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LINEAR-MODEL PREDICTION WITH
NON-SQUARE PREDICTION UNITS IN
VIDEO CODING

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application 62/260,103, filed Nov. 25, 2015,
and U.S. Provisional Patent Application 62/310,271, filed
Mar. 18, 2016, the entire content of each of which is
incorporated herein by reference.

TECHNICAL FIELD

[0002] This disclosure relates to video encoding and video
decoding.

BACKGROUND
[0003] Digital video capabilities can be incorporated into

a wide range of devices, including digital televisions, digital
direct broadcast systems, wireless broadcast systems, per-
sonal digital assistants (PDAs), laptop or desktop computers,
tablet computers, e-book readers, digital cameras, digital
recording devices, digital media players, video gaming
devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferenc-
ing devices, video streaming devices, and the like. Digital
video devices implement video coding techniques, such as
those described in the standards defined by MPEG-2,
MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10,
Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEVC) standard, and extensions of such standards.
The video devices may transmit, receive, encode, decode,
and/or store digital video information more efficiently by
implementing such video coding techniques.

[0004] Video coding techniques include spatial (intra-
picture) prediction and/or temporal (inter-picture) prediction
to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (e.g.,
a video frame or a portion of a video frame) may be
partitioned into video blocks, which may also be referred to
as treeblocks, coding units (CUs) and/or coding nodes.
Pictures may be referred to as frames, and reference pictures
may be referred to as reference frames.

[0005] Spatial or temporal prediction results in a predic-
tive block for a block to be coded. Residual data represents
pixel differences between the original block to be coded and
the predictive block. For further compression, the residual
data may be transformed from the pixel domain to a trans-
form domain, resulting in residual transform coefficients,
which then may be quantized. Entropy coding may be
applied to achieve even more compression.

SUMMARY

[0006] This disclosure is related to intra and inter predic-
tion partitions, non-square transforms, intra and inter coding
modes for non-square blocks, and associated entropy cod-
ing. Techniques of this disclosure may be used in the context
of advanced video codecs, such as extensions of HEVC or
the next generation of video coding standards. In one
example, Linear Modeling (LM) prediction is adapted for
use with non-square prediction blocks. Particularly, tech-
niques are described for determining parameters used for
LM prediction in the presence of non-square prediction
blocks.
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[0007] In one example, this disclosure describes a method
of decoding video data, the method comprising: receiving,
by a video decoder, a bitstream that comprises an encoded
representation of the video data; reconstructing, by the video
decoder, a set of luma reference samples and a set of chroma
reference samples, the set of luma reference samples com-
prising above luma samples neighboring a top side of a
non-square block of a current picture of the video data and
left luma samples neighboring a left side of the non-square
luma block, the set of chroma reference samples comprising
chroma samples neighboring the top side of a non-square
chroma block of the current picture and chroma samples
neighboring the left side of the non-square chroma block;
reconstructing, by the video decoder, luma samples of the
non-square luma block; sub-sampling, by the video decoder,
the set of luma reference samples such that a total number
of the luma reference samples in the set of luma reference
samples that neighbor a longer side of the non-square luma
block is the same as the total number of luma reference
samples of the set of luma reference samples that neighbor
a shorter side of the non-square luma block; determining, by
the video decoder, a first parameter such that the first
parameter is based on:

Cy~oZx;)/1

where [ is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples; for each respective chroma sample of a predictive
chroma block, determining, by the video decoder, a value of
the respective chroma sample such that the value of the
respective chroma sample is equal to a second parameter
multiplied by a respective reconstructed luma sample cor-
responding to the respective chroma sample, plus the first
parameter, the reconstructed luma sample corresponding to
the respective chroma sample being one of the reconstructed
luma samples of the non-square luma block; and recon-
structing, by the video decoder, based in part on the predic-
tive chroma block, a coding block.

[0008] In another example, this disclosure describes a
method of encoding video data, the method comprising:
receiving, by a video encoder, the video data; reconstructing,
by the video encoder, a set of luma reference samples and a
set of chroma reference samples, the set of luma reference
samples comprising above luma samples neighboring a top
side of a non-square luma block of a current picture of the
video data and left luma samples neighboring a left side of
the non-square luma block, the set of chroma reference
samples comprising chroma samples neighboring a top side
of a non-square chroma block of the current picture and
chroma samples neighboring a left side of the non-square
chroma block; reconstructing, by the video encoder, luma
samples of the non-square luma block; sub-sampling, by the
video encoder, the set of luma reference samples such that
a total number of the luma reference samples in the set of
luma reference samples that neighbor a longer side of the
non-square luma block is the same as a total number of the
luma reference samples of the set of luma reference samples
that neighbor a shorter side of the non-square luma block;
determining, by the video encoder, a first parameter such
that the first parameter is based on:

Cy~oZx;)/1
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where I is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples; for each respective chroma sample of a predictive
chroma block, determining, by the video encoder, a value of
the respective chroma sample such that the value of the
respective chroma sample is equal to a second parameter
multiplied by a respective reconstructed luma sample cor-
responding to the respective chroma sample, plus the first
parameter, the reconstructed luma sample corresponding to
the respective chroma sample being one of the reconstructed
luma samples of the non-square luma block; obtaining, by
the video encoder, based on the predictive chroma block,
residual data; and including, by the video encoder, in a
bitstream comprising an encoded representation of the video
data, data representing the residual data.

[0009] In another example, this disclosure describes an
apparatus for decoding video data, the apparatus compris-
ing: one or more storage media configured to store the video
data; and a video decoder configured to: receive a bitstream
that comprises an encoded representation of the video data;
reconstruct a set of luma reference samples and a set of
chroma reference samples, the set of luma reference samples
comprising above luma samples neighboring a top side of a
non-square block of a current picture of the video data and
left luma samples neighboring a left side of the non-square
luma block, the set of chroma reference samples comprising
chroma samples neighboring the top side of a non-square
chroma block of the current picture and chroma samples
neighboring the left side of the non-square chroma block;
reconstruct luma samples of the non-square luma block;
sub-sample the set of luma reference samples such that a
total number of the luma reference samples in the set of luma
reference samples that neighbor a longer side of the non-
square luma block is the same as the total number of luma
reference samples of the set of luma reference samples that
neighbor a shorter side of the non-square luma block;
determine a first parameter such that the first parameter is
based on:

Cy~aZx,)/1

where I is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples; for each respective chroma sample of a predictive
chroma block, determine a value of the respective chroma
sample such that the value of the respective chroma sample
is equal to a second parameter multiplied by a respective
reconstructed luma sample corresponding to the respective
chroma sample, plus the first parameter, the reconstructed
luma sample corresponding to the respective chroma sample
being one of the reconstructed luma samples of the non-
square luma block; and reconstruct, based in part on the
predictive chroma block, a coding block.

[0010] In another example, this disclosure describes an
apparatus for encoding video data, the apparatus compris-
ing: one or more storage media configured to store the video
data; and a video encoder configured to: receive the video
data; reconstruct a set of luma reference samples and a set
of chroma reference samples, the set of luma reference
samples comprising above luma samples neighboring a top
side of a non-square luma block of a current picture of the

May 25, 2017

video data and left luma samples neighboring a left side of
the non-square luma block, the set of chroma reference
samples comprising chroma samples neighboring a top side
of a non-square chroma block of the current picture and
chroma samples neighboring a left side of the non-square
chroma block; reconstruct luma samples of the non-square
luma block; sub-sample the set of luma reference samples
such that a total number of the luma reference samples in the
set of luma reference samples that neighbor a longer side of
the non-square luma block is the same as a total number of
the luma reference samples of the set of luma reference
samples that neighbor a shorter side of the non-square luma
block; determine a first parameter such that the first param-
eter is based on:

Cy~oZx;)/1

where [ is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples; for each respective chroma sample of a predictive
chroma block, determine a value of the respective chroma
sample such that the value of the respective chroma sample
is equal to a second parameter multiplied by a respective
reconstructed luma sample corresponding to the respective
chroma sample, plus the first parameter, the reconstructed
luma sample corresponding to the respective chroma sample
being one of the reconstructed luma samples of the non-
square luma block; obtain, based on the predictive chroma
block, residual data; and include, in a bitstream comprising
an encoded representation of the video data, data represent-
ing the residual data.

[0011] In another example, this disclosure describes an
apparatus for decoding video data, the apparatus compris-
ing: means for receiving a bitstream that comprises an
encoded representation of the video data; means for recon-
structing a set of luma reference samples and a set of chroma
reference samples, the set of luma reference samples com-
prising above luma samples neighboring a top side of a
non-square block of a current picture of the video data and
left luma samples neighboring a left side of the non-square
luma block, the set of chroma reference samples comprising
chroma samples neighboring the top side of a non-square
chroma block of the current picture and chroma samples
neighboring the left side of the non-square chroma block;
means for reconstructing luma samples of the non-square
luma block; means for sub-sampling the set of luma refer-
ence samples such that a total number of the luma reference
samples in the set of luma reference samples that neighbor
a longer side of the non-square luma block is the same as the
total number of luma reference samples of the set of luma
reference samples that neighbor a shorter side of the non-
square luma block; means for determining a first parameter
such that the first parameter is based on:

Cy~oZx;)/1

where [ is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples; means for determining, for each respective chroma
sample of a predictive chroma block, a value of the respec-
tive chroma sample such that the value of the respective
chroma sample is equal to a second parameter multiplied by
a respective reconstructed luma sample corresponding to the
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respective chroma sample, plus the first parameter, the
reconstructed luma sample corresponding to the respective
chroma sample being one of the reconstructed luma samples
of the non-square luma block; and means for reconstructing,
based in part on the predictive chroma block, a coding block.

[0012] In another example, this disclosure describes an
apparatus for encoding video data, the apparatus compris-
ing: means for receiving the video data; means for recon-
structing a set of luma reference samples and a set of chroma
reference samples, the set of luma reference samples com-
prising above luma samples neighboring a top side of a
non-square block of a current picture of the video data and
left luma samples neighboring a left side of the non-square
luma block, the set of chroma reference samples comprising
chroma samples neighboring the top side of a non-square
chroma block of the current picture and chroma samples
neighboring the left side of the non-square chroma block;
means for reconstructing luma samples of the non-square
luma block; means for sub-sampling the set of luma refer-
ence samples such that a total number of the luma reference
samples in the set of luma reference samples that neighbor
a longer side of the non-square luma block is the same as the
total number of luma reference samples of the set of luma
reference samples that neighbor a shorter side of the non-
square luma block; means for determining a first parameter
such that the first parameter is based on:

Cy~aZx,)/1

where I is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples; means for determining, for each respective chroma
sample of a predictive chroma block, a value of the respec-
tive chroma sample such that the value of the respective
chroma sample is equal to a second parameter multiplied by
a respective reconstructed luma sample corresponding to the
respective chroma sample, plus the first parameter, the
reconstructed luma sample corresponding to the respective
chroma sample being one of the reconstructed luma samples
of'the non-square luma block; means for obtaining, based on
the predictive chroma block, residual data; and means for
including, in a bitstream comprising an encoded represen-
tation of the video data, data representing the residual data.

[0013] In another example, this disclosure describes a
computer-readable data storage medium having instructions
stored thereon that, when executed, configure an apparatus
for decoding video data to: receive a bitstream that com-
prises an encoded representation of the video data; recon-
struct a set of luma reference samples and a set of chroma
reference samples, the set of luma reference samples com-
prising above luma samples neighboring a top side of a
non-square block of a current picture of the video data and
left luma samples neighboring a left side of the non-square
luma block, the set of chroma reference samples comprising
chroma samples neighboring the top side of a non-square
chroma block of the current picture and chroma samples
neighboring the left side of the non-square chroma block;
reconstruct luma samples of the non-square luma block;
sub-sample the set of luma reference samples such that a
total number of the luma reference samples in the set of luma
reference samples that neighbor a longer side of the non-
square luma block is the same as the total number of luma
reference samples of the set of luma reference samples that
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neighbor a shorter side of the non-square luma block;
determine a first parameter such that the first parameter is
based on:

Cy~oZx;)/1

where [ is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples; for each respective chroma sample of a predictive
chroma block, determine a value of the respective chroma
sample such that the value of the respective chroma sample
is equal to a second parameter multiplied by a respective
reconstructed luma sample corresponding to the respective
chroma sample, plus the first parameter, the reconstructed
luma sample corresponding to the respective chroma sample
being one of the reconstructed luma samples of the non-
square luma block; and reconstruct, based in part on the
predictive chroma block, a coding block.

[0014] In another example, this disclosure describes a
computer-readable data storage medium having instructions
stored thereon that, when executed, configure an apparatus
for encoding video data to: receive the video data; recon-
struct a set of luma reference samples and a set of chroma
reference samples, the set of luma reference samples com-
prising above luma samples neighboring a top side of a
non-square block of a current picture of the video data and
left luma samples neighboring a left side of the non-square
luma block, the set of chroma reference samples comprising
chroma samples neighboring the top side of a non-square
chroma block of the current picture and chroma samples
neighboring the left side of the non-square chroma block;
reconstruct luma samples of the non-square luma block;
sub-sample the set of luma reference samples such that a
total number of the luma reference samples in the set of luma
reference samples that neighbor a longer side of the non-
square luma block is the same as the total number of luma
reference samples of the set of luma reference samples that
neighbor a shorter side of the non-square luma block;
determine a first parameter such that the first parameter is
based on:

Cy~oZx;)/1

where [ is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples; for each respective chroma sample of a predictive
chroma block, determine a value of the respective chroma
sample such that the value of the respective chroma sample
is equal to a second parameter multiplied by a respective
reconstructed luma sample corresponding to the respective
chroma sample, plus the first parameter, the reconstructed
luma sample corresponding to the respective chroma sample
being one of the reconstructed luma samples of the non-
square luma block; obtain, based on the predictive chroma
block, residual data; and include, in a bitstream comprising
an encoded representation of the video data, data represent-
ing the residual data.

[0015] The details of one or more aspects of the disclosure
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
techniques described in this disclosure will be apparent from
the description, drawings, and claims.
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BRIEF DESCRIPTION OF DRAWINGS

[0016] FIG. 1 is a block diagram illustrating an example
video encoding and decoding system configured to imple-
ment techniques of the disclosure.

[0017] FIG. 2A is a conceptual diagram illustrating an
example transform scheme based on a residual quadtree in
High Efficiency Video Coding (HEVC).

[0018] FIG. 2B is a conceptual diagram illustrating a
residual quadtree for the coding unit of FIG. 2A.

[0019] FIG. 3 is a conceptual diagram illustrating an
example coeflicient scan based on coefficient groups in
HEVC.

[0020] FIG. 4 is a conceptual diagram illustrating an
example of intra prediction for a 16x16 block.

[0021] FIG. 5 is a conceptual diagram illustrating an
example of 35 intra prediction modes defined in HEVC.
[0022] FIG. 6 is a conceptual diagram illustrating a planar
mode defined in HEVC.

[0023] FIG. 7 is a conceptual diagram of an example
angular mode defined in HEVC.

[0024] FIG. 8 is a conceptual diagram of partition modes
for splitting a coding unit for inter prediction in HEVC.
[0025] FIG. 9 is a conceptual diagram of short distance
intra prediction (SDIP) unit partitions.

[0026] FIG. 10 is a conceptual diagram of a 16x4 coeffi-
cient matrix scanned and reorganized into an 8x8 matrix.

[0027] FIG. 11 is a conceptual diagram of 64 intra pre-
diction modes.
[0028] FIG. 12A is a conceptual diagram of boundary

filters for intra mode 34.

[0029] FIG. 12B is a conceptual diagram of boundary
filters for intra mode 30-33.

[0030] FIG. 13 is a conceptual diagram illustrating
example locations of samples used for derivation of Linear
Model (LM) parameters o and f3.

[0031] FIG. 14 is a conceptual diagram illustrating an
example of luma positions and chroma positions for down-
sampling samples of a reconstructed luma block of a current
prediction unit (QQ).

[0032] FIG. 15 is a conceptual diagram illustrating an
example of luma positions and chroma positions for down-
sampling samples of a luma block for generating a predic-
tive block.

[0033] FIG. 16 is a conceptual diagram illustrating an
nRx2N prediction mode with an NxN transform.

[0034] FIG. 17 is a conceptual diagram illustrating a
non-square quadtree (NSQT) for 2NxN, 2NxnD, and
2NxnU prediction modes.

[0035] FIG. 18 is a conceptual diagram illustrating a
NSQT for Nx2N, nRx2N, and n[.x2N prediction modes.
[0036] FIG. 19 illustrates neighboring pixels used for
estimating parameters in an [llumination Compensation (IC)
model.

[0037] FIG. 20 is a conceptual diagram illustrating
example neighboring pixels used to estimate parameters in
an IC model, in which a reference block of a current coding
unit is found by using a current prediction unit’s disparity or
motion vector.

[0038] FIG. 21 is a conceptual diagram illustrating an
example transform structure for a partition size equal to
2NxN.

[0039] FIG. 22 is a conceptual diagram illustrating a
transform structure for a partition size equal to NxN/4(U), in
accordance with a technique of this disclosure.
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[0040] FIG. 23 is a conceptual diagram illustrating a
transform structure for a partition size equal to NxN/4(U), in
accordance with a technique of this disclosure.

[0041] FIG. 24 is a block diagram illustrating an example
video encoder that may implement the techniques of this
disclosure.

[0042] FIG. 25 is a block diagram illustrating an example
video decoder that is configured to implement the techniques
of this disclosure.

[0043] FIG. 26 is a block diagram illustrating an example
video encoder that supports [.M-based encoding in accor-
dance with a technique of this disclosure.

[0044] FIG. 27 is a block diagram illustrating an example
video decoder that supports [L.M-based decoding in accor-
dance with a technique of this disclosure.

[0045] FIG. 28 is a flowchart illustrating an example
operation of a video encoder in accordance with a LM-based
coding technique of this disclosure.

[0046] FIG. 29 is a flowchart illustrating an example
operation of a video decoder in accordance with a LM-based
coding technique of this disclosure.

[0047] FIG. 30 is a flowchart illustrating an example
operation of a video encoder, in accordance with a quanti-
zation technique of this disclosure.

[0048] FIG. 31 is a flowchart illustrating an example
operation of a video decoder, in accordance with a quanti-
zation technique of this disclosure.

[0049] FIG. 32 is a flowchart illustrating an example
operation of a video encoder, in accordance with a technique
of this disclosure that uses IC.

[0050] FIG. 33 is a flowchart illustrating an example
operation of a video decoder, in accordance with a technique
of this disclosure that uses IC.

[0051] FIG. 34 is a flowchart illustrating an example
operation of a video encoder, in accordance with a technique
of this disclosure that uses a flexible residual tree.

[0052] FIG. 35 is a flowchart illustrating an example
operation of a video decoder, in accordance with a technique
of this disclosure that uses a flexible residual tree.

DETAILED DESCRIPTION

[0053] In general, this disclosure is related to intra and
inter prediction partitions, non-square transforms, intra and
inter coding modes for non-square blocks, and associated
entropy coding. Techniques of this disclosure may be used
in the context of advanced video codecs, such as extensions
of High Efficiency Video Coding (HEVC) or the next
generation of video coding standards.

[0054] In HEVC, a video coder (i.e., a video encoder or a
video decoder) partitions a coding unit (CU) of a picture into
one or more prediction units (PUs). The video coder uses
intra prediction or inter prediction to generate predictive
blocks for each PU of the CU. The residual data of the CU
represents differences between the predictive blocks for the
PUs of the CU and an original coding block of the CU. In
instances where the CU is intra predicted (i.e., the predictive
blocks for the PUs of the CU are generated using intra
prediction), the residual data of the CU may be partitioned
into one or more square-shaped transform units (TUs).
However, in instances where the CU is inter predicted (i.e.,
the predictive blocks for the PUs of the CU are generated
using inter prediction), the residual data of the CU may be
partitioned into one or more square or non-square TUs. In
this disclosure, references to shapes of units (e.g., CUs, PUs,
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TUs) may refer to the shapes of corresponding blocks. Thus,
a non-square PU may be interpreted as referring to a
non-square prediction block, a non-square TU may be
interpreted as referring to a non-square transform block, and
vice versa. Furthermore, it is noted that a prediction block
need not be tied to the concept of a PU as PU is defined in
HEVC, but rather have the meaning of a block of samples
on which a prediction (e.g., inter prediction, intra prediction)
is performed. Similarly, a transform block need not be tied
to the concept of a TU as TU is defined in HEVC, but rather
have the meaning of a block of samples on which a trans-
form is applied.

[0055] As described below, the introduction of non-square
TUs may introduce certain problems when used with par-
ticular coding tools.

[0056] For example, linear modeling (LM) prediction
mode is a technique for reducing cross-component correla-
tion that was studied during development of HEVC. When
a video coder uses the LM prediction mode, the video coder
predicts chroma samples of a PU based on reconstructed
luma samples of a PU of a CU. The chroma samples of a PU
are chroma samples of a chroma predictive block of the PU.
Example types of chroma samples include Cb samples and
Cr samples. The video coder may generate the reconstructed
luma samples of the PU by summing samples of a luma
predictive block of the PU with corresponding luma residual
samples of the PU.

[0057] In particular, when a video coder uses the LM
prediction mode, the video coder may determine a predicted
chroma sample of the PU at position (i, j) as arec;(i,j)+p,
where rec;(i,j) is a reconstructed luma sample of the PU at
position (i, j) and « and [ are parameters. In some cases,
such as in the 4:2:0 color format, one MxK chroma block
corresponds to an 2Mx2K luma block, in this case, rec,(i.j)
indicates the value located at (i,j) of a down-sampled version
(with MxK) of the 2Mx2K luma block. The video coder
determines the value of o and  based on the values of
reconstructed luma reference samples and reconstructed
chroma reference samples. The reconstructed luma refer-
ence samples and the reconstructed chroma reference
samples are samples along the top and left sides of the PU.
The formulas for determining f§ involve a division operation
by the total number of reference samples (denoted I, which
is equal to the summation of M and K). In typical cases, M
and K are equal and can be represented by 2/, in HEVC, 1 is
a positive integer value. So long as the prediction block is
square, | is equal to 2™, where m may vary for different
prediction block sizes. Thus, instead of performing a divi-
sion operation to divide by I, the video coder may perform
a right shift operation when calculating the value of . Right
shift operations are significantly faster and less complex to
implement than division operations. In this disclosure, ref-
erences to sizes of various types of blocks, such as CUs,
TUs, and PUs, refer to the sizes of coding blocks, transform
blocks, and prediction blocks of the CUs, TUs, and PUs,
respectively. Furthermore, in this disclosure, references to
the sides of various types of video coding units, such as CUs,
TUs, and PUs, refer to sides of blocks (e.g., coding blocks,
transform blocks, prediction/predictive blocks) correspond-
ing to the various types of blocks.

[0058] However, if a luma block (e.g., a luma prediction
block of a PU) is not square (e.g., M is equal to 12 and K
is equal to 16), I is not always equal to 2”. Hence, if the luma
block is not square, it may not be possible to use a right shift
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operation in place of the division operation when calculating
the value of . Thus, the video coder may need to implement
a costly division operation to calculate the value of f.
[0059] This disclosure describes a technique that may
eliminate the need to implement a division operation when
calculating the value of § when using the LM prediction
mode for a non-square blocks. In some cases, even for a
square PU wherein M is equal to K but M is not a power of
2, the technique described here may also be applicable. In
accordance with an example of this technique, a video coder
may reconstruct a set of luma reference samples and a set of
chroma reference samples. The set of luma reference
samples may comprise luma samples neighboring a top side
of'a non-square luma block of a current picture of the video
data and luma samples neighboring a left side of the non-
square luma block. The non-square luma block may be a
luma prediction block of a PU. Hence, the PU may be a
considered a non-square PU. The set of chroma reference
samples may comprise chroma samples neighboring the top
side of a non-square chroma block and chroma samples
neighboring the left side of the non-square chroma block.
The non-square chroma block may be a chroma prediction
block of the PU. Additionally, the video coder may recon-
struct luma samples of the non-square prediction block.
Furthermore, the video coder may sub-sample the set of
luma reference samples such that a total number of luma
reference samples in the set of luma reference samples that
neighbor a longer side of the non-square luma block is the
same as a total number of luma reference samples of the set
of' luma reference samples that neighbor a shorter side of the
non-square luma block. The video coder may determine a
first parameter equal to:

_ sz; " Vi —ZX; -Ey;
@= I2x; - x; — Zx; - Zx;

where [ is a total number of reference samples in the set of
the luma reference samples, x, is a luma reference sample in
the set of luma reference samples, and y, is a chroma
reference sample in the set of chroma reference samples.
Additionally, the video coder may determine a second
parameter equal to:

p=Cy-aZx)/I

For each respective chroma sample of a predictive chroma
block, the video coder may determine a value of the respec-
tive chroma sample such that the value of the respective
chroma sample is equal to o multiplied by a respective
reconstructed luma sample corresponding to the respective
chroma sample, plus . The predictive chroma block may be
a predictive chroma block for the non-square PU. The video
coder may reconstruct, based in part on the predictive
chroma block, a coding block.

[0060] In the example above, by sub-sampling the set of
luma reference samples such that the total number of luma
reference samples that neighbor the longer side of the
non-square luma block is the same as the total number of
luma reference samples that neighbor a shorter side of the
non-square luma block, the video coder may ensure that the
total number of reference samples in the set of luma refer-
ence samples is a power of 2. Hence, the video coder may
be able to use a right shift operation instead of a division
operation when calculating the value of . Therefore, a video
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coder implementing the example above may be less complex
and/or faster than a video decoder forced to use a division
operation when calculating the value of . It is noted
however that a video coder may perform the actions
described in the example above using a division operation
instead of a shift operation, although such a video coder may
not have the advantages of using the shift operation instead
of the division operation. In some examples, the reference
samples that neighbor a short or long side of the non-square
prediction block may be unavailable, in this case, there may
be no need to perform the sub-sampling process to available
reference samples located at the other side.

[0061] In HEVC, a video encoder applies a transform to
blocks of residual data (i.e., transform blocks) to convert the
blocks of residual data into blocks of transform coefficients.
At a high level, the video encoder may generate a block of
transform coefficients (i.e., a transform coefficient block), by
first generating a block of intermediate values by applying a
N-point 1-dimension DCT transform to columns of the
transform block. N is equal to the height and width of the
transform block. The video encoder may then generate the
block of transform coefficients by applying the same N-point
1-dimensional DCT transform to the rows of the block of
intermediate values. A video decoder inverses the transform
in a similar way to recover the transform block.

[0062] As one can see from the discussion above, the
process of applying the transform in HEVC is reliant on
transform blocks being square. However, it may be desirable
to have non-square transform blocks. For instance, com-
pression performance may be reduced when the boundaries
of transform blocks cross boundaries of inter or intra pre-
dictive blocks. The use of non-square predictive blocks may
be valuable to capture objects that do not fall into square
areas. Therefore, non-square predictive blocks and/or non-
square transforms may be useful in terms of coding perfor-
mance improvement. A transform matrix coefficient is
defined with a denominator equal to VN if the transform
matrix coefficient is a N-point 1-dimension DCT transform.
Previous to this disclosure, the denominator vN was con-
sidered as the normalization factor and implemented by a
right shift in a quantization process. Taking a 2-dimension
DCT transform into consideration, for example, a KxL
transform, the normalization factor would be (VK*yT). If N
is defined by the one satisfying the equation log 2(N*N)=
((log 2(K)+log 2(L))>>1)<<1), the ratio of utilized normal-
ization factor (sqrt(N)*sqrt(N)) and the real normalization
factor (VK*vL) would be 1/4/2. Directly applying a square
transform (e.g., a N-point transform applied to both columns
and rows) to a non-square transform block may change the
total energy (i.e., the sum of squares of all transformed
coeflicients after quantization) in the resulting transform
coeflicient block due to the increased normalization factor,
which results in reduced compression performance.

[0063] As described in detail elsewhere in this disclosure,
for a transform block of size KxL, the video encoder
multiplying the transform coefficients by v2 when (log
2(K)+log 2(1)) is odd, and the video decoder dividing the
transform coefficients by V2 when (log 2(K)+log 2(L)) is
odd may address this problem.

[0064] 3D-HEVC is an extension of HEVC for 3-dimen-
sional (3D) video data. 3D-HEVC provides for multiple
views of the same scene from different viewpoints. The
standardization efforts for 3D-HEVC include the standard-
ization of a multi-view video codec based on HEVC. In
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3D-HEVC, inter-view prediction based on reconstructed
view components (i.e., reconstructed pictures) from different
views is enabled. Furthermore, 3D-HEVC implements inter-
view motion prediction and inter-view residual prediction.
[0065] The pictures of each view that represent the same
time instance of video include similar video content. How-
ever, the video content of views may be displaced spatially
relative to one another. In particular, the video content of the
views may represent different perspectives on the same
scene. For example, a video block in a picture in a first view
may include video content that is similar to a video block in
a picture in a second view. In this example, the location of
the video block in the picture in the first view and the
location of the video block in the picture in the second view
may be different. For example, there may be some displace-
ment between the locations of the video blocks in the
different views.

[0066] A disparity vector for a video block provides a
measure of this displacement. For example, a video block of
a picture in a first view may be associated with a disparity
vector that indicates the displacement of a corresponding
video block in a picture in a second view.

[0067] Because of different camera settings or different
distances from light sources, pictures corresponding to the
same time instance, but in different views, may contain
nearly the same image, but objects in one of the pictures may
be brighter than corresponding objects in the other picture.
Ilumination compensation (IC) is a technique implemented
in 3D-HEVC for compensating for such differences in
illumination between views when performing inter-view
prediction. In 3D-HEVC, a video coder determines a dis-
parity vector for a current PU of a current CU of a current
picture. In addition, the video coder may calculate two IC
parameters for the current CU. This disclosure denotes the
IC parameters as a and b. Additionally, for each respective
sample of a luma predictive block of the current PU, the
video coder calculates:

U, jy=a*r(i+dv,, j+dv,+b)

In the equation above, p(i, j) is the respective sample of the
luma predictive block of the current PU, (i, j) are coordinates
indicating a location of the respective sample relative to a
top-left corner of the current picture, dv, is a horizontal
component of the disparity vector for the current PU, dv,, is
a vertical component of the disparity vector for the current
PU, and a and b are the IC parameters.

[0068] As described in greater detail elsewhere in this
disclosure, the formula defining the IC parameter b in
3D-HEVC involves a division operation by the number of
reference samples neighboring the current CU” s top and left
sides. In 3D-HEVC, the number of reference samples neigh-
boring the current CU’s top and left sides is always a power
of 2. Consequently, the division operation in the formula
defining the IC parameter b may be implemented using a
right-shift operation. As described elsewhere in this disclo-
sure, a right-shift operation may be significantly less com-
plicated to implement than a division operation and may be
significantly faster than implementing a division operation.
[0069] For 2-dimension video coding, as described in H.
Liu, “Local Illumination Compensation,” ITU—Telecom-
munications Standardization Sector, Study Group 16 Ques-
tion 6, Video Coding Experts Group (VCEG), 52”4 Meeting,
19-26 Jun. 2015, Warsaw, Poland, document VCEG-AZ06
(hereinafter, “VCEG-AZ06), Local Illumination Compen-
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sation (LIC) is enabled or disabled adaptively for each
inter-mode coded coding unit (CU), and LIC is based on a
linear model for illumination changes, using a scaling factor
a and an offset b. When LIC applies for a CU, for each
PU/sub-PU belonging to the CU, LIC parameters are
derived in a way that uses subsampled (2:1 subsampling)
neighboring samples of the CU and the corresponding pixels
(identified by motion information of the current PU/sub-PU)
in the reference picture. For a CU with size equal to NxN,
the total number of boundary pixels used in parameter
calculation is N instead of 2N. An example is illustrated in
FIG. 20. The LIC parameters are derived and applied for
each prediction direction separately. A least square error
method is employed to derive the parameters a and b based
on the abovementioned neighboring samples.

[0070] IC was only used when a CU only has a single PU.
However, it may be desirable to use IC in instances where
a CU has multiple PUs, including instances where the CU is
partitioned into 2 or 3 PUs and/or the CU is partitioned
asymmetrically. In such instances, the number of reference
samples neighboring the current CU’s top and left sides may
no longer be a power of 2. Therefore, it may not be possible
to calculate the IC parameter b using a right-shift operation.
Rather, the video coder may need to use a slower and more

complicated division operation to calculate the IC parameter
b.

[0071] To address this issue, a video coder may sub-
sample a first set of reference samples to generate a first
sub-sampled set of reference samples that includes a total of
2™ reference samples, where m is an integer. In this disclo-
sure, the terms sub-sampling indicates selection of one or
more samples from a set of samples and down-sampling
indicates a filtering process wherein several reference
samples may be used together to derive a filtered sample.
The set of reference samples may comprise samples outside
the non-square predictive block of a PU along a left side and
a top side of the non-square predictive block. Hence, the
reference samples may also be referred to herein as neighbor
samples or neighboring samples. Additionally, the video
coder may sub-sample a second set of reference samples to
generate a second sub-sampled set of reference samples that
includes a total of 2™ reference samples, where m is an
integer. The second set of reference samples may comprise
samples outside a reference block (e.g., an inter-view ref-
erence block or temporal reference block) along a left side
and a top side of the reference block. The video coder may
then determine at least the IC parameter b based on the first
sub-sampled set of reference samples and the second sub-
sampled set of reference samples. Because the first sub-
sampled set of reference samples and the second sub-
sampled set of reference samples each include 2™ samples,
the video coder may use the right shift operation to calculate
the IC parameter b instead of a division operation. In this
way, the techniques of this disclosure may decrease com-
plexity of the video coder and/or accelerate video coding.

[0072] As mentioned above, the introduction of non-
square TUs may introduce certain problems. For example,
previous techniques of partitioning a CU into TUs followed
a quad-tree splitting pattern, even if the PUs of the CU are
not square. In this disclosure, a quad-tree may also be
referred to as a quarter-tree. Always using a quad-tree
splitting pattern may result in sub-optimal video data com-
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pression performance, especially if the quad-tree splitting
pattern does not align the sides of the TUs with sides of the
PUs of the CU.

[0073] Hence, in accordance with a technique of this
disclosure, a transform tree of a CU is not restricted to the
quad-tree splitting pattern. Rather, a node in the transform
tree may have two child nodes. Thus, in one example, a
video decoder may determine a CU is partitioned into TUs
based on a tree structure. In this example, the video decoder
may determine that a node in the tree structure has exactly
two child nodes in the tree structure. In this example, a root
node of the tree structure corresponds to a coding block of
the CU, each respective non-root node of the tree structure
corresponds to a respective block that is a partition of a
block that corresponds to a parent node of the respective
non-root node, and leaf nodes of the tree structure corre-
spond to the TUs of the CU. In some examples, nodes in the
transform tree may have 2 or 4 child nodes. The flexibility
of a node to have 2 or 4 child nodes may increase video
coding compression performance.

