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METHODS AND SYSTEMS FOR ANALYTE
MEASUREMENT

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Provisional Patent Application No.
61/297,664 entitted "METHODS AND SYSTEMS FOR ANALYTE MEASUREMENT",

filed on January 22, 2010, the entire contents of which are incorporated herein by reference.

STATEMENT ASTO FEDERALLY SPONSORED RESEARCH
This invention was made with Government support under National Space Biomedical

Research Institute grant no. SMS01301. The Government has certain rights in this invention.

TECHNICAL FIELD

This disclosure relates to measurement of anaytes in biological samples.

BACKGROUND
Properties of biological samples can be measured by measuring light emitted from
such samples following illumination. Incident illumination light is attenuated by samples and
the nature of the illumination can provide information about sample constituents. In
heterogeneous sample environments, the mechanism of light attenuation can be relatively

complex.

SUMMARY

Disclosed herein are methods and systems for generating sets of spectral datathat can
be used to construct calibration equations for determinations of quantities associated with
analytes of interest in biological samples. Mathematical generation (e.g., simulation) of
spectral datathat can be used to estimate spectral datathat would otherwise be measured
from samples can be considerably more efficient than collecting similar data from human or
animal subjects. Moreover, when the spectral data is mathematically generated, the range of
parameters that control the light attenuation properties of samples can be systematically
varied, yielding spectral databases in which each of the relevant parameters spans a desired
range of values. Thus, the database can encompass sample spectral information that is

influenced by multiple sample properties.
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The database spectra can be used to generate calibration equations for analytes of
interest by suitably selecting particular members of the database that are used, for example, in
apartial least squares regression analysis to determine equation parameters. The database
spectra can also be matched to measured spectral information for aparticular sample, and the
closest matching database spectrum - rather than the measured spectral information - can be
used as input into a corresponding calibration equation to determine the value associated with
the analyte of interest in asample. In this manner, the measured spectral information plays
no direct role in the determination of analyte values, except in the identification of a closest
member of the spectral database. Instead, determination of analyte values proceeds primarily
on the basis of spectrathat are generated mathematically from amodel, avoiding sources of
variability that are normally associated with data obtained from biological samples, and
further significantly reducing the number of measurements that are made from human
subjects. Sample analyte values can therefore be determined rapidly and accurately.
Exemplary analytes for which values can be determined include pH, temperature, oxygen
tension, oxygen saturation, carbon dioxide partial pressure, hemoglobin concentration, water
concentration, and hematocrit.

In generdl, in afirst aspect, the disclosure features methods for determining avalue
associated with an analyte in a sample, the methods including: determining a set of spectra
from amodel for light attenuation in the sample, where the model includes contributions
from a least two different sources of light attenuation in the sample; determining a set of
spectral correction factors associated with the analyte in the sample based on the set of
spectra; and using the set of spectral correction factors to determine the value associated with
the analyte.

Embodiments of the methods can include any one or more of the following features.

The a least two different sources of light attenuation can include light scattering and
absorption. The light scattering can include contributions from light scattering by one or
more fat layers and light scattering by muscle tissue. The absorption can include
contributions from light absorption by a least two different analytes. The analyte can include
at least one member selected from the group consisting of pH, temperature, oxygen tension,
oxygen saturation, carbon dioxide partial pressure, hemoglobin concentration, water
concentration, and hematocrit. The at least two different analytes can include oxygenated

hemoglobin, de-oxygenated hemoglobin, and myoglobin.
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Determining the set of spectral correction factors can include determining mean-
centered spectra from the set of spectra. Determining the set of spectral correction factors
can include determining orthogonalized spectra based on the mean-centered spectra.

Determining the value associated with the analyte can include using the set of spectral
correction factors to correct at least one member of the set of spectra, and using the corrected
at least one member of the set of spectra as input to a calibration equation for the analyte.
Determining the value associated with the analyte can include obtaining measured spectral
information for the sample, and determining a member of the set of spectrathat is closest to
the measured spectral information. The method can include determining the member of the
set of spectrathat is closest to the measured spectral information based on maximum and
minimum differences between the measured spectral information and at least some of the
members of the set of spectra. Determining the value associated with the analyte can include
using the member of the set of spectrathat is closest to the measured spectral information as
input to the calibration equation, and determining the value associated with the analyte from
the calibration equation.

The calibration equation can be derived from apartial least squares regression
analysis of the set of spectra. Alternatively, or in addition, the calibration equation can
correspond to a Taylor series expansion that relates spectral information to values of the
analyte.

The method can include determining the value associated with the analyte based on a
subset of members of the set of spectrathat correspond to acommon value of the analyte.

Determining the value associated with the analyte can include simulating spectral
information for the sample using the model for light attenuation in the sample, using the
simulated spectral information as input to the calibration equation, and determining the value
associated with the analyte from the calibration equation.

Embodiments of the methods can also include any of the other features or steps
disclosed herein, as appropriate.

In another aspect, the disclosure features methods for determining avalue associated
with an analyte in a sample, the methods including: determining a set of spectra from a
model for light attenuation in a sample; obtaining spectral information corresponding to the
sample and identifying amember of the set of spectra that corresponds to the spectral
information; and determining the value associated with the analyte in the sample based on the
identified member of the set of spectra.

Embodiments of the methods can include one or more of the following features.
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The model for light attenuation can include contributions from light scattering and
absorption by the sample. The light scattering can include contributions from light scattering
by one or more fat layers and light scattering by muscle tissue. The absorption can include
contributions from light absorption by a least two different analytes.

Identifying amember of the set of spectra can include determining maximum and
minimum differences between the spectral information and a least some members of the set
of spectra, and identifying the member of the set of spectrathat corresponds to the spectral
information based on the maximum and minimum differences.

Determining the value associated with the analyte can include using the identified
member of the set of spectra as input to one or more a calibration equations that relate
spectral information to values of the analyte. Determining the value associated with the
analyte can include determining spectral correction factors associated with the anayte from
the set of spectra, applying the spectral correction factorsto the identified member of the set
of spectrato correct the identified member, and using the corrected identified member as
input to the calibration equation.

The methods can include determining the value associated with the analyte based on a
subset of members of the set of spectrathat correspond to acommon value of the analyte.

The one or more calibration equations that relate spectral information to values of the
analyte can be derived from apartial least squares regression analysis of the set of spectra.
Alternatively, or in addition, the calibration equation can correspond to a Taylor series
expansion that relates spectral information to values of the analyte.

The analyte can include a |least one member selected from the group consisting of
pH, temperature, oxygen tension, oxygen saturation, carbon dioxide partial pressure,
hemoglobin concentration, water concentration, and hematocrit. The at least two different
analytes can include oxygenated hemoglobin, de-oxygenated hemoglobin, and myoglobin.

Obtaining spectral information corresponding to the sample can include determining
the spectral information from the model for light attenuation, and determining the value
associated with the analyte can include using the identified member of the set of spectra as
input to a calibration equation that relates spectral information to values of the analyte.

Embodiments of the methods can also include any of the other features or steps
disclosed herein, as appropriate.

In afurther aspect, the disclosure features systems for determining avalue associated
with an analyte in a sample, the systems including aradiation source configured to direct

radiation to be incident on the sample, adetector configured to detect radiation from the
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sample, and an electronic processor configured or programed to: (a) obtain measured spectral
information about the sample based on the detected radiation; (b) compare the measured
spectral information to a set of spectra determined from amodel for light attenuation in the
sample to identify amember of the set of spectrathat corresponds to the measured spectral
information; (c) correct the identified member of the set of spectrausing a set of spectral
correction factors determined from the set of spectra; and (d) use the corrected identified
member of the set of spectra as input to acalibration equation to determine the value
associated with the analyte.

Embodiments of the systems can include one or more of the following features.

The calibration equation can be stored in amemory unit connected to the electronic
processor. The electronic processor can be configured to determine values associated with
two or more analytes, where the two or more analytes are selected from the group consisting
of pH, temperature, oxygen tension, oxygen saturation, carbon dioxide partial pressure,
hemoglobin concentration, water concentration, and hematocrit.

Embodiments of the systems can aso include any of the other features disclosed
herein, as appropriate. Further, embodiments of the systems can perform any of the methods
and/or method steps disclosed herein, as appropriate. The electronic processor can be
configured to perform any of the methods or method steps.

Unless otherwise defined, all technical and scientific terms used herein have the same
meaning as commonly understood by one of ordinary skill in the art to which this disclosure
belongs. Although methods and materials similar or equivalent to those described herein can
be used in the practice or testing of the present disclosure, suitable methods and materials are
described below. All publications, patent applications, patents, and other references
mentioned herein are incorporated by reference in their entirety. In case of conflict, the
present specification, including definitions, will control. In addition, the materials, methods,
and examples are illustrative only and not intended to be limiting.

