
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0273765A1

Arnold et al.

US 2005O273765A1

(43) Pub. Date: Dec. 8, 2005

(54)

(75)

(73)

(21)

(22)

(63)

OBJECTORIENTED CREATION
BREAKPOINTS

Inventors: Jeremy Alan Arnold, Rochester, MN
(US); John Matthew Santosuosso,
Rochester, MN (US)

Correspondence Address:
WOOD, HERRON & EVANS, L.L.P. (IBM)
2700 CAREW TOWER
441 VINE STREET
CINCINNATI, OH 45202 (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY

Appl. No.: 11/197,895

Filed: Aug. 5, 2005

Related U.S. Application Data

Continuation of application No. 09/997,990, filed on
Nov. 30, 2001.

104

CONVENTONA NO CREATION
BREAKPOINT SET BREAKPONT

YES

SET BREAKPOINT

ADO CREATION
BREAKPOINT

Publication Classification

(51) Int. CI.7. ... G06F 9/44
(52) U.S. Cl. .. 717/129

(57) ABSTRACT

A computer System, program product and method debug an
object-oriented computer program by tracking the creation
of objects by a plurality of creators (e.g., constructor meth
ods) of a selected class. A user need not separately track each
creator. Instead, a debugger identifies each creator and
asSociates breakpoints with all or a user-specified Subset of
creators to facilitate tracking. Any of the breakpoints may
then trigger a halting of execution during debugging. More
over, in Some instances it may be desirable to track the
number of creations by all or the subset of the creators for
the Selected class during program execution until a user
Specified condition is Satisfied, whereupon program execu
tion is terminated and debugging information is provided to
the user.

102

ADD CONDON
BASED ONUSERINPUT

GE SELECTED CLASS ---

122

DENTIFY CREATORS)
FOR SELECTED CLASS

PRESENT ST 118
OF CREATORS

y

SELECT ALL CREATORS
sELECT CREATORs BASED-1

ONUSER INPUT

ADD BREAKPOINT FOREACH
SELECTEDCREATOR

124

Patent Application Publication Dec. 8, 2005 Sheet 1 of 5 US 2005/0273765 A1

16- MAIN MEMORY

| PROCESSOR OBJECTORIENTED
: USER PROGRAM 20

USER INTERFACE
PROGRAM INSPECTOR 28
EXECUTION ENVIRONMENT 30
BREAKPONT MANAGER 32
BREAKPOINT TABLE
CREATION COUNTER

FIG. 1

28

INSPECTOR

20

OBJECTORIENTED
USER PROGRAM

EXECUTION
USER INTERFACE ENVIRONMENT

BREAKPOINT
MANAGER

BREAKPOINT TABLE

USER

24

FIG. 2

US 2005/0273765 A1

| sw |:8ssejrsselJAW|| ||sse10MW

Dec. 8, 2005 Sheet 2 of 5 Patent Application Publication

SSE 800W
Z8

Patent Application Publication Dec. 8, 2005 Sheet 3 of 5 US 2005/0273765 A1

SET BREAKPOINT

CREATION
BREAKPOINT

YES

ADD CREATION
BREAKPOINT

CONDITIONALNYES
BREAKPOINT

NO

GET SELECTED CLASS

DENTIFY CREATOR(S)
FOR SELECTED CLASS

100

102 FIG. 4 CONVENTIONAL
BREAKPOINT SET

ADD CONDITION 110
BASED ONUSER INPUT

V

PRESENT LIST
OF CREATORS

116 118

NO

SELECT ALL CREATORS

ADD BREAKPOINT FOREACH
SELECTED CREATOR

sELECT CREATORs BASED-120
ONUSER INPUT

Patent Application Publication Dec. 8, 2005 Sheet 4 of 5 US 2005/0273765 A1

130

BREAKPOINT HIT

132 FIG. 5 IS BREAKPOINT
ASSOCATED WITH CREATION

BREAKPOINT2

CONVENTIONAL NO
BREAKPOINT
PROCESSING

HALT PROGRAM 140
EXECUTION AND

PRESENT DEBUGGER
INFORMATION

150

REMOVE BREAKPON

)/CREATIONNY
BREAKPOINT

NO

REMOVE
BREAKPOINT ENTRY

152
156

FIG. 6 REMOVE

CREATORLIST . .

Patent Application Publication Dec. 8, 2005 Sheet 5 of 5 US 2005/0273765 A1

File Edit View Shortcuts Tools Help

public class MyClass {
public MyClass() {

1
2
3
4. }
5 public MyClass (int i) {
6
7
8
9

System.out.printin ("Default constructor");

System.out.printin ("One Argument Constructor");

public static void main (String argSD) {
for (int i=0; iz= 10; it) {

10 if (%2 == 0) {
11 MyClass C = new MyClass();
12 } else {
13 MyClass C = new MyClass();
14 }
15
16
17 }

18O

FIG. 7

US 2005/0273765 A1

OBJECTORIENTED CREATION BREAKPOINTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 09/997,990 filed on Nov.30, 2001 by
Jeremy Alan Arnold et al., entitled “OBJECTORIENTED
CREATION BREAKPOINTS” (ROC920010095US1), the
disclosure of which is incorporated by reference herein.

FIELD OF THE INVENTION

0002 The invention is generally related to computers and
computer Software. More specifically, the invention is gen
erally related to debugging computer programs, particularly
in the field of object-oriented programming (OOP) technol
Ogy.

BACKGROUND OF THE INVENTION

0.003 Debuggers are software tools that can be used to
diagnose computer programs and trace errors that arise
during execution of the program. Debuggers are commonly
used during the development of computer programs, to
Verify that a program under development operates as
intended.

