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METHODS AND SYSTEMS FOR ANALYTE
MEASUREMENT

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No.

61/297,664 entitled "METHODS AND SYSTEMS FOR ANALYTE MEASUREMENT",

filed on January 22, 2010, the entire contents of which are incorporated herein by reference.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

This invention was made with Government support under National Space Biomedical

Research Institute grant no. SMS01301. The Government has certain rights in this invention.

TECHNICAL FIELD

This disclosure relates to measurement of analytes in biological samples.

BACKGROUND

Properties of biological samples can be measured by measuring light emitted from

such samples following illumination. Incident illumination light is attenuated by samples and

the nature of the illumination can provide information about sample constituents. In

heterogeneous sample environments, the mechanism of light attenuation can be relatively

complex.

SUMMARY

Disclosed herein are methods and systems for generating sets of spectral data that can

be used to construct calibration equations for determinations of quantities associated with

analytes of interest in biological samples. Mathematical generation (e.g., simulation) of

spectral data that can be used to estimate spectral data that would otherwise be measured

from samples can be considerably more efficient than collecting similar data from human or

animal subjects. Moreover, when the spectral data is mathematically generated, the range of

parameters that control the light attenuation properties of samples can be systematically

varied, yielding spectral databases in which each of the relevant parameters spans a desired

range of values. Thus, the database can encompass sample spectral information that is

influenced by multiple sample properties.



The database spectra can be used to generate calibration equations for analytes of

interest by suitably selecting particular members of the database that are used, for example, in

a partial least squares regression analysis to determine equation parameters. The database

spectra can also be matched to measured spectral information for a particular sample, and the

closest matching database spectrum - rather than the measured spectral information - can be

used as input into a corresponding calibration equation to determine the value associated with

the analyte of interest in a sample. In this manner, the measured spectral information plays

no direct role in the determination of analyte values, except in the identification of a closest

member of the spectral database. Instead, determination of analyte values proceeds primarily

on the basis of spectra that are generated mathematically from a model, avoiding sources of

variability that are normally associated with data obtained from biological samples, and

further significantly reducing the number of measurements that are made from human

subjects. Sample analyte values can therefore be determined rapidly and accurately.

Exemplary analytes for which values can be determined include pH, temperature, oxygen

tension, oxygen saturation, carbon dioxide partial pressure, hemoglobin concentration, water

concentration, and hematocrit.

In general, in a first aspect, the disclosure features methods for determining a value

associated with an analyte in a sample, the methods including: determining a set of spectra

from a model for light attenuation in the sample, where the model includes contributions

from at least two different sources of light attenuation in the sample; determining a set of

spectral correction factors associated with the analyte in the sample based on the set of

spectra; and using the set of spectral correction factors to determine the value associated with

the analyte.

Embodiments of the methods can include any one or more of the following features.

The at least two different sources of light attenuation can include light scattering and

absorption. The light scattering can include contributions from light scattering by one or

more fat layers and light scattering by muscle tissue. The absorption can include

contributions from light absorption by at least two different analytes. The analyte can include

at least one member selected from the group consisting of pH, temperature, oxygen tension,

oxygen saturation, carbon dioxide partial pressure, hemoglobin concentration, water

concentration, and hematocrit. The at least two different analytes can include oxygenated

hemoglobin, de-oxygenated hemoglobin, and myoglobin.



Determining the set of spectral correction factors can include determining mean-

centered spectra from the set of spectra. Determining the set of spectral correction factors

can include determining orthogonalized spectra based on the mean-centered spectra.

Determining the value associated with the analyte can include using the set of spectral

correction factors to correct at least one member of the set of spectra, and using the corrected

at least one member of the set of spectra as input to a calibration equation for the analyte.

Determining the value associated with the analyte can include obtaining measured spectral

information for the sample, and determining a member of the set of spectra that is closest to

the measured spectral information. The method can include determining the member of the

set of spectra that is closest to the measured spectral information based on maximum and

minimum differences between the measured spectral information and at least some of the

members of the set of spectra. Determining the value associated with the analyte can include

using the member of the set of spectra that is closest to the measured spectral information as

input to the calibration equation, and determining the value associated with the analyte from

the calibration equation.

The calibration equation can be derived from a partial least squares regression

analysis of the set of spectra. Alternatively, or in addition, the calibration equation can

correspond to a Taylor series expansion that relates spectral information to values of the

analyte.

The method can include determining the value associated with the analyte based on a

subset of members of the set of spectra that correspond to a common value of the analyte.

Determining the value associated with the analyte can include simulating spectral

information for the sample using the model for light attenuation in the sample, using the

simulated spectral information as input to the calibration equation, and determining the value

associated with the analyte from the calibration equation.

Embodiments of the methods can also include any of the other features or steps

disclosed herein, as appropriate.

In another aspect, the disclosure features methods for determining a value associated

with an analyte in a sample, the methods including: determining a set of spectra from a

model for light attenuation in a sample; obtaining spectral information corresponding to the

sample and identifying a member of the set of spectra that corresponds to the spectral

information; and determining the value associated with the analyte in the sample based on the

identified member of the set of spectra.

Embodiments of the methods can include one or more of the following features.



The model for light attenuation can include contributions from light scattering and

absorption by the sample. The light scattering can include contributions from light scattering

by one or more fat layers and light scattering by muscle tissue. The absorption can include

contributions from light absorption by at least two different analytes.

Identifying a member of the set of spectra can include determining maximum and

minimum differences between the spectral information and at least some members of the set

of spectra, and identifying the member of the set of spectra that corresponds to the spectral

information based on the maximum and minimum differences.

Determining the value associated with the analyte can include using the identified

member of the set of spectra as input to one or more a calibration equations that relate

spectral information to values of the analyte. Determining the value associated with the

analyte can include determining spectral correction factors associated with the analyte from

the set of spectra, applying the spectral correction factors to the identified member of the set

of spectra to correct the identified member, and using the corrected identified member as

input to the calibration equation.

The methods can include determining the value associated with the analyte based on a

subset of members of the set of spectra that correspond to a common value of the analyte.

The one or more calibration equations that relate spectral information to values of the

analyte can be derived from a partial least squares regression analysis of the set of spectra.

Alternatively, or in addition, the calibration equation can correspond to a Taylor series

expansion that relates spectral information to values of the analyte.

The analyte can include at least one member selected from the group consisting of

pH, temperature, oxygen tension, oxygen saturation, carbon dioxide partial pressure,

hemoglobin concentration, water concentration, and hematocrit. The at least two different

analytes can include oxygenated hemoglobin, de-oxygenated hemoglobin, and myoglobin.

Obtaining spectral information corresponding to the sample can include determining

the spectral information from the model for light attenuation, and determining the value

associated with the analyte can include using the identified member of the set of spectra as

input to a calibration equation that relates spectral information to values of the analyte.

Embodiments of the methods can also include any of the other features or steps

disclosed herein, as appropriate.

In a further aspect, the disclosure features systems for determining a value associated

with an analyte in a sample, the systems including a radiation source configured to direct

radiation to be incident on the sample, a detector configured to detect radiation from the



sample, and an electronic processor configured or programed to: (a) obtain measured spectral

information about the sample based on the detected radiation; (b) compare the measured

spectral information to a set of spectra determined from a model for light attenuation in the

sample to identify a member of the set of spectra that corresponds to the measured spectral

information; (c) correct the identified member of the set of spectra using a set of spectral

correction factors determined from the set of spectra; and (d) use the corrected identified

member of the set of spectra as input to a calibration equation to determine the value

associated with the analyte.

Embodiments of the systems can include one or more of the following features.

The calibration equation can be stored in a memory unit connected to the electronic

processor. The electronic processor can be configured to determine values associated with

two or more analytes, where the two or more analytes are selected from the group consisting

of pH, temperature, oxygen tension, oxygen saturation, carbon dioxide partial pressure,

hemoglobin concentration, water concentration, and hematocrit.

Embodiments of the systems can also include any of the other features disclosed

herein, as appropriate. Further, embodiments of the systems can perform any of the methods

and/or method steps disclosed herein, as appropriate. The electronic processor can be

configured to perform any of the methods or method steps.