[0074] FIG. 1 is a block diagram illustrating an example
video encoding and decoding system 10 that may utilize
techniques of this disclosure. As shown in FIG. 1, system 10
includes a source device 12 that provides encoded video data
to be decoded at a later time by a destination device 14. In
particular, source device 12 provides the video data to
destination device 14 via a computer-readable medium 16.
Source device 12 and destination device 14 may comprise
any of a wide range of devices, including desktop comput-
ers, notebook (i.e., laptop) computers, tablet computers,
set-top boxes, telephone handsets such as so-called “smart”
phones, tablet computers, televisions, cameras, display
devices, digital media players, video gaming consoles, video
streaming device, or the like. In some cases, source device
12 and destination device 14 may be equipped for wireless
communication.

[0075] Inthe example of FIG. 1, source device 12 includes
a video source 18, a storage medium 19 configured to store
video data, a video encoder 20, and an output interface 22.
Destination device 14 includes an input interface 28, a
storage medium 29 configured to store video data, a video
decoder 30, and a display device 32. In other examples, a
source device and a destination device may include other
components or arrangements. For example, source device 12
may receive video data from an external video source, such
as an external camera. Likewise, destination device 14 may
interface with an external display device, rather than includ-
ing an integrated display device.

[0076] The illustrated system 10 of FIG. 1 is merely one
example. Techniques for processing video data may be
performed by any digital video encoding and/or decoding
device. Although generally the techniques of this disclosure
are performed by a video encoding device, the techniques
may also be performed by a video encoder/decoder, typi-
cally referred to as a “CODEC.” Source device 12 and
destination device 14 are merely examples of such coding
devices in which source device 12 generates coded video
data for transmission to destination device 14. In some
examples, devices 12, 14 may operate in a substantially
symmetrical manner such that each of devices 12, 14 include
video encoding and decoding components. Hence, system
10 may support one-way or two-way video transmission
between video devices 12, 14, e.g., for video streaming,
video playback, video broadcasting, or video telephony.
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[0077] Video source 18 of source device 12 may include
a video capture device, such as a video camera, a video
archive containing previously captured video, and/or a video
feed interface to receive video data from a video content
provider. As a further alternative, video source 18 may
generate computer graphics-based data as the source video,
or a combination of live video, archived video, and com-
puter-generated video. In some cases, source device 12 and
destination device 14 may form so-called camera phones or
video phones. Source device 12 may comprise one or more
data storage media (e.g., storage media 19) configured to
store the video data. The techniques described in this dis-
closure may be applicable to video coding in general, and
may be applied to wireless and/or wired applications. In
each case, the captured, pre-captured, or computer-gener-
ated video may be encoded by video encoder 20. Output
interface 22 may then output the encoded video information
onto computer-readable medium 16.

[0078] Output interface 22 may comprise various types of
components or devices. For example, output interface 22
may comprise a wireless transmitter, a modem, a wired
networking component (e.g., an Ethernet card), or another
physical component. In examples where output interface 22
comprises a wireless receiver, output interface 22 may be
configured to receive data, such as the bitstream, modulated
according to a cellular communication standard, such as 4G,
4G-LTE, LTE Advanced, 5G, and the like. In some examples
where output interface 22 comprises a wireless receiver,
output interface 22 may be configured to receive data, such
as the bitstream, modulated according to other wireless
standards, such as an IEEE 802.11 specification, an IEEE
802.15 specification (e.g., ZigBee™), a Bluetooth™ stan-
dard, and the like. In some examples, circuitry of output
interface 22 may be integrated into circuitry of video
encoder 20 and/or other components of source device 12.
For example, video encoder 20 and output interface 22 may
be parts of a system on a chip (SoC). The SoC may also
include other components, such as a general purpose micro-
processor, a graphics processing unit, and so on.

[0079] Destination device 14 may receive the encoded
video data to be decoded via computer-readable medium 16.
Computer-readable medium 16 may comprise any type of
medium or device capable of moving the encoded video data
from source device 12 to destination device 14. In one
example, computer-readable medium 16 may comprise a
communication medium to enable source device 12 to
transmit encoded video data directly to destination device 14
in real-time. The encoded video data may be modulated
according to a communication standard, such as a wireless
communication protocol, and transmitted to destination
device 14. The communication medium may comprise any
wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmis-
sion lines. The communication medium may form part of a
packet-based network, such as a local area network, a
wide-area network, or a global network such as the Internet.
The communication medium may include routers, switches,
base stations, or any other equipment that may be useful to
facilitate communication from source device 12 to destina-
tion device 14. Destination device 14 may comprise one or
more data storage media configured to store encoded video
data and/or decoded video data.

[0080] In some examples, output interface 22 may output
encoded data to a storage device. Similarly, input interface
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28 may access encoded data from the storage device. The
storage device may include any of a variety of distributed or
locally accessed data storage media such as a hard drive,
Blu-ray discs, DVDs, CD-ROMs, flash memory, volatile or
non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example,
the storage device may correspond to a file server or another
intermediate storage device that may store the encoded
video generated by source device 12. Destination device 14
may access stored video data from the storage device via
streaming or download. The file server may be any type of
server capable of storing encoded video data and transmit-
ting that encoded video data to the destination device 14.
Example file servers include a web server (e.g., for a
website), a file transfer protocol (FTP) server, network
attached storage (NAS) devices, or a local disk drive.
Destination device 14 may access the encoded video data
through any standard data connection, including an Internet
connection. This may include a wireless channel (e.g., a
Wi-Fi connection), a wired connection (e.g., DSL, cable
modem, etc.), or a combination of both that is suitable for
accessing encoded video data stored on a file server. The
transmission of encoded video data from the storage device
may be a streaming transmission, a download transmission,
or a combination thereof.

[0081] The techniques may be applied to video coding in
support of any of a variety of multimedia applications, such
as over-the-air television broadcasts, cable television trans-
missions, satellite television transmissions, Internet stream-
ing video transmissions, such as dynamic adaptive stream-
ing over HTTP (DASH), digital video that is encoded onto
a data storage medium, decoding of digital video stored on
a data storage medium, or other applications. In some
examples, system 10 may be configured to support one-way
or two-way video transmission to support applications such
as video streaming, video playback, video broadcasting,
and/or video telephony.

[0082] Computer-readable medium 16 may include tran-
sient media, such as a wireless broadcast or wired network
transmission, or storage media (that is, non-transitory stor-
age media), such as a hard disk, flash drive, compact disc,
digital video disc, Blu-ray disc, or other computer-readable
media. In some examples, a network server (not shown) may
receive encoded video data from source device 12 and
provide the encoded video data to destination device 14,
e.g., via network transmission. Similarly, a computing
device of a medium production facility, such as a disc
stamping facility, may receive encoded video data from
source device 12 and produce a disc containing the encoded
video data. Therefore, computer-readable medium 16 may
be understood to include one or more computer-readable
media of various forms.

[0083] Input interface 28 of destination device 14 receives
information from computer-readable medium 16. Input
interface 28 may comprise various types of components or
devices. For example, input interface 28 may comprise a
wireless receiver, a modem, a wired networking component
(e.g., an Ethernet card), or another physical component. In
examples where input interface 28 comprises a wireless
receiver, input interface 28 may be configured to receive
data, such as the bitstream, modulated according to a cellular
communication standard, such as 4G, 4G-LTE, LTE
Advanced, 5G, and the like. In some examples where input
interface 28 comprises a wireless receiver, input interface 28
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may be configured to receive data, such as the bitstream,
modulated according to other wireless standards, such as an
IEEE 802.11 specification, an IEEE 802.15 specification
(e.g., ZigBee™), a Bluetooth™ standard, and the like. In
some examples, circuitry of input interface 28 may be
integrated into circuitry of video decoder 30 and/or other
components of destination device 14. For example, video
decoder 30 and input interface 28 may be parts of a system
on a chip (SoC). The SoC may also include other compo-
nents, such as a general purpose microprocessor, a graphics
processing unit, and so on.

[0084] The information of computer-readable medium 16
may include syntax information defined by video encoder
20, which is also used by video decoder 30, that includes
syntax elements that describe characteristics and/or process-
ing of blocks and other coded units, e.g., groups of pictures
(GOPs). Display device 32 may display the decoded video
data to a user. For instance, destination device 14 or video
decoder 30 may output, for display by display device 32,
reconstructed pictures of the video data. Such reconstructed
pictures may comprise reconstructed blocks. Display device
32 may comprise any of a variety of display devices such as
a cathode ray tube (CRT), a liquid crystal display (LCD), a
plasma display, an organic light emitting diode (OLED)
display, or another type of display device.

[0085] Video encoder 20 and video decoder unit 30 each
may be implemented as any of a variety of suitable encoder
circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), discrete
logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in
software, a device may store instructions for the software in
a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more
processors to perform the techniques of this disclosure. Each
of video encoder 20 and video decoder 30 may be included
in one or more encoders or decoders, either of which may be
integrated as part of a combined encoder/decoder (CODEC)
in a respective device.

[0086] In some examples, video encoder 20 and video
decoder 30 may operate according to a video coding stan-
dard. Example video coding standards include, but are not
limited to, ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T
H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC
MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC
MPEG-4 AVC), including its Scalable Video Coding (SVC)
and Multi-view Video Coding (MVC) extensions. In addi-
tion, a new video coding standard, namely High Efficiency
Video Coding (HEVC), has recently been developed by the
Joint Collaboration Team on Video Coding (JCT-VC) of
ITU-T Video Coding Experts Group (VCEG) and ISO/IEC
Motion Picture Experts Group (MPEG). Wang et al, “High
Efficiency Video Coding (HEVC) Defect Report,” Joint
Collaborative Team in Video Coding (JCT-VC) of ITU-T SG
16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 14" Meeting,
Vienna, AT, 25 Jul.-2 Aug. 2013, document JCTVC-N1003_
vl (hereinafter, “JCTVC-N1003”) is a draft of the HEVC
standard. JCTVC-N1003 is available from http://phenix.int-
evry.fr/jct/doc_end_user/documents/14_Vienna/wgl1/
JCTVC-N1003-v1.zip.

[0087] In HEVC and other video coding specifications, a
video sequence typically includes a series of pictures. Pic-
tures may also be referred to as “frames.” A picture may
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include one or more sample arrays. Each respective sample
array of a picture may comprise an array of samples for a
respective color component. In HEVC, a picture may
include three sample arrays, denoted S;, S, and S.,. S; is
a two-dimensional array (i.e., a block) of luma samples. S,
is a two-dimensional array of Cb chroma samples. S, is a
two-dimensional array of Cr chroma samples. In other
instances, a picture may be monochrome and may only
include an array of luma samples.

[0088] As part of encoding video data, video encoder 20
may encode pictures of the video data. In other words, video
encoder 20 may generate encoded representations of the
pictures of the video data. An encoded representation of a
picture may be referred to as a “coded picture” or an
“encoded picture.”

[0089] To generate an encoded representation of a picture,
video encoder 20 may generate a set of coding tree units
(CTUs). Each of the CTUs may comprise a CTB of luma
samples, two corresponding CTBs of chroma samples, and
syntax structures used to code the samples of the CTBs. In
monochrome pictures or pictures having three separate color
planes, a CTU may comprise a single CTB and syntax
structures used to code the samples of the CTB. A CTB may
be an NxN block of samples. A CTU may also be referred
to as a “tree block™ or a “largest coding unit” (LCU). A
syntax structure may be defined as zero or more syntax
elements present together in the bitstream in a specified
order. A slice may include an integer number of CTUs
ordered consecutively in a raster scan order.

[0090] This disclosure may use the term “video unit” or
“video block™ or “block™ to refer to one or more sample
blocks and syntax structures used to code samples of the one
or more blocks of samples. Example types of video units
may include CTUs, CUs, PUs, transform units (TUs), mac-
roblocks, macroblock partitions, and so on. In some con-
texts, discussion of PUs may be interchanged with discus-
sion of macroblocks or macroblock partitions.

[0091] InHEVC, to generate a coded CTU, video encoder
20 may recursively perform quad-tree partitioning on the
coding tree blocks of a CTU to divide the coding tree blocks
into coding blocks, hence the name “coding tree units.” A
coding block is an NxN block of samples. A CU may
comprise a coding block of luma samples and two corre-
sponding coding blocks of chroma samples of a picture that
has a luma sample array, a Cb sample array, and a Cr sample
array, and syntax structures used to code the samples of the
coding blocks. In monochrome pictures or pictures having
three separate color planes, a CU may comprise a single
coding block and syntax structures used to code the samples
of the coding block.

[0092] Video encoder 20 may encode CUs of a picture of
the video data. As part of encoding a CU, video encoder 20
may partition a coding block of the CU into one or more
prediction blocks. A prediction block is a rectangular (i.e.,
square or non-square) block of samples on which the same
prediction is applied. A prediction unit (PU) may comprise
a prediction block of luma samples, two corresponding
prediction blocks of chroma samples, and syntax structures
used to predict the prediction blocks. In monochrome pic-
tures or pictures having three separate color planes, a PU
may comprise a single prediction block and syntax struc-
tures used to predict the prediction block. Video encoder 20
may generate predictive blocks (e.g., luma, Cb, and Cr
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predictive blocks) for prediction blocks (e.g., luma, Cb, and
Cr prediction blocks) of each PU of the CU.

[0093] Thus, in general, a PU may comprise one or more
prediction blocks of samples and syntax structures used to
predict the prediction blocks. In some example codecs, such
as HEVC, a PU may be a sub-unit of a CU. In other example
codecs, there may be no distinction between a CU and a PU.
In some examples, other terms may be used for PU.
[0094] Video encoder 20 may use intra prediction or inter
prediction to generate a predictive block of a PU. If video
encoder 20 uses intra prediction to generate a predictive
block of a PU, video encoder 20 may generate the predictive
block of the PU based on decoded samples of the picture that
includes the PU. If video encoder 20 uses inter prediction to
generate a predictive block of a PU of a current picture,
video encoder 20 may generate the predictive block of the
PU based on decoded samples of a reference picture (i.e., a
picture other than the current picture).

[0095] After video encoder 20 generates predictive blocks
(e.g., luma, Cb, and Cr predictive blocks) for one or more
PUs of a CU, video encoder 20 may generate one or more
residual blocks for the CU. For instance, video encoder 20
may generate a luma residual block for the CU. Each sample
in the CU’s luma residual block indicates a difference
between a luma sample in one of the CU’s predictive luma
blocks and a corresponding sample in the CU’s original
luma coding block. In addition, video encoder 20 may
generate a Cb residual block for the CU. Each sample in the
Cb residual block of a CU may indicate a difference between
a Cb sample in one of the CU’s predictive Cb blocks and a
corresponding sample in the CU’s original Cb coding block.
Video encoder 20 may also generate a Cr residual block for
the CU. Each sample in the CU’s Cr residual block may
indicate a difference between a Cr sample in one of the CU’s
predictive Cr blocks and a corresponding sample in the CU’s
original Cr coding block.

[0096] To reiterate, in HEVC, the largest coding unit in a
slice is called a CTU. Each picture is divided into CTUs,
which may be coded in raster scan order for a specific tile or
slice. A CTU is a square block and represents the root of a
quadtree, i.e., the coding tree. A CTU contains a quad-tree,
the nodes of which are CUs. In some instances, the size of
a CTU can range from 16x16 to 64x64 in the HEVC main
profile (although technically 8x8 CTU sizes can be sup-
ported). In some instances, the CTU size may range from
8x8 to 64x64 luma samples, but typically 64x64 is used.
Each CTU can be further split into smaller square blocks
called CUs. A CU can be the same size of a CTU, although
a CU can be as small as 8x8. Each CU is coded with one
mode. For instance, a CU may be inter coded or intra coded.
When a CU is inter coded, the CU may be further partitioned
into 2 or 4 PUs or may become just one PU when further
partition does not apply. When two PUs are present in one
CU, the two PUs can be half size rectangles or two rectangle
sizes with Y4 or 34 size of the CU. When a CU is inter coded,
one set of motion information is present for each PU. In
addition, each PU is coded with a unique inter-prediction
mode to derive the set of motion information. In other
words, each PU may have its own set of motion information.
[0097] Furthermore, video encoder 20 may decompose the
residual blocks of a CU into one or more transform blocks.
For instance, video encoder 20 may use quad-tree partition-
ing to decompose the residual blocks (e.g., the luma, Cb, and
Cr residual blocks) of a CU into one or more transform
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blocks (e.g., luma, Cb, and Cr transform blocks). A trans-
form block is a rectangular (e.g., square or non-square)
block of samples on which the same transform is applied.
[0098] A transform unit (TU) of a CU may comprise a
transform block of luma samples, two corresponding trans-
form blocks of chroma samples, and syntax structures used
to transform the transform block samples. Thus, each TU of
a CU may have a luma transform block, a Cb transform
block, and a Cr transform block. The luma transform block
of the TU may be a sub-block of the CU’s luma residual
block. The Cb transform block may be a sub-block of the
CU’s Cb residual block. The Cr transform block may be a
sub-block of the CU’s Cr residual block. In monochrome
pictures or pictures having three separate color planes, a TU
may comprise a single transform block and syntax structures
used to transform the samples of the transform block.
[0099] Video encoder 20 may apply one or more trans-
forms to a transform block of a TU to generate a coeflicient
block for the TU. For instance, video encoder 20 may apply
one or more transforms to a luma transform block of a TU
to generate a luma coefficient block for the TU. A coefficient
block may be a two-dimensional array of transform coeffi-
cients. A transform coefficient may be a scalar quantity. In
some examples, the one or more transforms convert the
transform block from a pixel domain to a frequency domain.
[0100] Insome examples, video encoder 20 does not apply
the transform to the transform block. In other words, video
encoder 20 skips application of the transforms to the trans-
form block. In such examples, video encoder 20 may treat
residual sample values in the same way as transform coef-
ficients. Thus, in examples where video encoder 20 skips
application of the transforms, the following discussion of
transform coefficients and coefficient blocks may be appli-
cable to transform blocks of residual samples.

[0101] After generating a coefficient block (e.g., a luma
coeflicient block, a Cb coefficient block or a Cr coefficient
block), video encoder 20 may quantize the coefficient block.
In some examples, video encoder 20 does not quantize the
coeflicient block. In examples where video encoder 20 does
not apply the transform to the transform block, video
encoder 20 may or may not quantize residual samples of the
transform block. Quantization generally refers to a process
in which transform coefficients are quantized to possibly
reduce the amount of data used to represent the transform
coeflicients, providing further compression. After video
encoder 20 quantizes a coefficient block, video encoder 20
may entropy encode syntax elements indicating the quan-
tized transform coefficients or residual samples. For
example, video encoder 20 may perform Context-Adaptive
Binary Arithmetic Coding (CABAC) on the syntax elements
indicating the quantized transform coefficients or residual
samples. In some examples, video encoder 20 uses palette-
based coding to encode CUs. Thus, an encoded block (e.g.,
an encoded CU) may include the entropy encoded syntax
elements indicating the quantized transform coefficients.
[0102] Video encoder 20 may output a bitstream that
includes a sequence of bits that forms a representation of
encoded pictures of the video data and associated data (i.e.,
data associated with the encoded pictures). Thus, the bit-
stream comprises an encoded representation of the video
data. The bitstream may comprise a sequence of network
abstraction layer (NAL) units. A NAL unit is a syntax
structure containing an indication of the type of data in the
NAL unit and bytes containing that data in the form of a raw
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byte sequence payload (RBSP) interspersed as necessary
with emulation prevention bits. Each of the NAL units may
include a NAL unit header and encapsulates a RBSP. The
NAL unit header may include a syntax element indicating a
NAL unit type code. The NAL unit type code specified by
the NAL unit header of a NAL unit indicates the type of the
NAL unit. A RB SP may be a syntax structure containing an
integer number of bytes that are encapsulated within a NAL
unit. In some instances, an RB SP includes zero bits.
[0103] Video decoder 30 may receive a bitstream gener-
ated by video encoder 20. In addition, video decoder 30 may
parse the bitstream to obtain syntax elements from the
bitstream. Video decoder 30 may reconstruct pictures of the
video data based at least in part on the syntax elements
obtained from the bitstream. The process to reconstruct
pictures of the video data may be generally reciprocal to the
process performed by video encoder 20 to encode the
pictures. For instance, to reconstruct a picture of the video
data, video decoder 30 may decode blocks, such as CUs, of
the picture based on syntax elements obtained from the
bitstream and/or data from external sources.

[0104] Insome examples, as part of decoding a current CU
of the picture, video decoder 30 may use inter prediction or
intra prediction to generate one or more predictive blocks for
each PU of the current CU. When using inter prediction,
video decoder 30 may use motion vectors of PUs to deter-
mine predictive blocks for the PUs of a current CU. In
addition, video decoder 30 may, in some examples, inverse
quantize coefficient blocks of TUs of the current CU. Video
decoder 30 may, in some examples, perform inverse trans-
forms on the coefficient blocks to reconstruct transform
blocks of the TUs of the current CU. Video decoder 30 may
reconstruct the coding blocks of the current CU by adding
the samples of the predictive blocks for PUs of the current
CU to corresponding decoded samples (e.g., residual
samples) of the transform blocks of the TUs of the current
CU. By reconstructing the coding blocks for each CU of a
picture, video decoder 30 may reconstruct the picture.
[0105] Moreover, in HEVC, the option to partition a
picture into rectangular regions called tiles has been speci-
fied. The main purpose of tiles is to increase the capability
for parallel processing rather than provide error resilience.
Tiles are independently decodable regions of a picture that
are encoded with some shared header information. Tiles can
additionally be used for the purpose of spatial random access
to local regions of video pictures. A typical tile configuration
of a picture consists of segmenting the picture into rectan-
gular regions with approximately equal numbers of CTUs in
each tile. Tiles provide parallelism at a more coarse level of
granularity (picture/subpicture), and no sophisticated syn-
chronization of threads is necessary for their use.

[0106] To adapt the various characteristics of the residual
blocks, a transform coding structure using the residual
quadtree (RQT) is applied in HEVC, which is briefly
described in Marpe et al., “Transform Coding Using the
Residual Quadtree (RQT),” Fraunhofer Heinrich Hertz Insti-
tute, available at http://www.hhi.fraunhofer.de/fields-of-
competence/image-processing/researchgroups/image-
video-coding/hevc-high-efficiency-video-coding/transform-
coding-using-the-residual- quadtree-rqt.html. After the CTU
is split recursively into CUs, each CU is further divided into
PUs and TUs. The partitioning of a CU into TUs is carried
out recursively based on a quadtree approach, therefore the
residual signal of each CU is coded by a tree structure,
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namely, the residual quadtree (RQT). The RQT allows TU
sizes from 4x4 up to 32x32 luma samples. FIG. 2A and FIG.
2B are conceptual diagrams illustrating an example trans-
form scheme based on a residual quadtree in HEVC. Par-
ticularly, FIG. 2A shows an example where a CU 40 includes
ten TUs, labeled with the letters a to j, and the corresponding
block partitioning. FIG. 2B is a conceptual diagram illus-
trating an RQT for the CU of FIG. 2A.

[0107] A video coder may process the individual TUs in a
depth-first tree traversal order, which is illustrated in FIG.
2A in alphabetical order, which follows a recursive Z-scan
with depth-first traversal. The quadtree approach enables the
adaptation of the transform to the varying space-frequency
characteristics of the residual signal. Typically, larger trans-
form block sizes, which have larger spatial support, provide
better frequency resolution. However, smaller transform
block sizes, which have smaller spatial support, provide
better spatial resolution. The trade-off between the two,
spatial and frequency resolutions, is chosen by an encoder
mode decision, for example based on rate-distortion opti-
mization technique. The rate-distortion optimization tech-
nique calculates a weighted sum of coding bits and recon-
struction distortion, i.e., the rate-distortion cost, for each
coding mode (e.g., a specific RQT splitting structure), and
selects the coding mode with least rate-distortion cost as the
best mode.

[0108] Three parameters are defined in the RQT: the
maximum depth of the tree, the minimum allowed transform
size and the maximum allowed transform size. In HEVC, the
minimum and maximum transform sizes can vary within the
range from 4x4 to 32x32 samples, which correspond to the
supported block transforms mentioned in the previous para-
graph. The maximum allowed depth of the RQT restricts the
number of TUs. A maximum depth equal to zero means that
a CTU cannot be split any further if each included TU
reaches the maximum allowed transform size, e.g., 32x32.
In HEVC, larger size transforms, e.g., 64x64 transform were
not adopted mainly due to their limited benefit considering
and relatively high complexity for relatively smaller reso-
lution videos.

[0109] In HEVC, regardless of the size of a TU, the
residual of the TU (e.g., a coeflicient block of the TU) is
coded with non-overlapped coefficient groups (CG). Each of
the CGs contains the coefficients of a 4x4 block of the TU.
For example, a 32x32 TU has a total of 64 CGs, and a 16x16
TU has a total of 16 CGs. The CGs of a TU are coded
according to a certain pre-defined scan order. When coding
each CG, the coeflicients inside the current CG are scanned
and coded according to a certain pre-defined scan order for
4x4 block. FIG. 3 is a conceptual diagram illustrating an
example coefficient scan based on coefficient groups in
HEVC. Particularly, FIG. 3 illustrates the coefficient scan for
an 8x8 TU containing four 4x4 CGs.

[0110] As noted above, video encoder 20 and video
decoder 30 may perform intra prediction to generate a
predictive block. Intra prediction performs image block
prediction using its spatially neighboring reconstructed
image samples. FIG. 4 is a conceptual diagram illustrating
an example of intra prediction for a 16x16 block. In FIG. 4,
a block square contains a 16x16 block 50. In FIG. 4, block
50 is predicted by the above and left neighboring recon-
structed samples 52, 54 (i.e., reference samples) along a
selected prediction direction. In FIG. 4, the samples outside
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the black box are the reference samples. The white arrow in
FIG. 4 indicates the selected prediction direction.

[0111] FIG. 5 is a conceptual diagram illustrating an
example of 35 intra prediction modes defined in HEVC. As
indicated in FIG. 5, HEVC defines 35 modes (including the
Planar mode, DC mode and 33 angular modes) for the intra
prediction of a luma block. The 35 modes of the intra
prediction defined in HEVC are indexed as shown in the
table below:

TABLE 1

Specification of intra prediction mode and associated names

Intra prediction

mode Associated name

0 INTRA__PLANAR

1 INTRA_DC

2...34 INTRA_ANGULAR? ... INTRA__ANGULAR34

[0112] HEVC intra coding supports two types of PU
division, 2Nx2N and NxN. 2Nx2N splits a CU into one PU.
In other words, the CU has one PU with the same size as the
CU. NxN splits a CU into four equal-size PUs. However, the
four regions specified by the partitioning type PART_NxN
can be also represented by four smaller CUs with the
partitioning type PART_2Nx2N. Due to this, HEVC allows
an intra CU to be split into four PUs only at the minimum
CU size.

[0113] FIG. 6 is a conceptual diagram illustrating a planar
mode defined in HEVC. Planar mode is typically the most
frequently used intra prediction mode. To perform Planar
prediction for an NxN block, for each sample p,, located at
(X, ), the prediction value is calculated using four specific
neighboring reconstructed samples, i.e., reference samples,
with a bilinear filter. The four reference samples include a
top-right reconstructed sample TR, a bottom-left recon-
structed sample BL, and two reconstructed samples 60, 62
located in the same column (r, _,) and row (r_, ) as the
current sample. The planar mode can be formulated as
below:

Dy =(N=1-2)-L+{x+1) TRH(N-1-y)-T+(y+1)-BL+N)
>>(Log 2(N)+1 M

In formula (1) above, L corresponds to reconstructed sample
60 and T corresponds to reconstructed sample 62. For DC
mode, the prediction block is simply filled with the average
value of the neighboring reconstructed samples. Generally,
both Planar and DC modes are applied for modeling
smoothly varying and constant image regions.

[0114] FIG. 7 is a conceptual diagram of an example
angular mode defined in HEVC. The intra prediction process
for angular intra prediction modes in HEVC is described as
follows. For each given angular intra prediction mode, the
intra prediction direction can be identified accordingly. For
example, the given angular intra prediction mode may be
identified according to FIG. 5. As shown in FIG. 5, intra
mode 18 corresponds to a pure horizontal prediction direc-
tion, and intra mode 26 corresponds to a pure vertical
prediction direction. Given a specific intra prediction direc-
tion, for each respective sample of a prediction block,
coordinates (X, y) of the respective sample are first projected
to a row or column of neighboring reconstructed samples
along the prediction direction. For instance, as shown in the
example of FIG. 7, coordinates (x,y) of a sample 70 of a
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prediction block 72 are projected along a specific intra
prediction direction 74. Suppose (x.,y) is projected to the
fractional position a between two neighboring reconstructed
samples [ and R. Then, a prediction value for (%, y) is
calculated using a two-tap bi-linear interpolation filter, for-
mulated as follows:

D=(1-@)L+aR.

In HEVC, to avoid floating point operations, the above
calculation is approximated using integer arithmetic as:

D =((32-a)L+a-R+16)>>5,

where a is an integer equal to 32*q.

[0115] FIG. 8 is a conceptual diagram of partition modes
for splitting a CU for inter prediction in HEVC. As shown
in FIG. 8, in HEVC, an inter-coded CU can be split into one,
two, or four partitions and various types of this splitting are
possible. The partitioning possibilities for inter-predicted
coding blocks are depicted in FIG. 8. The upper four
partition types illustrate the cases of not splitting the CU of
size NxN, of splitting the CU into two partitions of size
NxN/2 or N/2xN, and of splitting the CU into four partitions
of size N/2xN/2, respectively. The lower four partition types
in FIG. 8 are referred to as asymmetric motion partitioning
(AMP). One partition of the AMP mode has the height or
width N/4 and width or height N, respectively, and the other
partition fills the rest of the CU by having a height or width
of 3N/4 and width or height N. Each inter-coded partition is
assigned one or two motion vectors and reference picture
indices.

[0116] For intra slices, only intra prediction mode is
allowed. Therefore, there is no need to signal the prediction
mode. However, for inter slices (P or B slice), both intra and
inter prediction mode are allowed. Thus, in HEVC, for each
CU, one flag pred mode flag is signaled for non-skip mode.
A vpartial listing of the syntax and semantics defined in
HEVC for a CU are presented below:

7.3.8.5 Coding Unit Syntax

[0117]
Descriptor
coding__unit( x0, y0, log2CbSize ) {
if( transquant__bypass_ enabled__flag )
cu_ transquant_bypass_flag ae(v)
if( slice_type !=1)
cu_skip_ flag[ x0 ][ y0 ] ae(v)
nCbSs = (1 << log2CbSize )
if( cu_skip_ flag[ x0 ][ y0 1)
prediction__unit( X0, y0, nCbS, nCbS )
else {
if( slice type 1=1)
pred__mode_ flag ae(v)
if( CuPredMode[ x0 ][ y0 ] t= MODE_INTRA | |
log2CbSize = = MinCbLog2SizeY )
part__mode ae(v)
¥
[0118] cu_skip_flag[x0][y0] equal to 1 specifies that for

the current coding unit, when decoding a P or B slice, no
more syntax elements except the merging candidate index
merge_idx[x0][y0] are parsed after cu_skip_flag[x0][y0].
cu_skip_flag[x0][y0] equal to O specifies that the coding unit
is not skipped. The array indices x0, yO specify the location
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(%0, y0) of the top-left luma sample of the considered coding
block relative to the top-left luma sample of the picture.
When cu_skip_flag[x0][y0] is not present, cu_skip_flag[x0]
[v0] is inferred to be equal to O.

[0119] pred_mode_flag equal to O specifies that the current
coding unit is coded in inter prediction mode. pred_mode_
flag equal to 1 specifies that the current coding unit is coded
in intra prediction mode. The variable CuPredMode[x][y] is
derived as follows for x=x0 . . . x0+nCbS-1 and y=y0 . . .
y0+nCbS-1:

[0120] If pred_mode_flag is equal to 0, CuPredMode
[x][y] is set equal to MODE_INTER.

[0121] Otherwise (pred_mode_flag is equal to 1),
CuPredMode[x][y] is set equal to MODE_INTRA.

[0122] When pred mode flag is not present, the variable
CuPredMode[x][y]| is derived as follows for x=x0 . . .
x0+nCbS-1 and y=y0 . . . y0+nCbS-1:

[0123] If slice_type is equal to I, CuPredMode[x][y] is
inferred to be equal to MODE_INTRA.

[0124] Otherwise (slice_type is equal to P or B), when
cu_skip_flag[x0][y0] is equal to 1, CuPredMode[x][y]
is inferred to be equal to MODE_SKIP.

[0125] Various proposals have been made to enhance
HEVC during and after the process of developing HEVC.
For example, Jianle Chen et al., “Further improvements to
HMKTA-1.0”, Document: VCEG-AZ07 v2, 527¢ Meeting:
19-26 Jun. 2015, Warsaw, Poland, (hereinafter, “VCEG-
AZ07”), describes a short distance intra coding scheme.
Unlike traditional block partition methods which always
produce square blocks for intra prediction, the short distance
intra prediction (SDIP) scheme of VCEG-AZ07 employs
non-square block splitting under the quadtree based block
structure of HEVC. As described in VCEG-AZ07, a block is
split into four non-square blocks with quarter width or
height, and each non-square block is treated as a basic unit
for prediction. The non-square blocks are coded and recon-
structed in order, and can provide reference pixels for intra
prediction for the next neighboring block. Therefore, the
distance between reference pixels and local pixels can be
reduced, and the precision of intra prediction can be much
improved.

[0126] FIG. 9 is a conceptual diagram of SDIP unit
partitions. In the SDIP scheme, a CU that is smaller than
64x64 can be split into four vertical or horizontal rectangular
PUs with sizes N/2x2N or 2NxN/2 (these partition modes
may be referred to in this disclosure as hNx2N and 2NxhN,
where h means half). The four PUs are coded and recon-
structed in order, from left to right in the hNx2N mode, and
top to bottom in the 2NxhN mode. In FIG. 9, dotted lines
represent PU/TU splitting, and the shaded region 78 denotes
a 32x8 TU to be split into 4 32x2 TUs in the RQT structure.
The upper right 32x32 CU with partition mode 2NxhN is
split into four 32x8 PUs, the lower left 16x16 CU with mode
hNx2N is split into four 4x16 PUs, the lower right 8x8 CU
is split into 8x2 PUs, and so on. The square splitting of CUs
in HEVC may also exist, such as the lower left 16x16 CU
in the 2Nx2N mode and the lower right 8x8 CU in the NxN
mode.

[0127] Furthermore, in an SDIP scheme, a MxN (M>N)
TU can be split into four TUs with size MxN/4, or M/4xN
when M<N. In other words, a split in the SDIP scheme
should always be carried out along the same direction
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(vertical or horizontal) in a CU. Table 2, below, lists all the
non-square units existing in the SDIP scheme and the
corresponding RQT depth.