0004) To support a debugger, information describing
Symbols and types in the program as well as information to
map between source (human readable) and executable
(machine readable) code is typically required. In the case of
compiled programs, a compiler can often produce this
information. This extra information, generally referred to as
debugging information, enables a programmer to examine
the types, variables and data structures used in a program by
name and to follow the execution of the program through the
Source code.

0005. A number of debugging techniques can be used to
enable a programmer to properly analyze a program to
detect points in the program where errors occur. One Such
technique is to put a breakpoint into the program, at a point
in the program where it is desirable for normal operation to
be Suspended automatically when certain conditions are met.
Breakpoints are useful for program testing. They are speci
fied by programmerS So that interim results of processing
can be inspected, and then programs can be restarted to
continue running normally.
0006. In traditional debuggers, breakpoints are generally
Set on Specific Statements within functions or methods,
program execution is Suspended each time the particular
Statement is called. In Some environments, breakpoints may
also be specified to be “conditional” so that execution is
Suspended by a breakpoint only when a particular condition
associated with that breakpoint is met (e.g., after the break
point has been hit Xtimes).
0007 Statement-based breakpoints have been found to be
very useful for debugging program bugs and inefficiencies in
traditional procedural languages that are Sequential in
nature. However, object-oriented languages, which have
found increasing acceptability as programming languages,
are based on quite a different concept.
0008 Object-oriented programs are typically created
using a Set of language tools, abstractions and constructs that

Dec. 8, 2005

Support a particular form of user-defined type called a
“class'. A class functions as a template, and associates a
collection of declared data with a set of operations capable
of being performed on that data, i.e., methods capable of
being called on the data. In an object-oriented program,
objects are dynamically created during runtime using the
classes as templates. The creation of a new object is often
referred to as “instantiation,” whereby an object is an
"instance' of a class.

0009. A fundamental feature of object-oriented program
ming is that classes can be related to one another by
inheritance. The properties, behaviors, data and operations
of a parent, or “base' class may be inherited without
modification by some child, or “derived” class, or the
behavior, properties and operations may be selectively
refined under the control of the programmer in the derived
class. The latter function is generally referred to as overrid
ing. When defining a derived class, one may start by
building on an existing base class that is similar to the one
to be created. The derived class inherits the implementation
and behavior of the base class, including its methods and
data, except as modified by overriding amendments detailed
in the derived class definition. Several classes can inherit the
behaviors of a common parent, and in Some object-oriented
languages a derived class may inherit from more than one
base class.

0010. In a working program, objects are instantiated, or
created as needed, and built from the templates defined by
their respective classes. During runtime, it is often desirable
to provide each new object with initial data and/or initiate
particular operations with the object. For this reason, many
object-oriented environments Support Special methods
known as constructors, or creators, that are called upon an
object's creation. One or more constructor methods are
typically defined in each class, while a default constructor
method may be defined for Some classes when no explicit
method is defined by the developer.

0011 Many classes support multiple constructor methods
that perform different operations based upon how many and
what types of data values are provided when creation of an
object is desired. Constructor methods typically Specify
particular call Signatures that define the types of data values
expected by those methods, So that, when object creation is
initiated, the data values Supplied there with can be analyzed
to locate a matching constructor method, and the matching
constructor method can then be executed.

0012. The use of multiple constructor methods for a class
provides Significant flexibility for programmerS. However,
the flexibility in object creation has shortcomings during
debugging of the computer program. For example, a pro
grammer may desire to track when objects of a particular
class have been created. Conventional breakpoints, which
are Statement based, could be set on Statements in individual
constructor methods So that the programmer is notified
whenever a Statement in a constructor method is hit during
creation of an object. However, Since more than one con
Structor may be responsible for creating these objects, a
programmer is typically required to manually Set a break
point on a Statement in each constructor method for a class.
Manually Setting a breakpoint on a Statement in each con
Structor method, however, can be excessively burdensome
and time consuming, and a distinct risk exists that a pro

US 2005/0273765 A1

grammer may inadvertently forget to Set a breakpoint in one
of the constructor methods, or forget to remove all of the
breakpoints once the condition has been adequately tested.
0013 In addition, in some situations a programmer may
wish to track the number of objects that are created for a
particular class. AS an example, a programmer may wish to
Verify that an excessive number of objects are not created for
a particular purpose, e.g., in a database environment, where
a programmer might intend for no more than 10 database
connections to be active at any given time. Through the use
of manually-Set breakpoints in all constructor methods, a
programmer could manually count the number of object
creations; however, doing So could be unduly burdensome
when tens, hundreds or thousands of objects are normally
created in a program.
0.014 Should halting execution after each object creation
be unduly burdensome, a programmer could utilize condi
tional breakpoints in each constructor method to trigger only
after a certain number of hits. However, given that each
breakpoint would independently track the number of times
it was hit, and given that a programmer may not know the
relative frequency that each constructor method for a par
ticular object is called, the programmer would still not be
able to be notified after a specific number of objects were
created.

0.015 Consequently, a significant need exists for a
method of debugging an object-oriented computer program
that facilitates the tracking of object creation operations
during execution of the computer program.

