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LINEAR-MODELPREDICTION WITH 
NON-SQUARE PREDICTION UNITS IN 

VIDEO CODNG 

0001. This application claims the benefit of U.S. Provi 
sional Patent Application 62/260,103, filed Nov. 25, 2015, 
and U.S. Provisional Patent Application 62/310,271, filed 
Mar. 18, 2016, the entire content of each of which is 
incorporated herein by reference. 

TECHNICAL FIELD 

0002 This disclosure relates to video encoding and video 
decoding. 

BACKGROUND 

0003 Digital video capabilities can be incorporated into 
a wide range of devices, including digital televisions, digital 
direct broadcast systems, wireless broadcast systems, per 
Sonal digital assistants (PDAs), laptop or desktop computers, 
tablet computers, e-book readers, digital cameras, digital 
recording devices, digital media players, video gaming 
devices, video game consoles, cellular or satellite radio 
telephones, so-called “smart phones, video teleconferenc 
ing devices, video streaming devices, and the like. Digital 
Video devices implement video coding techniques, such as 
those described in the standards defined by MPEG-2, 
MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10, 
Advanced Video Coding (AVC), the High Efficiency Video 
Coding (HEVC) standard, and extensions of such standards. 
The video devices may transmit, receive, encode, decode, 
and/or store digital video information more efficiently by 
implementing Such video coding techniques. 
0004 Video coding techniques include spatial (intra 
picture) prediction and/or temporal (inter-picture) prediction 
to reduce or remove redundancy inherent in video 
sequences. For block-based video coding, a video slice (e.g., 
a video frame or a portion of a video frame) may be 
partitioned into video blocks, which may also be referred to 
as treeblocks, coding units (CUs) and/or coding nodes. 
Pictures may be referred to as frames, and reference pictures 
may be referred to as reference frames. 
0005 Spatial or temporal prediction results in a predic 
tive block for a block to be coded. Residual data represents 
pixel differences between the original block to be coded and 
the predictive block. For further compression, the residual 
data may be transformed from the pixel domain to a trans 
form domain, resulting in residual transform coefficients, 
which then may be quantized. Entropy coding may be 
applied to achieve even more compression. 

SUMMARY 

0006. This disclosure is related to intra and inter predic 
tion partitions, non-square transforms, intra and inter coding 
modes for non-square blocks, and associated entropy cod 
ing. Techniques of this disclosure may be used in the context 
of advanced video codecs, such as extensions of HEVC or 
the next generation of video coding standards. In one 
example, Linear Modeling (LM) prediction is adapted for 
use with non-square prediction blocks. Particularly, tech 
niques are described for determining parameters used for 
LM prediction in the presence of non-square prediction 
blocks. 
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0007. In one example, this disclosure describes a method 
of decoding video data, the method comprising: receiving, 
by a video decoder, a bitstream that comprises an encoded 
representation of the video data; reconstructing, by the video 
decoder, a set of luma reference samples and a set of chroma 
reference samples, the set of luma reference samples com 
prising above luma samples neighboring a top side of a 
non-square block of a current picture of the video data and 
left luma samples neighboring a left side of the non-square 
luma block, the set of chroma reference samples comprising 
chroma samples neighboring the top side of a non-square 
chroma block of the current picture and chroma Samples 
neighboring the left side of the non-square chroma block; 
reconstructing, by the video decoder, luma samples of the 
non-square luma block; Sub-Sampling, by the video decoder, 
the set of luma reference samples Such that a total number 
of the luma reference samples in the set of luma reference 
samples that neighbor a longer side of the non-square luma 
block is the same as the total number of luma reference 
samples of the set of luma reference samples that neighbor 
a shorter side of the non-square luma block; determining, by 
the video decoder, a first parameter such that the first 
parameter is based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples; for each respective chroma Sample of a predictive 
chroma block, determining, by the video decoder, a value of 
the respective chroma sample such that the value of the 
respective chroma sample is equal to a second parameter 
multiplied by a respective reconstructed luma sample cor 
responding to the respective chroma sample, plus the first 
parameter, the reconstructed luma sample corresponding to 
the respective chroma sample being one of the reconstructed 
luma samples of the non-square luma block; and recon 
structing, by the video decoder, based in part on the predic 
tive chroma block, a coding block. 
0008. In another example, this disclosure describes a 
method of encoding video data, the method comprising: 
receiving, by a video encoder, the video data; reconstructing, 
by the video encoder, a set of luma reference samples and a 
set of chroma reference samples, the set of luma reference 
samples comprising above luma samples neighboring a top 
side of a non-square luma block of a current picture of the 
Video data and left luma samples neighboring a left side of 
the non-square luma block, the set of chroma reference 
samples comprising chroma samples neighboring a top side 
of a non-square chroma block of the current picture and 
chroma samples neighboring a left side of the non-square 
chroma block; reconstructing, by the video encoder, luma 
samples of the non-square luma block; Sub-sampling, by the 
Video encoder, the set of luma reference samples such that 
a total number of the luma reference samples in the set of 
luma reference samples that neighbor a longer side of the 
non-square luma block is the same as a total number of the 
luma reference samples of the set of luma reference samples 
that neighbor a shorter side of the non-square luma block; 
determining, by the video encoder, a first parameter Such 
that the first parameter is based on: 
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where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples; for each respective chroma sample of a predictive 
chroma block, determining, by the video encoder, a value of 
the respective chroma sample such that the value of the 
respective chroma sample is equal to a second parameter 
multiplied by a respective reconstructed luma sample cor 
responding to the respective chroma sample, plus the first 
parameter, the reconstructed luma sample corresponding to 
the respective chroma sample being one of the reconstructed 
luma samples of the non-square luma block; obtaining, by 
the video encoder, based on the predictive chroma block, 
residual data; and including, by the video encoder, in a 
bitstream comprising an encoded representation of the video 
data, data representing the residual data. 
0009. In another example, this disclosure describes an 
apparatus for decoding video data, the apparatus compris 
ing: one or more storage media configured to store the video 
data; and a video decoder configured to: receive a bitstream 
that comprises an encoded representation of the video data; 
reconstruct a set of luma reference samples and a set of 
chroma reference samples, the set of luma reference samples 
comprising above luma samples neighboring a top side of a 
non-square block of a current picture of the video data and 
left luma samples neighboring a left side of the non-square 
luma block, the set of chroma reference samples comprising 
chroma samples neighboring the top side of a non-square 
chroma block of the current picture and chroma Samples 
neighboring the left side of the non-square chroma block; 
reconstruct luma samples of the non-square luma block; 
Sub-Sample the set of luma reference samples such that a 
total number of the luma reference samples in the set of luma 
reference samples that neighbor a longer side of the non 
square luma block is the same as the total number of luma 
reference samples of the set of luma reference samples that 
neighbor a shorter side of the non-square luma block; 
determine a first parameter Such that the first parameter is 
based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples; for each respective chroma sample of a predictive 
chroma block, determine a value of the respective chroma 
sample Such that the value of the respective chroma sample 
is equal to a second parameter multiplied by a respective 
reconstructed luma sample corresponding to the respective 
chroma sample, plus the first parameter, the reconstructed 
luma sample corresponding to the respective chroma sample 
being one of the reconstructed luma samples of the non 
square luma block; and reconstruct, based in part on the 
predictive chroma block, a coding block. 
0010. In another example, this disclosure describes an 
apparatus for encoding video data, the apparatus compris 
ing: one or more storage media configured to store the video 
data; and a video encoder configured to: receive the video 
data; reconstruct a set of luma reference samples and a set 
of chroma reference samples, the set of luma reference 
samples comprising above luma samples neighboring a top 
side of a non-square luma block of a current picture of the 
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Video data and left luma samples neighboring a left side of 
the non-square luma block, the set of chroma reference 
samples comprising chroma samples neighboring a top side 
of a non-square chroma block of the current picture and 
chroma samples neighboring a left side of the non-square 
chroma block; reconstruct luma samples of the non-square 
luma block; Sub-sample the set of luma reference samples 
such that a total number of the luma reference samples in the 
set of luma reference samples that neighbor a longer side of 
the non-square luma block is the same as a total number of 
the luma reference samples of the set of luma reference 
samples that neighbor a shorter side of the non-square luma 
block; determine a first parameter Such that the first param 
eter is based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples; for each respective chroma Sample of a predictive 
chroma block, determine a value of the respective chroma 
sample Such that the value of the respective chroma sample 
is equal to a second parameter multiplied by a respective 
reconstructed luma sample corresponding to the respective 
chroma sample, plus the first parameter, the reconstructed 
luma sample corresponding to the respective chroma sample 
being one of the reconstructed luma samples of the non 
square luma block; obtain, based on the predictive chroma 
block, residual data; and include, in a bitstream comprising 
an encoded representation of the video data, data represent 
ing the residual data. 
0011. In another example, this disclosure describes an 
apparatus for decoding video data, the apparatus compris 
ing: means for receiving a bitstream that comprises an 
encoded representation of the video data; means for recon 
structing a set of luma reference samples and a set of chroma 
reference samples, the set of luma reference samples com 
prising above luma samples neighboring a top side of a 
non-square block of a current picture of the video data and 
left luma samples neighboring a left side of the non-square 
luma block, the set of chroma reference samples comprising 
chroma samples neighboring the top side of a non-square 
chroma block of the current picture and chroma Samples 
neighboring the left side of the non-square chroma block; 
means for reconstructing luma samples of the non-square 
luma block; means for Sub-sampling the set of luma refer 
ence samples such that a total number of the luma reference 
samples in the set of luma reference samples that neighbor 
a longer side of the non-square luma block is the same as the 
total number of luma reference samples of the set of luma 
reference samples that neighbor a shorter side of the non 
square luma block; means for determining a first parameter 
such that the first parameter is based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples; means for determining, for each respective chroma 
sample of a predictive chroma block, a value of the respec 
tive chroma sample such that the value of the respective 
chroma sample is equal to a second parameter multiplied by 
a respective reconstructed luma sample corresponding to the 
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respective chroma sample, plus the first parameter, the 
reconstructed luma sample corresponding to the respective 
chroma sample being one of the reconstructed luma samples 
of the non-square luma block; and means for reconstructing, 
based in part on the predictive chroma block, a coding block. 
0012. In another example, this disclosure describes an 
apparatus for encoding video data, the apparatus compris 
ing: means for receiving the video data; means for recon 
structing a set of luma reference samples and a set of chroma 
reference samples, the set of luma reference samples com 
prising above luma samples neighboring a top side of a 
non-square block of a current picture of the video data and 
left luma samples neighboring a left side of the non-square 
luma block, the set of chroma reference samples comprising 
chroma samples neighboring the top side of a non-square 
chroma block of the current picture and chroma Samples 
neighboring the left side of the non-square chroma block; 
means for reconstructing luma samples of the non-square 
luma block; means for Sub-Sampling the set of luma refer 
ence samples such that a total number of the luma reference 
samples in the set of luma reference samples that neighbor 
a longer side of the non-square luma block is the same as the 
total number of luma reference samples of the set of luma 
reference samples that neighbor a shorter side of the non 
square luma block; means for determining a first parameter 
such that the first parameter is based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples; means for determining, for each respective chroma 
sample of a predictive chroma block, a value of the respec 
tive chroma sample such that the value of the respective 
chroma sample is equal to a second parameter multiplied by 
a respective reconstructed luma sample corresponding to the 
respective chroma sample, plus the first parameter, the 
reconstructed luma sample corresponding to the respective 
chroma sample being one of the reconstructed luma samples 
of the non-square luma block; means for obtaining, based on 
the predictive chroma block, residual data; and means for 
including, in a bitstream comprising an encoded represen 
tation of the video data, data representing the residual data. 
0013. In another example, this disclosure describes a 
computer-readable data storage medium having instructions 
stored thereon that, when executed, configure an apparatus 
for decoding video data to: receive a bitstream that com 
prises an encoded representation of the video data; recon 
struct a set of luma reference samples and a set of chroma 
reference samples, the set of luma reference samples com 
prising above luma samples neighboring a top side of a 
non-square block of a current picture of the video data and 
left luma samples neighboring a left side of the non-square 
luma block, the set of chroma reference samples comprising 
chroma samples neighboring the top side of a non-square 
chroma block of the current picture and chroma Samples 
neighboring the left side of the non-square chroma block; 
reconstruct luma samples of the non-square luma block; 
Sub-Sample the set of luma reference samples such that a 
total number of the luma reference samples in the set of luma 
reference samples that neighbor a longer side of the non 
square luma block is the same as the total number of luma 
reference samples of the set of luma reference samples that 
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neighbor a shorter side of the non-square luma block; 
determine a first parameter Such that the first parameter is 
based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples; for each respective chroma Sample of a predictive 
chroma block, determine a value of the respective chroma 
sample Such that the value of the respective chroma sample 
is equal to a second parameter multiplied by a respective 
reconstructed luma sample corresponding to the respective 
chroma sample, plus the first parameter, the reconstructed 
luma sample corresponding to the respective chroma sample 
being one of the reconstructed luma samples of the non 
square luma block; and reconstruct, based in part on the 
predictive chroma block, a coding block. 
0014. In another example, this disclosure describes a 
computer-readable data storage medium having instructions 
stored thereon that, when executed, configure an apparatus 
for encoding video data to: receive the video data; recon 
struct a set of luma reference samples and a set of chroma 
reference samples, the set of luma reference samples com 
prising above luma samples neighboring a top side of a 
non-square block of a current picture of the video data and 
left luma samples neighboring a left side of the non-square 
luma block, the set of chroma reference samples comprising 
chroma samples neighboring the top side of a non-square 
chroma block of the current picture and chroma Samples 
neighboring the left side of the non-square chroma block; 
reconstruct luma samples of the non-square luma block; 
Sub-sample the set of luma reference samples such that a 
total number of the luma reference samples in the set of luma 
reference samples that neighbor a longer side of the non 
square luma block is the same as the total number of luma 
reference samples of the set of luma reference samples that 
neighbor a shorter side of the non-square luma block; 
determine a first parameter Such that the first parameter is 
based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples; for each respective chroma Sample of a predictive 
chroma block, determine a value of the respective chroma 
sample Such that the value of the respective chroma sample 
is equal to a second parameter multiplied by a respective 
reconstructed luma sample corresponding to the respective 
chroma sample, plus the first parameter, the reconstructed 
luma sample corresponding to the respective chroma sample 
being one of the reconstructed luma samples of the non 
square luma block; obtain, based on the predictive chroma 
block, residual data; and include, in a bitstream comprising 
an encoded representation of the video data, data represent 
ing the residual data. 
0015 The details of one or more aspects of the disclosure 
are set forth in the accompanying drawings and the descrip 
tion below. Other features, objects, and advantages of the 
techniques described in this disclosure will be apparent from 
the description, drawings, and claims. 
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BRIEF DESCRIPTION OF DRAWINGS 

0016 FIG. 1 is a block diagram illustrating an example 
Video encoding and decoding system configured to imple 
ment techniques of the disclosure. 
0017 FIG. 2A is a conceptual diagram illustrating an 
example transform scheme based on a residual quadtree in 
High Efficiency Video Coding (HEVC). 
0018 FIG. 2B is a conceptual diagram illustrating a 
residual quadtree for the coding unit of FIG. 2A. 
0019 FIG. 3 is a conceptual diagram illustrating an 
example coefficient scan based on coefficient groups in 
HEVC. 
0020 FIG. 4 is a conceptual diagram illustrating an 
example of intra prediction for a 16x16 block. 
0021 FIG. 5 is a conceptual diagram illustrating an 
example of 35 intra prediction modes defined in HEVC. 
0022 FIG. 6 is a conceptual diagram illustrating a planar 
mode defined in HEVC. 
0023 FIG. 7 is a conceptual diagram of an example 
angular mode defined in HEVC. 
0024 FIG. 8 is a conceptual diagram of partition modes 
for splitting a coding unit for inter prediction in HEVC. 
0025 FIG. 9 is a conceptual diagram of short distance 
intra prediction (SDIP) unit partitions. 
0026 FIG. 10 is a conceptual diagram of a 16x4 coeffi 
cient matrix scanned and reorganized into an 8x8 matrix. 
0027 FIG. 11 is a conceptual diagram of 64 intra pre 
diction modes. 
0028 FIG. 12A is a conceptual diagram of boundary 

filters for intra mode 34. 
0029 FIG. 12B is a conceptual diagram of boundary 

filters for intra mode 30-33. 
0030 FIG. 13 is a conceptual diagram illustrating 
example locations of samples used for derivation of Linear 
Model (LM) parameters C. and B. 
0031 FIG. 14 is a conceptual diagram illustrating an 
example of luma positions and chroma positions for down 
sampling samples of a reconstructed luma block of a current 
prediction unit (QQ). 
0032 FIG. 15 is a conceptual diagram illustrating an 
example of luma positions and chroma positions for down 
sampling samples of a luma block for generating a predic 
tive block. 
0033 FIG. 16 is a conceptual diagram illustrating an 
nRX2N prediction mode with an NXN transform. 
0034 FIG. 17 is a conceptual diagram illustrating a 
non-square quadtree (NSQT) for 2NxN, 2Nxn), and 
2NxnU prediction modes. 
0035 FIG. 18 is a conceptual diagram illustrating a 
NSQT for Nx2N, nRX2N, and nLX2N prediction modes. 
0036 FIG. 19 illustrates neighboring pixels used for 
estimating parameters in an Illumination Compensation (IC) 
model. 
0037 FIG. 20 is a conceptual diagram illustrating 
example neighboring pixels used to estimate parameters in 
an IC model, in which a reference block of a current coding 
unit is found by using a current prediction units disparity or 
motion vector. 
0038 FIG. 21 is a conceptual diagram illustrating an 
example transform structure for a partition size equal to 
2NXN. 
0039 FIG. 22 is a conceptual diagram illustrating a 
transform structure for a partition size equal to NxN/4(U), in 
accordance with a technique of this disclosure. 
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0040 FIG. 23 is a conceptual diagram illustrating a 
transform structure for a partition size equal to NxN/4(U), in 
accordance with a technique of this disclosure. 
0041 FIG. 24 is a block diagram illustrating an example 
Video encoder that may implement the techniques of this 
disclosure. 
0042 FIG. 25 is a block diagram illustrating an example 
Video decoder that is configured to implement the techniques 
of this disclosure. 
0043 FIG. 26 is a block diagram illustrating an example 
Video encoder that Supports LM-based encoding in accor 
dance with a technique of this disclosure. 
0044 FIG. 27 is a block diagram illustrating an example 
Video decoder that Supports LM-based decoding in accor 
dance with a technique of this disclosure. 
0045 FIG. 28 is a flowchart illustrating an example 
operation of a video encoder in accordance with a LM-based 
coding technique of this disclosure. 
0046 FIG. 29 is a flowchart illustrating an example 
operation of a video decoder in accordance with a LM-based 
coding technique of this disclosure. 
0047 FIG. 30 is a flowchart illustrating an example 
operation of a video encoder, in accordance with a quanti 
Zation technique of this disclosure. 
0048 FIG. 31 is a flowchart illustrating an example 
operation of a video decoder, in accordance with a quanti 
Zation technique of this disclosure. 
0049 FIG. 32 is a flowchart illustrating an example 
operation of a video encoder, in accordance with a technique 
of this disclosure that uses IC. 
0050 FIG. 33 is a flowchart illustrating an example 
operation of a video decoder, in accordance with a technique 
of this disclosure that uses IC. 
0051 FIG. 34 is a flowchart illustrating an example 
operation of a video encoder, in accordance with a technique 
of this disclosure that uses a flexible residual tree. 
0.052 FIG. 35 is a flowchart illustrating an example 
operation of a video decoder, in accordance with a technique 
of this disclosure that uses a flexible residual tree. 

DETAILED DESCRIPTION 

0053. In general, this disclosure is related to intra and 
inter prediction partitions, non-square transforms, intra and 
inter coding modes for non-square blocks, and associated 
entropy coding. Techniques of this disclosure may be used 
in the context of advanced video codecs, such as extensions 
of High Efficiency Video Coding (HEVC) or the next 
generation of video coding standards. 
0054. In HEVC, a video coder (i.e., a video encoder or a 
Video decoder) partitions a coding unit (CU) of a picture into 
one or more prediction units (PUs). The video coder uses 
intra prediction or inter prediction to generate predictive 
blocks for each PU of the CU. The residual data of the CU 
represents differences between the predictive blocks for the 
PUs of the CU and an original coding block of the CU. In 
instances where the CU is intra predicted (i.e., the predictive 
blocks for the PUs of the CU are generated using intra 
prediction), the residual data of the CU may be partitioned 
into one or more square-shaped transform units (TUs). 
However, in instances where the CU is inter predicted (i.e., 
the predictive blocks for the PUs of the CU are generated 
using inter prediction), the residual data of the CU may be 
partitioned into one or more square or non-square TUS. In 
this disclosure, references to shapes of units (e.g., CUS, PUs, 
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TUs) may refer to the shapes of corresponding blocks. Thus, 
a non-square PU may be interpreted as referring to a 
non-square prediction block, a non-square TU may be 
interpreted as referring to a non-square transform block, and 
vice versa. Furthermore, it is noted that a prediction block 
need not be tied to the concept of a PU as PU is defined in 
HEVC, but rather have the meaning of a block of samples 
on which a prediction (e.g., interprediction, intra prediction) 
is performed. Similarly, a transform block need not be tied 
to the concept of a TU as TU is defined in HEVC, but rather 
have the meaning of a block of samples on which a trans 
form is applied. 
0055 As described below, the introduction of non-square 
TUs may introduce certain problems when used with par 
ticular coding tools. 
0056. For example, linear modeling (LM) prediction 
mode is a technique for reducing cross-component correla 
tion that was studied during development of HEVC. When 
a video coder uses the LM prediction mode, the video coder 
predicts chroma samples of a PU based on reconstructed 
luma samples of a PU of a CU. The chroma samples of a PU 
are chroma samples of a chroma predictive block of the PU. 
Example types of chroma samples include Cb samples and 
Crsamples. The video coder may generate the reconstructed 
luma samples of the PU by Summing samples of a luma 
predictive block of the PU with corresponding luma residual 
samples of the PU. 
0057. In particular, when a video coder uses the LM 
prediction mode, the video coder may determine a predicted 
chroma sample of the PU at position (i, j) as C. rec, (i,j)+B, 
where rec, (i,j) is a reconstructed luma sample of the PU at 
position (i, j) and C. and B are parameters. In some cases, 
such as in the 4:2:0 color format, one MxK chroma block 
corresponds to an 2MX2K luma block, in this case, rec, (i,j) 
indicates the value located at (i,j) of a down-sampled version 
(with MxK) of the 2Mx2K luma block. The video coder 
determines the value of C. and B based on the values of 
reconstructed luma reference samples and reconstructed 
chroma reference samples. The reconstructed luma refer 
ence samples and the reconstructed chroma reference 
samples are samples along the top and left sides of the PU. 
The formulas for determining fB involve a division operation 
by the total number of reference samples (denoted I, which 
is equal to the Summation of M and K). In typical cases, M 
and K are equal and can be represented by 2", in HEVC, 1 is 
a positive integer value. So long as the prediction block is 
square, I is equal to 2", where m may vary for different 
prediction block sizes. Thus, instead of performing a divi 
sion operation to divide by I, the video coder may perform 
a right shift operation when calculating the value of B. Right 
shift operations are significantly faster and less complex to 
implement than division operations. In this disclosure, ref 
erences to sizes of various types of blocks, such as CUs, 
TUs, and PUs, refer to the sizes of coding blocks, transform 
blocks, and prediction blocks of the CUs, TUs, and PUs, 
respectively. Furthermore, in this disclosure, references to 
the sides of various types of video coding units. Such as CUs, 
TUs, and PUs, refer to sides of blocks (e.g., coding blocks, 
transform blocks, prediction/predictive blocks) correspond 
ing to the various types of blocks. 
0058. However, if a luma block (e.g., a luma prediction 
block of a PU) is not square (e.g., M is equal to 12 and K 
is equal to 16), I is not always equal to 2". Hence, if the luma 
block is not square, it may not be possible to use a right shift 
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operation in place of the division operation when calculating 
the value off. Thus, the video coder may need to implement 
a costly division operation to calculate the value of B. 
0059. This disclosure describes a technique that may 
eliminate the need to implement a division operation when 
calculating the value of B when using the LM prediction 
mode for a non-square blocks. In some cases, even for a 
square PU wherein M is equal to K but M is not a power of 
2, the technique described here may also be applicable. In 
accordance with an example of this technique, a video coder 
may reconstruct a set of luma reference samples and a set of 
chroma reference samples. The set of luma reference 
samples may comprise luma samples neighboring a top side 
of a non-square luma block of a current picture of the video 
data and luma samples neighboring a left side of the non 
square luma block. The non-square luma block may be a 
luma prediction block of a PU. Hence, the PU may be a 
considered a non-square PU. The set of chroma reference 
samples may comprise chroma samples neighboring the top 
side of a non-square chroma block and chroma Samples 
neighboring the left side of the non-square chroma block. 
The non-square chroma block may be a chroma prediction 
block of the PU. Additionally, the video coder may recon 
struct luma samples of the non-square prediction block. 
Furthermore, the video coder may sub-sample the set of 
luma reference samples Such that a total number of luma 
reference samples in the set of luma reference samples that 
neighbor a longer side of the non-square luma block is the 
same as a total number of luma reference samples of the set 
of luma reference samples that neighbor a shorter side of the 
non-square luma block. The video coder may determine a 
first parameter equal to: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is a luma reference sample in 
the set of luma reference samples, and y, is a chroma 
reference sample in the set of chroma reference samples. 
Additionally, the video coder may determine a second 
parameter equal to: 

For each respective chroma sample of a predictive chroma 
block, the video coder may determine a value of the respec 
tive chroma sample such that the value of the respective 
chroma sample is equal to C. multiplied by a respective 
reconstructed luma sample corresponding to the respective 
chroma sample, plus B. The predictive chroma block may be 
a predictive chroma block for the non-square PU. The video 
coder may reconstruct, based in part on the predictive 
chroma block, a coding block. 
0060. In the example above, by sub-sampling the set of 
luma reference samples such that the total number of luma 
reference samples that neighbor the longer side of the 
non-square luma block is the same as the total number of 
luma reference samples that neighbor a shorter side of the 
non-square luma block, the video coder may ensure that the 
total number of reference samples in the set of luma refer 
ence samples is a power of 2. Hence, the video coder may 
be able to use a right shift operation instead of a division 
operation when calculating the value of B. Therefore, a video 
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coder implementing the example above may be less complex 
and/or faster than a video decoder forced to use a division 
operation when calculating the value of B. It is noted 
however that a video coder may perform the actions 
described in the example above using a division operation 
instead of a shift operation, although such a video coder may 
not have the advantages of using the shift operation instead 
of the division operation. In some examples, the reference 
samples that neighbor a short or long side of the non-square 
prediction block may be unavailable, in this case, there may 
be no need to perform the Sub-sampling process to available 
reference samples located at the other side. 
0061. In HEVC, a video encoder applies a transform to 
blocks of residual data (i.e., transform blocks) to convert the 
blocks of residual data into blocks of transform coefficients. 
At a high level, the video encoder may generate a block of 
transform coefficients (i.e., a transform coefficient block), by 
first generating a block of intermediate values by applying a 
N-point 1-dimension DCT transform to columns of the 
transform block. N is equal to the height and width of the 
transform block. The video encoder may then generate the 
block of transform coefficients by applying the same N-point 
1-dimensional DCT transform to the rows of the block of 
intermediate values. A video decoder inverses the transform 
in a similar way to recover the transform block. 
0062. As one can see from the discussion above, the 
process of applying the transform in HEVC is reliant on 
transform blocks being square. However, it may be desirable 
to have non-square transform blocks. For instance, com 
pression performance may be reduced when the boundaries 
of transform blocks cross boundaries of inter or intra pre 
dictive blocks. The use of non-square predictive blocks may 
be valuable to capture objects that do not fall into square 
areas. Therefore, non-square predictive blocks and/or non 
square transforms may be useful in terms of coding perfor 
mance improvement. A transform matrix coefficient is 
defined with a denominator equal to VN if the transform 
matrix coefficient is a N-point 1-dimension DCT transform. 
Previous to this disclosure, the denominator VN was con 
sidered as the normalization factor and implemented by a 
right shift in a quantization process. Taking a 2-dimension 
DCT transform into consideration, for example, a KXL 
transform, the normalization factor would be (VK* VL). If N 
is defined by the one satisfying the equation log2(N*N)= 
((log2(K)+log2(L))>1)<1), the ratio of utilized normal 
ization factor (sqrt(N)*sqrt(N)) and the real normalization 
factor (VK*VL) would be 1/V2. Directly applying a square 
transform (e.g., a N-point transform applied to both columns 
and rows) to a non-square transform block may change the 
total energy (i.e., the Sum of squares of all transformed 
coefficients after quantization) in the resulting transform 
coefficient block due to the increased normalization factor, 
which results in reduced compression performance. 
0063. As described in detail elsewhere in this disclosure, 
for a transform block of size KXL, the video encoder 
multiplying the transform coefficients by V2 when (log 
2(K)+log2(L)) is odd, and the video decoder dividing the 
transform coefficients by V2 when (log2(K)+log 2(L)) is 
odd may address this problem. 
0064 3D-HEVC is an extension of HEVC for 3-dimen 
sional (3D) video data. 3D-HEVC provides for multiple 
views of the same scene from different viewpoints. The 
standardization efforts for 3D-HEVC include the standard 
ization of a multi-view video codec based on HEVC. In 
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3D-HEVC, inter-view prediction based on reconstructed 
view components (i.e., reconstructed pictures) from different 
views is enabled. Furthermore, 3D-HEVC implements inter 
view motion prediction and inter-view residual prediction. 
0065. The pictures of each view that represent the same 
time instance of video include similar video content. How 
ever, the video content of views may be displaced spatially 
relative to one another. In particular, the video content of the 
views may represent different perspectives on the same 
scene. For example, a video block in a picture in a first view 
may include video content that is similar to a video block in 
a picture in a second view. In this example, the location of 
the video block in the picture in the first view and the 
location of the video block in the picture in the second view 
may be different. For example, there may be some displace 
ment between the locations of the video blocks in the 
different views. 
0066. A disparity vector for a video block provides a 
measure of this displacement. For example, a video block of 
a picture in a first view may be associated with a disparity 
vector that indicates the displacement of a corresponding 
Video block in a picture in a second view. 
0067. Because of different camera settings or different 
distances from light sources, pictures corresponding to the 
same time instance, but in different views, may contain 
nearly the same image, but objects in one of the pictures may 
be brighter than corresponding objects in the other picture. 
Illumination compensation (IC) is a technique implemented 
in 3D-HEVC for compensating for such differences in 
illumination between views when performing inter-view 
prediction. In 3D-HEVC, a video coder determines a dis 
parity vector for a current PU of a current CU of a current 
picture. In addition, the video coder may calculate two IC 
parameters for the current CU. This disclosure denotes the 
IC parameters as a and b. Additionally, for each respective 
sample of a luma predictive block of the current PU, the 
Video coder calculates: 

In the equation above, p(i,j) is the respective sample of the 
luma predictive block of the current PU, (i,j) are coordinates 
indicating a location of the respective sample relative to a 
top-left corner of the current picture, dv, is a horizontal 
component of the disparity vector for the current PU, dv, is 
a vertical component of the disparity vector for the current 
PU, and a and b are the IC parameters. 
0068. As described in greater detail elsewhere in this 
disclosure, the formula defining the IC parameter b in 
3D-HEVC involves a division operation by the number of 
reference samples neighboring the current CU stop and left 
sides. In 3D-HEVC, the number of reference samples neigh 
boring the current CU’s top and left sides is always a power 
of 2. Consequently, the division operation in the formula 
defining the IC parameter b may be implemented using a 
right-shift operation. As described elsewhere in this disclo 
Sure, a right-shift operation may be significantly less com 
plicated to implement than a division operation and may be 
significantly faster than implementing a division operation. 
0069. For 2-dimension video coding, as described in H. 
Liu, “Local Illumination Compensation.” ITU Telecom 
munications Standardization Sector, Study Group 16 Ques 
tion 6, Video Coding Experts Group (VCEG), 52" Meeting, 
19-26 Jun. 2015, Warsaw, Poland, document VCEG-AZ06 
(hereinafter, “VCEG-AZ06’), Local Illumination Compen 
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sation (LIC) is enabled or disabled adaptively for each 
inter-mode coded coding unit (CU), and LIC is based on a 
linear model for illumination changes, using a scaling factor 
a and an offset b. When LIC applies for a CU, for each 
PU/sub-PU belonging to the CU, LIC parameters are 
derived in a way that uses Subsampled (2:1 Subsampling) 
neighboring samples of the CU and the corresponding pixels 
(identified by motion information of the current PU/sub-PU) 
in the reference picture. For a CU with size equal to NXN, 
the total number of boundary pixels used in parameter 
calculation is N instead of 2N. An example is illustrated in 
FIG. 20. The LIC parameters are derived and applied for 
each prediction direction separately. A least square error 
method is employed to derive the parameters a and b based 
on the abovementioned neighboring samples. 
0070 IC was only used when a CU only has a single PU. 
However, it may be desirable to use IC in instances where 
a CU has multiple PUs, including instances where the CU is 
partitioned into 2 or 3 PUs and/or the CU is partitioned 
asymmetrically. In Such instances, the number of reference 
samples neighboring the current CU's top and left sides may 
no longer be a power of 2. Therefore, it may not be possible 
to calculate the IC parameter busing a right-shift operation. 
Rather, the video coder may need to use a slower and more 
complicated division operation to calculate the IC parameter 
b. 