The details of one or more embodiments are set forth in the accompanying drawings
and the description below. Other features and advantages will be apparent from the

description, drawings, and claims.

DESCRIPTION OF DRAWINGS
FIGS. 1A and | B are bottom and top schematic diagrams, respectively, of an
embodiment of a sensor.

FIG. 2 isaschematic diagram showing a sensor attached to a surface of a sample.



10

15

20

25

30

WO 2011/091280 PCT/US2011/022095

FIG. 3isaplot showing different values of reduced scattering coefficients produced
by varying sample parameters.

FIG. 4 isaflow chart that includes a series of steps for using calculated reference
spectrato determine sample analyte values.

FIG. 5isaplot showing measured and calculated absorbance spectra for tissue
phantoms.

FIG. 6A isaplot showing correlations between predicted and measured ink
concentrations for tissue phantoms.

FIG. 6B is aplot showing differences between measured and predicted ink
concentrations as a function of fat layer thickness for tissue phantoms.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

Near infrared light can be used to illuminate biological samples, and light collected
from such samples (e.g., illumination light that has been transmitted through samples and/or
reflected from samples) can be used to obtain information about the samples. More
particularly, near infrared light passes through skin and subcutaneous fat layers, and
illuminates underlying muscle tissues. Some of the light can be absorbed by hemoglobin in
red blood cells in the tissues, by water, and by proteins in blood plasma. Portions of the
illumination light can also be scattered by muscle fibers and blood cells. Light collected from
asample illuminated in this manner can be detected as spectral information about the sample;
that is, the detected light can be spectrally resolved in a suitable detector to measure the
intensity of the collected light as afunction of wavelength. The spectral information can be
further analyzed to obtain information about one or more analytes of interest (e.g., light-
absorbing components) in the sample, through amodel for the sample's absorption spectrum
that quantifies contributions of sample components to the sample's light absorption spectrum.
Systems and methods for obtaining information about sample properties such astissue pH,
hematocrit, oxygen tension, and tissue oxygen saturation have been disclosed in the following
U.S. Patents, the entire contents of each of which are incorporated herein by reference: U.S.
PatentNo. 5,813,403; U.S. Patent No. 6,006,1 19; U.S. Patent No. 6,304,767; U.S. Patent No.
6,766,188; and U.S. PatentNo. 7,532,919.

The genera methodology employed in determining values associated with one or
more sample properties typically includes measuring alarge quantity of reference spectral

information from arelatively large group of human subjects to develop a spectral library of
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information that spans different ranges associated with different sample parameters (e.g.,
muscle scattering coefficient, muscle absorption coefficient, pH, temperature). Subject-to-
subject variability in muscle tissue light scattering can be reduced and/or removed to enable
more accurate measurements to be made on human subjects. Systems and methods for
reducing such variability are disclosed, for example, in U.S. Patent No. 7,616,303, the entire
contents of which are incorporated herein by reference.

Typically, calibration equations that are used to calculate the values associated with
sample properties from measured spectral information are developed using statistical
techniques that relate the reference spectral information discussed above to standard
measurements of the values obtained through other means. To employ these methods, the
analytes of interest in the reference spectral information span arelatively large range of
values; in some embodiments, the range includes essentially the entire physiological ranges
associated with the analytes. To measure the reference spectral information, human subjects
are selected and experimental conditions manipulated so that the reference spectral
information represents awide range of such values. The accuracy of the obtained calibration
equations can aso be improved if other parameters that affect the sample's absorption
spectrum, such as oxygen concentration, carbon dioxide concentration, temperature, and
tissue scattering properties can be varied in a controlled manner.

A very large amount of data can be collected when anumber of different analytes are
to be analyzed. Further, in some embodiments, correlations occur between spectral effects
produced by different analytes in a sample. These correlations can be difficult to separate
into separate contributions from each of the analytes. As aresult, the correlations can be
implicitly reflected in calibration equations derived from the reference data; such eguations
may work well on some patients, but less well on others.

As an example, to account for subject-to-subject variation in muscle light scattering
properties, principal component analysis (PCA) loading correction methods can be used to
reduce the variations. To derive PCA correction factors for acalibration equation for a
particular analyte or sample property, reference spectra from alarge number of human
subjects corresponding to a single value of the analyte or parameter in the subjects are
analyzed to determine the PCA correction factors. It can betime consuming and expensive to
obtain alarge enough set of reference spectral information for accurate determination of PCA
correction factors by performing measurements on a large number of human patients.

The present disclosure provides methods and systems for calculating reference

spectral information in the form of sets of simulated spectra that correspond to different
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values of analytes and sample properties; the different values of the analytes and sample
properties essentially correspond to making measurements from awide variety of different
samples under different conditions. By calculating rather than directly measuring the spectral
information, the time and expense associated with developing alarge spectral database of
reference information can be significantly reduced. The reference spectral information can
bepartly or fully calculated each time an analyte value is measured. Alternatively, orin
addition, some or all of the calculated reference spectral information can be stored in a
memory unit and retrieved as need to obtain analyte measurements from samples. For
example, the calculated reference spectral information can be used to determine correction
factors (e.g., PCA correction factors) that are used to correct the reference spectral
information for variations that do not correspond to sample analytes of interest.

Further, the corrected set of reference spectra can be used in statistics-based modeling
methods such as partial least squares (PLS) regression analysis to develop calibration
eguations for sample analytes of interest. The calibration equations can be used with either
measured sample spectral information or calculated spectral information from the reference
information database to determine values associated with the analyte(s) of interest in
particular samples.

This disclosure is divided into multiple parts. Inthe first part, genera systems for
measuring light from biological samples and determining sample properties based on the
measured light are disclosed. Inthe second part, the general methodology employed to
calculate reference spectra, obtain calibration equations, and determine values related to
sample analytes is disclosed. In the third part of the disclosure, examples of the use of the

methods and systems disclosed herein are discussed.

Measurement Systems

Measurement systems are generally disclosed, for example, in PCT Patent
Application Publication No. WO 2010/053617, the entire contents of which are incorporated
herein by reference. FIGS. 1A and IB are schematic diagrams showing bottom and top
surfaces, respectively, of asensor 10 that can measure light from a sample. Sensor 10
includes a spectral detector 12, two short-distance radiation sources 14a and 14b, and six
long-distance radiation sources 16a, 16b, 16c, 16d, 16e, and 16f. Detector 12 and radiation
sources 14a-b and 16a-f are mounted to circuit board 18. Each of short-distance radiation
sources 14aand 14b can include one or more packages, and each package can include one or

more elements that produce illumination radiation. Similarly, each of long-distance radiation
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sources 16a-f can include one or more packages, and each package can include one or more
elements that produce illumination radiation.

While FIGS. 1A and IB show an embodiment of sensor 10 that includes two short-
distance sources 14a and 14b and six long-distance sources 16a-f, more generally, sensor 10
can include any number of short-distance radiation sources and any number of long-distance
radiation sources. For example, in some embodiments, sensor 10 can include one or more
short-distance radiation sources (e.g., two or more short-distance radiation sources, three or
more short-distance radiation sources, four or more short-distance radiation sources, five or
more short-distance radiation sources, six or more short-distance radiation sources, eight or
more short-distance radiation sources, or even more short-distance radiation sources). In
certain embodiments, sensor 10 can include one or more long-distance radiation sources (e.g.,
two or more long-distance radiation sources, three or more long-distance radiation sources,
four or more long-distance radiation sources, five or more long-distance radiation sources, six
or more long-distance radiation sources, eight or more long-distance radiation sources, or
even more long-distance radiation sources).

The short- and long-distance sources in sensor 10 can be directly attached to circuit
board 18. That is, the sources can be mounted directly to circuit board 18, rather than being
connected to circuit board 18 via electrical wires or cables, or optical fibers. In some
embodiments, the short- and long-distance sources can be soldered directly to circuit board
18 (e.g., with no spacer or other element separating the sources and circuit board 18). In
certain embodiments, the short- and long-distance sources can also be fixedly attached to
circuit board (e.g., mounted on circuit board 18 such that afixed spatial relationship exists
between the sources and circuit board 18). By virtue of the fixed attachment, the sources do
not move independently of circuit board 18, aswould occur if the sources were attached with
acable or fiber. Instead, the sources are rigidly attached to circuit board 18 so that the
position of the sources with respect to circuit board 18 does not change.

