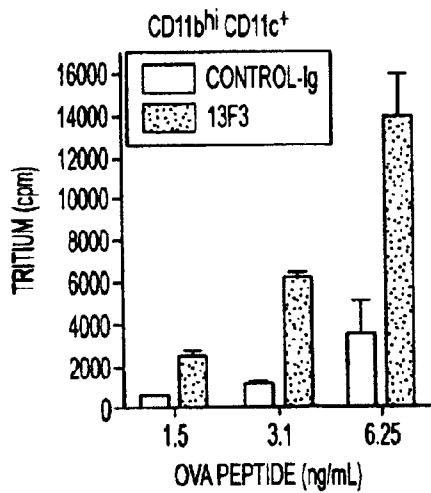


FIG. 19

RECTIFIED SHEET (RULE 91)

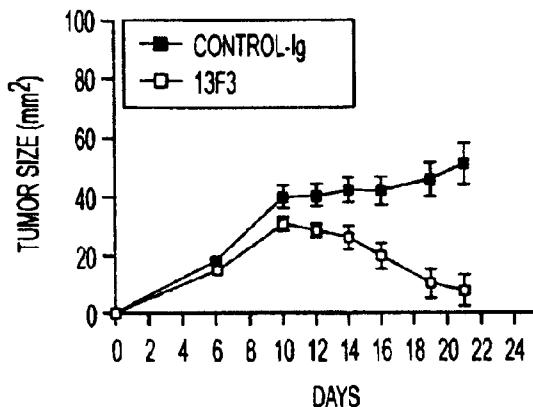


FIG. 20

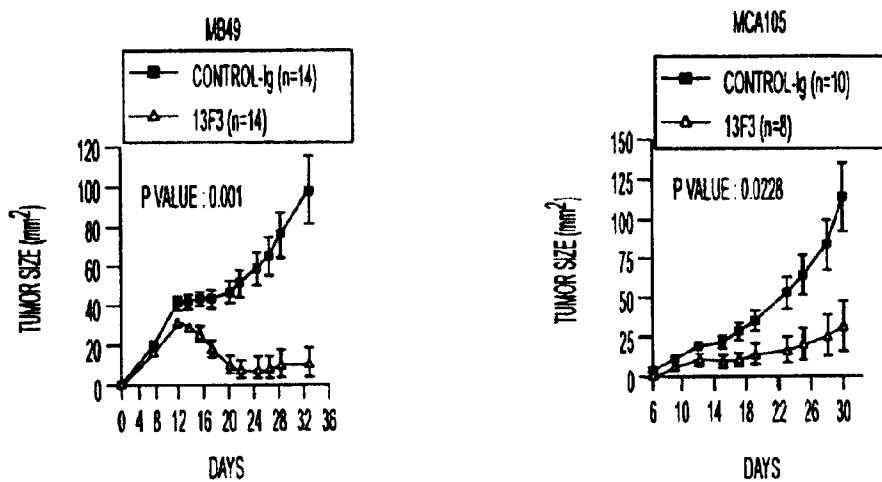


FIG. 21A

FIG. 21B

RECTIFIED SHEET (RULE 91)

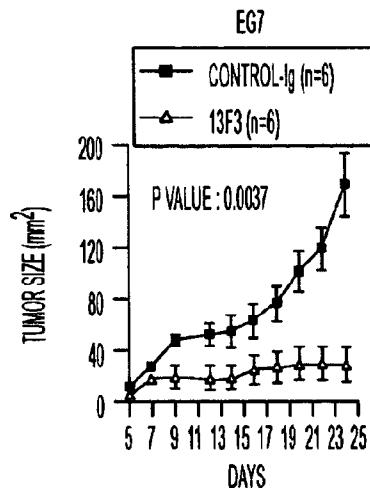


FIG. 21C

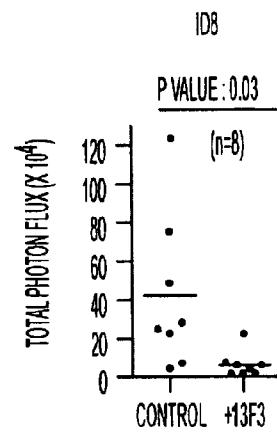


FIG. 21D

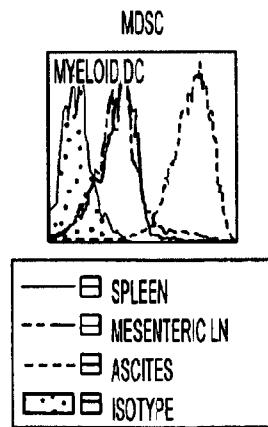


FIG. 21E

SUBSTITUTE SHEET (RULE 26)