(0071. To address this issue, a video coder may sub 
sample a first set of reference samples to generate a first 
Sub-Sampled set of reference samples that includes a total of 
2" reference samples, where m is an integer. In this disclo 
Sure, the terms sub-sampling indicates selection of one or 
more samples from a set of samples and down-sampling 
indicates a filtering process wherein several reference 
samples may be used together to derive a filtered sample. 
The set of reference samples may comprise samples outside 
the non-square predictive block of a PU along a left side and 
a top side of the non-square predictive block. Hence, the 
reference samples may also be referred to herein as neighbor 
samples or neighboring samples. Additionally, the video 
coder may sub-sample a second set of reference samples to 
generate a second Sub-sampled set of reference samples that 
includes a total of 2" reference samples, where m is an 
integer. The second set of reference samples may comprise 
samples outside a reference block (e.g., an inter-view ref 
erence block or temporal reference block) along a left side 
and a top side of the reference block. The video coder may 
then determine at least the IC parameterb based on the first 
Sub-Sampled set of reference samples and the second Sub 
sampled set of reference samples. Because the first sub 
sampled set of reference samples and the second Sub 
sampled set of reference samples each include 2" samples, 
the video coder may use the right shift operation to calculate 
the IC parameter b instead of a division operation. In this 
way, the techniques of this disclosure may decrease com 
plexity of the video coder and/or accelerate video coding. 
0072. As mentioned above, the introduction of non 
square TUS may introduce certain problems. For example, 
previous techniques of partitioning a CU into TUs followed 
a quad-tree splitting pattern, even if the PUs of the CU are 
not square. In this disclosure, a quad-tree may also be 
referred to as a quarter-tree. Always using a quad-tree 
splitting pattern may result in Sub-optimal video data com 
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pression performance, especially if the quad-tree splitting 
pattern does not align the sides of the TUs with sides of the 
PUs of the CU. 

0073 Hence, in accordance with a technique of this 
disclosure, a transform tree of a CU is not restricted to the 
quad-tree splitting pattern. Rather, a node in the transform 
tree may have two child nodes. Thus, in one example, a 
video decoder may determine a CU is partitioned into TUs 
based on a tree structure. In this example, the video decoder 
may determine that a node in the tree structure has exactly 
two child nodes in the tree structure. In this example, a root 
node of the tree structure corresponds to a coding block of 
the CU, each respective non-root node of the tree structure 
corresponds to a respective block that is a partition of a 
block that corresponds to a parent node of the respective 
non-root node, and leaf nodes of the tree structure corre 
spond to the TUs of the CU. In some examples, nodes in the 
transform tree may have 2 or 4 child nodes. The flexibility 
of a node to have 2 or 4 child nodes may increase video 
coding compression performance. 
0074 FIG. 1 is a block diagram illustrating an example 
Video encoding and decoding system 10 that may utilize 
techniques of this disclosure. As shown in FIG. 1, system 10 
includes a source device 12 that provides encoded video data 
to be decoded at a later time by a destination device 14. In 
particular, source device 12 provides the video data to 
destination device 14 via a computer-readable medium 16. 
Source device 12 and destination device 14 may comprise 
any of a wide range of devices, including desktop comput 
ers, notebook (i.e., laptop) computers, tablet computers, 
set-top boxes, telephone handsets such as so-called 'smart' 
phones, tablet computers, televisions, cameras, display 
devices, digital media players, video gaming consoles, video 
streaming device, or the like. In some cases, Source device 
12 and destination device 14 may be equipped for wireless 
communication. 

(0075. In the example of FIG. 1, source device 12 includes 
a video source 18, a storage medium 19 configured to store 
video data, a video encoder 20, and an output interface 22. 
Destination device 14 includes an input interface 28, a 
storage medium 29 configured to store video data, a video 
decoder 30, and a display device 32. In other examples, a 
Source device and a destination device may include other 
components or arrangements. For example, Source device 12 
may receive video data from an external video source. Such 
as an external camera. Likewise, destination device 14 may 
interface with an external display device, rather than includ 
ing an integrated display device. 
(0076. The illustrated system 10 of FIG. 1 is merely one 
example. Techniques for processing video data may be 
performed by any digital video encoding and/or decoding 
device. Although generally the techniques of this disclosure 
are performed by a video encoding device, the techniques 
may also be performed by a video encoder/decoder, typi 
cally referred to as a “CODEC.” Source device 12 and 
destination device 14 are merely examples of Such coding 
devices in which source device 12 generates coded video 
data for transmission to destination device 14. In some 
examples, devices 12, 14 may operate in a Substantially 
symmetrical manner Such that each of devices 12, 14 include 
Video encoding and decoding components. Hence, system 
10 may support one-way or two-way video transmission 
between video devices 12, 14, e.g., for video streaming, 
Video playback, video broadcasting, or video telephony. 



US 2017/O 1501.76 A1 

0077 Video source 18 of source device 12 may include 
a video capture device. Such as a video camera, a video 
archive containing previously captured video, and/or a video 
feed interface to receive video data from a video content 
provider. As a further alternative, video source 18 may 
generate computer graphics-based data as the source video, 
or a combination of live video, archived video, and com 
puter-generated video. In some cases, source device 12 and 
destination device 14 may form so-called camera phones or 
Video phones. Source device 12 may comprise one or more 
data storage media (e.g., Storage media 19) configured to 
store the video data. The techniques described in this dis 
closure may be applicable to video coding in general, and 
may be applied to wireless and/or wired applications. In 
each case, the captured, pre-captured, or computer-gener 
ated video may be encoded by video encoder 20. Output 
interface 22 may then output the encoded video information 
onto computer-readable medium 16. 
0078 Output interface 22 may comprise various types of 
components or devices. For example, output interface 22 
may comprise a wireless transmitter, a modem, a wired 
networking component (e.g., an Ethernet card), or another 
physical component. In examples where output interface 22 
comprises a wireless receiver, output interface 22 may be 
configured to receive data, Such as the bitstream, modulated 
according to a cellular communication standard, such as 4G, 
4G-LTE, LTE Advanced, 5G, and the like. In some examples 
where output interface 22 comprises a wireless receiver, 
output interface 22 may be configured to receive data, such 
as the bitstream, modulated according to other wireless 
standards, such as an IEEE 802.11 specification, an IEEE 
802.15 specification (e.g., ZigBeeTM), a BluetoothTM stan 
dard, and the like. In some examples, circuitry of output 
interface 22 may be integrated into circuitry of video 
encoder 20 and/or other components of source device 12. 
For example, video encoder 20 and output interface 22 may 
be parts of a system on a chip (SoC). The SoC may also 
include other components, such as a general purpose micro 
processor, a graphics processing unit, and so on. 
0079. Destination device 14 may receive the encoded 
video data to be decoded via computer-readable medium 16. 
Computer-readable medium 16 may comprise any type of 
medium or device capable of moving the encoded video data 
from source device 12 to destination device 14. In one 
example, computer-readable medium 16 may comprise a 
communication medium to enable source device 12 to 
transmit encoded video data directly to destination device 14 
in real-time. The encoded video data may be modulated 
according to a communication standard, Such as a wireless 
communication protocol, and transmitted to destination 
device 14. The communication medium may comprise any 
wireless or wired communication medium, Such as a radio 
frequency (RF) spectrum or one or more physical transmis 
sion lines. The communication medium may form part of a 
packet-based network, Such as a local area network, a 
wide-area network, or a global network Such as the Internet. 
The communication medium may include routers, Switches, 
base stations, or any other equipment that may be useful to 
facilitate communication from Source device 12 to destina 
tion device 14. Destination device 14 may comprise one or 
more data storage media configured to store encoded video 
data and/or decoded video data. 

0080. In some examples, output interface 22 may output 
encoded data to a storage device. Similarly, input interface 
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28 may access encoded data from the storage device. The 
storage device may include any of a variety of distributed or 
locally accessed data storage media Such as a hard drive, 
Blu-ray discs, DVDs, CD-ROMs, flash memory, volatile or 
non-volatile memory, or any other Suitable digital storage 
media for storing encoded video data. In a further example, 
the storage device may correspond to a file server or another 
intermediate storage device that may store the encoded 
video generated by source device 12. Destination device 14 
may access stored video data from the storage device via 
streaming or download. The file server may be any type of 
server capable of storing encoded video data and transmit 
ting that encoded video data to the destination device 14. 
Example file servers include a web server (e.g., for a 
website), a file transfer protocol (FTP) server, network 
attached storage (NAS) devices, or a local disk drive. 
Destination device 14 may access the encoded video data 
through any standard data connection, including an Internet 
connection. This may include a wireless channel (e.g., a 
Wi-Fi connection), a wired connection (e.g., DSL, cable 
modem, etc.), or a combination of both that is suitable for 
accessing encoded video data stored on a file server. The 
transmission of encoded video data from the storage device 
may be a streaming transmission, a download transmission, 
or a combination thereof. 

I0081. The techniques may be applied to video coding in 
Support of any of a variety of multimedia applications, such 
as over-the-air television broadcasts, cable television trans 
missions, satellite television transmissions, Internet stream 
ing video transmissions, such as dynamic adaptive stream 
ing over HTTP (DASH), digital video that is encoded onto 
a data storage medium, decoding of digital video stored on 
a data storage medium, or other applications. In some 
examples, system 10 may be configured to Support one-way 
or two-way video transmission to Support applications such 
as video streaming, video playback, video broadcasting, 
and/or video telephony. 
I0082 Computer-readable medium 16 may include tran 
sient media, Such as a wireless broadcast or wired network 
transmission, or storage media (that is, non-transitory Stor 
age media), such as a hard disk, flash drive, compact disc, 
digital video disc, Blu-ray disc, or other computer-readable 
media. In some examples, a network server (not shown) may 
receive encoded video data from source device 12 and 
provide the encoded video data to destination device 14, 
e.g., via network transmission. Similarly, a computing 
device of a medium production facility, such as a disc 
stamping facility, may receive encoded video data from 
Source device 12 and produce a disc containing the encoded 
video data. Therefore, computer-readable medium 16 may 
be understood to include one or more computer-readable 
media of various forms. 

I0083. Input interface 28 of destination device 14 receives 
information from computer-readable medium 16. Input 
interface 28 may comprise various types of components or 
devices. For example, input interface 28 may comprise a 
wireless receiver, a modem, a wired networking component 
(e.g., an Ethernet card), or another physical component. In 
examples where input interface 28 comprises a wireless 
receiver, input interface 28 may be configured to receive 
data, Such as the bitstream, modulated according to a cellular 
communication standard, such as 4G, 4G-LTE, LTE 
Advanced, 5G, and the like. In some examples where input 
interface 28 comprises a wireless receiver, input interface 28 
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may be configured to receive data, Such as the bitstream, 
modulated according to other wireless standards, Such as an 
IEEE 802.11 specification, an IEEE 802.15 specification 
(e.g., ZigBeeTM), a BluetoothTM standard, and the like. In 
Some examples, circuitry of input interface 28 may be 
integrated into circuitry of video decoder 30 and/or other 
components of destination device 14. For example, video 
decoder 30 and input interface 28 may be parts of a system 
on a chip (SoC). The SoC may also include other compo 
nents, such as a general purpose microprocessor, a graphics 
processing unit, and so on. 
0084. The information of computer-readable medium 16 
may include syntax information defined by video encoder 
20, which is also used by video decoder 30, that includes 
Syntax elements that describe characteristics and/or process 
ing of blocks and other coded units, e.g., groups of pictures 
(GOPs). Display device 32 may display the decoded video 
data to a user. For instance, destination device 14 or video 
decoder 30 may output, for display by display device 32, 
reconstructed pictures of the video data. Such reconstructed 
pictures may comprise reconstructed blocks. Display device 
32 may comprise any of a variety of display devices such as 
a cathode ray tube (CRT), a liquid crystal display (LCD), a 
plasma display, an organic light emitting diode (OLED) 
display, or another type of display device. 
0085 Video encoder 20 and video decoder unit 30 each 
may be implemented as any of a variety of Suitable encoder 
circuitry. Such as one or more microprocessors, digital signal 
processors (DSPs), application specific integrated circuits 
(ASICs), field programmable gate arrays (FPGAs), discrete 
logic, Software, hardware, firmware or any combinations 
thereof. When the techniques are implemented partially in 
Software, a device may store instructions for the Software in 
a suitable, non-transitory computer-readable medium and 
execute the instructions in hardware using one or more 
processors to perform the techniques of this disclosure. Each 
of video encoder 20 and video decoder 30 may be included 
in one or more encoders or decoders, either of which may be 
integrated as part of a combined encoder/decoder (CODEC) 
in a respective device. 
I0086. In some examples, video encoder 20 and video 
decoder 30 may operate according to a video coding stan 
dard. Example video coding standards include, but are not 
limited to, ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T 
H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC 
MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC 
MPEG-4 AVC), including its Scalable Video Coding (SVC) 
and Multi-view Video Coding (MVC) extensions. In addi 
tion, a new video coding standard, namely High Efficiency 
Video Coding (HEVC), has recently been developed by the 
Joint Collaboration Team on Video Coding (JCT-VC) of 
ITU-T Video Coding Experts Group (VCEG) and ISO/IEC 
Motion Picture Experts Group (MPEG). Wang et al., “High 
Efficiency Video Coding (HEVC) Defect Report,” Joint 
Collaborative Team in Video Coding (JCT-VC) of ITU-TSG 
16 WP3 and ISO/IEC JTC 1/SC 29/WG 11, 14' Meeting, 
Vienna, AT, 25 Jul-2 Aug. 2013, document JCTVC-N1003 
v1 (hereinafter, “JCTVC-N1003) is a draft of the HEVC 
standard. JCTVC-N1003 is available from http://phenix.int 
eVry.fr/ict/doc end user/documents/14 Vienna/wgll/ 
JCTVC-N1003-v1.zip. 
0087. In HEVC and other video coding specifications, a 
Video sequence typically includes a series of pictures. Pic 
tures may also be referred to as “frames.” A picture may 
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include one or more sample arrays. Each respective sample 
array of a picture may comprise an array of samples for a 
respective color component. In HEVC, a picture may 
include three sample arrays, denoted S. S. and S. S. is 
a two-dimensional array (i.e., a block) of luma samples. Sc, 
is a two-dimensional array of Cb chroma samples. S is a 
two-dimensional array of Cr chroma samples. In other 
instances, a picture may be monochrome and may only 
include an array of luma samples. 
I0088 As part of encoding video data, video encoder 20 
may encode pictures of the video data. In other words, video 
encoder 20 may generate encoded representations of the 
pictures of the video data. An encoded representation of a 
picture may be referred to as a “coded picture' or an 
“encoded picture.” 
I0089. To generate an encoded representation of a picture, 
Video encoder 20 may generate a set of coding tree units 
(CTUs). Each of the CTUs may comprise a CTB of luma 
samples, two corresponding CTBS of chroma samples, and 
syntax structures used to code the samples of the CTBs. In 
monochrome pictures or pictures having three separate color 
planes, a CTU may comprise a single CTB and syntax 
structures used to code the samples of the CTB. A CTB may 
be an NXN block of samples. A CTU may also be referred 
to as a “tree block” or a “largest coding unit (LCU). A 
Syntax structure may be defined as Zero or more syntax 
elements present together in the bitstream in a specified 
order. A slice may include an integer number of CTUs 
ordered consecutively in a raster scan order. 
(0090. This disclosure may use the term “video unit' or 
“video block” or “block” to refer to one or more sample 
blocks and syntax structures used to code samples of the one 
or more blocks of samples. Example types of video units 
may include CTUS, CUs, PUs, transform units (TUs), mac 
roblocks, macroblock partitions, and so on. In some con 
texts, discussion of PUs may be interchanged with discus 
sion of macroblocks or macroblock partitions. 
(0091. In HEVC, to generate a coded CTU, video encoder 
20 may recursively perform quad-tree partitioning on the 
coding tree blocks of a CTU to divide the coding tree blocks 
into coding blocks, hence the name "coding tree units. A 
coding block is an NXN block of samples. A CU may 
comprise a coding block of luma samples and two corre 
sponding coding blocks of chroma samples of a picture that 
has a luma sample array, a Cb sample array, and a Crsample 
array, and syntax structures used to code the samples of the 
coding blocks. In monochrome pictures or pictures having 
three separate color planes, a CU may comprise a single 
coding block and syntax structures used to code the samples 
of the coding block. 
0092 Video encoder 20 may encode CUs of a picture of 
the video data. As part of encoding a CU, video encoder 20 
may partition a coding block of the CU into one or more 
prediction blocks. A prediction block is a rectangular (i.e., 
square or non-square) block of samples on which the same 
prediction is applied. A prediction unit (PU) may comprise 
a prediction block of luma samples, two corresponding 
prediction blocks of chroma samples, and syntax structures 
used to predict the prediction blocks. In monochrome pic 
tures or pictures having three separate color planes, a PU 
may comprise a single prediction block and syntax struc 
tures used to predict the prediction block. Video encoder 20 
may generate predictive blocks (e.g., luma, Cb, and Cr 
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predictive blocks) for prediction blocks (e.g., luma, Cb, and 
Cr prediction blocks) of each PU of the CU. 
0093. Thus, in general, a PU may comprise one or more 
prediction blocks of samples and syntax structures used to 
predict the prediction blocks. In some example codecs, such 
as HEVC, a PU may be a sub-unit of a CU. In other example 
codecs, there may be no distinction between a CU and a PU. 
In some examples, other terms may be used for PU. 
0094 Video encoder 20 may use intra prediction or inter 
prediction to generate a predictive block of a PU. If video 
encoder 20 uses intra prediction to generate a predictive 
block of a PU, video encoder 20 may generate the predictive 
block of the PU based on decoded samples of the picture that 
includes the PU. If video encoder 20 uses inter prediction to 
generate a predictive block of a PU of a current picture, 
video encoder 20 may generate the predictive block of the 
PU based on decoded samples of a reference picture (i.e., a 
picture other than the current picture). 
0095. After video encoder 20 generates predictive blocks 
(e.g., luma, Cb, and Cr predictive blocks) for one or more 
PUs of a CU, video encoder 20 may generate one or more 
residual blocks for the CU. For instance, video encoder 20 
may generate a luma residual block for the CU. Each sample 
in the CU's luma residual block indicates a difference 
between a luma sample in one of the CU’s predictive luma 
blocks and a corresponding sample in the CU’s original 
luma coding block. In addition, video encoder 20 may 
generate a Cb residual block for the CU. Each sample in the 
Cb residual block of a CU may indicate a difference between 
a Cb sample in one of the CU’s predictive Cb blocks and a 
corresponding sample in the CU's original Cb coding block. 
Video encoder 20 may also generate a Cr residual block for 
the CU. Each sample in the CU’s Cr residual block may 
indicate a difference between a Crsample in one of the CU’s 
predictive Crblocks and a corresponding sample in the CU's 
original Cr coding block. 
0096. To reiterate, in HEVC, the largest coding unit in a 
slice is called a CTU. Each picture is divided into CTUs, 
which may be coded in raster scan order for a specific tile or 
slice. A CTU is a square block and represents the root of a 
quadtree, i.e., the coding tree. A CTU contains a quad-tree, 
the nodes of which are CUs. In some instances, the size of 
a CTU can range from 16x16 to 64x64 in the HEVC main 
profile (although technically 8x8 CTU sizes can be sup 
ported). In some instances, the CTU size may range from 
8x8 to 64x64 luma samples, but typically 64x64 is used. 
Each CTU can be further split into smaller square blocks 
called CUs. ACU can be the same size of a CTU, although 
a CU can be as small as 8x8. Each CU is coded with one 
mode. For instance, a CU may be inter coded or intra coded. 
When a CU is inter coded, the CU may be further partitioned 
into 2 or 4 PUs or may become just one PU when further 
partition does not apply. When two PUs are present in one 
CU, the two PUs can behalf size rectangles or two rectangle 
sizes with /4 or 3/4 size of the CU. When a CU is inter coded, 
one set of motion information is present for each PU. In 
addition, each PU is coded with a unique inter-prediction 
mode to derive the set of motion information. In other 
words, each PU may have its own set of motion information. 
0097. Furthermore, video encoder 20 may decompose the 
residual blocks of a CU into one or more transform blocks. 
For instance, video encoder 20 may use quad-tree partition 
ing to decompose the residual blocks (e.g., the luma, Cb, and 
Cr residual blocks) of a CU into one or more transform 
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blocks (e.g., luma, Cb, and Cr transform blocks). A trans 
form block is a rectangular (e.g., square or non-square) 
block of samples on which the same transform is applied. 
0098. A transform unit (TU) of a CU may comprise a 
transform block of luma samples, two corresponding trans 
form blocks of chroma samples, and syntax structures used 
to transform the transform block samples. Thus, each TU of 
a CU may have a luma transform block, a Cb transform 
block, and a Cr transform block. The luma transform block 
of the TU may be a sub-block of the CU's luma residual 
block. The Cb transform block may be a sub-block of the 
CU’s Cb residual block. The Cr transform block may be a 
sub-block of the CU's Cr residual block. In monochrome 
pictures or pictures having three separate color planes, a TU 
may comprise a single transform block and syntax structures 
used to transform the samples of the transform block. 
0099 Video encoder 20 may apply one or more trans 
forms to a transform block of a TU to generate a coefficient 
block for the TU. For instance, video encoder 20 may apply 
one or more transforms to a luma transform block of a TU 
to generate aluma coefficient block for the TU. A coefficient 
block may be a two-dimensional array of transform coeffi 
cients. A transform coefficient may be a scalar quantity. In 
Some examples, the one or more transforms convert the 
transform block from a pixel domain to a frequency domain. 
0100. In some examples, video encoder 20 does not apply 
the transform to the transform block. In other words, video 
encoder 20 skips application of the transforms to the trans 
form block. In such examples, video encoder 20 may treat 
residual sample values in the same way as transform coef 
ficients. Thus, in examples where video encoder 20 skips 
application of the transforms, the following discussion of 
transform coefficients and coefficient blocks may be appli 
cable to transform blocks of residual samples. 
0101. After generating a coefficient block (e.g., a luma 
coefficient block, a Cb coefficient block or a Cr coefficient 
block), video encoder 20 may quantize the coefficient block. 
In some examples, video encoder 20 does not quantize the 
coefficient block. In examples where video encoder 20 does 
not apply the transform to the transform block, video 
encoder 20 may or may not quantize residual samples of the 
transform block. Quantization generally refers to a process 
in which transform coefficients are quantized to possibly 
reduce the amount of data used to represent the transform 
coefficients, providing further compression. After video 
encoder 20 quantizes a coefficient block, video encoder 20 
may entropy encode syntax elements indicating the quan 
tized transform coefficients or residual samples. For 
example, video encoder 20 may perform Context-Adaptive 
Binary Arithmetic Coding (CABAC) on the syntax elements 
indicating the quantized transform coefficients or residual 
samples. In some examples, video encoder 20 uses palette 
based coding to encode CUs. Thus, an encoded block (e.g., 
an encoded CU) may include the entropy encoded syntax 
elements indicating the quantized transform coefficients. 
0102 Video encoder 20 may output a bitstream that 
includes a sequence of bits that forms a representation of 
encoded pictures of the video data and associated data (i.e., 
data associated with the encoded pictures). Thus, the bit 
stream comprises an encoded representation of the video 
data. The bitstream may comprise a sequence of network 
abstraction layer (NAL) units. A NAL unit is a syntax 
structure containing an indication of the type of data in the 
NAL unit and bytes containing that data in the form of a raw 
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byte sequence payload (RBSP) interspersed as necessary 
with emulation prevention bits. Each of the NAL units may 
include a NAL unit header and encapsulates a RBSP. The 
NAL unit header may include a syntax element indicating a 
NAL unit type code. The NAL unit type code specified by 
the NAL unit header of a NAL unit indicates the type of the 
NAL unit. ARB SP may be a syntax structure containing an 
integer number of bytes that are encapsulated within a NAL 
unit. In some instances, an RB SP includes Zero bits. 
0103 Video decoder 30 may receive a bitstream gener 
ated by video encoder 20. In addition, video decoder 30 may 
parse the bitstream to obtain syntax elements from the 
bitstream. Video decoder 30 may reconstruct pictures of the 
Video data based at least in part on the syntax elements 
obtained from the bitstream. The process to reconstruct 
pictures of the video data may be generally reciprocal to the 
process performed by video encoder 20 to encode the 
pictures. For instance, to reconstruct a picture of the video 
data, video decoder 30 may decode blocks, such as CUs, of 
the picture based on syntax elements obtained from the 
bitstream and/or data from external sources. 
0104. In some examples, as part of decoding a current CU 
of the picture, video decoder 30 may use inter prediction or 
intra prediction to generate one or more predictive blocks for 
each PU of the current CU. When using inter prediction, 
video decoder 30 may use motion vectors of PUs to deter 
mine predictive blocks for the PUs of a current CU. In 
addition, video decoder 30 may, in some examples, inverse 
quantize coefficient blocks of TUs of the current CU. Video 
decoder 30 may, in Some examples, perform inverse trans 
forms on the coefficient blocks to reconstruct transform 
blocks of the TUs of the current CU. Video decoder 30 may 
reconstruct the coding blocks of the current CU by adding 
the samples of the predictive blocks for PUs of the current 
CU to corresponding decoded samples (e.g., residual 
samples) of the transform blocks of the TUs of the current 
CU. By reconstructing the coding blocks for each CU of a 
picture, video decoder 30 may reconstruct the picture. 
0105 Moreover, in HEVC, the option to partition a 
picture into rectangular regions called tiles has been speci 
fied. The main purpose of tiles is to increase the capability 
for parallel processing rather than provide error resilience. 
Tiles are independently decodable regions of a picture that 
are encoded with some shared header information. Tiles can 
additionally be used for the purpose of spatial random access 
to local regions of video pictures. A typical tile configuration 
of a picture consists of segmenting the picture into rectan 
gular regions with approximately equal numbers of CTUS in 
each tile. Tiles provide parallelism at a more coarse level of 
granularity (picture? subpicture), and no Sophisticated Syn 
chronization of threads is necessary for their use. 
0106 To adapt the various characteristics of the residual 
blocks, a transform coding structure using the residual 
quadtree (RQT) is applied in HEVC, which is briefly 
described in Marpe et al., “Transform Coding Using the 
Residual Quadtree (RQT). Fraunhofer Heinrich Hertz Insti 
tute, available at http://www.hhi.fraunhofer.de/fields-of 
competence/image-processing/researchgroups/image 
Video-coding/hevc-high-efficiency-video-coding/transform 
coding-using-the-residual-quadtree-rqt.html. After the CTU 
is split recursively into CUs, each CU is further divided into 
PUs and TUs. The partitioning of a CU into TUs is carried 
out recursively based on a quadtree approach, therefore the 
residual signal of each CU is coded by a tree structure, 
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namely, the residual quadtree (RQT). The RQT allows TU 
sizes from 4x4 up to 32x32 luma samples. FIG. 2A and FIG. 
2B are conceptual diagrams illustrating an example trans 
form scheme based on a residual quadtree in HEVC. Par 
ticularly, FIG. 2A shows an example where a CU 40 includes 
ten TUs, labeled with the letters a to j, and the corresponding 
block partitioning. FIG. 2B is a conceptual diagram illus 
trating an RQT for the CU of FIG. 2A. 
0107. A video coder may process the individual TUs in a 
depth-first tree traversal order, which is illustrated in FIG. 
2A in alphabetical order, which follows a recursive Z-scan 
with depth-first traversal. The quadtree approach enables the 
adaptation of the transform to the varying space-frequency 
characteristics of the residual signal. Typically, larger trans 
form block sizes, which have larger spatial Support, provide 
better frequency resolution. However, smaller transform 
block sizes, which have Smaller spatial Support, provide 
better spatial resolution. The trade-off between the two, 
spatial and frequency resolutions, is chosen by an encoder 
mode decision, for example based on rate-distortion opti 
mization technique. The rate-distortion optimization tech 
nique calculates a weighted Sum of coding bits and recon 
struction distortion, i.e., the rate-distortion cost, for each 
coding mode (e.g., a specific RQT splitting structure), and 
selects the coding mode with least rate-distortion cost as the 
best mode. 