SUMMARY OF THE INVENTION

0016. The invention addresses these and other problems
asSociated with the prior art by providing an apparatus,
program product, and method of debugging an object
oriented computer program that facilitate the tracking of
object creation operations by multiple creators for a particu
lar class defined in a computer program.
0017 Consistent with one aspect of the invention, for
example, an object-oriented computer program is debugged
using a plurality of breakpoints Set for a plurality of creators
for a class defined in the object-oriented computer program.
Specifically, in response to user input, a plurality of creators
for the class are identified, and a plurality of breakpoints are
Set on the identified creators. Execution of the object
oriented computer program is then halted during debugging
in response to hitting any of the plurality of breakpoints.
0.018. In some embodiments, the plurality of breakpoints
are associated with a “creation' breakpoint, whereby user
input received from a programmer or other user is directed
toward performing operations on the creation breakpoint,
rather than the breakpoints Set on the various creators.
Functionality within the debugger thus manages the plurality
of breakpoints as a collective group. Irrespective of whether
the plurality of breakpoints are associated with a common
creation breakpoint, however, through the automated iden
tification of creators for a class in response to user input, a
programmer or other user is relieved of the burden of
manually identifying creators and Setting individual break
points on the different creators for a particular class.
0.019 Consistent with another aspect of the invention, an
object-oriented computer program is debugged by tracking

Dec. 8, 2005

a number of object creations of a class defined in the
object-oriented computer program during debugging, and
halting execution of the object-oriented computer program
in response to the number of object creations meeting a
condition. AS Such, object creations are tracked acroSS
multiple creators.
0020. These and other advantages and features, which
characterize the invention, are Set forth in the claims
annexed hereto and forming a further part hereof. However,
for a better understanding of the invention, and of the
advantages and objectives attained through its use, reference
should be made to the Drawings, and to the accompanying
descriptive matter, in which there is described exemplary
embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0021 FIG. 1 is a block diagram of a computer system
incorporating a debugger Supporting object-oriented cre
ation breakpoints consistent with the invention.
0022 FIG. 2 is a block diagram of the principal software
components in the debugger of FIG. 1.
0023 FIG. 3 is an exemplary data structure implemen
tation for the breakpoint table of FIG. 2.
0024 FIG. 4 is a flow diagram for a set breakpoint
routine executed by the debugger of FIG. 2.
0025 FIG. 5 is a breakpoint hit routine executed by the
debugger of FIG. 2.
0026 FIG. 6 is a remove breakpoint routine executed by
the debugger of FIG. 2.
0027 FIG. 7 is an illustrative example of an object
oriented computer program having a class defining multiple
CreatorS.

DETAILED DESCRIPTION

0028. The embodiments illustrated hereinafter facilitate
the debugging of object-oriented computer programs by
tracking the execution of a multiple creators for classes
defined in Such computer programs. Typically, Such tracking
occurs through the use of “creation' breakpoints that permit
tracking of multiple creators to be managed in a collective
manner. Creators are typically implemented via constructor
methods in many object-oriented programming environ
ments, although it is envisioned that other environments
may utilize default or other creators that are not explicitly
defined by a programmer, but rather are implicitly defined.
In Still other environments, no methods may be called in
response to creation of an object. Nonetheless, it may be
beneficial to define this default condition, in which no
method as called, to be analogous to one “creator' for the
class.

0029 Creation breakpoints typically have associated
there with multiple breakpoints that are set on the various
creators for a particular class, and typically on Specific
Statements within Such creators. Moreover, the multiple
breakpoints are typically managed in a collective manner
through user interaction with a creation breakpoint, e.g., So
that the breakpoints can be collectively set or removed in
response to particular user input, rather than being managed
individually through user interaction with each breakpoint.

US 2005/0273765 A1

While Some environments may Support interaction with
individual breakpoints associated with a creation breakpoint,
in the embodiments discussed hereinafter, the individual
breakpoints are essentially hidden from the user (e.g., a
programmer, developer, program tester, etc.) Such that only
interaction with the creation breakpoint itself is principally
Supported.
0.030. In other embodiments, the multiple breakpoints
used to track the multiple creators are not associated with a
common creation breakpoint. In Such embodiments, how
ever, the automated functionality described herein typically
facilitates the setting of the multiple breakpoints by virtue of
the automated nature in which creators can be identified (and
optionally presented to a user for Selection), and breakpoints
may be collectively Set.
0.031) Moreover, as will be discussed in greater detail
below, the embodiments described herein also facilitate
tracking of object creations via multiple creators, typically
via maintaining a common counter that is incremented in
response to hitting any of the breakpoints Set on the multiple
creators. The counter, as well as a condition that triggerS a
halting of execution based upon the State of the counter, are
typically maintained in association with a creation break
point. However, it will be appreciated that, in other embodi
ments, object creation tracking acroSS multiple creators may
not require the utilization of a creation breakpoint and/or the
utilization of breakpoints that are set on individual creators
for a class.

0.032 Turning now to the Drawings, wherein like num
bers denote like parts throughout the several views, FIG. 1
illustrates a computer System 10 Suitable for utilizing cre
ation breakpoints consistent with the invention. Computer
System 10 is shown for a multi-user programming environ
ment that includes at least one processor 12 that obtains
instructions or op codes, and data via a System buS 14 from
a main memory 16. Computer system 10 may be imple
mented as a PC-based Server, a minicomputer, a midrange
computer, a mainframe computer, etc. In other embodi
ments, however, computer System 10 may be implemented
using practically any other type of computer or program
mable electronic device, including Single-user computers
Such as desktop computers, laptop computers, handheld
computerS, etc.

0.033 Processor 12 may represent one or more processors
(e.g., microprocessors), and memory 16 may represent the
random access memory (RAM) devices comprising the main
Storage of computer System 10, as well as any Supplemental
levels of memory, e.g., cache memories, non-volatile or
backup memories (e.g., programmable or flash memories),
read-only memories, etc. In addition, memory 16 may be
considered to include memory Storage physically located
elsewhere in computer System 10, e.g., any cache memory in
a processor 12, as well as any Storage capacity used as a
Virtual memory, e.g., as Stored on a direct access Storage
device 38 or on another computer coupled to computer
system 10 via a network 46. Furthermore, practically any
interconnect architecture, or collection of interconnect archi
tectures, may be used to implement System buS 14 consistent
with the invention.