FIG. 22

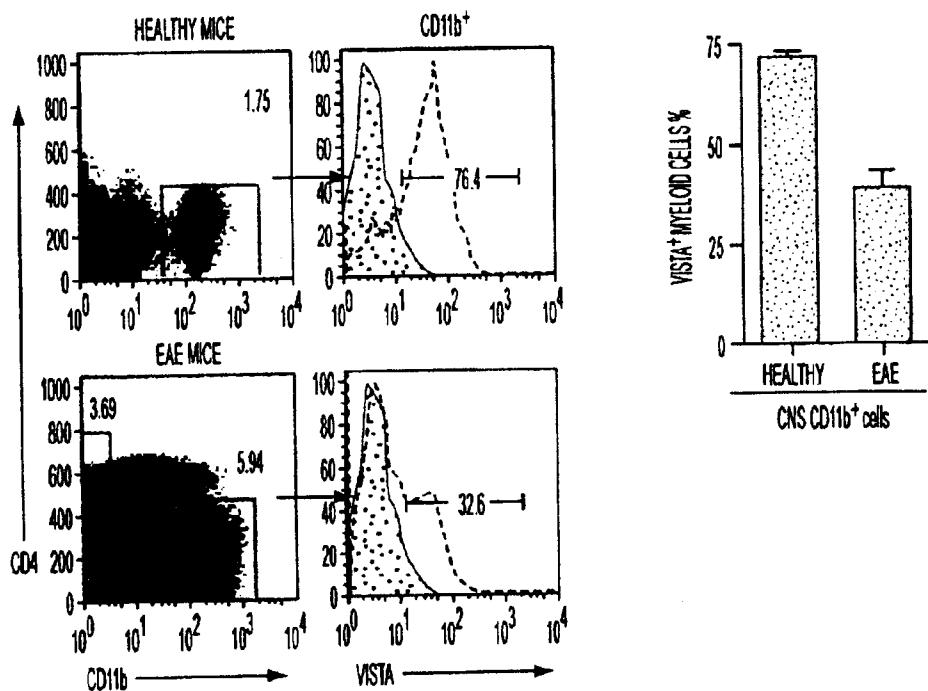


FIG. 23

RECTIFIED SHEET (RULE 91)

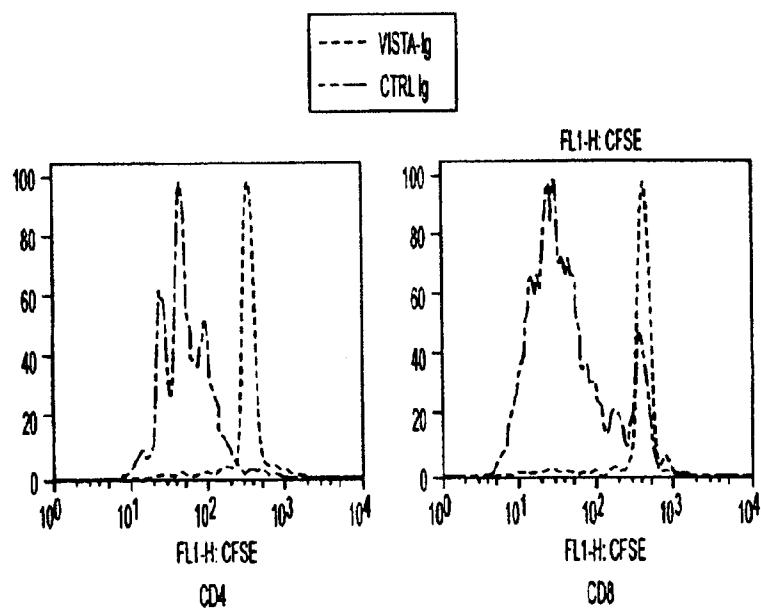


FIG. 24

RECTIFIED SHEET (RULE 91)