TABLE 2

List of units in SDIP scheme and the corresponding RQT depth

Unit Size when depth = 1

CU Size (equal to PU size) Unit Size when depth = 2

32 %32 32x8 32x%x2
8 x 32 2x 32

16 x 16 16 x 4 —
4x16 —

8 x 8 8§ x2 —
2x8 —
[0128] In Xiaoran Cao et al “CE6.b1 Report on Short

Distance Intra Prediction Method,” Doc. JCTVC-E0278,
Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 5th
Meeting: Geneva, 16-23 Mar., 2011 (hereinafter, “Cao 17),
partitions like 1xN and Nx1 are further included and the
corresponding RQT depth and transform sizes are listed in
Table 3, below:

TABLE 3

List of transform sizes in SDIP in Cao 1

Unit Size when depth = 1

CU Size (equal to PU size) Unit Size when depth = 2
32 %32 32x8 32x%x2
8 x 32 2x 32
16 x 16 16 x 4 16 x 1
4x16 1x16
8§x8 8§ x2 —
(2N x 2N) 2x8 —
8§x8 4 x4 4x1
(N x N) 1x4
[0129] Furthermore, some SDIP schemes use non-square

transform and entropy coding. For example, an nxm trans-
form is used for a non-square block. For an nxm (n>m)
block, the forward transform is described as follows:

Com= T B T” M.

In the equation above, B,,,,,,, denotes a block with n rows and
m columns, T, and T, are the transform matrices of size nxn
and mxm respectively, and C,,,,, denotes the transformed
block. T, and T,, are the same as the transform matrices in
HEVC. Thus, for a hardware implementation, the transform
part can be reused for non-square blocks. For an nxm (n<m)
block, the block is transposed into an mxn (m>n) block first
and then transformed as in equation (1). For entropy coding,
to avoid duplicate implementations, the coefficient coding of
a square block is also reused. For example, FIG. 10 is a
conceptual diagram of a 16x4 coefficient matrix 80 scanned
and reorganized into an 8x8 matrix 82. In this example, the
coeflicients of coefficient matrix 80 are first scanned from
high frequency to low frequency into a 1D buffer 84, as
shown in FIG. 10, and then reorganized into an 8x8 matrix
82 in zigzag order, which is coded using the existing method
in HEVC.

[0130] In another example of a proposed enhancement to
HEVC, Liu et al., “Rectangular (2NxN, Nx2N) Intra Pre-
diction,” Doc. JCTVC-G135, Joint Collaborative Team on
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Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, 7th Meeting: Geneva, 21-30 Nov., 2011,
(hereinafter, “JCTVC-G135”), describes extending the use
of the 2NxN and Nx2N partition sizes for inter coding to
intra coding. The additional PU sizes and corresponding
TUs are given in Table 2, below. In JCTVC-G135, the
conventional transform quadtree structure is employed.

TABLE 2

List of transform sizes in JCTVC-G135

CU Size PU size Unit Size when depth = 1 Unit Size when depth = 2
32x32 32x16 32x 8 32x2
16 x 32 8 x 32 2x 32
16 x 16 16 x8 16 x 4 —
8 x 16 4x6 —
8§x 8 8 x4 8§x2 —
4x8 2x8 —
[0131] The following techniques were described in

VCEG-AZ07. To capture finer edge directions presented in
natural videos, VCEG-AZ07 proposed extending the direc-
tional intra modes from 33, as defined in HEVC, to 65. FIG.
11 is a conceptual diagram illustrating proposed 67 intra
prediction modes. The directional modes described in
VCEG-AZ07 are indicated as dotted arrows in FIG. 11, and
the Planar and DC modes remain the same. The denser
directional intra prediction modes proposed in VCEG-AZ07
apply for all PU sizes and both luma and chroma intra
predictions.

[0132] To accommodate the increased number of direc-
tional intra modes, VCEG-AZ07 proposed an improved
Intra mode coding method, using 6 Most Probable Modes
(MPMs). Two major technical aspects are involved: 1) the
derivation of 6 MPMs, and 2) entropy coding of 6 MPMs.
When deriving the set of 6 MPMs, VCEG-AZ06 changed
the definition of the left and above neighboring intra modes.
Instead of using the intra modes from top and left neigh-
boring blocks directly as in HEVC, the most frequently used
intra mode along the top neighboring row and along the left
neighboring column are computed, and then used as the left
and above neighboring modes, respectively.

[0133] Furthermore, as described in VCEG-AZ07, four-
tap intra interpolation filters are utilized to improve the
accuracy of directional intra prediction. For instance, as
described above with respect to FIG. 7, HEVC uses a
two-tap linear interpolation filter to generate an intra pre-
diction block in the directional prediction modes (i.e., intra
prediction modes excluding Planar and DC predictors).
Particularly, in the example of FIG. 7, a video coder applies
a two-tap filter to samples L and R to determine a predictive
value for sample 50. In contrast to the approach of HEVC,
which applies a filter to two reference samples to determine
a predictive value for a sample of a prediction block,
VCEG-AZO07 applies a filter to four reference samples to
determine a predictive value for a sample of a prediction
block. In VCEG-AZ07, two types of four-tap interpolation
filters are used: Cubic interpolation filters for 4x4 and 8x8
blocks, and Gaussian interpolation filters for 16x16 and
larger blocks. In VCEG-AZ07, the parameters of the filters
are fixed according to block size, and the same filter is used
for all predicted pixels, in all directional modes.

[0134] In HEVC, after an intra prediction block has been
generated for vertical and horizontal intra modes, a left-most
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column and a top-most row of prediction samples (i.e.,
samples of a predictive block) are further adjusted, respec-
tively. Boundary samples up to four columns or rows are
further adjusted using a two-tap (for intra modes 2 and 34)
or a three-tap filter (for intra modes 3-6 and 30-33).
[0135] FIG. 12A and FIG. 12B is a conceptual diagram of
boundary filters for intra modes 30-34. Particularly, FIG.
12A is a conceptual diagram of boundary filters for intra
mode 34. FIG. 12B is a conceptual diagram of boundary
filters for intra mode 30-33. In FIG. 12A and FIG. 12B, the
leftmost column of blocks is a set of reference samples and
the rest of the blocks are samples of an intra predicted block.
A video coder may generate the samples of the intra pre-
dictive block in the conventional manner. However, for intra
prediction modes 30-34, the video encoder may apply one or
more additional filters to the shaded pixels. Thus, examples
of the boundary prediction filters for intra mode 34 and
30-33 are shown in FIG. 12A and FIG. 12B, and the
boundary prediction filters for intra modes 2 and 3-6 are
similar.

[0136] Particularly, in FIG. 12A, for intra mode 34, the
video coder generates each respective sample of the intra
predictive block based on reference samples above and right
of the respective sample. However, this may ignore infor-
mation available from the left reference samples. Accord-
ingly, the video coder may apply four different filters to the
four leftmost columns. For each respective sample in lines
1-4 of the intra predictive block, the video coder applies a
filter based on the respective sample and a reference sample
in the opposite direction of intra mode 34 (i.e., left and
down). For line 1, the resulting sample may be calculated as
(8*a+8%b)/16, where a is the respective sample and b is the
reference sample. For line 2, the resulting sample may be
calculated as (12*a+4*b)/16, where a is the respective
sample and b is the reference sample. In the example of FIG.
12B, the directions for intra prediction modes 30-33 do not
align with full integer position pixels. Rather, for each
sample of the predictive block, the directions for intra
prediction modes 30-33 intersect with the reference samples
at fractional positions between two of the reference samples.
Hence, when applying the boundary filter for intra predic-
tion modes 30-33, there are two reference samples for each
sample of the leftmost column of the predictive block. In the
example of FIG. 12B, for each respective sample of the
leftmost column of the predictive block, when the intra
prediction mode is 33, a video coder may calculate the value
of the respective sample as (8*a+8%*b+2%c), where a is the
respective sample, b is one of the reference samples and ¢ is
the other of the reference samples.

[0137] Video coding may be performed based on color
space and color format. For example, color video plays an
essential role in multimedia systems, where various color
spaces are used to efficiently represent color. A color space
specifies color with numerical values using multiple com-
ponents. A popular color space is the RGB color space,
where color is represented as a combination of three primary
color component values (i.e., red, green and blue). For color
video compression, the YCbCr color space has been widely
used, as described in A. Ford and A. Roberts, “Colour space
conversions,” University of Westminster, London, Tech.
Rep., August 1998.

[0138] YCbCr can be easily converted from RGB color
space via a linear transformation and the redundancy
between different components, namely the cross-component
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redundancy, is significantly reduced in the YCbCr color
space. One advantage of YCbCr is the backward compat-
ibility with black and white TV as Y signal conveys the
luminance information. In addition, chrominance bandwidth
can be reduced by sub-sampling the Cb and Cr components
in 4:2:0 chroma sampling format with significantly less
subjective impact than sub-sampling in RGB. Because of
these advantages, YCbCr has been the major color space in
video compression. There are also other color spaces, such
as YCoCg, used in video compression. In this disclosure,
regardless of the actual color space used, the YCbCr color
space is used to represent the three color components in the
video compression scheme.

[0139] Although the cross-complement redundancy is sig-
nificantly reduced in the YCbCr color space, correlation
between the three-color components still exists. Various
techniques have been studied to improve video coding
performance by further reducing the correlation between the
three color components.

[0140] For example, Xiaoran Cao et at., “Short distance
intra coding scheme for HIEVC”, 2012 Picture Coding
Symposium (PCS), pp. 501-504, May 7-9, 2012, Krakdw,
Poland, (hereinafter. “Cao 2”) describes a short distance
intra coding scheme. Cao 2 describes a method in 4:2:0
chroma video coding named Linear Model (LM) prediction
mode, which was studied during development of the HEVC
standard. See e.g., J. Chen et al., “CE6.a.4: Chroma intra
prediction by reconstructed luma samples”, Joint Collabora-
tive Team on Video Coding (JCT-VC) of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11, JCTVC-E266, 5th Meet-
ing: Geneva, 16-23 Mar., 2011, and referred as JCTVC-
E266 hereafter. In 4:2:0 sampling, each of the two chroma
arrays has half the height and half the width of the luma
array. With the LM prediction mode, chroma samples are
predicted based on reconstructed luma samples of the same
block by using a linear model as follows:

pred.(i)=o*rec (i,/)+f @

where pred (i, j) represents a prediction of chroma samples
in a current block and rec, (i, j) represents a down-sampled
reconstructed luma samples of the current block. Parameters
a and [ are derived from causal reconstructed samples
around the current block. Causal samples of a block are
samples that occur prior to the block in a decoding order. If
the chroma block size is denoted by NxN, then both i and j
are within the range [0, N).

[0141] Parameters o and p in equation (2) are derived by
minimizing regression error between the neighboring recon-
structed luma and chroma samples around the current block.

E@ =) vi-(@x+p) ®

The parameters o and f§ are solved as follows

IZx; - y; — Zx; - Zy; 4

@= 12x; - x; — Zx; - 2x;

B=Eyi—a-Zx)/] (5)

In the equations above, x; is a down-sampled reconstructed
luma reference sample where the color format is not 4:4:4
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(i.e., the color format is one in which one chroma sample
corresponds to multiple luma samples), y, is reconstructed
chroma reference samples without down-sampling, and I is
the number of reference samples. In other words, the video
coder may down-sample the reconstructed luma reference
samples based on the color format not being 4:4:4, but
refrain from down-sampling the reconstructed luma refer-
ence samples based on the color format being 4:4:4. For a
target NxN chroma block, when both left and above causal
samples are available, the total number of involved samples
1 is equal to 2N. When only left or above causal samples are
available, the total number of involved samples I is equal to
N. Here, N is always equal to 2™ (wherein m may be
different for different CU sizes). Therefore, to reduce the
complexity, shifting operations can be used to implement the
division operations in equations (4) and (5).

[0142] FIG. 13 is a conceptual diagram illustrating
example locations of samples used for derivation of o and
p. Particularly, FIG. 13 illustrates a chroma predictive block
90 of a PU and a luma predictive block 92 of the same PU.
Because chroma samples are down-sampled relative to luma
samples, the width and height of chroma predictive block 90
(i.e., N) is half the width and height of luma predictive block
92 (i.e., 2N). In the example of FIG. 13, the small squares
outside the large dark square are reference samples. In the
example of FIG. 13, the small circles indicate sample values
used for determining the LM parameters o and 8. As shown
in the example of FIG. 13, the chroma sample values used
for determining the LM parameters o and {3 are the same as
the reference samples for chroma predictive block 90. How-
ever, the luma sample values used for determining the LM
parameters o and f§ are interpolated from luma reference
samples. The total number of the resulting set of luma
samples used for determining the LM parameters o and f is
the same as the number of chroma samples used for deter-
mining the LM parameters o and f3.

[0143] In general, when the LM prediction mode is
applied for a current PU, a video coder may perform the
following steps. First, the video coder may reconstruct a
luma block for the current PU. As part of reconstructing the
luma block for the current PU, the video coder may perform
intra prediction to determine a luma predictive block of the
current PU. Furthermore, as part of reconstructing the luma
block for the current PU, the video coder may add residual
data to the luma predictive block of the current PU to
reconstruct the luma block for the current PU. Second, the
video coder may down-sample reference luma samples that
neighbor the top and left sides of the current PU. Third, the
video coder may use equations (4) and (5) above to derive
linear parameters (i.e., o and ) based on chroma reference
samples that neighbor the top and left sides of the current PU
and the down-sampled luma reference samples. This disclo-
sure may also refer to the linear parameter as “scaling
factors.” Fourth, the video coder may down-sample the
reconstructed luma block for the current PU. Fifth, the video
coder may use equation (2) above to predict chroma samples
(e.g., derive a predictive chroma block) from the down-
sampled luma block for the current PU and the linear
parameters.

[0144] As noted above, a video coder may down-sample a
reconstructed luma block of a current PU. The video coder
may down-sample the reconstructed luma block of the
current PU in various ways. For example, since the typical
sampling ratio of chroma components is half of that of luma



US 2017/0150176 Al

components and has 0.5 sample phase difference in vertical
direction in 4:2:0 sampling, reconstructed luma samples of
the current PU are down-sampled in the vertical direction
and sub-sampled in the horizontal direction to match the size
and phase of the chroma signal. For instance, for each value
i from O to the width of the predictive chroma block of the
current PU minus 1 and each value j from 0 to the height of
the predictive chroma block of the current PU minus 1, a
video coder may calculate:

recy (i, /)~(Rec o552, 214Recs 0,,[20, 2j+1])>>1 ©)

In the equation above, rec,(i, j) is a luma sample corre-
sponding to position (i, j) relative to a top-left corner of the
down-sampled reconstructed luma block of the current PU.
Rec; o,,.[21, 2j] and Rec,,,,[21, 2j+1] are reconstructed
luma samples at positions (21, 2j) and (21, 2j+1) relative to
a top-left corner of the original reconstructed luma block of
the current PU. Thus, in equation (6), a luma sample at
position (i, j) of the down-sampled reconstructed luma block
of the current PU is the mean of a luma sample at position
(2i, 2j) of the original reconstructed luma block of the
current PU and a luma sample at position (2i, 2j+1) of the
original reconstructed luma block of the current PU.
[0145] FIG. 14 is a conceptual diagram illustrating an
example of luma positions and chroma positions for down-
sampling samples of a reconstructed luma block of a current
PU. FIG. 14 depicts chroma samples as triangles and luma
samples as circles. A video coder predicts the value of a
current chroma sample (represented in FIG. 14 by the
filled-in triangle) from two luma samples (represented in
FIG. 14 by the two filled-in circles), by applying a [1, 1]
filter. The [1, 1] filter is one example of a 2-tap filter. Ina [1,
1] filter the two taps are equally weighted. For each respec-
tive triangle in FIG. 14, a video coder may apply equation
(6) to samples represented by the circles above and below
the respective triangle to determine a respective luma value
for the sample represented by respective triangle.

[0146] Furthermore, as noted above, a video coder may
down-sample luma reference samples. The video coder may
down-sample the luma reference samples in various ways.
As shown in FIG. 14, the columns of a predictive chroma
block of a current PU are aligned with columns of the
predictive luma block of the current PU. In one example
using the 4:2:0 color format, the down-sampled luma ref-
erence samples that neighbor a top side of the current luma
block may consist of each luma reference sample at an even
indexed position in the set of luma reference samples. Thus,
for each respective value of i ranging from 0 to the width of
the predictive chroma block of the current PU minus 1, the
down-sampling process may be defined as:

recz (i, —1)=Reczo,4[2i, ~1] (7

In the equation above, rec,(i, -1) is a down-sampled luma
reference sample at position (i, —1) relative to a top-left
corner of the chroma predictive block of the current PU.
Rec; g,4,[21, =1] is a luma reference sample at position (2i,
-1) relative to a top-left corner of the original predictive
luma block of the current PU.

[0147] As shown in FIG. 14, the rows of a predictive
chroma block of a current PU are not aligned with rows of
a predictive luma block of the current PU in the 4:2:0 color
format. However, equations (4) and (5) for calculating the
parameters o and f for LM-based prediction are predicated
on there being one luma reference sample for each chroma
reference sample. Accordingly, for a respective row of the
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predictive chroma block for the current PU, the video coder
may calculate an average of the luma reference sample in a
row of the predictive luma block of the current PU above
and the luma reference sample in a row of the predictive
luma block of the current PU below the row of the predictive
chroma block. For instance, for each value j ranging from 0
to the number of rows in the predictive chroma block minus
1, the video coder may calculate the value of a left-
neighboring luma reference sample as:

rec (=1, )=(Rec gyl -2, 2 +ReCs 0,[ -2, 2/+1])>>1 ®)

In the equation above, rec,(-1, j) is a down-sampled luma
reference sample at position (-1, j) relative to a top-left
corner of the predictive chroma block of the current PU.
Rec; ,,,[-2. 2j] and Rec;,,, [-2, 2j+1] are original luma
samples at positions (-2, 2j) and (-2, 2j+1) relative to a
top-left corner of the original predictive luma block of the
current PU.

[0148] Other down-sampling techniques have also been
proposed. For instance, in Yi-Jen Chiu et al., “Cross-channel
techniques to improve intra chroma prediction”, Joint Col-
laborative Team on Video Coding (JCT-VC) of ITU-T SG16
WP3 and ISO/IEC JTC1/SC29/WG11, JCTVC-F502, 6th
Meeting: Torino, 1T, 14-22 Jul., 2011 (referred to herein as
“JCTVC-F502”), instead of using a two-tap filter, a video
coder applies 2-dimensional 6-tap filtering to both a current
luma block and a neighboring luma block. The 2-dimen-
sional filter coefficient set is:

121 ©
[1 2 1]/8

The down-sampled luma samples are derived by equation
(10):
recz(,/)=(Recro6[2i, 2/]*2+Recs o420, 2j+1]+Re-

CLorgl2l, 2-1]+Recs 02041, 2i7*2+ReCs 0,
[2i+1, 2/+11+Rec 0, g[2i41, 27-1])>>3 (10)

In the equation above, rec,(i, j) is a reconstructed luma
sample at position (i, j) relative to a top-left corner of the
down-sampled reconstructed luma block of the current PU
and Rec; [ - . . ] are reconstructed luma samples of the
original reconstructed luma block of the current PU at
positions relative to a top-left corner of the original recon-
structed luma block of the current PU.

[0149] For instance, a video coder may perform the opera-
tions of equation (10) to determine the down-sampled luma
block. Equation (10) includes a built in 6-tap filter, as
represented by [1, 2, 1; 1, 2, 1] with Rec,,,,[21, 2],
Rec; o,44[21, 2j+1], Rec,q,.[21, 2j-1], Rec,q,,[21+1, 2i],
Rec; g,4,[21-1, 2j-1], and Rec, 4,;,[2i+1, 2j-1] as 6 input
samples. A tap number of a filter indicates how many input
samples are used for applying the filter. For instance, in
equation (10), the video coder uses six values from the
reconstructed luma block to generate the down-sampled
luma block.

[0150] FIG. 15 is a conceptual diagram illustrating an
example of luma positions and chroma positions for down-
sampling samples of a luma block for generating a predic-
tive block. As depicted in FIG. 15, a video coder predicts a
chroma sample, represented by the filled-in triangle, from
six luma samples, represented by the six filled-in circles, by
applying a 6-tap filter. Since a predictor of a chroma sample
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is derived using a linear function, as defined in equation (2),
it could be seen that when the 6-tap filter is applied, the
predictor of one chroma sample relies on the six neighboring
luma samples. When combining equations (2) and (10), the
result is the following equation (11):
predc(i, j)=0r(Reczo,40[2i, 2/]*2+Recsop[21, 2j+1]+

ReCyg,4[21 2j-1]+Rec; g,,[2i+1, 2//*2+Rec; o

rigl2i+1, 2j+1]+Recs ol 2041, 2/-11)>>3)+B (11)
[0151] The following text refers to the down-sampled
reconstructed luma sample rec,(i, j) as the corresponding
down-sampled luma sample for the chroma sample located
at (i, j). For example, because of 4:2:0 sampling, a 2Nx2N
luma block corresponds to an NxN chroma block. With
down-sampling, the 2Nx2N luma blocks becomes an NxN
down-sampled luma block. This NxN down-sampled luma
block is referred to as rec, (i, j) and corresponds to the NxN
chroma block.
[0152] Furthermore, although the above examples are
described with respect to 4:2:0 sampling, the techniques
described in this disclosure are not so limited. For instance,
the techniques described in this disclosure may also be
applicable to 4:2:2 sampling. Accordingly, the examples
with respect to 4:2:0 are provided merely to assist with
understanding.
[0153] Furthermore, in some examples, the techniques
described in this disclosure may be applicable to 4:4:4
sampling as well. For example, in 4:4:4 sampling, the
chroma block is not sub-sampled relative to the luma block.
However, it may be possible to determine a predictive block
for the chroma block in such examples as well. For example,
the luma block may be filtered and the filtered block may be
used as a predictive block for the chroma block. In these
examples, down-sampling of the luma block may not be
needed. As explained in more detail, the example techniques
describe selection of a filter applied to samples of the luma
block based on a location of the chroma block. The tech-
niques for selecting a filter applied to samples of the luma
block may be extended to examples where down-sampling
is not needed for LM prediction, such as for 4:4:4 sampling.
In such examples, the filter may not include any down-
sampling so that the 4:4:4 sampling is preserved. Accord-
ingly, the description for 4:2:0 sampling is an example, and
the techniques are applicable to 4:4:4 sampling as well.
[0154] For example, rather than being limited to using
only a two-tap filter or a six-tap filter to down-sample the
luma block, a video coder (e.g., video encoder 20 or video
decoder 30) may determine a filter from a set of filters that
is used for down-sampling the luma block. As an example,
there may be a number X of different filters that the video
coder can use for down-sampling. For instance, there may be
a one-tap filter, a two-tap filter, a three-tap filter, and so forth.
Moreover, for each filter the specific taps might be different
(e.g., the luma samples used for a first two-tap filter are
different than the luma samples used for a second two-tap
filter). In some of the examples described in this disclosure,
the set of filters includes two filters; however, more than two
filters from which the video coder determines which filter to
apply for down-sampling the luma block are possible.
[0155] The video coder may use various criteria to deter-
mine which filter to apply. As one example, the video coder
determines which filter from the set of filters to apply based
on a location of the chroma block. If the chroma block
borders a left boundary of the picture, CU, PU, or TU (e.g.,
the left boundary of the picture, CU, PU, or TU is the same

May 25, 2017

as chroma block edge), the video coder may use a first filter
for down-sampling luma samples of the luma block that
correspond to the chroma samples of the chroma block that
are on the left boundary. Samples of the chroma block that
are on the left boundary refer to the samples of the chroma
block that are closest to the left boundary including samples
that are directly on the boundary. The first filter may be
applied to the N samples closest to the boundary (e.g.,
sample closest to the boundary, one next to that sample, and
N such samples).

[0156] In some cases, the video coder may apply the first
filter for all luma samples of the luma block, rather than just
those samples that correspond to chroma samples that neigh-
bor the left boundary. However, the techniques described in
this disclosure are not so limited. For all other cases, the
video coder may use a second, different filter for down-
sampling the luma block.

[0157] For instance, in 4:2:0 sampling, four luma samples
correspond to one chroma sample. Accordingly, the video
coder may determine which chroma sample corresponds to
which luma samples. When filters with larger tap numbers
are used, one chroma sample may correspond to more than
four luma samples. For the luma samples that correspond to
a chroma sample on a left boundary (immediately adjacent
or within a number of samples), the video coder may apply
a first filter to the corresponding luma samples to down-
sample the luma block, and for the luma samples that
correspond to a chroma sample that is not on a left boundary
(not immediately adjacent or not within a number of
samples), the video coder may apply a second filter to
corresponding luma samples to down-sample the luma
block.

[0158] In some examples, the first filter may include fewer
taps (e.g., number of samples that the filter extends over)
than the second filter. As one example, the first filter is the
two-tap filter and the second filter is the six-tap filter. In this
example, the video coder may perform the operations of
equation (6) to determine the down-sampled luma samples
of a luma block in the case that the corresponding chroma
samples of the chroma block are on the left boundary, and
may perform the operations of equation (10) to determine
the down-sampled luma samples of the luma block in the
case that the corresponding chroma samples of the chroma
block are not on the left boundary. Accordingly, during the
derivation process of corresponding down-sampled luma
samples of chroma samples, the video coder may apply a
different filter to the luma samples of a luma block that
correspond to chroma samples of a chroma block located at
the left picture boundary, or left boundary (i.e., side) of
CU/PU/TU, compared to the filter applied to other samples
of'the luma block that correspond to chroma samples that are
not at the left picture boundary or left boundary of CU, PU,
or TU. Chroma samples that are at the left boundary refer to
chroma samples immediately adjacent to the left boundary
or within a certain number of samples from the left bound-
ary.

[0159] Using different filters allows the video coder to
properly use available sample values. For instance, using a
six-tap filter for luma samples that correspond to chroma
samples at the left boundary of picture, CU, PU, or TU may
result in requiring the video coder to use luma sample values
that are not part of the luma block for down-sampling and
may result in the video coder having to perform some
additional processing to address the lack of luma samples
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(e.g., padding luma sample values to generate values for
samples that are not part of a luma block). However, using
atwo-tap filter at the left boundary may not require the video
coder to use luma sample values that are not part of the luma
block for down-sampling. Accordingly, although two-tap
and six-tap filters are described, other sized filters for
down-sampling may be possible with consideration to avoid
needing to require luma samples that are not part of the luma
block (e.g., to avoid the need to pad luma samples on the left
boundary).

[0160] As one example, during the derivation process of
corresponding down-sampled luma samples of chroma
samples, the video coder applies a different filter to luma
samples that correspond to chroma samples located at the
left picture boundary compared to the filter applied to other
luma samples that correspond to chroma samples not located
at the left picture boundary. In one example, the length (e.g.,
tap) of the filter (i.e., the number of samples that the filter
extends over) for deriving the corresponding down-sampled
luma samples of chroma samples at the left picture boundary
is smaller than the length of the filter for deriving the
corresponding down-sampled luma samples of chroma
samples not at the left picture boundary (e.g., two-tap for the
left boundary and six-tap for all others).

[0161] As one example, during the derivation process of
corresponding down-sampled luma samples of chroma
samples, the video coder applies a different filter for luma
samples of chroma samples located at the left CU boundary
compared to the filter applied to other luma samples within
current CU. In one example, the length (e.g., taps) of the
filter (i.e., number of samples that the filter extends over) for
deriving the corresponding down-sampled luma samples of
chroma samples at the left CU boundary is smaller than the
length of the filter for deriving the corresponding down-
sampled luma samples of chroma samples not at the left CU
boundary (e.g., two-tap for the left boundary and six-tap for
all others).

[0162] As one example, during the derivation process of
corresponding down-sampled luma samples of chroma
samples, the video coder applies a different filter for chroma
samples located at the left PU boundary compared to the
filter applied to other samples within current PU. In one
example, the length (e.g., taps) of the filter (i.e., the number
of samples that the filter extends over) for deriving the
corresponding down-sampled luma samples of chroma
samples at the left PU boundary is smaller than the length of
the filter for deriving the corresponding down-sampled luma
samples of chroma samples not at the left PU boundary (e.g.,
two-tap for the left boundary and six-tap for all others).
[0163] As one example, during the derivation process of
corresponding down-sampled luma samples of chroma
samples, the video coder may apply a different filter for
chroma samples located at the left TU boundary compared
to the filter applied to other samples within current TU. In
one example, the length (e.g., taps) of the filter (i.e., the
number of samples that the filter extends over) for deriving
the corresponding down-sampled luma samples of chroma
samples at the left TU boundary is smaller than the length of
the filter for deriving the corresponding down-sampled luma
samples of chroma samples not at the left TU boundary (e.g.,
two-tap for the left boundary and six-tap for all others).
[0164] In some cases, there may not be corresponding
luma samples in the same picture. The following describes
some example techniques to address such situations. For
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instance, although avoiding padding may be beneficial in
some cases, in some instances, it may not be possible to
avoid padding. For example, because some luma samples
are unavailable (e.g., because off picture), the video coder
may substitute padding sample values for these unavailable
samples and perform down-sampling with these padding
sample values (e.g., down-sample using the actual luma
sample values for the available luma samples and padding
sample values for the unavailable luma samples). The pad-
ding sample values may be default values (e.g., 2°““r™
wherein bitdepth indicates the bit depth of luma compo-
nent), values determined by video encoder 20 and signaled
to video decoder 30, or values determined based on some
implicit technique that does not require signaling of infor-
mation. Adding padding sample values may reduce com-
plexity because there may not be a need for separate filters.
[0165] During the derivation process of corresponding
down-sampled luma samples of chroma samples, when the
luma samples are outside of a picture, or a CU/PU/TU needs
to be involved in the down-sampling process, the video
coder may first apply a padding operation, followed by a
down-sampling process. In the padding of samples, the
video coder may substitute those samples that are off screen
with padding sample values.

[0166] As one example, during the derivation process of
corresponding down-sampled luma samples of chroma
samples, the video coder may pad the luma samples (e.g.,
only the luma samples) which are located outside of the
current picture. For all other positions, the reconstructed
samples are used. As one example, during the derivation
process of corresponding down-sampled luma samples of
chroma samples, the video coder may pad the luma samples
which are located outside of the current CU. For all other
positions, the reconstructed samples are used. As one
example, during the derivation process of corresponding
down-sampled luma samples of chroma samples, the video
coder may pad the luma samples which are located outside
of the current PU. For all other positions, the reconstructed
samples are used. As one example, during the derivation
process of corresponding down-sampled luma samples of
chroma samples, the video coder may pad the luma samples
which are located outside of the current TU. For all other
positions, the reconstructed samples are used. In above
examples for padding, the same down-sampling process is
applied to all positions.

[0167] When the position of luma reconstructed samples
used in LM prediction mode is located outside the current
slice or current tile, the video coder may mark such samples
as unavailable (e.g., the video coder may determine such
samples as unavailable). When the sample is marked as
unavailable, the video coder may perform one or more of the
following.

[0168] The unavailable samples, if used in a down-sam-
pling process for a neighboring luma block, are not used in
the down-sampling process for a neighboring luma block.
Alternatively or additionally, the filter may be different from
the filter used for other samples. The unavailable samples, if
used in a down-sampling process for a current luma block,
are notused in the down-sampling process for a current luma
block. Alternatively or additionally, the filter may be differ-
ent from the filter used for other samples. The unavailable
samples are re-marked as available; however, the sample
value is modified to be the padded sample value or a default
value. Alternatively or additionally, the filter is kept the same
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as the filter used for other samples. In one example, the
default value is dependent on the bit-depth. In another
example, the padding could be from the left/right/above/
below sample which is marked as available.

[0169] In general, for luma samples that are in another tile,
the video coder may mark pixels outside the tile boundary as
unavailable and not include them in the down-sampling
process. In some examples, the video coder may mark the
luma samples in another tile as available but use padded
pixels for such luma samples in another tile. As another
example, the video coder may use padded “extended” values
(e.g., one half possible value based on bit depth, so 8 bit, use
128) for luma samples in another tile, rather than marking
the samples as unavailable.

[0170] In some examples, the video coder may apply
different filters to different chroma color components (Cb or
Cr). In some examples, when LM prediction mode is
enabled, one or more sets of the down-sampling filter may
be further signaled in either a sequence parameter set (SPS),
picture parameter set (PPS), or slice header. Alternatively or
additionally, a Supplemental Enhancement Information
(SEI) message syntax is introduced to describe the down-
sampling filter. Alternatively or additionally, furthermore, a
default down-sampling filter is defined, e.g., the 6-tap filter
[1, 2, 1; 1, 2, 1] without signaling. Alternative or addition-
ally, one PU/CU/largest CU may signal an index of the filter
that is used in LM prediction mode. Alternatively or addi-
tionally, the usage of the filter tap may be derived on-the-fly
by video decoder 30 without signaling. There may be other
ways to provide filter support as well.

[0171] Inoneexample, furthermore, a constraint is applied
that a, is equal to o). In one example, furthermore, a
constraint is applied that o, is equal to o, ,, with i being
equal to O or 3. In one example, this example technique may
only be enabled for larger coded CUs, e.g., CU size larger
than 16x16. In one example, one or more of the parameters
is restricted to be 0.

[0172] Moreover, the video coder may apply one or more
of the above techniques also for cross component residual
prediction, in which the down-sampled luma residual is used
to predict the chroma residual. In this case, the down-
sampling process is applied to reconstructed luma residual,
as one example.

[0173] The following is an example manner in which
techniques described in this disclosure may be implemented
by a video coder. The example implementation technique
should not be considered limiting.

[0174] Below is an example for applying different down-
sampling processes for samples at the left picture boundary.
The down-sampling process for a current luma block is
defined as follows:

[0175] if the chroma sample is not located at the left
boundary of picture, 6-tap filter, e.g. [1 2 1; 1 2 1] is
applied to derive the corresponding down-sampled
luma sample:
recz (i, )=(Reco,el 2, 2j]*2+Recy o40[ 21, 27+1]+

Recyopg[21, 2/-11+Recs 5,40 2i+1, 2j]*2+Recs o
rigl2i+1, 2j+1]+Recs g 2i+1, 2j-1]+offset
0)>>3 (13)

[0176] Otherwise, if the chroma sample is located at the
left boundary of the picture, 2-tap filter, e.g., [1; 1] is
applied to derive the corresponding down-sampled
luma sample:
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rec; (i, )=(Recy g,[21, 27]+Rec; ,,[2i, 2/+1]+of-
setl)>>1 (14)

[0177] In one example, offset0 and offsetl are both set
equal to 0. In another example, offsetO is set equal to 4 and
offsetl is set equal to 1.

[0178] In HEVC, a square transform is always applied,
even for rectangular PUs. For example, FIG. 16 is a con-
ceptual diagram illustrating nRx2N prediction mode with
NxN transform. In the example of FIG. 16, the nRx2N
prediction mode partitions a coding block 100 with a 2Nx2N
block size into two prediction blocks with sizes of 0.5Nx2N
and 1.5Nx2N, respectively. However, in the example of
FIG. 16, the transform block size is NxN.