Unless otherwise defined, all technical and scientific terms used herein have the same

meaning as commonly understood by one of ordinary skill in the art to which this disclosure

belongs. Although methods and materials similar or equivalent to those described herein can

be used in the practice or testing of the present disclosure, suitable methods and materials are

described below. All publications, patent applications, patents, and other references

mentioned herein are incorporated by reference in their entirety. In case of conflict, the

present specification, including definitions, will control. In addition, the materials, methods,

and examples are illustrative only and not intended to be limiting.

The details of one or more embodiments are set forth in the accompanying drawings

and the description below. Other features and advantages will be apparent from the

description, drawings, and claims.

DESCRIPTION OF DRAWINGS

FIGS. 1A and IB are bottom and top schematic diagrams, respectively, of an

embodiment of a sensor.

FIG. 2 is a schematic diagram showing a sensor attached to a surface of a sample.



FIG. 3 is a plot showing different values of reduced scattering coefficients produced

by varying sample parameters.

FIG. 4 is a flow chart that includes a series of steps for using calculated reference

spectra to determine sample analyte values.

FIG. 5 is a plot showing measured and calculated absorbance spectra for tissue

phantoms.

FIG. 6A is a plot showing correlations between predicted and measured ink

concentrations for tissue phantoms.

FIG. 6B is a plot showing differences between measured and predicted ink

concentrations as a function of fat layer thickness for tissue phantoms.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

Near infrared light can be used to illuminate biological samples, and light collected

from such samples (e.g., illumination light that has been transmitted through samples and/or

reflected from samples) can be used to obtain information about the samples. More

particularly, near infrared light passes through skin and subcutaneous fat layers, and

illuminates underlying muscle tissues. Some of the light can be absorbed by hemoglobin in

red blood cells in the tissues, by water, and by proteins in blood plasma. Portions of the

illumination light can also be scattered by muscle fibers and blood cells. Light collected from

a sample illuminated in this manner can be detected as spectral information about the sample;

that is, the detected light can be spectrally resolved in a suitable detector to measure the

intensity of the collected light as a function of wavelength. The spectral information can be

further analyzed to obtain information about one or more analytes of interest (e.g., light-

absorbing components) in the sample, through a model for the sample's absorption spectrum

that quantifies contributions of sample components to the sample's light absorption spectrum.

Systems and methods for obtaining information about sample properties such as tissue pH,

hematocrit, oxygen tension, and tissue oxygen saturation have been disclosed in the following

U.S. Patents, the entire contents of each of which are incorporated herein by reference: U.S.

PatentNo. 5,813,403; U.S. Patent No. 6,006,1 19; U.S. Patent No. 6,304,767; U.S. Patent No.

6,766,188; and U.S. PatentNo. 7,532,919.

The general methodology employed in determining values associated with one or

more sample properties typically includes measuring a large quantity of reference spectral

information from a relatively large group of human subjects to develop a spectral library of



information that spans different ranges associated with different sample parameters (e.g.,

muscle scattering coefficient, muscle absorption coefficient, pH, temperature). Subject-to-

subject variability in muscle tissue light scattering can be reduced and/or removed to enable

more accurate measurements to be made on human subjects. Systems and methods for

reducing such variability are disclosed, for example, in U.S. Patent No. 7,616,303, the entire

contents of which are incorporated herein by reference.

Typically, calibration equations that are used to calculate the values associated with

sample properties from measured spectral information are developed using statistical

techniques that relate the reference spectral information discussed above to standard

measurements of the values obtained through other means. To employ these methods, the

analytes of interest in the reference spectral information span a relatively large range of

values; in some embodiments, the range includes essentially the entire physiological ranges

associated with the analytes. To measure the reference spectral information, human subjects

are selected and experimental conditions manipulated so that the reference spectral

information represents a wide range of such values. The accuracy of the obtained calibration

equations can also be improved if other parameters that affect the sample's absorption

spectrum, such as oxygen concentration, carbon dioxide concentration, temperature, and

tissue scattering properties can be varied in a controlled manner.

A very large amount of data can be collected when a number of different analytes are

to be analyzed. Further, in some embodiments, correlations occur between spectral effects

produced by different analytes in a sample. These correlations can be difficult to separate

into separate contributions from each of the analytes. As a result, the correlations can be

implicitly reflected in calibration equations derived from the reference data; such equations

may work well on some patients, but less well on others.

As an example, to account for subject-to-subject variation in muscle light scattering

properties, principal component analysis (PCA) loading correction methods can be used to

reduce the variations. To derive PCA correction factors for a calibration equation for a

particular analyte or sample property, reference spectra from a large number of human

subjects corresponding to a single value of the analyte or parameter in the subjects are

analyzed to determine the PCA correction factors. It can be time consuming and expensive to

obtain a large enough set of reference spectral information for accurate determination of PCA

correction factors by performing measurements on a large number of human patients.

The present disclosure provides methods and systems for calculating reference

spectral information in the form of sets of simulated spectra that correspond to different



values of analytes and sample properties; the different values of the analytes and sample

properties essentially correspond to making measurements from a wide variety of different

samples under different conditions. By calculating rather than directly measuring the spectral

information, the time and expense associated with developing a large spectral database of

reference information can be significantly reduced. The reference spectral information can

be partly or fully calculated each time an analyte value is measured. Alternatively, or in

addition, some or all of the calculated reference spectral information can be stored in a

memory unit and retrieved as need to obtain analyte measurements from samples. For

example, the calculated reference spectral information can be used to determine correction

factors (e.g., PCA correction factors) that are used to correct the reference spectral

information for variations that do not correspond to sample analytes of interest.

Further, the corrected set of reference spectra can be used in statistics-based modeling

methods such as partial least squares (PLS) regression analysis to develop calibration

equations for sample analytes of interest. The calibration equations can be used with either

measured sample spectral information or calculated spectral information from the reference

information database to determine values associated with the analyte(s) of interest in

particular samples.

This disclosure is divided into multiple parts. In the first part, general systems for

measuring light from biological samples and determining sample properties based on the

measured light are disclosed. In the second part, the general methodology employed to

calculate reference spectra, obtain calibration equations, and determine values related to

sample analytes is disclosed. In the third part of the disclosure, examples of the use of the

methods and systems disclosed herein are discussed.

Measurement Systems

Measurement systems are generally disclosed, for example, in PCT Patent

Application Publication No. WO 2010/053617, the entire contents of which are incorporated

herein by reference. FIGS. 1A and IB are schematic diagrams showing bottom and top

surfaces, respectively, of a sensor 10 that can measure light from a sample. Sensor 10

includes a spectral detector 12, two short-distance radiation sources 14a and 14b, and six

long-distance radiation sources 16a, 16b, 16c, 16d, 16e, and 16f. Detector 12 and radiation

sources 14a-b and 16a-f are mounted to circuit board 18. Each of short-distance radiation

sources 14a and 14b can include one or more packages, and each package can include one or

more elements that produce illumination radiation. Similarly, each of long-distance radiation



sources 16a-f can include one or more packages, and each package can include one or more

elements that produce illumination radiation.

While FIGS. 1A and IB show an embodiment of sensor 10 that includes two short-

distance sources 14a and 14b and six long-distance sources 16a-f, more generally, sensor 10

can include any number of short-distance radiation sources and any number of long-distance

radiation sources. For example, in some embodiments, sensor 10 can include one or more

short-distance radiation sources (e.g., two or more short-distance radiation sources, three or

more short-distance radiation sources, four or more short-distance radiation sources, five or

more short-distance radiation sources, six or more short-distance radiation sources, eight or

more short-distance radiation sources, or even more short-distance radiation sources). In

certain embodiments, sensor 10 can include one or more long-distance radiation sources (e.g.,

two or more long-distance radiation sources, three or more long-distance radiation sources,

four or more long-distance radiation sources, five or more long-distance radiation sources, six

or more long-distance radiation sources, eight or more long-distance radiation sources, or

even more long-distance radiation sources).