0034 Memory 16 is shown having resident therein an
operating System 18, an object-oriented user program 20,
and a programming environment 22 (e.g., an Integrated

Dec. 8, 2005

Development Environment (IDE)). The programming envi
ronment 22 typically provides tools for creating, editing,
compiling and debugging the user program 20.
0035. As such, among the tools supported by program
ming environment 22 is a debugger 24 that monitors and
interfaces with program execution to diagnose the user
program 20. The debugger 24 includes a user interface 26,
a program inspector 28, an execution environment 30, a
breakpoint manager 32, a breakpoint table 34, and a creation
counter 35, the use and configuration of each of which is
described in greater detail below.
0036). In the illustrated embodiment, the debugger 24 is
illustrated as being resident on the same platform upon
which the user program 20 runs. In other embodiments,
however, a debugger may be resident on a different platform
than a programming and/or execution environment, e.g.,
when debugging embedded Systems, or debugging Server
based programs, on a programmer's WorkStation.

0037 FIG. 1 also illustrates that computer system 10 also
may include various interfaces for coupling the computer
System to various external devices. For example, a mass
Storage interface 36 interfaces computer System 10 to one or
more mass Storage devices 38, e.g., a direct acceSS Storage
device (DASD). In addition, a terminal interface 40 inter
faces computer System 10 to one or more terminals or
WorkStations 42, and a network interface 44 interfaces
computer system 10 to one or more networks 46. Any
number of alternate computer architectures, incorporating
other collections of external devices, may be used in the
alternative.

0038. The discussion hereinafter will focus on the spe
cific routines utilized to implement the herein-described
debugger functionality. In general, the routines executed to
implement the embodiments of the invention, whether
implemented as part of an operating System or a specific
application, component, program, object, module or
Sequence of instructions, or even a Subset thereof, will be
referred to herein as “computer program code,” or simply
“program code.” Program code typically comprises one or
more instructions that are resident at various times in various
memory and Storage devices in a computer, and that, when
read and executed by one or more processors in a computer,
cause that computer to perform the Steps necessary to
execute Steps or elements embodying the various aspects of
the invention.

0039 Moreover, while the invention has and hereinafter
will be described in the context of fully functioning com
puters and computer Systems, those skilled in the art will
appreciate that the various embodiments of the invention are
capable of being distributed as a program product in a
variety of forms, and that the invention applies equally
regardless of the particular type of Signal bearing media used
to actually carry out the distribution. Examples of Signal
bearing media include but are not limited to recordable type
media Such as Volatile and non-volatile memory devices,
floppy and other removable disks, hard disk drives, magnetic
tape, optical disks (e.g., CD-ROMs, DVD’s, etc.), among
others, and transmission type media Such as digital and
analog communication linkS.
0040. In addition, various program code described here
inafter may be identified based upon the application within

US 2005/0273765 A1

which it is implemented in a specific embodiment of the
invention. However, it should be appreciated that any par
ticular program nomenclature that follows is used merely for
convenience, and thus the invention should not be limited to
use Solely in any specific application identified and/or
implied by Such nomenclature. Furthermore, given the typi
cally endleSS number of manners in which computer pro
grams may be organized into routines, procedures, methods,
modules, objects, and the like, as well as the various
manners in which program functionality may be allocated
among various Software layers that are resident within a
typical computer (e.g., operating Systems, libraries, API's,
applications, applets, etc.), it should be appreciated that the
invention is not limited to the Specific organization and
allocation of program functionality described herein.
0041. The principal components in debugger 24 are illus
trated in FIG. 2, showing the relationship between each of
these components and user program 20. User interface 26
provides the mechanism through which user input may be
received from a user, as well as the mechanism through
which information Such as debugging information can be
presented to the user. Program inspector 28 is used to derive
important information about a program, e.g., what are the
constructors or creators for a particular class of object.
0.042 Execution environment 30, which in the illustrated
implementation is considered part of debugger 24, provides
the underlying platform through which user program 20 is
executed in the debugger. In other applications, the execu
tion environment may be implemented in a separate appli
cation that is interfaced with the debugger.
0.043 Breakpoint manager 32 provides breakpoint man
agement functionality for debugger 24, and it is within this
module that much of the creation breakpoint functionality is
implemented in the illustrated embodiment. It will be appre
ciated that a wide variety of other debugging tools may also
be incorporated into debugger 24, including, for example,
Support for watches (allowing a user to see the current value
for a particular variable), code stepping (allowing the user to
execute a single line or instruction at a time), etc. These
additional functions have been omitted from FIG. 2, how
ever, as they are not particularly relevant to an understanding
of the use of creation breakpoints consistent with the inven
tion.

0044) In the illustrated embodiment, breakpoint manager
32 Supports conventional Statement-based breakpoints, as
well as creation breakpoints consistent with the invention.
Moreover, any type of breakpoint may be associated with a
condition, as is well known in the art. Included within the
breakpoint manager is typically functionality for Setting
breakpoints, removing breakpoints, and processing break
points when they are hit while the object-oriented program
is executed in the execution environment. Creation break
points consistent with the invention may be implemented
more or leSS as extensions to conventional breakpoints in the
illustrated embodiment. However, in other embodiments,
creation breakpoints may be handled completely Separately
from conventional breakpoints.
0.045 AS is also shown in FIG. 2, one or more creation
counters 35 may be accessible by the execution environment
to log or track the number of creations of various types of
objects. AS will be discussed in greater detail below, as an
alternative to utilizing Separate creation counters, the cre

Dec. 8, 2005

ation counters may be stored within breakpoint table 34 and
asSociated with the particular creation breakpoints defined
therein.