[0179] FIG. 17 is a conceptual diagram illustrating a
non-square quadtree (NSQT) for 2NxN, 2NxnD and 2NxnU
prediction modes. In FIG. 17, a 2Nx2N block at level 0 is
split into four 2Nx0.5N blocks located at level 1; the block
at level 1 is further split into four Nx0.25N blocks locate at
level 2. FIG. 18 is a conceptual diagram illustrating a NSQT
for Nx2N, nRx2N and n[.x2N prediction modes. In FIG. 18,
a 2Nx2N block at level 0 is split into four 0.5Nx2N blocks
located at level 1; the block at level 1 is further split into four
0.25NxN blocks locate at level 2.

[0180] Considering that residuals might be discontinuous
at the boundaries of two connective prediction blocks, high
frequency transform coefficients will likely be produced and
the coding performance will be affected. In this disclosure,
connective predictive blocks are predictive blocks that share
at least one of the four boundaries. Therefore, in Yuan et al.,
“Non-Square Quadtree Transform Structure for HEVC,”
2012 Picture Coding Symposium (PCS), pp. 505-508, May
7-9, 2012, Krakéw, Poland (hereinafter, “Yuan™), a non-
square quadtree transform (NSQT) structure is described.
[0181] In NSQT, two additional transform block sizes are
added: 2Nx0.5N and 0.5Nx2N. In this structure, a transform
block is split into 2Nx0.5N and 0.5Nx2N and transform
matrix can be obtained by reusing 0.5Nx0.5N and 2Nx2N
transform matrixes. In this disclosure, a transform matrix
may also be referred to as a transform core. In Yuan, the
NxN quantization table of HEVC is reused to quantize the
transform coeflicients of 2Nx0.5N and 0.5Nx2N transform
blocks.

[0182] As mentioned above, a video coder may apply a
transform to convert samples to a frequency domain, or vice
versa. The specific types of transforms applied in HEVC are
two types of discrete cosine transforms, namely DCT-II and
4x4 DST-VII. Xin Zhao et al.,, U.S. Patent Publication
2016/0219290 Al proposed an Enhanced Multiple Trans-
form (EMT) scheme in addition to DCT-II and 4x4 DST-VII
for both inter and intra coded blocks. The EMT scheme
utilizes multiple selected transforms from the DCT/discrete
sine transform (DST) families other than the current trans-
forms in HEVC. The newly introduced transform matrices in
U.S. Patent Publication 2016/0219290 are DST-VII, DCT-
VIII, DST-I and DCT-V.

[0183] The proposed EMT in U.S. Patent Publication
2016/0219290 A1 applies to CUs smaller than 64x64, and
whether EMT applies or not is controlled at the CU level
using a flag, namely an EMT flag, for all TUs within a CU.
For each TU within an EMT-enabled CU, the horizontal or
vertical transform to be used is signaled by an index to a
selected transform set, namely an EMT index. Each trans-
form set is formed by selecting two transforms from the
aforementioned transform matrices.
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[0184] For intra prediction residual, the transform sets are
pre-defined based on the intra prediction mode, as described
in X. Zhao et al., “Video coding with rate-distortion opti-
mized transform,” IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 22, no. 1, pp. 138-151, January 2012; thus each
intra prediction mode has its own transform set. For
example, one transform set can be {DCT-VIII, DST-VII}.
Note that the transform set for the horizontal transform may
be different from the transform set for the vertical transform,
even for a same intra prediction mode. However, the total
number of different transform sets for all intra prediction
modes as well as the number of newly introduced transforms
is limited. However, for inter prediction residual, only one
transform set is used for all inter modes and for both
horizontal and vertical transforms.

[0185] Illumination compensation (IC) in the multi-view
video coding is used for compensating illumination discrep-
ancies between different views because each camera may
have different exposure to a light source. Typically, a weight
factor and/or an offset are used to compensate the differences
between a coded block and a prediction block in a different
view. [llumination compensation was introduced to improve
the coding efficiency for blocks predicted from inter-view
reference pictures. Therefore, illumination compensation
may only apply to blocks predicted by an inter-view refer-
ence picture.

[0186] Liu et al., “3D-CE1.h related: Illumination Com-
pensation for Inter-View Prediction,” Joint Collaborative
Team on 3D Video Coding Extension Development of
ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 1*
Meeting, Stockholm, SE, 16-20 Jul. 2012, document
JCT3V-A0086 (hereinafter, JCT3V-A0086), describes illu-
mination compensation (IC). In JCT3V-A0086, IC is
enabled for inter-view prediction. Furthermore, as described
in JCT3V-A0086, a IC process derives IC parameters based
on neighboring samples of a current CU and neighboring
samples of a reference block. In JCT3V-A0086, IC only
applies to a 2Nx2N partition mode. Furthermore, in JCT3V-
A0086, for AMVP mode, one IC flag is signaled for each CU
that is predicted from an inter-view reference picture. For
merge mode, to save bits, an IC flag is signaled only when
a merge index of the PU is not equal to 0. The IC flag
indicates whether IC is used for a CU. IC does not apply to
CUs that are only predicted from temporal reference pic-
tures.

[0187] As described in JCT3V-A0086, a linear IC model
used in inter-view prediction is shown in Eq. (6):

pG, jy=a*r(i+dv,, j+dv,+b), where (i, j) € PU (15)

Here, PU is a current PU, (i, j) are the coordinates of pixels
in PU,, (dv,, dv,) is a disparity vector of PU_, p(i, j) is the
prediction of PU_, and r is the current PU’s reference picture
from a neighboring view. a and b are parameters of the linear
1C model.

[0188] In JCT3V-A0086, two sets of pixels as shown in
FIG. 19 are used to estimate parameters a and b for a current
PU. The first set of pixels includes available reconstructed
neighboring pixels in a left column and an above row of a
current CU (i.e., a CU that contains the current PU). The
second set of pixels includes corresponding neighboring
pixels of a reference block of the current CU. The disparity
vector of the current PU is used to find the reference block
of the current CU.
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[0189] FIG. 19 illustrates neighboring pixels used to esti-
mate parameters in the IC model. Particularly, FIG. 19
includes a current CU 110 and reference block 112. Each
respective square of FIG. 19 corresponds to a respective
sample. Thus, current CU 110 and reference block 112 each
include 64 samples. The squares enclosing circles adjacent
to current CU 110 correspond to the neighboring samples of
current CU 110 (i.e., Rec,,,,;). The squares enclosing circles
adjacent to reference block CU 112 correspond to the
neighboring samples of neighboring block 112 (i.e., Rec,,~
neigh). As described elsewhere in this disclosure, a video
coder may use Rec,,,.;, and Ref, ., to estimate param-
eters for IC.

[0190] Furthermore, as described in JCT3V-A0086, let
Rec,,,,, denote a neighboring pixel set used by the current
CU. Let Rec, 4, denote a neighboring pixel set used by
the reference block of the current CU. Let the size of the
current CU and the size of the reference block of the current
CU both be equal to NxN. Let 2N denote the number of
pixels in Rec and Rec Then, a and b can be
calculated as:

neig refieig*

2N-1 (16
N D" ReCyig (i) ReCgueig (i) -
=
2N-1 L 2N-1 .
Z;:o Recneig(l)-zizo Recrefneig(l)

a= 2N-1 . A R%
2N - 'ZE) Recrefneig(l)'Recrefneig(l)_( 'Zb Recrefneig(l)]
i= f=

2N-1 2N-1 amn
D" Recpigli)=a- > Recignigli)
i=0 i=0

b
2N

In some cases, only a is used in linear model and b is always
set equal to 0, or only b is used and a is always set equal to
1

[0191] In VCEG-AZ06, Local lllumination Compensation
(LIC) is enabled or disabled adaptively for each inter-mode
coded CU. In VCEG-AZ06, LIC is based on a linear model
for illumination changes, using a scaling factor a and an
offset b. FIG. 20 is a conceptual diagram illustrating
example neighboring samples used for deriving IC param-
eters as described in VCEG-AZ06.

[0192] In VCEG-AZ06, when LIC applies for a CU, for
each PU/sub-PU belonging to the CU, a video coder derives
LIC parameters in a way that using sub-sampled (2:1
sub-sampling) neighboring samples of the CU and the
corresponding pixels (identified by motion information of
the current PU/sub-PU) in the reference picture. For a CU
with size equal to NxN, the total number of boundary pixels
used in equations (16) and (17) is N instead of 2N. An
example is illustrated in FIG. 20. Thus, FIG. 20 is a
conceptual diagram illustrating example neighboring pixels
used to estimate parameters in an illumination compensation
model, in which a reference block 114 of a current CU 116
is found by using a disparity vector of a current PU. In
VCEG-AZ06, the IC parameters are derived and applied for
each prediction direction separately. A video coder may
employ a least square error method to derive the parameters
a and b based on the abovementioned neighboring samples.
[0193] The current RQT design in HEVC, and other
techniques such as NSQT and IC, may have the following
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shortcomings. For instance, regardless of whether the NSQT
or the transform tree of HEVC is used, a quad-tree structure
is always employed which may be sub-optimal without
considering PU information. However, HEVC only supports
square PUs for intra prediction modes.

[0194] Introducing 2NxN and Nx2N partitions to intra
modes, as is done in JCTVC-G135, may have the following
problems. First, AMP is not allowed. Second, how to define
the transform tree structure to achieve high coding efficiency
has not been studied. Third, the LM prediction mode has
only been used with square PUs and it is unknown how to
derive the parameters o and f§ used in the LM prediction
mode with non-square PUs. Fourth, in prior techniques, the
coeflicients must be reorganized to be in a square form,
which may reduce the correlation among neighboring coef-
ficients. Furthermore, the current EMT design has a problem
in that EMT is controlled at the CU level. However, con-
trolling EMT at the CU level is not efficient if the residual
characteristics (e.g., distributions) of each PU in a CU are
different.

[0195] To resolve the problems mentioned above, this
disclosure proposes the following techniques. The following
itemized techniques may be applied individually. Alterna-
tively, any combination of them may be applied. In the
following description, the CU size is denoted by MxM and
PU size is denoted by KxIL, wherein both K and L are no
larger than M.

[0196] Inaccordance with a first example technique of this
disclosure, it is proposed that a transform tree is not
restricted to be a quarter tree. For example, a transform
quad-tree and a transform binary tree may be combined.
That is, for at least a certain transform depth, one TU may
be split into two smaller TUs or four smaller TUs. In this
disclosure, for each respective node of a transform tree, the
respective transform depth of the respective node refers to
the number of nodes in the transform tree between the
respective node and the root node of the transform tree. The
flexibility to split a TU into two TUs or four TUs may
enhance the ability of video encoder 20 to structure the
transform tree in a way that aligns TU boundaries with PU
boundaries. Aligning TU boundaries with PU boundaries
may increase compression performance.

[0197] Thus, in this example, video encoder 20 may
partition a CU of video data into TUs of the CU based on a
tree structure. In this example, a root node of the tree
structure corresponds to a coding block of the CU. Further-
more, in this example, each respective non-root node of the
tree structure corresponds to a respective block that is a
partition of a block that corresponds to a parent node of the
respective non-root node. In this example, leaf nodes of the
tree structure correspond to the TUs of the CU. In this
example, at least one node in the tree structure has exactly
two child nodes in the tree structure. In some instances, at
least one node in the tree structure may have exactly four
child nodes in the tree structure. In this example, video
encoder 20 may include, in a bitstream that comprises an
encoded representation of the video data, data representing
one or more of the TUs of the CU.

[0198] In a corresponding example, video decoder 30 may
determine a CU is partitioned into TUs of the CU based on
a tree structure. In this example, a root node of the tree
structure corresponds to a coding block of the CU. Further-
more, in this example, each respective non-root node of the
tree structure corresponds to a respective block that is a

May 25, 2017

partition of a block that corresponds to a parent node of the
respective non-root node. In this example, leaf nodes of the
tree structure correspond to the TUs of the CU. In this
example, at least one node in the tree structure has exactly
two child nodes in the tree structure, and at least one node
in the tree structure has exactly four child nodes in the tree
structure. In this example, video decoder 30 may recon-
struct, based on data for at least one of the TUs of the CU,
the coding block of the CU.

[0199] Furthermore, in an example where a transform tree
is not restricted to be a quarter tree (i.e., not required to be
a tree in which all non-leaf nodes have 4 child nodes), for
transform depth equal to 0, the square transform with size
equal to MxM is applied. For transform depth equal to 1, the
transform is split into two or four (depending on the number
of PUs) and transform size is equal to KxL. For remaining
transform depths, the quad-tree structure is still applied
wherein one TU is split into four smaller ones, i.e., for
transform depth equal to 2, the transform size is set to
K/2xL[/2. An example is given in FIG. 21. One reason for
limiting splitting of transform into two or four at transform
depth 1 is to align transform sizes with PU sizes, e.g., ifa PU
size is 2NxN or Nx2N, splitting into 2 may be preferred. If
a PU is an NxN partition, 4-way transform splitting may
yield better results. In another reason, if the corresponding
transform matrix was unknown, e.g., if AMP is used, one
16x16 CU may be split into 4x16 and 12x16 PUs, while
12x12 transform is not defined, therefore, splitting to 4 may
be used for this case.

[0200] FIG. 21 is a conceptual diagram illustrating an
example transform structure for partition size equal to
2NxN. In FIG. 21 and the following figures, the dash lines
indicate the splitting information for the next transform
depth. Particularly, in FIG. 21, a transform block 130 has the
same size as a coding block of a CU. Transform block 130
is partitioned into transform blocks 132 and 134. Further-
more, in the example of FIG. 21, transform block 132 is
partitioned into transform blocks 136, 137, 138, and 139.
Transform block 134 is partitioned into transform blocks
140, 141, 142 and 143. Thus, as shown in FIG. 21, a root
node may have 2 child nodes, but nodes at other transform
depths may be required to have 0 or 4 child nodes.

[0201] In some examples where a transform tree of a CU
is not restricted to being a quarter tree, either a binary tree
or a quarter tree is applied. A video coder may determine
whether a binary tree or a quarter tree is applied based on the
number of PUs in the CU. For example, when there are two
PUs, the video coder utilizes a binary transform tree. If the
CU has four PUs, the video coder may use a quarter tree
structure to partition the CU into TUs. In one example, the
method of selecting either binary tree or quarter tree is only
applied to certain transform depths, such as 1.

[0202] Thus, in this example, video encoder 20 may
partition a CU of the video data into TUs of the CU based
on a tree structure. In this example, a root node of the tree
structure corresponds to a coding block of the CU, each
respective non-root node of the tree structure corresponds to
a respective block that is a partition of a block that corre-
sponds to a parent node of the respective non-root node, leaf
nodes of the tree structure correspond to the TUs of the CUs,
and the CU has one or more PUs. Furthermore, in this
example, depending on the number of PUs of the CU,
exactly one of the following applies: each node in the tree
structure has exactly two child nodes in the tree structure, or
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each node in the tree structure has exactly four child nodes
in the tree structure. In this example, video encoder 20 may
include, in a bitstream that comprises an encoded represen-
tation of the video data, data representing one or more of the
TUs of the CU.

[0203] Ina corresponding example, video decoder 30 may
determine a CU of the video data is partitioned into TUs of
the CU based on a tree structure. In this example, a root node
of'the tree structure corresponds to a coding block of the CU,
each respective non-root node of the tree structure corre-
sponds to a respective block that is a partition of a block that
corresponds to a parent node of the respective non-root
node, leaf nodes of the tree structure correspond to the TUs
of the CUs, and the CU has one or more PUs. In this
example, depending on the number of PUs of the CU,
exactly one of the following applies: each node in the tree
structure has exactly two child nodes in the tree structure, or
each node in the tree structure has exactly four child nodes
in the tree structure. Furthermore, in this example, video
decoder 30 may reconstruct, based on data for at least one
of the TUs of the CU, the coding block of the CU.

[0204] In some examples where the transform tree is not
restricted to be a quarter tree, the splitting method of either
binary or quarter tree is signaled. For example, video
encoder 20 may include, in the bitstream data representing
a syntax element that indicates whether a CU is partitioned
into TUs according to a binary tree or according to quarter
tree. In this example, video decoder 30 may determine,
based on data in the bitstream, a value of the syntax element.
Furthermore, in this example, video decoder 30 may deter-
mine, based on the value of the syntax element, whether the
CU is partitioned into TUs according to a binary tree or
according to a quarter tree.

[0205] Alternatively, furthermore, the signaling may be
skipped for certain PU partitions. In other words, video
encoder 20 may skip signaling of transform tree splitting for
a block based on how the block is split into PUs. For
instance, in one example, for PU partitions equal to 2NxN,
a binary tree is always used and therefore, there is no need
to signal that binary or quarter tree splitting is used in the
corresponding transform tree.

[0206] In accordance with a second technique of this
disclosure, it is proposed that at a certain transform depth,
the transform size is equal to the PU size for the rectangular
PUs. In this disclosure, transform size refers to a size of a
transform block of a TU. Thus, in this example, the trans-
form blocks corresponding to nodes at a particular depth of
a transform tree of a CU have the same sizes as prediction
blocks of PUs of the CU. As previously discussed, aligning
TU boundaries with PU boundaries may improve compres-
sion performance.

[0207] In one example of the second technique, the above
method is only applied to inter coded CUs. In other words,
a video coding standard may require video encoder 20 to
ensure that transform sizes are equal to PUs for inter coded
CUs, but this requirement does not apply to intra coded CUSs.
[0208] Furthermore, in some examples, video encoder 20
may signal one flag for each PU to indicate whether there
exists at least one non-zero coeflicient for the three color
components (e.g., Y, Cb, and Cr). As mentioned above, the
second technique of this disclosure requires the sizes of TUs
of a CU to be equal to the sizes of PUs of the CU at a
particular depth in the transform tree. Hence, at the particu-
lar depth, the transform tree includes a respective transform
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tree node for each respective PU of the CU. For each
respective transform tree node of the transform tree at the
particular depth, the respective transform tree node corre-
sponds to a luma transform block and chroma transform
blocks having the same sizes and shapes as a luma prediction
block and chroma prediction blocks of the corresponding
PU. Hence, encoder 20 may signal information about a
transform tree node at the particular depth (and descendant
transform tree nodes of the transform tree node at the
particular depth) by signaling information in the correspond-
ing PU. For example, video encoder 20 may signal, in a
bitstream, a first syntax element for a PU, a second syntax
element for the PU, and a third syntax element for the PU.
In this example, the first syntax element for the PU indicates
whether there exists a non-zero transform coefficient in a
luma coefficient block of the corresponding transform tree
node or descendant transform tree node thereof, the second
syntax element for the PU indicates whether there exists a
non-zero transform coefficient in a Cb coefficient block of
the corresponding transform tree node or descendant trans-
form tree node thereof, and the third syntax element for the
PU indicates whether there exists a non-zero transform
coefficient in a Cr coefficient block of the corresponding
transform tree node or descendant transform tree node
thereof.

[0209] In prior techniques, rectangular PUs were only
permitted for inter predicted CUs. However, in some
examples of the second technique of this disclosure, when
the rectangular PUs (such as 2NxN, Nx2N) are introduced
to the intra coded CUs, the above method (i.e., requiring the
transform size to be equal to the PU size at a particular
transform depth) is also applied.

[0210] In accordance with a third technique, one TU may
be split into multiple smaller TUs while the sizes of the
smaller TUs may be different. In other words, a video coder
may split a TU into two differently-sized child TUs. In some
instances, splitting a TU into two or more differently-sized
child TUs may improve video coding performance instances
where AMP is enabled because splitting a TU into two or
more differently-sized child TUs may better align the bound-
aries of the child TUs with PU boundaries. As discussed
elsewhere in this disclosure, aligning boundaries of TUs
with boundaries of PUs may reduce the occurrence of high
frequency transform coefficients associated with disconti-
nuities at boundaries between predictive blocks and there-
fore increase compression efficiency. For example, if a block
(e.g., a CU) has a 12x16 PU, a portion of the block
corresponding to the 12x16 PU may be split into two 8x8
TUs plus two 4x4 TUs, or two 8x8 TUs plus one 4x16 TU.

[0211] In one example of the third technique, when AMP
mode is enabled for one CU, the transform tree for the larger
PU may be split to two parts with one equal to the smaller
PU and the rest as another TU. An example is given in FIG.
22. FIG. 22 is a conceptual diagram illustrating a transform
structure for partition size equal to NxN/4(U), in accordance
with a technique of this disclosure. In the example of FIG.
22, a transform block 150 is partitioned into transform
blocks 152 and 154. Furthermore, in the example of FIG. 22,
transform block 152 is partitioned into transform blocks
156, 158, 160, and 162. Transform block 154 is partitioned
into transform blocks 164 and 166. The right branch at
transform depth 2 shows that the two split transform sizes
are different. That is, transform block 164 and transform
block 166 have different sizes.
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[0212] In some examples of the third technique, asym-
metric splitting of a TU is only applicable to the AMP case
wherein the two PU sizes are different or one CU contains
multiple PUs with at least two of the PUs having different
sizes. In other words, a video coder may only split a TU into
child TUs of different sizes if a CU containing the TU is split
into PUs of different sizes.

[0213] Thus, in an example where a TU may be split into
multiple differently-sized TUs, video encoder 20 may par-
tition a CU into TUs of the CU based on a tree structure. In
this example, a root node of the tree structure corresponds to
a coding block of the CU. Furthermore, in this example,
each respective non-root node of the tree structure corre-
sponds to a respective block that is a partition of a block that
corresponds to a parent node of the respective non-root
node. In this example, leaf nodes of the tree structure
correspond to the TUs of the CUs. In this example, child
nodes of at least one node of the tree structure correspond to
blocks of different sizes. Furthermore, in this example, video
encoder 20 may include, in a bitstream that comprises an
encoded representation of video data, data representing one
or more of the TUs of the CU.

[0214] Ina corresponding example, video decoder 30 may
determine a CU is partitioned into TUs of the CU based on
a tree structure. In this example, a root node of the tree
structure corresponds to a coding block of the CU. Further-
more, in this example, each respective non-root node of the
tree structure corresponds to a respective block that is a
partition of a block that corresponds to a parent node of the
respective non-root node. In this example, leaf nodes of the
tree structure correspond to the TUs of the CUs. In this
example, child nodes of at least one node of the tree structure
correspond to blocks of different sizes. Furthermore, in this
example, video decoder 30 may reconstruct, based on data
for at least one of the TUs of the CU, the coding block of the
CU.

[0215] In accordance with a fourth technique of this
disclosure, it is allowed that the split of transform is carried
out not along the same direction (vertical or horizontal) in a
CU. In other words, a transform tree for a CU may include
transform blocks that are split horizontally and transform
blocks that are split vertically. Allowing both horizontal and
vertical splitting of transform blocks may better align the
boundaries of the TUs of the CU with boundaries of the PUs
of the CU. As discussed elsewhere in this disclosure, align-
ing the boundaries of the TUs of a CU with boundaries of the
PUs of the CU may reduce the occurrence of high frequency
transform coefficients associated with discontinuities at
boundaries between predictive blocks and therefore increase
compression efficiency. In one example of the fourth tech-
nique, the use of both horizontal and vertical splitting of TUs
of a CU is only applicable to certain partition modes, e.g.,
AMP.

[0216] FIG. 23 is a conceptual diagram illustrating a
transform structure for a partition size equal to NxN/4(U), in
accordance with a technique of this disclosure. In the
example of FIG. 23, the CU partition is along the horizontal
direction and TU partition could be from either horizontal
and/or vertical directions. Particularly, a TU 180 is split
horizontally into a TU 182 and a TU 184. TU 182 is split into
TUs 186, 188, 190, and 192. TU 184 is split horizontally and
vertically into TUs 194, 196, and 198.

[0217] In an example in which splitting of transform
blocks along different directions in a CU is allowed, video
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encoder 20 may partition a CU into TUs of the CU based on
a tree structure. In this example, a root node of the tree
structure corresponds to a coding block of the CU. Further-
more, in this example, each respective non-root node of the
tree structure corresponds to a respective block that is a
partition of a block that corresponds to a parent node of the
respective non-root node. In this example, leaf nodes of the
tree structure correspond to the TUs of the CUs. In this
example, a first node in the tree structure has exactly two
child nodes and a boundary between blocks corresponding
to the child nodes of the first node is vertical. Additionally,
in this example, a second node in the tree structure has
exactly two child nodes and a boundary between blocks
corresponding to the child nodes of the second node is
horizontal. In this example, video encoder 20 may include,
in a bitstream that comprises an encoded representation of
the video data, data representing one or more of the TUs of
the CU.

[0218] Similarly, video decoder 30 may determine a CU is
partitioned into TUs of the CU based on a tree structure. In
this example, a root node of the tree structure corresponds to
a coding block of the CU, each respective non-root node of
the tree structure corresponds to a respective block that is a
partition of a block that corresponds to a parent node of the
respective non-root node, and leaf nodes of the tree structure
correspond to the TUs of the CUs. Furthermore, in this
example, a first node in the tree structure has exactly two
child nodes and a boundary between blocks corresponding
to the child nodes of the first node is vertical. In this
example, a second node in the tree structure has exactly two
child nodes and a boundary between blocks corresponding
to the child nodes of the second node is horizontal. In this
example, video decoder 30 may reconstruct, based on data
for at least one of the TUs of the CU, the coding block of the
CU.

[0219] In accordance with a fifth technique of this disclo-
sure, one CU may contain both intra and inter PUs which is
referred to comb_mode in the following descriptions. In
some instances, use of comb_mode may increase the accu-
racy of predictive blocks of a CU and therefore may ulti-
mately lead to increased compression performance. The
accuracy of a predictive block of a PU of a CU is a measure
of differences between corresponding samples of the pre-
dictive block of the PU and samples of a coding block of the
CU.

[0220] Thus, in accordance with the fifth technique, video
encoder 20 may perform intra prediction to obtain a first
predictive block for a first PU of a CU. Additionally, in this
example, video encoder 20 may perform inter prediction to
obtain a second predictive block for a second PU of the same
CU. In this example, video encoder 20 may obtain, based on
the first predictive block and the second predictive block,
residual data for the CU. Furthermore, in this example, video
encoder 20 may include, in a bitstream comprising an
encoded representation of the video data, data representing
the residual data for the CU.

[0221] Similarly, in accordance with the fifth technique,
video decoder 30 may perform intra prediction to obtain a
first predictive block for a first PU of a CU. In this example,
video decoder 30 may perform inter prediction to obtain a
second predictive block for a second PU of the same CU.
Furthermore, in this example, video decoder 30 may recon-
struct, based on the first predictive block and the second
predictive block, a coding block of the CU.
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[0222] When one CU is coded with comb_mode, and the
CU is split into two PUs in the vertical direction, such as in
an Nx2N partitioning mode, a video coder may determine
the transform depth of a transform tree of the CU as follows:
If the left PU is an intra-coded PU, transform depth can be
from 0. In other words, based on the left PU being intra-
coded, the depth of the transform tree of the CU is allowed
to be 0 or greater. Therefore, in instances where the depth of
the transform tree of the CU is equal to O, the TU size could
be equal to the CU size and one TU may cover two PUs, i.e.,
cross PU boundaries. Otherwise (the left PU is an inter-
coded PU), the transform depth is restricted to be from 1. In
other words, the depth of the transform tree of the CU may
be 1 or greater, but not equal to 0. In this example, when the
left PU is an inter-coded PU, the TU size should be no larger
than the PU size.

[0223] Thus, in this example, video encoder 20 may
generate a bitstream that conforms to a video coding stan-
dard. In this example, based on the CU being split into the
first PU and the second PU along a vertical boundary and the
left PU of the CU being an intra-coded PU, the video coding
standard allows a TU of the CU to cover both the first and
second PUs. In a similar example, video decoder 30 may
obtain a bitstream comprising an encoded representation of
the video data. In this example, the bitstream may conform
to a video coding standard that, based on the CU being split
into the first PU and the second PU along a vertical boundary
and the left PU of the CU being an intra-coded PU, allows
a TU of the CU to cover both the first and second PUs. In
both the example of video encoder 20 and video decoder 30,
the video coding standard may provide a restriction requir-
ing that, based on the CU being split into the first PU and the
second PU along a vertical boundary and the left PU of the
CU being an inter-coded PU, a TU size of a TU of the CU
is no larger than a size of the first PU or the second PU.

[0224] Furthermore, when one CU is split into two PUs in
the horizontal direction, such as when the 2NxN partition
mode is used, a video coder may determine the transform
depth used when a CU contains both intra and inter PUs as
follows: If the above PU is an intra-coded PU, transform
depth can be from 0. In other words, the depth of transform
tree of the CU is 0 or more. In this example, the above PU
is the upper PU of the horizontally divided CU. In instances
where the transform depth is 0, the TU size is equal to the
CU size and one TU covers two PUs. Otherwise (i.e., the
above PU is an inter-coded PU), transform depth is restricted
to be from 1. In other words, the depth of the transform tree
of the CU is 1 or more, but cannot be 0. In this example,
when the above PU is an inter-coded PU, the TU size should
be no larger than the PU size.

[0225] Thus, in this example, video encoder 20 may
generate a bitstream that conforms to a video coding stan-
dard. In this example, based on the CU being split into the
first PU and the second PU along a horizontal boundary and
the above PU of the CU being an intra-coded PU, the video
coding standard allows a TU of the CU to cover both the first
and second PUs. Moreover, in some examples, the bitstream
conforms to a video coding standard that provides a restric-
tion requiring that, based on the CU being split into the first
PU and the second PU along a horizontal boundary and the
above PU of the CU being an inter-coded PU, a TU size of
a TU of the CU is no larger than a size of the first PU or the
second PU.
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[0226] In a similar example, video decoder 30 may obtain
a bitstream comprising an encoded representation of the
video data. In this example, the bitstream conforms to a
video coding standard that, when the CU is split into the first
PU and the second PU along a horizontal boundary and the
above PU of the CU is an intra-coded PU, allows a TU of the
CU to cover both the first and second PUs. Moreover, in
some examples, video decoder 30 obtains a bitstream con-
forming to a video coding standard that provides a restric-
tion requiring that, when the CU is split into the first PU and
the second PU along a horizontal boundary and the above
PU of the CU is an inter-coded PU, a TU size of a TU of the
CU is no larger than a size of the first PU or the second PU.

[0227] In some examples, when one CU is coded with
comb_mode, a restriction is added such that a TU should not
cross PU boundaries. This restriction may reduce the
encoder complexity since there is no need to check the
rate-distortion cost of the case wherein TUs could cross PU
boundaries. Thus, in this example, video encoder 20 may
generate a bitstream that conforms to a video coding stan-
dard that provides a restriction requiring that based on the
CU having an intra-coded PU and an inter-coded PU, no TU
of the CU crosses PU boundaries of the CU. In a similar
example, video decoder 30 may obtain a bitstream compris-
ing an encoded representation of the video data. In this
example, the bitstream conforms to a video coding standard
that provides a restriction requiring that based on the CU
having an intra-coded PU and an inter-coded PU, no TU of
the CU crosses PU boundaries of the CU.

[0228] Furthermore, in some examples involving the
comb_mode, it is restricted that the comb_mode is only
applied for a CU larger than (not including) a certain size
such as 8x8. It is noted that for smaller blocks, increasing the
bits of signaling whether comb_mode is applied to a CU
may not compensate the saved rate-distortion cost intro-
duced by the comb_mode. Therefore, for certain small sizes,
comb_mode may be always disabled without additional
signaling. In this disclosure, a restriction may prevent a
video encoder from performing some action or generating a
bitstream in some way. For example, video encoder 20 may
generate a bitstream that conforms to a video coding stan-
dard that provides a restriction requiring that no CU smaller
than a particular size is allowed to have both an intra-coded
PU and an inter-coded PU. In a similar example, video
decoder 30 may obtain a bitstream comprising an encoded
representation of the video data. In this example, the bit-
stream conforms to a video coding standard that provides a
restriction requiring that no CU smaller than a particular size
is allowed to have both an intra-coded PU and an inter-coded
PU.

[0229] In some examples involving the comb_mode, one
8xCU can be coded with comb_mode with one 8x4 intra and
one 8x4 inter PU, or one 4x8 Intra and one 4x8 Inter PU. In
this example, the corresponding 4x4 chroma block of this
8x8 CU (in 4:2:0 color format) can be coded using only the
inter prediction mode of the inter coded luma PU, or using
only the intra prediction mode of the intra coded luma PU,
or the 4x4 chroma block is further partitioned correspond-
ingly as two 4x2 or 2x4 blocks based on the luma PU
partition, and each of the two 4x2 or 2x4 is predicted by the
corresponding luma prediction mode, and a 4x4 residual
block is generated and a 4x4 transform is performed on the
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generated 44 residual block to avoid the introduction of a
2x2 transform. Introduction of a 2x2 transform may unnec-
essarily increase complexity.

[0230] Thus, in the example above, video encoder 20 may
perform intra prediction to obtain a first predictive block for
a first PU of a CU of the video data. Additionally, in this
example, video encoder 20 may perform inter prediction to
obtain a second predictive block for a second PU of the same
CU. In this example, the size of the CU is 2Nx2N, the size
of the first PU is 2NxN and the size of the second PU is
Nx2N or the size of the first PU is Nx2N and the size of the
second PU is 2NxN. Furthermore, in this example, the CU
is coded using a 4:2:0 color format. In this example, the first
predictive block for the first PU is a luma predictive block
for the first PU. In this example, the second predictive block
for the second PU is a luma predictive block for the second
PU. In this example, video encoder 20 uses only inter
prediction to obtain a third predictive block, the third
predictive block being a chroma predictive block of size
NxN. In this example, video encoder 20 obtains residual
data for the CU based on the first, second, and third
predictive blocks. A similar example substitutes, instead of
video encoder 20 that obtains residual data for the CU based
on the first, second, and third predictive blocks, a video
encoder 20 that uses only intra prediction to obtain the third
predictive block instead of intra prediction.

[0231] Moreover, in a corresponding example, video
decoder 30 may perform intra prediction to obtain a first
predictive block for a first PU of a CU of the video data. In
this example, video decoder 30 may perform inter prediction
to obtain a second predictive block for a second PU of the
same CU. In this example, the size of the CU is 2Nx2N, the
size of the first PU is 2NxN and the size of the second PU
is Nx2N or the size of the first PU is Nx2N and the size of
the second PU is 2NxN, and the CU is coded using a 4:2:0
color format. Furthermore, in this example, the first predic-
tive block for the first PU is a luma predictive block for the
first PU and the second predictive block for the second PU
is a luma predictive block for the second PU. In this
example, video decoder 30 uses only inter prediction to
obtain a third predictive block, the third predictive block
being a chroma predictive block of size NxN. Furthermore,
in this example, video decoder 30 may reconstruct, based on
the first, second, and third predictive blocks, the coding
block of the CU. A similar example substitutes a different
configuration of video decoder 30 that uses only intra
prediction to obtain the third predictive block instead of intra
prediction.