0108. Three parameters are defined in the RQT: the 
maximum depth of the tree, the minimum allowed transform 
size and the maximum allowed transform size. In HEVC, the 
minimum and maximum transform sizes can vary within the 
range from 4x4 to 32x32 Samples, which correspond to the 
Supported block transforms mentioned in the previous para 
graph. The maximum allowed depth of the RQT restricts the 
number of TUs. A maximum depth equal to Zero means that 
a CTU cannot be split any further if each included TU 
reaches the maximum allowed transform size, e.g., 32x32. 
In HEVC, larger size transforms, e.g., 64x64 transform were 
not adopted mainly due to their limited benefit considering 
and relatively high complexity for relatively smaller reso 
lution videos. 

0109. In HEVC, regardless of the size of a TU, the 
residual of the TU (e.g., a coefficient block of the TU) is 
coded with non-overlapped coefficient groups (CG). Each of 
the CGs contains the coefficients of a 4x4 block of the TU. 
For example, a 32x32TU has a total of 64 CGs, and a 16x16 
TU has a total of 16 CGs. The CGs of a TU are coded 
according to a certain pre-defined scan order. When coding 
each CG, the coefficients inside the current CG are scanned 
and coded according to a certain pre-defined scan order for 
4x4 block. FIG. 3 is a conceptual diagram illustrating an 
example coefficient scan based on coefficient groups in 
HEVC. Particularly, FIG.3 illustrates the coefficient scan for 
an 8x8 TU containing four 4x4 CGs. 
0110. As noted above, video encoder 20 and video 
decoder 30 may perform intra prediction to generate a 
predictive block. Intra prediction performs image block 
prediction using its spatially neighboring reconstructed 
image samples. FIG. 4 is a conceptual diagram illustrating 
an example of intra prediction for a 16x16 block. In FIG. 4. 
a block square contains a 16x16 block 50. In FIG. 4, block 
50 is predicted by the above and left neighboring recon 
structed samples 52, 54 (i.e., reference samples) along a 
selected prediction direction. In FIG. 4, the samples outside 
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the black box are the reference samples. The white arrow in 
FIG. 4 indicates the selected prediction direction. 
0111 FIG. 5 is a conceptual diagram illustrating an 
example of 35 intra prediction modes defined in HEVC. As 
indicated in FIG. 5, HEVC defines 35 modes (including the 
Planar mode, DC mode and 33 angular modes) for the intra 
prediction of a luma block. The 35 modes of the intra 
prediction defined in HEVC are indexed as shown in the 
table below: 

TABLE 1. 

Specification of intra prediction node and associated names 

Intra prediction 
mode Associated name 

O INTRA PLANAR 
1 INTRA DC 
2... 34 INTRA ANGULAR2... INTRA ANGULAR34 

0112 HEVC intra coding supports two types of PU 
division, 2NX2N and NXN. 2NX2N splits a CU into one PU. 
In other words, the CU has one PU with the same size as the 
CU.NxN splits a CU into four equal-size PUs. However, the 
four regions specified by the partitioning type PART NXN 
can be also represented by four smaller CUs with the 
partitioning type PART 2Nx2N. Due to this, HEVC allows 
an intra CU to be split into four PUs only at the minimum 
CU size. 
0113 FIG. 6 is a conceptual diagram illustrating a planar 
mode defined in HEVC. Planar mode is typically the most 
frequently used intra prediction mode. To perform Planar 
prediction for an NXN block, for each sample p, located at 
(x, y), the prediction value is calculated using four specific 
neighboring reconstructed samples, i.e., reference samples, 
with a bilinear filter. The four reference samples include a 
top-right reconstructed Sample TR, a bottom-left recon 
structed sample BL, and two reconstructed samples 60, 62 
located in the same column (r,t) and row (r) as the 
current sample. The planar mode can be formulated as 
below: 

In formula (1) above, L corresponds to reconstructed sample 
60 and T corresponds to reconstructed sample 62. For DC 
mode, the prediction block is simply filled with the average 
value of the neighboring reconstructed Samples. Generally, 
both Planar and DC modes are applied for modeling 
Smoothly varying and constant image regions. 
0114 FIG. 7 is a conceptual diagram of an example 
angular mode defined in HEVC. The intra prediction process 
for angular intra prediction modes in HEVC is described as 
follows. For each given angular intra prediction mode, the 
intra prediction direction can be identified accordingly. For 
example, the given angular intra prediction mode may be 
identified according to FIG. 5. As shown in FIG. 5, intra 
mode 18 corresponds to a pure horizontal prediction direc 
tion, and intra mode 26 corresponds to a pure vertical 
prediction direction. Given a specific intra prediction direc 
tion, for each respective sample of a prediction block, 
coordinates (x, y) of the respective sample are first projected 
to a row or column of neighboring reconstructed Samples 
along the prediction direction. For instance, as shown in the 
example of FIG. 7, coordinates (x,y) of a sample 70 of a 
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prediction block 72 are projected along a specific intra 
prediction direction 74. Suppose (x,y) is projected to the 
fractional position C. between two neighboring reconstructed 
samples L and R. Then, a prediction value for (x, y) is 
calculated using a two-tap bi-linear interpolation filter, for 
mulated as follows: 

In HEVC, to avoid floating point operations, the above 
calculation is approximated using integer arithmetic as: 

where a is an integer equal to 32*C. 
0115 FIG. 8 is a conceptual diagram of partition modes 
for splitting a CU for inter prediction in HEVC. As shown 
in FIG. 8, in HEVC, an inter-coded CU can be split into one, 
two, or four partitions and various types of this splitting are 
possible. The partitioning possibilities for inter-predicted 
coding blocks are depicted in FIG. 8. The upper four 
partition types illustrate the cases of not splitting the CU of 
size NxN, of splitting the CU into two partitions of size 
NxN/2 or N/2xN, and of splitting the CU into four partitions 
of size N/2xN/2, respectively. The lower four partition types 
in FIG. 8 are referred to as asymmetric motion partitioning 
(AMP). One partition of the AMP mode has the height or 
width N/4 and width or height N. respectively, and the other 
partition fills the rest of the CU by having a height or width 
of 3N/4 and width or height N. Each inter-coded partition is 
assigned one or two motion vectors and reference picture 
indices. 
0116 For intra slices, only intra prediction mode is 
allowed. Therefore, there is no need to signal the prediction 
mode. However, for inter slices (Por B slice), both intra and 
inter prediction mode are allowed. Thus, in HEVC, for each 
CU, one flag pred mode flag is signaled for non-skip mode. 
A partial listing of the syntax and semantics defined in 
HEVC for a CU are presented below: 

7.3.8.5 Coding Unit Syntax 

0117 

Descriptor 

coding unit( x0, y0, log2CbSize ) { 
if transquant bypass enabled flag) 

cu transquant bypass flag ae(v) 
if slice type = I) 

cu skip flag. x0 y0 ae(v) 
nCbS = ( 1 < log2CbSize ) 
if cu skip flag. x0 y0) 

prediction unit( x0, y0, nCbS, nCbS ) 
else { 

if slice type = I) 
pred mode flag ae(v) 

if CuPred Mode x0 y0) = MODE INTRA || 
log2CbSize = = MinCbLog2SizeY) 

part mode ae(v) 

0118 cu skip flagxOlyO equal to 1 specifies that for 
the current coding unit, when decoding a P or B slice, no 
more syntax elements except the merging candidate index 
merge idxXOy0 are parsed after cu skip flagXOy0. 
cu skip flag XOy0 equal to 0 specifies that the coding unit 
is not skipped. The array indices x0, y0 specify the location 
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(x0,y0) of the top-left luma sample of the considered coding 
block relative to the top-left luma sample of the picture. 
When cu skip flagXOy0 is not present, cu skip flagx0 
yO is inferred to be equal to 0. 
0119 pred mode flag equal to 0 specifies that the current 
coding unit is coded in inter prediction mode. pred mode 
flag equal to 1 specifies that the current coding unit is coded 
in intra prediction mode. The variable CuPredModexy is 
derived as follows for xx0 ... x0+nCbS-1 and y=y0 . . . 
y0+nCbS-1: 

I0120 If pred mode flag is equal to 0, CuPredMode 
xy is set equal to MODE INTER. 

I0121. Otherwise (pred mode flag is equal to 1), 
CuPred Modexy is set equal to MODE INTRA. 

0122) When pred mode flag is not present, the variable 
CuPred Modexy is derived as follows for X=x0 . . . 
x0+nCbS-1 and y=y0 . . . y0+nCbS-1: 

I0123. If slice type is equal to I, CuPredModexy is 
inferred to be equal to MODE INTRA. 

0.124. Otherwise (slice type is equal to P or B), when 
cu skip flagxOlyO is equal to 1, CuPred Modexy 
is inferred to be equal to MODE SKIP. 

0.125 Various proposals have been made to enhance 
HEVC during and after the process of developing HEVC. 
For example, Jianle Chen et al., “Further improvements to 
HMKTA-1.0, Document: VCEG-AZ07 v2, 52' Meeting: 
19-26 Jun. 2015, Warsaw, Poland, (hereinafter, “VCEG 
AZ07), describes a short distance intra coding scheme. 
Unlike traditional block partition methods which always 
produce Square blocks for intra prediction, the short distance 
intra prediction (SDIP) scheme of VCEG-AZ07 employs 
non-square block splitting under the quadtree based block 
structure of HEVC. As described in VCEG-AZ07, a block is 
split into four non-square blocks with quarter width or 
height, and each non-square block is treated as a basic unit 
for prediction. The non-square blocks are coded and recon 
structed in order, and can provide reference pixels for intra 
prediction for the next neighboring block. Therefore, the 
distance between reference pixels and local pixels can be 
reduced, and the precision of intra prediction can be much 
improved. 
0126 FIG. 9 is a conceptual diagram of SDIP unit 
partitions. In the SDIP scheme, a CU that is smaller than 
64x64 can be split into four vertical or horizontal rectangular 
PUs with sizes N/2x2N or 2NxN/2 (these partition modes 
may be referred to in this disclosure as hNX2N and 2NxhN. 
where h means half). The four PUs are coded and recon 
structed in order, from left to right in the hNX2N mode, and 
top to bottom in the 2NxhN mode. In FIG. 9, dotted lines 
represent PU/TU splitting, and the shaded region 78 denotes 
a 32x8 TU to be split into 432x2 TUs in the RQT structure. 
The upper right 32x32 CU with partition mode 2NxhN is 
split into four 32x8 PUs, the lower left 16x16CU with mode 
hNX2N is split into four 4x16 PUs, the lower right 8x8 CU 
is split into 8x2 PUs, and so on. The square splitting of CUs 
in HEVC may also exist, such as the lower left 16x16 CU 
in the 2NX2N mode and the lower right 8x8 CU in the NXN 
mode. 

0127. Furthermore, in an SDIP scheme, a MXN (MDN) 
TU can be split into four TUs with size MxN/4, or M/4xN 
when M-N. In other words, a split in the SDIP scheme 
should always be carried out along the same direction 
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(vertical or horizontal) in a CU. Table 2, below, lists all the 
non-square units existing in the SDIP scheme and the 
corresponding ROT depth. 

TABLE 2 

List of units in SDIP Scheme and the corresponding ROT depth 

Unit Size when depth = 1 
CU Size (equal to PU size) Unit Size when depth = 2 

32 x 32 32 x 8 32 x 2 
8 x 32 2 x 32 

16 x 16 16 x 4 
4 x 16 

8 x 8 8 x 2 
2 x 8 

I0128. In Xiaoran Cao et al “CE6.b1 Report on Short 
Distance Intra Prediction Method, Doc. JCTVC-E0278, 
Joint Collaborative Team on Video Coding (JCT-VC) of 
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG 11, 5th 
Meeting: Geneva, 16-23 Mar. 2011 (hereinafter, “Cao 1), 
partitions like 1 xN and Nx1 are further included and the 
corresponding ROT depth and transform sizes are listed in 
Table 3, below: 

TABLE 3 

List of transform sizes in SDIP in Cao 1 

Unit Size when depth = 1 
CU Size (equal to PU size) Unit Size when depth = 2 

32 x 32 32 x 8 32 x 2 
8 x 32 2 x 32 

16 x 16 16 x 4 16 x 1 
4 x 16 1 x 16 

8 x 8 8 x 2 
(2N x 2N) 2 x 8 

8 x 8 4 x 4 4 x 1 
(N x N) 1 x 4 

I0129. Furthermore, some SDIP schemes use non-square 
transform and entropy coding. For example, an inxm trans 
form is used for a non-square block. For an inxm (nm) 
block, the forward transform is described as follows: 

CanT, B, T, (1). x - 

In the equation above, B, denotes a block with n rows and 
m columns, T, and T are the transform matrices of size nxn 
and mxm respectively, and C, denotes the transformed 
block. T., and T are the same as the transform matrices in 
HEVC. Thus, for a hardware implementation, the transform 
part can be reused for non-square blocks. Foran nxm (n-m) 
block, the block is transposed into an mixin (men) block first 
and then transformed as in equation (1). For entropy coding, 
to avoid duplicate implementations, the coefficient coding of 
a square block is also reused. For example, FIG. 10 is a 
conceptual diagram of a 16x4 coefficient matrix 80 scanned 
and reorganized into an 8x8 matrix 82. In this example, the 
coefficients of coefficient matrix 80 are first scanned from 
high frequency to low frequency into a 1D buffer 84, as 
shown in FIG. 10, and then reorganized into an 8x8 matrix 
82 in ZigZag order, which is coded using the existing method 
in HEVC. 
0.130. In another example of a proposed enhancement to 
HEVC, Liu et al., “Rectangular (2NxN, Nx2N) Intra Pre 
diction, Doc. JCTVC-G135, Joint Collaborative Team on 
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Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC 
JTC1/SC29/WG 11, 7th Meeting: Geneva, 21-30 Nov., 2011, 
(hereinafter, “JCTVC-G135”), describes extending the use 
of the 2NxN and NX2N partition sizes for inter coding to 
intra coding. The additional PU sizes and corresponding 
TUs are given in Table 2, below. In JCTVC-G135, the 
conventional transform quadtree structure is employed. 

TABLE 2 

List of transform sizes in JCTVC-G135 

CU Size PU size Unit Size when depth = 1 Unit Size when depth = 2 

32 x 32 32 x 16 32 x 8 32 x 2 
16 x 32 8 x 32 2 x 32 

16 x 16 16 x 8 16 x 4 
8 x 16 4 x 6 

8 x 8 8 x 4 8 x 2 
4 x 8 2 x 8 

0131 The following techniques were described in 
VCEG-AZ07. To capture finer edge directions presented in 
natural videos, VCEG-AZ07 proposed extending the direc 
tional intra modes from 33, as defined in HEVC, to 65. FIG. 
11 is a conceptual diagram illustrating proposed 67 intra 
prediction modes. The directional modes described in 
VCEG-AZ07 are indicated as dotted arrows in FIG. 11, and 
the Planar and DC modes remain the same. The denser 
directional intra prediction modes proposed in VCEG-AZ07 
apply for all PU sizes and both luma and chroma intra 
predictions. 
0132) To accommodate the increased number of direc 
tional intra modes, VCEG-AZ07 proposed an improved 
Intra mode coding method, using 6 Most Probable Modes 
(MPMs). Two major technical aspects are involved: 1) the 
derivation of 6 MPMs, and 2) entropy coding of 6 MPMs. 
When deriving the set of 6 MPMs, VCEG-AZ06 changed 
the definition of the left and above neighboring intra modes. 
Instead of using the intra modes from top and left neigh 
boring blocks directly as in HEVC, the most frequently used 
intra mode along the top neighboring row and along the left 
neighboring column are computed, and then used as the left 
and above neighboring modes, respectively. 
0133. Furthermore, as described in VCEG-AZ07, four 
tap intra interpolation filters are utilized to improve the 
accuracy of directional intra prediction. For instance, as 
described above with respect to FIG. 7, HEVC uses a 
two-tap linear interpolation filter to generate an intra pre 
diction block in the directional prediction modes (i.e., intra 
prediction modes excluding Planar and DC predictors). 
Particularly, in the example of FIG. 7, a video coder applies 
a two-tap filter to samples L and R to determine a predictive 
value for sample 50. In contrast to the approach of HEVC, 
which applies a filter to two reference samples to determine 
a predictive value for a sample of a prediction block, 
VCEG-AZ07 applies a filter to four reference samples to 
determine a predictive value for a sample of a prediction 
block. In VCEG-AZ07, two types of four-tap interpolation 
filters are used: Cubic interpolation filters for 4x4 and 8x8 
blocks, and Gaussian interpolation filters for 16x16 and 
larger blocks. In VCEG-AZ07, the parameters of the filters 
are fixed according to block size, and the same filter is used 
for all predicted pixels, in all directional modes. 
0134. In HEVC, after an intra prediction block has been 
generated for vertical and horizontal intra modes, a left-most 
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column and a top-most row of prediction samples (i.e., 
samples of a predictive block) are further adjusted, respec 
tively. Boundary samples up to four columns or rows are 
further adjusted using a two-tap (for intra modes 2 and 34) 
or a three-tap filter (for intra modes 3-6 and 30-33). 
0.135 FIG. 12A and FIG. 12B is a conceptual diagram of 
boundary filters for intra modes 30-34. Particularly, FIG. 
12A is a conceptual diagram of boundary filters for intra 
mode 34. FIG. 12B is a conceptual diagram of boundary 
filters for intra mode 30-33. In FIG. 12A and FIG. 12B, the 
leftmost column of blocks is a set of reference samples and 
the rest of the blocks are samples of an intra predicted block. 
A video coder may generate the samples of the intra pre 
dictive block in the conventional manner. However, for intra 
prediction modes 30-34, the video encoder may apply one or 
more additional filters to the shaded pixels. Thus, examples 
of the boundary prediction filters for intra mode 34 and 
30-33 are shown in FIG. 12A and FIG. 12B, and the 
boundary prediction filters for intra modes 2 and 3-6 are 
similar. 

(0.136 Particularly, in FIG. 12A, for intra mode 34, the 
Video coder generates each respective sample of the intra 
predictive block based on reference samples above and right 
of the respective sample. However, this may ignore infor 
mation available from the left reference samples. Accord 
ingly, the video coder may apply four different filters to the 
four leftmost columns. For each respective sample in lines 
1-4 of the intra predictive block, the video coder applies a 
filter based on the respective sample and a reference sample 
in the opposite direction of intra mode 34 (i.e., left and 
down). For line 1, the resulting sample may be calculated as 
(8*a--8b)/16, where a is the respective sample and b is the 
reference sample. For line 2, the resulting sample may be 
calculated as (12*a-4*b)/16, where a is the respective 
sample and b is the reference sample. In the example of FIG. 
12B, the directions for intra prediction modes 30-33 do not 
align with full integer position pixels. Rather, for each 
sample of the predictive block, the directions for intra 
prediction modes 30-33 intersect with the reference samples 
at fractional positions between two of the reference samples. 
Hence, when applying the boundary filter for intra predic 
tion modes 30-33, there are two reference samples for each 
sample of the leftmost column of the predictive block. In the 
example of FIG. 12B, for each respective sample of the 
leftmost column of the predictive block, when the intra 
prediction mode is 33, a video coder may calculate the value 
of the respective sample as (8*a--8b+2*c), where a is the 
respective sample, b is one of the reference samples and c is 
the other of the reference samples. 
0.137 Video coding may be performed based on color 
space and color format. For example, color video plays an 
essential role in multimedia systems, where various color 
spaces are used to efficiently represent color. A color space 
specifies color with numerical values using multiple com 
ponents. A popular color space is the RGB color space, 
where color is represented as a combination of three primary 
color component values (i.e., red, green and blue). For color 
video compression, the YCbCr color space has been widely 
used, as described in A. Ford and A. Roberts, “Colour space 
conversions.” University of Westminster, London, Tech. 
Rep., August 1998. 
I0138 YCbCr can be easily converted from RGB color 
space via a linear transformation and the redundancy 
between different components, namely the cross-component 
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redundancy, is significantly reduced in the YCbCr color 
space. One advantage of YCbCr is the backward compat 
ibility with black and white TV as Y signal conveys the 
luminance information. In addition, chrominance bandwidth 
can be reduced by Sub-sampling the Cb and Cr components 
in 4:2:0 chroma sampling format with significantly less 
subjective impact than sub-sampling in RGB. Because of 
these advantages, YCbCr has been the major color space in 
Video compression. There are also other color spaces. Such 
as YCoCg, used in video compression. In this disclosure, 
regardless of the actual color space used, the YCbCr color 
space is used to represent the three color components in the 
Video compression scheme. 
0.139. Although the cross-complement redundancy is sig 
nificantly reduced in the YCbCr color space, correlation 
between the three-color components still exists. Various 
techniques have been studied to improve video coding 
performance by further reducing the correlation between the 
three color components. 
0140 For example, Xiaoran Cao et at. “Short distance 
intra coding scheme for HIEVC''', 2012 Picture Coding 
Symposium (PCS), pp. 501-504, May 7-9, 2012, Kraków, 
Poland, (hereinafter. “Cao 2) describes a short distance 
intra coding scheme. Cao 2 describes a method in 4:2:0 
chroma video coding named Linear Model (LM) prediction 
mode, which was studied during development of the HEVC 
standard. See e.g., J. Chen et al., “CE6.a.4: Chroma intra 
prediction by reconstructed luma samples”, Joint Collabora 
tive Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 
and ISO/IEC JTC1/SC29/WG 11, JCTVC-E266, 5th Meet 
ing: Geneva, 16-23 Mar. 2011, and referred as JCTVC 
E266 hereafter. In 4:2:0 sampling, each of the two chroma 
arrays has half the height and half the width of the luma 
array. With the LM prediction mode, chroma samples are 
predicted based on reconstructed luma samples of the same 
block by using a linear model as follows: 

where pred(i, j) represents a prediction of chroma samples 
in a current block and rec, (i, j) represents a down-sampled 
reconstructed luma samples of the current block. Parameters 
C. and B are derived from causal reconstructed Samples 
around the current block. Causal samples of a block are 
samples that occur prior to the block in a decoding order. If 
the chroma block size is denoted by NxN, then both i and 
are within the range 0, N). 
0141 Parameters C. and B in equation (2) are derived by 
minimizing regression error between the neighboring recon 
structed luma and chroma samples around the current block. 

The parameters C. and B are solved as follows 

XX; i yi - XX; Xy; (4) 

f3 = (Xy; - a 2x) f (5) 

In the equations above, X, is a down-sampled reconstructed 
luma reference sample where the color format is not 4:4:4 
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(i.e., the color format is one in which one chroma sample 
corresponds to multiple luma samples), y, is reconstructed 
chroma reference samples without down-sampling, and I is 
the number of reference samples. In other words, the video 
coder may down-sample the reconstructed luma reference 
samples based on the color format not being 4:4:4, but 
refrain from down-sampling the reconstructed luma refer 
ence samples based on the color format being 4:4:4. For a 
target NxN chroma block, when both left and above causal 
samples are available, the total number of involved samples 
I is equal to 2N. When only left or above causal samples are 
available, the total number of involved samples I is equal to 
N. Here, N is always equal to 2" (wherein m may be 
different for different CU sizes). Therefore, to reduce the 
complexity, shifting operations can be used to implement the 
division operations in equations (4) and (5). 
0.142 FIG. 13 is a conceptual diagram illustrating 
example locations of samples used for derivation of C. and 
B. Particularly, FIG. 13 illustrates a chroma predictive block 
90 of a PU and a luma predictive block 92 of the same PU. 
Because chroma samples are down-sampled relative to luma 
samples, the width and height of chroma predictive block 90 
(i.e., N) is half the width and height of luma predictive block 
92 (i.e., 2N). In the example of FIG. 13, the small squares 
outside the large dark Square are reference samples. In the 
example of FIG. 13, the small circles indicate sample values 
used for determining the LM parameters C. and B. As shown 
in the example of FIG. 13, the chroma sample values used 
for determining the LM parameters C. and fare the same as 
the reference samples for chroma predictive block 90. How 
ever, the luma sample values used for determining the LM 
parameters C. and B are interpolated from luma reference 
samples. The total number of the resulting set of luma 
samples used for determining the LM parameters C. and B is 
the same as the number of chroma samples used for deter 
mining the LM parameters C. and B. 
0143. In general, when the LM prediction mode is 
applied for a current PU, a video coder may perform the 
following steps. First, the video coder may reconstruct a 
luma block for the current PU. As part of reconstructing the 
luma block for the current PU, the video coder may perform 
intra prediction to determine aluma predictive block of the 
current PU. Furthermore, as part of reconstructing the luma 
block for the current PU, the video coder may add residual 
data to the luma predictive block of the current PU to 
reconstruct the luma block for the current PU. Second, the 
Video coder may down-sample reference luma samples that 
neighbor the top and left sides of the current PU. Third, the 
Video coder may use equations (4) and (5) above to derive 
linear parameters (i.e., C. and B) based on chroma reference 
samples that neighbor the top and left sides of the current PU 
and the down-sampled luma reference samples. This disclo 
Sure may also refer to the linear parameter as 'scaling 
factors.” Fourth, the video coder may down-sample the 
reconstructed luma block for the current PU. Fifth, the video 
coder may use equation (2) above to predict chroma Samples 
(e.g., derive a predictive chroma block) from the down 
sampled luma block for the current PU and the linear 
parameters. 
0144. As noted above, a video coder may down-sample a 
reconstructed luma block of a current PU. The video coder 
may down-sample the reconstructed luma block of the 
current PU in various ways. For example, since the typical 
sampling ratio of chroma components is half of that of luma 
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components and has 0.5 sample phase difference in vertical 
direction in 4:2:0 sampling, reconstructed luma samples of 
the current PU are down-sampled in the vertical direction 
and Sub-sampled in the horizontal direction to match the size 
and phase of the chroma signal. For instance, for each value 
i from 0 to the width of the predictive chroma block of the 
current PU minus 1 and each value j from 0 to the height of 
the predictive chroma block of the current PU minus 1 a 
Video coder may calculate: 

In the equation above, rec, (i, j) is a luma sample corre 
sponding to position (i, j) relative to a top-left corner of the 
down-sampled reconstructed luma block of the current PU. 
Reco.2i. 2) and Reco.2i. 2+1 are reconstructed 
luma samples at positions (2i. 2) and (2i. 2+1) relative to 
a top-left corner of the original reconstructed luma block of 
the current PU. Thus, in equation (6), a luma sample at 
position (i,j) of the down-sampled reconstructed luma block 
of the current PU is the mean of a luma sample at position 
(2i, 2) of the original reconstructed luma block of the 
current PU and a luma sample at position (2i, 2+1) of the 
original reconstructed luma block of the current PU. 
0145 FIG. 14 is a conceptual diagram illustrating an 
example of luma positions and chroma positions for down 
sampling samples of a reconstructed luma block of a current 
PU. FIG. 14 depicts chroma samples as triangles and luma 
samples as circles. A video coder predicts the value of a 
current chroma sample (represented in FIG. 14 by the 
filled-in triangle) from two luma samples (represented in 
FIG. 14 by the two filled-in circles), by applying a 1, 1 
filter. The 1, 1 filter is one example of a 2-tap filter. In a 1, 
1 filter the two taps are equally weighted. For each respec 
tive triangle in FIG. 14, a video coder may apply equation 
(6) to samples represented by the circles above and below 
the respective triangle to determine a respective luma value 
for the sample represented by respective triangle. 
0146 Furthermore, as noted above, a video coder may 
down-sample luma reference samples. The video coder may 
down-sample the luma reference samples in various ways. 
As shown in FIG. 14, the columns of a predictive chroma 
block of a current PU are aligned with columns of the 
predictive luma block of the current PU. In one example 
using the 4:2:0 color format, the down-sampled luma ref 
erence samples that neighbor a top side of the current luma 
block may consist of each luma reference sample at an even 
indexed position in the set of luma reference samples. Thus, 
for each respective value of i ranging from 0 to the width of 
the predictive chroma block of the current PU minus 1, the 
down-sampling process may be defined as: 

recz (i, -1)-Recio.2i, -1) (7) 
In the equation above, rec, (i, -1) is a down-sampled luma 
reference sample at position (i, -1) relative to a top-left 
corner of the chroma predictive block of the current PU. 
Reco.2i, -1 is a luma reference sample at position (2i. 
-1) relative to a top-left corner of the original predictive 
luma block of the current PU. 
0147 As shown in FIG. 14, the rows of a predictive 
chroma block of a current PU are not aligned with rows of 
a predictive luma block of the current PU in the 4:2:0 color 
format. However, equations (4) and (5) for calculating the 
parameters C. and B for LM-based prediction are predicated 
on there being one luma reference sample for each chroma 
reference sample. Accordingly, for a respective row of the 
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predictive chroma block for the current PU, the video coder 
may calculate an average of the luma reference sample in a 
row of the predictive luma block of the current PU above 
and the luma reference sample in a row of the predictive 
luma block of the current PU below the row of the predictive 
chroma block. For instance, for each value j ranging from 0 
to the number of rows in the predictive chroma block minus 
1, the video coder may calculate the value of a left 
neighboring luma reference sample as: 

In the equation above, rec, (-1, j) is a down-sampled luma 
reference sample at position (-1, j) relative to a top-left 
corner of the predictive chroma block of the current PU. 
Reco-2, 2i and Reco-2, 2+1 are original luma 
samples at positions (-2, 2) and (-2, 2+1) relative to a 
top-left corner of the original predictive luma block of the 
current PU. 
0.148. Other down-sampling techniques have also been 
proposed. For instance, in Yi-Jen Chiu et al., “Cross-channel 
techniques to improve intra chroma prediction”. Joint Col 
laborative Team on Video Coding (JCT-VC) of ITU-T SG16 
WP3 and ISO/IEC JTC1/SC29/WG 11, JCTVC-F502, 6th 
Meeting: Torino, IT, 14-22 Jul., 2011 (referred to herein as 
“JCTVC-F502), instead of using a two-tap filter, a video 
coder applies 2-dimensional 6-tap filtering to both a current 
luma block and a neighboring luma block. The 2-dimen 
sional filter coefficient set is: 

1 2 1 (9) 

2 /s 

The down-sampled luma samples are derived by equation 
(10): 

In the equation above, rec, (i, j) is a reconstructed luma 
sample at position (i, j) relative to a top-left corner of the 
down-sampled reconstructed luma block of the current PU 
and Rec, . . . ) are reconstructed luma samples of the 
original reconstructed luma block of the current PU at 
positions relative to a top-left corner of the original recon 
structed luma block of the current PU. 