In general, each of the short-distance and long-distance radiation sources can include
one or more packages (e.g., two or more packages, three or more packages, four or more
packages, five or more packages, six or more packages, or even more packages). Each of the
packages can include one or more elements that produce illumination radiation (e.g., two or
more elements, three or more elements, four or more elements, or even more elements).
Further, elements that emit radiation at different wavelengths can be positioned at different
gpatial locations, depending upon the sample the detector. For example, if detector 12 is

configured to resolve different wavelengths at different spatial positions, the elements and/or
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packages in some or all of the short- and long-distance sources can be positioned to
correspond directly or opposingly to the configuration of detector 12.

In some embodiments, the number of packages in some of the short- and/or long-
distance radiation sources can vary. For example, sources that are positioned further from
detector 12 can include larger numbers of packages, to ensure that sufficient scattered
radiation intensity is measured by detector 12. In general, any of the short- and/or long-
distance sources can include any number of packages, the number of packages being selected
to ensure that the sample is sufficiently illuminated with adesired distribution of incident
radiation, and to ensure that detector 12 obtains suitable measurements of scattered radiation
from the sample. Asan example, in some embodiments, along-distance source that is
positioned furthest from detector 12 can include 1.5 times as many packages (e.g., 2.0 times
as many packages, 2.5 times as many packages, 3.0 times as many packages, 3.5 times as
many packages, 4.0 times as many packages as along-distance source that is positioned
nearest to detector 12.

The elements within the packages of each short- and long-distance radiation source
aretypically selected so that, when the elements are activated (e.g., emitting light), the
spectrum of the light produced collectively by the elements corresponds to a desired spectra
distribution of illumination radiation. The spectral distribution can be altered by positioning
particular elements within the short- and/or long-distance sources, so that the sample can be
illuminated according to specific spectral distributions. In some embodiments, for example,
the illumination spectrum for one or more short- and/or long-distance sources can be selected
so that measurement sensitivity of sensor 10 in particular regions of the spectrum is
enhanced, asdiscussed previoudly.

Asshown in FIG. 1A, the emission windows of radiation sources 14a-b and 16af,
and the radiation entry surface of detector 12, are exposed on the bottom surface of sensor 10.

Sensor 10 aso includes an electronic processor 20, an optional applications processor
22, an optional display unit 24, apower source 26, and a communication interface 28.
Processors 20 and 22, display 24, power source 26, and interface 28 are mounted to the upper
surface of circuit board 18, as shown in FIG. IB. In some embodiments, processor 22 is not
included in sensor 10; instead, processor 22 ispart of an external computing device (e.g., a
personal computer) that communicates with sensor 10 via communication interface 28, and
performs some or al of the functions of processor 22 (or processor 20) disclosed herein.

FIG. 2 shows apartial schematic diagram of sensor 10 mounted on a sample 30.

Sample 30 includes one or more layers of skin 32, a subcutaneous layer of fat 34, and

10
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underlying muscle tissue 36. Sensor 10 is configured to interrogate muscle tissue 36 by
directing radiation 38, generated by a least one (e.g., all) of radiation sources 14ab and a
least one of the radiation sources 16a-f, to be incident on muscle tissue 36. Scattered
radiation 40 isreceived and analyzed by detector 12 (FIG. 1A) to determine a spectrum of the
scattered radiation. The scattered radiation spectrum isthen processed by electronic
processor 20 and/or processor 22 (FIG. IB) to determine an absorbance spectrum of muscle
tissue 36. Based on the absorbance spectrum, electronic processor 20 and/or 22 can
determine one or more properties of sample 30 (and in particular, of muscle tissue 36 within
sample 30).

In genera, the scattered radiation spectrum measured by detector 12, which typically
includes wavelength-dependent information about scattered radiation from sample 30, can be
converted by an electronic processor to an absorbance spectrum of muscle tissue 36 using
well-known methods. In the following discussion, reference is made to absorbance spectra of
samples such as sample 30. However, the apparatus and methods disclosed herein can aso
be used to derive reflectance spectra from measured scattered radiation; reflectance and
absorbance are related by a simple mathematical transformation. Methods for converting
spectral scattered radiation information into reflectance and absorbance spectra for a sample
are disclosed, for example, in U.S. Patent No. 7,532,919.

In addition to converting scattered radiation information into absorbance and/or
reflectance spectra, processor 20 and/or 22 can be configured (e.g., using calibration
equations and/or data stored in memory units, magnetic storage units, and/or optical storage
units) to analyze absorbance spectra to obtain measurements of physiologically important
parameters for sample 30. In general, processor 20 and/or 22 can be configured to perform
any of the analysis stepsthat are discussed herein.

In some embodiments, one or more absorbance spectra for sample 30 can be analyzed
to determine pH (e.g., muscle tissue pH) in the sample. Systems and methods for
determining tissue pH are disclosed, for example, in U.S. Patent No. 5,813,403.

In certain embodiments, one or more absorbance spectra for sample 30 can be
analyzed to determine blood hematocrit in the sample. Systems and methods for determining
blood hematocrit are disclosed, for example, in U.S. Patent No. 6,006,1 19.

In some embodiments, one or more absorbance spectra for sample 30 can be analyzed
to determine quantities such as hemoglobin concentration, and/or water content, and/or

oxygen tension and/or tissue oxygen saturation. Systems and methods for determining these

11
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quantities are disclosed, for example, in U.S. Patent No. 6,766,188. Suitable systems and
methods are also disclosed, for example, in U.S. Patent No. 7,532,919.

In certain embodiments, one or more absorbance spectra for sample 30 can be
analyzed to determine quantities such as anaerobic threshold and/or metabolic rate (e.g.,
oxygen consumption rate) in the sample. Systems and methods for determining these
quantities are disclosed, for example, in U.S. Patent Application Publication No. US
2009/0024013, the entire contents of which are incorporated herein by reference.

In some embodiments, one or more absorbance spectra for sample 30 can be analyzed
to determine additional quantities such as atemperature of atissue of interest within sample
30. Inaddition, processor 20 and/or 22 can include a hardware-based temperature monitor
that effectively monitors atemperature of the sample surface to which sensor 10 is attached,

for example.

Genera Methodology

Asdiscussed above, numerical algorithms can be used to reduce and/or remove
spectral contributions in reflectance spectrathat arise from optical property variations in
tissues of interest, prior to using the reflectance spectral datain PLS modeling applications to
measure analytes of interest. Examples of such algorithms are disclosed in U.S. Patent No.
7,616,303.

PCA loading corrections can be used to reduce and/or remove contributions to
reflectance spectrathat arise from analyte-irrelevant variations in optical properties of tissues
of interest (e.g., tissues in which analytes of interest are measured). Optical properties that
exhibit such variations can include scattering properties, absorption properties, tissue
refractive indices, and other properties. In general, variations in infrared absorption by
tissues of interest are also related to concentrations of one or more analytes of interest.
Accurate measurement of analytes of interest may therefore include determining and
correcting for the analyte-irrelevant contributions to reflectance spectra.

PCA analysis can be used to obtain spectral "signatures’ of the analyte-irrelevant
variations, which can then be removed from the spectral reflectance datavia
orthogonalization steps. PCA loading corrections can be applied during both calibration and
predictive stepsto further improve PLS models constructed from the corrected spectral
reflectance data
Variations in spectral reflectance measurements that arise from variations in optical properties

of tissues of interest can be reduced and/or removed in aseries of steps. For example, in

12



10

15

20

25

30

WO 2011/091280 PCT/US2011/022095

some embodiments, afirst analysis step includes determining variations in spectral
reflectance datathat are not relevant to atarget analyte by PCA on a set of spectra collected
from different subjects (and/or from different locations on the same subject) in the same
calibration set with substantially similar values of the analyte. The variations can be
expressed as a set of loading vectors of principal spectral components obtained from PCA.
The first analysis step is described by Equation 1:

- X, =SPT+E (1)

0,mean

In Equation 1, X ois amatrix with dimensions my x n. Each of the morows of X o
corresponds to areflectance spectrum recorded for a different sample used for PCA, and n is
the number of wavelength points in each reflectance spectrum. The spectra in X oinclude
analyte-irrelevant spectral reflectance variations. Matrix Xo,mean has dimensions mox n and
includes morows, where each row is a 1x n vector whose elements correspond to the column
mean values of Xo, so that subtracting X, mean fromX, yields matrix X, .. with dimensions mo
X n, where X o, is amean-centered matrix of Xo. SisaPCA score matrix with dimensions mo
xfo, wheref ois anumber of principal components used to model variations in X,- Matrix P is
the PCA loadings matrix and has dimensions n xfo. Matrix E, with dimensions mox n, isa
matrix of spectral residuals of X othat are not modeled by PCA.