The short- and long-distance sources in sensor 10 can be directly attached to circuit

board 18. That is, the sources can be mounted directly to circuit board 18, rather than being

connected to circuit board 18 via electrical wires or cables, or optical fibers. In some

embodiments, the short- and long-distance sources can be soldered directly to circuit board

18 (e.g., with no spacer or other element separating the sources and circuit board 18). In

certain embodiments, the short- and long-distance sources can also be fixedly attached to

circuit board (e.g., mounted on circuit board 18 such that a fixed spatial relationship exists

between the sources and circuit board 18). By virtue of the fixed attachment, the sources do

not move independently of circuit board 18, as would occur if the sources were attached with

a cable or fiber. Instead, the sources are rigidly attached to circuit board 18 so that the

position of the sources with respect to circuit board 18 does not change.

In general, each of the short-distance and long-distance radiation sources can include

one or more packages (e.g., two or more packages, three or more packages, four or more

packages, five or more packages, six or more packages, or even more packages). Each of the

packages can include one or more elements that produce illumination radiation (e.g., two or

more elements, three or more elements, four or more elements, or even more elements).

Further, elements that emit radiation at different wavelengths can be positioned at different

spatial locations, depending upon the sample the detector. For example, if detector 12 is

configured to resolve different wavelengths at different spatial positions, the elements and/or



packages in some or all of the short- and long-distance sources can be positioned to

correspond directly or opposingly to the configuration of detector 12.

In some embodiments, the number of packages in some of the short- and/or long

distance radiation sources can vary. For example, sources that are positioned further from

detector 12 can include larger numbers of packages, to ensure that sufficient scattered

radiation intensity is measured by detector 12. In general, any of the short- and/or long

distance sources can include any number of packages, the number of packages being selected

to ensure that the sample is sufficiently illuminated with a desired distribution of incident

radiation, and to ensure that detector 12 obtains suitable measurements of scattered radiation

from the sample. As an example, in some embodiments, a long-distance source that is

positioned furthest from detector 12 can include 1.5 times as many packages (e.g., 2.0 times

as many packages, 2.5 times as many packages, 3.0 times as many packages, 3.5 times as

many packages, 4.0 times as many packages as a long-distance source that is positioned

nearest to detector 12.

The elements within the packages of each short- and long-distance radiation source

are typically selected so that, when the elements are activated (e.g., emitting light), the

spectrum of the light produced collectively by the elements corresponds to a desired spectral

distribution of illumination radiation. The spectral distribution can be altered by positioning

particular elements within the short- and/or long-distance sources, so that the sample can be

illuminated according to specific spectral distributions. In some embodiments, for example,

the illumination spectrum for one or more short- and/or long-distance sources can be selected

so that measurement sensitivity of sensor 10 in particular regions of the spectrum is

enhanced, as discussed previously.

As shown in FIG. 1A, the emission windows of radiation sources 14a-b and 16a-f,

and the radiation entry surface of detector 12, are exposed on the bottom surface of sensor 10.

Sensor 10 also includes an electronic processor 20, an optional applications processor

22, an optional display unit 24, a power source 26, and a communication interface 28.

Processors 20 and 22, display 24, power source 26, and interface 28 are mounted to the upper

surface of circuit board 18, as shown in FIG. IB. In some embodiments, processor 22 is not

included in sensor 10; instead, processor 22 is part of an external computing device (e.g., a

personal computer) that communicates with sensor 10 via communication interface 28, and

performs some or all of the functions of processor 22 (or processor 20) disclosed herein.

FIG. 2 shows a partial schematic diagram of sensor 10 mounted on a sample 30.

Sample 30 includes one or more layers of skin 32, a subcutaneous layer of fat 34, and



underlying muscle tissue 36. Sensor 10 is configured to interrogate muscle tissue 36 by

directing radiation 38, generated by at least one (e.g., all) of radiation sources 14a-b and at

least one of the radiation sources 16a-f, to be incident on muscle tissue 36. Scattered

radiation 40 is received and analyzed by detector 12 (FIG. 1A) to determine a spectrum of the

scattered radiation. The scattered radiation spectrum is then processed by electronic

processor 20 and/or processor 22 (FIG. IB) to determine an absorbance spectrum of muscle

tissue 36. Based on the absorbance spectrum, electronic processor 20 and/or 22 can

determine one or more properties of sample 30 (and in particular, of muscle tissue 36 within

sample 30).

In general, the scattered radiation spectrum measured by detector 12, which typically

includes wavelength-dependent information about scattered radiation from sample 30, can be

converted by an electronic processor to an absorbance spectrum of muscle tissue 36 using

well-known methods. In the following discussion, reference is made to absorbance spectra of

samples such as sample 30. However, the apparatus and methods disclosed herein can also

be used to derive reflectance spectra from measured scattered radiation; reflectance and

absorbance are related by a simple mathematical transformation. Methods for converting

spectral scattered radiation information into reflectance and absorbance spectra for a sample

are disclosed, for example, in U.S. Patent No. 7,532,919.

In addition to converting scattered radiation information into absorbance and/or

reflectance spectra, processor 20 and/or 22 can be configured (e.g., using calibration

equations and/or data stored in memory units, magnetic storage units, and/or optical storage

units) to analyze absorbance spectra to obtain measurements of physiologically important

parameters for sample 30. In general, processor 20 and/or 22 can be configured to perform

any of the analysis steps that are discussed herein.

In some embodiments, one or more absorbance spectra for sample 30 can be analyzed

to determine pH (e.g., muscle tissue pH) in the sample. Systems and methods for

determining tissue pH are disclosed, for example, in U.S. Patent No. 5,813,403.

In certain embodiments, one or more absorbance spectra for sample 30 can be

analyzed to determine blood hematocrit in the sample. Systems and methods for determining

blood hematocrit are disclosed, for example, in U.S. Patent No. 6,006,1 19.

In some embodiments, one or more absorbance spectra for sample 30 can be analyzed

to determine quantities such as hemoglobin concentration, and/or water content, and/or

oxygen tension and/or tissue oxygen saturation. Systems and methods for determining these



quantities are disclosed, for example, in U.S. Patent No. 6,766,188. Suitable systems and

methods are also disclosed, for example, in U.S. Patent No. 7,532,919.

In certain embodiments, one or more absorbance spectra for sample 30 can be

analyzed to determine quantities such as anaerobic threshold and/or metabolic rate (e.g.,

oxygen consumption rate) in the sample. Systems and methods for determining these

quantities are disclosed, for example, in U.S. Patent Application Publication No. US

2009/0024013, the entire contents of which are incorporated herein by reference.

In some embodiments, one or more absorbance spectra for sample 30 can be analyzed

to determine additional quantities such as a temperature of a tissue of interest within sample

30. In addition, processor 20 and/or 22 can include a hardware-based temperature monitor

that effectively monitors a temperature of the sample surface to which sensor 10 is attached,

for example.

General Methodology

As discussed above, numerical algorithms can be used to reduce and/or remove

spectral contributions in reflectance spectra that arise from optical property variations in

tissues of interest, prior to using the reflectance spectral data in PLS modeling applications to

measure analytes of interest. Examples of such algorithms are disclosed in U.S. Patent No.

7,616,303.

PCA loading corrections can be used to reduce and/or remove contributions to

reflectance spectra that arise from analyte-irrelevant variations in optical properties of tissues

of interest (e.g., tissues in which analytes of interest are measured). Optical properties that

exhibit such variations can include scattering properties, absorption properties, tissue

refractive indices, and other properties. In general, variations in infrared absorption by

tissues of interest are also related to concentrations of one or more analytes of interest.

Accurate measurement of analytes of interest may therefore include determining and

correcting for the analyte-irrelevant contributions to reflectance spectra.

PCA analysis can be used to obtain spectral "signatures" of the analyte-irrelevant

variations, which can then be removed from the spectral reflectance data via

orthogonalization steps. PCA loading corrections can be applied during both calibration and

predictive steps to further improve PLS models constructed from the corrected spectral

reflectance data.