[0232] As mentioned above, in some examples, one 8x8
CU can be coded with comb_mode with one 8x4 intra and
one 8x4 inter PU, or one 4x8 intra and one 4x8 inter PU, and
the corresponding 4x4 chroma block of this 8x8 CU, can be
coded using only the inter prediction mode of the inter coded
luma PU, a video coder may partition the 4x4 chroma block
correspondingly as two 4x2 or 2x4 blocks based on the luma
PU partition, the video coder predicts each of the two 4x2
or 2x4 by the corresponding luma prediction mode, and the
video coder generates a 4x4 residual block and performs a
4x4 transform on the generated 4x4 residual block.

[0233] Thus, in such examples, video encoder 20 may
perform intra prediction to obtain a first predictive block for
a first PU of a CU of the video data. Additionally, in this
example, video encoder 20 may perform inter prediction to
obtain a second predictive block for a second PU of the same
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CU. In this example, the size of the CU is 2Nx2N, the size
of the first PU is 2NxN and the size of the second PU is
Nx2N or the size of the first PU is Nx2N and the size of the
second PU is 2NxN, and the CU is coded using a 4:2:0 color
format. Furthermore, the first predictive block for the first
PU is a luma predictive block for the first PU and the second
predictive block for the second PU is a luma predictive block
for the second PU. In this example, video encoder 20 may
use an intra prediction mode of the first PU to generate a
chroma predictive block for the first PU. Furthermore, in this
example, video encoder 20 may use inter prediction to
generate a chroma predictive block for the second PU. In
this example, video encoder 20 may obtain residual data for
the CU based on the first predictive block, the second
predictive blocks, the chroma predictive block for the first
PU and the chroma predictive block for the second PU.

[0234] In a similar example, video decoder 30 may per-
form intra prediction to obtain a first predictive block for a
first PU of a CU of the video data. In this example, video
decoder 30 may perform inter prediction to obtain a second
predictive block for a second PU of the same CU. In this
example, the size of the CU is 2Nx2N, the size of the first
PU is 2NxN and the size of the second PU is Nx2N or the
size of the first PU is Nx2N and the size of the second PU
is 2NxN, and the CU is coded using a 4:2:0 color format.
Furthermore, in this example, the first predictive block for
the first PU is a luma predictive block for the first PU and
the second predictive block for the second PU is a luma
predictive block for the second PU. In this example, video
decoder 30 may use an intra prediction mode of the first PU
to generate a chroma predictive block for the first PU. Video
decoder 30 may use inter prediction to generate a chroma
predictive block for the second PU. Furthermore, video
decoder 30 may reconstruct, based on the first predictive
block, the second predictive blocks, the chroma predictive
block for the first PU and the chroma predictive block for the
second PU, the coding block of the CU.

[0235] Additionally, in some examples involving the
comb_mode, when one CU is coded using two or more PUs
and both Inter and Intra prediction modes are used, for
inter-coded PUs, the CU is treated in the same way as the
current HEVC design. That is, the reconstruction is defined
as the sum of decoded residual after possible inverse quan-
tization/transform and the motion-compensated prediction
block using its motion information. In addition, for intra-
coded PUs, a video coder uses a process involving two
predictors, i.e., the reconstruction is defined as the sum of
decoded residual after possible inverse quantization/trans-
form and the motion-compensated prediction block using
the motion information from its neighbor inter-coded PU
and the intra prediction block using the intra prediction
modes associated with the current PU.

[0236] Thus, in this example, video encoder 20 may
perform intra prediction to obtain a first predictive block for
a first PU of a CU of the video data. In this example, video
encoder 20 may perform inter prediction to obtain a second
predictive block for a second PU of the same CU. Further-
more, in this example, as part of obtaining residual data for
the CU, video encoder 20 may, for each respective sample
of the residual data corresponding to the first PU, obtain the
respective sample such that the respective sample is equal to
a respective sample of a coding block of the CU minus a
predictive sample obtained using motion information of the
second PU and minus a sample of the first predictive block.
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The predictive sample obtained using motion information
may be a sample of a predictive block of an inter-predictive
PU.

[0237] Ina corresponding example, video decoder 30 may
perform intra prediction to obtain a first predictive block for
a first PU of a CU of the video data. In this example, video
decoder 30 may perform inter prediction to obtain a second
predictive block for a second PU of the same CU. Further-
more, in this example, as part of reconstructing a coding
block of the CU, video decoder 30 may, for each respective
sample of the coding block corresponding to the first PU,
obtain the respective sample such that the respective sample
is equal to a sum of a respective decoded residual sample, a
predictive sample obtained using motion information of the
second PU, and a sample of the first predictive block.
[0238] Alternatively, in some examples involving comb_
mode, when one CU is coded using two or more PUs and
both Inter and Intra prediction modes are used, for intra-
coded PUs, the process for reconstructing coding blocks of
the CU is the same as the current HEVC design, i.e., the
reconstruction is defined as the sum of decoded residual
after possible inverse quantization/transform and the intra
prediction block using its intra prediction mode. In addition,
for an inter-coded PU of a CU, the process for reconstructing
portions of the coding blocks corresponding to the inter-
coded PU is different from the reconstruction process in
HEVC in that two predictors are defined for the inter-coded
PU. Furthermore, for each sample of a coding block of the
CU that corresponds to a sample of the inter-coded PU, the
sample is defined as a sum of a decoded residual sample
(e.g., after possible inverse quantization/transform) and a
sample of the motion-compensated prediction block of the
inter-coded PU generated using motion information of the
inter-coded PU and a sample of an intra prediction block
generated using an intra prediction mode associated with an
intra-coded PU that neighbors the inter-coded PU.

[0239] Thus, in this example, video encoder 20 may
perform intra prediction to obtain a first predictive block for
a first PU of a CU of the video data. In this example, video
encoder 20 may perform inter prediction to obtain a second
predictive block for a second PU of the same CU. Further-
more, in this example, as part of obtaining residual data for
the CU, video encoder 20 may, for each respective sample
of the residual data corresponding to the second PU, obtain
the respective sample such that the respective sample is
equal to a respective sample of a coding block of the CU
minus a predictive sample obtained using an intra prediction
mode of the first PU and minus a sample of the second
predictive block.

[0240] In a corresponding example, video decoder 30 may
perform intra prediction to obtain a first predictive block for
a first PU of a CU of the video data. In this example, video
decoder 30 may perform inter prediction to obtain a second
predictive block for a second PU of the same CU. Further-
more, in this example, as part of reconstructing a coding
block of the CU, video decoder 30 may, for each respective
sample of the coding block corresponding to the second PU,
obtain the respective sample such that the respective sample
is equal to a sum of a respective decoded residual sample, a
predictive sample obtained using an intra prediction mode of
the first PU, and a sample of the second predictive block.
[0241] In one example, when allowing the two predictors,
the two prediction blocks are combined with a linear weight-
ing function, e.g., an average of the two. For example, a
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video coder such as video encoder 20 or video decoder 30
may use intra prediction to generate a first predictive block
of a PU and may use inter prediction to generate a second
predictive block for the PU. In this example, the video coder
may determine a final predictive block for the PU by
determining, for each respective sample of the final predic-
tive block, a weighted average of the samples of the first and
second predictive blocks that correspond to the respective
sample of the final predictive block. In this example, weights
used in the weighted average may favor the intra predicted
predictive block over the inter predicted predictive block, or
vice versa. In some instances, using such a linear weighting
function may lead to a more accurate final predictive block,
which may ultimately increase compression performance.
The linear weighting factors may be signaled as side infor-
mation or derived from certain coded information.

[0242] For example, for each respective sample of a
coding block of the CU that corresponds to a PU of the CU,
video encoder 20 may obtain a first predictive sample for the
respective sample and a second predictive sample for the
respective sample. For instance, the first predictive sample
for the respective sample may be generated using inter
prediction and the second predictive sample for the respec-
tive sample may be generated using intra prediction. In this
example, video encoder 20 may determine a weighted
predictive sample for the respective sample by applying the
linear weighting function to the first predictive sample for
the respective sample and the second predictive sample for
the respective sample. Additionally, in this example, video
encoder 20 may determine a residual sample for the respec-
tive sample equal to a difference between an original value
of the respective sample and the weighted predictive sample
for the respective sample.

[0243] Similarly, for each respective sample of a coding
block that video decoder 30 may obtain a residual sample for
the respective sample. For instance, video decoder 30 may
obtain, from a bitstream, syntax elements indicating trans-
form coefficients, apply inverse quantization to the trans-
form coefficients, and apply an inverse transform to the
transform coefficients to obtain residual samples. Further-
more, in this example, video decoder 30 may determine a
first predictive sample for the respective sample and a
second predictive sample for the respective sample. For
instance, the first predictive sample for the respective sample
may be generated using inter prediction and the second
predictive sample for the respective sample may be gener-
ated using intra prediction. In this example, video decoder
30 may determine a weighted predictive sample for the
respective sample by applying a linear weighting function to
the first predictive sample for the respective sample and the
second predictive sample for the respective sample. Addi-
tionally, in this example, video decoder 30 may reconstruct
the respective sample as a sum of the residual sample for the
respective sample and the weighted predictive sample for
the respective sample.

[0244] The following examples indicate the usage of
comb_mode when the comb_mode is enabled for one slice,
picture, or sequence (i.e., coded video sequence). In HEVC,
a CU includes a 1-bit pred_mode_flag syntax element. The
pred_mode_{flag syntax element of a CU equal to 0 specifies
that the CU is coded in the inter prediction mode. The
pred_mode_flag syntax element of a CU equal to 1 specifies
that the CU is coded in the intra prediction mode. In
accordance with one example of this disclosure, the 1-bit
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pred_mode_flag of a CU is replaced by a syntax element
with three possible values. In this example, the three values
correspond to the conventional intra mode, the conventional
inter mode, and comb_mode, respectively. In this example,
the conventional intra mode refers to instances where all
PUs of the CU are coded using intra prediction mode.
Furthermore, in this example, the conventional inter predic-
tion mode refers to instances where all PUs of the CU are
coded using inter prediction mode. In some examples, when
comb_mode is enabled for a CU, for only one PU of the CU,
video encoder 20 signals a 1-bit value to indicate whether
the PU is coded in intra prediction mode or inter prediction
mode. Because the CU is coded in the comb_mode, the other
PU is a different prediction mode from the PU for which the
1-bit value was signaled. In another example, comb_mode is
treated as the conventional inter mode. In this example, for
each PU of a CU, an additional flag is added to indicate the
usage of intra or inter prediction mode.

[0245] In a seventh technique of this disclosure, one PU
can be predicted from both intra prediction and inter pre-
diction and the two predictive blocks from intra prediction
and inter prediction are used to derive the final predictive
block for the PU. Deriving a final predictive block in this
way may result in a more accurate predictive block for the
PU, which may increase compression performance.

[0246] Thus, in accordance with the seventh technique,
video encoder 20 may perform intra prediction to obtain a
first predictive block for a PU of a CU. Additionally, in this
example, video encoder 20 may perform inter prediction to
obtain a second predictive block for the same PU of the same
CU. In this example, video encoder 20 may derive, based on
the first predictive block and the second predictive block, a
final predictive block for the PU. Furthermore, video
encoder 20 may obtain, based on the final predictive block
for the PU, residual data for the CU. For instance, video
encoder 20 may generate at least a portion of the residual
data for CU by calculating differences between samples of
the final predictive block for the PU and corresponding
samples of a coding block of the CU. In this example, video
encoder 20 may include, in a bitstream comprising an
encoded representation of the video data, data representing
the residual data for the CU.

[0247] In a corresponding example, video decoder 30 may
perform intra prediction to obtain a first predictive block for
a PU of a CU. Additionally, in this example, video decoder
30 may perform inter prediction to obtain a second predic-
tive block for the same PU of the same CU. In this example,
video decoder 30 may derive, based on the first predictive
block and the second predictive block, a final predictive
block for the PU. Furthermore, in this example, video
decoder 30 may reconstruct, based on the final predictive
block for the PU, a coding block of the CU. For instance,
video decoder 30 may add the final predictive block for the
PU to residual data for the CU to reconstruct at least a
portion of a coding block of the CU.

[0248] Furthermore, in some examples of the seventh
technique, a video coder applies a linear weighting function
to the two prediction blocks, e.g., the weighting factors of
the pixels located in the same relative positions of the two
prediction blocks are fixed. In some examples, the weighting
factors for different positions may be variable. Furthermore,
in some examples, the weighting factors are dependent on
the intra prediction mode. In one example, for the top-left
position within a block, if the intra prediction mode is a DC
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mode, the weights of the top-left samples in inter and intra
predictive blocks are equal, i.e., (0.5, 0.5) while if the intra
prediction is a vertical prediction mode, the weight of the
top-left sample in intra predictive block may be larger than
that of the top-left sample in the inter predictive block.
[0249] In some examples of the seventh technique, the
final prediction value of one pixel at one or more positions,
but not all positions, may be copied from either the intra
predicted block or the inter predicted block, i.e., one of the
two weighting factors is O and the other one is 1.

[0250] In some examples, the seventh technique is applied
to specific partition sizes (e.g., 2Nx2N), and/or specific
prediction modes (MERGE/SKIP mode). Furthermore, in
some examples, when the seventh technique is applied, the
intra prediction modes are restricted to be a subset of intra
prediction modes used for conventional intra prediction. In
one example, the subset is defined to only include the MPMs
(most probable modes).

[0251] As discussed above, a video coder may use a
Linear Model (LM) prediction mode to predict chroma
samples of a block based on reconstructed luma samples of
the same block. Furthermore, as described above, the LM
prediction mode has not been used with non-square PUs. In
accordance with an eighth technique of this disclosure, a
video coder may use the LM prediction mode with non-
square PUs. More generally, the same techniques for apply-
ing the LM prediction mode work with non-square luma and
chroma blocks. Hence, discussion in this disclosure regard-
ing the eighth technique with respect to non-square PUs may
apply more generally to non-square luma and chroma
blocks, such as the luma prediction blocks and chroma
prediction blocks of PUs. Furthermore, examples of the
eighth technique may derive the parameters used in the LM
prediction mode in several ways.

[0252] For instance, in some examples of the eighth tech-
nique, a boundary at the longer side of a non-square PU is
down-sampled or sub-sampled such that the number of
pixels in the down-sampled or sub-sampled boundary is
equal to the number of pixels in the shorter boundary. The
process can be a decimation or an interpolated sampling. In
examples where video decoder 30 performs the sub-sam-
pling using decimation, video decoder 30 may remove
samples at regular intervals (e.g., every other sample) to
reduce the number of samples without changing the values
of the remaining samples. In another example, video
decoder 30 may perform the sub-sampling using interpola-
tion. In examples where video decoder 30 performs the
sub-sampling using interpolation, for respective pairs of
adjacent samples, video decoder 30 may interpolate a value
between the samples of a respective pair and may include the
interpolated value in the sub-sampled set of samples.
[0253] Thus, in an example of the eighth technique of this
disclosure, video encoder 20 may perform a linear model
prediction operation to predict a predictive chroma block for
a non-square PU of a CU from down-sampled or sub-
sampled reconstructed luma samples of the PU. Further-
more, in this example, video encoder 20 may obtain, based
on the predictive chroma block, residual data for the CU. In
this example, video encoder 20 may include, in a bitstream
comprising an encoded representation of the video data, data
representing the residual data for the CU. In a corresponding
example, video decoder 30 may perform a linear model
prediction operation to predict a predictive chroma block for
a non-square PU of a CU of a current picture of the video
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data from down-sampled reconstructed luma samples of the
PU. In this example, video decoder 30 may reconstruct,
based in part on the predictive chroma block, a coding block
of the CU. In either of the examples of the paragraph, video
encoder 20 or video decoder 30 may down-sample or
sub-sample luma samples of a longer side of the non-square
PU such that the number of down-sampled or sub-sampled
luma samples on the longer side of the non-square PU is the
same as the luma samples on the shorter side of the non-
square PU.

[0254] In one example, when using equation (4) and
equation (5) to calculate linear model parameters, for both
luma and chroma components, the pixels of the boundary at
the longer side of a non-square PU are sub-sampled such that
the number of pixels in the down-sampled or sub-sampled
boundary are equal to the number of pixels in the shorter
boundary (i.e., min(K, L.)). The sub-sampling process can be
a decimation or an interpolated sampling.

[0255] Thus, in this example, as part of performing an LM
prediction operation, a video coder may obtain a predictive
chroma sample such that the predictive chroma sample is
equal to a first parameter multiplied by a collocated luma
sample, plus a second parameter, wherein the first parameter
is equal to:

szi'yi—zxi'zyi
PO = M A © L

I XX =2 %2 %

and the second parameter is equal to:
p=CyraZx)I,

where I is the number of reference samples in a left and top
boundary of the non-square PU, x, is a down-sampled or
sub-sampled reconstructed luma reference sample, y, is a
reconstructed chroma reference sample.

[0256] Alternatively, in some examples, pixels located at
both longer and short sides of the PU may be sub-sampled
and the sub-sampling ratios may be different. A sub-sam-
pling ratio is a ratio of samples prior to sub-sampling to
samples after sub-sampling. However, it may be required
that the total number of pixels at two sides after sub-
sampling should be equal to 2™ (wherein m is an integer, m
may be different for luma and chroma components). The
value of m can be dependent on the block size K and L.
[0257] Thus, in this example, as part of performing an LM
prediction operation, a video coder may obtain a predictive
chroma sample such that the predictive chroma sample is
equal to a first parameter multiplied by a collocated luma
sample, plus a second parameter, wherein the first parameter
is equal to:

szi'yi—zxi'zyi
P M A M < L
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and the second parameter is equal to:
p=CyraZx)I,

where I is the number of reference samples in a set of
reference samples, x, is a reconstructed luma reference
sample, and y, is a reconstructed chroma reference sample.
In this example, the set of reference samples is a sub-
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sampled set of left reference samples and above reference
samples, the left reference samples being immediately left of
a left boundary of the current PU and the above reference
samples being immediately above a top boundary of the
current PU.

[0258] In another example of the eighth technique, the
number of pixels I in equations (4) and (5) are adjusted
based on the actual number of pixels in the boundary. For
instance, for 2NxN PU, [=3N. When only left or above
causal samples are available, the total involved samples
number [ is equal to the length of left or above boundary.
Thus, a video coder may calculate o as:

oo 3Nzxi'yi—zxi'zyi
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Additionally, the video coder may calculate f§ as:
p=Cy-oZx,)/3N.

[0259] When LM is enabled for one non-square chroma
PU (with size equal to KxL, where K is unequal to L), the
parameters (i.e., a and b) can be derived in various ways. For
example, when using equation (4) and equation (5) to
calculate linear model parameters, for both luma and chroma
components, the pixels of the boundary at the shorter side of
the non-square PU is up-sampled such that the number of
pixel in the up-sampled boundary is equal to the number of
pixels in the longer boundary (i.e., max(K, L)). The up-
sampling process can be a duplicator or an interpolated
sampling. A duplicator up-sampling process is an up-sam-
pling process in which existing samples are duplicated to
generate new samples. An interpolated up-sampling process
increases the number of samples by interpolating a value of
a new sample based on two or more existing samples.
[0260] Thus, in this example, as part of performing an LM
prediction operation, a video coder may obtain a predictive
chroma sample such that the predictive chroma sample is
equal to a first parameter multiplied by a collocated luma
sample, plus a second parameter, wherein the first parameter
and second parameter are defined in equations (4) and (5).
In this example, the set of reference samples is an up-
sampled set of left reference samples and above reference
samples, the left reference samples being immediately left of
a left boundary of the current PU and the above reference
samples being immediately above a top boundary of the
current PU. In this example, the video coder may determine
the set of reference samples by applying an up-sampling
method to the left references samples and/or the above
reference samples. For instance, the up-sampling method
may up-sample whichever of the left reference samples or
the above reference samples corresponds to the shorter of
the left boundary of the current PU and the top boundary of
the current PU, but not whichever is longer of the left
reference samples of the current PU and the above reference
samples of the current PU.

[0261] In some examples, pixels located at both longer
and shorter sides of the PU may be up-sampled and the
up-sampling ratios may be different. However, it may be
required that the total number of pixels at two sides after
up-sampling should be equal to 2™ (wherein m is an integer,
m may be different for luma and chroma components). The
value of m may be dependent on the block size K and L. In
other words, m is dependent on a height and/or width of the
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PU. For example, a PU may be 8x16 and a video coder may
up-sample reference samples such that there are 32 reference
samples along a left side of the PU and 32 reference samples
along a top side of the PU. In this example, m is equal to 6.
In another example, a PU may be 4x8 and a video coder may
up-sample reference samples such that there are 16 reference
samples along a left side of PU and 16 reference samples
along a top side of the PU. In this example, m is equal to 4.
[0262] Furthermore, in some examples of the eighth tech-
nique, when using equation (4) and equation (5) to calculate
LM parameters, for both luma and chroma components, the
pixels of the boundary at the shorter side of the non-square
PU is up-sampled and the pixels of the longer boundary (i.e.,
max (K, L)) is sub-sampled such that the number of pixel in
the up-sampled shorter boundary is equal to the number of
pixels in the sub-sampled longer boundary. The up-sampling
process can be a duplicator or an interpolated sampling. The
sub-sampling process can be a decimation or an interpolated
sampling.

[0263] Thus, in this example, as part of performing the
LM prediction operation, a video coder may obtain a pre-
dictive chroma sample such that the predictive chroma
sample is equal to a first parameter multiplied by a collo-
cated luma sample, plus a second parameter, wherein the
first parameter and the second parameter are defined as in
equations (4) and (5). In this example, the set of reference
samples is a union of an up-sampled set of reference samples
and a sub-sampled set of reference samples, the up-sampled
set of reference samples being an up-sampled version of
whichever contains fewer samples of left reference samples
and above reference samples. In this example, the sub-
sampled set of reference samples is a sub-sampled version of
whichever contains more samples of the left reference
samples and the above reference samples. In this example,
the left reference samples are immediately left of a left
boundary of the current PU and the above reference samples
are immediately above a top boundary of the current PU.
[0264] In some examples, for the examples of the eighth
technique mentioned above, after the sub-sampling or up-
sampling process, a down-sampling process (e.g., as
described elsewhere in this disclosure) only for the luma
component may be further applied to cover the case that the
color format is not 4:4:4. Thus, based on a color format of
the current picture being other than 4:4:4, a video coder may
sub-sample or down-sample luma samples of the predictive
block. In some examples, the two down-sampling processes
of luma samples could be merged into one.

[0265] Furthermore, in some examples of the eighth tech-
nique, different ways of sub-sampling/up-sampling for
boundary pixels may be applied. In one example, the sub-
sampling/up-sampling method is dependent on the PU size
(i.e., on the values of K and L). In another example, the
methods for sub-sampling/up-sampling may be signaled in a
sequence parameter set, a picture parameter set, a slice
header, or in another syntax structure.

[0266] In some examples of the eighth technique, the
up-sampling/down-sampling (or sub-sampling) is imple-
mented in an implicit manner. In other words, the up-
sampling or sub-sampling technique is determined implic-
itly. That is, the sum value, such as 2x,7y,, 2x, and 2y, in
equation (4) and equation (5) of the left side boundary or/and
upper side boundary, is multiplied or divided by a factor S.
The value of S can be dependent on the ratio of the pixel
number in the left side boundary or/and upper side boundary.
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[0267] Thus, in this example, as part of performing the
LM prediction operation to predict the predictive chroma
block, a video coder may obtain a predictive chroma sample
such that the predictive chroma sample is equal to a first
parameter multiplied by a collocated luma sample, plus a
second parameter, wherein the first LM parameter is equal
to:

I'S'in'yi—s'zxi's'zyi
o = k)
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where S is dependent on a ratio of a pixel number in a left
boundary or/and an upper boundary of the non-square PU,
1 is the number of reference samples in a subset of samples
in a left and top boundary of the current PU determined
according to a sub-sampling method, X, is a sub-sampled
reconstructed luma reference sample, and y, is a recon-
structed chroma reference sample. In some examples,
S=max(K, L)/min(K, L) for a KxLL chroma block.

[0268] As described above, an enhancement multiple
transform (EMT) scheme has been proposed that uses DST-
VII, DCT-VIII, DST-I and DCT-V. Furthermore, as dis-
cussed above, whether EMT applies or not is controlled at
the CU level using a flag, namely an EMT flag, for all TUs
within a CU. For each TU within an EMT-enabled CU, the
horizontal or vertical transform to be used is signaled by an
index to a selected transform set, namely an EMT index.
[0269] However, controlling the EMT scheme as previ-
ously-proposed may not be efficient if the residual charac-
teristics of each PU in a CU are different. For example,
controlling the EMT scheme as previously-proposed may
not be efficient for an intra-coded PU and an inter-coded PU
within a CU. Hence, in accordance with a ninth technique of
this disclosure, when EMT is enabled for one slice, picture,
or sequence and one CU is split into two PUs in vertical
direction (e.g., Nx2N partition), the signaling of an EMT
flag is modified in the following way: If the left PU is an
intra-coded PU, the transform depth could be 0. In other
words, the transform tree of the CU may have a depth of 0
or more. In this case, an EMT flag may be signaled at the CU
level. If the transform depth is not 0, the EMT flag may be
signaled at the PU level. Hence, EMT may or may not be
enabled for each PU.

[0270] Furthermore, in accordance with the ninth tech-
nique of this disclosure, when EMT is enabled for one slice,
picture, or sequence and when one CU is split into two PUs
in a horizontal direction (e.g., 2NxN partition), the signaling
of the EMT flag is modified in the following way: If the
above PU is an intra-coded PU, the transform depth may be
0. In other words, the transform tree of the CU may have a
depth of 0 or more. In this case, an EMT flag may be
signaled at CU level. If the transform depth is not 0, the
EMT flag may be signaled at the PU level. That is, each PU
may have EMT enabled or not.

[0271] Thus, in accordance with the ninth technique, video
encoder 20 may include, in a bitstream that comprises an
encoded representation of video data, a first syntax element.
The first syntax element indicates whether EMT is enabled
for a particular CU that is partitioned into exactly two PUs
along a boundary. In this example, whether the first syntax
element is in the particular CU or a particular PU of the two
PUs is dependent on a splitting direction of the PUs of the
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CU. Furthermore, in this example, based on EMT being
enabled for a particular CU, for each respective TU of the
particular CU, video encoder 20 may include, in the bit-
stream, a respective syntax element indicating a respective
selected transform set for the respective TU. In this example,
based on EMT being enabled for the particular CU, video
encoder 20 may apply one or more transforms of the
respective selected transform set to transform coefficients of
the respective TU to obtain a respective transform block for
the respective TU in the sample domain. In this example,
video encoder 20 may include, in a bitstream that comprises
an encoded representation of the video data, data represent-
ing one or more of the TUs of the CU. In this example, the
boundary may be a horizontal boundary or the boundary
may be a vertical boundary.

[0272] Ina corresponding example, video decoder 30 may
obtain a first syntax element. The first syntax element
indicates whether EMT is enabled for a particular CU that is
partitioned into exactly two PUs along a boundary. In this
example, whether the first syntax element is in the particular
CU or a particular PU of the two PUs is dependent on a
splitting direction of the PUs of the CU. In this example, in
response to determining that EMT is enabled for a particular
CU, for each respective TU of the particular CU, video
decoder 30 may obtain a respective syntax element indicat-
ing a respective selected transform set for the respective TU.
Additionally, in response to determining that EMT is
enabled for a particular CU, for each respective TU of the
particular CU, video decoder 30 may apply an inverse of one
or more transforms of the respective selected transform set
to transform coefficients of the respective TU to obtain a
respective transform block for the respective TU in the
sample domain. In this example, video decoder 30 may
reconstruct, based at least in part on the transform blocks for
the TUs of the CU, a coding block of the CU. In this
example, the boundary may be a horizontal boundary or the
boundary may be a vertical boundary.

[0273] In accordance with a tenth technique of this dis-
closure, several transform tree structures may be applied for
coding one slice, picture, or sequence. For example, in one
example, transform tree structures are pre-defined. In some
examples, for each picture, slice, largest coding unit, CU, or
PU, video encoder 20 may signal the selected transform tree
structure. Alternatively, in some examples, video decoder 30
may derive the selected transform tree from the coded
information, such as prediction modes/partition sizes.

[0274] Thus, in accordance with the tenth technique, video
encoder 20 may partition a CU of the video data into TUs of
the CU based on a particular tree structure from among a
plurality of predefined tree structures. In this example, a root
node of the tree structure corresponds to a coding block of
the CU. Furthermore, in this example, each respective
non-root node of the tree structure corresponds to a respec-
tive block that is a partition of a block that corresponding to
a parent node of the respective non-root node. In this
example, leaf nodes of the tree structure correspond to the
TUs of the CUs. Additionally, in this example, video
encoder 20 includes, in a bitstream that comprises an
encoded representation of the video data, data representing
one or more of the TUs of the CU. In some examples, video
encoder 20 may further include, in the bitstream, one or
more syntax elements identifying the particular tree struc-
ture. In some examples, the one or more syntax elements that
indicate the particular tree structure applicable to CUs is in
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one of: a picture, slice, LCU, CU, and PU. Furthermore, in
some examples, as part of determining the CU is partitioned
into the TUs, video encoder 20 determines the particular tree
structure from coded information without explicitly signal-
ing of the particular tree structure. In such examples, the
coded information may comprise at least one of: prediction
modes and partition sizes.

[0275] Ina corresponding example, video decoder 30 may
determine a CU of the video data is partitioned into TUs of
the CU based on a particular tree structure from among a
plurality of predefined tree structures. In this example, a root
node of the tree structure corresponds to a coding block of
the CU. Each respective non-root node of the tree structure
corresponds to a respective block that is a partition of a
block that corresponding to a parent node of the respective
non-root node. In this example, leaf nodes of the tree
structure correspond to the TUs of the CUs. Additionally, in
this example, video decoder 30 may reconstruct, based on
data for at least one of the TUs of the CU, the coding block
of'the CU. In some examples, video decoder 30 may obtain,
from a bitstream that comprises encoded video data, one or
more syntax elements identifying the particular tree struc-
ture. The one or more syntax elements that indicate the
particular tree structure applicable to CUs in one of: a
picture, slice, LCU, CU, and prediction unit. Furthermore, in
some examples, as part of determining the CU is partitioned
into the TUs, video decoder 30 may determine the particular
tree structure from coded information without explicit sig-
naling of the particular tree structure. The coded information
may comprise at least one of: prediction modes and partition
sizes.

[0276] In an eleventh example of this disclosure, trans-
forms with size equal to 1xN and Nx1 may be also applied
to inter coded blocks. For instance, in one example, such
TUs are only allowed for a specific transform depth, e.g., the
highest transform depth. In some examples, such TUs are
only allowed for specific coding blocks, such as CU size
equal to 8x8. Furthermore, in some examples, the eleventh
technique is only applicable for specific color component,
such as luma.

[0277] Thus, in accordance with the eleventh technique,
video encoder 20 may determine transform-domain data
(e.g., transform coefficients) by applying a 1xN or Nx1
transform to residual data of an inter coded block. In this
example, video encoder 20 may include, in a bitstream that
comprises an encoded representation of the video data, data
representing the transform-domain data. In a corresponding
example, video decoder 30 may determine sample-domain
data by applying a 1xN or Nx1 transform to transform
coeflicients of an inter coded block. In this example, video
decoder 30 may reconstruct, based in part on the sample-
domain data, a coding block of a CU of the video data. For
example, video decoder 30 may add samples of the sample-
domain data to corresponding samples of residual data to
reconstruct the coding block of the CU. In some instances,
for the above examples of the eleventh technique involving
video encoder 20 and video decoder 30, 1xN and Nxl1
transforms are only allowed for a specific transform depth.
Additionally, in some instances, for the above examples of
the eleventh technique involving video encoder 20 and video
decoder 30, 1xN and Nx1 transforms are only allowed for a
CUs of particular sizes.

[0278] In accordance with a twelfth technique of this
disclosure, the asymmetric motion partitioning defined in
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HEVC for inter coded CUs is also applied to intra coded
CUs. Partitioning intra predicted CUs into PUs asymmetri-
cally may enable video encoder 20 to more accurately divide
the CU into regions corresponding to different objects,
which may increase compression performance. Thus, in
accordance with an example of the twelfth technique, video
encoder 20 may partition an intra predicted CU of the video
data into PUs asymmetrically. In this example, video
encoder 20 may determine a respective predictive block for
each respective PU of the intra predicted CU. Furthermore,
in this example, video encoder 20 may obtain residual data
based on the predictive blocks for the PUs of the intra
predicted CU and a coding block of the intra predicted CU.
Additionally, in this example, video encoder 20 may include,
in a bitstream that comprises an encoded representation of
the video data, data representing the residual data.

[0279] In a corresponding example of the twelfth tech-
nique, video decoder 30 may determine an intra predicted
CU of the video data is partitioned into PUs asymmetrically.
In this example, video decoder 30 may determine a respec-
tive predictive block for each respective PU of the intra
predicted CU. Additionally, in this example, video decoder
30 may reconstruct, based on the predictive blocks for the
PUs of the intra predicted CU, a coding block of the intra
predicted CU.

[0280] In accordance with a thirteenth technique of this
disclosure, when one intra coded CU contains multiple PUs,
each PU may have its own chroma prediction mode. In other
words, a PU may have a first intra prediction mode (i.e., a
luma prediction mode) and a second intra prediction mode
(i.e., a chroma prediction mode). A video coder may use the
luma prediction mode to determine the luma predictive
block of the PU and may use the chroma prediction mode to
determine the chroma predictive blocks of the PU. Thus, in
accordance with the 13 technique, video encoder 20 may
determine an intra predicted CU of the video data has at least
a first PU and a second PU. In this example, the first PU and
the second PU have different chroma prediction modes.
Furthermore, in this example, video encoder 20 may
include, in a bitstream that comprises an encoded represen-
tation of the video data, data representing residual data based
at least on predictive blocks of the first PU and the second
PU and a coding block of the CU.

[0281] In a corresponding example of the 13? technique,
video decoder 30 may determine an intra predicted CU of
the video data has at least a first PU and a second PU. In this
example, the first PU and the second PU have different
chroma prediction modes. Furthermore, in this example,
video decoder 30 may reconstruct, based at least on predic-
tive blocks of the first PU and the second PU, a coding block
of the CU.

[0282] Furthermore, in accordance with an example of the
137 technique, the chroma intra prediction modes of the
previously coded PU may be considered for coding the
following PU. This, a video coder may determine, based at
least in part on a chroma prediction mode of a PU prior to
a current PU in coding order, a chroma prediction mode of
the current PU. For instance, a video coder may use the
chroma intra prediction modes of the previously coded PU
in context modeling for chroma intra prediction mode of a
current PU. Context modeling may comprise identification
of a coding context for context-adaptive entropy coding. A
coding context may indicate probabilities of a value In
another example, a video coder may add the chroma intra
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prediction modes of the previously coded PU as one new
candidate for the chroma intra prediction mode list.