0149 For instance, a video coder may perform the opera 
tions of equation (10) to determine the down-sampled luma 
block. Equation (10) includes a built in 6-tap filter, as 
represented by 1, 2, 1: 1, 2, 1] with Rec,2i. 2). 
Reco,2i. 2+1. Reco,2i. 2-1. Recro,2i+1, 2, 
Recio.2i-1, 2-1), and Reco.2i+1, 2-1 as 6 input 
samples. A tap number of a filter indicates how many input 
samples are used for applying the filter. For instance, in 
equation (10), the video coder uses six values from the 
reconstructed luma block to generate the down-sampled 
luma block. 
0150 FIG. 15 is a conceptual diagram illustrating an 
example of luma positions and chroma positions for down 
sampling samples of a luma block for generating a predic 
tive block. As depicted in FIG. 15, a video coder predicts a 
chroma sample, represented by the filled-in triangle, from 
six luma samples, represented by the six filled-in circles, by 
applying a 6-tap filter. Since a predictor of a chroma sample 
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is derived using a linear function, as defined in equation (2), 
it could be seen that when the 6-tap filter is applied, the 
predictor of one chroma sample relies on the six neighboring 
luma samples. When combining equations (2) and (10), the 
result is the following equation (11): 

predc(i, j)=C. (Recio.2i, 2j]2+RecLoI2i, 2.j+1+ 

0151. The following text refers to the down-sampled 
reconstructed luma sample rec, (i, j) as the corresponding 
down-sampled luma sample for the chroma sample located 
at (i, j). For example, because of 4:2:0 sampling, a 2NX2N 
luma block corresponds to an NXN chroma block. With 
down-sampling, the 2NX2N luma blocks becomes an NXN 
down-sampled luma block. This NXN down-sampled luma 
block is referred to as rec, (i,j) and corresponds to the NXN 
chroma block. 
0152. Furthermore, although the above examples are 
described with respect to 4:2:0 sampling, the techniques 
described in this disclosure are not so limited. For instance, 
the techniques described in this disclosure may also be 
applicable to 4:2:2 sampling. Accordingly, the examples 
with respect to 4:2:0 are provided merely to assist with 
understanding. 
0153. Furthermore, in some examples, the techniques 
described in this disclosure may be applicable to 4:4:4 
sampling as well. For example, in 4:4:4 sampling, the 
chroma block is not sub-sampled relative to the luma block. 
However, it may be possible to determine a predictive block 
for the chroma block in such examples as well. For example, 
the luma block may be filtered and the filtered block may be 
used as a predictive block for the chroma block. In these 
examples, down-sampling of the luma block may not be 
needed. As explained in more detail, the example techniques 
describe selection of a filter applied to samples of the luma 
block based on a location of the chroma block. The tech 
niques for selecting a filter applied to samples of the luma 
block may be extended to examples where down-sampling 
is not needed for LM prediction, Such as for 4:4:4 sampling. 
In Such examples, the filter may not include any down 
sampling so that the 4:4:4 sampling is preserved. Accord 
ingly, the description for 4:2:0 sampling is an example, and 
the techniques are applicable to 4:4:4 sampling as well. 
0154 For example, rather than being limited to using 
only a two-tap filter or a six-tap filter to down-sample the 
luma block, a video coder (e.g., video encoder 20 or video 
decoder 30) may determine a filter from a set of filters that 
is used for down-sampling the luma block. As an example, 
there may be a number X of different filters that the video 
coder can use for down-sampling. For instance, there may be 
a one-tap filter, a two-tap filter, a three-tap filter, and so forth. 
Moreover, for each filter the specific taps might be different 
(e.g., the luma samples used for a first two-tap filter are 
different than the luma samples used for a second two-tap 
filter). In some of the examples described in this disclosure, 
the set of filters includes two filters; however, more than two 
filters from which the video coder determines which filter to 
apply for down-sampling the luma block are possible. 
0155 The video coder may use various criteria to deter 
mine which filter to apply. As one example, the video coder 
determines which filter from the set of filters to apply based 
on a location of the chroma block. If the chroma block 
borders a left boundary of the picture, CU, PU, or TU (e.g., 
the left boundary of the picture, CU, PU, or TU is the same 
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as chroma block edge), the video coder may use a first filter 
for down-sampling luma samples of the luma block that 
correspond to the chroma samples of the chroma block that 
are on the left boundary. Samples of the chroma block that 
are on the left boundary refer to the samples of the chroma 
block that are closest to the left boundary including samples 
that are directly on the boundary. The first filter may be 
applied to the N samples closest to the boundary (e.g., 
sample closest to the boundary, one next to that sample, and 
N such samples). 
0156. In some cases, the video coder may apply the first 
filter for all luma samples of the luma block, rather than just 
those samples that correspond to chroma samples that neigh 
bor the left boundary. However, the techniques described in 
this disclosure are not so limited. For all other cases, the 
video coder may use a second, different filter for down 
sampling the luma block. 
0157 For instance, in 4:2:0 sampling, four luma samples 
correspond to one chroma sample. Accordingly, the video 
coder may determine which chroma sample corresponds to 
which luma samples. When filters with larger tap numbers 
are used, one chroma sample may correspond to more than 
four luma samples. For the luma samples that correspond to 
a chroma sample on a left boundary (immediately adjacent 
or within a number of samples), the video coder may apply 
a first filter to the corresponding luma samples to down 
sample the luma block, and for the luma samples that 
correspond to a chroma sample that is not on a left boundary 
(not immediately adjacent or not within a number of 
samples), the video coder may apply a second filter to 
corresponding luma samples to down-sample the luma 
block. 

0158. In some examples, the first filter may include fewer 
taps (e.g., number of samples that the filter extends over) 
than the second filter. As one example, the first filter is the 
two-tap filter and the second filter is the six-tap filter. In this 
example, the video coder may perform the operations of 
equation (6) to determine the down-sampled luma samples 
of a luma block in the case that the corresponding chroma 
samples of the chroma block are on the left boundary, and 
may perform the operations of equation (10) to determine 
the down-sampled luma samples of the luma block in the 
case that the corresponding chroma samples of the chroma 
block are not on the left boundary. Accordingly, during the 
derivation process of corresponding down-sampled luma 
samples of chroma samples, the video coder may apply a 
different filter to the luma samples of a luma block that 
correspond to chroma samples of a chroma block located at 
the left picture boundary, or left boundary (i.e., side) of 
CU/PU/TU, compared to the filter applied to other samples 
of the luma block that correspond to chroma samples that are 
not at the left picture boundary or left boundary of CU, PU, 
or TU. Chroma samples that are at the left boundary refer to 
chroma samples immediately adjacent to the left boundary 
or within a certain number of samples from the left bound 
ary. 

0159. Using different filters allows the video coder to 
properly use available sample values. For instance, using a 
six-tap filter for luma samples that correspond to chroma 
samples at the left boundary of picture, CU, PU, or TU may 
result in requiring the video coder to use luma sample values 
that are not part of the luma block for down-sampling and 
may result in the video coder having to perform some 
additional processing to address the lack of luma samples 
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(e.g., padding luma sample values to generate values for 
samples that are not part of a luma block). However, using 
a two-tap filter at the left boundary may not require the video 
coder to use luma sample values that are not part of the luma 
block for down-sampling. Accordingly, although two-tap 
and six-tap filters are described, other sized filters for 
down-sampling may be possible with consideration to avoid 
needing to require luma samples that are not part of the luma 
block (e.g., to avoid the need to pad luma samples on the left 
boundary). 
0160. As one example, during the derivation process of 
corresponding down-sampled luma samples of chroma 
samples, the video coder applies a different filter to luma 
samples that correspond to chroma samples located at the 
left picture boundary compared to the filter applied to other 
luma samples that correspond to chroma samples not located 
at the left picture boundary. In one example, the length (e.g., 
tap) of the filter (i.e., the number of samples that the filter 
extends over) for deriving the corresponding down-sampled 
luma samples of chroma samples at the left picture boundary 
is smaller than the length of the filter for deriving the 
corresponding down-sampled luma samples of chroma 
samples not at the left picture boundary (e.g., two-tap for the 
left boundary and six-tap for all others). 
0161. As one example, during the derivation process of 
corresponding down-sampled luma samples of chroma 
samples, the video coder applies a different filter for luma 
samples of chroma samples located at the left CU boundary 
compared to the filter applied to other luma samples within 
current CU. In one example, the length (e.g., taps) of the 
filter (i.e., number of samples that the filter extends over) for 
deriving the corresponding down-sampled luma samples of 
chroma samples at the left CU boundary is smaller than the 
length of the filter for deriving the corresponding down 
sampled luma samples of chroma samples not at the left CU 
boundary (e.g., two-tap for the left boundary and six-tap for 
all others). 
0162. As one example, during the derivation process of 
corresponding down-sampled luma samples of chroma 
samples, the video coder applies a different filter for chroma 
samples located at the left PU boundary compared to the 
filter applied to other samples within current PU. In one 
example, the length (e.g., taps) of the filter (i.e., the number 
of samples that the filter extends over) for deriving the 
corresponding down-sampled luma samples of chroma 
samples at the left PU boundary is smaller than the length of 
the filter for deriving the corresponding down-sampled luma 
samples of chroma samples not at the left PU boundary (e.g., 
two-tap for the left boundary and six-tap for all others). 
0163 As one example, during the derivation process of 
corresponding down-sampled luma samples of chroma 
samples, the video coder may apply a different filter for 
chroma samples located at the left TU boundary compared 
to the filter applied to other samples within current TU. In 
one example, the length (e.g., taps) of the filter (i.e., the 
number of samples that the filter extends over) for deriving 
the corresponding down-sampled luma samples of chroma 
samples at the left TU boundary is smaller than the length of 
the filter for deriving the corresponding down-sampled luma 
samples of chroma samples not at the left TU boundary (e.g., 
two-tap for the left boundary and six-tap for all others). 
0164. In some cases, there may not be corresponding 
luma samples in the same picture. The following describes 
Some example techniques to address such situations. For 
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instance, although avoiding padding may be beneficial in 
Some cases, in some instances, it may not be possible to 
avoid padding. For example, because some luma samples 
are unavailable (e.g., because off picture), the video coder 
may substitute padding sample values for these unavailable 
samples and perform down-sampling with these padding 
sample values (e.g., down-sample using the actual luma 
sample values for the available luma samples and padding 
sample values for the unavailable luma samples). The pad 
ding sample values may be default values (e.g. 2' 
wherein bitdepth indicates the bit depth of luma compo 
nent), values determined by video encoder 20 and signaled 
to video decoder 30, or values determined based on some 
implicit technique that does not require signaling of infor 
mation. Adding padding sample values may reduce com 
plexity because there may not be a need for separate filters. 
0.165. During the derivation process of corresponding 
down-sampled luma samples of chroma samples, when the 
luma samples are outside of a picture, or a CU/PU/TU needs 
to be involved in the down-sampling process, the video 
coder may first apply a padding operation, followed by a 
down-sampling process. In the padding of samples, the 
Video coder may substitute those samples that are offscreen 
with padding sample values. 
0166 As one example, during the derivation process of 
corresponding down-sampled luma samples of chroma 
samples, the video coder may pad the luma samples (e.g., 
only the luma samples) which are located outside of the 
current picture. For all other positions, the reconstructed 
samples are used. As one example, during the derivation 
process of corresponding down-sampled luma samples of 
chroma samples, the video coder may pad the luma samples 
which are located outside of the current CU. For all other 
positions, the reconstructed samples are used. As one 
example, during the derivation process of corresponding 
down-sampled luma samples of chroma samples, the video 
coder may pad the luma samples which are located outside 
of the current PU. For all other positions, the reconstructed 
samples are used. As one example, during the derivation 
process of corresponding down-sampled luma samples of 
chroma samples, the video coder may pad the luma samples 
which are located outside of the current TU. For all other 
positions, the reconstructed Samples are used. In above 
examples for padding, the same down-sampling process is 
applied to all positions. 
0167. When the position of luma reconstructed samples 
used in LM prediction mode is located outside the current 
slice or current tile, the video coder may mark Such samples 
as unavailable (e.g., the video coder may determine Such 
samples as unavailable). When the sample is marked as 
unavailable, the video coder may perform one or more of the 
following. 
0.168. The unavailable samples, if used in a down-sam 
pling process for a neighboring luma block, are not used in 
the down-sampling process for a neighboring luma block. 
Alternatively or additionally, the filter may be different from 
the filter used for other samples. The unavailable samples, if 
used in a down-sampling process for a current luma block, 
are not used in the down-sampling process for a current luma 
block. Alternatively or additionally, the filter may be differ 
ent from the filter used for other samples. The unavailable 
samples are re-marked as available; however, the sample 
value is modified to be the padded sample value or a default 
value. Alternatively or additionally, the filter is kept the same 
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as the filter used for other samples. In one example, the 
default value is dependent on the bit-depth. In another 
example, the padding could be from the left/right/above/ 
below sample which is marked as available. 
0169. In general, for luma samples that are in another tile, 
the video coder may mark pixels outside the tile boundary as 
unavailable and not include them in the down-sampling 
process. In some examples, the video coder may mark the 
luma samples in another tile as available but use padded 
pixels for Such luma samples in another tile. As another 
example, the video coder may use padded “extended values 
(e.g., one half possible value based on bit depth, so 8 bit, use 
128) for luma samples in another tile, rather than marking 
the samples as unavailable. 
0170 In some examples, the video coder may apply 
different filters to different chroma color components (Cb or 
Cr). In some examples, when LM prediction mode is 
enabled, one or more sets of the down-sampling filter may 
be further signaled in either a sequence parameter set (SPS), 
picture parameter set (PPS), or slice header. Alternatively or 
additionally, a Supplemental Enhancement Information 
(SEI) message syntax is introduced to describe the down 
sampling filter. Alternatively or additionally, furthermore, a 
default down-sampling filter is defined, e.g., the 6-tap filter 
1, 2, 1; 1, 2, 1 without signaling. Alternative or addition 

ally, one PU/CU/largest CU may signal an index of the filter 
that is used in LM prediction mode. Alternatively or addi 
tionally, the usage of the filter tap may be derived on-the-fly 
by video decoder 30 without signaling. There may be other 
ways to provide filter support as well. 
0171 In one example, furthermore, a constraint is applied 
that C, is equal to Cos. In one example, furthermore, a 
constraint is applied that C, is equal to C2 with i being 
equal to 0 or 3. In one example, this example technique may 
only be enabled for larger coded CUs, e.g., CU size larger 
than 16x16. In one example, one or more of the parameters 
is restricted to be 0. 

0172 Moreover, the video coder may apply one or more 
of the above techniques also for cross component residual 
prediction, in which the down-sampled luma residual is used 
to predict the chroma residual. In this case, the down 
sampling process is applied to reconstructed luma residual, 
as one example. 
0173 The following is an example manner in which 
techniques described in this disclosure may be implemented 
by a video coder. The example implementation technique 
should not be considered limiting. 
0.174 Below is an example for applying different down 
sampling processes for samples at the left picture boundary. 
The down-sampling process for a current luma block is 
defined as follows: 

0.175 if the chroma sample is not located at the left 
boundary of picture, 6-tap filter, e.g. 1 2 1; 1 2 1 is 
applied to derive the corresponding down-sampled 
luma sample: 
recz (i,i)=(Recio.2i, 2j]2+RecLoI2i, 2j+1+ 

Recto2i, 2j-l+Recto2i+1, 2i 2+Recio 

0176) Otherwise, if the chroma sample is located at the 
left boundary of the picture, 2-tap filter, e.g., 1; 1 is 
applied to derive the corresponding down-sampled 
luma sample: 
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0177. In one example, offset0 and offset1 are both set 
equal to 0. In another example, offset.0 is set equal to 4 and 
offset 1 is set equal to 1. 
0178. In HEVC, a square transform is always applied, 
even for rectangular PUs. For example, FIG. 16 is a con 
ceptual diagram illustrating nRX2N prediction mode with 
NXN transform. In the example of FIG. 16, the nRX2N 
prediction mode partitions a coding block 100 with a 2NX2N 
block size into two prediction blocks with sizes of 0.5NX2N 
and 1.5Nx2N, respectively. However, in the example of 
FIG. 16, the transform block size is NXN. 
0179 FIG. 17 is a conceptual diagram illustrating a 
non-square quadtree (NSQT) for 2NxN, 2NxnD and 2NxnU 
prediction modes. In FIG. 17, a 2NX2N block at level 0 is 
split into four 2.Nx0.5N blocks located at level 1; the block 
at level 1 is further split into four Nx0.25N blocks locate at 
level 2. FIG. 18 is a conceptual diagram illustrating a NSQT 
for NX2N, nRX2N and nLX2N prediction modes. In FIG. 18, 
a 2NX2N block at level 0 is split into four 0.5NX2N blocks 
located at level 1; the block at level 1 is further split into four 
0.25NXN blocks locate at level 2. 
0180 Considering that residuals might be discontinuous 
at the boundaries of two connective prediction blocks, high 
frequency transform coefficients will likely be produced and 
the coding performance will be affected. In this disclosure, 
connective predictive blocks are predictive blocks that share 
at least one of the four boundaries. Therefore, in Yuan et al., 
“Non-Square Quadtree Transform Structure for HEVC.” 
2012 Picture Coding Symposium (PCS), pp. 505-508, May 
7-9, 2012, Kraków, Poland (hereinafter, “Yuan'), a non 
square quadtree transform (NSQT) structure is described. 
0181. In NSQT, two additional transform block sizes are 
added: 2Nx0.5N and 0.5NX2N. In this structure, a transform 
block is split into 2Nx0.5N and 0.5.Nx2N and transform 
matrix can be obtained by reusing 0.5Nx0.5N and 2NX2N 
transform matrixes. In this disclosure, a transform matrix 
may also be referred to as a transform core. In Yuan, the 
NxN quantization table of HEVC is reused to quantize the 
transform coefficients of 2Nx0.5N and 0.5NX2N transform 
blocks. 
0182. As mentioned above, a video coder may apply a 
transform to convert samples to a frequency domain, or vice 
versa. The specific types of transforms applied in HEVC are 
two types of discrete cosine transforms, namely DCT-II and 
4x4 DST-VII. Xin Zhao et al., U.S. Patent Publication 
2016/0219290 A1 proposed an Enhanced Multiple Trans 
form (EMT) scheme in addition to DCT-II and 4x4 DST-VII 
for both inter and intra coded blocks. The EMT scheme 
utilizes multiple selected transforms from the DCT/discrete 
sine transform (DST) families other than the current trans 
forms in HEVC. The newly introduced transform matrices in 
U.S. Patent Publication 2016/0219290 are DST-VII, DCT 
VIII, DST-I and DCT-V. 
0183. The proposed EMT in U.S. Patent Publication 
2016/0219290 A1 applies to CUs smaller than 64x64, and 
whether EMT applies or not is controlled at the CU level 
using a flag, namely an EMT flag, for all TUs within a CU. 
For each TU within an EMT-enabled CU, the horizontal or 
vertical transform to be used is signaled by an index to a 
selected transform set, namely an EMT index. Each trans 
form set is formed by selecting two transforms from the 
aforementioned transform matrices. 
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0184 For intra prediction residual, the transform sets are 
pre-defined based on the intra prediction mode, as described 
in X. Zhao et al., “Video coding with rate-distortion opti 
mized transform.” IEEE Trans. Circuits Syst. Video Tech 
nol. Vol. 22, no. 1, pp. 138-151, January 2012; thus each 
intra prediction mode has its own transform set. For 
example, one transform set can be DCT-VIII, DST-VII}. 
Note that the transform set for the horizontal transform may 
be different from the transform set for the vertical transform, 
even for a same intra prediction mode. However, the total 
number of different transform sets for all intra prediction 
modes as well as the number of newly introduced transforms 
is limited. However, for inter prediction residual, only one 
transform set is used for all inter modes and for both 
horizontal and vertical transforms. 

0185 Illumination compensation (IC) in the multi-view 
Video coding is used for compensating illumination discrep 
ancies between different views because each camera may 
have different exposure to a light source. Typically, a weight 
factor and/or an offset are used to compensate the differences 
between a coded block and a prediction block in a different 
view. Illumination compensation was introduced to improve 
the coding efficiency for blocks predicted from inter-view 
reference pictures. Therefore, illumination compensation 
may only apply to blocks predicted by an inter-view refer 
ence picture. 
0186 Liu et al., “3D-CE1.h related: Illumination Com 
pensation for Inter-View Prediction,” Joint Collaborative 
Team on 3D Video Coding Extension Development of 
ITU-T SG 16 WP3 and ISO/IEC JTC 1/SC 29/WG 11, 1 
Meeting, Stockholm, SE, 16-20 Jul. 2012, document 
JCT3V-AO086 (hereinafter, JCT3V-A0086), describes illu 
mination compensation (IC). In JCT3V-A0086, IC is 
enabled for inter-view prediction. Furthermore, as described 
in JCT3V-A0086, a IC process derives IC parameters based 
on neighboring samples of a current CU and neighboring 
samples of a reference block. In JCT3V-A0086, IC only 
applies to a 2NX2N partition mode. Furthermore, in JCT3V 
A0086, for AMVP mode, one IC flag is signaled for each CU 
that is predicted from an inter-view reference picture. For 
merge mode, to save bits, an IC flag is signaled only when 
a merge index of the PU is not equal to 0. The IC flag 
indicates whether IC is used for a CU. IC does not apply to 
CUs that are only predicted from temporal reference pic 
tures. 

0187. As described in JCT3V-AO086, a linear IC model 
used in inter-view prediction is shown in Eq. (6): 

p(i,j)-ar(i+dv j+dvi-b), where (i, j) e PU (15) 

Here, PU is a current PU, (i,j) are the coordinates of pixels 
in PU, (dv, dv,) is a disparity vector of PU, p(i,j) is the 
prediction of PU, and r is the current PU's reference picture 
from a neighboring view. a and b are parameters of the linear 
IC model. 

0188 In JCT3V-AO086, two sets of pixels as shown in 
FIG. 19 are used to estimate parameters a and b for a current 
PU. The first set of pixels includes available reconstructed 
neighboring pixels in a left column and an above row of a 
current CU (i.e., a CU that contains the current PU). The 
second set of pixels includes corresponding neighboring 
pixels of a reference block of the current CU. The disparity 
vector of the current PU is used to find the reference block 
of the current CU. 

20 
May 25, 2017 

0189 FIG. 19 illustrates neighboring pixels used to esti 
mate parameters in the IC model. Particularly, FIG. 19 
includes a current CU 110 and reference block 112. Each 
respective square of FIG. 19 corresponds to a respective 
sample. Thus, current CU 110 and reference block 112 each 
include 64 samples. The squares enclosing circles adjacent 
to current CU 110 correspond to the neighboring samples of 
current CU 110 (i.e., Rec.). The squares enclosing circles 
adjacent to reference block CU 112 correspond to the 
neighboring samples of neighboring block 112 (i.e., Rec, 
neigh). As described elsewhere in this disclosure, a video 
coder may use Rece, and Refael, to estimate param 
eters for IC. 

0190. Furthermore, as described in JCT3V-AO086, let 
Rec, denote a neighboring pixel set used by the current 
CU. Let Rec, denote a neighboring pixel set used by 
the reference block of the current CU. Let the size of the 
current CU and the size of the reference block of the current 
CU both be equal to NXN. Let 2N denote the number of 
pixels in Rec and Rec Then, a and b can be 
calculated as: 

Paeig refineig 

2N- (16) 

2N-X Rec, (i). Recies (i)- 
i=0 

2N- V 2N-1 2. Recneig(i)X. Recretireig (i) 
C 2N- (2N-1 

2N, ) Recrati Recanti- 2, Recent) i 

2N- 2N- (17) 

X Receig (i)-a-X Recrenes (i) 
b = i=0 i=0 

2N 

In some cases, only a is used in linear model and b is always 
set equal to 0, or only b is used and a is always set equal to 
1 

0191 In VCEG-AZ06, Local Illumination Compensation 
(LIC) is enabled or disabled adaptively for each inter-mode 
coded CU. In VCEG-AZ06, LIC is based on a linear model 
for illumination changes, using a scaling factor a and an 
offset b. FIG. 20 is a conceptual diagram illustrating 
example neighboring samples used for deriving IC param 
eters as described in VCEG-AZ06. 

(0192. In VCEG-AZ06, when LIC applies for a CU, for 
each PU/sub-PU belonging to the CU, a video coder derives 
LIC parameters in a way that using Sub-Sampled (2:1 
Sub-sampling) neighboring samples of the CU and the 
corresponding pixels (identified by motion information of 
the current PU/sub-PU) in the reference picture. For a CU 
with size equal to NxN, the total number of boundary pixels 
used in equations (16) and (17) is N instead of 2N. An 
example is illustrated in FIG. 20. Thus, FIG. 20 is a 
conceptual diagram illustrating example neighboring pixels 
used to estimate parameters in an illumination compensation 
model, in which a reference block 114 of a current CU 116 
is found by using a disparity vector of a current PU. In 
VCEG-AZ06, the IC parameters are derived and applied for 
each prediction direction separately. A video coder may 
employ a least square error method to derive the parameters 
a and b based on the abovementioned neighboring samples. 
(0193 The current RQT design in HEVC, and other 
techniques such as NSQT and IC, may have the following 
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shortcomings. For instance, regardless of whether the NSQT 
or the transform tree of HEVC is used, a quad-tree structure 
is always employed which may be sub-optimal without 
considering PU information. However, HEVC only supports 
square PUs for intra prediction modes. 
0194 Introducing 2NxN and NX2N partitions to intra 
modes, as is done in JCTVC-G135, may have the following 
problems. First, AMP is not allowed. Second, how to define 
the transform tree structure to achieve high coding efficiency 
has not been studied. Third, the LM prediction mode has 
only been used with square PUs and it is unknown how to 
derive the parameters C. and B used in the LM prediction 
mode with non-square PUs. Fourth, in prior techniques, the 
coefficients must be reorganized to be in a square form, 
which may reduce the correlation among neighboring coef 
ficients. Furthermore, the current EMT design has a problem 
in that EMT is controlled at the CU level. However, con 
trolling EMT at the CU level is not efficient if the residual 
characteristics (e.g., distributions) of each PU in a CU are 
different. 
0.195 To resolve the problems mentioned above, this 
disclosure proposes the following techniques. The following 
itemized techniques may be applied individually. Alterna 
tively, any combination of them may be applied. In the 
following description, the CU size is denoted by MXM and 
PU size is denoted by Kx.L., wherein both K and L are no 
larger than M. 
0196. In accordance with a first example technique of this 
disclosure, it is proposed that a transform tree is not 
restricted to be a quarter tree. For example, a transform 
quad-tree and a transform binary tree may be combined. 
That is, for at least a certain transform depth, one TU may 
be split into two smaller TUs or four smaller TUs. In this 
disclosure, for each respective node of a transform tree, the 
respective transform depth of the respective node refers to 
the number of nodes in the transform tree between the 
respective node and the root node of the transform tree. The 
flexibility to split a TU into two TUs or four TUs may 
enhance the ability of video encoder 20 to structure the 
transform tree in a way that aligns TU boundaries with PU 
boundaries. Aligning TU boundaries with PU boundaries 
may increase compression performance. 
0.197 Thus, in this example, video encoder 20 may 
partition a CU of video data into TUs of the CU based on a 
tree structure. In this example, a root node of the tree 
structure corresponds to a coding block of the CU. Further 
more, in this example, each respective non-root node of the 
tree structure corresponds to a respective block that is a 
partition of a block that corresponds to a parent node of the 
respective non-root node. In this example, leaf nodes of the 
tree structure correspond to the TUs of the CU. In this 
example, at least one node in the tree structure has exactly 
two child nodes in the tree structure. In some instances, at 
least one node in the tree structure may have exactly four 
child nodes in the tree structure. In this example, video 
encoder 20 may include, in a bitstream that comprises an 
encoded representation of the video data, data representing 
one or more of the TUs of the CU. 
0198 In a corresponding example, video decoder 30 may 
determine a CU is partitioned into TUs of the CU based on 
a tree structure. In this example, a root node of the tree 
structure corresponds to a coding block of the CU. Further 
more, in this example, each respective non-root node of the 
tree structure corresponds to a respective block that is a 