Variations in spectral reflectance measurements that arise from variations in optical properties

of tissues of interest can be reduced and/or removed in a series of steps. For example, in



some embodiments, a first analysis step includes determining variations in spectral

reflectance data that are not relevant to a target analyte by PCA on a set of spectra collected

from different subjects (and/or from different locations on the same subject) in the same

calibration set with substantially similar values of the analyte. The variations can be

expressed as a set of loading vectors of principal spectral components obtained from PCA.

The first analysis step is described by Equation 1:

Χ = Χ - Χ = Ρ Τ + E (1)

In Equation 1, X o is a matrix with dimensions m x n . Each of the m o rows of X o

corresponds to a reflectance spectrum recorded for a different sample used for PCA, and n is

the number of wavelength points in each reflectance spectrum. The spectra in X o include

analyte-irrelevant spectral reflectance variations. Matrix Xo,mean has dimensions m o x n and

includes m o rows, where each row is a 1 x n vector whose elements correspond to the column

mean values of Xo, so that subtracting X 0 mean from X 0 yields matrix X 0 m with dimensions m o

x n, where X o,mc is a mean-centered matrix of Xo. S is a PCA score matrix with dimensions m o

x fo, where f o is a number of principal components used to model variations in - Matrix P is

the PCA loadings matrix and has dimensions n x fo. Matrix E , with dimensions m o x n, is a

matrix of spectral residuals of X o that are not modeled by PCA.

In a second analysis step, spectra used for PLS calibration and spectra used for PLS-

based prediction are orthogonalized with respect to the loading vectors of the principal

components obtained in the first step. Spectral contributions due to variations in optical

properties of the tissues of interest are reduced and/or removed in the corrected spectra which

result from the second analysis step. The second analysis step is described by Equation 2 :

x =(x-x , - (χ - χ , ρρτ +χ , =χ - (χ - χ , λρρ (2)

In Equation 2, X ort is the orthogonalized (e.g., corrected) spectral matrix with

dimensions m n, where m is the number of samples, e.g., the m rows of X ort correspond to

corrected reflectance spectra recorded from m different samples. Matrix with dimensions

m n corresponds to m original, uncorrected spectra. Matrix Xo,mean(m,n) with dimensions m x

n includes m rows, where each row is a 1 x n vector whose elements correspond to the

column mean values of Xo. Pi, with dimensions n xfi, is a truncated loadings matrix, where

the number of columns fi is equal to a number of orthogonalization factors used in the



orthogonalization procedure. In general, f i is less than or equal tofo, and a value forf i is

selected on the basis of the element values in the S and P matrices calculated in Equation 2.

Following orthogonalization, the corrected reflectance spectra in matrix Xort can be used in

PLS calibration and/or modeling to predict values of analytes of interest.

When incident light interacts with a sample, measured light corresponding to light

that is reflected from and/or transmitted through the sample is attenuated relative to the

incident light. The attenuation Α(λ) in optical density units at wavelength λ is defined as

( ) = - 1ο ι (^¾ (3)

where Ι ο(λ) and ( ) are the intensity of the incident light, and the intensity of light after

passing through the sample, respectively. Attenuation A in a range of wavelengths is called

the attenuation spectrum.

The attenuation spectrum is related to the reflectance spectrum R ( ) of the sample

according to A = logio(l/R). Reflectance spectra can be measured for a wide variety of

different subjects - corresponding to relatively broad ranges of different sample analyte

values and properties - and these measured reflectance spectra can be used to determine PCA

correction factors.

However, as discussed above, the measurement of data from such a large number of

human subjects can be both time consuming and expensive. Moreover, in some cases, it can

be difficult to obtain data over a wide range of certain sample parameters. For example, it

can be difficult - and even dangerous - to manipulate experimental conditions to collect

spectra from human subjects at a wide range of different muscle tissue pH values, as many

human biochemical processes are very sensitive to pH. The present disclosure therefore

provides methods and systems for calculating reflectance spectra reflecting a wide variety of

different sample analyte values and properties, and determining PCA correction factors from

the calculated reference spectra. The PCA correction factors can then be used to correct

some or all of the calculated reference spectra to reduce variations due to contributions that

do not correspond to analytes of interest. The methods and systems are further described, for

example, in Zou et al., "Feasibility of analyte prediction in phantoms using a theoretical

model of near-infrared spectra," Proc. of SPIE Vol. 7572, 757201-1-757201-9 (2010), the

entire contents of which are incorporated by reference herein.



Suitable methods for calculating sample reflectance spectra are disclosed, for

example, in the following references, the entire contents of each of which is incorporated by

reference herein: Kienle et al., J . Opt. Soc. Am. A 14: 246-257 (1997); Kienle et al, Appl.

Opt. 37: 779-791 (1998); and Liemert et al., J . Biomed. Opt. 15: 025003-1-025003-10 (2010).

Kienle et al. use a two layer turbid model for photon diffusion to describe sample reflectivity.

In this model, a muscle layer includes an analyte of interest, and another layer (e.g., a fat

layer) overlies the muscle layer. Kienle et al. show, using the "EBCF" boundary condition,

that for a two-layer turbid medium, the reflectance R at distance p between a light source and

a detector is calculated as follows:

(fi ) = ( d [\ - Rfres ( )] - 3 Φ = cos 2 Θ (4)
J Απ dz

where Φ \ is the fluence rate in the outer (illuminated) layer,

is the diffusion constant in that layer, and Rfres(@) t e Fresnel reflection coefficient for a

photon with an incident angle Θ relative to the normal to the boundary. Since

d = η θ άφ άθ , where 0 ≤ θ ≤ π/2 (in this analysis only diffuse radiation leaving the top

layer is treated), and φ is the azimuth (0 ≤ φ ≤ 2π), Equation (4) can be written as:

(6)
2 dz J

The quantity 1 ' —— can be calculated. According to Kienle et al.,

1
— J 0 > (z,s)sJ (sp)ds

where φ \ is a Fourier transform of the fluence function and J Q is the zeroth-order Bessel

function. Therefore,

(β ,ζ) _ 1 f ∞' d ((zz,,s))
sJ (sp)ds

dz 2π dz

Near z = 0 (with z > 0) , the formulae in Kienle et al. imply that

dz



cosh(or (z0 - z)) sinh(or (z b + z0)) ( D a sinh^ (/ - z)) + D a cosh^ (/ - z))
(9)

Z , Z , cosh(or (/ + z )) + 2 r2 sinh^ (/ + zb))

with distances ZQ and defined as in Kienle et al. At z = 0, Equation (9) is (left-)continuous,

and so

where = (D s 2 + µ . ) / D , D = i ( = 1, 2) and / is the fat thickness.
i )

Combining these equations, Equation (4) now becomes

=— ί [1 cos2 Θsin θάθ

Y

o V

From Equation (11), it is evident that for a two-layer fat and muscle sample, the

reflectance actually includes two parts. One part is the first integration which is related to the

surface of the fat layer and the optical device, and the second part is the second integration

which is related to the fat layer and the muscle layer. The first integral

can be calculated when the refractive index rij (j = 1, 2) is known above and below the surface

layer. Several methods can be used to calculate the second integral. For example, in some

embodiments, the general comp ite rectangle method (Equation (13))

can be used to calculate the second integral. To perform the second integration in Equation

( 11), a value of N is selected such that



( D a sin ( ) +D2a2 0 1 ( )
cosh(a1z ) - sinh(a;1(z +z )) sJ (ps)ds

D1a1cosh(a1(/ + z )) +D a sinh(o;1(/ + z ))

sm a +D a cos ) \
cos (a z ) - sinhitt (z +z )) sJ (ps)ds +E (14)

0 V
D1a1cosh^ (/ + z )) +D a sm ( 1 +z

and the error term E is as small as possible. Then, the interval [0, N is separated into a set of

small sub-intervals and Equation (13) is used to approximately evaluate the integral in each

sub-interval. Because the value of the integral in Equation (14) is typically small (e.g., less

than 10~5 for each wavelength), the sub-intervals can be set short enough to get relatively

small approximation errors. For example, in some embodiments, N can be set to 150, the

interval [0, 150] can be equally set into 15000 sub-intervals, and the middle point of each

subinterval can be selected in Equation (13).