0046) Now turning to FIG. 3, an exemplary implemen
tation of breakpoint table 34 is illustrated in greater detail.
Breakpoint table 34 includes a plurality of entries 50, each
including a plurality of fields 52-68. In the illustrated
implementation, breakpoint table 34 defines both conven
tional-type breakpoints, as well as creation breakpoints
consistent with the invention.

0047 Fields 52, 54, 56 and 58 respectively store the
class, file name, Source code line number, and executable
code address that identify a Specific breakpoint, and that
provide a mapping between the location of the breakpoint in
the Source code and in the executable code, e.g., So the
appropriate Source code may be displayed in response to
hitting the breakpoint during execution of the executable
code. It should be appreciated that other combinations of
identifiers may be utilized to identify the position of each
breakpoint in the Source and/or executable code.
0048 Field 60 stores an optional condition to be associ
ated with a breakpoint, and field 62 Stores one or more
actions to be performed in response to hitting the breakpoint,
e.g., initiating a trace operation, halting execution, display
ing debug information, logging debug information to a file
or Socket, etc. Various additional types of conditions and
resulting actions are well understood in the art.
0049) Field 64 identifies whether the breakpoint is a
creation breakpoint. If not Set, it is assumed that the break
point for a given entry is a conventional-type breakpoint.
Otherwise, if field 64 is set to indicate a creation breakpoint,
the entry is treated as a creation breakpoint, and additional
fields 66, 68 are utilized in association therewith.
0050. In particular, field 66 provides a pointer to a creator

list 70, which includes a plurality of entries 72, 74 that are
asSociated with Specific creators for a particular class. Each
entry 72, 74 includes a creator field 76 that identifies the
creator associated with the entry. Each entry also includes
fields 78, 80 and 82, which respectively store the file name,
Source code line number, and executable code address of a
Statement in the creator upon which a breakpoint is Set for
that creator. Field 84 stores whether the particular creator is
Selected by the user, i.e., whether the creator is being
actively monitored for breakpoint hits. In the alternative,
field 84 may be omitted, with the assumption being that each
entry listed in list 70 is an active creator. In the configuration
shown in FIG. 3, however, creators that exist for a particular
class, but which are not monitored for hits thereto, are still
listed, but are essentially ignored during execution.

0051). In addition, as shown in FIG. 3, each entry 50 in
the breakpoint table 34 may also include an optional counter
field 68, which is used to store a creation counter for a
creation breakpoint. Maintenance of a counter in breakpoint
table 34 is an alternative implementation to the use of a
separate creation counter 35 as shown in FIG. 2. Either
implementation may be used in various embodiments con
sistent with the invention.

0052 AS may be appreciated from FIG. 3, creation
breakpoint table 34 presumes that all of the creators for a
particular class are defined in that class. In other embodi
ments, however, creators that have not been overridden from

US 2005/0273765 A1

any Super classes of a particular class may also be incorpo
rated into the creator list for a particular creation breakpoint.
In Such an instance, it may be desirable to include a class
field in each entry 72, 74 of creator list 70.
0053. It will be appreciated that a wide variety of alter
nate data Structures may be utilized to Store the breakpoint
information utilized in connection with creation breakpoints
consistent with the invention. Therefore, the invention is not
limited to the particular data Structures described herein.
0054) To implement creation breakpoints consistent with
the invention, a number of routines are Supported by break
point manager 32 of FIG. 2. FIG. 4, for example, illustrates
a set breakpoint routine 100, which is utilized to set a
breakpoint in the debugger 24 via interaction by a user
through user interface 26 (FIG. 2). Routine 100 may be
initiated via any number of user input operations, e.g., via a
graphical user interface control Such as a button, menu,
pop-up menu, etc., or via a command line command, a
keystroke combination, or other user input operation known
in the art.

0055 Routine 100 begins in block 102 by determining
whether the user has indicated a desire to Set a creation
breakpoint. If not, control passes to block 104, where a
conventional breakpoint is Set in a manner known in the art.
Otherwise, block 102 passes control to block 106 to add the
creation breakpoint, by adding an entry to breakpoint table
34 for the creation breakpoint. Next, block 108 determines
whether the creation breakpoint is a conditional breakpoint.
If so, control passes to block 110 to add a condition based
upon user input, e.g., by Storing the condition in the entry for
the creation breakpoint in breakpoint table 34.
0056. Any type of condition commonly utilized in con
nection with breakpoints may be utilized as a condition for
a creation breakpoint consistent with the invention. More
over, a creation breakpoint may also incorporate a counter
condition whereby the total number of hits to a particular
class of object may be tracked acroSS multiple creators. AS
Such, by Specifying a particular number of creations and/or
an operator, a user may specify that a creation breakpoint be
triggered only upon meeting a particular condition. AS an
example, one possible condition would be that the total
number of object creations meets or exceeds a predeter
mined threshold.