May 25, 2017 

partition of a block that corresponds to a parent node of the 
respective non-root node. In this example, leaf nodes of the 
tree structure correspond to the TUs of the CU. In this 
example, at least one node in the tree structure has exactly 
two child nodes in the tree structure, and at least one node 
in the tree structure has exactly four child nodes in the tree 
structure. In this example, video decoder 30 may recon 
struct, based on data for at least one of the TUs of the CU, 
the coding block of the CU. 
0199 Furthermore, in an example where a transform tree 
is not restricted to be a quarter tree (i.e., not required to be 
a tree in which all non-leaf nodes have 4 child nodes), for 
transform depth equal to 0, the square transform with size 
equal to MxM is applied. For transform depth equal to 1, the 
transform is split into two or four (depending on the number 
of PUs) and transform size is equal to Kx.L. For remaining 
transform depths, the quad-tree structure is still applied 
wherein one TU is split into four smaller ones, i.e., for 
transform depth equal to 2, the transform size is set to 
K/2xL/2. An example is given in FIG. 21. One reason for 
limiting splitting of transform into two or four at transform 
depth 1 is to align transform sizes with PU sizes, e.g., if a PU 
size is 2NXN or Nx2N, splitting into 2 may be preferred. If 
a PU is an NXN partition, 4-way transform splitting may 
yield better results. In another reason, if the corresponding 
transform matrix was unknown, e.g., if AMP is used, one 
16x16 CU may be split into 4x16 and 12x16 PUs, while 
12x12 transform is not defined, therefore, splitting to 4 may 
be used for this case. 
0200 FIG. 21 is a conceptual diagram illustrating an 
example transform structure for partition size equal to 
2NXN. In FIG. 21 and the following figures, the dash lines 
indicate the splitting information for the next transform 
depth. Particularly, in FIG. 21, a transform block 130 has the 
same size as a coding block of a CU. Transform block 130 
is partitioned into transform blocks 132 and 134. Further 
more, in the example of FIG. 21, transform block 132 is 
partitioned into transform blocks 136, 137, 138, and 139. 
Transform block 134 is partitioned into transform blocks 
140, 141, 142 and 143. Thus, as shown in FIG. 21, a root 
node may have 2 child nodes, but nodes at other transform 
depths may be required to have 0 or 4 child nodes. 
0201 In some examples where a transform tree of a CU 
is not restricted to being a quarter tree, either a binary tree 
or a quarter tree is applied. A video coder may determine 
whether a binary tree or a quarter tree is applied based on the 
number of PUs in the CU. For example, when there are two 
PUs, the video coder utilizes a binary transform tree. If the 
CU has four PUs, the video coder may use a quarter tree 
structure to partition the CU into TUs. In one example, the 
method of selecting either binary tree or quarter tree is only 
applied to certain transform depths, such as 1. 
0202 Thus, in this example, video encoder 20 may 
partition a CU of the video data into TUs of the CU based 
on a tree structure. In this example, a root node of the tree 
structure corresponds to a coding block of the CU, each 
respective non-root node of the tree structure corresponds to 
a respective block that is a partition of a block that corre 
sponds to a parent node of the respective non-root node, leaf 
nodes of the tree structure correspond to the TUs of the CUs, 
and the CU has one or more PUs. Furthermore, in this 
example, depending on the number of PUs of the CU, 
exactly one of the following applies: each node in the tree 
structure has exactly two child nodes in the tree structure, or 
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each node in the tree structure has exactly four child nodes 
in the tree structure. In this example, video encoder 20 may 
include, in a bitstream that comprises an encoded represen 
tation of the video data, data representing one or more of the 
TUs of the CU. 
0203. In a corresponding example, video decoder 30 may 
determine a CU of the video data is partitioned into TUs of 
the CU based on a tree structure. In this example, a root node 
of the tree structure corresponds to a coding block of the CU, 
each respective non-root node of the tree structure corre 
sponds to a respective block that is a partition of a block that 
corresponds to a parent node of the respective non-root 
node, leaf nodes of the tree structure correspond to the TUs 
of the CUs, and the CU has one or more PUs. In this 
example, depending on the number of PUs of the CU, 
exactly one of the following applies: each node in the tree 
structure has exactly two child nodes in the tree structure, or 
each node in the tree structure has exactly four child nodes 
in the tree structure. Furthermore, in this example, video 
decoder 30 may reconstruct, based on data for at least one 
of the TUs of the CU, the coding block of the CU. 
0204. In some examples where the transform tree is not 
restricted to be a quarter tree, the splitting method of either 
binary or quarter tree is signaled. For example, video 
encoder 20 may include, in the bitstream data representing 
a syntax element that indicates whether a CU is partitioned 
into TUS according to a binary tree or according to quarter 
tree. In this example, video decoder 30 may determine, 
based on data in the bitstream, a value of the syntax element. 
Furthermore, in this example, video decoder 30 may deter 
mine, based on the value of the syntax element, whether the 
CU is partitioned into TUs according to a binary tree or 
according to a quarter tree. 
0205 Alternatively, furthermore, the signaling may be 
skipped for certain PU partitions. In other words, video 
encoder 20 may skip signaling of transform tree splitting for 
a block based on how the block is split into PUs. For 
instance, in one example, for PU partitions equal to 2NXN, 
a binary tree is always used and therefore, there is no need 
to signal that binary or quarter tree splitting is used in the 
corresponding transform tree. 
0206. In accordance with a second technique of this 
disclosure, it is proposed that at a certain transform depth, 
the transform size is equal to the PU size for the rectangular 
PUs. In this disclosure, transform size refers to a size of a 
transform block of a TU. Thus, in this example, the trans 
form blocks corresponding to nodes at a particular depth of 
a transform tree of a CU have the same sizes as prediction 
blocks of PUs of the CU. As previously discussed, aligning 
TU boundaries with PU boundaries may improve compres 
sion performance. 
0207. In one example of the second technique, the above 
method is only applied to inter coded CUs. In other words, 
a video coding standard may require video encoder 20 to 
ensure that transform sizes are equal to PUs for inter coded 
CUs, but this requirement does not apply to intra coded CUs. 
0208 Furthermore, in some examples, video encoder 20 
may signal one flag for each PU to indicate whether there 
exists at least one non-zero coefficient for the three color 
components (e.g., Y. Cb, and Cr). As mentioned above, the 
second technique of this disclosure requires the sizes of TUs 
of a CU to be equal to the sizes of PUs of the CU at a 
particular depth in the transform tree. Hence, at the particu 
lar depth, the transform tree includes a respective transform 
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tree node for each respective PU of the CU. For each 
respective transform tree node of the transform tree at the 
particular depth, the respective transform tree node corre 
sponds to a luma transform block and chroma transform 
blocks having the same sizes and shapes as aluma prediction 
block and chroma prediction blocks of the corresponding 
PU. Hence, encoder 20 may signal information about a 
transform tree node at the particular depth (and descendant 
transform tree nodes of the transform tree node at the 
particular depth) by signaling information in the correspond 
ing PU. For example, video encoder 20 may signal, in a 
bitstream, a first syntax element for a PU, a second syntax 
element for the PU, and a third syntax element for the PU. 
In this example, the first syntax element for the PU indicates 
whether there exists a non-zero transform coefficient in a 
luma coefficient block of the corresponding transform tree 
node or descendant transform tree node thereof, the second 
syntax element for the PU indicates whether there exists a 
non-zero transform coefficient in a Cb coefficient block of 
the corresponding transform tree node or descendant trans 
form tree node thereof, and the third syntax element for the 
PU indicates whether there exists a non-zero transform 
coefficient in a Cr coefficient block of the corresponding 
transform tree node or descendant transform tree node 
thereof. 
0209. In prior techniques, rectangular PUs were only 
permitted for inter predicted CUs. However, in some 
examples of the second technique of this disclosure, when 
the rectangular PUs (such as 2NxN, Nx2N) are introduced 
to the intra coded CUs, the above method (i.e., requiring the 
transform size to be equal to the PU size at a particular 
transform depth) is also applied. 
0210. In accordance with a third technique, one TU may 
be split into multiple smaller TUs while the sizes of the 
smaller TUs may be different. In other words, a video coder 
may split a TU into two differently-sized child TUs. In some 
instances, splitting a TU into two or more differently-sized 
child TUS may improve video coding performance instances 
where AMP is enabled because splitting a TU into two or 
more differently-sized child TUs may better align the bound 
aries of the child TUs with PU boundaries. As discussed 
elsewhere in this disclosure, aligning boundaries of TUS 
with boundaries of PUs may reduce the occurrence of high 
frequency transform coefficients associated with disconti 
nuities at boundaries between predictive blocks and there 
fore increase compression efficiency. For example, if a block 
(e.g., a CU) has a 12x16 PU, a portion of the block 
corresponding to the 12x16 PU may be split into two 8x8 
TUs plus two 4x4 TUs, or two 8x8 TUs plus one 4x16 TU. 
0211. In one example of the third technique, when AMP 
mode is enabled for one CU, the transform tree for the larger 
PU may be split to two parts with one equal to the smaller 
PU and the rest as another TU. An example is given in FIG. 
22. FIG. 22 is a conceptual diagram illustrating a transform 
structure for partition size equal to NxN/4(U), in accordance 
with a technique of this disclosure. In the example of FIG. 
22, a transform block 150 is partitioned into transform 
blocks 152 and 154. Furthermore, in the example of FIG. 22. 
transform block 152 is partitioned into transform blocks 
156, 158, 160, and 162. Transform block 154 is partitioned 
into transform blocks 164 and 166. The right branch at 
transform depth 2 shows that the two split transform sizes 
are different. That is, transform block 164 and transform 
block 166 have different sizes. 
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0212. In some examples of the third technique, asym 
metric splitting of a TU is only applicable to the AMP case 
wherein the two PU sizes are different or one CU contains 
multiple PUs with at least two of the PUs having different 
sizes. In other words, a video coder may only split a TU into 
child TUs of different sizes if a CU containing the TU is split 
into PUs of different sizes. 
0213 Thus, in an example where a TU may be split into 
multiple differently-sized TUs, video encoder 20 may par 
tition a CU into TUs of the CU based on a tree structure. In 
this example, a root node of the tree structure corresponds to 
a coding block of the CU. Furthermore, in this example, 
each respective non-root node of the tree structure corre 
sponds to a respective block that is a partition of a block that 
corresponds to a parent node of the respective non-root 
node. In this example, leaf nodes of the tree structure 
correspond to the TUs of the CUs. In this example, child 
nodes of at least one node of the tree structure correspond to 
blocks of different sizes. Furthermore, in this example, video 
encoder 20 may include, in a bitstream that comprises an 
encoded representation of video data, data representing one 
or more of the TUs of the CU. 
0214. In a corresponding example, video decoder 30 may 
determine a CU is partitioned into TUs of the CU based on 
a tree structure. In this example, a root node of the tree 
structure corresponds to a coding block of the CU. Further 
more, in this example, each respective non-root node of the 
tree structure corresponds to a respective block that is a 
partition of a block that corresponds to a parent node of the 
respective non-root node. In this example, leaf nodes of the 
tree structure correspond to the TUs of the CUs. In this 
example, child nodes of at least one node of the tree structure 
correspond to blocks of different sizes. Furthermore, in this 
example, video decoder 30 may reconstruct, based on data 
for at least one of the TUs of the CU, the coding block of the 
CU 

0215. In accordance with a fourth technique of this 
disclosure, it is allowed that the split of transform is carried 
out not along the same direction (vertical or horizontal) in a 
CU. In other words, a transform tree for a CU may include 
transform blocks that are split horizontally and transform 
blocks that are split vertically. Allowing both horizontal and 
vertical splitting of transform blocks may better align the 
boundaries of the TUs of the CU with boundaries of the PUS 
of the CU. As discussed elsewhere in this disclosure, align 
ing the boundaries of the TUs of a CU with boundaries of the 
PUs of the CU may reduce the occurrence of high frequency 
transform coefficients associated with discontinuities at 
boundaries between predictive blocks and therefore increase 
compression efficiency. In one example of the fourth tech 
nique, the use of both horizontal and vertical splitting of TUs 
of a CU is only applicable to certain partition modes, e.g., 
AMP 
0216 FIG. 23 is a conceptual diagram illustrating a 
transform structure for a partition size equal to NxN/4(U), in 
accordance with a technique of this disclosure. In the 
example of FIG. 23, the CU partition is along the horizontal 
direction and TU partition could be from either horizontal 
and/or vertical directions. Particularly, a TU 180 is split 
horizontally into a TU 182 and a TU 184. TU 182 is split into 
TUs 186,188, 190, and 192. TU 184 is split horizontally and 
vertically into TUs 194, 196, and 198. 
0217. In an example in which splitting of transform 
blocks along different directions in a CU is allowed, video 
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encoder 20 may partition a CU into TUs of the CU based on 
a tree structure. In this example, a root node of the tree 
structure corresponds to a coding block of the CU. Further 
more, in this example, each respective non-root node of the 
tree structure corresponds to a respective block that is a 
partition of a block that corresponds to a parent node of the 
respective non-root node. In this example, leaf nodes of the 
tree structure correspond to the TUs of the CUs. In this 
example, a first node in the tree structure has exactly two 
child nodes and a boundary between blocks corresponding 
to the child nodes of the first node is vertical. Additionally, 
in this example, a second node in the tree structure has 
exactly two child nodes and a boundary between blocks 
corresponding to the child nodes of the second node is 
horizontal. In this example, video encoder 20 may include, 
in a bitstream that comprises an encoded representation of 
the video data, data representing one or more of the TUs of 
the CU. 

0218. Similarly, video decoder 30 may determine a CU is 
partitioned into TUs of the CU based on a tree structure. In 
this example, a root node of the tree structure corresponds to 
a coding block of the CU, each respective non-root node of 
the tree structure corresponds to a respective block that is a 
partition of a block that corresponds to a parent node of the 
respective non-root node, and leaf nodes of the tree structure 
correspond to the TUs of the CUs. Furthermore, in this 
example, a first node in the tree structure has exactly two 
child nodes and a boundary between blocks corresponding 
to the child nodes of the first node is vertical. In this 
example, a second node in the tree structure has exactly two 
child nodes and a boundary between blocks corresponding 
to the child nodes of the second node is horizontal. In this 
example, video decoder 30 may reconstruct, based on data 
for at least one of the TUs of the CU, the coding block of the 
CU. 

0219. In accordance with a fifth technique of this disclo 
sure, one CU may contain both intra and inter PUs which is 
referred to comb mode in the following descriptions. In 
Some instances, use of comb mode may increase the accu 
racy of predictive blocks of a CU and therefore may ulti 
mately lead to increased compression performance. The 
accuracy of a predictive block of a PU of a CU is a measure 
of differences between corresponding samples of the pre 
dictive block of the PU and samples of a coding block of the 
CU. 

0220 Thus, in accordance with the fifth technique, video 
encoder 20 may perform intra prediction to obtain a first 
predictive block for a first PU of a CU. Additionally, in this 
example, video encoder 20 may perform inter prediction to 
obtain a second predictive block for a second PU of the same 
CU. In this example, video encoder 20 may obtain, based on 
the first predictive block and the second predictive block, 
residual data for the CU. Furthermore, in this example, video 
encoder 20 may include, in a bitstream comprising an 
encoded representation of the video data, data representing 
the residual data for the CU. 

0221) Similarly, in accordance with the fifth technique, 
video decoder 30 may perform intra prediction to obtain a 
first predictive block for a first PU of a CU. In this example, 
video decoder 30 may perform inter prediction to obtain a 
second predictive block for a second PU of the same CU. 
Furthermore, in this example, video decoder 30 may recon 
struct, based on the first predictive block and the second 
predictive block, a coding block of the CU. 
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0222. When one CU is coded with comb mode, and the 
CU is split into two PUs in the vertical direction, such as in 
an NX2N partitioning mode, a video coder may determine 
the transform depth of a transform tree of the CU as follows: 
If the left PU is an intra-coded PU, transform depth can be 
from 0. In other words, based on the left PU being intra 
coded, the depth of the transform tree of the CU is allowed 
to be 0 or greater. Therefore, in instances where the depth of 
the transform tree of the CU is equal to 0, the TU size could 
be equal to the CU size and one TU may cover two PUs, i.e., 
cross PU boundaries. Otherwise (the left PU is an inter 
coded PU), the transform depth is restricted to be from 1. In 
other words, the depth of the transform tree of the CU may 
be 1 or greater, but not equal to 0. In this example, when the 
left PU is an inter-coded PU, the TU size should be no larger 
than the PU size. 

0223 Thus, in this example, video encoder 20 may 
generate a bitstream that conforms to a video coding stan 
dard. In this example, based on the CU being split into the 
first PU and the second PU along a vertical boundary and the 
left PU of the CU being an intra-coded PU, the video coding 
standard allows a TU of the CU to cover both the first and 
second PUs. In a similar example, video decoder 30 may 
obtain a bitstream comprising an encoded representation of 
the video data. In this example, the bitstream may conform 
to a video coding standard that, based on the CU being split 
into the first PU and the second PU along a vertical boundary 
and the left PU of the CU being an intra-coded PU, allows 
a TU of the CU to cover both the first and second PUs. In 
both the example of video encoder 20 and video decoder 30, 
the video coding standard may provide a restriction requir 
ing that, based on the CU being split into the first PU and the 
second PU along a vertical boundary and the left PU of the 
CU being an inter-coded PU, a TU size of a TU of the CU 
is no larger than a size of the first PU or the second PU. 
0224 Furthermore, when one CU is split into two PUs in 
the horizontal direction, such as when the 2NxN partition 
mode is used, a video coder may determine the transform 
depth used when a CU contains both intra and inter PUs as 
follows: If the above PU is an intra-coded PU, transform 
depth can be from 0. In other words, the depth of transform 
tree of the CU is 0 or more. In this example, the above PU 
is the upper PU of the horizontally divided CU. In instances 
where the transform depth is 0, the TU size is equal to the 
CU size and one TU covers two PUs. Otherwise (i.e., the 
above PU is an inter-coded PU), transform depth is restricted 
to be from 1. In other words, the depth of the transform tree 
of the CU is 1 or more, but cannot be 0. In this example, 
when the above PU is an inter-coded PU, the TU size should 
be no larger than the PU size. 
0225. Thus, in this example, video encoder 20 may 
generate a bitstream that conforms to a video coding stan 
dard. In this example, based on the CU being split into the 
first PU and the second PU along a horizontal boundary and 
the above PU of the CU being an intra-coded PU, the video 
coding standard allows a TU of the CU to cover both the first 
and second PUs. Moreover, in some examples, the bitstream 
conforms to a video coding standard that provides a restric 
tion requiring that, based on the CU being split into the first 
PU and the second PU along a horizontal boundary and the 
above PU of the CU being an inter-coded PU, a TU size of 
a TU of the CU is no larger than a size of the first PU or the 
Second PU. 
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0226. In a similar example, video decoder 30 may obtain 
a bitstream comprising an encoded representation of the 
Video data. In this example, the bitstream conforms to a 
video coding standard that, when the CU is split into the first 
PU and the second PU along a horizontal boundary and the 
above PU of the CU is an intra-coded PU, allows a TU of the 
CU to cover both the first and second PUs. Moreover, in 
some examples, video decoder 30 obtains a bitstream con 
forming to a video coding standard that provides a restric 
tion requiring that, when the CU is split into the first PU and 
the second PU along a horizontal boundary and the above 
PU of the CU is an inter-coded PU, a TU size of a TU of the 
CU is no larger than a size of the first PU or the second PU. 
0227. In some examples, when one CU is coded with 
comb mode, a restriction is added such that a TU should not 
cross PU boundaries. This restriction may reduce the 
encoder complexity since there is no need to check the 
rate-distortion cost of the case wherein TUs could cross PU 
boundaries. Thus, in this example, video encoder 20 may 
generate a bitstream that conforms to a video coding stan 
dard that provides a restriction requiring that based on the 
CU having an intra-coded PU and an inter-coded PU, no TU 
of the CU crosses PU boundaries of the CU. In a similar 
example, video decoder 30 may obtain a bitstream compris 
ing an encoded representation of the video data. In this 
example, the bitstream conforms to a video coding standard 
that provides a restriction requiring that based on the CU 
having an intra-coded PU and an inter-coded PU, no TU of 
the CU crosses PU boundaries of the CU. 

0228. Furthermore, in some examples involving the 
comb mode, it is restricted that the comb mode is only 
applied for a CU larger than (not including) a certain size 
such as 8x8. It is noted that for smaller blocks, increasing the 
bits of signaling whether comb mode is applied to a CU 
may not compensate the saved rate-distortion cost intro 
duced by the comb mode. Therefore, for certain small sizes, 
comb mode may be always disabled without additional 
signaling. In this disclosure, a restriction may prevent a 
Video encoder from performing some action or generating a 
bitstream in some way. For example, video encoder 20 may 
generate a bitstream that conforms to a video coding stan 
dard that provides a restriction requiring that no CU Smaller 
than a particular size is allowed to have both an intra-coded 
PU and an inter-coded PU. In a similar example, video 
decoder 30 may obtain a bitstream comprising an encoded 
representation of the video data. In this example, the bit 
stream conforms to a video coding standard that provides a 
restriction requiring that no CUSmaller than a particular size 
is allowed to have both an intra-coded PU and an inter-coded 
PU. 

0229. In some examples involving the comb mode, one 
8xCU can be coded with comb mode with one 8x4 intra and 
one 8x4 inter PU, or one 4x8 Intra and one 4x8 Inter PU. In 
this example, the corresponding 4x4 chroma block of this 
8x8 CU (in 4:2:0 color format) can be coded using only the 
inter prediction mode of the inter coded luma PU, or using 
only the intra prediction mode of the intra coded luma PU, 
or the 4x4 chroma block is further partitioned correspond 
ingly as two 4x2 or 2x4 blocks based on the luma PU 
partition, and each of the two 4x2 or 2x4 is predicted by the 
corresponding luma prediction mode, and a 4x4 residual 
block is generated and a 4x4 transform is performed on the 
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generated 44 residual block to avoid the introduction of a 
2x2 transform. Introduction of a 2x2 transform may unnec 
essarily increase complexity. 
0230. Thus, in the example above, video encoder 20 may 
perform intra prediction to obtain a first predictive block for 
a first PU of a CU of the video data. Additionally, in this 
example, video encoder 20 may perform inter prediction to 
obtain a second predictive block for a second PU of the same 
CU. In this example, the size of the CU is 2Nx2N, the size 
of the first PU is 2NXN and the size of the second PU is 
NX2N or the size of the first PU is NX2N and the size of the 
second PU is 2NXN. Furthermore, in this example, the CU 
is coded using a 4:2:0 color format. In this example, the first 
predictive block for the first PU is a luma predictive block 
for the first PU. In this example, the second predictive block 
for the second PU is a luma predictive block for the second 
PU. In this example, video encoder 20 uses only inter 
prediction to obtain a third predictive block, the third 
predictive block being a chroma predictive block of size 
NXN. In this example, video encoder 20 obtains residual 
data for the CU based on the first, second, and third 
predictive blocks. A similar example substitutes, instead of 
video encoder 20 that obtains residual data for the CU based 
on the first, second, and third predictive blocks, a video 
encoder 20 that uses only intra prediction to obtain the third 
predictive block instead of intra prediction. 
0231. Moreover, in a corresponding example, video 
decoder 30 may perform intra prediction to obtain a first 
predictive block for a first PU of a CU of the video data. In 
this example, video decoder 30 may perform interprediction 
to obtain a second predictive block for a second PU of the 
same CU. In this example, the size of the CU is 2Nx2N, the 
size of the first PU is 2NXN and the size of the Second PU 
is NX2N or the size of the first PU is NX2N and the size of 
the second PU is 2NxN, and the CU is coded using a 4:2:0 
color format. Furthermore, in this example, the first predic 
tive block for the first PU is a luma predictive block for the 
first PU and the second predictive block for the second PU 
is a luma predictive block for the second PU. In this 
example, video decoder 30 uses only inter prediction to 
obtain a third predictive block, the third predictive block 
being a chroma predictive block of size NXN. Furthermore, 
in this example, video decoder 30 may reconstruct, based on 
the first, second, and third predictive blocks, the coding 
block of the CU. A similar example substitutes a different 
configuration of video decoder 30 that uses only intra 
prediction to obtain the third predictive block instead of intra 
prediction. 
0232. As mentioned above, in some examples, one 8x8 
CU can be coded with comb mode with one 8x4 intra and 
one 8x4 inter PU, or one 4x8 intra and one 4x8 inter PU, and 
the corresponding 4x4 chroma block of this 8x8 CU, can be 
coded using only the interprediction mode of the inter coded 
luma PU, a video coder may partition the 4x4 chroma block 
correspondingly as two 4x2 or 2x4 blocks based on the luma 
PU partition, the video coder predicts each of the two 4x2 
or 2x4 by the corresponding luma prediction mode, and the 
Video coder generates a 4x4 residual block and performs a 
4x4 transform on the generated 4x4 residual block. 
0233. Thus, in such examples, video encoder 20 may 
perform intra prediction to obtain a first predictive block for 
a first PU of a CU of the video data. Additionally, in this 
example, video encoder 20 may perform inter prediction to 
obtain a second predictive block for a second PU of the same 
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CU. In this example, the size of the CU is 2Nx2N, the size 
of the first PU is 2NXN and the size of the Second PU is 
NX2N or the size of the first PU is NX2N and the size of the 
second PU is 2NxN, and the CU is coded using a 4:2:0 color 
format. Furthermore, the first predictive block for the first 
PU is a luma predictive block for the first PU and the second 
predictive block for the second PU is a luma predictive block 
for the second PU. In this example, video encoder 20 may 
use an intra prediction mode of the first PU to generate a 
chroma predictive block for the first PU. Furthermore, in this 
example, video encoder 20 may use inter prediction to 
generate a chroma predictive block for the second PU. In 
this example, video encoder 20 may obtain residual data for 
the CU based on the first predictive block, the second 
predictive blocks, the chroma predictive block for the first 
PU and the chroma predictive block for the second PU. 
0234. In a similar example, video decoder 30 may per 
form intra prediction to obtain a first predictive block for a 
first PU of a CU of the video data. In this example, video 
decoder 30 may perform inter prediction to obtain a second 
predictive block for a second PU of the same CU. In this 
example, the size of the CU is 2Nx2N, the size of the first 
PU is 2NXN and the size of the second PU is NX2N or the 
size of the first PU is NX2N and the size of the Second PU 
is 2NxN, and the CU is coded using a 4:2:0 color format. 
Furthermore, in this example, the first predictive block for 
the first PU is a luma predictive block for the first PU and 
the second predictive block for the second PU is a luma 
predictive block for the second PU. In this example, video 
decoder 30 may use an intra prediction mode of the first PU 
to generate a chroma predictive block for the first PU. Video 
decoder 30 may use inter prediction to generate a chroma 
predictive block for the second PU. Furthermore, video 
decoder 30 may reconstruct, based on the first predictive 
block, the second predictive blocks, the chroma predictive 
block for the first PU and the chroma predictive block for the 
second PU, the coding block of the CU. 
0235 Additionally, in some examples involving the 
comb mode, when one CU is coded using two or more PUs 
and both Inter and Intra prediction modes are used, for 
inter-coded PUs, the CU is treated in the same way as the 
current HEVC design. That is, the reconstruction is defined 
as the Sum of decoded residual after possible inverse quan 
tization/transform and the motion-compensated prediction 
block using its motion information. In addition, for intra 
coded PUs, a video coder uses a process involving two 
predictors, i.e., the reconstruction is defined as the sum of 
decoded residual after possible inverse quantization/trans 
form and the motion-compensated prediction block using 
the motion information from its neighbor inter-coded PU 
and the intra prediction block using the intra prediction 
modes associated with the current PU. 

0236. Thus, in this example, video encoder 20 may 
perform intra prediction to obtain a first predictive block for 
a first PU of a CU of the video data. In this example, video 
encoder 20 may perform inter prediction to obtain a second 
predictive block for a second PU of the same CU. Further 
more, in this example, as part of obtaining residual data for 
the CU, video encoder 20 may, for each respective sample 
of the residual data corresponding to the first PU, obtain the 
respective sample Such that the respective sample is equal to 
a respective sample of a coding block of the CU minus a 
predictive sample obtained using motion information of the 
second PU and minus a sample of the first predictive block. 
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The predictive sample obtained using motion information 
may be a sample of a predictive block of an inter-predictive 
PU 
0237. In a corresponding example, video decoder 30 may 
perform intra prediction to obtain a first predictive block for 
a first PU of a CU of the video data. In this example, video 
decoder 30 may perform inter prediction to obtain a second 
predictive block for a second PU of the same CU. Further 
more, in this example, as part of reconstructing a coding 
block of the CU, video decoder 30 may, for each respective 
sample of the coding block corresponding to the first PU, 
obtain the respective sample Such that the respective sample 
is equal to a Sum of a respective decoded residual sample, a 
predictive sample obtained using motion information of the 
second PU, and a sample of the first predictive block. 
0238 Alternatively, in some examples involving comb 
mode, when one CU is coded using two or more PUs and 
both Inter and Intra prediction modes are used, for intra 
coded PUs, the process for reconstructing coding blocks of 
the CU is the same as the current HEVC design, i.e., the 
reconstruction is defined as the sum of decoded residual 
after possible inverse quantization/transform and the intra 
prediction block using its intra prediction mode. In addition, 
for an inter-coded PU of a CU, the process for reconstructing 
portions of the coding blocks corresponding to the inter 
coded PU is different from the reconstruction process in 
HEVC in that two predictors are defined for the inter-coded 
PU. Furthermore, for each sample of a coding block of the 
CU that corresponds to a sample of the inter-coded PU, the 
sample is defined as a sum of a decoded residual sample 
(e.g., after possible inverse quantization/transform) and a 
sample of the motion-compensated prediction block of the 
inter-coded PU generated using motion information of the 
inter-coded PU and a sample of an intra prediction block 
generated using an intra prediction mode associated with an 
intra-coded PU that neighbors the inter-coded PU. 
0239 Thus, in this example, video encoder 20 may 
perform intra prediction to obtain a first predictive block for 
a first PU of a CU of the video data. In this example, video 
encoder 20 may perform inter prediction to obtain a second 
predictive block for a second PU of the same CU. Further 
more, in this example, as part of obtaining residual data for 
the CU, video encoder 20 may, for each respective sample 
of the residual data corresponding to the second PU, obtain 
the respective sample Such that the respective sample is 
equal to a respective sample of a coding block of the CU 
minus a predictive sample obtained using an intra prediction 
mode of the first PU and minus a sample of the second 
predictive block. 
0240. In a corresponding example, video decoder 30 may 
perform intra prediction to obtain a first predictive block for 
a first PU of a CU of the video data. In this example, video 
decoder 30 may perform inter prediction to obtain a second 
predictive block for a second PU of the same CU. Further 
more, in this example, as part of reconstructing a coding 
block of the CU, video decoder 30 may, for each respective 
sample of the coding block corresponding to the second PU, 
obtain the respective sample Such that the respective sample 
is equal to a Sum of a respective decoded residual sample, a 
predictive sample obtained using an intra prediction mode of 
the first PU, and a sample of the second predictive block. 
0241. In one example, when allowing the two predictors, 
the two prediction blocks are combined with a linear weight 
ing function, e.g., an average of the two. For example, a 
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video coder such as video encoder 20 or video decoder 30 
may use intra prediction to generate a first predictive block 
of a PU and may use inter prediction to generate a second 
predictive block for the PU. In this example, the video coder 
may determine a final predictive block for the PU by 
determining, for each respective sample of the final predic 
tive block, a weighted average of the samples of the first and 
second predictive blocks that correspond to the respective 
sample of the final predictive block. In this example, weights 
used in the weighted average may favor the intra predicted 
predictive block over the inter predicted predictive block, or 
Vice versa. In some instances, using such a linear weighting 
function may lead to a more accurate final predictive block, 
which may ultimately increase compression performance. 
The linear weighting factors may be signaled as side infor 
mation or derived from certain coded information. 