In asecond analysis step, spectra used for PLS calibration and spectra used for PLS-
based prediction are orthogonalized with respect to the loading vectors of the principal
components obtained in the first step. Spectral contributions dueto variations in optical
properties of the tissues of interest are reduced and/or removed inthe corrected spectra which

result from the second analysis step. The second analysis step is described by Equation 2:

Xort :\(X-X 0,mean\’m,n)) - gX - XO,mean\’m,n)) pJpJT +X0,mean\’m,n) :X - gX - XO,mean\’m,nAplpl,T (2)

In Equation 2, X ,, is the orthogonalized (e.g., corrected) spectral matrix with

dimensions m x n, where m isthe number of samples, e.g., the m rows of X .. correspond to

ort
corrected reflectance spectra recorded from m different samples. Matrix X with dimensions
m X n corresponds to m original, uncorrected spectra. Matrix Xo,mean(mn) with dimensions m x
n includes m rows, where each row is a 1x n vector whose elements correspond to the
column mean values of Xo. Pi, with dimensions n xfi, isatruncated loadings matrix, where

the number of columnst isequal to anumber of orthogonalization factors used in the
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orthogonalization procedure. In genera,fi islessthan or equa tofo, and avalue forfi is
selected on the basis of the element values in the S and P matrices calculated in Equation 2.
Following orthogonalization, the corrected reflectance spectrain matrix X, can beused in
PLS calibration and/or modeling to predict values of analytes of interest.

When incident light interacts with a sample, measured light corresponding to light
that is reflected from and/or transmitted through the sample is attenuated relative to the
incident light. The attenuation A (A) in optical density units a wavelength A is defined as

A(A) =- Dg,, (" ©)

RUAS

where 10o(A) and 7;(1) are the intensity of the incident light, and the intensity of light after
passing through the sample, respectively. Attenuation A in arange of wavelengths is called
the attenuation spectrum.

The attenuation spectrum is related to the reflectance spectrum R(l) of the sample
according toA = logio(I/R). Reflectance spectra can be measured for awide variety of
different subjects - corresponding to relatively broad ranges of different sample analyte
values and properties - and these measured reflectance spectra can be used to determine PCA
correction factors.

However, as discussed above, the measurement of data from such alarge number of
human subjects can be both time consuming and expensive. Moreover, in some cases, it can
be difficult to obtain data over awide range of certain sample parameters. For example, it
can be difficult - and even dangerous - to manipulate experimental conditions to collect
spectra from human subjects at awide range of different muscle tissue pH values, as many
human biochemical processes are very sensitiveto pH. The present disclosure therefore
provides methods and systems for calculating reflectance spectra reflecting awide variety of
different sample analyte values and properties, and determining PCA correction factors from
the calculated reference spectra. The PCA correction factors can then be used to correct
some or al of the calculated reference spectrato reduce variations due to contributions that
do not correspond to analytes of interest. The methods and systems are further described, for
example, in Zou ¢ al., "Feasibility of analyte prediction in phantoms using atheoretical
model of near-infrared spectra,” Proc. of SPIE Vol. 7572, 757201-1-757201-9 (2010), the

entire contents of which are incorporated by reference herein.
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Suitable methods for calculating sample reflectance spectra are disclosed, for
example, in the following references, the entire contents of each of which is incorporated by
reference herein: Kienle et a., J. Opt. Soc. Am. A 14: 246-257 (1997); Kienle et a, Appl.
Opt. 37: 779-791 (1998); and Liemert et ., J. Biomed. Opt. 15: 025003-1-025003-10 (2010).
Kienle et al. use atwo layer turbid model for photon diffusion to describe sample reflectivity.
In this model, amuscle layer includes an analyte of interest, and another layer (e.g., afat
layer) overlies the muscle layer. Kienle et a. show, using the "EBCF" boundary condition,
that for atwo-layer turbid medium, the reflectance R at distance p between alight source and

adetector is calculated as follows:

RE)= (dO]- R, O] 3 “222=Doosz0 @

2

where @ \ isthe fluence rate in the outer (illuminated) layer,
1

RETIEN ?
isthe diffusion constant in that layer, and Rfres(@) is the Fresnel reflection coefficient for a
photon with an incident angle © relative to the normal to the boundary. Since
dQ2=sinBapab,where 0< 6 < 12 (inthis analysis only diffuse radiation leaving the top

layer istreated), and ¢ isthe azimuth (0 < @ < 2m), Equation (4) can bewritten as:

R(p) = 21 . prm joz [1-R,, (8)]cos” sinddo . (6)
The quantity %%‘Zig can be calculated. According to Kienle et al.,
Z
1 ~ O
Pi(p,2)= > 54297, (sp)ds ™

where @\ isaFourier transform of the fluence function and JQisthe zeroth-order Bessel
function. Therefore,

oo,PB.)_ 1 f“dmz’sls.lo(sp)ds ®)

e« on), &
Near z= 0 (with z> 0) , the formulae in Kienle et a. imply that

Oi(z.5) _
dz
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cosh(or, (7, - 2)) B sinh(or, (z,+2,)) ( D;a, SN (/- 2)) +D,a, cosh* (/- 2))
), ), Do, cosh(or, (/ +2,)) + Do, SN (/ +2,)) ©)

with distances zq and z;, defined asin Kienle et a. At z= 0, Equation (9) is (left-)continuous,
and so

06 (z=0,5)
= | | (10)
cosh(a,z,) sinh(¢(z, +z,)) D, sinh(el) + D,ax, cosh(a,l)
D, D, Dya, cosh(a, (I +z,)) + D,a, sinh(e, (I + z,))

where a2=(D s2+p )/D D = i

. : , 7~ 1,2) and/ isthe fat thickness.
3Gt + 1, ;)

J

Combining these equations, Equation (4) now becomes

T

3 7 .
R(p) =—i *11— R, ()] cos?EsinBa o
47 =0

XJOY D,a, sinh(al) + D,cr, cosh(a,l)

z ) —si Z 4z 11
OhCOSh(al o) ~sinh(@ (2, +2,)) D,a, cosh(a, (I +z,)) + D,a, sinh(al(l+zb)))&]0(p $)ds (1)

From Equation (11), it is evident that for atwo-layer fat and muscle sample, the
reflectance actually includes two parts. One part isthe first integration which is related to the
surface of the fat layer and the optical device, and the second part is the second integration

which isrelated tothe fat layer and the muscle layer. The first integral
[Z[1-R,(8)]cos’ Osin 0d6 (12)

can be calculated when the refractive index i (= 1,2)is known above and below the surface
layer. Several methods can be used to calculate the second integral. For example, in some

embodiments, the general composite rectangle method (Equation (13))
N N
[T e~ fx)Ax (13)
j=1

can be used to calculate the second integral. To perform the second integration in Equation

(112), avalue of N is selected such that
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Da,cosh(ay(/ +z,)) +D,a, sinh(o;4(/ +2,)))

0

J [cosh(alzo)- sinh(ary(z, +2,))——— 2. SMh(@,/) +DA,cosnay jsJo(ps)ds

D,a, 97h(a/) +D,a, cosh(e/)
Da,cosh* (/+2))+D,a, STh(e, (1+2)

\
=J (cosh(alzo) - sinhitt, (z, +2,)) JsJ0 (ps)ds + E (14)

\%

and the error term E isas small aspossible. Then, the interval [0, N] is separated into a set of
small sub-intervals and Equation (13) isused to approximately evaluate the integra in each
sub-interval. Because the value of the integral in Equation (14) istypicaly small (e.g., less
than 107 for each wavelength), the sub-intervals can be set short enough to get relatively
small approximation errors. For example, in some embodiments, N can be set to 150, the
interval [0, 150] can be equally set into 15000 sub-intervals, and the middle point of each
subinterval can be selected in Equation (13).

The zeroth-order Bessel function J{x) oscillates around zero so that it is possible,
with certain selections of sample points, the value of the integral in Equation (14) is negative.
However, it isknown that R(p) is always positive-valued, and the integration in Equation (12)
is always positive, so the integration in Equation (14) should be positive aswell. According

to Mastroianni et a., "Truncated Gauss-Laguerre Quadrature Rules,” in Recent Trends in

Numerical Analysis (Nova Science, 2000), pp. 213-222, it is possible that the integration in

[0, M], where M <N, ismore accurate than that in [0, N]. Therefore, instead of calculating
the integral in Equation (14) over the whole interval [0, N], the integral is calculated over [0,
M], where M(<N) isthe largest value such that the integration in Equation (14) on [0, M] is
positive (for all wavelengths).