[0283] In some examples of the 13 technique, one flag
may be firstly coded at a CU level to indicate whether all
PUs share the same chroma intra prediction modes. Thus, in
this example, video encoder 20 may include, in the bit-
stream, a syntax element indicating whether all PUs of the
intra predicted CU share the same chroma intra prediction
modes. Similarly, video encoder 20 may obtain, from a
bitstream comprising an encoded representation of the video
data, a syntax element indicating whether all PUs of the intra
predicted CU share the same chroma intra prediction modes.
[0284] Furthermore, in some examples of the thirteenth
technique, all the chroma PUs within one CU are restricted
to follow the same transform tree. By restricting all of the
chroma PUs within one CU to follow the same transform
tree, it may be unnecessary for video encoder 20 to include
data in the bitstream indicating the structures of the different
transform trees for different chroma PUs. Thus, video
encoder 20 may generate a bitstream that conforms to a
video coding standard that restricts a video encoder from
generating bitstreams in which chroma PUs of the CU have
differently structured transform trees. Similarly, video
decoder 30 may obtain a bitstream comprising an encoded
representation of the video data. In this example, the bit-
stream conforms to a video coding standard that restricts a
video encoder from generating bitstreams in which chroma
PUs of the CU have differently structured transform trees.
[0285] In a fourteenth example of this disclosure, when
one intra coded CU contains multiple rectangular PUs, a
video coder may apply a mode-dependent scan. A mode-
dependent scan is a scanning order used to scan transform
coefficients in a 2-dimensional coefficient block for a TU
into a 1-dimensional coefficient vector for entropy encoding.
Video encoder 20 may select, based on which intra predic-
tion mode is used for a PU corresponding to the TU, a
mode-dependent scan to use for scanning transform coeffi-
cients of the TU from among a plurality of available
scanning orders. The PU corresponding to the TU may be
coextensive with the TU or contain the area associated with
the TU. Using a mode-dependent scan may better arrange
the transform coefficients for CABAC. In HEVC, mode-
dependent scans are only allowed for 8x8 and 4x4 TUs.

[0286] Thus, in accordance with an example of the four-
teenth technique, video encoder 20 may obtain residual data
based on 2-dimensional transform coefficient blocks. In this
example, video encoder 20 may obtain predictive blocks for
each of a plurality of rectangular PUs of an intra predicted
CU of the video data. Furthermore, in this example, video
encoder 20 may apply a mode-dependent scan to arrange the
2-dimensional blocks of transform coefficients into 1-di-
mensional arrays of transform coefficients corresponding to
TUs of the CU. In this example, video encoder 20 may
include, in a bitstream that comprises an encoded represen-
tation of the video data, data representing the 1-dimensional
arrays of transform coefficients.

[0287] In a similar example, video decoder 30 may apply
a mode-dependent scan to arrange a 1-dimensional array of
transform coefficients into 2-dimensional transform coeffi-
cient blocks corresponding to TUs of an intra predicted CU
of'the video data. In this example, the intra predicted CU has
multiple rectangular PUs. Furthermore, in this example,
video decoder 30 may obtain residual data based on the
transform coefficient blocks. Additionally, video decoder 30
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may obtain predictive blocks for each of the PUs. In this
example, video decoder 30 may reconstruct, based on the
residual data and the predictive blocks, a coding block of the
CU.

[0288] In one example of the fourteenth technique, appli-
cation of the mode-dependent scan is restricted to certain TU
sizes, such as 8x4 or 4x8. In some examples, the mode-
dependent scan is restricted to certain CU sizes, such as only
8x8, or 8x8 and 16x16. Furthermore, in some examples, the
rule of the mapping between intra prediction mode and scan
pattern used for TU sizes equal to 8x8 and 4x4 in HEVC
may be reused. In some examples, different mapping func-
tions may be applied which is dependent on the rectangular
TU sizes.

[0289] As described elsewhere in this disclosure, VCEG-
AZ07 proposed using a 4-tap intra interpolation filter to
improve accuracy of directional intra prediction relative to
the 2-tap intra interpolation filter used in HEVC. However,
VCEG-AZ07 does not indicate how a video coder selects a
4-tap intra interpolation filter for a non-square intra coded
PU. Rather, VCEG-AZ07 specifies that a video coder uses
cubic interpolation filters for 4x4 and 8x8 blocks, and uses
Gaussian interpolation filters for 16x16 and larger blocks. In
a fifteenth technique of this disclosure, for a non-square intra
coded PU with size equal to KxL, when determining a 4-tap
filter type or a scan pattern as described elsewhere in this
disclosure with respect to four-tap intra interpolation filters,
the non-square intra coded PU is treated as a transform size
equal to NxN, wherein log 2(N*N)=((log 2(K)+log 2(L))
>>1)<<1), wherein log 2 is the binary logarithm, and >>and
<< are the logic right and left shift, respectively.

[0290] Thus, in an example of the fifteenth technique,
video encoder 20 may determine a 4-tap interpolation filter
for a non-square intra coded PU of a CU of the video data.
Furthermore, in this example, video encoder 20 may apply
the determined 4-tap interpolation filter as part of obtaining
a predictive block for the non-square intra coded PU. For
instance, video encoder 20 may apply the 4-tap filter when
determining a value of a reference sample that lies between
two integer-position reference samples (i.e., reference
samples at integer coordinates relative to a top-left sample of
a picture). Additionally, in this example, video encoder 20
may include, in a bitstream that comprises an encoded
representation of the video data, data representing residual
data based at least in part on a predictive block for the
non-square PU and a coding block of the CU. In this
example, as part of determining the 4-tap interpolation filter,
video encoder 20 may determine the 4-tap interpolation filter
based on a size of a square PU, wherein the size of the square
PU is based on the height and width of the non-square intra
coded PU.

[0291] In a corresponding example of the fifteenth tech-
nique, video decoder 30 may determine a 4-tap interpolation
filter for a non-square intra coded PU of a CU of the video
data. Additionally, in this example, video decoder 30 may
apply the determined 4-tap interpolation filter as part of
obtaining a predictive block for the non-square intra coded
PU. Furthermore, video decoder 30 may reconstruct, based
at least in part on a predictive block for the non-square PU,
a coding block of the CU. In this example, as part of
determining the 4-tap interpolation filter, video decoder 30
may determine the 4-tap interpolation filter based on a size
of a square PU, wherein the size of the square PU is based
on the height and width of the non-square intra coded PU.
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[0292] In some examples of the fifteenth technique, a new
4-tap filter may be applied for non-square intra coded PUs.
That is, even for non-square intra coded PUs, a 4-tap filter
may be applied and this filter may be different from what is
defined for square PUs. Furthermore, in some examples of
the fifteenth technique, a different mapping table between
the intra prediction mode and scan pattern index may be
applied for non-square intra coded PUs.

[0293] A KxL transform block is treated as a transform
size equal to NxN wherein log 2(N*N)=(log 2(K)+log
2(L)+1). Thus, the selection of a scan pattern for the KxL
transform block may be the same as the NxN block.
[0294] As discussed above, transform blocks in HEVC are
of size NxN, where N=2"" and m is an integer. Furthermore,
in HEVC, a video encoder applies a 2-dimensional NxN
transform to a transform block to generate transform coef-
ficients. More specifically, the video encoder applies the
2-dimensional NxN transform by applying an N-point 1-di-
mensional transform to each row of the transform block and
each column of the transform block separately. Applying the
transform in this way results in an NxN block of transform
coeflicients.

[0295] In HEVC, the video encoder may apply an N-point
1-dimensional DCT transform to an i-th row or column of
samples of the transform block w; by calculating:

Wl-:EjZON’lzg-cij 13

In the equation above, i=0, . . . , N-1. Elements c of the
DCT transform matrix C are defined as:

A.cos[%(j+%)i] 19
T W
In the equation above, 1,j=0, . . ., N-1 and where A is equal
to 1 and 2'2 for i=0 and i>0 respectively.
[0296] In equation (19), let

ofioe )

be denoted by X, . Therefore, equation (18) can be rewritten
as

Because the video encoder applies the 1-dimensional DCT
transform in both the horizontal and vertical directions, the
transform coefficient w, can ultimately be rewritten as:

20
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This can further be rewritten as:

k=0

VN AN

N-L oy 210
Ss+)
=0

[0297] Thus, the transform can ultimately be considered as
having a “normalization factor” of vN+/N. Because N=2"",
VNN is also a power of 2. Hence, the value of a transform
coeflicient can be implemented by a right-shift operation
instead of a division operation. As discussed elsewhere in
this disclosure, using right-shift operations instead of divi-
sion operations may reduce complexity and improve coding
speed.

[0298] However, problems may arise when reusing equa-
tion (19) with a non-square transform block of a TU. For a
2-D transform (including both horizontal and vertical trans-
forms), considering a K*L transform, the normalization
factor would be (VK*VL). If N is defined as the value
satisfying the equation log 2(N*N)=((log 2(K)+log 2(L))
>>1)<<1), the ratio of utilized normalization factor (vN*
vN) and the real normalization factor (vK*yL) would be 1/
V2. In other words, when reusing the same normalization
factor derived from an NxN transform block in the quanti-
zation process, the energy (i.e., the sum of squares of
quantized transform coefficients) is changed by v2.

[0299] A sixteenth technique of this disclosure may
address this issue. For instance, in the sixteenth technique of
this disclosure, for a non-square transform block with size
equal to KxL, when (log 2(K)+log 2(1)) is odd, the trans-
form and quantization process in HEVC is kept unchanged
and the non-square transform block is treated as a transform
block with size equal to NxN, wherein log 2(N*N)=((log
2(K)+log 2(L))>>1)<<1). In other words, based on (log
2(K)+log 2(L)) being odd, video encoder 20 may determine
a value N such that log 2(N*N)=((log 2(K)+log 2(L))>>1)
<<1). Video encoder 20 may then use elements of a DCT
transform matrix C that are defined according to equation
(19) using the determined value of N in the “normalization
factor.” Thus, video encoder 20 may continue to use a
right-shift operation for the division by the “normalization
factor” in equation (21).

[0300] Furthermore, in accordance with the sixteenth tech-
nique of this disclosure, after the transform process and
before the quantization process, the transform coefficients
are modified, multiplied by a factor of V2. In other words,
after applying the transform to the non-square transform
block to generate a coefficient block, video encoder 20
multiplies each transform coefficient of the coefficient block
by a factor of V2. This is because the ratio of the used
normalization factor (i.e., (YN*yN)) to the real normaliza-
tion factor (i.e., (VK*VL)) is equal to

L
=

[0301] Forexample, let K=8 and [.=4. In this example, log
2(4*4)y=((log 2(8)+log 2(4))>>1)<<1), so
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which is equal to

HE

which is equal to V2. Note that for values of K and [ where
(log 2(K)+log 2(L)) is even, the ratio of the used normal-
ization factor (i.e., (VN*VN)) to the real normalization
factor (i.e., (VK*VL)) is equal to 1. Therefore, when (log
2(K)+log 2(L)) is even, there may be no need for video
encoder 20 to multiply the transform coeflicients by the
factor of p2.

[0302] After the de-quantization process, the de-quantized
coeflicients are further modified, divided by a factor of V2.
Multiplying the transform coefficients by V2 before quanti-
zation and dividing the transform coefficients by V2 may
preserve information that would otherwise be lost in the
quantization process. Preserving this information may
ensure more accurate reconstruction of the original trans-
form block.

[0303] In another example of the sixteenth technique, the
transform and quantization process in HEVC is kept
unchanged and it is treated as a transform size equal to NxN
wherein log 2(N*N)=(log 2(K)+log 2(L)+1). After trans-
form and before the quantization process, the transform
coeflicients are modified, divided by a factor of V2. After the
de-quantization process, the de-quantized coefficients are
further modified, multiplied by a factor of V2.

[0304] In the examples of the sixteenth technique above,
the factor of V2 may be represented by its approximation.
For example, the process of (x*V2) can be approximated by
(x*181)>>7, wherein >> represents a right shift operation.
The process of (x/V2) can be approximated by (x*V2)/2, i.e.,
(x*181)>>8, wherein >> represents a right shift operation.
[0305] Thus, in the example of the sixteenth technique
presented above, video encoder 20 may apply a transform to
a transform block of a non-square TU of a CU to generate
a block of transform coefficients. Additionally, video
encoder 20 may modify the transform coefficients such that
each respective transform coefficient of a block of transform
coeflicients is based on the respective dequantized transform
coefficient multiplied by an approximation of v2. In this
example, after modifying the transform coefficients, video
encoder 20 may apply a quantization process to the modified
transform coefficients of the non-square PU of the CU.
Furthermore, in this example, video encoder 20 may
include, in a bitstream comprising an encoded representation
of the video data, data based on the quantized transform
coefficients. In some examples, as part of applying the
transform to the transform block of the non-square TU,
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video encoder 20 may apply, to the dequantized transform
coefficients, a transform having size NxN, where log
2(N*N)=((log 2(K)+log 2(L))>>1)<<1).

[0306] Ina corresponding example, video decoder 30 may
apply a dequantization process to transform coefficients of a
non-square PU of a CU of the video data. In this example,
after applying the dequantization process to the transform
coeflicients, video decoder 30 may modify the dequantized
transform coefficients such that each respective dequantized
transform coefficient of the dequantized transform coeffi-
cients based on the respective dequantized transform coef-
ficient divided by an approximation of V2. In some
examples, as part of applying the inverse transform to the
modified dequantized transform coefficients comprises,
video decoder 30 may apply, to the modified dequantized
transform coefficients, a transform having size NxN, where
log 2(N*N)=((log 2(K)+log 2(L))>>1)<<1).

[0307] In HEVC, video encoder 20 may calculate a quan-
tized transform coefficient (i.e., a level) using the following
equation:

opP . 22)
level = ((coeff X for % 6+ oﬁsetg) > ?] > shift?

where coefl is the transform coeflicient, offset, is an offset
value, QP is a quantization parameter, shift 2=29-M-B, B is
the bit depth, M=log,(N), and
f=[f,, . . . £5]7=[26214, 23302, 20560, 18396, 16384,

1456417 (23)
[0308] Furthermore, in HEVC, video decoder 30 may
inverse quantize a quantized transform coefficient using the
following equation:

[ . 24
coeffy = ((levelx (ng %6 <K ?]) + oﬁsett,Q] > shiftl

In equation (24), coefl,, is the inverse quantized transform
coeflicient, level is the quantized transform coefficient,
offset, ;, is an offset value=1<<(M-104B), shiftl =(M-9+B),
and g is defined as shown in equation (25), below:

g=[fo, . . . fs]7=[40, 45, 51, 57, 64, 7217 (25)

[0309] In accordance with a technique of this disclosure,
video encoder 20 may use different quantization matrixes
(i.e., versions of f), depending on whether (log,(W)+log,
(H)) is odd or even. Similarly, video decoder 30 may use
different inverse quantization matrixes (i.e., versions of g),
depending on whether (log,(W)+log,(H)) is odd or even. An
example of g is defined as follows:
[0310] [40,45,51,57,64,72], // when the sum is even
[0311] [7240,8145,9231,10317,11584,13032] // when the
sum is odd
Note that each corresponding value of g for the case that it
is even is multiplied by 181. In this example, there is no need
to perform the multiplication or division processes before or
after quantization stages since the compensation of V2 has
already been considered in g.
[0312] Furthermore, in equations (22) and (24), the value
selected in quantization matrixes f and g is selected based on
the quantization parameter QP. The selected values in quan-
tization matrixes f and g may be referred to herein as
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quantization matrix coefficients. In some examples of this
disclosure, video encoder 20 and video decoder 30 may
select quantization matrix coeflicients based on the quanti-
zation parameter and also based on whether (log 2(W)+log
2(H)) is odd or even.

[0313] As briefly described above and illustrated in FIG.
2A and FIG. 2B, in HEVC, a video coder always processes
TUs of a CU in a recursive z-scan order. Thus, as shown in
FIG. 2A, data corresponding to transform coefficients of TU
“a” appear in the bitstream before data corresponding to
transform coefficients of TU “b”, and so on. A seventeenth
technique of this disclosure proposes that for CUs coded
with inter mode or comb mode or intra mode but with
non-square partitions, the coding order of transform coeffi-
cients is dependent on a PU coding order instead of always
using the recursive z-scan. In some examples of the seven-
teenth technique, all coefficients within one PU shall be
coded together before coding the coefficients in another PU.
Thus, for video encoder 20, all coefficients within one of the
PUs of the CU are encoded together before encoding coet-
ficients of another one of the PUs of the CU. Similarly, in
this example, for video decoder 30, all coefficients within
one PU of a CU are decoded together before decoding
coeflicients of another one of the PUs of the CU.

[0314] In this example, the transform coefficients of a PU
are transform coefficients of TUs whose transform blocks
are within an area of a prediction block of the PU. For
example, let the coordinates of a top-left corner of a pre-
diction block of a PU of a 16x16 CU be (0,0) relative to a
top-left corner of a coding block of the CU and let the
coordinates of the bottom-right corner of the prediction
block of the PU be (7, 15). Furthermore, in this example, let
the coordinates of a top-left corner of a transform block of
a TU of the CU be (4, 0) and let the coordinates of a
bottom-right corner of the transform block of the TU be
(7,15). In this example, transform coefficients of the TU are
transform coefficients of the PU. However, in this example,
if the top-left corner of the transform block of the TU is (8,
0) and the bottom-right corner of the transform block of the
TU is (15, 7), the transform coefficients of the TU are not
transform coefficients of the PU.

[0315] For example, with respect to FIG. 2A, suppose that
CU 40 has two PUs which partition CU 40 vertically through
the center of CU 40. Thus, the transform coefficients of a
first PU of CU 40 include the transform coeflicients of TUs
“a,” “b,” “c,” “d,” and “f”. The transform coeflicients of a
second PU of CU 40 include the transform coefficients of
TUs “e,” “g” “h,” “i,” and “j”. In this example, video
encoder 20 may include data representing transform coef-
ficients of TU “e” following data representing transform
coeflicients of TU “f’. In contrast, in HEVC, the data
representing transform coefficients of TU “t” follows the
data representing transform coefficients of TU “e”, regard-
less of the shape and size of the PUs of CU 40. In other
words, when one PU contains multiple TUs, the recursive
Z-scan with depth-first traversal is applied for coding these
coeflicients within the PU. Taking FIG. 2 as an example, if
the partition size is equal to Nx2N, the coding order may be
a,b,c,d f,e, g hij.

[0316] Some examples of the seventeenth technique are
only applicable when the transform depth is unequal to O,
i.e., transform size no larger than PU sizes. Note that the
AMP mentioned above may include other asymmetric par-
titions, not only the four cases defined in HEVC.
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[0317] As mentioned briefly above, the IC design in
HEVC only supports square PUs. Prior to the present
disclosure, how to derive the IC parameters a and b for
non-square PUs was unknown. An eighteenth technique of
this disclosure enables IC to be used with non-square PUs.
For instance, video encoder 20 may use IC to generate a
non-square predictive block of a current PU of a picture of
the video data. Additionally, video encoder 20 may generate
residual data based on the predictive block. For example,
video encoder 20 may generate the residual data such that
each respective sample of the residual data is equal to a
difference between a respective sample of a coding block of
the current CU and a corresponding respective sample of the
predictive block. Furthermore, video encoder 20 may output
a bitstream that includes data based on the residual data. For
example, video encoder 20 may apply a transform to the
residual data to generate a coeflicient block, quantize coef-
ficients of the coeflicient block, and include in the bitstream
one or more syntax elements representing each of the
quantized coeflicients. In this example, video encoder 20
may entropy encode one or more of the syntax elements for
each quantized coefficient. In other examples, video encoder
20 may skip application of the transform and/or quantiza-
tion.

[0318] Furthermore, in accordance with one or more of the
examples related to IC provided above, video decoder 30
may use IC to generate a non-square predictive block of a
current PU of a current CU of a picture of the video data.
Additionally, video decoder 30 may reconstruct, based on
the predictive block, a block (e.g., a coding block) of the
picture. For example, video decoder 30 may reconstruct
samples of the block by adding samples of the predictive
block to corresponding residual samples.

[0319] In the examples of the eighteenth technique, as part
of using IC to generate a non-square predictive block, a
video coder (e.g., video encoder 20 and/or video decoder 30)
may determine a sample of the predictive block as:

pG, jy=a*r(i+dv,, j+dv,+b), where (i, j) € PU,,

where PU_ is the current PU, (i, j) is the coordinate of pixels
in the predictive block, (dv,, dv,) is a vector (e.g., disparity
vector) of PU.. p(i, j) is a prediction of PU_, r is an
inter-view reference picture, a is a first IC parameter and b
is a second IC parameter. Furthermore, as part of using IC
to generate the non-square predictive block, the video coder
may calculate the first IC parameter as:

2N-1
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Additionally, the video coder may calculate the second IC
parameter as:
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In the equations above, Rec,,,, and Rec,,,, denote a
neighboring pixel set of the current CU and a reference
block respectively, 2N denotes the pixel number in Rec,,,;,
and Rec, ;... and the current CU has a size equal to NxN.
Other examples may use variations on the formulas indi-
cated above.

[0320] Furthermore, in examples of the eighteenth tech-
nique, when IC is enabled for one non-square PU with size
equal to KxL (K is unequal to L), the parameters could be
derived in various ways. For example, when using the
equation (16) and equation (17) to calculate linear model
parameters, pixels located at both longer and shorter sides of
the PU may be sub-sampled with different ways, such as
different sub-sampling ratios. However, it may be required
that the total number of pixels at two sides together should
be equal to 2™ (wherein m is an integer, and its value may
be dependent on the block size). Thus, in this example,
Rec,,,,., is a subset of pixels immediately above the current
CU and immediately left of the current CU, Rec, 4,0,z 15 @
subset of pixels immediately above the reference block and
immediately left of the reference block, and a total number
of pixels in Rec,,,.;, and Rec, ..., is equal to 27, where m
is an integer. The sub-sampling process can be a decimation
or an interpolated sampling.

[0321] In another example of deriving the parameters for
IC, when using the equation (16) and equation (17) to
calculate linear model parameters, the pixels of the boundary
at the shorter side of the non-square PU is up-sampled such
that the number of pixels in the up-sampled boundary is
equal to the number of pixels in the longer boundary (i.e.,
max(K, L)). The up-sampling process can be a duplicator or
an interpolated sampling. Thus, in this example, as part of
using IC to generate a predictive block, a video coder may
generate Rec,,,,,, such that Rec,,,,, includes up-sampled
pixels in whichever is shorter of a left side and a top side of
the current CU. Additionally, in this example, the video
coder may generate Rec,,, ..., such that Rec, ., includes
up-sampled pixels in whichever is shorter of the left side and
the top side of the reference block

[0322] Alternatively, pixels located at both longer and
short sides of the PU may be up-sampled and the up-
sampling ratios may be different. Thus, in this example, as
part of using IC to generate a predictive block, a video coder
may generate Rec,,., such that Rec,,,;, includes
up-sampled pixels in whichever is longer of the left side and
the top side of the current CU. Additionally, the video coder
may generate Rec, ;... such that Rec, ..., includes up-
sampled pixels in whichever is longer of the left side and the
top side of the reference block. However, it may be required
that the total number of pixels at two sides together should
be equal to 2™ (wherein m is an integer, m may be different
for luma and chroma components).

[0323] Furthermore, in some examples of deriving the
parameters for IC, different ways of sub-sampling/up-sam-
pling for boundary pixels may be applied. In one example,
the sub-sampling/up-sampling method is dependent on the
PU size (i.e., on the values of K and L.). Thus, a video coder
may determine, based on a size of the current PU, a
sub-sampling method or up-sampling method to use to
generate Rec,,,;, and Rec, ;.. In another example, the
methods for sub-sampling/up-sampling may be signaled in
sequence parameter set, picture parameter set, and/or slice
header. Thus, in some examples, video encoder 20 may
include, in a bitstream, and video decoder 30 may obtain,
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from the bitstream, a syntax element indicating a sub-
sampling method to use to generate Rec,,,,,;, and Rec, 4,1
In some examples, video encoder 20 may include, in a
bitstream, and video decoder 30 may obtain, from the
bitstream, a syntax element indicating an up-sampling
method to use to generate the up-sampled pixels.

[0324] In some examples of deriving the parameters for
IC, the up-sampling/down-sampling (or sub-sampling) is
implemented in an implicit manner. For instance, the sum
value in equation (16) and equation (17) of the left side
boundary or/and upper side boundary, may be multiplied or
divided by a factor S. The value of S can be dependent on
the ratio of the pixel number in the left side boundary or/and
upper side boundary.

[0325] In some examples of the eighteenth technique, the
same sub-sampling/up-sampling method shall also be
applied to the boundary pixels of the reference block (i.e.,
Rec, 4,0,01). For example, decimation may be used for
sub-sampling both Rec,,.;, and Rec, ..

[0326] Furthermore, in accordance with particular tech-
niques of this disclosure, when LM is enabled for a square
PU, the luma and chroma boundary pixels may be firstly
sub-sampled to derive the parameters e.g. using equations
(16) and (17). The sub-sampling method may be predefined
or signaled in a sequence parameter set, a picture parameter
set or a slice header. The sub-sampling method may be
dependent on prediction unit size.

[0327] Thus, a video coder (e.g., video encoder 20 or
video decoder 30) may perform a linear model prediction
operation to predict a predictive chroma block for a current
PU from sub-sampled reconstructed luma samples of the
PU. Additionally, the video coder may reconstruct, based in
part on the predictive chroma block, the block of the picture.
As part of performing the linear model prediction operation,
the video coder may obtain a predictive chroma sample such
that the predictive chroma sample is equal to a first param-
eter multiplied by a collocated luma sample, plus a second
parameter, wherein the first parameter is equal to:

szi'yi—zxi'zyi
o=

T OINx - N

and the second parameter is equal to:
p=CyraZx)/I

In the equations above, I is the number of reference samples
in a subset of samples in a left and top boundary of the
current PU determined according to a sub-sampling method,
X, 1s a sub-sampled reconstructed luma reference sample, y,
is a reconstructed chroma reference sample. In some
instances of this example, video encoder 20 may include, in
a bitstream, and video decoder 30 may obtain, from the
bitstream, a syntax element indicating the sub-sampling
method. In some instances of this example, video encoder 20
and video decoder 30 may determine, based on a size of the
current PU, the sub-sampling method.

[0328] Various examples have been described. Particular
examples of this disclosure may be used separately or in
combination with one another.

[0329] FIG. 24 is a block diagram illustrating an example
video encoder 20 that may implement techniques of this
disclosure. FIG. 24 is provided for purposes of explanation
and should not be considered limiting of the techniques as
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broadly exemplified and described in this disclosure. For
purposes of explanation, this disclosure describes video
encoder 20 in the context of HEVC coding. However, the
techniques of this disclosure may be applicable to other
coding standards or methods.

[0330] Video encoder 20 includes processing circuitry,
and video encoder 20 is configured to perform one or more
of the example techniques described in this disclosure. Such
processing circuitry may include fixed function and/or pro-
grammable circuitry. For instance, video encoder 20
includes integrated circuitry, and the various units illustrated
in FIG. 24 may be formed as hardware circuit blocks that are
interconnected with a circuit bus. These hardware circuit
blocks may be separate circuit blocks or two or more of the
units may be combined into a common hardware circuit
block. The hardware circuit blocks may be formed as
combinations of electronic components that form operation
blocks such as arithmetic logic units (ALUs), elementary
function units (EFUs), as well as logic blocks such as AND,
OR, NAND, NOR, XOR, XNOR, and other similar logic
blocks.

[0331] In the example of FIG. 24, video encoder 20
includes a prediction processing unit 200, video data
memory 201, a residual generation unit 202, a transform
processing unit 204, a quantization unit 206, an inverse
quantization unit 208, an inverse transform processing unit
210, a reconstruction unit 212, a filter unit 214, a decoded
picture buffer 216, and an entropy encoding unit 218.
Prediction processing unit 200 includes an inter-prediction
processing unit 220 and an intra-prediction processing unit
226. Inter-prediction processing unit 220 may include a
motion estimation unit and a motion compensation unit (not
shown). In some examples, prediction processing unit 200
performs the illumination compensation techniques of this
disclosure. In some examples, prediction processing unit
200 performs the LM techniques of this disclosure to
generate non-square chroma predictive blocks. Furthermore,
in some examples, prediction processing unit 200 performs
the IC techniques of this disclosure to generate non-square
predictive blocks.

[0332] Video data memory 201 may be configured to store
video data to be encoded by the components of video
encoder 20. The video data stored in video data memory 201
may be obtained, for example, from video source 18 (FIG.
1). Decoded picture buffer 216 may be a reference picture
memory that stores reference video data for use in encoding
video data by video encoder 20, e.g., in intra- or inter-coding
modes. Video data memory 201 and decoded picture buffer
216 may be formed by any of a variety of memory devices,
such as dynamic random access memory (DRAM), includ-
ing synchronous DRAM (SDRAM), magnetoresistive RAM
(MRAIVI), resistive RAM (RRAM), or other types of
memory devices. Video data memory 201 and decoded
picture buffer 216 may be provided by the same memory
device or separate memory devices. In various examples,
video data memory 201 may be on-chip with other compo-
nents of video encoder 20, or off-chip relative to those
components.

[0333] Video encoder 20 receives video data. Video
encoder 20 may encode each CTU in a slice of a picture of
the video data. Each of the CTUs may be associated with
equally-sized luma coding tree blocks (CTBs) and corre-
sponding CTBs of the picture. As part of encoding a CTU,
prediction processing unit 200 may perform quad-tree par-
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titioning to divide the CTBs of the CTU into progressively-
smaller blocks. The smaller block may be coding blocks of
CUs. For example, prediction processing unit 200 may
partition a CTB associated with a CTU into four equally-
sized sub-blocks, partition one or more of the sub-blocks
into four equally-sized sub-sub-blocks, and so on.

[0334] Video encoder 20 may encode CUs of a CTU to
generate encoded representations of the CUs (i.e., coded
CUs). As part of encoding a CU, prediction processing unit
200 may partition the coding blocks associated with the CU
among one or more PUs of the CU. Thus, each PU may be
associated with a luma prediction block and corresponding
chroma prediction blocks. Video encoder 20 and video
decoder 30 may support PUs having various sizes. As
indicated above, the size of a CU may refer to the size of the
luma coding block of the CU and the size of a PU may refer
to the size of a luma prediction block of the PU. Assuming
that the size of a particular CU is 2Nx2N, video encoder 20
and video decoder 30 may support PU sizes of 2Nx2N or
NxN for intra prediction, and symmetric PU sizes of
2Nx2N, 2NxN, Nx2N, NxN, or similar for inter prediction.
Video encoder 20 and video decoder 30 may also support
asymmetric partitioning for PU sizes of 2NxnU, 2NxnD,
nl.x2N, and nRx2N for inter prediction.

[0335] Inter-prediction processing unit 220 may generate
predictive data for a PU by performing inter prediction on
each PU of a CU. The predictive data for the PU may include
predictive blocks of the PU and motion information for the
PU. Inter-prediction processing unit 220 may perform dif-
ferent operations for a PU of a CU depending on whether the
PU isin an I slice, a P slice, or a B slice. In an I slice, all PUs
are intra predicted. Hence, if the PU is in an I slice,
inter-prediction processing unit 220 does not perform inter
prediction on the PU. Thus, for blocks encoded in I-mode,
the predicted block is formed using spatial prediction from
previously-encoded neighboring blocks within the same
frame. If a PU is in a P slice, inter-prediction processing unit
220 may use uni-directional inter prediction to generate a
predictive block of the PU. If a PU is in a B slice,
inter-prediction processing unit 220 may use uni-directional
or bi-directional inter prediction to generate a predictive
block of the PU.

[0336] Intra-prediction processing unit 226 may generate
predictive data for a PU by performing intra prediction on
the PU. The predictive data for the PU may include predic-
tive blocks of the PU and various syntax elements. Intra-
prediction processing unit 226 may perform intra prediction
on PUs in I slices, P slices, and B slices.

[0337] To perform intra prediction on a PU, intra-predic-
tion processing unit 226 may use multiple intra prediction
modes to generate multiple sets of predictive data for the
PU. Intra-prediction processing unit 226 may use samples
from sample blocks of neighboring PUs to generate a
predictive block for a PU. The neighboring PUs may be
above, above and to the right, above and to the left, or to the
left of the PU, assuming a left-to-right, top-to-bottom encod-
ing order for PUs, CUs, and CTUs. Intra-prediction pro-
cessing unit 226 may use various numbers of intra prediction
modes, e.g., 33 directional intra prediction modes. In some
examples, the number of intra prediction modes may depend
on the size of the region associated with the PU.

[0338] Prediction processing unit 200 may select the pre-
dictive data for PUs of a CU from among the predictive data
generated by inter-prediction processing unit 220 for the

May 25, 2017

PUs or the predictive data generated by intra-prediction
processing unit 226 for the PUs. In some examples, predic-
tion processing unit 200 selects the predictive data for the
PUs of the CU based on rate/distortion metrics of the sets of
predictive data. The predictive blocks of the selected pre-
dictive data may be referred to herein as the selected
predictive blocks.

[0339] Residual generation unit 202 may generate, based
on the coding blocks (e.g., luma, Cb and Cr coding blocks)
for a CU and the selected predictive blocks (e.g., predictive
luma, Cb and Cr blocks) for the PUs of the CU, residual
blocks (e.g., luma, Cb and Cr residual blocks) for the CU.
For instance, residual generation unit 202 may generate the
residual blocks of the CU such that each sample in the
residual blocks has a value equal to a difference between a
sample in a coding block of the CU and a corresponding
sample in a corresponding selected predictive block of a PU
of the CU.

[0340] Transform processing unit 204 may perform par-
titioning (e.g., quad-tree partitioning) to partition the
residual blocks associated with a CU into transform blocks
associated with TUs of the CU. Thus, a TU may be asso-
ciated with a luma transform block and two chroma trans-
form blocks. The sizes and positions of the luma and chroma
transform blocks of TUs of a CU may or may not be based
on the sizes and positions of prediction blocks of the PUs of
the CU. A quad-tree structure known as a “residual quad-
tree” (RQT) may include nodes associated with each of the
regions. The TUs of a CU may correspond to leaf nodes of
the RQT.