0057) If a conditional breakpoint is not specified, or after
a specified condition has been added to the creation break
point entry, control passes to block 112 to obtain the Selected
class with which to associate the creation breakpoint. Next,
in block 114, the creators for the selected class are identified,
e.g., by utilizing program inspector 28 of debugger 24 to
obtain the list of creators (optionally including those in a
Super class) for the Selected class.
0.058 For example, in a Java programming environment,
program inspector 28 may use Java reflection API's, the use
and configuration of which are known in the art. In other
embodiments, other mechanisms may be used to determine
what creators exist for a particular class. In addition, inher
itance concepts may be utilized in connection with the
creation breakpoints described herein, e.g., as described in
U.S. patent application Ser. No. 09/998,511, filed on Nov.
30, 2001 by Jeremy Alan Arnold et al., entitled “INHER
ITANCE BREAKPOINTS FOR USE IN DEBUGGING

Dec. 8, 2005

OBJECTORIENTED COMPUTER PROGRAMS.”
(ROC920010096US1) which application is incorporated by
reference herein.

0059) Next, block 116 determines whether the user has
Specified that only a Subset of the creators are to be asso
ciated with the creation breakpoint. If So, control passes to
block 118 to present a list of creators to the user for selection
thereby. Block 120 then selects the creators based upon the
selections made by the user. Returning to block 116, if the
user has not Specified to only associate a Subset of creators
with a creation breakpoint, control passes directly to block
122 to select all creators for inclusion with the creation
breakpoint.

0060 Once the creators have been selected in block 120
or 122, control passes to block 124 to add a breakpoint for
each selected creator, whereby routine 100 is then complete.
0061. To implement block 124, conventional-type break
points are typically added at Specific locations in each
creator. However, unlike conventional breakpoints, the
breakpoints Set on each creator are Stored in a creator list 70,
rather than as Separate entries in breakpoint table 34. AS far
as interaction with an object-oriented user program, how
ever, typically the addition of a breakpoint for each Selected
creator occurs in much the same manner, whereby either a
branch instruction to debugger program code, or alterna
tively an invalid instruction that triggers an exception, is
typically inserted into the user program at the Specified
location. Other manners of modifying a user program to
incorporate breakpoints on a temporary basis may also be
used in the alternative.

0062. In the illustrated implementation, the individual
breakpoints associated with a creation breakpoint are typi
cally Set on a particular Statement in each creator, e.g., the
first Statement. Other Statement-based breakpoints, as well
as non-Statement-based breakpoints that are associated with
the creators themselves, may be used in the alternative.
0063 Moreover, it should be appreciated that the popu
lation of data in breakpoint table 34 may occur in a number
of manners consistent with the invention. For example,
entries for each creator may be added to creator list 70 in
block 114 of FIG. 4, with the selected field 84 for each entry
modified in blocks 122 and 120 as appropriate. In addition,
fields 78-82 may only be modified in block 124 for those
Selected creators. In the alternative, each creator may have
a breakpoint Set thereon even if the creator is not Selected,
with functionality in the debugger utilized to ignore the
breakpoint if it is determined that the creator with which it
is associated is not Selected.

0064. Moreover, the manner in which a user may supply
the user input for each of the operations illustrated in FIG.
4 may vary in different embodiments. For example, a user
may be presented with a dialog box upon requesting that a
creation breakpoint be created for a particular class (e.g., by
right-clicking on a class definition and Selecting an appro
priate menu entry on the pop-up menu that is displayed as a
result thereof). The dialog box may include, for example,
fields for entering a condition, Selecting or unselecting
particular creators, etc. AS Such, it should be appreciated that
the operations performed in routine 100 may occur in
different orders, e.g., a user may be presented with a list of
creators initially upon requesting to create a creation break

US 2005/0273765 A1

point, and may be presented with the opportunity to Specify
a condition and Select all or a Subset of the creators in the
same dialog box, with selection of a “OK” button resulting
in the generation of the appropriate breakpoint data. Other
modifications and alternatives will be apparent to one of
ordinary skill in the art.
0065. Once individual breakpoints are set for a particular
creation breakpoint, processing of breakpoints during
debugging of a computer program proceeds in a similar
manner to that for conventional breakpoints. FIG. 5, for
example, illustrates a breakpoint hit routine 130 that is
executed whenever a breakpoint is hit during execution of a
computer program being debugged. Routine 130 begins in
block 132 by determining whether the breakpoint is asso
ciated with a creation breakpoint. This Step may be per
formed, for example, by determining whether the breakpoint
is in a creation list 70, or alternatively, Supplied as a
non-creation entry 50 in breakpoint table 34 (i.e., an entry 50
where the creation flag in field 64 is not set).
0.066 If the breakpoint is not a creation breakpoint, block
132 passes control to block 134 to handle the breakpoint in
a conventional manner. Otherwise, block 132 passes control
to block 136 to increment the counter associated with the
creation breakpoint.
0067 Next, block 138 processes any conditions associ
ated with the creation breakpoint. If no condition is speci
fied, or if a condition is Specified but has not yet been
Satisfied, block 138 terminates without triggering the break
point. If no condition is specified (indicating that the cre
ation breakpoint is unconditional), or if the condition speci
fied for the breakpoint has been Satisfied, control passes to
block 140 to halt program execution and present debugger
information associated with the creation breakpoint, in a
manner Similar to conventional breakpoints. Any additional
actions associated with the creation breakpoint may also be
performed at this time.
0068. Yet another operation that may be performed in
connection with a creation breakpoint is the removal of the
creation breakpoint once a user is Satisfied that no further
debugging with the creation breakpoint is required. FIG. 6
illustrates a remove breakpoint routine 150 that handles the
removal of a creation breakpoint in a similar manner to a
conventional breakpoint, with the exception that additional
StepS are performed to clear the creator list for the creation
breakpoint entry.
0069. In particular, routine 150 begins in block 152 by
determining whether the breakpoint to be removed is a
creation breakpoint. If not, the breakpoint entry therefor is
removed from breakpoint table 34 in a conventional manner,
as shown in block 154. If, however, the breakpoint is a
creation breakpoint, prior to removing the breakpoint entry,
the creator list 70 is removed as well, as shown in block 156.
0070 Therefore, it will be appreciated that, through the
utilization of a creation breakpoint entity, multiple break
points associated with multiple creators can be managed
collectively, i.e., Set and/or removed as a group. Thus, a user
is often freed from the burden of Setting or removing
individual breakpoints to or from particular creators. More
over, as illustrated above in connection with FIG. 5, a
counter can be incremented for each creation of an object of
a particular class, regardless of the creator being used to
create that object.