Thus, by using the methods discussed above, reference spectra spanning awide range
of different sample analyte values and parameters can be determined. To generate such
reference spectra, different sample values and parameters can be varied toyield variations in
certain sample properties. In general, sample-to-sample variations are attributable to
variations in scattering and absorbance (reflectance) among different samples. Scattering and
absorbance, inturn, depend upon certain sample parameters that can be systematicaly varied
during calculation of the reference spectra. For example, sample absorbance isa function of
hemoglobin concentration and hemoglobin oxygen saturation. In turn, hemoglobin oxygen
saturation is afunction of oxygen tension, pH, temperature, and carbon dioxide partial
pressure. Varying the values of some or al of these properties, in turn, yields amulti-

dimensional set of reference spectra that correspond, along individual dimensions, to isolated
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variations of each of these properties while keeping the others constant. Each of the
parameters can bevaried over awide range of values; in many cases, over arange of values
that is wider than would be possible to measure in human test subjects.

As an example, the absorption coefficient p,(A) for asample as a function of
wavelength A can be expressed in terms of absorption of light by hemoglobin and water,

which are major choromophores inside the sasmple

MalA) = [epmpEins (4) + coppfhpo, (A) + Cuarfwar (4)] (15)

where cmp, coHb and ¢t are the concentrations of deoxygenated hemoglobin, oxygenated
hemoglobin, and water in the tissue respectively, and sygs(1), eo2Hb(), and e, ,{A) are

wavel ength-dependent extinction coefficients for HHb, C*Hb and water respectively. In this
example, hemoglobin and myoglobin are assumed to be indistinguishable.

From Equation (15), if sgms(1), eoHb(2), and g,,t(1) are known (and values for these
parameters can be obtained from literature or measurement), and if cy, o2y and c,,t are
aso known, then p, can be determined. Typically, the water concentration ¢, tis fixed at
60% by volume, and only cy, and co2y;, are varied to introduce variation inp .

The concentrations ¢y, and coZy, are aso typically dependent on the total
hemoglobin (THb) concentration cy, which isthe sum of ¢y, and co2y,, and the
hemoglobin oxygen saturation SO2; the relationship is described by Equation (16):

Cosz _ Cosz

SO, =—%t "o (16)

Co,Hb * CHHb Crib

Thus, if ¢z, and SO2 are known, then coZ;, and cyz, can be obtained from Equations
(17) and (18) according to:

€ ogm = 80, * Coypy (17)

Crmp = Crap — Cosz (18)

Asafurther example, various blood and tissue parameters can cause SO2 tovary in
different samples. As discussed above, variations in SO2 can cause changes in values of
co2Hb and Gy, Which in turn can lead to changes inp (3 and in the attenuation spectrum
A@) of asample. The oxygen-hemoglobin dissociation curve describes the relationship

between oxygen tension expressed in partial pressure of oxygen 02 (p(4) and hemoglobin
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oxygen saturation SO,,. The dissociation curve is shifted under different physiological
conditions but, in general, its shape remains approximately the same. Variations in values of
tissue parameters such as pH, temperature, partial pressure of carbon dioxide (pCC*), and

p O, that affect hemoglobin SO, can berelated by the oxygen-hemoglobin dissociation curve
under different physiological conditions.

Under standard physiological condition (e.g., pH of 7.4, pCC* of 40 mmHg, and
temperature of 37 °C), the relationship between the pc',, and SO, can be described by
Equation (19):

S0, = (23400 * (PO ,_vir 3+150 *p0,_vz>)-1+1)™ (19)

wherepQ, virispQ, inunits of Torr under standard physiological condition, and SO, is
hemoglobin oxygen saturation (in arange from Oto 1). Under non-standard physiological
conditions, Equation (20) can be used to convert the actual pQ, (p0,_act) toits vaue p0.,_vir

under standard physiological conditions:
PO 2_Vi r = " q_ai 3 ()OO 371 JH04%(pH =T4) 0,06 log10(40)-1ogl0(»CO) 50y

where T istemperature in degrees Celsius, pH represents the pH of the sample, and pCO , is
the partial pressure of carbon dioxide in the sample under actual physiological conditions.
Carbon dioxide partial pressure p(Q, (both p0, vir and p0,_act) and pCO , are expressed in
units of mm Hg in Equation (20).

Thus, when pH, temperature, pCO ,, and pc",, under the actual physiological conditions
(pC",_act) are known, p(, under standard physiological conditions (p0 , vir) can be obtained
from Equation (20). Once known, p0.,_vir can be used to caculate SO, using Equation (19).
Moreover, by varying ranges of the sample parameters pH, temperature, pQ,, PCO, and Cr
within physiological and pathophysiological ranges of values, arange of absorption
coefficient values p, can be obtained, which can be used in combination with arange of
reduced scattering coefficient values p5’to calculate attenuation spectra A that correspond to a
wide range of different analyte values and sample properties.

To test the range of different values of p0,_vir that can be produced via Equation
(20), values of pH, temperature, pCC", pC",_act, CTH, and Gt WETE varied by choosing a
series of values of each parameter within the following intervals to generate different values
of p0, vir: pH (6.5-8.0), temperature (25.0-40.0 °C), pCO , (10.0-215.0 mm Hg), p0,_act
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(0.0-100.0 mm Hg), cra, (0.01-0.25 or 0.01-0.2 mM), and ¢, (volume fraction 0.6). Using
different combinations of these parameters, p02 vir was calculated from Equation (20). For
some combinations, for example, p0, vir calculated from Equation (20) fell outside the
physiological range of pc>2, sothe spectra and the corresponding tissue parameters with
p02_vir greater than 100 mm Hg were removed from the simulated reference spectra and
were not used to calculate models for sample analytes. In general, the p02_vir threshold can
be established at any pressure value that isconvenient and/or yields accurate measurement
results, for example, the p02_vir threshold can be established at 120 mm Hg instead of 100
mm Hg. The water concentration (volume fraction) was fixed as 0.6, which is suitable for
norma muscle; this value can be changed (e.g., when water concentration isan anayte tobe
determined).

In similar fashion, different values of the reduced scattering coefficient us.’can be

calculated according to the equation

1, (A)=alx107 +b 1)

where a, b are dope and intercept constants respectively and are different for different
samples and/or human subjects.

Tissue scattering physiological ranges are generally known from literature sources.
To evaluate the production of different reduced scattering coefficient values, arange of u5’
values used in calculating reference spectra were calculated according to Equation (21). As
starting points in these calculations, the wavelength dependent scattering coefficients for the
forearm, calf and intact head were used. Since severa levels of scattering coefficient are
needed to develop arobust calibration model, the intercept a and the slope b in Equation (21)
were varied to produce nine u5’ spectra that covered the sample scattering physiological range
(around 5-25 cm™* at 700 nm).

FIG. 3 shows the plot of u5’versus A for forearm, calf, intact head and other u5’spectra
obtained by varying one or more of the parameters associated with the sample. More
specifically, in FIG. 3, reduced scattering coefficients taken from literature sources (forearm,
calf, intact head) are shown assolid lines; reduced scattering coefficients obtained by varying
parameters a and b in Equation (21) are shown as dotted lines. By choosing values of aand b
appropriately, reduced scattering coefficients that cover aphysiological range from 5-25 cm™

at 700 nm can be produced.
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FIG. 4 shows aflow chart 100 that includes a series of steps for using the calculated
reference spectra, determined according to the methods discussed above, for example, to
determine sample analyte values. In first step 110, PCA loading correction factors are
determined for one or more analytes of interest. The determination of the loading factors
proceeds according to the methods discussed previoudy, for example. In some embodiments,
all calculated reference spectra are used in the determination of PCA correction factors. In
certain embodiments, a subset of the calculated reference spectra may be selected and used to
determine the PCA correction factors.

In second step 120, the PCA correction factors are applied to the reference spectra (or
a subset thereof) to correct the calculated reference spectra. PCA loading correction factors
can be determined each time analyte values are to be measured. Alternatively, or in addition,
some or all of the PCA loading factors can be stored in amemory unit. When analyte values
are to be measured, the stored PCA loading factors can be retrieved from memory and used to
correct reference spectra. Moreover, some or al of the corrected reference spectra can aso
be stored in amemory unit and retrieved as needed for determination of analyte values.

Next, in optional step 130, the corrected reference spectra are used to determine
parameters for amodel for the analyte of interest based on spectral information. For
example, methods such as PLS regression can be used to calculate various model parameters.
Methods and systems for PLS-based model calculation are disclosed, for example, in U.S.
Patent No. 5,813,403.