[0341] In some examples, transform processing unit 204
may perform the techniques of this disclosure for determin-
ing a residual tree structure that includes nodes having two
(and/or 4) child nodes. For example, video data memory 201
may receive video data and transform processing unit 204
may partition a CU of the video data into TUs of the CU
based on a tree structure. In this example, as part of
partitioning the CU into TUs of the CU based on the tree
structure, transform processing unit 204 may determine that
a node in the tree structure has exactly two child nodes in the
tree structure. In some instances, transform processing unit
204 may further determine that a second node in the tree
structure has exactly four child nodes in the tree structure.
For at least one of the TUs of the CU, transform processing
unit 204 may apply a transform to a residual block for the
TU to generate a block of transform coefficients for the TU.
[0342] Transform processing unit 204 may generate trans-
form coefficient blocks for each TU of a CU by applying one
or more transforms to the transform blocks of the TU.
Transform processing unit 204 may apply various trans-
forms to a transform block associated with a TU. For
example, transform processing unit 204 may apply a discrete
cosine transform (DCT), a directional transform, or a con-
ceptually similar transform to a transform block. In some
examples, transform processing unit 204 does not apply
transforms to a transform block. In such examples, the
transform block may be treated as a transform coefficient
block. In some examples, transform processing unit 204
performs the EMT techniques of this disclosure.

[0343] Quantization unit 206 may quantize the transform
coeflicients in a coefficient block. The quantization process
may reduce the bit depth associated with some or all of the
transform coeflicients. For example, an n-bit transform
coefficient may be rounded down to an m-bit transform
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coeflicient during quantization, where n is greater than m.
Quantization unit 206 may quantize a coefficient block
associated with a TU of a CU based on a quantization
parameter (QP) value associated with the CU. Video encoder
20 may adjust the degree of quantization applied to the
coeflicient blocks associated with a CU by adjusting the QP
value associated with the CU. Quantization may introduce
loss of information; thus quantized transform coefficients
may have lower precision than the original transform coef-
ficients.

[0344] In some examples, quantization unit 206 modifies
the transform coefficients such that each respective trans-
form coefficient of the block of transform coefficients is
based on the respective dequantized transform coefficient
multiplied by an approximation of 2. In this example, after
modifying the transform coefficients, quantization unit 206
applies a quantization process to the modified transform
coeflicients of the non-square PU of the CU.

[0345] Inverse quantization unit 208 and inverse trans-
form processing unit 210 may apply inverse quantization
and inverse transforms to a coefficient block, respectively, to
reconstruct a residual block from the coefficient block.
Reconstruction unit 212 may add the reconstructed residual
block to corresponding samples from one or more predictive
blocks generated by prediction processing unit 200 to pro-
duce a reconstructed transform block associated with a TU.
By reconstructing transform blocks for each TU of a CU in
this way, video encoder 20 may reconstruct the coding
blocks of the CU.

[0346] Filter unit 214 may perform one or more deblock-
ing operations to reduce blocking artifacts in the coding
blocks associated with a CU. Decoded picture buffer 216
may store the reconstructed coding blocks after filter unit
214 performs the one or more deblocking operations on the
reconstructed coding blocks. Inter-prediction processing
unit 220 may use a reference picture that contains the
reconstructed coding blocks to perform inter prediction on
PUs of other pictures. In addition, intra-prediction process-
ing unit 226 may use reconstructed coding blocks in
decoded picture buffer 216 to perform intra prediction on
other PUs in the same picture as the CU.

[0347] Entropy encoding unit 218 may receive data from
other functional components of video encoder 20. For
example, entropy encoding unit 218 may receive coeflicient
blocks from quantization unit 206 and may receive syntax
elements from prediction processing unit 200. Entropy
encoding unit 218 may perform one or more entropy encod-
ing operations on the data to generate entropy-encoded data.
For example, entropy encoding unit 218 may perform a
CABAC operation, a context-adaptive variable length cod-
ing (CAVLC) operation, a variable-to-variable (V2V) length
coding operation, a syntax-based context-adaptive binary
arithmetic coding (SBAC) operation, a Probability Interval
Partitioning Entropy (PIPE) coding operation, an Exponen-
tial-Golomb encoding operation, or another type of entropy
encoding operation on the data. Video encoder 20 may
output a bitstream that includes entropy-encoded data gen-
erated by entropy encoding unit 218. For instance, the
bitstream may include data that represents a RQT for a CU.
[0348] FIG. 25 is a block diagram illustrating an example
video decoder 30 that is configured to implement techniques
of this disclosure. FIG. 25 is provided for purposes of
explanation and is not limiting on the techniques as broadly
exemplified and described in this disclosure. For purposes of
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explanation, this disclosure describes video decoder 30 in
the context of HEVC coding. However, the techniques of
this disclosure may be applicable to other coding standards
or methods.

[0349] Video decoder 30 includes processing circuitry,
and video decoder 30 is configured to perform one or more
of the example techniques described in this disclosure. For
instance, video decoder 30 includes integrated circuitry, and
the various units illustrated in FIG. 25 may be formed as
hardware circuit blocks that are interconnected with a circuit
bus. These hardware circuit blocks may be separate circuit
blocks or two or more of the units may be combined into a
common hardware circuit block. The hardware circuit
blocks may be formed as a combination of electronic
components that form operation blocks such as arithmetic
logic units (ALUs), elementary function units (EFUs), as
well as logic blocks such as AND, OR, NAND, NOR, XOR,
XNOR, and other similar logic blocks.

[0350] In some examples, one or more of the units illus-
trated in FIG. 25 may be provided by software units execut-
ing on the processing circuitry. In such examples, the object
code for these software units is stored in memory. An
operating system may cause video decoder 30 to retrieve the
object code and execute the object code, which causes video
decoder 30 to perform operations to implement the example
techniques. In some examples, the software units may be
firmware that video decoder 30 executes at startup. Accord-
ingly, video decoder 30 is a structural component having
hardware that performs the example techniques or has
software/firmware executing on the hardware to specialize
the hardware to perform the example techniques.

[0351] In the example of FIG. 25, video decoder 30
includes an entropy decoding unit 250, video data memory
251, a prediction processing unit 252, an inverse quantiza-
tion unit 254, an inverse transform processing unit 256, a
reconstruction unit 258, a filter unit 260, and a decoded
picture buffer 262. Prediction processing unit 252 includes
a motion compensation unit 264 and an intra-prediction
processing unit 266. In other examples, video decoder 30
may include more, fewer, or different functional compo-
nents. In some examples, prediction processing unit 266
performs the illumination compensation techniques of this
disclosure. In some examples, prediction processing unit
266 performs the LM techniques of this disclosure.

[0352] Video data memory 251 may store encoded video
data, such as an encoded video bitstream, to be decoded by
the components of video decoder 30. The video data stored
in video data memory 251 may be obtained, for example,
from computer-readable medium 16, e.g., from a local video
source, such as a camera, via wired or wireless network
communication of video data, or by accessing physical data
storage media. Video data memory 251 may form a coded
picture buffer (CPB) that stores encoded video data from an
encoded video bitstream. Decoded picture buffer 262 may be
a reference picture memory that stores reference video data
for use in decoding video data by video decoder 30, e.g., in
intra- or inter-coding modes, or for output. Video data
memory 251 and decoded picture buffer 262 may be formed
by any of a variety of memory devices, such as dynamic
random access memory (DRAM), including synchronous
DRAM (SDRAM), magnetoresistive RAM (MRAM), resis-
tive RAM (RRAM), or other types of memory devices.
Video data memory 251 and decoded picture buffer 262 may
be provided by the same memory device or separate memory
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devices. In various examples, video data memory 251 may
be on-chip with other components of video decoder 30, or
off-chip relative to those components.

[0353] Video data memory 251 receives and stores
encoded video data (e.g., NAL units) of a bitstream. Entropy
decoding unit 250 may receive encoded video data (e.g.,
NAL units) from video data memory 251 and may parse the
NAL units to obtain syntax elements. Entropy decoding unit
250 may entropy decode entropy-encoded syntax elements
in the NAL units. Prediction processing unit 252, inverse
quantization unit 254, inverse transform processing unit 256,
reconstruction unit 258, and filter unit 260 may generate
decoded video data based on the syntax elements extracted
from the bitstream. Entropy decoding unit 250 may perform
a process generally reciprocal to that of entropy encoding
unit 218.

[0354] In addition to obtaining syntax elements from the
bitstream, video decoder 30 may perform a reconstruction
operation on a non-partitioned CU. To perform the recon-
struction operation on a CU, video decoder 30 may perform
a reconstruction operation on each TU of the CU. By
performing the reconstruction operation for each TU of the
CU, video decoder 30 may reconstruct residual blocks of the
CU.

[0355] As part of performing a reconstruction operation on
a TU of a CU, inverse quantization unit 254 may inverse
quantize, i.e., de-quantize, coeflicient blocks associated with
the TU. After inverse quantization unit 254 inverse quantizes
a coefficient block, inverse transform processing unit 256
may apply one or more inverse transforms to the coefficient
block in order to generate a residual block associated with
the TU. For example, inverse transform processing unit 256
may apply an inverse DCT, an inverse integer transform, an
inverse Karhunen-Loeve transform (KLT), an inverse rota-
tional transform, an inverse directional transform, or another
inverse transform to the coefficient block. In some examples,
inverse transform processing unit 256 performs the EMT
techniques of this disclosure.

[0356] In accordance with some examples of this disclo-
sure, inverse quantization unit 254 may apply a dequanti-
zation process to transform coefficients of a non-square TU
of a CU of the video data. Furthermore, after applying the
dequantization process to the transform coefficients, inverse
quantization unit 254 may modify the dequantized transform
coeflicients such that each respective dequantized transform
coeflicient of the dequantized transform coefficients is based
on the respective dequantized transform coefficient divided
by an approximation of v2.

[0357] In some examples, inverse transform processing
unit 256 may apply the techniques of this disclosure for
determining a residual tree structure that includes nodes
having two (and/or 4) child nodes. For example, inverse
transform processing unit 256 may determine a CU of the
video data is partitioned into TUs of the CU based on a tree
structure. In this example, as part of determining the CU is
partitioned into the TUs of the CU based on the tree
structure, inverse transform processing unit 256 may deter-
mine that a node in the tree structure has exactly two child
nodes in the tree structure. In some examples, inverse
transform processing unit 256 may determine that a second
node in the tree structure has exactly four child nodes in the
tree structure. Furthermore, in this example, for at least one
of'the TUs of the CU, inverse transform processing unit 256

May 25, 2017

may apply a transform to a coefficient block for the TU to
generate a residual block for the TU.

[0358] If a PU is encoded using intra prediction, intra-
prediction processing unit 266 may perform intra prediction
to generate predictive blocks of the PU. Intra-prediction
processing unit 266 may use an intra prediction mode to
generate the predictive blocks of the PU based on samples
spatially-neighboring blocks. Intra-prediction processing
unit 266 may determine the intra prediction mode for the PU
based on one or more syntax elements obtained from the
bitstream.

[0359] If a PU is encoded using inter prediction, entropy
decoding unit 250 may determine motion information for the
PU. Motion compensation unit 264 may determine, based on
the motion information of the PU, one or more reference
blocks. Motion compensation unit 264 may generate, based
on the one or more reference blocks, predictive blocks (e.g.,
predictive luma, Cb and Cr blocks) for the PU.

[0360] Reconstruction unit 258 may use transform blocks
(e.g., luma, Cb and Cr transform blocks) for TUs of a CU
and the predictive blocks (e.g., luma, Cb and Cr blocks) of
the PUs of the CU, i.e., either intra-prediction data or
inter-prediction data, as applicable, to reconstruct the coding
blocks (e.g., luma, Cb and Cr coding blocks) for the CU. For
example, reconstruction unit 258 may add samples of the
transform blocks (e.g., luma, Cb and Cr transform blocks) to
corresponding samples of the predictive blocks (e.g., luma,
Cb and Cr predictive blocks) to reconstruct the coding
blocks (e.g., luma, Cb and Cr coding blocks) of the CU.

[0361] Filter unit 260 may apply one or more filters to
coding blocks of the CU. For example, filter unit 260 may
perform a deblocking operation to reduce blocking artifacts
associated with the coding blocks of the CU. Video decoder
30 may store the coding blocks of the CU in decoded picture
buffer 262. Thus, decoded picture buffer 262 may store
decoded blocks of the video data. Decoded picture buffer
262 may provide reference pictures for subsequent motion
compensation, intra prediction, and presentation on a display
device, such as display device 32 of FIG. 1. For instance,
video decoder 30 may perform, based on the blocks in
decoded picture buffer 262, intra prediction or inter predic-
tion operations for PUs of other CUs.

[0362] FIG. 26 is a block diagram illustrating an example
video encoder 20 that supports [LM-based encoding in
accordance with a technique of this disclosure. In the
example of FIG. 26, component of video encoder 20 oper-
ates in the same manner as the corresponding components of
video encoder 20 of FIG. 24. However, video encoder 20 of
FIG. 26 also includes an L.M-based encoding unit 222.

[0363] LM-based encoding unit 222 may perform the LM
prediction encoding according to the examples described
elsewhere in this disclosure. For example, inverse quanti-
zation unit 208, inverse transform processing unit 210,
reconstruction unit 212, and filter unit 214 may reconstruct
a set of luma reference samples, a set of chroma reference
samples, and may also reconstruct luma samples of a non-
square PU. LM-based encoding unit 222 may down-sample
or sub-sample the set of luma reference samples such that a
total number of luma reference samples in the set of luma
reference samples that neighbor a longer side of the non-
square PU is the same as a total number of luma reference
samples of the set of luma reference samples that neighbor
a shorter side of the non-square PU. Additionally, LM-based
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decoding unit 222 may determine a first parameter such that
the first parameter is equal to:

Sy ~o=x,)/1

where I is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples. For each respective chroma sample of a predictive
chroma block of the non-square PU, LM-based encoding
unit 222 may determine a value of the respective chroma
sample such that the value of the respective chroma sample
is equal to a second parameter multiplied by a respective
reconstructed luma sample corresponding to the respective
chroma sample, plus the first parameter, the reconstructed
luma sample corresponding to the respective chroma sample
being one of the reconstructed luma samples of the non-
square PU. LM-based encoding unit 222 may determine the
first parameter such that the second parameter is equal to:

szi'yi—zxi'zyi

IXX X = X% 2%

[0364] LM-based encoding unit 222 may output the pre-
dictive block to residual generation unit 202. Residual
generation unit 202 generates a residual block from the
predictive block and the chroma block. The resulting
residual block is transformed by transform processing unit
103, quantized by quantization unit 206, and entropy
encoded by entropy encoding unit 218. The result is then
signaled via a bitstream and video decoder 30 may use
information in the bitstream to reconstruct the chroma block.
[0365] FIG. 27 is a block diagram illustrating an example
video decoder 30 that supports LM-based decoding in
accordance with a technique of this disclosure. In the
example of FIG. 27, components of video decoder 30
operate in the same manner as the corresponding compo-
nents of video decoder 30 of FIG. 27. However, video
decoder 30 of FIG. 27 also includes an .LM-based decoding
unit 265.

[0366] In accordance with various examples of this dis-
closure, video decoder 30 may be configured to perform
LM-based coding in accordance with examples provided
elsewhere in this disclosure. For example, inverse quanti-
zation unit 254, inverse transform processing unit 256,
reconstruction unit 258, and filter unit 260 may reconstruct
a set of luma reference samples, a set of chroma reference
samples, and may also reconstruct luma samples of a non-
square PU. LM-based decoding unit 265 may down-sample
or sub-sample the set of luma reference samples such that a
total number of luma reference samples in the set of luma
reference samples that neighbor a longer side of the non-
square PU is the same as a total number of luma reference
samples of the set of luma reference samples that neighbor
a shorter side of the non-square PU. Additionally, LM-based
decoding unit 265 may determine a first parameter such that
the first parameter is equal to:

Cy~aZx,)/1

where I is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
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samples. For each respective chroma sample of a predictive
chroma block of the non-square PU, LM-based decoding
unit 266 may determine a value of the respective chroma
sample such that the value of the respective chroma sample
is equal to a second parameter multiplied by a respective
reconstructed luma sample corresponding to the respective
chroma sample, plus the first parameter, the reconstructed
luma sample corresponding to the respective chroma sample
being one of the reconstructed luma samples of the non-
square PU. LM-based decoding unit 266 may determine the
first parameter such that the second parameter is equal to:

szi'yi—zxi'zyi

IX XX = XX X%

[0367] LM-based decoding unit 265 may output the pre-
dictive block to reconstruction unit 258. Reconstruction unit
258 also receives a residual block (e.g., after information in
the bitstream for the residual block is entropy decoded with
entropy decoding unit 250, inverse quantized with inverse
quantization unit 254, inverse transformed with inverse
transform processing unit 256). Reconstruction unit 258
adds the residual block with the predictive block to recon-
struct the chroma block.

[0368] FIG. 28 is a flowchart illustrating an example
operation of video encoder 20 in accordance with a LM-
based coding technique of this disclosure. The flowcharts of
this disclosure are provided as examples. Other examples
within the scope of this disclosure may include more, fewer,
or different actions. Other examples within the scope of this
disclosure may include actions in different orders or per-
formed in parallel.

[0369] In the example of FIG. 28, video encoder 20 may
receive video data (300). For example, video encoder 20
may receive the video data from video source 18 (FIG. 1),
or another source.

[0370] Additionally, in the example of FIG. 28, video
encoder 20 may reconstruct a set of luma reference samples
and a set of chroma reference samples (302). The set of luma
reference samples may comprise above luma samples neigh-
boring a top side of a non-square luma block of a current
picture of the video data and left luma samples neighboring
a left side of the non-square luma block. In some examples,
the non-square luma block is a luma prediction block of a
non-square PU. The set of chroma reference samples may
comprise chroma samples neighboring the top side of a
non-square chroma block and chroma samples neighboring
the left side of the non-square chroma block. In some
examples, the non-square luma block is a luma prediction
block of a non-square PU.

[0371] Furthermore, video encoder 20 may reconstruct
luma samples of the non-square luma block (304). For
example, video encoder 20 may generate luma residual
samples for the CU as described elsewhere in this disclosure.
In this example, video encoder 20 may add samples of a
luma predictive block of the non-square luma block to
corresponding samples of the luma residual samples to
reconstruct the luma samples of the non-square luma block.
[0372] In some examples, video encoder 20 may down-
sample or sub-sample the luma samples of the non-square
luma block. By down-sampling or sub-sampling the luma
samples of the non-square luma block, video encoder 20
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may obtain a down-sampled or sub-sampled set of luma
samples having one luma sample for each chroma sample of
a chroma predictive block (e.g., a chroma predictive block
of the same PU as the luma block). Video encoder 20 may
down-sample or sub-sample the luma samples of the non-
square luma block in response to determining that a color
format of the current picture is not 4:4:4.

[0373] Additionally, video encoder 20 may down-sample
or sub-sample the set of luma reference samples such that a
total number of luma reference samples in the set of luma
reference samples that neighbor a longer side of the non-
square luma block is the same as a total number of luma
reference samples of the set of luma reference samples that
neighbor a shorter side of the non-square luma block (306).
Video encoder 20 may down-sample or sub-sample the set
of'luma reference samples in accordance with the techniques
described elsewhere in this disclosure. For instance, video
encoder 20 may decimate the set of luma reference samples
such that the set of luma reference samples that neighbor the
longer side of the non-square luma block is the same as the
total number of luma reference samples of the set of luma
reference samples that neighbor the shorter side of the
non-square luma block. In some examples, video encoder 20
may down-sample or sub-sample whichever of the left
reference samples or the above reference samples corre-
sponds to the longer of the left boundary of the luma and the
top boundary of the luma, but not whichever is shorter of the
left boundary of the luma block and the top boundary of the
luma block. In some examples, a total number of reference
samples in the set of luma reference samples is equal to 2™,
where m is an integer dependent on a height and/or width of
the non-square luma block.

[0374] In some examples, video encoder 20 may also
down-sample or sub-sample the set of chroma reference
samples such that a total number of chroma reference
samples in the set of chroma reference samples that neighbor
a longer side of the non-square chroma block is the same as
a total number of chroma reference samples of the set of
chroma reference samples that neighbor a shorter side of the
non-square chroma block.

[0375] In action (308) of FIG. 28, video encoder 20 may
determine a first parameter () such that the first parameter
is based on:

Cy~aZx,)/1

In the equation above, I is a total number of reference
samples in the set of the luma reference samples, x, is an i-th
luma reference sample in the set of luma reference samples,
and y, is an i-th chroma reference sample in the set of chroma
reference samples. Video encoder 20 may determine the first
parameter based on the formula above in the sense that video
encoder 20 uses the formula above directly or a variation on
the formula above, such as one that includes additional
constants or coefficients.

[0376] In some examples, video encoder 20 may also
determine a second parameter (ct) such that the second
parameter is based on:

szi'yi—zxi'zyi
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Video encoder 20 may determine the second parameter
based on the formula above in the sense that video encoder
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20 uses the formula above directly or a variation on the
formula above, such as one that includes additional con-
stants or coefficients.

[0377] Additionally, in example of FIG. 28, for each
respective chroma sample of a predictive chroma block,
video encoder 20 may determine a value of the respective
chroma sample such that the value of the respective chroma
sample is equal to a second parameter multiplied by a
respective reconstructed luma sample corresponding to the
respective chroma sample, plus the first parameter (310).
The reconstructed luma sample corresponding to the respec-
tive chroma sample is one of the reconstructed luma samples
of the non-square luma block.

[0378] Furthermore, video encoder 20 may obtain, based
on the predictive chroma block, residual data (312). For
example, video encoder 20 may determine values of chroma
samples of the residual data equal to differences between
samples of the chroma block of the non-square prediction
block and samples of a chroma coding block of a CU.
[0379] Additionally, video encoder 20 may include, in a
bitstream comprising an encoded representation of the video
data, data representing the residual data (314). For example,
video encoder 20 may apply one or more transforms to the
residual data to generate one or more coefficient blocks;
quantize the coefficient blocks; generate syntax elements
indicating whether a transform coefficient is non-zero,
whether the transform coefficient is greater than 1, whether
the transform coefficient is greater than 2, a sign of the
transform coeflicient, and a remainder for the transform
coeflicient. In this example, video encoder 20 may apply
CABAC coding to one or more of these syntax elements and
include the resulting values in the bitstream.

[0380] FIG. 29 is a flowchart illustrating an example
operation of video decoder 30 in accordance with a LM-
based coding technique of this disclosure. In the example of
FIG. 29, video decoder 30 receives a bitstream that com-
prises an encoded representation of the video data (350).
[0381] Furthermore, in the example of FIG. 29, video
decoder 30 reconstructs a set of luma reference samples and
a set of chroma reference samples (352). The set of luma
reference samples comprises above luma samples neighbor-
ing a top side of a non-square luma block of a current picture
of the video data and left luma samples neighboring a left
side of the non-square luma block. In some examples, the
non-square luma block is a luma prediction block of a
non-square PU. The set of chroma reference samples com-
prises chroma samples neighboring a top side of a non-
square chroma block and chroma samples neighboring a left
side of the non-square chroma block. In some examples, the
non-square luma block is a luma prediction block of a
non-square PU.

[0382] Video decoder 30 may reconstruct luma samples of
the non-square luma block (354). For example, as part of
reconstructing luma samples of the non-square luma block,
video decoder 30 may use intra prediction or inter prediction
to generate a luma predictive block for the non-square luma
block. Additionally, in this example, video decoder 30 may
add samples of the luma predictive block for the non-square
prediction block to corresponding residual samples to recon-
struct luma samples.

[0383] In some examples, video decoder 30 may down-
sample or sub-sample the luma samples of the non-square
luma block. By down-sampling or sub-sampling the luma
samples of the non-square luma block, video decoder 30
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may obtain a down-sampled or sub-sampled set of luma
samples having one luma sample for each chroma sample of
a chroma predictive block (e.g., a chroma predictive block
of the same PU as the luma block). Video decoder 30 may
down-sample or sub-sample the luma samples of the non-
square luma block in response to determining that a color
format of the current picture is not 4:4:4.

[0384] Furthermore, in the example of FIG. 29, video
decoder 30 may down-sample or sub-sample the set of luma
reference samples such that a total number of luma reference
samples in the set of luma reference samples that neighbor
a longer side of the non-square prediction block is the same
as a total number of luma reference samples of the set of
luma reference samples that neighbor a shorter side of the
non-square prediction block (356). Video decoder 30 may
down-sample or sub-sample the set of luma reference
samples in accordance with the techniques described else-
where in this disclosure. For instance, video decoder 30 may
decimate the set of luma reference samples such that the set
of luma reference samples that neighbors the longer side of
the non-square luma block is the same as the total number
of luma reference samples of the set of luma reference
samples that neighbor the shorter side of the non-square
luma block. In some examples, video decoder 30 may
down-sample or sub-sample whichever of the left reference
samples or the above reference samples corresponds to the
longer of the left boundary of the luma block and the top
boundary of the luma block, but not whichever is shorter of
the left boundary of the luma block and the top boundary of
the luma block. In some examples, a total number of
reference samples in the set of luma reference samples is
equal to 2™, where m is an integer dependent on a height
and/or width of the non-square luma block.

[0385] In some examples, video decoder 30 may also
down-sample or sub-sample the set of chroma reference
samples such that a total number of chroma reference
samples in the set of chroma reference samples that neighbor
a longer side of the non-square chroma block is the same as
a total number of chroma reference samples of the set of
chroma reference samples that neighbor a shorter side of the
non-square chroma block.

[0386] Additionally, in action (358) of FIG. 29, video
decoder 30 may determine a first parameter () such that the
first parameter is based on:

Cy~aZx,)/1

In the equation above, I is a total number of reference
samples in the set of the luma reference samples, x, is an i-th
luma reference sample in the set of luma reference samples,
and y, is an i-th chroma reference sample in the set of chroma
reference samples. In this disclosure, video encoder 20
and/or video decoder 30 may determine a value based on a
formula in the sense that video encoder 20 and/or video
decoder 30 may uses the formula directly or a variation on
the formula, such as one that includes additional constants or
coeflicients.

[0387] In some examples, video decoder 30 may also
determine a second parameter (a) such that the second
parameter is based on:

szi'yi—zxi'zyi
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[0388] In the example of FIG. 29, for each respective
chroma sample of a predictive chroma block, video decoder
30 may determine a value of the respective chroma sample
such that the value of the respective chroma sample is equal
to a second parameter multiplied by a respective recon-
structed luma sample corresponding to the respective
chroma sample, plus the first parameter (360). In this
example, the reconstructed luma sample corresponding to
the respective chroma sample is one of the reconstructed
luma samples of the non-square luma block.

[0389] Furthermore, video decoder 30 may reconstruct,
based in part on the predictive chroma block, a coding block
(362). For example, video decoder 30 may add samples of
the predictive chroma block to corresponding residual
chroma samples of a CU to determine samples of a coding
block of the CU.

[0390] FIG. 30 is a flowchart illustrating an example
operation of video encoder 20, in accordance with a quan-
tization technique of this disclosure. In the example of FIG.
30, video encoder 20 receives the video data (400). Further-
more, video encoder 20 may generate a residual block for a
non-square TU of a CU such that each residual sample of the
residual block indicates a difference between corresponding
samples of a coding block of the CU and a predictive block
of a PU of the CU (402).

[0391] Video encoder 20 may apply a transform to the
residual block to generate a block of transform coefficients
(404). For example, video encoder 20 may apply a DCT
transform to the residual block. In addition, video encoder
20 may modify the transform coefficients such that each
respective transform coefficient of the block of transform
coeflicients is based on the respective dequantized transform
coeflicient multiplied by an approximation of yZ (406). For
example, video encoder 20 may modify the transform coef-
ficients such that each respective transform coefflicient is
equal to an original value of the respective transform coef-
ficient multiplied by the approximation of V2. In this dis-
closure, an approximation of 2 may be a representation of
V2 (e.g., a floating point representation of v2). In some
examples, modifying the transform coefficients such that
each respective transform coefficient is equal to an original
value of the respective transform coefficient multiplied by
the approximation of vZ may comprise performing one or
more mathematical operations to determine values approxi-
mating transform coefficient multiplied by /2.

[0392] Insome examples where the non-square TU has the
size KxL, as part of applying the transform to the residual
block, video encoder 20 may apply, to the residual block, a
transform having size NxN, where log,(N*N)=((log,(K)+
log,(L))>>1)<<1) and ((log,(K)+log,(L)) is odd. For
instance, video encoder 20 may apply N-point 1-dimen-
sional DCT transforms to rows and columns of the residual
block as shown in equation (18), above.

[0393] Furthermore, in the example of FIG. 30, after
modifying the transform coefficients, video encoder 20 may
apply a quantization process to the modified transform
coeflicients of the non-square prediction block of the CU
(408). For instance, video encoder 20 may quantize the
modified transform coefficients as described in equation
(22), above.

[0394] Video encoder 20 may include, in a bitstream
comprising an encoded representation of the video data, data
based on the quantized transform coeflicients (410). For
example, video encoder 20 may generate syntax elements
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indicating whether a quantized transform coefficient is non-
zero, whether the quantized transform coefficient is greater
than 1, whether the quantized transform coeflicient is greater
than 2, a sign of the quantized transform coefficient, and a
remainder for the quantized transform coefficient. In this
example, video encoder 20 may apply CABAC coding to
one or more of these syntax elements and include the
resulting values in the bitstream.

[0395] Insome examples where the non-square TU has the
size KxL, video encoder 20 may modify, based on the
((log,(K)+log,(L)) being odd, the dequantized transform
coeflicients such that each respective dequantized transform
coeflicient of the dequantized transform coefficients is based
on the respective dequantized transform coefficient multi-
plied by the approximation of v/2. In such examples, when
((log,(K)+log,(L)) is even, video encoder 20 does not
modify the dequantized transform coefficients such that each
respective dequantized transform coefficient of the dequan-
tized transform coefficients is based on the respective
dequantized transform coeflicient multiplied by the approxi-
mation of V2.

[0396] FIG. 31 is a flowchart illustrating an example
operation of video decoder 30, in accordance with a quan-
tization technique of this disclosure. In the example of FIG.
31, video decoder 30 may receive a bitstream that comprises
an encoded representation of the video data (450). Further-
more, video decoder 30 may apply a dequantization process
to transform coefficients of a non-square TU of a CU of the
video data (452). For instance, video decoder 30 may
dequantize (i.e., inverse quantize) the transform coefficients
by applying equation (24), above.

[0397] After applying the dequantization process to the
transform coefficients, video decoder 30 may modify the
dequantized transform coefficients such that each respective
dequantized transform coeflicient of the dequantized trans-
form coefficients is based on the respective dequantized
transform coefficient divided by an approximation of vZ
(454). For instance, video decoder 30 may determine each
respective modified transform coefficient is equal to the
transform coefficient divided an approximation of v2. In this
disclosure, an approximation of v/2 may be a representation
of V2 (e.g., a floating point representation of v2). In some
examples, modifying the transform coefficients such that
each respective transform coeflicient is equal to an original
value of the respective transform coefficient multiplied by
the approximation of vZ may comprise performing one or
more mathematical operations to determine values approxi-
mating transform coeflicient divided by 2.

[0398] Furthermore, video decoder 30 may apply an
inverse transform to the modified dequantized transform
coeflicients to reconstruct a residual block (456). For
example, video decoder 30 may apply equation (18) with a
transpose of the transform matrix C (or its approximation
represented in integer precision) to apply the inverse trans-
form to the modified dequantized transform coefficients. In
some examples where the non-square TU has the size KxL,
as part of applying the transform to the residual block, video
decoder 30 may apply, to the residual block, a transform
having size NxN, where log,(N*N)=((log,(K)+log,(L))
>>1)<<1) and ((log,(K)+log,(L)) is odd. Video decoder 30
may reconstruct samples of a coding block by adding
samples of a predictive block to corresponding samples of
the residual block for the TU of the CU (458).
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[0399] Insome examples where the non-square TU has the
size KxL, video decoder 30 may modify, based on the
((log,(K)+log,(L)) being odd, the dequantized transform
coeflicients such that each respective dequantized transform
coeflicient of the dequantized transform coefficients is based
on the respective dequantized transform coeflicient divided
by the approximation of 2. In such examples, when ((log,
(K)+log,(L)) is even, video decoder 30 does not modify the
dequantized transform coefficients such that each respective
dequantized transform coefficient of the dequantized trans-
form coefficients is based on the respective dequantized
transform coefficient divided by the approximation of V2.
[0400] FIG. 32 is a flowchart illustrating an example
operation of video encoder 20, in accordance with a tech-
nique of this disclosure that uses IC. In the example of FIG.
32, video encoder 20 receives the video data (500). For
example, video encoder 20 may receive the video data from
video source 18 (FIG. 1), or elsewhere. Furthermore, video
encoder 20 may use IC to generate a non-square predictive
block of a current PU of a current CU of a current picture of
the video data (502)

[0401] As part of using IC to generate the non-square
predictive block, video encoder 20 may determine, based on
a vector of the current PU, a reference block in an reference
picture (504). In some examples, the vector is a disparity
vector and the reference picture is an inter-view reference
picture. In some examples, the vector is a motion vector and
the reference picture is a temporal motion vector. The
reference block and the non-square predictive block may be
the same size and shape. In some examples, to determine the
reference block based on the vector of the current PU, video
encoder 20 may determine a position in the reference picture
of a top-left corner of the reference block by adding a
horizontal component of the vector to an x coordinate of a
top-left corner of the non-square predictive block and adding
a vertical component of the vector to ay coordinate of the
top-left corner of the non-square predictive block. In this
example, if the indicated position of the top-left corner of the
reference block does not indicate a position in the reference
picture of an integer pixel, video encoder 20 may interpolate
samples of the reference block to determine the reference
block.

[0402] Furthermore, in the example of FIG. 32, as part of
using IC to generate the non-square predictive block, video
encoder 20 may sub-sample a first set of reference samples
to generate a first sub-sampled set of reference samples with
a first sub-sampling ratio (506). In this example, a total
number of reference samples in the first set of reference
samples is not equal to 2™ and a total number of reference
samples in the first sub-sampled set of reference samples is
equal to 2”. Furthermore, in this example, the first set of
reference samples comprises samples outside the non-square
predictive block along a left side and a top side of the
non-square predictive block, and m is an integer.

[0403] Additionally, as part of using IC to generate the
non-square predictive block, video encoder 20 may sub-
sample a second set of reference samples to generate a
second sub-sampled set of reference samples with a second
sub-sampling ratio (508). The first sub-sampling ratio may
be the same or different from the second sub-sampling ratio.
In this example, a total number of reference samples in the
second set of reference samples is not equal to 2™ and a total
number of reference samples in the second sub-sampled set
of reference samples is equal to 2™. Furthermore, in this
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example, the second set of reference samples comprises
samples outside the reference block along a left side and a
top side of the reference block.

[0404] In actions (506) and (508), video encoder 20 may
perform the sub-sampling in various ways. For example,
video encoder 20 may perform the sub-sampling using
decimation. In examples where video encoder 20 performs
the sub-sampling using decimation, video encoder 20 may
remove samples at regular intervals (e.g., every other
sample) to reduce the number of samples without changing
the values of the remaining samples. Thus, in this example,
video encoder 20 may perform at least one of: decimating
the first set of reference samples to generate the first sub-
sampled set of reference samples; and decimating the second
set of reference samples to generate the second sub-sampled
set of reference samples.