The zeroth-order Bessel function J0{x) oscillates around zero so that it is possible,

with certain selections of sample points, the value of the integral in Equation (14) is negative.

However, it is known that R(p) is always positive -valued, and the integration in Equation (12)

is always positive, so the integration in Equation (14) should be positive as well. According

to Mastroianni et al., "Truncated Gauss-Laguerre Quadrature Rules," in Recent Trends in

Numerical Analysis (Nova Science, 2000), pp. 213-222, it is possible that the integration in

[0, M], where M <N, is more accurate than that in [0, N]. Therefore, instead of calculating

the integral in Equation (14) over the whole interval [0, N], the integral is calculated over [0,

M], where M(<N) is the largest value such that the integration in Equation (14) on [0, M is

positive (for all wavelengths).

Thus, by using the methods discussed above, reference spectra spanning a wide range

of different sample analyte values and parameters can be determined. To generate such

reference spectra, different sample values and parameters can be varied to yield variations in

certain sample properties. In general, sample-to-sample variations are attributable to

variations in scattering and absorbance (reflectance) among different samples. Scattering and

absorbance, in turn, depend upon certain sample parameters that can be systematically varied

during calculation of the reference spectra. For example, sample absorbance is a function of

hemoglobin concentration and hemoglobin oxygen saturation. In turn, hemoglobin oxygen

saturation is a function of oxygen tension, pH, temperature, and carbon dioxide partial

pressure. Varying the values of some or all of these properties, in turn, yields a multi

dimensional set of reference spectra that correspond, along individual dimensions, to isolated



variations of each of these properties while keeping the others constant. Each of the

parameters can be varied over a wide range of values; in many cases, over a range of values

that is wider than would be possible to measure in human test subjects.

As an example, the absorption coefficient µ α( λ) for a sample as a function of

wavelength λ can be expressed in terms of absorption of light by hemoglobin and water,

which are major choromophores inside the sample

Ma = C HHb HHb ( ) + C 0 Hb Hb0 ( ) + cwat wat ( )] (15)

where c , o2Hb and cwat are the concentrations of deoxygenated hemoglobin, oxygenated

hemoglobin, and water in the tissue respectively, and s , o2Hb , and ε„αί {λ) are

wavelength-dependent extinction coefficients for HHb, C^Hb and water respectively. In this

example, hemoglobin and myoglobin are assumed to be indistinguishable.

From Equation (15), if s , o2Hb , and wat( ) are known (and values for these

parameters can be obtained from literature or measurement), and if c , o2 and cwat are

also known, then µ α can be determined. Typically, the water concentration cwat is fixed at

60% by volume, and only c and co2 are varied to introduce variation in µ α.

The concentrations c and co2 are also typically dependent on the total

hemoglobin (THb) concentration c which is the sum of c and co2 , and the

hemoglobin oxygen saturation SO2; the relationship is described by Equation (16):

0 Hb 0 Hb
= = —— (16)

0 Hb + HHb THb

Thus, if c and SO2 are known, then co2 and c can be obtained from Equations

(17) and (18) according to:

C o2 = 0 2 * Cm b (17)

As a further example, various blood and tissue parameters can cause SO2 to vary in

different samples. As discussed above, variations in SO2 can cause changes in values of

o2Hb and C , which in turn can lead to changes in µ α( λ) and in the attenuation spectrum

Α(λ) of a sample. The oxygen-hemoglobin dissociation curve describes the relationship

between oxygen tension expressed in partial pressure of oxygen O 2 (ρ ¾ ) and hemoglobin



oxygen saturation SO2. The dissociation curve is shifted under different physiological

conditions but, in general, its shape remains approximately the same. Variations in values of

tissue parameters such as pH, temperature, partial pressure of carbon dioxide (pCC^), and

p C 2 that affect hemoglobin SO2 can be related by the oxygen-hemoglobin dissociation curve

under different physiological conditions.

Under standard physiological condition (e.g., pH of 7.4, pCC^ of 40 mmHg, and

temperature of 37 °C), the relationship between the pC"2 and SO2 can be described by

Equation (19):

S0 2 = (23400 *(p0 2 _vir 3 +150 *p0 2 _vz>) _ 1 (19)

where p0 2_ i is ρ( in units of Torr under standard physiological condition, and SO2 is

hemoglobin oxygen saturation (in a range from 0 to 1). Under non-standard physiological

conditions, Equation (20) can be used to convert the actual ρ( (p0 2_act) to its value p0 2_vir

under standard physiological conditions:

P02_vir =pO2_act 7 + (20)

where T is temperature in degrees Celsius, pH represents the pH of the sample, and pC0 2 is

the partial pressure of carbon dioxide in the sample under actual physiological conditions.

Carbon dioxide partial pressure ρ( (both p0 2_vir and p0 2_act) and pC0 2 are expressed in

units of mm Hg in Equation (20).

Thus, when pH, temperature, pC0 2, and pC"2 under the actual physiological conditions

(pC"2_act) are known, ρ( under standard physiological conditions (p0 2_vir) can be obtained

from Equation (20). Once known, p0 2_vir can be used to calculate SO2 using Equation (19).

Moreover, by varying ranges of the sample parameters pH, temperature, ρ( , PCO2 and C

within physiological and pathophysiological ranges of values, a range of absorption

coefficient values µα can be obtained, which can be used in combination with a range of

reduced scattering coefficient values µ5 to calculate attenuation spectra A that correspond to a

wide range of different analyte values and sample properties.

To test the range of different values of p0 2_vir that can be produced via Equation

(20), values of pH, temperature, pCC^, pC"2_act, CTHb, and cwat were varied by choosing a

series of values of each parameter within the following intervals to generate different values

of p0 2_vir: pH (6.5-8.0), temperature (25.0-40.0 °C), pC0 2 (10.0-215.0 mm Hg), p0 2_act



(0.0-100.0 mm Hg), cra b (0.01-0.25 or 0.01-0.2 mM), and cwat (volume fraction 0.6). Using

different combinations of these parameters, p02_vir was calculated from Equation (20). For

some combinations, for example, p 0 2_vir calculated from Equation (20) fell outside the

physiological range of pC>2, so the spectra and the corresponding tissue parameters with

p02_vir greater than 100 mm Hg were removed from the simulated reference spectra and

were not used to calculate models for sample analytes. In general, the p02_vir threshold can

be established at any pressure value that is convenient and/or yields accurate measurement

results; for example, the p02_vir threshold can be established at 120 mm Hg instead of 100

mm Hg. The water concentration (volume fraction) was fixed as 0.6, which is suitable for

normal muscle; this value can be changed (e.g., when water concentration is an analyte to be

determined).

In similar fashion, different values of the reduced scattering coefficient µ . can be

calculated according to the equation

where a, b are slope and intercept constants respectively and are different for different

samples and/or human subjects.

Tissue scattering physiological ranges are generally known from literature sources.

To evaluate the production of different reduced scattering coefficient values, a range of µ5

values used in calculating reference spectra were calculated according to Equation (21). A s

starting points in these calculations, the wavelength dependent scattering coefficients for the

forearm, calf and intact head were used. Since several levels of scattering coefficient are

needed to develop a robust calibration model, the intercept a and the slope b in Equation (21)

were varied to produce nine µ5 spectra that covered the sample scattering physiological range

(around 5-25 cm 1 at 700 nm).

FIG. 3 shows the plot of µ5 versus λ for forearm, calf, intact head and other µ5 spectra

obtained by varying one or more of the parameters associated with the sample. More

specifically, in FIG. 3, reduced scattering coefficients taken from literature sources (forearm,

calf, intact head) are shown as solid lines; reduced scattering coefficients obtained by varying

parameters a and b in Equation (21) are shown as dotted lines. By choosing values of a and b

appropriately, reduced scattering coefficients that cover a physiological range from 5-25 cm 1

at 700 nm can be produced.



FIG. 4 shows a flow chart 100 that includes a series of steps for using the calculated

reference spectra, determined according to the methods discussed above, for example, to

determine sample analyte values. In first step 110, PCA loading correction factors are

determined for one or more analytes of interest. The determination of the loading factors

proceeds according to the methods discussed previously, for example. In some embodiments,

all calculated reference spectra are used in the determination of PCA correction factors. In

certain embodiments, a subset of the calculated reference spectra may be selected and used to

determine the PCA correction factors.