To determine parameters for a PLS model, in some embodiments, different subsets of
the reference spectra can be selected, each subset corresponding to adifferent value of a
particular analyte of interest. Each of the different subsets of reference spectra are then
corrected using PCA loading correction factors (if this has not already occurred in step 120
above), and each corrected subset of spectra isused in aPLS regression procedure to
determine PLS model parameters. The determined PLS model parameters are used with the
PLS model for the analyte of interest to predict one or more values of the analyte (e.g., a
concentration of the analyte) based on the selected subset of spectra. The PLS predictive
procedure yields an error term associated with predicting the value of the analyte. For each
subset of reference spectra, an associated error term is determined. Then, the subset of
reference spectra with the lowest associated error term (the subset corresponding to a
common value of the analyte, as discussed above) is identified and used in subsequent
determinations of values for the particular analyte of interest. In some embodiments,

different subsets of reference spectra are used to determine values of different analytes.
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These different subsets of reference spectra can be stored (or information about them can be
stored) in amemory unit for use in subsequent measurements of analyte values.

In step 140, spectral information for a sample (e.g., muscle tissue in ahuman subject)
ismeasured, e.g., in the form of areflectance spectrum for the sample. The measured
spectral information can be adjusted by a scaling factor (e.g., amultiplicative scaling factor
and/or an additive offset factor) to account for variations in measurement light intensity.

Next, in step 150, the adjusted measured spectral information is compared against the
(uncorrected) reference spectra to determine which of the reference spectra is closest tothe
measured spectrum of the sample. A variety of different methods can be used to determine
the closest reference spectrum. In some embodiments, for example, the closest reference
spectrum isidentified asthe reference spectrum for which amaximum difference between the
measured and reference spectra, and aminimum difference between the measured and

reference spectra, is smallest:

a, (1) =miny, g, (max, (a, (1)- a,(4))- min (a, (1)-a,(A)) (22

In step 160, the identified reference spectrum is corrected using the PCA correction
factors determined in step 110 and used as input to a calibration equation that relates spectral
information to values of the analyte. In some embodiments, the calibration equation can be
previously determined and stored (e.g., parameter values stored) in amemory unit connected
to electronic processor 20 and/or application processor 22. Alternatively, or in addition, the
calibration equation's parameters can be partly or fully determined in step 130, and the
corrected reference spectral information can beused asinput to the calibration equation
determined in step 130 to obtain values associated with one or more analytes in the sample.

In the preceding discussion, the calibration equation was described as an equation
determined using aprocedure such as PLS regression. In some embodiments, the calibration
eguation can be another type of equation. For example, the calibration equation can include a
Taylor series expansion of ameasurable sample quantity such as absorbance or reflectance in
terms of one or more analytes present in the sample. The one or more analytes can include,
for example, pH, temperature, oxygen tension, oxygen saturation, carbon dioxide partial
pressure, hemoglobin concentration, water concentration, and hematocrit. Suitable methods
for constructing and evaluating such Taylor series expansion-based calibration equations are

disclosed, for example, in U.S. Patent No. 7,532,919.

22



10

15

20

25

30

WO 2011/091280 PCT/US2011/022095

The overall process in flow chart 100 then terminates at step 170. Using the process
shown in FIG. 4, reference spectral data that incorporates awide range of sample variability
can be generated without measurement data from human subjects. Further, PCA correction
factors can be calculated from the simulated spectra, and the simulated spectra can be
corrected with the determined PCA factors. Calibration equations for sample analytes can be
determined using the corrected reference spectra, and without using spectral information
measured from human subjects. Further, sample analyte values can be determined by using

reference spectral information asinput into a suitable calibration equation.

EXAMPLES
The disclosure is further described in the following examples, which are not intended

to limit the scope of the disclosure.

Example 1
To evaluate the overall accuracy and speed of determination of analyte values using

the methods and systems disclosed herein, aset of India ink (Scientific Device Lab Inc., Des
Plaines, IL) solid phantoms were produced. Ten mimic-muscle solid phantoms and three
mimic-fat solid phantoms were fabricated. Muscle phantoms were made with five ink
concentrations which ranged from 0.0037% to 0.0197% and two nominal 0 values of 7 and
9cmt at 800nm; fat phantoms were fabricated with thicknesses of 4, 5, and 6 mm with a
nominal ' value of 12 cm™ a 800nm. The muscle phantoms were fabricated from India
ink, Intralipid (Baxter Healthcare Corp., Deerfield, IL), agar (Sigma Chemical Comp., St.
Louis, MO), and distilled water; the fat phantoms were fabricated from Intralipid, agar, and
distilled water. The nominal p, a 800nm, nominal p,d a 800nm, and ink concentrations for
the muscle phantoms are shown in Table 1. The phantoms were prepared according to
procedures disclosed in Cui et al., Proceedings of the SPIE 1431: 180-191 (1991), and in
Cubeddu et al., Phys. Med. Biol. 42: 1971-1979 (1997). Parameters (e.g., values of scattering

coefficients and/or absorption coefficients) for the samples are shown in Table 1.
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Tablel
Nominal [ Nominal Ink Ink Nominal | Nominal
Wa Wso' Conc. Conc. Wso' Wa
Phantom | (cm™) (cm™) (vol. %) (vol. %) | (ecm™) (cm™) | Phantom
1 0.05 7 0.0037% 0.0037% 9 0.05 6
2 0.1 7 0.0077% 0.0077% 9 0.1 7
3 0.15 7 0.0117% 0.0117% 9 0.15 8
4 0.2 7 0.0157% 0.0157% 9 0.2 9
5 0.25 7 0.0197% 0.0197% 9 0.25 10

All phantoms, each of which included a single fat layer atop one of the muscle layers,

were illuminated using atungsten lamp (model 7106-003, Welch Allyn Corp., Skaneateles,
NY) as aradiation source and a spectrometer (USB2000, Ocean Optics Inc., Dunedin, FL) as
the detector. Both the source and detector were coupled into fiber bundles and near the top of
the fat layer with a separation of 30.0 mm. Spectrawere collected in reflectance mode and
converted to absorbance by referencing to a 99% reflectance standard (Labsphere Inc., North
Sutton, NH).

To predict ink concentrations in the phantoms, alarge set of simulated spectrawas
generated using the methods disclosed herein. Model parameters encompassed arange of
parameters used to fabricate the phantoms. The reduced scattering coefficient, us'(A), a
function of ', was calculated using equations disclosed in Stavaren et a., Appl. Opt. 30:
4507-4514 (1991). The set of simulated spectra, S, were corrected with an offset term that

adjusted for differences between actual light intensity and light intensity measured using the

99% reflectance standard reference. Instead of directly using the simulated spectrato

develop aPLS regression model for ink concentration, the principal component analysis

loading correction method was first used to correct S, for spectral variations related to fat

thickness and muscle scattering, resulting in loading corrected simulated spectra S.. S and

the corresponding ink concentrations were then used to produce aPLS model. The number

of PLS factors was selected using the cross-validation method described, for example, in
Haaland et a., Anal. Chem. 60: 1193-1202 (1998); up to 3 PCA correction factors and 20

PLS factors were considered.
The PLS-based model developed from the corrected spectra (S.) was tested on the set
of measured 2-layer phantom spectra, S.. Rather than using S, directly asinput tothe PLS

model, simulated spectra in the set of the S, spectra which were the best match to the

measured absorbance S, for each phantom were identified and used as input tothe PLS-
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based model. The best-match calculation was performed according to Equation (22). The
best-matched simulated spectrawere then corrected with the PCA correction factors derived
from the simulated set of spectra used in the PLS model to predict ink concentrations. The
PLS model was evaluated by comparing the PLS-estimated ink concentration to the actual
ink concentrations by calculating the coefficient of determination (R*) and the root mean
square error of prediction (RMSEP).

A total of 5733 reference spectra were calculated, encompassing the range of
parameters used to construct the 2-layer phantoms. The PLS model (e.g., acalibration
equation) was tested on a set of 30 calculated spectra created using the values for the
measured ink concentrations, 140 concentrations, and nominal p's for the phantoms. The
PLS model, with 2 PCA loadings and 10 PLS factors, resulted in R2 of 0.998 and RMSEP
between the actual and predicted ink concentrations of 0.00028%. These results illustrate
that the methodology works well on test spectra that match the smulated spectra.