[0405] In another example, video encoder 20 may perform
the sub-sampling using interpolation. In examples where
video encoder 20 performs the sub-sampling using interpo-
lation, for respective pairs of adjacent samples, video
encoder 20 may interpolate a value between the samples of
a respective pair and may include the interpolated value in
the sub-sampled set of samples. Thus, in this example, video
encoder 20 may perform at least one of: performing inter-
polated sampling of the first set of reference samples to
generate the first sub-sampled set of reference samples; and
performing interpolated sampling of the second set of ref-
erence samples to generate the second sub-sampled set of
reference samples.

[0406] In another example, video encoder 20 may perform
the sub-sampling using a sub-sampling method indicated by
a syntax element in the bitstream. Thus, in this example,
video encoder 20 may include, in the bitstream, a syntax
element indicating a sub-sampling method. In this example,
video encoder 20 may perform at least one of: using the
indicated sub-sampling method to sub-sample the first set of
reference samples to generate the first sub-sampled set of
reference samples; and using the indicated sub-sampling
method to sub-sample the second set of reference samples to
generate the second sub-sampled set of reference samples.
[0407] In another example, video encoder 20 may deter-
mine, based on a size of the current PU, a sub-sampling
method. In this example, video encoder 20 may perform at
least one of: using the determined sub-sampling method to
sub-sample the first set of reference samples to generate the
first sub-sampled set of reference samples; and using the
determined sub-sampling method to sub-sample the second
set of reference samples to generate the second sub-sampled
set of reference samples.

[0408] As part of using IC to generate the non-square
predictive block, in action (510) of FIG. 32, video encoder
20 may determine a first IC parameter based on the total
number of reference samples in the first sub-sampled set of
reference samples and the total number of reference samples
in the second sub-sampled set of reference samples, the first
sub-sampled set of reference samples, and the second sub-
sampled set of reference samples. For instance, video
encoder 20 may determine the first IC parameter such that
the first IC parameter is based on:

2N-1 2N-1
> ReCuign(D=a- " ReCrepuign(i)
i=0 i=0

2N
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In the equation above, 2N denotes the total number of
reference samples in the first sub-sampled set of reference
samples and the total number of reference samples in the
second sub-sampled set of reference samples, Rec,,,., (1)
denotes an i-th reference sample in the first sub-sampled set
of reference samples, and Rec, g,..;(1) denotes an i-th
reference sample in the second sub-sampled set of reference
samples.

[0409] In some examples, video encoder 20 may deter-
mine a second IC parameter such that the second IC param-
eter is based on:

2N-1 2N-1
N Y Reuign(i): Recrguuign(D) = ) ReCruign(i)-
i=0 i=0
2N-1

> ReCrepueign(d

i=0

2N-1 ] R R
N - 'ZE) Recrefneigh(l)'Recneigh(l)—( 'ZE) Recrefneigh(l)]
i= i=

[0410] Furthermore, as part of using IC to generate the
non-square predictive block, in action (512) of FIG. 32,
video encoder 20 may determine a sample of the non-square
predictive block based on the first IC parameter. For
instance, the sample may be at coordinates (i, j) relative to
a top-left corner of the current picture and video encoder 20
may determine the sample such that the sample is based on:

a*r(i+dv,, j+dv,+b)

In the equation above, b is the first IC parameter, a is a
second IC parameter, r is the reference picture, dv, is a
horizontal component of the vector (e.g., disparity vector,
motion vector) of the current PU, and dv,, is a vertical
component of the vector of the current PU.

[0411] In the example of FIG. 32, video encoder 20 may
generate residual data based on the non-square predictive
block (514). For example, video encoder 20 may generate
the residual data such that samples of the residual data are
equal to differences between samples of the non-square
predictive block and samples of a coding block of the current
CU. Additionally, video encoder 20 may output a bitstream
that includes data based on the residual data (516). For
example, video encoder 20 may output a bitstream that
includes entropy encoded syntax elements (e.g., syntax
elements indicating greater than 1, greater than 2, remainder,
etc.) that indicate the residual data.

[0412] FIG. 33 is a flowchart illustrating an example
operation of video decoder 30 for encoding video data, in
accordance with a technique of this disclosure that uses IC.
In the example of FIG. 32, video decoder 30 receives a
bitstream that comprises an encoded representation of the
video data (550). Furthermore, video decoder 30 uses IC to
generate a non-square predictive block of a current PU of a
current CU of a current picture of the video data (552).
[0413] As part of using IC to generate the non-square
predictive block, video decoder 30 may determine, based on
a vector of the current PU, a reference block in a reference
picture (554). In some examples, the vector is a disparity
vector and the reference picture is an inter-view reference
picture. In some examples, the vector is a motion vector and
the reference picture is a temporal motion vector. The
reference block and the non-square predictive block being
the same size and shape. To determine the reference block
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based on the disparity vector of the current PU, video
decoder 30 may determine a position in the reference picture
of a top-left corner of the reference block by adding a
horizontal component of the vector to an x coordinate of a
top-left corner of the non-square predictive block and adding
a vertical component of the vector to a y coordinate of the
top-left corner of the non-square predictive block. In this
example, if indicated position of the top-left corner of the
reference block does not indicate a position in the reference
picture of an integer pixel, video decoder 30 may interpolate
samples of the reference block to determine the reference
block.

[0414] Furthermore, as part of using IC to generate the
non-square predictive block, video decoder 30 may sub-
sample a first set of reference samples to generate a first
sub-sampled set of reference samples with a first sub-
sampling ratio (556). In this example, a total number of
reference samples in the first set of reference samples is not
equal to 2™ and a total number of reference samples in the
first sub-sampled set of reference samples is equal to 27. In
this example, the first set of reference samples may comprise
samples outside the non-square predictive block along a left
side and a top side of the non-square predictive block, and
m is an integer.

[0415] Additionally, as part of using IC to generate the
non-square predictive block, video decoder 30 may sub-
sample a second set of reference samples to generate a
second sub-sampled set of reference samples with a second
sub-sampling ratio (558). The first sub-sampling ratio may
be the same or different from the second sub-sampling ratio.
In this example, a total number of reference samples in the
second set of is not equal to 2™ and a total number of
reference samples in the second sub-sampled set of refer-
ence samples is equal to 2™. Furthermore, in this example,
the second set of reference samples may comprise samples
outside the reference block along a left side and a top side
of the reference block.

[0416] In actions (556) and (558), video decoder 30 may
perform the sub-sampling in various ways. For example,
video decoder 30 may perform the sub-sampling using
decimation. In examples where video decoder 30 performs
the sub-sampling using decimation, video decoder 30 may
remove samples at regular intervals (e.g., every other
sample) to reduce the number of samples without changing
the values of the remaining samples. Thus, in this example,
video decoder 30 may perform at least one of: decimating
the first set of reference samples to generate the first sub-
sampled set of reference samples; and decimating the second
set of reference samples to generate the second sub-sampled
set of reference samples.

[0417] Inanother example, video decoder 30 may perform
the sub-sampling using interpolation. In examples where
video decoder 30 performs the sub-sampling using interpo-
lation, for respective pairs of adjacent samples, video
decoder 30 may interpolate a value between the samples of
a respective pair and may include the interpolated value in
the sub-sampled set of samples. Thus, in this example, video
decoder 30 may perform at least one of: performing inter-
polated sampling of the first set of reference samples to
generate the first sub-sampled set of reference samples; and
performing interpolated sampling of the second set of ref-
erence samples to generate the second sub-sampled set of
reference samples.
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[0418] In another example, video decoder 30 may perform
the sub-sampling using a sub-sampling method indicated by
a syntax element in the bitstream. Thus, in this example,
video decoder 30 may obtain, from the bitstream, a syntax
element indicating a sub-sampling method. In this example,
video decoder 30 may perform at least one of: using the
indicated sub-sampling method to sub-sample the first set of
reference samples to generate the first sub-sampled set of
reference samples; and using the indicated sub-sampling
method to sub-sample the second set of reference samples to
generate the second sub-sampled set of reference samples.

[0419] In another example, video decoder 30 may deter-
mine, based on a size of the current PU, a sub-sampling
method. In this example, video decoder 30 may perform at
least one of: using the determined sub-sampling method to
sub-sample the first set of reference samples to generate the
first sub-sampled set of reference samples; and using the
determined sub-sampling method to sub-sample the second
set of reference samples to generate the second sub-sampled
set of reference samples.

[0420] Furthermore, in action (560) of FIG. 33, video
decoder 30 may determine a first IC parameter based on the
total number of reference samples in the first sub-sampled
set of reference samples and the total number of reference
samples in the second sub-sampled set of reference samples,
the first sub-sampled set of reference samples, and the
second sub-sampled set of reference samples. For instance,
video decoder 30 may determine the first IC parameter such
that the first IC parameter is based on:

2N-1 2N-1
> Recuign(D=a- » " ReCrepueign(D
i=0 i=0

2N

In the equation above, 2N denotes the total number of
reference samples in the first sub-sampled set of reference
samples and the total number of reference samples in the
second sub-sampled set of reference samples, Rec,,,,.,(1)
denotes an i-th reference sample in the first sub-sampled set
of reference samples, and Rec,,g,;.;(1) denotes an i-th
reference sample in the second sub-sampled set of reference
samples.

[0421] In some examples, video decoder 30 may deter-
mine a second IC parameter such that the second IC param-
eter is based on:

2N-1 2N-1
N> ReCuign(i) ReCraguaign() = ) ReCoignli)-
i=0 i=0
2N-1

> ReCrepueign(i

i=0

2N-1 ] R R
2N - 'ZE) Recrefneigh(l)'Recneigh(l)_( 'ZE) Recrefneigh(l)]
i= f

[0422] Additionally, in action (562) of FIG. 33, video
decoder 30 may determine a sample of the non-square
predictive block based on the first IC parameter. For
instance, the sample may be at coordinates (i, j) relative to
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a top-left corner of the current picture and video decoder 30
may determine the sample such that the sample is based on:

a*r(i+dv,, j+dv, +b)

In the equation above, b is the first IC parameter, a is a
second IC parameter, r is the reference picture, dv, is a
horizontal component of a vector of the current PU, and dv,
is a vertical component of the vector of the current PU.
[0423] Video decoder 30 may reconstruct, based on the
non-square predictive block, a coding block of the current
CU (564). For example, video decoder 30 may reconstruct
samples of the coding block by adding samples of the
non-square predictive block to corresponding samples of a
residual block for a TU of the current CU.

[0424] FIG. 34 is a flowchart illustrating an example
operation of video encoder 20 for encoding video data, in
accordance with a technique of this disclosure that uses a
flexible residual tree. In the example of FIG. 34, video
encoder 20 may receive video data (600). Furthermore,
video encoder 20 may partition a CU of the video data into
TUs of the CU based on a tree structure (602). In some
examples, video encoder 20 may determine, for each respec-
tive node of the tree structure, a value of a splitting indicator
for the respective node. The splitting indicator for a respec-
tive node may indicate how many child nodes the respective
node has. In some instances, video encoder 20 may signal,
in the bitstream, a syntax element explicitly indicating the
value of the splitting indicator of the respective node. In
other instances, video decoder 30 may infer the value of the
splitting indicator for the respective node (e.g., based on a
depth of the node in the tree structure, values of splitting
nodes of parent nodes, sizes and/or shapes of predictive
blocks corresponding to the respective node, and so on).
[0425] As part of partitioning the CU into TUs of the CU
based on the tree structure, video encoder 20 may determine
that a node in the tree structure has exactly two child nodes
in the tree structure (604). In this example, a root node of the
tree structure corresponds to a coding block of the CU. Each
respective non-root node of the tree structure corresponds to
a respective block that is a partition of a block that corre-
sponds to a parent node of the respective non-root node.
Leaf nodes of the tree structure correspond to the TUs of the
CUs.

[0426] For example, video encoder 20 may determine,
based on a total number of PUs of the CU, whether the tree
structure is a binary tree or a quarter tree. In this example,
based on the CU having two PUs, the node has exactly two
child nodes in the tree structure. In other words, video
encoder 20 may determine, based on the CU having exactly
two PUs, that the node has exactly two child nodes in the
tree structure.

[0427] In some examples, video encoder 20 may deter-
mine, based on the CU having exactly two PUs, that the
node has exactly two child nodes in the tree structure.

[0428] Furthermore, in the example of FIG. 34, for at least
one of the TUs of the CU, video encoder 20 applies a
transform to a residual block for the TU to generate a block
of transform coefficients for the TU (606). For example,
video encoder 20 may apply a discrete cosine transform
(DCT), discrete sine transform (DST), or another type of
transform to the residual block for the TU to generate the
block of transform coefficients. Additionally, video encoder
20 may entropy encode syntax elements indicating the
transform coefficients for the TU (608). For example, video
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encoder 20 may generate syntax elements indicating
whether a transform coeflicient is non-zero, whether the
transform coefficient is greater than 1, whether the transform
coeflicient is greater than 2, a sign of the transform coeffi-
cient, and a remainder for the transform coefficient. In this
example, video encoder 20 may apply CABAC coding to
one or more of these syntax elements.

[0429] FIG. 35 is a flowchart illustrating an example
operation of video decoder 30 for decoding video data, in
accordance with a technique of this disclosure that uses a
flexible residual tree. In the example of FIG. 35, video
decoder 30 may receive a bitstream that comprises an
encoded representation of the video data (650). Additionally,
video decoder 30 may determine a CU of the video data is
partitioned into TUs of the CU based on a tree structure
(652). In some examples, video decoder 30 may determine,
for each respective node of the tree structure, a value of a
splitting indicator for the respective node. The splitting
indicator for a respective node may indicate how many child
nodes the respective node has. In some instances, video
decoder 30 may obtain from the bitstream a syntax element
explicitly indicating the value of the splitting indicator of the
respective node. In other instances, video decoder 30 may
infer the value of the splitting indicator for the respective
node (e.g., based on a depth of the node in the tree structure,
values of splitting nodes of parent nodes, sizes and/or shapes
of predictive blocks corresponding to the respective node,
and so on).

[0430] As part of determining the CU is partitioned into
the TUs of the CU based on the tree structure, video decoder
30 may determine that a node in the tree structure has
exactly two child nodes in the tree structure (654). In this
example, a root node of the tree structure corresponds to a
coding block of the CU. Each respective non-root node of
the tree structure corresponds to a respective block that is a
partition of a block that corresponds to a parent node of the
respective non-root node. Leaf nodes of the tree structure
correspond to the TUs of the CU. As described elsewhere in
this disclosure, video decoder 30 may determine that a node
in the tree structure has exactly two child nodes based on a
number of PUs in the CU, based on a depth of the node in
the tree structure, based on a signaled syntax element, or
based on other data.

[0431] For example, video decoder 30 may determine,
based on a total number of PUs of the CU, whether the tree
structure is a binary tree or a quarter tree. In this example,
based on the CU having two PUs, the node has exactly two
child nodes in the tree structure. In other words, video
decoder 30 may determine, based on the CU having exactly
two PUs, that the node has exactly two child nodes in the
tree structure.

[0432] For at least one of the TUs of the CU, video
decoder 30 may apply a transform to a coefficient block for
the TU to generate a residual block for the TU (656). For
example, video decoder 30 may apply an inverse DCT, an
inverse DST, or another type of transform to the coeflicient
block for the TU to generate the residual block for the TU.
Additionally, video decoder 30 may reconstruct samples of
a coding block by adding samples of a predictive block to
corresponding samples of the residual block for the TU of
the CU (658).

[0433] Certain aspects of this disclosure have been
described with respect to extensions of the HEVC standard
for purposes of illustration. However, the techniques
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described in this disclosure may be useful for other video
coding processes, including other standard or proprietary
video coding processes not yet developed.

[0434] A video coder, as described in this disclosure, may
refer to a video encoder or a video decoder. Similarly, a
video coding unit may refer to a video encoder or a video
decoder. Likewise, video coding may refer to video encod-
ing or video decoding, as applicable.

[0435] It is to be recognized that depending on the
example, certain acts or events of any of the techniques
described herein can be performed in a different sequence,
may be added, merged, or left out altogether (e.g., not all
described acts or events are necessary for the practice of the
techniques). Moreover, in certain examples, acts or events
may be performed concurrently, e.g., through multi-threaded
processing, interrupt processing, or multiple processors,
rather than sequentially.

[0436] In one or more examples, the functions described
may be implemented in hardware, software, firmware, or
any combination thereof. If implemented in software, the
functions may be stored on or transmitted over as one or
more instructions or code on a computer-readable medium
and executed by a hardware-based processing unit. Com-
puter-readable media may include computer-readable stor-
age media, which corresponds to a tangible medium such as
data storage media, or communication media including any
medium that facilitates transfer of a computer program from
one place to another, e.g., according to a communication
protocol. In this manner, computer-readable media generally
may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication
medium such as a signal or carrier wave. Data storage media
may be any available media that can be accessed by one or
more computers or one or more processors to retrieve
instructions, code and/or data structures for implementation
of the techniques described in this disclosure. A computer
program product may include a computer-readable medium.
[0437] By way of example, and not limitation, such com-
puter-readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. It
should be understood, however, that computer-readable stor-
age media and data storage media do not include connec-
tions, carrier waves, signals, or other transitory media, but
are instead directed to non-transitory, tangible storage
media. Disk and disc, as used herein, includes compact disc
(CD), laser disc, optical disc, digital versatile disc (DVD),
floppy disk and Blu-ray disc, where disks usually reproduce
data magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included
within the scope of computer-readable media.

[0438] Instructions may be executed by one or more
processors, such as one or more digital signal processors
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(DSPs), general purpose microprocessors, application spe-
cific integrated circuits (ASICs), field programmable logic
arrays (FPGAs), or other equivalent integrated or discrete
logic circuitry. Accordingly, the term “processor,” as used
herein may refer to any of the foregoing structure or any
other structure suitable for implementation of the techniques
described herein. In addition, in some aspects, the function-
ality described herein may be provided within dedicated
hardware and/or software modules configured for encoding
and decoding, or incorporated in a combined codec. Also,
the techniques could be fully implemented in one or more
circuits or logic elements.
[0439] The techniques of this disclosure may be imple-
mented in a wide variety of devices or apparatuses, includ-
ing a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units
are described in this disclosure to emphasize functional
aspects of devices configured to perform the disclosed
techniques, but do not necessarily require realization by
different hardware units. Rather, as described above, various
units may be combined in a codec hardware unit or provided
by a collection of interoperative hardware units, including
one or more processors as described above, in conjunction
with suitable software and/or firmware.
[0440] Various examples have been described. These and
other examples are within the scope of the following claims.
What is claimed is:
1. A method of decoding video data, the method com-
prising:
receiving, by a video decoder, a bitstream that comprises
an encoded representation of the video data;
reconstructing, by the video decoder, a set of luma ref-
erence samples and a set of chroma reference samples,
the set of luma reference samples comprising above
luma samples neighboring a top side of a non-square
block of a current picture of the video data and left
luma samples neighboring a left side of the non-square
luma block, the set of chroma reference samples com-
prising chroma samples neighboring the top side of a
non-square chroma block of the current picture and
chroma samples neighboring the left side of the non-
square chroma block;
reconstructing, by the video decoder, luma samples of the
non-square luma block;
sub-sampling, by the video decoder, the set of luma
reference samples such that a total number of the luma
reference samples in the set of luma reference samples
that neighbor a longer side of the non-square luma
block is the same as the total number of luma reference
samples of the set of luma reference samples that
neighbor a shorter side of the non-square luma block;
determining, by the video decoder, a first parameter such
that the first parameter is based on:

Cy~oZx;)/1

where [ is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples;
for each respective chroma sample of a predictive chroma
block, determining, by the video decoder, a value of the
respective chroma sample such that the value of the
respective chroma sample is equal to a second param-
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eter multiplied by a respective reconstructed luma
sample corresponding to the respective chroma sample,
plus the first parameter, the reconstructed luma sample
corresponding to the respective chroma sample being
one of the reconstructed luma samples of the non-
square luma block; and

reconstructing, by the video decoder, based in part on the
predictive chroma block, a coding block.

2. The method of claim 1, further comprising:

determining, by the video decoder, the second parameter
such that the second parameter based on:

szi'yi—zxi'zyi

1% % = X X

3. The method of claim 1, wherein sub-sampling the set
of luma reference samples comprises decimating, by the
video decoder, the set of luma reference samples such that
a total number of the set of luma reference samples that
neighbor the longer side of the non-square luma block is the
same as the total number of luma reference samples of the
set of luma reference samples that neighbor the shorter side
of the non-square luma block.

4. The method of claim 1, wherein sub-sampling the set
of luma reference samples comprises: sub-sampling, by the
video decoder, whichever of the left reference samples or the
above reference samples corresponds to the longer of the left
side of the non-square luma block and the top side of the
non-square luma block, but not whichever of the left refer-
ence samples and the above reference samples corresponds
to the shorter of the left side of the non-square luma block
and the top side of the non-square luma block.

5. The method of claim 1, wherein, after sub-sampling the
set of luma reference samples, a total number of reference
samples in the set of luma reference samples is equal to 2™,
where m is an integer dependent on at least one of a height
or width of the non-square luma block.

6. A method of encoding video data, the method com-
prising:

receiving, by a video encoder, the video data;

reconstructing, by the video encoder, a set of luma ref-

erence samples and a set of chroma reference samples,
the set of luma reference samples comprising above
luma samples neighboring a top side of a non-square
luma block of a current picture of the video data and
left luma samples neighboring a left side of the non-
square luma block, the set of chroma reference samples
comprising chroma samples neighboring a top side of
a non-square chroma block of the current picture and
chroma samples neighboring a left side of the non-
square chroma block;

reconstructing, by the video encoder, luma samples of the
non-square luma block;

sub-sampling, by the video encoder, the set of luma
reference samples such that a total number of the luma
reference samples in the set of luma reference samples
that neighbor a longer side of the non-square luma
block is the same as a total number of the luma
reference samples of the set of luma reference samples
that neighbor a shorter side of the non-square luma
block;
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May 25, 2017

determining, by the video encoder, a first parameter such
that the first parameter is based on:

Sy ~o=x,)/1

where [ is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples;
for each respective chroma sample of a predictive chroma
block, determining, by the video encoder, a value of the
respective chroma sample such that the value of the
respective chroma sample is equal to a second param-
eter multiplied by a respective reconstructed luma
sample corresponding to the respective chroma sample,
plus the first parameter, the reconstructed luma sample
corresponding to the respective chroma sample being
one of the reconstructed luma samples of the non-
square luma block;
obtaining, by the video encoder, based on the predictive
chroma block, residual data; and
including, by the video encoder, in a bitstream comprising
an encoded representation of the video data, data rep-
resenting the residual data. The method of claim 6,
further comprising:
determining, by the video encoder, the second parameter
such that the second parameter is based on:

szi'yi—zxi'zyi

1% % = X X

8. The method of claim 6, wherein sub-sampling the set
of luma reference samples comprises decimating, by the
video encoder, the set of luma reference samples such that
a total number of the set of luma reference samples that
neighbor the longer side of the non-square luma block is the
same as the total number of luma reference samples of the
set of luma reference samples that neighbor the shorter side
of the non-square luma block.

9. The method of claim 6, wherein sub-sampling the set
of luma reference samples comprises: sub-sampling, by the
video encoder, whichever of the left reference samples or the
above reference samples corresponds to the longer of the left
side of the non-square luma block and the top side of the
non-square luma block, but not whichever of the left refer-
ence samples and the above reference samples corresponds
to the shorter of the left side of the non-square luma block
and the top side of the non-square luma block.

10. The method of claim 6, wherein, after sub-sampling
the set of luma reference samples, a total number of refer-
ence samples in the set of luma reference samples is equal
to 2™, where m is an integer dependent on at least one of a
height or width of the non-square luma block.

11. An apparatus for decoding video data, the apparatus
comprising:

one or more storage media configured to store the video

data; and

a video decoder configured to:

receive a bitstream that comprises an encoded repre-
sentation of the video data;

reconstruct a set of luma reference samples and a set of
chroma reference samples, the set of luma reference
samples comprising above luma samples neighbor-
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ing a top side of a non-square block of a current
picture of the video data and left luma samples
neighboring a left side of the non-square luma block,
the set of chroma reference samples comprising
chroma samples neighboring the top side of a non-
square chroma block of the current picture and
chroma samples neighboring the left side of the
non-square chroma block;

reconstruct luma samples of the non-square luma
block;

sub-sample the set of luma reference samples such that
a total number of the luma reference samples in the
set of luma reference samples that neighbor a longer
side of the non-square luma block is the same as the
total number of luma reference samples of the set of
luma reference samples that neighbor a shorter side
of the non-square luma block;

determine a first parameter such that the first parameter
is based on:

Cy~aZx,)/1

where I is a total number of reference samples in the set
of the luma reference samples, x, is an i-th luma
reference sample in the set of luma reference samples,
and y, is an i-th chroma reference sample in the set of
chroma reference samples;
for each respective chroma sample of a predictive
chroma block, determine a value of the respective
chroma sample such that the value of the respective
chroma sample is equal to a second parameter mul-
tiplied by a respective reconstructed luma sample
corresponding to the respective chroma sample, plus
the first parameter, the reconstructed luma sample
corresponding to the respective chroma sample
being one of the reconstructed luma samples of the
non-square luma block; and
reconstruct, based in part on the predictive chroma
block, a coding block.
12. The apparatus of claim 11, wherein the video decoder
is further configured to:
determine the second parameter such that the second
parameter is based on:

szi'yi—zxi'zyi

I XX =2 %2 %

13. The apparatus of claim 11, wherein the video decoder
is configured such that, as part of sub-sampling the set of
luma reference samples, the video decoder decimates, by the
video decoder, the set of luma reference samples such that
a total number of the set of luma reference samples that
neighbor the longer side of the non-square luma block is the
same as the total number of luma reference samples of the
set of luma reference samples that neighbor the shorter side
of the non-square luma block.

14. The apparatus of claim 11, wherein the video decoder
is configured such that, as part of sub-sampling the set of
luma reference samples, the video decoder sub-samples
whichever of the left reference samples or the above refer-
ence samples corresponds to the longer of the left side of the
non-square luma block and the top side of the non-square
luma block, but not whichever of the left reference samples
and the above reference samples corresponds to the shorter
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of' the left side of the non-square luma block and the top side
of the non-square luma block.

15. The apparatus of claim 11, wherein, after sub-sam-
pling the set of luma reference samples, a total number of
reference samples in the set of luma reference samples is
equal to 2™, where m is an integer dependent on at least one
of a height or width of the non-square luma block.

16. An apparatus for encoding video data, the apparatus
comprising:

one or more storage media configured to store the video
data; and

a video encoder configured to:
receive the video data;

reconstruct a set of luma reference samples and a set of
chroma reference samples, the set of luma reference
samples comprising above luma samples neighbor-
ing a top side of a non-square luma block of a current
picture of the video data and left luma samples
neighboring a left side of the non-square luma block,
the set of chroma reference samples comprising
chroma samples neighboring a top side of a non-
square chroma block of the current picture and
chroma samples neighboring a left side of the non-
square chroma block;

reconstruct luma samples of the non-square luma
block;

sub-sample the set of luma reference samples such that
a total number of the luma reference samples in the
set of luma reference samples that neighbor a longer
side of the non-square luma block is the same as a
total number of the luma reference samples of the set
of luma reference samples that neighbor a shorter
side of the non-square luma block;

determine a first parameter such that the first parameter
is based on:

Sy ~o=x,)/1

where I is a total number of reference samples in the set
of the luma reference samples, x; is an i-th luma
reference sample in the set of luma reference samples,
and y, is an i-th chroma reference sample in the set of
chroma reference samples;

for each respective chroma sample of a predictive
chroma block, determine a value of the respective
chroma sample such that the value of the respective
chroma sample is equal to a second parameter mul-
tiplied by a respective reconstructed luma sample
corresponding to the respective chroma sample, plus
the first parameter, the reconstructed luma sample
corresponding to the respective chroma sample
being one of the reconstructed luma samples of the
non-square luma block;

obtain, based on the predictive chroma block, residual
data; and

include, in a bitstream comprising an encoded repre-
sentation of the video data, data representing the
residual data.
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17. The apparatus of claim 16, wherein the video encoder
is further configured to:
determine the second parameter such that the second
parameter is based on:

szi'yi—zxi'zyi

IXX X = X% 2%

18. The apparatus of claim 16, wherein the video encoder
is configured such that, as part of sub-sampling the set of
luma reference samples, the video encoder decimates the set
of luma reference samples such that a total number of the set
of luma reference samples that neighbor the longer side of
the non-square luma block is the same as the total number
of luma reference samples of the set of luma reference
samples that neighbor the shorter side of the non-square
luma block.

19. The apparatus of claim 16, wherein the video encoder
is configured such that, as part of sub-sampling the set of
luma reference samples, the video encoder sub-samples
whichever of the left reference samples or the above refer-
ence samples corresponds to the longer of the left side of the
non-square luma block and the top side of the non-square
luma block, but not whichever of the left reference samples
and the above reference samples corresponds to the shorter
of' the left side of the non-square luma block and the top side
of the non-square luma block.

20. The apparatus of claim 16, wherein, after sub-sam-
pling the set of luma reference samples, a total number of
reference samples in the set of luma reference samples is
equal to 2', where m is an integer dependent on at least one
of a height or width of the non-square luma block.

21. An apparatus for decoding video data, the apparatus
comprising:

means for receiving a bitstream that comprises an

encoded representation of the video data;

means for reconstructing a set of luma reference samples

and a set of chroma reference samples, the set of luma
reference samples comprising above luma samples
neighboring a top side of a non-square block of a
current picture of the video data and left luma samples
neighboring a left side of the non-square luma block,
the set of chroma reference samples comprising chroma
samples neighboring the top side of a non-square
chroma block of the current picture and chroma
samples neighboring the left side of the non-square
chroma block;

means for reconstructing luma samples of the non-square

luma block;

means for sub-sampling the set of luma reference samples

such that a total number of the luma reference samples
in the set of luma reference samples that neighbor a
longer side of the non-square luma block is the same as
the total number of luma reference samples of the set of
luma reference samples that neighbor a shorter side of
the non-square luma block;

means for determining a first parameter such that the first

parameter is based on:

Cy~aZx,)/1

where I is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
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sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples;
means for determining, for each respective chroma
sample of a predictive chroma block, a value of the
respective chroma sample such that the value of the
respective chroma sample is equal to a second param-
eter multiplied by a respective reconstructed luma
sample corresponding to the respective chroma sample,
plus the first parameter, the reconstructed luma sample
corresponding to the respective chroma sample being
one of the reconstructed luma samples of the non-
square luma block; and

means for reconstructing, based in part on the predictive
chroma block, a coding block.

22. An apparatus for encoding video data, the apparatus
comprising:
means for receiving the video data;

means for reconstructing a set of luma reference samples
and a set of chroma reference samples, the set of luma
reference samples comprising above luma samples
neighboring a top side of a non-square block of a
current picture of the video data and left luma samples
neighboring a left side of the non-square luma block,
the set of chroma reference samples comprising chroma
samples neighboring the top side of a non-square
chroma block of the current picture and chroma
samples neighboring the left side of the non-square
chroma block;

means for reconstructing luma samples of the non-square
luma block;

means for sub-sampling the set of luma reference samples
such that a total number of the luma reference samples
in the set of luma reference samples that neighbor a
longer side of the non-square luma block is the same as
the total number of luma reference samples of the set of
luma reference samples that neighbor a shorter side of
the non-square luma block;

means for determining a first parameter such that the first
parameter is based on:

Cy~oZx;)/1

where [ is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples;
means for determining, for each respective chroma
sample of a predictive chroma block, a value of the
respective chroma sample such that the value of the
respective chroma sample is equal to a second param-
eter multiplied by a respective reconstructed luma
sample corresponding to the respective chroma sample,
plus the first parameter, the reconstructed luma sample
corresponding to the respective chroma sample being
one of the reconstructed luma samples of the non-
square luma block;

means for obtaining, based on the predictive chroma
block, residual data; and

means for including, in a bitstream comprising an
encoded representation of the video data, data repre-
senting the residual data.
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23. A computer-readable data storage medium having
instructions stored thereon that, when executed, configure an
apparatus for decoding video data to:

receive a bitstream that comprises an encoded represen-

tation of the video data;

reconstruct a set of luma reference samples and a set of

chroma reference samples, the set of luma reference
samples comprising above luma samples neighboring a
top side of a non-square block of a current picture of the
video data and left luma samples neighboring a left side
of the non-square luma block, the set of chroma refer-
ence samples comprising chroma samples neighboring
the top side of a non-square chroma block of the current
picture and chroma samples neighboring the left side of
the non-square chroma block;

reconstruct luma samples of the non-square luma block;

sub-sample the set of luma reference samples such that a

total number of the luma reference samples in the set of
luma reference samples that neighbor a longer side of
the non-square luma block is the same as the total
number of luma reference samples of the set of luma
reference samples that neighbor a shorter side of the
non-square luma block;

determine a first parameter such that the first parameter is

based on:

Cy~aZx,)/1

where I is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples;
for each respective chroma sample of a predictive chroma
block, determine a value of the respective chroma
sample such that the value of the respective chroma
sample is equal to a second parameter multiplied by a
respective reconstructed luma sample corresponding to
the respective chroma sample, plus the first parameter,
the reconstructed luma sample corresponding to the
respective chroma sample being one of the recon-
structed luma samples of the non-square luma block;
and
reconstruct, based in part on the predictive chroma block,
a coding block.
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24. A computer-readable data storage medium having
instructions stored thereon that, when executed, configure an
apparatus for encoding video data to:

receive the video data;

reconstruct a set of luma reference samples and a set of

chroma reference samples, the set of luma reference
samples comprising above luma samples neighboring a
top side of a non-square block of a current picture of the
video data and left luma samples neighboring a left side
of the non-square luma block, the set of chroma refer-
ence samples comprising chroma samples neighboring
the top side of a non-square chroma block of the current
picture and chroma samples neighboring the left side of
the non-square chroma block;

reconstruct luma samples of the non-square luma block;

sub-sample the set of luma reference samples such that a

total number of the luma reference samples in the set of
luma reference samples that neighbor a longer side of
the non-square luma block is the same as the total
number of luma reference samples of the set of luma
reference samples that neighbor a shorter side of the
non-square luma block;

determine a first parameter such that the first parameter is

based on:

Cy~oZx;)/1

where [ is a total number of reference samples in the set of
the luma reference samples, x, is an i-th luma reference
sample in the set of luma reference samples, and y, is an i-th
chroma reference sample in the set of chroma reference
samples;
for each respective chroma sample of a predictive chroma
block, determine a value of the respective chroma
sample such that the value of the respective chroma
sample is equal to a second parameter multiplied by a
respective reconstructed luma sample corresponding to
the respective chroma sample, plus the first parameter,
the reconstructed luma sample corresponding to the
respective chroma sample being one of the recon-
structed luma samples of the non-square luma block;
obtain, based on the predictive chroma block, residual
data; and
include, in a bitstream comprising an encoded represen-
tation of the video data, data representing the residual
data.