0242 For example, for each respective sample of a 
coding block of the CU that corresponds to a PU of the CU, 
video encoder 20 may obtain a first predictive sample for the 
respective sample and a second predictive sample for the 
respective sample. For instance, the first predictive sample 
for the respective sample may be generated using inter 
prediction and the second predictive sample for the respec 
tive sample may be generated using intra prediction. In this 
example, video encoder 20 may determine a weighted 
predictive sample for the respective sample by applying the 
linear weighting function to the first predictive sample for 
the respective sample and the second predictive sample for 
the respective sample. Additionally, in this example, video 
encoder 20 may determine a residual sample for the respec 
tive sample equal to a difference between an original value 
of the respective sample and the weighted predictive sample 
for the respective sample. 
0243 Similarly, for each respective sample of a coding 
block that video decoder 30 may obtain a residual sample for 
the respective sample. For instance, video decoder 30 may 
obtain, from a bitstream, syntax elements indicating trans 
form coefficients, apply inverse quantization to the trans 
form coefficients, and apply an inverse transform to the 
transform coefficients to obtain residual samples. Further 
more, in this example, video decoder 30 may determine a 
first predictive sample for the respective sample and a 
second predictive sample for the respective sample. For 
instance, the first predictive sample for the respective sample 
may be generated using inter prediction and the second 
predictive sample for the respective sample may be gener 
ated using intra prediction. In this example, video decoder 
30 may determine a weighted predictive sample for the 
respective sample by applying a linear weighting function to 
the first predictive sample for the respective sample and the 
second predictive sample for the respective sample. Addi 
tionally, in this example, video decoder 30 may reconstruct 
the respective sample as a Sum of the residual sample for the 
respective sample and the weighted predictive sample for 
the respective sample. 
0244. The following examples indicate the usage of 
comb mode when the comb mode is enabled for one slice, 
picture, or sequence (i.e., coded video sequence). In HEVC, 
a CU includes a 1-bit pred mode flag syntax element. The 
pred mode flag syntax element of a CU equal to 0 specifies 
that the CU is coded in the inter prediction mode. The 
pred mode flag syntax element of a CU equal to 1 specifies 
that the CU is coded in the intra prediction mode. In 
accordance with one example of this disclosure, the 1-bit 
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pred mode flag of a CU is replaced by a syntax element 
with three possible values. In this example, the three values 
correspond to the conventional intra mode, the conventional 
inter mode, and comb mode, respectively. In this example, 
the conventional intra mode refers to instances where all 
PUs of the CU are coded using intra prediction mode. 
Furthermore, in this example, the conventional interpredic 
tion mode refers to instances where all PUs of the CU are 
coded using interprediction mode. In some examples, when 
comb mode is enabled for a CU, for only one PU of the CU, 
video encoder 20 signals a 1-bit value to indicate whether 
the PU is coded in intra prediction mode or inter prediction 
mode. Because the CU is coded in the comb mode, the other 
PU is a different prediction mode from the PU for which the 
1-bit value was signaled. In another example, comb mode is 
treated as the conventional inter mode. In this example, for 
each PU of a CU, an additional flag is added to indicate the 
usage of intra or inter prediction mode. 
0245. In a seventh technique of this disclosure, one PU 
can be predicted from both intra prediction and inter pre 
diction and the two predictive blocks from intra prediction 
and inter prediction are used to derive the final predictive 
block for the PU. Deriving a final predictive block in this 
way may result in a more accurate predictive block for the 
PU, which may increase compression performance. 
0246 Thus, in accordance with the seventh technique, 
video encoder 20 may perform intra prediction to obtain a 
first predictive block for a PU of a CU. Additionally, in this 
example, video encoder 20 may perform inter prediction to 
obtain a second predictive block for the same PU of the same 
CU. In this example, video encoder 20 may derive, based on 
the first predictive block and the second predictive block, a 
final predictive block for the PU. Furthermore, video 
encoder 20 may obtain, based on the final predictive block 
for the PU, residual data for the CU. For instance, video 
encoder 20 may generate at least a portion of the residual 
data for CU by calculating differences between samples of 
the final predictive block for the PU and corresponding 
samples of a coding block of the CU. In this example, video 
encoder 20 may include, in a bitstream comprising an 
encoded representation of the video data, data representing 
the residual data for the CU. 
0247. In a corresponding example, video decoder 30 may 
perform intra prediction to obtain a first predictive block for 
a PU of a CU. Additionally, in this example, video decoder 
30 may perform inter prediction to obtain a second predic 
tive block for the same PU of the same CU. In this example, 
video decoder 30 may derive, based on the first predictive 
block and the second predictive block, a final predictive 
block for the PU. Furthermore, in this example, video 
decoder 30 may reconstruct, based on the final predictive 
block for the PU, a coding block of the CU. For instance, 
video decoder 30 may add the final predictive block for the 
PU to residual data for the CU to reconstruct at least a 
portion of a coding block of the CU. 
0248. Furthermore, in some examples of the seventh 
technique, a video coder applies a linear weighting function 
to the two prediction blocks, e.g., the weighting factors of 
the pixels located in the same relative positions of the two 
prediction blocks are fixed. In some examples, the weighting 
factors for different positions may be variable. Furthermore, 
in some examples, the weighting factors are dependent on 
the intra prediction mode. In one example, for the top-left 
position within a block, if the intra prediction mode is a DC 
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mode, the weights of the top-left samples in inter and intra 
predictive blocks are equal, i.e., (0.5,0.5) while if the intra 
prediction is a vertical prediction mode, the weight of the 
top-left sample in intra predictive block may be larger than 
that of the top-left sample in the inter predictive block. 
0249. In some examples of the seventh technique, the 
final prediction value of one pixel at one or more positions, 
but not all positions, may be copied from either the intra 
predicted block or the inter predicted block, i.e., one of the 
two weighting factors is 0 and the other one is 1. 
0250 In some examples, the seventh technique is applied 
to specific partition sizes (e.g., 2NX2N), and/or specific 
prediction modes (MERGE/SKIP mode). Furthermore, in 
Some examples, when the seventh technique is applied, the 
intra prediction modes are restricted to be a subset of intra 
prediction modes used for conventional intra prediction. In 
one example, the subset is defined to only include the MPMs 
(most probable modes). 
0251. As discussed above, a video coder may use a 
Linear Model (LM) prediction mode to predict chroma 
samples of a block based on reconstructed luma samples of 
the same block. Furthermore, as described above, the LM 
prediction mode has not been used with non-square PUs. In 
accordance with an eighth technique of this disclosure, a 
video coder may use the LM prediction mode with non 
square PUs. More generally, the same techniques for apply 
ing the LM prediction mode work with non-square luma and 
chroma blocks. Hence, discussion in this disclosure regard 
ing the eighth technique with respect to non-square PUs may 
apply more generally to non-square luma and chroma 
blocks, such as the luma prediction blocks and chroma 
prediction blocks of PUs. Furthermore, examples of the 
eighth technique may derive the parameters used in the LM 
prediction mode in several ways. 
0252 For instance, in some examples of the eighth tech 
nique, a boundary at the longer side of a non-square PU is 
down-sampled or sub-sampled such that the number of 
pixels in the down-sampled or Sub-Sampled boundary is 
equal to the number of pixels in the shorter boundary. The 
process can be a decimation or an interpolated sampling. In 
examples where video decoder 30 performs the sub-sam 
pling using decimation, video decoder 30 may remove 
samples at regular intervals (e.g., every other sample) to 
reduce the number of samples without changing the values 
of the remaining samples. In another example, video 
decoder 30 may perform the Sub-Sampling using interpola 
tion. In examples where video decoder 30 performs the 
Sub-sampling using interpolation, for respective pairs of 
adjacent samples, video decoder 30 may interpolate a value 
between the samples of a respective pair and may include the 
interpolated value in the Sub-Sampled set of samples. 
0253) Thus, in an example of the eighth technique of this 
disclosure, video encoder 20 may perform a linear model 
prediction operation to predict a predictive chroma block for 
a non-square PU of a CU from down-sampled or sub 
sampled reconstructed luma samples of the PU. Further 
more, in this example, video encoder 20 may obtain, based 
on the predictive chroma block, residual data for the CU. In 
this example, video encoder 20 may include, in a bitstream 
comprising an encoded representation of the video data, data 
representing the residual data for the CU. In a corresponding 
example, video decoder 30 may perform a linear model 
prediction operation to predict a predictive chroma block for 
a non-square PU of a CU of a current picture of the video 
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data from down-sampled reconstructed luma samples of the 
PU. In this example, video decoder 30 may reconstruct, 
based in part on the predictive chroma block, a coding block 
of the CU. In either of the examples of the paragraph, video 
encoder 20 or video decoder 30 may down-sample or 
Sub-Sample luma samples of a longer side of the non-square 
PU such that the number of down-sampled or sub-sampled 
luma samples on the longer side of the non-square PU is the 
same as the luma samples on the shorter side of the non 
square PU. 
0254. In one example, when using equation (4) and 
equation (5) to calculate linear model parameters, for both 
luma and chroma components, the pixels of the boundary at 
the longer side of a non-square PU are sub-sampled Such that 
the number of pixels in the down-sampled or sub-sampled 
boundary are equal to the number of pixels in the shorter 
boundary (i.e., min(K, L)). The Sub-Sampling process can be 
a decimation or an interpolated sampling. 
0255 Thus, in this example, as part of performing an LM 
prediction operation, a video coder may obtain a predictive 
chroma sample Such that the predictive chroma sample is 
equal to a first parameter multiplied by a collocated luma 
sample, plus a second parameter, wherein the first parameter 
is equal to: 

IXx, y, -XX, Xy; 
C - - - - R 

iXXi Xi - XX XX; 

and the second parameter is equal to: 
B=(Xy-CXx), I, 

where I is the number of reference samples in a left and top 
boundary of the non-square PU, X, is a down-sampled or 
Sub-sampled reconstructed luma reference sample, y, is a 
reconstructed chroma reference sample. 
0256 Alternatively, in some examples, pixels located at 
both longer and short sides of the PU may be sub-sampled 
and the Sub-Sampling ratios may be different. A Sub-Sam 
pling ratio is a ratio of samples prior to Sub-sampling to 
samples after Sub-sampling. However, it may be required 
that the total number of pixels at two sides after sub 
sampling should be equal to 2" (wherein m is an integer, m 
may be different for luma and chroma components). The 
value of m can be dependent on the block size K and L. 
0257 Thus, in this example, as part of performing an LM 
prediction operation, a video coder may obtain a predictive 
chroma sample Such that the predictive chroma sample is 
equal to a first parameter multiplied by a collocated luma 
sample, plus a second parameter, wherein the first parameter 
is equal to: 

IXx, y, -XX, Xy; 
C - - - - R 

iXXi Xi - XX XX; 

and the second parameter is equal to: 
B=(Xy-CXx), I, 

where I is the number of reference samples in a set of 
reference samples, X, is a reconstructed luma reference 
sample, and y, is a reconstructed chroma reference sample. 
In this example, the set of reference samples is a Sub 
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sampled set of left reference samples and above reference 
samples, the left reference samples being immediately left of 
a left boundary of the current PU and the above reference 
samples being immediately above a top boundary of the 
current PU. 
0258. In another example of the eighth technique, the 
number of pixels I in equations (4) and (5) are adjusted 
based on the actual number of pixels in the boundary. For 
instance, for 2NxN PU, I=3N. When only left or above 
causal samples are available, the total involved samples 
number I is equal to the length of left or above boundary. 
Thus, a video coder may calculate C. as: 

Additionally, the video coder may calculate B as: 
B=(Xy-CXx)/3N. 

0259 When LM is enabled for one non-square chroma 
PU (with size equal to KXL, where K is unequal to L), the 
parameters (i.e., a and b) can be derived in various ways. For 
example, when using equation (4) and equation (5) to 
calculate linear model parameters, for both luma and chroma 
components, the pixels of the boundary at the shorter side of 
the non-square PU is up-sampled such that the number of 
pixel in the up-sampled boundary is equal to the number of 
pixels in the longer boundary (i.e., max(K, L)). The up 
sampling process can be a duplicator or an interpolated 
sampling. A duplicator up-sampling process is an up-Sam 
pling process in which existing samples are duplicated to 
generate new samples. An interpolated up-sampling process 
increases the number of samples by interpolating a value of 
a new sample based on two or more existing samples. 
0260 Thus, in this example, as part of performing an LM 
prediction operation, a video coder may obtain a predictive 
chroma sample such that the predictive chroma sample is 
equal to a first parameter multiplied by a collocated luma 
sample, plus a second parameter, wherein the first parameter 
and second parameter are defined in equations (4) and (5). 
In this example, the set of reference samples is an up 
sampled set of left reference samples and above reference 
samples, the left reference samples being immediately left of 
a left boundary of the current PU and the above reference 
samples being immediately above a top boundary of the 
current PU. In this example, the video coder may determine 
the set of reference samples by applying an up-sampling 
method to the left references samples and/or the above 
reference samples. For instance, the up-sampling method 
may up-sample whichever of the left reference samples or 
the above reference samples corresponds to the shorter of 
the left boundary of the current PU and the top boundary of 
the current PU, but not whichever is longer of the left 
reference samples of the current PU and the above reference 
samples of the current PU. 
0261. In some examples, pixels located at both longer 
and shorter sides of the PU may be up-sampled and the 
up-sampling ratios may be different. However, it may be 
required that the total number of pixels at two sides after 
up-sampling should be equal to 2" (wherein m is an integer, 
m may be different for luma and chroma components). The 
value of m may be dependent on the block size K and L. In 
other words, m is dependent on a height and/or width of the 
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PU. For example, a PU may be 8x16 and a video coder may 
up-sample reference samples Such that there are 32 reference 
samples along a left side of the PU and 32 reference samples 
along a top side of the PU. In this example, m is equal to 6. 
In another example, a PU may be 4x8 and a video coder may 
up-sample reference samples Such that there are 16 reference 
samples along a left side of PU and 16 reference samples 
along a top side of the PU. In this example, m is equal to 4. 
0262. Furthermore, in some examples of the eighth tech 
nique, when using equation (4) and equation (5) to calculate 
LM parameters, for both luma and chroma components, the 
pixels of the boundary at the shorter side of the non-square 
PU is up-sampled and the pixels of the longer boundary (i.e., 
max (K, L)) is Sub-sampled Such that the number of pixel in 
the up-sampled shorter boundary is equal to the number of 
pixels in the Sub-Sampled longer boundary. The up-sampling 
process can be a duplicator or an interpolated sampling. The 
Sub-Sampling process can be a decimation or an interpolated 
sampling. 
0263 Thus, in this example, as part of performing the 
LM prediction operation, a video coder may obtain a pre 
dictive chroma sample Such that the predictive chroma 
sample is equal to a first parameter multiplied by a collo 
cated luma sample, plus a second parameter, wherein the 
first parameter and the second parameter are defined as in 
equations (4) and (5). In this example, the set of reference 
samples is a union of an up-sampled set of reference samples 
and a Sub-sampled set of reference samples, the up-sampled 
set of reference samples being an up-sampled version of 
whichever contains fewer samples of left reference samples 
and above reference samples. In this example, the Sub 
sampled set of reference samples is a Sub-sampled version of 
whichever contains more samples of the left reference 
samples and the above reference samples. In this example, 
the left reference samples are immediately left of a left 
boundary of the current PU and the above reference samples 
are immediately above a top boundary of the current PU. 
0264. In some examples, for the examples of the eighth 
technique mentioned above, after the Sub-Sampling or up 
sampling process, a down-sampling process (e.g., as 
described elsewhere in this disclosure) only for the luma 
component may be further applied to cover the case that the 
color format is not 4:4:4. Thus, based on a color format of 
the current picture being other than 4:4:4, a video coder may 
Sub-Sample or down-sample luma samples of the predictive 
block. In some examples, the two down-sampling processes 
of luma samples could be merged into one. 
0265. Furthermore, in some examples of the eighth tech 
nique, different ways of Sub-sampling/up-sampling for 
boundary pixels may be applied. In one example, the Sub 
sampling/up-sampling method is dependent on the PU size 
(i.e., on the values of K and L). In another example, the 
methods for Sub-Sampling/up-sampling may be signaled in a 
sequence parameter set, a picture parameter set, a slice 
header, or in another syntax structure. 
0266. In some examples of the eighth technique, the 
up-sampling/down-sampling (or Sub-sampling) is imple 
mented in an implicit manner. In other words, the up 
sampling or Sub-sampling technique is determined implic 
itly. That is, the sum value, such as Xx, y, XX, and Xy, in 
equation (4) and equation (5) of the left side boundary or/and 
upper side boundary, is multiplied or divided by a factor S. 
The value of S can be dependent on the ratio of the pixel 
number in the left side boundary or/and upper side boundary. 
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0267 Thus, in this example, as part of performing the 
LM prediction operation to predict the predictive chroma 
block, a video coder may obtain a predictive chroma sample 
Such that the predictive chroma sample is equal to a first 
parameter multiplied by a collocated luma sample, plus a 
second parameter, wherein the first LM parameter is equal 
tO: 

IS-Xx, y - SXX, S-Xy; 
cx = - -, 

I. S.X. vi. xi - S. Xx . S.XX, 

where S is dependent on a ratio of a pixel number in a left 
boundary or/and an upper boundary of the non-square PU, 
I is the number of reference samples in a Subset of Samples 
in a left and top boundary of the current PU determined 
according to a sub-sampling method, X, is a sub-sampled 
reconstructed luma reference sample, and y, is a recon 
structed chroma reference sample. In some examples, 
S-max(K, L)/min(K, L) for a KXL chroma block. 
0268 As described above, an enhancement multiple 
transform (EMT) scheme has been proposed that uses DST 
VII, DCT-VIII, DST-I and DCTV. Furthermore, as dis 
cussed above, whether EMT applies or not is controlled at 
the CU level using a flag, namely an EMT flag, for all TUs 
within a CU. For each TU within an EMT-enabled CU, the 
horizontal or vertical transform to be used is signaled by an 
index to a selected transform set, namely an EMT index. 
0269. However, controlling the EMT scheme as previ 
ously-proposed may not be efficient if the residual charac 
teristics of each PU in a CU are different. For example, 
controlling the EMT scheme as previously-proposed may 
not be efficient for an intra-coded PU and an inter-coded PU 
within a CU. Hence, in accordance with a ninth technique of 
this disclosure, when EMT is enabled for one slice, picture, 
or sequence and one CU is split into two PUs in vertical 
direction (e.g., NX2N partition), the signaling of an EMT 
flag is modified in the following way: If the left PU is an 
intra-coded PU, the transform depth could be 0. In other 
words, the transform tree of the CU may have a depth of 0 
or more. In this case, an EMT flag may be signaled at the CU 
level. If the transform depth is not 0, the EMT flag may be 
signaled at the PU level. Hence, EMT may or may not be 
enabled for each PU. 

0270. Furthermore, in accordance with the ninth tech 
nique of this disclosure, when EMT is enabled for one slice, 
picture, or sequence and when one CU is split into two PUs 
in a horizontal direction (e.g., 2NXN partition), the signaling 
of the EMT flag is modified in the following way: If the 
above PU is an intra-coded PU, the transform depth may be 
0. In other words, the transform tree of the CU may have a 
depth of 0 or more. In this case, an EMT flag may be 
signaled at CU level. If the transform depth is not 0, the 
EMT flag may be signaled at the PU level. That is, each PU 
may have EMT enabled or not. 
0271 Thus, in accordance with the ninth technique, video 
encoder 20 may include, in a bitstream that comprises an 
encoded representation of video data, a first syntax element. 
The first syntax element indicates whether EMT is enabled 
for a particular CU that is partitioned into exactly two PUs 
along a boundary. In this example, whether the first syntax 
element is in the particular CU or a particular PU of the two 
PUs is dependent on a splitting direction of the PUs of the 
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CU. Furthermore, in this example, based on EMT being 
enabled for a particular CU, for each respective TU of the 
particular CU, video encoder 20 may include, in the bit 
stream, a respective syntax element indicating a respective 
selected transform set for the respective TU. In this example, 
based on EMT being enabled for the particular CU, video 
encoder 20 may apply one or more transforms of the 
respective selected transform set to transform coefficients of 
the respective TU to obtain a respective transform block for 
the respective TU in the sample domain. In this example, 
Video encoder 20 may include, in a bitstream that comprises 
an encoded representation of the video data, data represent 
ing one or more of the TUs of the CU. In this example, the 
boundary may be a horizontal boundary or the boundary 
may be a vertical boundary. 
0272. In a corresponding example, video decoder 30 may 
obtain a first syntax element. The first syntax element 
indicates whether EMT is enabled for a particular CU that is 
partitioned into exactly two PUs along a boundary. In this 
example, whether the first syntax element is in the particular 
CU or a particular PU of the two PUs is dependent on a 
splitting direction of the PUs of the CU. In this example, in 
response to determining that EMT is enabled for a particular 
CU, for each respective TU of the particular CU, video 
decoder 30 may obtain a respective syntax element indicat 
ing a respective selected transform set for the respective TU. 
Additionally, in response to determining that EMT is 
enabled for a particular CU, for each respective TU of the 
particular CU, video decoder 30 may apply an inverse of one 
or more transforms of the respective selected transform set 
to transform coefficients of the respective TU to obtain a 
respective transform block for the respective TU in the 
sample domain. In this example, video decoder 30 may 
reconstruct, based at least in part on the transform blocks for 
the TUs of the CU, a coding block of the CU. In this 
example, the boundary may be a horizontal boundary or the 
boundary may be a vertical boundary. 
0273. In accordance with a tenth technique of this dis 
closure, several transform tree structures may be applied for 
coding one slice, picture, or sequence. For example, in one 
example, transform tree structures are pre-defined. In some 
examples, for each picture, slice, largest coding unit, CU, or 
PU, video encoder 20 may signal the selected transform tree 
structure. Alternatively, in some examples, video decoder 30 
may derive the selected transform tree from the coded 
information, Such as prediction modes/partition sizes. 
0274 Thus, in accordance with the tenth technique, video 
encoder 20 may partition a CU of the video data into TUs of 
the CU based on a particular tree structure from among a 
plurality of predefined tree structures. In this example, a root 
node of the tree structure corresponds to a coding block of 
the CU. Furthermore, in this example, each respective 
non-root node of the tree structure corresponds to a respec 
tive block that is a partition of a block that corresponding to 
a parent node of the respective non-root node. In this 
example, leaf nodes of the tree structure correspond to the 
TUs of the CUs. Additionally, in this example, video 
encoder 20 includes, in a bitstream that comprises an 
encoded representation of the video data, data representing 
one or more of the TUs of the CU. In some examples, video 
encoder 20 may further include, in the bitstream, one or 
more syntax elements identifying the particular tree struc 
ture. In some examples, the one or more syntax elements that 
indicate the particular tree structure applicable to CUs is in 
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one of a picture, slice. LCU, CU, and PU. Furthermore, in 
Some examples, as part of determining the CU is partitioned 
into the TUs, video encoder 20 determines the particular tree 
structure from coded information without explicitly signal 
ing of the particular tree structure. In Such examples, the 
coded information may comprise at least one of prediction 
modes and partition sizes. 
0275. In a corresponding example, video decoder 30 may 
determine a CU of the video data is partitioned into TUs of 
the CU based on a particular tree structure from among a 
plurality of predefined tree structures. In this example, a root 
node of the tree structure corresponds to a coding block of 
the CU. Each respective non-root node of the tree structure 
corresponds to a respective block that is a partition of a 
block that corresponding to a parent node of the respective 
non-root node. In this example, leaf nodes of the tree 
structure correspond to the TUs of the CUs. Additionally, in 
this example, video decoder 30 may reconstruct, based on 
data for at least one of the TUs of the CU, the coding block 
of the CU. In some examples, video decoder 30 may obtain, 
from a bitstream that comprises encoded video data, one or 
more syntax elements identifying the particular tree struc 
ture. The one or more syntax elements that indicate the 
particular tree structure applicable to CUs in one of a 
picture, slice. LCU, CU, and prediction unit. Furthermore, in 
Some examples, as part of determining the CU is partitioned 
into the TUs, video decoder 30 may determine the particular 
tree structure from coded information without explicit sig 
naling of the particular tree structure. The coded information 
may comprise at least one of prediction modes and partition 
S17S. 

0276. In an eleventh example of this disclosure, trans 
forms with size equal to 1 xN and Nx1 may be also applied 
to inter coded blocks. For instance, in one example, such 
TUs are only allowed for a specific transform depth, e.g., the 
highest transform depth. In some examples, such TUs are 
only allowed for specific coding blocks, such as CU size 
equal to 8x8. Furthermore, in some examples, the eleventh 
technique is only applicable for specific color component, 
Such as luma. 

0277 Thus, in accordance with the eleventh technique, 
Video encoder 20 may determine transform-domain data 
(e.g., transform coefficients) by applying a 1xN or NX1 
transform to residual data of an inter coded block. In this 
example, video encoder 20 may include, in a bitstream that 
comprises an encoded representation of the video data, data 
representing the transform-domain data. In a corresponding 
example, video decoder 30 may determine sample-domain 
data by applying a 1xN or NX1 transform to transform 
coefficients of an inter coded block. In this example, video 
decoder 30 may reconstruct, based in part on the sample 
domain data, a coding block of a CU of the video data. For 
example, video decoder 30 may add samples of the sample 
domain data to corresponding samples of residual data to 
reconstruct the coding block of the CU. In some instances, 
for the above examples of the eleventh technique involving 
video encoder 20 and video decoder 30, 1xN and Nx1 
transforms are only allowed for a specific transform depth. 
Additionally, in Some instances, for the above examples of 
the eleventh technique involving video encoder 20 and video 
decoder 30, 1xN and NX1 transforms are only allowed for a 
CUs of particular sizes. 
0278. In accordance with a twelfth technique of this 
disclosure, the asymmetric motion partitioning defined in 



US 2017/O 1501.76 A1 

HEVC for inter coded CUs is also applied to intra coded 
CUs. Partitioning intra predicted CUs into PUs asymmetri 
cally may enable video encoder 20 to more accurately divide 
the CU into regions corresponding to different objects, 
which may increase compression performance. Thus, in 
accordance with an example of the twelfth technique, video 
encoder 20 may partition an intra predicted CU of the video 
data into PUs asymmetrically. In this example, video 
encoder 20 may determine a respective predictive block for 
each respective PU of the intra predicted CU. Furthermore, 
in this example, video encoder 20 may obtain residual data 
based on the predictive blocks for the PUs of the intra 
predicted CU and a coding block of the intra predicted CU. 
Additionally, in this example, video encoder 20 may include, 
in a bitstream that comprises an encoded representation of 
the video data, data representing the residual data. 
0279. In a corresponding example of the twelfth tech 
nique, video decoder 30 may determine an intra predicted 
CU of the video data is partitioned into PUs asymmetrically. 
In this example, video decoder 30 may determine a respec 
tive predictive block for each respective PU of the intra 
predicted CU. Additionally, in this example, video decoder 
30 may reconstruct, based on the predictive blocks for the 
PUs of the intra predicted CU, a coding block of the intra 
predicted CU. 
0280. In accordance with a thirteenth technique of this 
disclosure, when one intra coded CU contains multiple PUs, 
each PU may have its own chroma prediction mode. In other 
words, a PU may have a first intra prediction mode (i.e., a 
luma prediction mode) and a second intra prediction mode 
(i.e., a chroma prediction mode). A video coder may use the 
luma prediction mode to determine the luma predictive 
block of the PU and may use the chroma prediction mode to 
determine the chroma predictive blocks of the PU. Thus, in 
accordance with the 13" technique, video encoder 20 may 
determine an intra predicted CU of the video data has at least 
a first PU and a second PU. In this example, the first PU and 
the second PU have different chroma prediction modes. 
Furthermore, in this example, video encoder 20 may 
include, in a bitstream that comprises an encoded represen 
tation of the video data, data representing residual databased 
at least on predictive blocks of the first PU and the second 
PU and a coding block of the CU. 
(0281. In a corresponding example of the 13" technique, 
video decoder 30 may determine an intra predicted CU of 
the video data has at least a first PU and a second PU. In this 
example, the first PU and the second PU have different 
chroma prediction modes. Furthermore, in this example, 
video decoder 30 may reconstruct, based at least on predic 
tive blocks of the first PU and the second PU, a coding block 
of the CU. 

0282. Furthermore, in accordance with an example of the 
13" technique, the chroma intra prediction modes of the 
previously coded PU may be considered for coding the 
following PU. This, a video coder may determine, based at 
least in part on a chroma prediction mode of a PU prior to 
a current PU in coding order, a chroma prediction mode of 
the current PU. For instance, a video coder may use the 
chroma intra prediction modes of the previously coded PU 
in context modeling for chroma intra prediction mode of a 
current PU. Context modeling may comprise identification 
of a coding context for context-adaptive entropy coding. A 
coding context may indicate probabilities of a value In 
another example, a video coder may add the chroma intra 
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prediction modes of the previously coded PU as one new 
candidate for the chroma intra prediction mode list. 
(0283. In some examples of the 13" technique, one flag 
may be firstly coded at a CU level to indicate whether all 
PUs share the same chroma intra prediction modes. Thus, in 
this example, video encoder 20 may include, in the bit 
stream, a syntax element indicating whether all PUs of the 
intra predicted CU share the same chroma intra prediction 
modes. Similarly, video encoder 20 may obtain, from a 
bitstream comprising an encoded representation of the video 
data, a syntax element indicating whether all PUs of the intra 
predicted CU share the same chroma intra prediction modes. 
0284. Furthermore, in some examples of the thirteenth 
technique, all the chroma PUs within one CU are restricted 
to follow the same transform tree. By restricting all of the 
chroma PUs within one CU to follow the same transform 
tree, it may be unnecessary for video encoder 20 to include 
data in the bitstream indicating the structures of the different 
transform trees for different chroma PUs. Thus, video 
encoder 20 may generate a bitstream that conforms to a 
Video coding standard that restricts a video encoder from 
generating bitstreams in which chroma PUs of the CU have 
differently structured transform trees. Similarly, video 
decoder 30 may obtain a bitstream comprising an encoded 
representation of the video data. In this example, the bit 
stream conforms to a video coding standard that restricts a 
Video encoder from generating bitstreams in which chroma 
PUs of the CU have differently structured transform trees. 
0285. In a fourteenth example of this disclosure, when 
one intra coded CU contains multiple rectangular PUs, a 
Video coder may apply a mode-dependent Scan. A mode 
dependent scan is a scanning order used to scan transform 
coefficients in a 2-dimensional coefficient block for a TU 
into a 1-dimensional coefficient vector for entropy encoding. 
Video encoder 20 may select, based on which intra predic 
tion mode is used for a PU corresponding to the TU, a 
mode-dependent scan to use for scanning transform coeffi 
cients of the TU from among a plurality of available 
scanning orders. The PU corresponding to the TU may be 
coextensive with the TU or contain the area associated with 
the TU. Using a mode-dependent scan may better arrange 
the transform coefficients for CABAC. In HEVC, mode 
dependent scans are only allowed for 8x8 and 4x4 TUs. 
0286 Thus, in accordance with an example of the four 
teenth technique, video encoder 20 may obtain residual data 
based on 2-dimensional transform coefficient blocks. In this 
example, video encoder 20 may obtain predictive blocks for 
each of a plurality of rectangular PUs of an intra predicted 
CU of the video data. Furthermore, in this example, video 
encoder 20 may apply a mode-dependent scan to arrange the 
2-dimensional blocks of transform coefficients into 1-di 
mensional arrays of transform coefficients corresponding to 
TUs of the CU. In this example, video encoder 20 may 
include, in a bitstream that comprises an encoded represen 
tation of the video data, data representing the 1-dimensional 
arrays of transform coefficients. 
0287. In a similar example, video decoder 30 may apply 
a mode-dependent scan to arrange a 1-dimensional array of 
transform coefficients into 2-dimensional transform coeffi 
cient blocks corresponding to TUs of an intra predicted CU 
of the video data. In this example, the intra predicted CU has 
multiple rectangular PUs. Furthermore, in this example, 
video decoder 30 may obtain residual data based on the 
transform coefficient blocks. Additionally, video decoder 30 
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may obtain predictive blocks for each of the PUs. In this 
example, video decoder 30 may reconstruct, based on the 
residual data and the predictive blocks, a coding block of the 
CU. 