Dec. 8, 2005

0071. As an example of the operation of debugger 24,
FIG. 7 illustrates in a window 180 a portion of a computer
program 190 including a class definition 192. As shown in
FIG. 7, class 192 includes two constructor methods, or
creators, defined at lines 2-4 and 5-7, respectively. For the
purposes of illustration, class 192 is illustrated as a Java
compatible program. The creator defined at lines 2-4 is a
default constructor method having a call signature of
“MyClass()”, and the creator defined at lines 5-7 is another
constructor method having a call Signature of "MyClass
(int)”, which differs from the default constructor method in
that it accepts a Single integer argument i.
0072 In the exemplary program 190, the main() method
defined in the program creates eleven “MyClass' objects,
with Six of those objects created using the default construc
tor method “MyClass()", and five of the objects created
using the alternate constructor method “MyClass(int)”. Sup
pose, however, that the programmer that developed the
main() method intended that the main loop execute ten
times, rather than the eleven times. For example, Suppose the
programmer intended the terminating condition for the FOR
loop to be “iz10” rather than “iz=10” as is shown in FIG.
7.

0073 Creation breakpoints consistent with the invention
may be utilized in a number of manners to catch this
programming error. For example, an unconditional creation
breakpoint could be set on the MyClass() class, and with
“all creators' specified such that individual breakpoints will
be set on each constructor method. During execution while
under debug, the creation breakpoint would be triggered
eleven times, once for each creation of a “MyClass()”
instance. Were the programmer to manually count the num
ber of times the creation breakpoint is hit, the programmer
would be able to determine that the breakpoint was hit
eleven times, rather than the intended ten times, and take
appropriate corrective action thereafter.
0074. In the alternative, the programmer could set a
conditional creation breakpoint on the “MyClass' class,
Specifying that all creators be tracked, and Specifying a
condition that triggers the breakpoint if the number of
“MyClass' instances is greater than or equal to ten.
0075 FIG. 3, for example, illustrates the resulting entry
50 that might be created in response to a user request to Set
the aforementioned conditional creation breakpoint on the
“MyClass” class. In this instance, the class and file name
fields 52, 54 for the entry specify the class and file name
within which the class is defined. As entry 50 defines a
creation breakpoint, however, typically fields 56 and 58 are
not used, and would thus are left blank. Also, Since a user has
specified a condition, that condition is stored in field 60 as
shown in FIG. 3, and any desired actions are indicated in
field 62. Field 64 specifies that the breakpoint is a creation
breakpoint, and creator list field 66 points to the creator list
70 shown in FIG. 3. Field 68 is initially set at an initial null
value prior to execution of the program under debug.
0076. Within creator list 70 are entries 72, 74, each
asSociated with a particular creator defined in the class.
Entry 72 is associated with the default constructor method
“MyClass()”, which is identified in field 76 for the entry.
Field 78 stores the file name for the creator, and fields 80 and
82 respectively Store the Source code line number and
executable code address of the precise Statement with which

US 2005/0273765 A1

the breakpoint for that entry is associated. Similar informa
tion for the “MyClass(int)” constructor method is stored in
entry 74. Field 84 for each entry 72, 74 also indicates that the
creator is Selected, as in this example it is presumed that the
programmer has requested to track all creators.
0.077 Under this scenario, during execution under debug,
the creation breakpoint would be reached two times, upon
the tenth and eleventh creations of a “Myclass' object. Thus,
if a programmer discovered that he or she was creating more
“My class' objects than expected, the programmer could use
conventional debugging techniques to Step through the code
after the tenth creation to find out why an eleventh creation
was occurring, and correct the error as appropriate.
0078 Various modifications may be made to the illus
trated embodiments without departing from the Spirit and
Scope of the invention. For example, the breakpoints with
which a creation breakpoint is associated may be set on
creators as a whole, rather than on Specific Statements in
those creators. Also, creation breakpoints may be handled
completely Separately from conventional-type breakpoints,
and may not rely upon conventional-type breakpoints within
each creator of a particular class.
0079. Other modifications will be apparent to one of
ordinary skill in the art having the benefit of the instant
disclosure. Therefore, the invention lies in the claims here
inafter appended.

What is claimed is:
1. A computer-implemented method of debugging an

object-oriented computer program, the method comprising:
in response to user input, Setting a creation breakpoint for

a class defined in the object-oriented computer pro
gram, wherein Setting the creation breakpoint includes:
identifying a plurality of creators for the class,
Setting a plurality of breakpoints on the identified

creatorS,

adding an entry for the creation breakpoint in a break
point data Structure;

Storing breakpoint information for each of the plurality
of breakpoints in the breakpoint data structure; and

asSociating the breakpoint information for each of the
plurality of breakpoints with the entry in the break
point data Structure for the creation breakpoint to
asSociate each of the plurality of breakpoints with the
creation breakpoint;

determining that the creation breakpoint has been hit
during debugging by detecting hitting of any of the
plurality of breakpoints, wherein the creation break
point is determined to be hit only in response to
detecting hitting of a breakpoint Set on an identified
creator for the class, and

halting execution of the object-oriented computer pro
gram during debugging in response to determining that
the creation breakpoint has been hit.