In second step 120, the PCA correction factors are applied to the reference spectra (or

a subset thereof) to correct the calculated reference spectra. PCA loading correction factors

can be determined each time analyte values are to be measured. Alternatively, or in addition,

some or all of the PCA loading factors can be stored in a memory unit. When analyte values

are to be measured, the stored PCA loading factors can be retrieved from memory and used to

correct reference spectra. Moreover, some or all of the corrected reference spectra can also

be stored in a memory unit and retrieved as needed for determination of analyte values.

Next, in optional step 130, the corrected reference spectra are used to determine

parameters for a model for the analyte of interest based on spectral information. For

example, methods such as PLS regression can be used to calculate various model parameters.

Methods and systems for PLS-based model calculation are disclosed, for example, in U.S.

Patent No. 5,813,403.

To determine parameters for a PLS model, in some embodiments, different subsets of

the reference spectra can be selected, each subset corresponding to a different value of a

particular analyte of interest. Each of the different subsets of reference spectra are then

corrected using PCA loading correction factors (if this has not already occurred in step 120

above), and each corrected subset of spectra is used in a PLS regression procedure to

determine PLS model parameters. The determined PLS model parameters are used with the

PLS model for the analyte of interest to predict one or more values of the analyte (e.g., a

concentration of the analyte) based on the selected subset of spectra. The PLS predictive

procedure yields an error term associated with predicting the value of the analyte. For each

subset of reference spectra, an associated error term is determined. Then, the subset of

reference spectra with the lowest associated error term (the subset corresponding to a

common value of the analyte, as discussed above) is identified and used in subsequent

determinations of values for the particular analyte of interest. In some embodiments,

different subsets of reference spectra are used to determine values of different analytes.



These different subsets of reference spectra can be stored (or information about them can be

stored) in a memory unit for use in subsequent measurements of analyte values.

In step 140, spectral information for a sample (e.g., muscle tissue in a human subject)

is measured, e.g., in the form of a reflectance spectrum for the sample. The measured

spectral information can be adjusted by a scaling factor (e.g., a multiplicative scaling factor

and/or an additive offset factor) to account for variations in measurement light intensity.

Next, in step 150, the adjusted measured spectral information is compared against the

(uncorrected) reference spectra to determine which of the reference spectra is closest to the

measured spectrum of the sample. A variety of different methods can be used to determine

the closest reference spectrum. In some embodiments, for example, the closest reference

spectrum is identified as the reference spectrum for which a maximum difference between the

measured and reference spectra, and a minimum difference between the measured and

reference spectra, is smallest:

( ) = min ¾ ¾ (max ( ( ) - ( ))- min ( ( ) - ( ))) (22)

In step 160, the identified reference spectrum is corrected using the PCA correction

factors determined in step 110 and used as input to a calibration equation that relates spectral

information to values of the analyte. In some embodiments, the calibration equation can be

previously determined and stored (e.g., parameter values stored) in a memory unit connected

to electronic processor 20 and/or application processor 22. Alternatively, or in addition, the

calibration equation's parameters can be partly or fully determined in step 130, and the

corrected reference spectral information can be used as input to the calibration equation

determined in step 130 to obtain values associated with one or more analytes in the sample.

In the preceding discussion, the calibration equation was described as an equation

determined using a procedure such as PLS regression. In some embodiments, the calibration

equation can be another type of equation. For example, the calibration equation can include a

Taylor series expansion of a measurable sample quantity such as absorbance or reflectance in

terms of one or more analytes present in the sample. The one or more analytes can include,

for example, pH, temperature, oxygen tension, oxygen saturation, carbon dioxide partial

pressure, hemoglobin concentration, water concentration, and hematocrit. Suitable methods

for constructing and evaluating such Taylor series expansion-based calibration equations are

disclosed, for example, in U.S. Patent No. 7,532,919.



The overall process in flow chart 100 then terminates at step 170. Using the process

shown in FIG. 4, reference spectral data that incorporates a wide range of sample variability

can be generated without measurement data from human subjects. Further, PCA correction

factors can be calculated from the simulated spectra, and the simulated spectra can be

corrected with the determined PCA factors. Calibration equations for sample analytes can be

determined using the corrected reference spectra, and without using spectral information

measured from human subjects. Further, sample analyte values can be determined by using

reference spectral information as input into a suitable calibration equation.

EXAMPLES

The disclosure is further described in the following examples, which are not intended

to limit the scope of the disclosure.

Example 1

To evaluate the overall accuracy and speed of determination of analyte values using

the methods and systems disclosed herein, a set of India ink (Scientific Device Lab Inc., Des

Plaines, IL) solid phantoms were produced. Ten mimic -muscle solid phantoms and three

mimic-fat solid phantoms were fabricated. Muscle phantoms were made with five ink

concentrations which ranged from 0.0037% to 0.0197% and two nominal µ ο values of 7 and

9 cm 1 at 800nm; fat phantoms were fabricated with thicknesses of 4, 5, and 6 mm with a

nominal ' value of 12 cm 1 at 800nm. The muscle phantoms were fabricated from India

ink, Intralipid (Baxter Healthcare Corp., Deerfield, IL), agar (Sigma Chemical Comp., St.

Louis, MO), and distilled water; the fat phantoms were fabricated from Intralipid, agar, and

distilled water. The nominal µα at 800nm, nominal µ ο at 800nm, and ink concentrations for

the muscle phantoms are shown in Table 1. The phantoms were prepared according to

procedures disclosed in Cui et al., Proceedings of the SPIE 1431: 180-191 (1991), and in

Cubeddu et al., Phys. Med. Biol. 42: 1971-1979 (1997). Parameters (e.g., values of scattering

coefficients and/or absorption coefficients) for the samples are shown in Table 1.



Table 1

All phantoms, each of which included a single fat layer atop one of the muscle layers,

were illuminated using a tungsten lamp (model 7106-003, Welch Allyn Corp., Skaneateles,

NY) as a radiation source and a spectrometer (USB2000, Ocean Optics Inc., Dunedin, FL) as

the detector. Both the source and detector were coupled into fiber bundles and near the top of

the fat layer with a separation of 30.0 mm. Spectra were collected in reflectance mode and

converted to absorbance by referencing to a 99% reflectance standard (Labsphere Inc., North

Sutton, NH).

To predict ink concentrations in the phantoms, a large set of simulated spectra was

generated using the methods disclosed herein. Model parameters encompassed a range of

parameters used to fabricate the phantoms. The reduced scattering coefficient, µ '(λ), a

function of µ , was calculated using equations disclosed in Stavaren et al., Appl. Opt. 30:

4507-4514 (1991). The set of simulated spectra, Ss, were corrected with an offset term that

adjusted for differences between actual light intensity and light intensity measured using the

99% reflectance standard reference. Instead of directly using the simulated spectra to

develop a PLS regression model for ink concentration, the principal component analysis

loading correction method was first used to correct Ss for spectral variations related to fat

thickness and muscle scattering, resulting in loading corrected simulated spectra S . S and

the corresponding ink concentrations were then used to produce a PLS model. The number

of PLS factors was selected using the cross-validation method described, for example, in

Haaland et al., Anal. Chem. 60: 1193-1202 (1998); up to 3 PCA correction factors and 20

PLS factors were considered.

The PLS-based model developed from the corrected spectra (S ) was tested on the set

of measured 2-layer phantom spectra, Sm. Rather than using Sm directly as input to the PLS

model, simulated spectra in the set of the Ss spectra which were the best match to the

measured absorbance Sm for each phantom were identified and used as input to the PLS-



based model. The best-match calculation was performed according to Equation (22). The

best-matched simulated spectra were then corrected with the PCA correction factors derived

from the simulated set of spectra used in the PLS model to predict ink concentrations. The

PLS model was evaluated by comparing the PLS-estimated ink concentration to the actual

ink concentrations by calculating the coefficient of determination (R ) and the root mean

square error of prediction (RMSEP).