0288. In one example of the fourteenth technique, appli 
cation of the mode-dependent scan is restricted to certain TU 
sizes, such as 8x4 or 4x8. In some examples, the mode 
dependent scan is restricted to certain CU sizes, such as only 
8x8, or 8x8 and 16x16. Furthermore, in some examples, the 
rule of the mapping between intra prediction mode and Scan 
pattern used for TU sizes equal to 8x8 and 4x4 in HEVC 
may be reused. In some examples, different mapping func 
tions may be applied which is dependent on the rectangular 
TU sizes. 

0289. As described elsewhere in this disclosure, VCEG 
AZ07 proposed using a 4-tap intra interpolation filter to 
improve accuracy of directional intra prediction relative to 
the 2-tap intra interpolation filter used in HEVC. However, 
VCEG-AZ07 does not indicate how a video coder selects a 
4-tap intra interpolation filter for a non-square intra coded 
PU. Rather, VCEG-AZ07 specifies that a video coder uses 
cubic interpolation filters for 4x4 and 8x8 blocks, and uses 
Gaussian interpolation filters for 16x16 and larger blocks. In 
a fifteenth technique of this disclosure, for a non-square intra 
coded PU with size equal to KXL, when determining a 4-tap 
filter type or a scan pattern as described elsewhere in this 
disclosure with respect to four-tap intra interpolation filters, 
the non-square intra coded PU is treated as a transform size 
equal to NxN, wherein log 2(N*N)=(log2(K)+log 2CL)) 
>1)<1), wherein log 2 is the binary logarithm, and > and 
<< are the logic right and left shift, respectively. 
0290 Thus, in an example of the fifteenth technique, 
video encoder 20 may determine a 4-tap interpolation filter 
for a non-square intra coded PU of a CU of the video data. 
Furthermore, in this example, video encoder 20 may apply 
the determined 4-tap interpolation filter as part of obtaining 
a predictive block for the non-square intra coded PU. For 
instance, video encoder 20 may apply the 4-tap filter when 
determining a value of a reference sample that lies between 
two integer-position reference samples (i.e., reference 
samples at integer coordinates relative to a top-left sample of 
a picture). Additionally, in this example, video encoder 20 
may include, in a bitstream that comprises an encoded 
representation of the video data, data representing residual 
data based at least in part on a predictive block for the 
non-square PU and a coding block of the CU. In this 
example, as part of determining the 4-tap interpolation filter, 
video encoder 20 may determine the 4-tap interpolation filter 
based on a size of a square PU, wherein the size of the square 
PU is based on the height and width of the non-square intra 
coded PU. 
0291. In a corresponding example of the fifteenth tech 
nique, video decoder 30 may determine a 4-tap interpolation 
filter for a non-square intra coded PU of a CU of the video 
data. Additionally, in this example, video decoder 30 may 
apply the determined 4-tap interpolation filter as part of 
obtaining a predictive block for the non-square intra coded 
PU. Furthermore, video decoder 30 may reconstruct, based 
at least in part on a predictive block for the non-square PU, 
a coding block of the CU. In this example, as part of 
determining the 4-tap interpolation filter, video decoder 30 
may determine the 4-tap interpolation filter based on a size 
of a square PU, wherein the size of the square PU is based 
on the height and width of the non-square intra coded PU. 

32 
May 25, 2017 

0292. In some examples of the fifteenth technique, a new 
4-tap filter may be applied for non-square intra coded PUs. 
That is, even for non-square intra coded PUs, a 4-tap filter 
may be applied and this filter may be different from what is 
defined for square PUs. Furthermore, in some examples of 
the fifteenth technique, a different mapping table between 
the intra prediction mode and scan pattern index may be 
applied for non-square intra coded PUs. 
0293 A KxL transform block is treated as a transform 
size equal to NXN wherein log 2(N*N)=(log 2(K)+log 
2(L)+1). Thus, the selection of a scan pattern for the KXL 
transform block may be the same as the NXN block. 
0294 As discussed above, transform blocks in HEVC are 
of size NxN, where N=2" and m is an integer. Furthermore, 
in HEVC, a video encoder applies a 2-dimensional NXN 
transform to a transform block to generate transform coef 
ficients. More specifically, the video encoder applies the 
2-dimensional NxN transform by applying an N-point 1-di 
mensional transform to each row of the transform block and 
each column of the transform block separately. Applying the 
transform in this way results in an NXN block of transform 
coefficients. 

0295. In HEVC, the video encoder may apply an N-point 
1-dimensional DCT transform to an i-th row or column of 
samples of the transform block w, by calculating: 

wi-y-o''uic, (18) 

In the equation above, i=0, . . . , N-1. Elements c, of the 
DCT transform matrix C are defined as: 

A cos(i+3) (19) 
c - - - 

In the equation above, ij=0,...,N-1 and where A is equal 
to 1 and 2' for i=0 and id-0 respectively. 
0296. In equation (19), let 

A cos(i+3) 
be denoted by X. Therefore, equation (18) can be rewritten 
aS 

Because the video encoder applies the 1-dimensional DCT 
transform in both the horizontal and vertical directions, the 
transform coefficient w, can ultimately be rewritten as: 

(20) 
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N 

This can further be rewritten as: 

W 

XIX-X i=0 

VN. VN 

(21) 

0297 Thus, the transform can ultimately be considered as 
having a “normalization factor of VN-VN. Because N=2", 
VN-VN is also a power of 2. Hence, the value of a transform 
coefficient can be implemented by a right-shift operation 
instead of a division operation. As discussed elsewhere in 
this disclosure, using right-shift operations instead of divi 
sion operations may reduce complexity and improve coding 
speed. 
0298. However, problems may arise when reusing equa 
tion (19) with a non-square transform block of a TU. For a 
2-D transform (including both horizontal and vertical trans 
forms), considering a KL transform, the normalization 
factor would be (VK*VL). If N is defined as the value 
satisfying the equation log 20N*N)-((log2(K)+log 2CL)) 
>1)<1), the ratio of utilized normalization factor (VN* 
VN) and the real normalization factor (VK*VL) would be 1/ 
V2. In other words, when reusing the same normalization 
factor derived from an NxN transform block in the quanti 
Zation process, the energy (i.e., the Sum of squares of 
quantized transform coefficients) is changed by V2. 
0299. A sixteenth technique of this disclosure may 
address this issue. For instance, in the sixteenth technique of 
this disclosure, for a non-square transform block with size 
equal to KXL, when (log2(K)+log 2CL)) is odd, the trans 
form and quantization process in HEVC is kept unchanged 
and the non-square transform block is treated as a transform 
block with size equal to NxN, wherein log2(N*N)=((log 
2(K)+log 2CL))>1)<1). In other words, based on (log 
2(K)+log2(L)) being odd, video encoder 20 may determine 
a value N such that log2(N*N)-((log2(K)+log2(L))>1) 
<<1). Video encoder 20 may then use elements of a DCT 
transform matrix C that are defined according to equation 
(19) using the determined value of N in the “normalization 
factor.” Thus, video encoder 20 may continue to use a 
right-shift operation for the division by the “normalization 
factor” in equation (21). 
0300 Furthermore, in accordance with the sixteenth tech 
nique of this disclosure, after the transform process and 
before the quantization process, the transform coefficients 
are modified, multiplied by a factor of V2. In other words, 
after applying the transform to the non-square transform 
block to generate a coefficient block, video encoder 20 
multiplies each transform coefficient of the coefficient block 
by a factor of V2. This is because the ratio of the used 
normalization factor (i.e., (VN*VN)) to the real normaliza 
tion factor (i.e., (VK*VL)) is equal to 

-- 
V2 

0301 For example, let K-8 and L-4. In this example, log 
2(4*4)=((log2(8)+log2(4))>1)<<1), so 
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V4 
V4 

is equal to 

which is equal to 

V. 
which is equal to V2. Note that for values of K and L where 
(log2(K)+log 20L)) is even, the ratio of the used normal 
ization factor (i.e., (VN*VN)) to the real normalization 
factor (i.e., (VK*VL)) is equal to 1. Therefore, when (log 
2(K)+log 2(L)) is even, there may be no need for video 
encoder 20 to multiply the transform coefficients by the 
factor of p2. 
0302. After the de-quantization process, the de-quantized 
coefficients are further modified, divided by a factor of V2. 
Multiplying the transform coefficients by V2 before quanti 
zation and dividing the transform coefficients by V2 may 
preserve information that would otherwise be lost in the 
quantization process. Preserving this information may 
ensure more accurate reconstruction of the original trans 
form block. 
0303. In another example of the sixteenth technique, the 
transform and quantization process in HEVC is kept 
unchanged and it is treated as a transform size equal to NXN 
wherein log 2(N*N)=(log2(K)+log 2CL)+1). After trans 
form and before the quantization process, the transform 
coefficients are modified, divided by a factor of V2. After the 
de-quantization process, the de-quantized coefficients are 
further modified, multiplied by a factor of V2. 
0304. In the examples of the sixteenth technique above, 
the factor of V2 may be represented by its approximation. 
For example, the process of (x*V2) can be approximated by 
(x* 181)>>7, wherein > represents a right shift operation. 
The process of (x/V2) can be approximated by (X*V2)/2, i.e., 
(x* 181)>>8, wherein > represents a right shift operation. 
0305 Thus, in the example of the sixteenth technique 
presented above, video encoder 20 may apply a transform to 
a transform block of a non-square TU of a CU to generate 
a block of transform coefficients. Additionally, video 
encoder 20 may modify the transform coefficients such that 
each respective transform coefficient of a block of transform 
coefficients is based on the respective dequantized transform 
coefficient multiplied by an approximation of V2. In this 
example, after modifying the transform coefficients, video 
encoder 20 may apply a quantization process to the modified 
transform coefficients of the non-square PU of the CU. 
Furthermore, in this example, video encoder 20 may 
include, in a bitstream comprising an encoded representation 
of the video data, data based on the quantized transform 
coefficients. In some examples, as part of applying the 
transform to the transform block of the non-square TU, 
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Video encoder 20 may apply, to the dequantized transform 
coefficients, a transform having size NxN, where log 
2(N*N)=((log2(K)+log2(L))>1)<1). 
0306 In a corresponding example, video decoder 30 may 
apply a dequantization process to transform coefficients of a 
non-square PU of a CU of the video data. In this example, 
after applying the dequantization process to the transform 
coefficients, video decoder 30 may modify the dequantized 
transform coefficients such that each respective dequantized 
transform coefficient of the dequantized transform coeffi 
cients based on the respective dequantized transform coef 
ficient divided by an approximation of V2. In some 
examples, as part of applying the inverse transform to the 
modified dequantized transform coefficients comprises, 
video decoder 30 may apply, to the modified dequantized 
transform coefficients, a transform having size NxN, where 
log2(N*N)=((log2(K)+log 2CL))>>1)<1). 
0307. In HEVC, video encoder 20 may calculate a quan 
tized transform coefficient (i.e., a level) using the following 
equation: 

OP (22) level= (coeff X fop c. 6+ offseto) s g") s shift2 

where coeff is the transform coefficient, offset is an offset 
value, QP is a quantization parameter, shift2=29-M-B, B is 
the bit depth, M=log(N), and 

f=fol. . . . fs=26214, 23302, 20560, 18396, 16384, 
14564) (23) 

0308 Furthermore, in HEVC, video decoder 30 may 
inverse quantize a quantized transform coefficient using the 
following equation: 

OP 24 
coeffo = (level» (or 6, 6 s: 9) -- ofsetto) s shift1 (24) 

In equation (24), coeffo is the inverse quantized transform 
coefficient, level is the quantized transform coefficient, 
offset is an offset value=1<(M-10+B), shift1=(M-9+B). 
and g is defined as shown in equation (25), below: 

g=|fo, . . . fs=|40, 45, 51, 57, 64, 72 (25) 
0309. In accordance with a technique of this disclosure, 
Video encoder 20 may use different quantization matrixes 
(i.e., versions of f), depending on whether (log(W)+log 
(H)) is odd or even. Similarly, video decoder 30 may use 
different inverse quantization matrixes (i.e., versions of g), 
depending on whether (log2(W)+log(H)) is odd or even. An 
example of g is defined as follows: 
0310 (40.45,51,57.64.72, // when the sum is even 
0311. 7240,8145,9231,10317,11584,13032) // when the 
Sum is odd 

Note that each corresponding value of g for the case that it 
is even is multiplied by 181. In this example, there is no need 
to perform the multiplication or division processes before or 
after quantization stages since the compensation of V2 has 
already been considered in g. 
0312 Furthermore, in equations (22) and (24), the value 
selected in quantization matrixes f and g is selected based on 
the quantization parameter QP. The selected values in quan 
tization matrixes f and g may be referred to herein as 
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quantization matrix coefficients. In some examples of this 
disclosure, video encoder 20 and video decoder 30 may 
select quantization matrix coefficients based on the quanti 
Zation parameter and also based on whether (log2(W)+log 
2(H)) is odd or even. 
0313 As briefly described above and illustrated in FIG. 
2A and FIG. 2B, in HEVC, a video coder always processes 
TUs of a CU in a recursive z-scan order. Thus, as shown in 
FIG. 2A, data corresponding to transform coefficients of TU 
“a” appear in the bitstream before data corresponding to 
transform coefficients of TU “b', and so on. A seventeenth 
technique of this disclosure proposes that for CUs coded 
with inter mode or comb mode or intra mode but with 
non-square partitions, the coding order of transform coeffi 
cients is dependent on a PU coding order instead of always 
using the recursive Z-scan. In some examples of the seven 
teenth technique, all coefficients within one PU shall be 
coded together before coding the coefficients in another PU. 
Thus, for video encoder 20, all coefficients within one of the 
PUs of the CU are encoded together before encoding coef 
ficients of another one of the PUs of the CU. Similarly, in 
this example, for video decoder 30, all coefficients within 
one PU of a CU are decoded together before decoding 
coefficients of another one of the PUs of the CU. 

0314. In this example, the transform coefficients of a PU 
are transform coefficients of TUs whose transform blocks 
are within an area of a prediction block of the PU. For 
example, let the coordinates of a top-left corner of a pre 
diction block of a PU of a 16x16 CU be (0,0) relative to a 
top-left corner of a coding block of the CU and let the 
coordinates of the bottom-right corner of the prediction 
block of the PU be (7, 15). Furthermore, in this example, let 
the coordinates of a top-left corner of a transform block of 
a TU of the CU be (4, 0) and let the coordinates of a 
bottom-right corner of the transform block of the TU be 
(7,15). In this example, transform coefficients of the TU are 
transform coefficients of the PU. However, in this example, 
if the top-left corner of the transform block of the TU is (8. 
O) and the bottom-right corner of the transform block of the 
TU is (15, 7), the transform coefficients of the TU are not 
transform coefficients of the PU. 
0315 For example, with respect to FIG. 2A, suppose that 
CU40 has two PUs which partition CU 40 vertically through 
the center of CU 40. Thus, the transform coefficients of a 
first PU of CU 40 include the transform coefficients of TUS 
“a,” “b,” “c,” “d, and “f. The transform coefficients of a 
second PU of CU 40 include the transform coefficients of 
TUs “e,” “g,” “h,” “i,” and “j”. In this example, video 
encoder 20 may include data representing transform coef 
ficients of TU 'e' following data representing transform 
coefficients of TU “f. In contrast, in HEVC, the data 
representing transform coefficients of TU “f follows the 
data representing transform coefficients of TU 'e', regard 
less of the shape and size of the PUs of CU 40. In other 
words, when one PU contains multiple TUs, the recursive 
Z-scan with depth-first traversal is applied for coding these 
coefficients within the PU. Taking FIG. 2 as an example, if 
the partition size is equal to NX2N, the coding order may be 
a, b, c, d, f, e.g., h, i, j. 
0316. Some examples of the seventeenth technique are 
only applicable when the transform depth is unequal to 0. 
i.e., transform size no larger than PU sizes. Note that the 
AMP mentioned above may include other asymmetric par 
titions, not only the four cases defined in HEVC. 
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0317. As mentioned briefly above, the IC design in 
HEVC only supports square PUs. Prior to the present 
disclosure, how to derive the IC parameters a and b for 
non-square PUs was unknown. An eighteenth technique of 
this disclosure enables IC to be used with non-square PUs. 
For instance, video encoder 20 may use IC to generate a 
non-square predictive block of a current PU of a picture of 
the video data. Additionally, video encoder 20 may generate 
residual data based on the predictive block. For example, 
Video encoder 20 may generate the residual data Such that 
each respective sample of the residual data is equal to a 
difference between a respective sample of a coding block of 
the current CU and a corresponding respective sample of the 
predictive block. Furthermore, video encoder 20 may output 
a bitstream that includes databased on the residual data. For 
example, video encoder 20 may apply a transform to the 
residual data to generate a coefficient block, quantize coef 
ficients of the coefficient block, and include in the bitstream 
one or more syntax elements representing each of the 
quantized coefficients. In this example, video encoder 20 
may entropy encode one or more of the syntax elements for 
each quantized coefficient. In other examples, video encoder 
20 may skip application of the transform and/or quantiza 
tion. 
0318. Furthermore, in accordance with one or more of the 
examples related to IC provided above, video decoder 30 
may use IC to generate a non-square predictive block of a 
current PU of a current CU of a picture of the video data. 
Additionally, video decoder 30 may reconstruct, based on 
the predictive block, a block (e.g., a coding block) of the 
picture. For example, video decoder 30 may reconstruct 
samples of the block by adding samples of the predictive 
block to corresponding residual samples. 
0319. In the examples of the eighteenth technique, as part 
of using IC to generate a non-square predictive block, a 
video coder (e.g., video encoder 20 and/or video decoder 30) 
may determine a sample of the predictive block as: 

where PU is the current PU, (i,j) is the coordinate of pixels 
in the predictive block, (dv, dv,) is a vector (e.g., disparity 
vector) of PU. p(i, j) is a prediction of PU, r is an 
inter-view reference picture, a is a first IC parameter and b 
is a second IC parameter. Furthermore, as part of using IC 
to generate the non-square predictive block, the video coder 
may calculate the first IC parameter as: 

2N 

2N-X Recies (i). Recreteig (i)- 
i=0 

2N- 2N 

y Receig (i). X Recreneg (i) 
i=0 

2N- (2N-1 2 
2N. 2, Recrati Reco-to- 2, Rece.) 

Additionally, the video coder may calculate the second IC 
parameter as: 

2N- 2N 

X Receig (i)-a-X Recrenes (i) 
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In the equations above, Rec, and Rec, denote a 
neighboring pixel set of the current CU and a reference 
block respectively, 2N denotes the pixel number in Rec, 
and Rec, and the current CU has a size equal to NXN. 
Other examples may use variations on the formulas indi 
cated above. 

0320 Furthermore, in examples of the eighteenth tech 
nique, when IC is enabled for one non-square PU with size 
equal to KXL (K is unequal to L), the parameters could be 
derived in various ways. For example, when using the 
equation (16) and equation (17) to calculate linear model 
parameters, pixels located at both longer and shorter sides of 
the PU may be sub-sampled with different ways, such as 
different Sub-sampling ratios. However, it may be required 
that the total number of pixels at two sides together should 
be equal to 2" (wherein m is an integer, and its value may 
be dependent on the block size). Thus, in this example, 
Rec, is a subset of pixels immediately above the current 
CU and immediately left of the current CU. Rec, is a 
subset of pixels immediately above the reference block and 
immediately left of the reference block, and a total number 
of pixels in Rece, and Rec, is equal to 2", where m 
is an integer. The Sub-Sampling process can be a decimation 
or an interpolated sampling. 
0321. In another example of deriving the parameters for 
IC, when using the equation (16) and equation (17) to 
calculate linear model parameters, the pixels of the boundary 
at the shorter side of the non-square PU is up-sampled such 
that the number of pixels in the up-sampled boundary is 
equal to the number of pixels in the longer boundary (i.e., 
max(K, L)). The up-sampling process can be a duplicator or 
an interpolated sampling. Thus, in this example, as part of 
using IC to generate a predictive block, a video coder may 
generate Rece, such that Rece, includes up-sampled 
pixels in whichever is shorter of a left side and a top side of 
the current CU. Additionally, in this example, the video 
coder may generate Rece, such that Rec, e, includes 
up-sampled pixels in whichever is shorter of the left side and 
the top side of the reference block 
0322. Alternatively, pixels located at both longer and 
short sides of the PU may be up-sampled and the up 
sampling ratios may be different. Thus, in this example, as 
part of using IC to generate a predictive block, a video coder 
may generate Rece, such that Rece, includes 
up-sampled pixels in whichever is longer of the left side and 
the top side of the current CU. Additionally, the video coder 
may generate Rece, such that Rec, e, includes up 
sampled pixels in whichever is longer of the left side and the 
top side of the reference block. However, it may be required 
that the total number of pixels at two sides together should 
be equal to 2" (wherein m is an integer, m may be different 
for luma and chroma components). 
0323 Furthermore, in some examples of deriving the 
parameters for IC, different ways of Sub-sampling/up-Sam 
pling for boundary pixels may be applied. In one example, 
the Sub-sampling/up-sampling method is dependent on the 
PU size (i.e., on the values of K and L). Thus, a video coder 
may determine, based on a size of the current PU, a 
Sub-sampling method or up-sampling method to use to 
generate Rec, and Rec,... In another example, the 
methods for Sub-Sampling/up-sampling may be signaled in 
sequence parameter set, picture parameter set, and/or slice 
header. Thus, in some examples, video encoder 20 may 
include, in a bitstream, and video decoder 30 may obtain, 
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from the bitstream, a syntax element indicating a Sub 
sampling method to use to generate Rece, and Rece, 
In some examples, video encoder 20 may include, in a 
bitstream, and video decoder 30 may obtain, from the 
bitstream, a syntax element indicating an up-sampling 
method to use to generate the up-sampled pixels. 
0324. In some examples of deriving the parameters for 
IC, the up-sampling/down-sampling (or Sub-sampling) is 
implemented in an implicit manner. For instance, the Sum 
value in equation (16) and equation (17) of the left side 
boundary or/and upper side boundary, may be multiplied or 
divided by a factor S. The value of S can be dependent on 
the ratio of the pixel number in the left side boundary or/and 
upper side boundary. 
0325 In some examples of the eighteenth technique, the 
same Sub-Sampling/up-sampling method shall also be 
applied to the boundary pixels of the reference block (i.e., 
Rec.). For example, decimation may be used for 
Sub-Sampling both Rece, and Rece, 
0326 Furthermore, in accordance with particular tech 
niques of this disclosure, when LM is enabled for a square 
PU, the luma and chroma boundary pixels may be firstly 
Sub-Sampled to derive the parameters e.g. using equations 
(16) and (17). The sub-sampling method may be predefined 
or signaled in a sequence parameter set, a picture parameter 
set or a slice header. The Sub-sampling method may be 
dependent on prediction unit size. 
0327 Thus, a video coder (e.g., video encoder 20 or 
video decoder 30) may perform a linear model prediction 
operation to predict a predictive chroma block for a current 
PU from sub-sampled reconstructed luma samples of the 
PU. Additionally, the video coder may reconstruct, based in 
part on the predictive chroma block, the block of the picture. 
As part of performing the linear model prediction operation, 
the video coder may obtain a predictive chroma sample Such 
that the predictive chroma sample is equal to a first param 
eter multiplied by a collocated luma sample, plus a second 
parameter, wherein the first parameter is equal to: 

IXx, y, -XX, Xy; 
C - - - - R 

iXXi Xi - XX XX; 

and the second parameter is equal to: 
B=(Xy-CXx)/I. 

In the equations above, I is the number of reference samples 
in a subset of samples in a left and top boundary of the 
current PU determined according to a Sub-sampling method, 
X, is a Sub-sampled reconstructed luma reference sample, y, 
is a reconstructed chroma reference sample. In some 
instances of this example, video encoder 20 may include, in 
a bitstream, and video decoder 30 may obtain, from the 
bitstream, a syntax element indicating the Sub-sampling 
method. In some instances of this example, video encoder 20 
and video decoder 30 may determine, based on a size of the 
current PU, the sub-sampling method. 
0328. Various examples have been described. Particular 
examples of this disclosure may be used separately or in 
combination with one another. 
0329 FIG. 24 is a block diagram illustrating an example 
video encoder 20 that may implement techniques of this 
disclosure. FIG. 24 is provided for purposes of explanation 
and should not be considered limiting of the techniques as 
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broadly exemplified and described in this disclosure. For 
purposes of explanation, this disclosure describes video 
encoder 20 in the context of HEVC coding. However, the 
techniques of this disclosure may be applicable to other 
coding standards or methods. 
0330 Video encoder 20 includes processing circuitry, 
and video encoder 20 is configured to perform one or more 
of the example techniques described in this disclosure. Such 
processing circuitry may include fixed function and/or pro 
grammable circuitry. For instance, video encoder 20 
includes integrated circuitry, and the various units illustrated 
in FIG. 24 may be formed as hardware circuit blocks that are 
interconnected with a circuit bus. These hardware circuit 
blocks may be separate circuit blocks or two or more of the 
units may be combined into a common hardware circuit 
block. The hardware circuit blocks may be formed as 
combinations of electronic components that form operation 
blocks such as arithmetic logic units (ALUs), elementary 
function units (EFUs), as well as logic blocks such as AND, 
OR, NAND, NOR, XOR, XNOR, and other similar logic 
blocks. 