2. The method of claim 1, wherein identifying the plu
rality of creators includes identifying every creator for the
class.

3. The method of claim 1, further comprising, after
identifying the plurality of creators, displaying a list of the

Dec. 8, 2005

identified creators and receiving user input to Select a Subset
of identified creators, wherein the plurality of breakpoints
are set on only the Subset of the identified creators.

4. The method of claim 1, wherein the plurality of
breakpoints are collectively set on all of the identified
creators in response to the user input.

5. The method of claim 1, wherein setting the plurality of
breakpoints includes Setting each breakpoint from the plu
rality of breakpoints on a Statement in one of the identified
CreatorS.

6. The method of claim 5, wherein setting each breakpoint
includes inserting debugging program code in the creator on
which Such breakpoint is Set.

7. The method of claim 1, further comprising tracking a
total number of hits to the plurality of breakpoints, wherein
halting execution of the object-oriented computer program
during debugging in response to determining that the cre
ation breakpoint has been hit includes:

determining whether the total number of hits meets a
condition in response to hitting any of the plurality of
breakpoints, wherein the condition is the total number
of hits meeting or exceeding a threshold, and wherein
the total number of hits includes at least one hit from at
least two different breakpoints, and

halting execution of the object-oriented computer pro
gram if the total number of hits meets the condition.

8. The method of claim 1, wherein each creator comprises
a constructor method defined in the class.

9. The method of claim 1, further comprising collectively
removing the creation breakpoint and the plurality of break
points in response to user input.

10. The method of claim 1, wherein storing breakpoint
information for each of the plurality of breakpoints in the
breakpoint data Structure comprises adding an entry for each
breakpoint to a creator list associated with the creation
breakpoint.

11. An apparatus, comprising:

a memory within which resides at least a portion of an
object-oriented computer program; and

program code configured to debug the object-oriented
computer program by:

in response to user input, Setting a creation breakpoint
for a class defined in the object-oriented computer
program, wherein Setting the creation breakpoint
includes:

identifying a plurality of creators for the class,
Setting a plurality of breakpoints on the identified

creators,

adding an entry for the creation breakpoint in a
breakpoint data Structure;

Storing breakpoint information for each of the plu
rality of breakpoints in the breakpoint data Struc
ture; and

asSociating the breakpoint information for each of
the plurality of breakpoints with the entry in the
breakpoint data Structure for the creation break
point to associate each of the plurality of break
points with the creation breakpoint;

US 2005/0273765 A1

determining that the creation breakpoint has been hit
during debugging by detecting hitting of any of the
plurality of breakpoints, wherein the creation break
point is determined to be hit only in response to
detecting hitting of a breakpoint Set on an identified
creator for the class, and

halting execution of the object-oriented computer pro
gram during debugging in response to determining
that the creation breakpoint has been hit.

12. The apparatus of claim 11, wherein the program code
is configured to identify the plurality of creators by identi
fying every creator for the class.

13. The apparatus of claim 11, wherein the program code
is further configured to, after identifying the plurality of
creators, display a list of the identified creators and receive
user input to Select a Subset of identified creators, wherein
the plurality of breakpoints are set on only the subset of the
identified creators.

14. The apparatus of claim 11, wherein the plurality of
breakpoints are collectively set on all of the identified
creators in response to the user input.

15. The apparatus of claim 11, wherein the program code
is configured to Set the plurality of breakpoints by Setting
each breakpoint from the plurality of breakpoints on a
Statement in one of the identified creators.

16. The apparatus of claim 11, wherein the program code
is configured to track a total number of hits to the plurality
of breakpoints, determine whether the total number of hits
meets a condition in response to hitting any of the plurality
of breakpoints, and halt execution of the object-oriented
computer program if the total number of hits meets the
condition, wherein the condition is the total number of hits
meeting or exceeding a threshold, and wherein the total
number of hits includes at least one hit from at least two
different breakpoints.

17. The apparatus of claim 11, wherein the program code
is further configured to collectively remove the creation
breakpoint and the plurality of breakpoints in response to
user input.

18. The apparatus of claim 11, wherein the program code
is further configured to Store breakpoint information for each
of the plurality of breakpoints in the breakpoint data Struc

Dec. 8, 2005

ture by adding an entry for each breakpoint to a creator list
asSociated with the creation breakpoint

19. A program product, comprising:
program code configured to debug an object-oriented

computer program by:
in response to user input, Setting a creation breakpoint

for a class defined in the object-oriented computer
program, wherein Setting the creation breakpoint
includes:

identifying a plurality of creators for the class,
Setting a plurality of breakpoints on the identified

creators,

adding an entry for the creation breakpoint in a
breakpoint data Structure;

Storing breakpoint information for each of the plu
rality of breakpoints in the breakpoint data Struc
ture; and

asSociating the breakpoint information for each of
the plurality of breakpoints with the entry in the
breakpoint data Structure for the creation break
point to associate each of the plurality of break
points with the creation breakpoint;

determining that the creation breakpoint has been hit
during debugging by detecting hitting of any of the
plurality of breakpoints, wherein the creation break
point is determined to be hit only in response to
detecting hitting of a breakpoint Set on an identified
creator for the class, and

halting execution of the object-oriented computer pro
gram during debugging in response to determining
that the creation breakpoint has been hit; and

a signal bearing medium bearing the program code.
20. The program product of claim 19, wherein the signal

bearing medium includes at least one of a transmission
medium and a recordable medium.