When measured phantom spectra were tested directly inthe PLS model constructed
from calculated reference spectra, an intermediate step was added to find the reference
spectrum that best matched the measured spectrum. Equation (22), discussed above, was
used for this purpose. The best-matched calculated spectrum was then corrected with the
PCA correction factors and used in the PLS calibration equation created from the 5733 PCA
corrected spectra. For the 30 measured phantoms, both the measured and best-matched
spectra are shown in FIG. 5; solid lines correspond to measured phantom absorbance spectra,
and dotted lines correspond to best-matched reference spectra. There is generally good
agreement between the measured and calculated spectra.

The best matched spectra were evaluated in the PLS model, resulting in an R2 = 0.897
and RMSEP=0.00371%. FIG. 6A shows aplot of the ink concentration predicted from the
best-matched phantom spectra as a function of the measured ink concentration. There isa
clear trend between the predicted and actual ink concentrations. The effects of the matrix
scattering coefficient (p') and the fat thickness were explored to examine the source of
prediction error using 2-way analysis of variance (ANOVA) for the difference, A, between
the measured and predicted ink concentrations. Table 2 shows that neither ', fat thickness,
nor the interaction between the two were significantly associated with the error (A), since all

p values were greater than 0.05.
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Table2
Source Sum of Squares | DF | Mean Square F P
Fat_Thickness 0.0000461 2 0.000023 241 0.111
us' 0.00000116 1 0.00000116 | 0.121 | 0.731
Fat Thickness*p' 0.0000245 2 0.0000122 1.281 | 0.296

FIG. 6B is aplot of the difference between the measured and predicted ink
concentration as afunction of the measured ink concentration, where the results are organized
by fat thickness. The results for afat thickness of 6 mm are closer to zero, and therefore
more accurate, than for phantoms with thinner fat layers, suggesting that other methods for
simulating spectra for two-layer phantoms may be useful when the fat later in such phantoms
isrelatively thin, and where there is likely to be more scattering interaction between the
muscle and fat layers. Nonetheless, the absorbance spectra collected from phantoms agreed
well with calculated reference spectra produced from atwo-layer turbid model for photon
diffusion. Ink concentrations were well predicted by calibration equations calculated from
the reference spectra, providing further evidence that simulated spectra can be effectively
used to correct for inter-subject spectral differences, and to determine quantitative values

associated with analytes in many samples.

Example 2
To demonstrate the accuracy with which physiologically relevant quantities can be

determined using the methods and systems disclosed herein, theoretical near-infrared spectra
were simulated for use in predicting total hemoglobin (HbT) and Hematocrit (Hct) values. In
particular, the simulated spectra were divided into two sets: afirst set of simulated spectra
used totrain aPLS model for prediction, and a second set of simulated spectra acting as the
"experimental” data. A large set of training spectra was used totrain aPLS model for HbT
prediction. The trained model was then applied to a small set of simulated testing spectra.
Both the training and testing sets of spectra were corrected using principal component
analysis (PCA) loading correction, as discussed above. Further, before performing the PCA
loading correction, the magnitudes of the spectra were scaled down by normalizing against
the mean values of the spectra, to ensure that the spectral values were of similar magnitude to
real, experimentally obtained spectra.

Training and testing spectra were simulated using one of two models. For samples

with no fat layer (e.g., afat thickness of 0 mm), the one-layer model of Farrell et al. was
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used. Thismodel is described in more detail, for example, in Farrell et a., Med. Phys. 19:
879-888 (1992), the entire contents of which are incorporated by reference herein. For
samples with afat layer (e.g., afat thickness > 0 mm), the Kienle two-layer turbid media
model discussed above was used.

To simulate spectra for the theoretical sample under consideration in this example (a
muscle tissue layer with afat layer of adjustable thickness), the absorbance coefficient of the
muscle layer was assumed to be accurately described in terms of absorption from a
background contribution ("back™) and atube contributions ("tube"). This model is described
in more detail in Liu et al., Med. Phys. 22: 1209-12 16 (1995), the entire contents of which are
incorporated herein by reference. The absorbance coefficient of the muscle layer, ., (),

can therefore be expressed as

lua,gls(ﬂ) = (1 - f )fua,baok (ﬂ’)—i_ f /Ia,tube(ﬂ’) (23)

where the absorbance coefficient of the background contribution, i, s.(4), can be expressed

as

+ +
Mayback{#) = cwpein(4) CMb02€ Hb02 (4) ch20 EHzo (A) (24)

and where the absorbance coefficient of the tube contribution, ., ,.(2), can be expressed as

Ma,tube(A )- Chp€Hb{ ) + CHB02EHBO2 {* ) + CH20 €H20 {* ) (25)

In Equations (23)-(25), f'isthe volume ratio of tubes (e.g., capillaries, venules, arterioles) to
the total capillary-tissue volume. The quantity ¢, corresponds to the concentration of
component X, while the quantity e, corresponds to the extinction coefficient of component x.
The components x include myoglobin (Mb), hemoglobin (Hb), oxygenated myoglobin
(Mb02), oxygenated hemoglobin (Hb02), and water (10). In general, it was assumed that
SMb = sHb and smMbo2 = SHbo2-

Using simulated spectra derived from Kienle's two-layer model, with the absorbance
coefficient of the background p, ».c+(4) corresponding to the absorbance coefficient of the
system p,,s(1), it was observed that for simulated spectra corresponding to fat layers of
thickness greater than 5 mm, scattering was dominated by the fat scattering component, such

that scattering due to blood components was very small. However, experimentally measured
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spectra revealed asignal component that was relatively easy to attribute to scattering by
blood components, implying that the functional form of the absorbance coefficient in
Equation (23) may not always be correct. It isknown, for example, that the volume fraction
of the absorbing component in muscle tissue is approximately 2.2% (see, for example,
Doornbos, e a, Phys. Med. Biol. 44, 967-981 (1999)), which corresponds to the volume of
blood in the muscle tissue. Accordingly, to simulate spectra for prediction of HbT, the

absorbance coefficient was assumed to take the functional form
Mo (2)=0.02 41, (M) (26)
The reduced scattering coefficient, “w (A ,Hct) , can be expressed as follows:
Hee (A HEE) = (1o )0 AR+ F 11, N HED) (27)

where the reduced scattering coefficient of the tube component, ju'stube{X,Hct), can be

expressed as

(AHct) =-0.001 58(4 - 633) + 0.399Hct +1.926 (28)

'uStube

with Hct expressed as avolume percentage. Equation (28) was derived from Roggan et al., J.
Biomed. Opt. 4: 36-46 (1999), the entire contents of which are incorporated by reference

herein. The reduced scattering coefficient of the background component, p_ ., (M), can be
determined according to
Hy paci(A) = aAx 107 +b (29)
where a and b are adjustable parameters.
The quantities co0 and Hct are related according to
100 ¢, +Hct =100 (30)

Further, the concentration of total hemoglobin, [HbT], isthe sum of ¢;; and cnboz, and
Hct(%) = 3-[HbT], where [HbT] isin units of g/dl.
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Using Equations (23)-(30), spectrawere simulated using Farrell's one-layer and

Kienle's two-layer models. Parameters used to generate the spectra were as follows:

20 HbT points in arange of concentrations from 0.15-3.0 mM (1.0-20 g/dl)
5 tissue oxygen saturation SO , = 0%, 25%, 50%, 75%, 100%

/ =0.01, 0.03, 0.05

a=-0.005, -0.001, -0.0005, -0.00005

b=-1,0,12,3

10 In addition, spectra for which the following conditions were observed were filtered
out of the set of simulated spectra:

cmo > 0.9
Hipai(A) <0

15 K MHCE) <0
Hi oA, Het) < 1

absorbance < 0 or absorbance is acomplex number

Using the above conditions and parameters, atotal of 1885 spectra were simulated
20  using Farrell's model (fat thickness = 0 mm), and atotal of 2165 spectra were simulated for
each fat thickness greater than zero using Kienle's model (fat thickness = 1mm, 2 mm, 3
mm, 4 mm, 5mm, 6 mm, 7 mm, and 8 mm). Accordingly, atotal of 19205 spectra were
simulated.
A subset of about 20% of the ssimulated spectra was randomly selected to serve asthe
25  test set. The remaining 80% of the simulated spectrawere used totrain aPLS model. Table
3 shows the number of spectra selected for the test set and the training set for each fat

thickness.
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Table3

Fat Thickness | O0mm | Ilmm | 2mm [3mm |4mm | Smm | 6 mm | 7mm | 8 mm

Test Set 336 | 400 | 390 | 389 391 391 392 386 | 386

Training Set | 1549 | 1765 | 1775 | 1776 | 1774 | 1774 | 1773 | 1779 | 1779

Total 1885 | 2165 | 2165 | 2165 | 2165 | 2165 | 2165 | 2165 | 2165

The PLS model was trained asfollows. First, the magnitudes of all simulated spectra
(both in the test and training sets) were normalized by dividing each spectral value inthe
wavelength range from 735 nm to 880 nm by the mean magnitude of the spectrum. Second,
PCA loading corrections were performed on spectra in both the training set and the test set.
The loading vectors were selected from the training set, and the smallest value of HbT was
selected asthe analyte of interest.