A total of 5733 reference spectra were calculated, encompassing the range of

parameters used to construct the 2-layer phantoms. The PLS model (e.g., a calibration

equation) was tested on a set of 30 calculated spectra created using the values for the

measured ink concentrations, ¾ 0 concentrations, and nominal for the phantoms. The

PLS model, with 2 PCA loadings and 10 PLS factors, resulted in R2 of 0.998 and RMSEP

between the actual and predicted ink concentrations of 0.00028%. These results illustrate

that the methodology works well on test spectra that match the simulated spectra.

When measured phantom spectra were tested directly in the PLS model constructed

from calculated reference spectra, an intermediate step was added to find the reference

spectrum that best matched the measured spectrum. Equation (22), discussed above, was

used for this purpose. The best-matched calculated spectrum was then corrected with the

PCA correction factors and used in the PLS calibration equation created from the 5733 PCA

corrected spectra. For the 30 measured phantoms, both the measured and best-matched

spectra are shown in FIG. 5; solid lines correspond to measured phantom absorbance spectra,

and dotted lines correspond to best-matched reference spectra. There is generally good

agreement between the measured and calculated spectra.

The best matched spectra were evaluated in the PLS model, resulting in an R2 = 0.897

and RMSEP=0.00371%. FIG. 6A shows a plot of the ink concentration predicted from the

best-matched phantom spectra as a function of the measured ink concentration. There is a

clear trend between the predicted and actual ink concentrations. The effects of the matrix

scattering coefficient (µ ') and the fat thickness were explored to examine the source of

prediction error using 2-way analysis of variance (ANOVA) for the difference, ∆ , between

the measured and predicted ink concentrations. Table 2 shows that neither µ ', fat thickness,

nor the interaction between the two were significantly associated with the error (∆), since all

p values were greater than 0.05.



Table 2

FIG. 6B is a plot of the difference between the measured and predicted ink

concentration as a function of the measured ink concentration, where the results are organized

by fat thickness. The results for a fat thickness of 6 mm are closer to zero, and therefore

more accurate, than for phantoms with thinner fat layers, suggesting that other methods for

simulating spectra for two-layer phantoms may be useful when the fat later in such phantoms

is relatively thin, and where there is likely to be more scattering interaction between the

muscle and fat layers. Nonetheless, the absorbance spectra collected from phantoms agreed

well with calculated reference spectra produced from a two-layer turbid model for photon

diffusion. Ink concentrations were well predicted by calibration equations calculated from

the reference spectra, providing further evidence that simulated spectra can be effectively

used to correct for inter-subject spectral differences, and to determine quantitative values

associated with analytes in many samples.

Example 2

To demonstrate the accuracy with which physiologically relevant quantities can be

determined using the methods and systems disclosed herein, theoretical near-infrared spectra

were simulated for use in predicting total hemoglobin (HbT) and Hematocrit (Hct) values. In

particular, the simulated spectra were divided into two sets: a first set of simulated spectra

used to train a PLS model for prediction, and a second set of simulated spectra acting as the

"experimental" data. A large set of training spectra was used to train a PLS model for HbT

prediction. The trained model was then applied to a small set of simulated testing spectra.

Both the training and testing sets of spectra were corrected using principal component

analysis (PCA) loading correction, as discussed above. Further, before performing the PCA

loading correction, the magnitudes of the spectra were scaled down by normalizing against

the mean values of the spectra, to ensure that the spectral values were of similar magnitude to

real, experimentally obtained spectra.

Training and testing spectra were simulated using one of two models. For samples

with no fat layer (e.g., a fat thickness of 0 mm), the one-layer model of Farrell et al. was



used. This model is described in more detail, for example, in Farrell et al., Med. Phys. 19:

879-888 (1992), the entire contents of which are incorporated by reference herein. For

samples with a fat layer (e.g., a fat thickness > 0 mm), the Kienle two-layer turbid media

model discussed above was used.

To simulate spectra for the theoretical sample under consideration in this example (a

muscle tissue layer with a fat layer of adjustable thickness), the absorbance coefficient of the

muscle layer was assumed to be accurately described in terms of absorption from a

background contribution ("back") and a tube contributions ("tube"). This model is described

in more detail in Liu et al., Med. Phys. 22: 1209-12 16 ( 1995), the entire contents of which are

incorporated herein by reference. The absorbance coefficient of the muscle layer, α (λ ,

can therefore be expressed as

a,SyS = ( - f ) a,bac f a, ube (23)

where the absorbance coefficient of the background contribution, can be expressed

as

Ma,back { ) = C Mb Hb
+

C Mb02 Hb02
+

C H20 H20 ( ) (24)

and where the absorbance coefficient of the tube contribution, can be expressed as

Ma,tube λ = C Hb Hb {λ ) + C Hb02 Hb02 {λ ) + C H20 H20 {λ ) (25)

In Equations (23)-(25), is the volume ratio of tubes (e.g., capillaries, venules, arterioles) to

the total capillary-tissue volume. The quantity cx corresponds to the concentration of

component x, while the quantity εχ corresponds to the extinction coefficient of component x .

The components x include myoglobin (Mb), hemoglobin (Hb), oxygenated myoglobin

(Mb02), oxygenated hemoglobin (Hb02), and water ( ¾0). In general, it was assumed that

SMb = SHb and SMb02 = SHb02-

Using simulated spectra derived from Kienle's two-layer model, with the absorbance

coefficient of the background corresponding to the absorbance coefficient of the

system α ( ), it was observed that for simulated spectra corresponding to fat layers of

thickness greater than 5 mm, scattering was dominated by the fat scattering component, such

that scattering due to blood components was very small. However, experimentally measured



spectra revealed a signal component that was relatively easy to attribute to scattering by

blood components, implying that the functional form of the absorbance coefficient in

Equation (23) may not always be correct. It is known, for example, that the volume fraction

of the absorbing component in muscle tissue is approximately 2.2% (see, for example,

Doornbos, et al, Phys. Med. Biol. 44, 967-981 (1999)), which corresponds to the volume of

blood in the muscle tissue. Accordingly, to simulate spectra for prediction of HbT, the

absorbance coefficient was assumed to take the functional form

µ α = -µ α λ (26)

The reduced scattering coefficient, µ λ ,Hct) , can be expressed as follows:

Hct) = (1 - { )+f e λ ,Hct) (27)

where the reduced scattering coefficient of the tube component, j stube {X,Hct), can be

expressed as

s tube
(A,Hct) = -0.001 58( - 633) + 0 9 Hct + 1.926 (28)

with Hct expressed as a volume percentage. Equation (28) was derived from Roggan et al., J .

Biomed. Opt. 4 : 36-46 (1999), the entire contents of which are incorporated by reference

herein. The reduced scattering coefficient of the background component, µ λ ), can be

determined according to

where a and b are adjustable parameters.

The quantities CH2O and Hct are related according to

100 c 0 +Hct = 100 (30)

Further, the concentration of total hemoglobin, [HbT] , is the sum of c and Cnb02, and

Hct(%) = 3·[HbT], where [HbT] is in units of g/dl.



Using Equations (23)-(30), spectra were simulated using Farrell's one-layer and

Kienle's two-layer models. Parameters used to generate the spectra were as follows:

20 HbT points in a range of concentrations from 0.15-3.0 mM (1.0-20 g/dl)

tissue oxygen saturation S0 2 = 0%, 25%, 50%, 75%, 100%

/ = 0.01, 0.03, 0.05

a=-0.005, -0.001, -0.0005, -0.00005

= -1, 0, 1, 2, 3

In addition, spectra for which the following conditions were observed were filtered

out of the set of simulated spectra:

cmo > 0.9

s ube
{^Hct) <

absorbance < 0 or absorbance is a complex number

Using the above conditions and parameters, a total of 1885 spectra were simulated

using Farrell's model (fat thickness = 0 mm), and a total of 2165 spectra were simulated for

each fat thickness greater than zero using Kienle's model (fat thickness = 1 mm, 2 mm, 3

mm, 4 mm, 5 mm, 6 mm, 7 mm, and 8 mm). Accordingly, a total of 19205 spectra were

simulated.