Next, aPLS model for prediction of HbT was constructed from the PCA loading-
corrected training spectra. For the training set of spectra (row 3 in Table 3), with 2 PCA
loadings, the smallest HbT was used to train the PLS model with 22 PLS factors. Finadly, the
PLS model was applied to predict HbT values based on the PCA corrected test spectra (row 2
in Table 3) for each of the "samples’ with different fat thicknesses. Since the actual values of
HbT for each of the samples was known (as these values were used as input tothe
simulations, as discussed above), the predicted and actual values of HbT were compared.
Correlation coefficients R2, root mean-square errors of prediction (RMSEP), and error
percent , which isthe percentage ratio of RMSEP to the HbT range, which is 2.85(mM), were
determined for each of the fat thicknesses. The results of these determinations are shown in
Table 4.

Table4
Fat Thickness
0 1 2 3 4 5 6 7 8
(mm)
R? 0.972 1 0.979 | 0.980 | 0.978 | 0.979 | 0.976 | 0.979 | 0.974 | 0.958
RMSEP 0.123 | 0.111 | 0.106 | 0.114 | 0.117 | 0.119 | 0.112 | 0.118 | 0.153
Error Percent (%) | 4.316 | 3.895 | 3.719 | 4.000 | 4.105 | 4.175 | 3.930 | 4.140 | 5.368

30




10

WO 2011/091280 PCT/US2011/022095

The results in Table 4 show that for fat thicknesses of between 1 mm and 7 mm, the
estimated predictive error is less than 5%. This indicates that the methods and systems
disclosed herein are capable of predicting hemoglobin concentrations over awide range of
variability in patient-specific parameters and conditions that influence light absorbance and

scattering.

OTHER EMBODIMENTS
It istobe understood that the foregoing description is intended to illustrate and not
limit the scope of the disclosure, which is defined by the scope of the appended claims.

Other aspects, advantages, and modifications are within the scope of the following claims.
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WHAT ISCLAIMED IS

1. A method for determining avalue associated with an analyte in a sample, the method
comprising:

determining a set of spectrafrom amodel for light attenuation in the sample, wherein
the model comprises contributions from at least two different sources of light attenuation in
the sample;

determining a set of spectral correction factors associated with the analyte in the
sample based on the set of spectra; and

using the set of spectral correction factors to determine the value associated with the

analyte.

2. The method of claim 1, wherein the at least two different sources of light attenuation

comprise light scattering and absorption.

3. The method of claim 1, wherein the analyte comprises & |least one member selected
from the group consisting of pH, temperature, oxygen tension, oxygen saturation, carbon

dioxide partial pressure, hemoglobin concentration, water concentration, and hematocrit.

4. The method of claim 1, wherein determining the set of spectral correction factors

comprises determining mean-centered spectra from the set of spectra.

5. The method of claim 4, wherein determining the set of spectral correction factors

comprises determining orthogonalized spectra based on the mean-centered spectra.

6. The method of claim 1, wherein determining the value associated with the analyte
comprises using the set of spectral correction factorsto correct a least one member of the set
of spectra, and using the corrected at least one member of the set of spectra as input to a

calibration equation for the analyte.
7. The method of claim 6, wherein determining the value associated with the analyte

comprises obtaining measured spectral information for the sample, and determining a

member of the set of spectrathat is closest tothe measured spectral information.
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8. The method of claim 7, further comprising determining the member of the set of
spectrathat is closest to the measured spectral information based on maximum and minimum
differences between the measured spectral information and a least some of the members of

the set of spectra.

9. The method of claim 7, wherein determining the value associated with the analyte
comprises using the member of the set of spectrathat is closest to the measured spectral
information as input to the calibration eguation, and determining the value associated with the

analyte from the calibration equation.

10. The method of claim 6, wherein the calibration equation is derived from apartial least

sguares regression analysis of the set of spectra.

11.  The method of claim 6, wherein the calibration equation corresponds to a Taylor

series expansion that relates spectral information to values of the analyte.

12, The method of claim 2, wherein the light scattering comprises contributions from

light scattering by one or more fat layers and light scattering by muscle tissue.

13. The method of claim 2, wherein the absorption comprises contributions from light
absorption by at least two different analytes.

14. The method of claim 13, wherein the at least two different analytes comprise

oxygenated hemoglobin, de-oxygenated hemoglobin, and myoglobin.

15. The method of claim 1, further comprising determining the value associated with the
analyte based on asubset of members of the set of spectrathat correspond to acommon value

of the analyte.

16. A method for determining avalue associated with an anayte in a sample, the method
comprising:

determining a set of spectrafrom amodel for light attenuation in a sample;

obtaining spectral information corresponding to the sample and identifying a member

of the set of spectrathat corresponds to the spectral information; and
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determining the value associated with the analyte in the sample based on the
identified member of the set of spectra.

17. The method of claim 16, wherein the model for light attenuation comprises

contributions from light scattering and absorption by the sample.

18. The method of claim 16, wherein identifying amember of the set of spectra comprises
determining maximum and minimum differences between the spectral information and at
least some members of the set of spectra, and identifying the member of the set of spectra that

corresponds to the spectral information based on the maximum and minimum differences.

19. The method of claim 16, wherein determining the value associated with the analyte
comprises using the identified member of the set of spectra as input to acalibration equation

that relates spectral information to values of the analyte.

20. The method of claim 19, wherein determining the value associated with the analyte
comprises determining spectral correction factors associated with the analyte from the set of
spectra, applying the spectral correction factors to the identified member of the set of spectra
to correct the identified member, and using the corrected identified member as input to the

calibration equation.

21. The method of claim 20, further comprising determining the value associated with the
analyte based on a subset of members of the set of spectrathat correspond to acommon value

of the analyte.

22. The method of claim 19, wherein the calibration equation is derived from apartial
least squares regression analysis of the set of spectra

23. The method of claim 19, wherein the calibration equation corresponds to a Taylor

series expansion that relates spectral information to values of the analyte.

24. The method of claim 16, wherein the analyte comprises at least one member selected
from the group consisting of pH, temperature, oxygen tension, oxygen saturation, carbon

dioxide partial pressure, hemoglobin concentration, water concentration, and hematocrit.
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25. The method of claim 17, wherein the light scattering comprises contributions from

light scattering by one or more fat layers and light scattering by muscle tissue.

26. The method of claim 17, wherein the absorption comprises contributions from light

absorption by at least two different analytes.

27. The method of claim 26, wherein the at least two different analytes comprise
oxygenated hemoglobin, de-oxygenated hemoglobin, and myoglobin.

28. A system for determining avalue associated with an analyte in a sample, the system
comprising:
aradiation source configured to direct radiation to be incident on the sample;
a detector configured to detect radiation from the sample; and
an electronic processor configured to:
obtain measured spectral information about the sample based on the detected
radiation;
compare the measured spectral information to a set of spectra determined from
amodel for light attenuation in the sample to identify a member of the set of spectra that
corresponds to the measured spectral information;
correct the identified member of the set of spectra using a set of spectral
correction factors determined from the set of spectra; and
use the corrected identified member of the set of spectra as input to a

calibration equation to determine the value associated with the analyte.

29. The system of claim 28, wherein the calibration equation is stored in a memory unit

connected to the electronic processor.

30. The system of claim 28, wherein the electronic processor is configured to determine
values associated with two or more analytes, and wherein the two or more analytes are
selected from the group consisting of pH, temperature, oxygen tension, oxygen saturation,
carbon dioxide partial pressure, hemoglobin concentration, water concentration, and

hematocrit.
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31.  The method of claim 6, wherein determining the value associated with the analyte
comprises:

simulating spectral information for the sample using the model for light attenuation in
the sample;

using the simulated spectral information as input to the calibration equation; and

determining the value associated with the analyte from the calibration equation.

32. The method of claim 16, wherein obtaining spectral information corresponding tothe
sample comprises determining the spectral information from the model for light attenuation,
and wherein determining the value associated with the analyte comprises using the identified
member of the set of spectra as input to acalibration equation that relates spectral

information to values of the analyte.
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