A subset of about 20% of the simulated spectra was randomly selected to serve as the

test set. The remaining 80% of the simulated spectra were used to train a PLS model. Table

3 shows the number of spectra selected for the test set and the training set for each fat

thickness.



Table 3

The PLS model was trained as follows. First, the magnitudes of all simulated spectra

(both in the test and training sets) were normalized by dividing each spectral value in the

wavelength range from 735 nm to 880 nm by the mean magnitude of the spectrum. Second,

PCA loading corrections were performed on spectra in both the training set and the test set.

The loading vectors were selected from the training set, and the smallest value of HbT was

selected as the analyte of interest.

Next, a PLS model for prediction of HbT was constructed from the PCA loading-

corrected training spectra. For the training set of spectra (row 3 in Table 3), with 2 PCA

loadings, the smallest HbT was used to train the PLS model with 22 PLS factors. Finally, the

PLS model was applied to predict HbT values based on the PCA corrected test spectra (row 2

in Table 3) for each of the "samples" with different fat thicknesses. Since the actual values of

HbT for each of the samples was known (as these values were used as input to the

simulations, as discussed above), the predicted and actual values of HbT were compared.

Correlation coefficients R2, root mean-square errors of prediction (RMSEP), and error

percent , which is the percentage ratio of RMSEP to the HbT range, which is 2.85(mM), were

determined for each of the fat thicknesses. The results of these determinations are shown in

Table 4.

Table 4



The results in Table 4 show that for fat thicknesses of between 1 mm and 7 mm, the

estimated predictive error is less than 5%. This indicates that the methods and systems

disclosed herein are capable of predicting hemoglobin concentrations over a wide range of

variability in patient-specific parameters and conditions that influence light absorbance and

scattering.

OTHER EMBODIMENTS

It is to be understood that the foregoing description is intended to illustrate and not

limit the scope of the disclosure, which is defined by the scope of the appended claims.

Other aspects, advantages, and modifications are within the scope of the following claims.



WHAT IS CLAIMED IS:

1. A method for determining a value associated with an analyte in a sample, the method

comprising:

determining a set of spectra from a model for light attenuation in the sample, wherein

the model comprises contributions from at least two different sources of light attenuation in

the sample;

determining a set of spectral correction factors associated with the analyte in the

sample based on the set of spectra; and

using the set of spectral correction factors to determine the value associated with the

analyte.

2. The method of claim 1, wherein the at least two different sources of light attenuation

comprise light scattering and absorption.

3. The method of claim 1, wherein the analyte comprises at least one member selected

from the group consisting of pH, temperature, oxygen tension, oxygen saturation, carbon

dioxide partial pressure, hemoglobin concentration, water concentration, and hematocrit.

4. The method of claim 1, wherein determining the set of spectral correction factors

comprises determining mean-centered spectra from the set of spectra.

5. The method of claim 4, wherein determining the set of spectral correction factors

comprises determining orthogonalized spectra based on the mean-centered spectra.

6. The method of claim 1, wherein determining the value associated with the analyte

comprises using the set of spectral correction factors to correct at least one member of the set

of spectra, and using the corrected at least one member of the set of spectra as input to a

calibration equation for the analyte.

7. The method of claim 6, wherein determining the value associated with the analyte

comprises obtaining measured spectral information for the sample, and determining a

member of the set of spectra that is closest to the measured spectral information.



8. The method of claim 7, further comprising determining the member of the set of

spectra that is closest to the measured spectral information based on maximum and minimum

differences between the measured spectral information and at least some of the members of

the set of spectra.

9. The method of claim 7, wherein determining the value associated with the analyte

comprises using the member of the set of spectra that is closest to the measured spectral

information as input to the calibration equation, and determining the value associated with the

analyte from the calibration equation.

10. The method of claim 6, wherein the calibration equation is derived from a partial least

squares regression analysis of the set of spectra.

11. The method of claim 6, wherein the calibration equation corresponds to a Taylor

series expansion that relates spectral information to values of the analyte.

12. The method of claim 2, wherein the light scattering comprises contributions from

light scattering by one or more fat layers and light scattering by muscle tissue.

13. The method of claim 2, wherein the absorption comprises contributions from light

absorption by at least two different analytes.

14. The method of claim 13, wherein the at least two different analytes comprise

oxygenated hemoglobin, de-oxygenated hemoglobin, and myoglobin.

15. The method of claim 1, further comprising determining the value associated with the

analyte based on a subset of members of the set of spectra that correspond to a common value

of the analyte.

16. A method for determining a value associated with an analyte in a sample, the method

comprising:

determining a set of spectra from a model for light attenuation in a sample;

obtaining spectral information corresponding to the sample and identifying a member

of the set of spectra that corresponds to the spectral information; and



determining the value associated with the analyte in the sample based on the

identified member of the set of spectra.

17. The method of claim 16, wherein the model for light attenuation comprises

contributions from light scattering and absorption by the sample.

18. The method of claim 16, wherein identifying a member of the set of spectra comprises

determining maximum and minimum differences between the spectral information and at

least some members of the set of spectra, and identifying the member of the set of spectra that

corresponds to the spectral information based on the maximum and minimum differences.

19. The method of claim 16, wherein determining the value associated with the analyte

comprises using the identified member of the set of spectra as input to a calibration equation

that relates spectral information to values of the analyte.

20. The method of claim 19, wherein determining the value associated with the analyte

comprises determining spectral correction factors associated with the analyte from the set of

spectra, applying the spectral correction factors to the identified member of the set of spectra

to correct the identified member, and using the corrected identified member as input to the

calibration equation.

21. The method of claim 20, further comprising determining the value associated with the

analyte based on a subset of members of the set of spectra that correspond to a common value

of the analyte.

22. The method of claim 19, wherein the calibration equation is derived from a partial

least squares regression analysis of the set of spectra.

23. The method of claim 19, wherein the calibration equation corresponds to a Taylor

series expansion that relates spectral information to values of the analyte.

24. The method of claim 16, wherein the analyte comprises at least one member selected

from the group consisting of pH, temperature, oxygen tension, oxygen saturation, carbon

dioxide partial pressure, hemoglobin concentration, water concentration, and hematocrit.



25. The method of claim 17, wherein the light scattering comprises contributions from

light scattering by one or more fat layers and light scattering by muscle tissue.

26. The method of claim 17, wherein the absorption comprises contributions from light

absorption by at least two different analytes.

27. The method of claim 26, wherein the at least two different analytes comprise

oxygenated hemoglobin, de-oxygenated hemoglobin, and myoglobin.

28. A system for determining a value associated with an analyte in a sample, the system

comprising:

a radiation source configured to direct radiation to be incident on the sample;

a detector configured to detect radiation from the sample; and

an electronic processor configured to:

obtain measured spectral information about the sample based on the detected

radiation;

compare the measured spectral information to a set of spectra determined from

a model for light attenuation in the sample to identify a member of the set of spectra that

corresponds to the measured spectral information;

correct the identified member of the set of spectra using a set of spectral

correction factors determined from the set of spectra; and

use the corrected identified member of the set of spectra as input to a

calibration equation to determine the value associated with the analyte.

29. The system of claim 28, wherein the calibration equation is stored in a memory unit

connected to the electronic processor.

30. The system of claim 28, wherein the electronic processor is configured to determine

values associated with two or more analytes, and wherein the two or more analytes are

selected from the group consisting of pH, temperature, oxygen tension, oxygen saturation,

carbon dioxide partial pressure, hemoglobin concentration, water concentration, and

hematocrit.



31. The method of claim 6, wherein determining the value associated with the analyte

comprises:

simulating spectral information for the sample using the model for light attenuation in

the sample;

using the simulated spectral information as input to the calibration equation; and

determining the value associated with the analyte from the calibration equation.

32. The method of claim 16, wherein obtaining spectral information corresponding to the

sample comprises determining the spectral information from the model for light attenuation,

and wherein determining the value associated with the analyte comprises using the identified

member of the set of spectra as input to a calibration equation that relates spectral

information to values of the analyte.
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