0331. In the example of FIG. 24, video encoder 20 
includes a prediction processing unit 200, video data 
memory 201, a residual generation unit 202, a transform 
processing unit 204, a quantization unit 206, an inverse 
quantization unit 208, an inverse transform processing unit 
210, a reconstruction unit 212, a filter unit 214, a decoded 
picture buffer 216, and an entropy encoding unit 218. 
Prediction processing unit 200 includes an inter-prediction 
processing unit 220 and an intra-prediction processing unit 
226. Inter-prediction processing unit 220 may include a 
motion estimation unit and a motion compensation unit (not 
shown). In some examples, prediction processing unit 200 
performs the illumination compensation techniques of this 
disclosure. In some examples, prediction processing unit 
200 performs the LM techniques of this disclosure to 
generate non-square chroma predictive blocks. Furthermore, 
in some examples, prediction processing unit 200 performs 
the IC techniques of this disclosure to generate non-square 
predictive blocks. 
0332 Video data memory 201 may be configured to store 
video data to be encoded by the components of video 
encoder 20. The video data stored in video data memory 201 
may be obtained, for example, from video source 18 (FIG. 
1). Decoded picture buffer 216 may be a reference picture 
memory that stores reference video data for use in encoding 
Video data by Video encoder 20, e.g., in intra- or inter-coding 
modes. Video data memory 201 and decoded picture buffer 
216 may be formed by any of a variety of memory devices, 
Such as dynamic random access memory (DRAM), includ 
ing synchronous DRAM (SDRAM), magnetoresistive RAM 
(MRAIVI), resistive RAM (RRAM), or other types of 
memory devices. Video data memory 201 and decoded 
picture buffer 216 may be provided by the same memory 
device or separate memory devices. In various examples, 
video data memory 201 may be on-chip with other compo 
nents of video encoder 20, or off-chip relative to those 
components. 
0333 Video encoder 20 receives video data. Video 
encoder 20 may encode each CTU in a slice of a picture of 
the video data. Each of the CTUs may be associated with 
equally-sized luma coding tree blocks (CTBs) and corre 
sponding CTBs of the picture. As part of encoding a CTU, 
prediction processing unit 200 may perform quad-tree par 
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titioning to divide the CTBs of the CTU into progressively 
smaller blocks. The smaller block may be coding blocks of 
CUs. For example, prediction processing unit 200 may 
partition a CTB associated with a CTU into four equally 
sized sub-blocks, partition one or more of the sub-blocks 
into four equally-sized Sub-Sub-blocks, and so on. 
0334 Video encoder 20 may encode CUs of a CTU to 
generate encoded representations of the CUS (i.e., coded 
CUs). As part of encoding a CU, prediction processing unit 
200 may partition the coding blocks associated with the CU 
among one or more PUs of the CU. Thus, each PU may be 
associated with a luma prediction block and corresponding 
chroma prediction blocks. Video encoder 20 and video 
decoder 30 may support PUs having various sizes. As 
indicated above, the size of a CU may refer to the size of the 
luma coding block of the CU and the size of a PU may refer 
to the size of a luma prediction block of the PU. Assuming 
that the size of a particular CU is 2Nx2N, video encoder 20 
and video decoder 30 may support PU sizes of 2NX2N or 
NxN for intra prediction, and symmetric PU sizes of 
2Nx2N, 2NxN, NX2N, NXN, or similar for inter prediction. 
Video encoder 20 and video decoder 30 may also support 
asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, 
nLX2N, and nRX2N for inter prediction. 
0335 Inter-prediction processing unit 220 may generate 
predictive data for a PU by performing inter prediction on 
each PU of a CU. The predictive data for the PU may include 
predictive blocks of the PU and motion information for the 
PU. Inter-prediction processing unit 220 may perform dif 
ferent operations for a PU of a CU depending on whether the 
PU is in an Islice, a Pslice, or a B slice. In an Islice, all PUs 
are intra predicted. Hence, if the PU is in an I slice, 
inter-prediction processing unit 220 does not perform inter 
prediction on the PU. Thus, for blocks encoded in I-mode, 
the predicted block is formed using spatial prediction from 
previously-encoded neighboring blocks within the same 
frame. If a PU is in a Pslice, inter-prediction processing unit 
220 may use uni-directional inter prediction to generate a 
predictive block of the PU. If a PU is in a B slice, 
inter-prediction processing unit 220 may use uni-directional 
or bi-directional inter prediction to generate a predictive 
block of the PU. 
0336 Intra-prediction processing unit 226 may generate 
predictive data for a PU by performing intra prediction on 
the PU. The predictive data for the PU may include predic 
tive blocks of the PU and various syntax elements. Intra 
prediction processing unit 226 may perform intra prediction 
on PUs in I slices, Pslices, and B slices. 
0337 To perform intra prediction on a PU, intra-predic 
tion processing unit 226 may use multiple intra prediction 
modes to generate multiple sets of predictive data for the 
PU. Intra-prediction processing unit 226 may use samples 
from sample blocks of neighboring PUs to generate a 
predictive block for a PU. The neighboring PUs may be 
above, above and to the right, above and to the left, or to the 
left of the PU, assuming a left-to-right, top-to-bottom encod 
ing order for PUs, CUs, and CTUs. Intra-prediction pro 
cessing unit 226 may use various numbers of intra prediction 
modes, e.g., 33 directional intra prediction modes. In some 
examples, the number of intra prediction modes may depend 
on the size of the region associated with the PU. 
0338 Prediction processing unit 200 may select the pre 
dictive data for PUs of a CU from among the predictive data 
generated by inter-prediction processing unit 220 for the 
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PUs or the predictive data generated by intra-prediction 
processing unit 226 for the PUs. In some examples, predic 
tion processing unit 200 selects the predictive data for the 
PUs of the CU based on rate? distortion metrics of the sets of 
predictive data. The predictive blocks of the selected pre 
dictive data may be referred to herein as the selected 
predictive blocks. 
0339 Residual generation unit 202 may generate, based 
on the coding blocks (e.g., luma, Cb and Cr coding blocks) 
for a CU and the selected predictive blocks (e.g., predictive 
luma, Cb and Cr blocks) for the PUs of the CU, residual 
blocks (e.g., luma, Cb and Cr residual blocks) for the CU. 
For instance, residual generation unit 202 may generate the 
residual blocks of the CU such that each sample in the 
residual blocks has a value equal to a difference between a 
sample in a coding block of the CU and a corresponding 
sample in a corresponding selected predictive block of a PU 
of the CU. 
0340 Transform processing unit 204 may perform par 
titioning (e.g., quad-tree partitioning) to partition the 
residual blocks associated with a CU into transform blocks 
associated with TUs of the CU. Thus, a TU may be asso 
ciated with a luma transform block and two chroma trans 
form blocks. The sizes and positions of the luma and chroma 
transform blocks of TUs of a CU may or may not be based 
on the sizes and positions of prediction blocks of the PUs of 
the CU. A quad-tree structure known as a “residual quad 
tree' (RQT) may include nodes associated with each of the 
regions. The TUs of a CU may correspond to leaf nodes of 
the RQT. 
0341. In some examples, transform processing unit 204 
may perform the techniques of this disclosure for determin 
ing a residual tree structure that includes nodes having two 
(and/or 4) child nodes. For example, video data memory 201 
may receive video data and transform processing unit 204 
may partition a CU of the video data into TUs of the CU 
based on a tree structure. In this example, as part of 
partitioning the CU into TUs of the CU based on the tree 
structure, transform processing unit 204 may determine that 
a node in the tree structure has exactly two child nodes in the 
tree structure. In some instances, transform processing unit 
204 may further determine that a second node in the tree 
structure has exactly four child nodes in the tree structure. 
For at least one of the TUs of the CU, transform processing 
unit 204 may apply a transform to a residual block for the 
TU to generate a block of transform coefficients for the TU. 
0342 Transform processing unit 204 may generate trans 
form coefficient blocks for each TU of a CU by applying one 
or more transforms to the transform blocks of the TU. 
Transform processing unit 204 may apply various trans 
forms to a transform block associated with a TU. For 
example, transform processing unit 204 may apply a discrete 
cosine transform (DCT), a directional transform, or a con 
ceptually similar transform to a transform block. In some 
examples, transform processing unit 204 does not apply 
transforms to a transform block. In Such examples, the 
transform block may be treated as a transform coefficient 
block. In some examples, transform processing unit 204 
performs the EMT techniques of this disclosure. 
0343 Quantization unit 206 may quantize the transform 
coefficients in a coefficient block. The quantization process 
may reduce the bit depth associated with some or all of the 
transform coefficients. For example, an n-bit transform 
coefficient may be rounded down to an m-bit transform 
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coefficient during quantization, where n is greater than m. 
Quantization unit 206 may quantize a coefficient block 
associated with a TU of a CU based on a quantization 
parameter (QP) value associated with the CU. Video encoder 
20 may adjust the degree of quantization applied to the 
coefficient blocks associated with a CU by adjusting the QP 
value associated with the CU. Quantization may introduce 
loss of information; thus quantized transform coefficients 
may have lower precision than the original transform coef 
ficients. 
0344. In some examples, quantization unit 206 modifies 
the transform coefficients such that each respective trans 
form coefficient of the block of transform coefficients is 
based on the respective dequantized transform coefficient 
multiplied by an approximation of V2. In this example, after 
modifying the transform coefficients, quantization unit 206 
applies a quantization process to the modified transform 
coefficients of the non-square PU of the CU. 
0345 Inverse quantization unit 208 and inverse trans 
form processing unit 210 may apply inverse quantization 
and inverse transforms to a coefficient block, respectively, to 
reconstruct a residual block from the coefficient block. 
Reconstruction unit 212 may add the reconstructed residual 
block to corresponding samples from one or more predictive 
blocks generated by prediction processing unit 200 to pro 
duce a reconstructed transform block associated with a TU. 
By reconstructing transform blocks for each TU of a CU in 
this way, Video encoder 20 may reconstruct the coding 
blocks of the CU. 

0346 Filter unit 214 may perform one or more deblock 
ing operations to reduce blocking artifacts in the coding 
blocks associated with a CU. Decoded picture buffer 216 
may store the reconstructed coding blocks after filter unit 
214 performs the one or more deblocking operations on the 
reconstructed coding blocks. Inter-prediction processing 
unit 220 may use a reference picture that contains the 
reconstructed coding blocks to perform inter prediction on 
PUs of other pictures. In addition, intra-prediction process 
ing unit 226 may use reconstructed coding blocks in 
decoded picture buffer 216 to perform intra prediction on 
other PUs in the same picture as the CU. 
0347 Entropy encoding unit 218 may receive data from 
other functional components of video encoder 20. For 
example, entropy encoding unit 218 may receive coefficient 
blocks from quantization unit 206 and may receive syntax 
elements from prediction processing unit 200. Entropy 
encoding unit 218 may perform one or more entropy encod 
ing operations on the data to generate entropy-encoded data. 
For example, entropy encoding unit 218 may perform a 
CABAC operation, a context-adaptive variable length cod 
ing (CAVLC) operation, a variable-to-variable (V2V) length 
coding operation, a syntax-based context-adaptive binary 
arithmetic coding (SBAC) operation, a Probability Interval 
Partitioning Entropy (PIPE) coding operation, an Exponen 
tial-Golomb encoding operation, or another type of entropy 
encoding operation on the data. Video encoder 20 may 
output a bitstream that includes entropy-encoded data gen 
erated by entropy encoding unit 218. For instance, the 
bitstream may include data that represents a RQT for a CU. 
0348 FIG. 25 is a block diagram illustrating an example 
video decoder 30 that is configured to implement techniques 
of this disclosure. FIG. 25 is provided for purposes of 
explanation and is not limiting on the techniques as broadly 
exemplified and described in this disclosure. For purposes of 

May 25, 2017 

explanation, this disclosure describes video decoder 30 in 
the context of HEVC coding. However, the techniques of 
this disclosure may be applicable to other coding standards 
or methods. 

0349 Video decoder 30 includes processing circuitry, 
and video decoder 30 is configured to perform one or more 
of the example techniques described in this disclosure. For 
instance, video decoder 30 includes integrated circuitry, and 
the various units illustrated in FIG. 25 may be formed as 
hardware circuit blocks that are interconnected with a circuit 
bus. These hardware circuit blocks may be separate circuit 
blocks or two or more of the units may be combined into a 
common hardware circuit block. The hardware circuit 
blocks may be formed as a combination of electronic 
components that form operation blocks such as arithmetic 
logic units (ALUs), elementary function units (EFUs), as 
well as logic blocks such as AND, OR, NAND, NOR, XOR, 
XNOR, and other similar logic blocks. 
0350. In some examples, one or more of the units illus 
trated in FIG. 25 may be provided by software units execut 
ing on the processing circuitry. In such examples, the object 
code for these Software units is stored in memory. An 
operating system may cause video decoder 30 to retrieve the 
object code and execute the object code, which causes video 
decoder 30 to perform operations to implement the example 
techniques. In some examples, the software units may be 
firmware that video decoder 30 executes at startup. Accord 
ingly, video decoder 30 is a structural component having 
hardware that performs the example techniques or has 
Software/firmware executing on the hardware to specialize 
the hardware to perform the example techniques. 
0351. In the example of FIG. 25, video decoder 30 
includes an entropy decoding unit 250, video data memory 
251, a prediction processing unit 252, an inverse quantiza 
tion unit 254, an inverse transform processing unit 256, a 
reconstruction unit 258, a filter unit 260, and a decoded 
picture buffer 262. Prediction processing unit 252 includes 
a motion compensation unit 264 and an intra-prediction 
processing unit 266. In other examples, video decoder 30 
may include more, fewer, or different functional compo 
nents. In some examples, prediction processing unit 266 
performs the illumination compensation techniques of this 
disclosure. In some examples, prediction processing unit 
266 performs the LM techniques of this disclosure. 
0352 Video data memory 251 may store encoded video 
data, such as an encoded video bitstream, to be decoded by 
the components of video decoder 30. The video data stored 
in video data memory 251 may be obtained, for example, 
from computer-readable medium 16, e.g., from a local video 
Source. Such as a camera, via wired or wireless network 
communication of video data, or by accessing physical data 
storage media. Video data memory 251 may form a coded 
picture buffer (CPB) that stores encoded video data from an 
encoded video bitstream. Decoded picture buffer 262 may be 
a reference picture memory that stores reference video data 
for use in decoding video data by video decoder 30, e.g., in 
intra- or inter-coding modes, or for output. Video data 
memory 251 and decoded picture buffer 262 may be formed 
by any of a variety of memory devices, such as dynamic 
random access memory (DRAM), including synchronous 
DRAM (SDRAM), magnetoresistive RAM (MRAM), resis 
tive RAM (RRAM), or other types of memory devices. 
Video data memory 251 and decoded picture buffer 262 may 
be provided by the same memory device or separate memory 
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devices. In various examples, video data memory 251 may 
be on-chip with other components of video decoder 30, or 
off-chip relative to those components. 
0353 Video data memory 251 receives and stores 
encoded video data (e.g., NAL units) of a bitstream. Entropy 
decoding unit 250 may receive encoded video data (e.g., 
NAL units) from video data memory 251 and may parse the 
NAL units to obtain syntax elements. Entropy decoding unit 
250 may entropy decode entropy-encoded syntax elements 
in the NAL units. Prediction processing unit 252, inverse 
quantization unit 254, inverse transform processing unit 256. 
reconstruction unit 258, and filter unit 260 may generate 
decoded video databased on the syntax elements extracted 
from the bitstream. Entropy decoding unit 250 may perform 
a process generally reciprocal to that of entropy encoding 
unit 218. 

0354. In addition to obtaining syntax elements from the 
bitstream, video decoder 30 may perform a reconstruction 
operation on a non-partitioned CU. To perform the recon 
struction operation on a CU, video decoder 30 may perform 
a reconstruction operation on each TU of the CU. By 
performing the reconstruction operation for each TU of the 
CU, video decoder 30 may reconstruct residual blocks of the 
CU. 

0355 As part of performing a reconstruction operation on 
a TU of a CU, inverse quantization unit 254 may inverse 
quantize, i.e., de-quantize, coefficient blocks associated with 
the TU. After inverse quantization unit 254 inverse quantizes 
a coefficient block, inverse transform processing unit 256 
may apply one or more inverse transforms to the coefficient 
block in order to generate a residual block associated with 
the TU. For example, inverse transform processing unit 256 
may apply an inverse DCT, an inverse integer transform, an 
inverse Karhunen-Loeve transform (KLT), an inverse rota 
tional transform, an inverse directional transform, or another 
inverse transform to the coefficient block. In some examples, 
inverse transform processing unit 256 performs the EMT 
techniques of this disclosure. 
0356. In accordance with some examples of this disclo 
Sure, inverse quantization unit 254 may apply a dequanti 
Zation process to transform coefficients of a non-square TU 
of a CU of the video data. Furthermore, after applying the 
dequantization process to the transform coefficients, inverse 
quantization unit 254 may modify the dequantized transform 
coefficients such that each respective dequantized transform 
coefficient of the dequantized transform coefficients is based 
on the respective dequantized transform coefficient divided 
by an approximation of V2. 
0357. In some examples, inverse transform processing 
unit 256 may apply the techniques of this disclosure for 
determining a residual tree structure that includes nodes 
having two (and/or 4) child nodes. For example, inverse 
transform processing unit 256 may determine a CU of the 
video data is partitioned into TUs of the CU based on a tree 
structure. In this example, as part of determining the CU is 
partitioned into the TUs of the CU based on the tree 
structure, inverse transform processing unit 256 may deter 
mine that a node in the tree structure has exactly two child 
nodes in the tree structure. In some examples, inverse 
transform processing unit 256 may determine that a second 
node in the tree structure has exactly four child nodes in the 
tree structure. Furthermore, in this example, for at least one 
of the TUs of the CU, inverse transform processing unit 256 
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may apply a transform to a coefficient block for the TU to 
generate a residual block for the TU. 
0358 If a PU is encoded using intra prediction, intra 
prediction processing unit 266 may perform intra prediction 
to generate predictive blocks of the PU. Intra-prediction 
processing unit 266 may use an intra prediction mode to 
generate the predictive blocks of the PU based on samples 
spatially-neighboring blocks. Intra-prediction processing 
unit 266 may determine the intra prediction mode for the PU 
based on one or more syntax elements obtained from the 
bitstream. 

0359. If a PU is encoded using inter prediction, entropy 
decoding unit 250 may determine motion information for the 
PU. Motion compensation unit 264 may determine, based on 
the motion information of the PU, one or more reference 
blocks. Motion compensation unit 264 may generate, based 
on the one or more reference blocks, predictive blocks (e.g., 
predictive luma, Cb and Cr blocks) for the PU. 
0360 Reconstruction unit 258 may use transform blocks 
(e.g., luma, Cb and Cr transform blocks) for TUs of a CU 
and the predictive blocks (e.g., luma, Cb and Cr blocks) of 
the PUs of the CU, i.e., either intra-prediction data or 
inter-prediction data, as applicable, to reconstruct the coding 
blocks (e.g., luma, Cb and Crcoding blocks) for the CU. For 
example, reconstruction unit 258 may add samples of the 
transform blocks (e.g., luma, Cb and Cr transform blocks) to 
corresponding samples of the predictive blocks (e.g., luma, 
Cb and Cr predictive blocks) to reconstruct the coding 
blocks (e.g., luma, Cb and Cr coding blocks) of the CU. 
0361 Filter unit 260 may apply one or more filters to 
coding blocks of the CU. For example, filter unit 260 may 
perform a deblocking operation to reduce blocking artifacts 
associated with the coding blocks of the CU. Video decoder 
30 may store the coding blocks of the CU in decoded picture 
buffer 262. Thus, decoded picture buffer 262 may store 
decoded blocks of the video data. Decoded picture buffer 
262 may provide reference pictures for Subsequent motion 
compensation, intra prediction, and presentation on a display 
device, such as display device 32 of FIG. 1. For instance, 
video decoder 30 may perform, based on the blocks in 
decoded picture buffer 262, intra prediction or inter predic 
tion operations for PUs of other CUs. 
0362 FIG. 26 is a block diagram illustrating an example 
video encoder 20 that supports LM-based encoding in 
accordance with a technique of this disclosure. In the 
example of FIG. 26, component of video encoder 20 oper 
ates in the same manner as the corresponding components of 
video encoder 20 of FIG. 24. However, video encoder 20 of 
FIG. 26 also includes an LM-based encoding unit 222. 
0363 LM-based encoding unit 222 may perform the LM 
prediction encoding according to the examples described 
elsewhere in this disclosure. For example, inverse quanti 
zation unit 208, inverse transform processing unit 210, 
reconstruction unit 212, and filter unit 214 may reconstruct 
a set of luma reference samples, a set of chroma reference 
samples, and may also reconstruct luma samples of a non 
square PU. LM-based encoding unit 222 may down-sample 
or Sub-Sample the set of luma reference samples such that a 
total number of luma reference samples in the set of luma 
reference samples that neighbor a longer side of the non 
square PU is the same as a total number of luma reference 
samples of the set of luma reference samples that neighbor 
a shorter side of the non-square PU. Additionally, LM-based 
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decoding unit 222 may determine a first parameter Such that 
the first parameter is equal to: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples. For each respective chroma sample of a predictive 
chroma block of the non-square PU, LM-based encoding 
unit 222 may determine a value of the respective chroma 
sample Such that the value of the respective chroma sample 
is equal to a second parameter multiplied by a respective 
reconstructed luma sample corresponding to the respective 
chroma sample, plus the first parameter, the reconstructed 
luma sample corresponding to the respective chroma sample 
being one of the reconstructed luma samples of the non 
square PU. LM-based encoding unit 222 may determine the 
first parameter Such that the second parameter is equal to: 

IXx, y, -XX, Xy; 
IX. Xi Xi - XXi XX; 

0364 LM-based encoding unit 222 may output the pre 
dictive block to residual generation unit 202. Residual 
generation unit 202 generates a residual block from the 
predictive block and the chroma block. The resulting 
residual block is transformed by transform processing unit 
103, quantized by quantization unit 206, and entropy 
encoded by entropy encoding unit 218. The result is then 
signaled via a bitstream and video decoder 30 may use 
information in the bitstream to reconstruct the chroma block. 
0365 FIG. 27 is a block diagram illustrating an example 
video decoder 30 that supports LM-based decoding in 
accordance with a technique of this disclosure. In the 
example of FIG. 27, components of video decoder 30 
operate in the same manner as the corresponding compo 
nents of video decoder 30 of FIG. 27. However, video 
decoder 30 of FIG. 27 also includes an LM-based decoding 
unit 265. 
0366. In accordance with various examples of this dis 
closure, video decoder 30 may be configured to perform 
LM-based coding in accordance with examples provided 
elsewhere in this disclosure. For example, inverse quanti 
zation unit 254, inverse transform processing unit 256, 
reconstruction unit 258, and filter unit 260 may reconstruct 
a set of luma reference samples, a set of chroma reference 
samples, and may also reconstruct luma samples of a non 
square PU. LM-based decoding unit 265 may down-sample 
or Sub-Sample the set of luma reference samples Such that a 
total number of luma reference samples in the set of luma 
reference samples that neighbor a longer side of the non 
square PU is the same as a total number of luma reference 
samples of the set of luma reference samples that neighbor 
a shorter side of the non-square PU. Additionally, LM-based 
decoding unit 265 may determine a first parameter such that 
the first parameter is equal to: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
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samples. For each respective chroma sample of a predictive 
chroma block of the non-square PU, LM-based decoding 
unit 266 may determine a value of the respective chroma 
sample Such that the value of the respective chroma sample 
is equal to a second parameter multiplied by a respective 
reconstructed luma sample corresponding to the respective 
chroma sample, plus the first parameter, the reconstructed 
luma sample corresponding to the respective chroma sample 
being one of the reconstructed luma samples of the non 
square PU. LM-based decoding unit 266 may determine the 
first parameter Such that the second parameter is equal to: 

IXx, y - XX, Xy; 
IX. Xi Xi - XXi XXi 

0367 LM-based decoding unit 265 may output the pre 
dictive block to reconstruction unit 258. Reconstruction unit 
258 also receives a residual block (e.g., after information in 
the bitstream for the residual block is entropy decoded with 
entropy decoding unit 250, inverse quantized with inverse 
quantization unit 254, inverse transformed with inverse 
transform processing unit 256). Reconstruction unit 258 
adds the residual block with the predictive block to recon 
struct the chroma block. 
0368 FIG. 28 is a flowchart illustrating an example 
operation of video encoder 20 in accordance with a LM 
based coding technique of this disclosure. The flowcharts of 
this disclosure are provided as examples. Other examples 
within the scope of this disclosure may include more, fewer, 
or different actions. Other examples within the scope of this 
disclosure may include actions in different orders or per 
formed in parallel. 
0369. In the example of FIG. 28, video encoder 20 may 
receive video data (300). For example, video encoder 20 
may receive the video data from video source 18 (FIG. 1), 
or another source. 
0370 Additionally, in the example of FIG. 28, video 
encoder 20 may reconstruct a set of luma reference samples 
and a set of chroma reference samples (302). The set of luma 
reference samples may comprise above luma samples neigh 
boring a top side of a non-square luma block of a current 
picture of the video data and left luma samples neighboring 
a left side of the non-square luma block. In some examples, 
the non-square luma block is a luma prediction block of a 
non-square PU. The set of chroma reference samples may 
comprise chroma samples neighboring the top side of a 
non-square chroma block and chroma samples neighboring 
the left side of the non-square chroma block. In some 
examples, the non-square luma block is a luma prediction 
block of a non-square PU. 
0371. Furthermore, video encoder 20 may reconstruct 
luma samples of the non-square luma block (304). For 
example, video encoder 20 may generate luma residual 
samples for the CU as described elsewhere in this disclosure. 
In this example, video encoder 20 may add samples of a 
luma predictive block of the non-square luma block to 
corresponding samples of the luma residual samples to 
reconstruct the luma samples of the non-square luma block. 
0372. In some examples, video encoder 20 may down 
sample or Sub-sample the luma samples of the non-square 
luma block. By down-sampling or Sub-Sampling the luma 
samples of the non-square luma block, video encoder 20 



US 2017/O 1501.76 A1 

may obtain a down-sampled or Sub-sampled set of luma 
samples having one luma sample for each chroma sample of 
a chroma predictive block (e.g., a chroma predictive block 
of the same PU as the luma block). Video encoder 20 may 
down-sample or Sub-sample the luma samples of the non 
square luma block in response to determining that a color 
format of the current picture is not 4:4:4. 
0373) Additionally, video encoder 20 may down-sample 
or Sub-Sample the set of luma reference samples Such that a 
total number of luma reference samples in the set of luma 
reference samples that neighbor a longer side of the non 
square luma block is the same as a total number of luma 
reference samples of the set of luma reference samples that 
neighbor a shorter side of the non-square luma block (306). 
Video encoder 20 may down-sample or sub-sample the set 
ofluma reference samples in accordance with the techniques 
described elsewhere in this disclosure. For instance, video 
encoder 20 may decimate the set of luma reference samples 
such that the set of luma reference samples that neighbor the 
longer side of the non-square luma block is the same as the 
total number of luma reference samples of the set of luma 
reference samples that neighbor the shorter side of the 
non-square luma block. In some examples, video encoder 20 
may down-sample or sub-sample whichever of the left 
reference samples or the above reference samples corre 
sponds to the longer of the left boundary of the luma and the 
top boundary of the luma, but not whichever is shorter of the 
left boundary of the luma block and the top boundary of the 
luma block. In some examples, a total number of reference 
samples in the set of luma reference samples is equal to 2". 
where m is an integer dependent on a height and/or width of 
the non-square luma block. 
0374. In some examples, video encoder 20 may also 
down-sample or Sub-sample the set of chroma reference 
samples such that a total number of chroma reference 
samples in the set of chroma reference samples that neighbor 
a longer side of the non-square chroma block is the same as 
a total number of chroma reference samples of the set of 
chroma reference samples that neighbor a shorter side of the 
non-square chroma block. 
0375. In action (308) of FIG. 28, video encoder 20 may 
determine a first parameter (B) such that the first parameter 
is based on: 

In the equation above, I is a total number of reference 
samples in the set of the luma reference samples, X, is an i-th 
luma reference sample in the set of luma reference samples, 
andy, is an i-th chroma reference sample in the set of chroma 
reference samples. Video encoder 20 may determine the first 
parameter based on the formula above in the sense that video 
encoder 20 uses the formula above directly or a variation on 
the formula above, Such as one that includes additional 
constants or coefficients. 
0376. In some examples, video encoder 20 may also 
determine a second parameter (C.) Such that the second 
parameter is based on: 

IXx, y, -XX, Xy; 
IX. Xi Xi - XXi XX; 

Video encoder 20 may determine the second parameter 
based on the formula above in the sense that video encoder 
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20 uses the formula above directly or a variation on the 
formula above, Such as one that includes additional con 
stants or coefficients. 
0377 Additionally, in example of FIG. 28, for each 
respective chroma sample of a predictive chroma block, 
video encoder 20 may determine a value of the respective 
chroma sample Such that the value of the respective chroma 
sample is equal to a second parameter multiplied by a 
respective reconstructed luma sample corresponding to the 
respective chroma sample, plus the first parameter (310). 
The reconstructed luma sample corresponding to the respec 
tive chroma sample is one of the reconstructed luma samples 
of the non-square luma block. 
0378. Furthermore, video encoder 20 may obtain, based 
on the predictive chroma block, residual data (312). For 
example, video encoder 20 may determine values of chroma 
samples of the residual data equal to differences between 
samples of the chroma block of the non-square prediction 
block and samples of a chroma coding block of a CU. 
0379 Additionally, video encoder 20 may include, in a 
bitstream comprising an encoded representation of the video 
data, data representing the residual data (314). For example, 
Video encoder 20 may apply one or more transforms to the 
residual data to generate one or more coefficient blocks; 
quantize the coefficient blocks; generate syntax elements 
indicating whether a transform coefficient is non-Zero, 
whether the transform coefficient is greater than 1, whether 
the transform coefficient is greater than 2, a sign of the 
transform coefficient, and a remainder for the transform 
coefficient. In this example, video encoder 20 may apply 
CABAC coding to one or more of these syntax elements and 
include the resulting values in the bitstream. 
0380 FIG. 29 is a flowchart illustrating an example 
operation of video decoder 30 in accordance with a LM 
based coding technique of this disclosure. In the example of 
FIG. 29, video decoder 30 receives a bitstream that com 
prises an encoded representation of the video data (350). 
(0381 Furthermore, in the example of FIG. 29, video 
decoder 30 reconstructs a set of luma reference samples and 
a set of chroma reference samples (352). The set of luma 
reference samples comprises above luma samples neighbor 
ing a top side of a non-square luma block of a current picture 
of the video data and left luma samples neighboring a left 
side of the non-square luma block. In some examples, the 
non-square luma block is a luma prediction block of a 
non-square PU. The set of chroma reference samples com 
prises chroma samples neighboring a top side of a non 
square chroma block and chroma samples neighboring a left 
side of the non-square chroma block. In some examples, the 
non-square luma block is a luma prediction block of a 
non-square PU. 
0382 Video decoder 30 may reconstruct luma samples of 
the non-square luma block (354). For example, as part of 
reconstructing luma samples of the non-square luma block, 
video decoder 30 may use intra prediction or interprediction 
to generate a luma predictive block for the non-square luma 
block. Additionally, in this example, video decoder 30 may 
add samples of the luma predictive block for the non-square 
prediction block to corresponding residual samples to recon 
struct luma samples. 
0383. In some examples, video decoder 30 may down 
sample or Sub-sample the luma samples of the non-square 
luma block. By down-sampling or Sub-Sampling the luma 
samples of the non-square luma block, video decoder 30 
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may obtain a down-sampled or Sub-sampled set of luma 
samples having one luma sample for each chroma sample of 
a chroma predictive block (e.g., a chroma predictive block 
of the same PU as the luma block). Video decoder 30 may 
down-sample or Sub-sample the luma samples of the non 
square luma block in response to determining that a color 
format of the current picture is not 4:4:4. 
0384 Furthermore, in the example of FIG. 29, video 
decoder 30 may down-sample or sub-sample the set of luma 
reference samples such that a total number of luma reference 
samples in the set of luma reference samples that neighbor 
a longer side of the non-square prediction block is the same 
as a total number of luma reference samples of the set of 
luma reference samples that neighbor a shorter side of the 
non-square prediction block (356). Video decoder 30 may 
down-sample or Sub-Sample the set of luma reference 
samples in accordance with the techniques described else 
where in this disclosure. For instance, video decoder 30 may 
decimate the set of luma reference samples Such that the set 
of luma reference samples that neighbors the longer side of 
the non-square luma block is the same as the total number 
of luma reference samples of the set of luma reference 
samples that neighbor the shorter side of the non-square 
luma block. In some examples, video decoder 30 may 
down-sample or sub-sample whichever of the left reference 
samples or the above reference samples corresponds to the 
longer of the left boundary of the luma block and the top 
boundary of the luma block, but not whichever is shorter of 
the left boundary of the luma block and the top boundary of 
the luma block. In some examples, a total number of 
reference samples in the set of luma reference samples is 
equal to 2", where m is an integer dependent on a height 
and/or width of the non-square luma block. 
0385. In some examples, video decoder 30 may also 
down-sample or Sub-sample the set of chroma reference 
samples such that a total number of chroma reference 
samples in the set of chroma reference samples that neighbor 
a longer side of the non-square chroma block is the same as 
a total number of chroma reference samples of the set of 
chroma reference samples that neighbor a shorter side of the 
non-square chroma block. 
0386. Additionally, in action (358) of FIG. 29, video 
decoder 30 may determine a first parameter (B) such that the 
first parameter is based on: 

In the equation above, I is a total number of reference 
samples in the set of the luma reference samples, X, is an i-th 
luma reference sample in the set of luma reference samples, 
andy, is an i-th chroma reference sample in the set of chroma 
reference samples. In this disclosure, video encoder 20 
and/or video decoder 30 may determine a value based on a 
formula in the sense that video encoder 20 and/or video 
decoder 30 may uses the formula directly or a variation on 
the formula, such as one that includes additional constants or 
coefficients. 
0387. In some examples, video decoder 30 may also 
determine a second parameter (a) Such that the second 
parameter is based on: 

IXx, y, -XX, Xy; 
iXXi Xi - XX XX; 

42 
May 25, 2017 

(0388. In the example of FIG. 29, for each respective 
chroma sample of a predictive chroma block, video decoder 
30 may determine a value of the respective chroma sample 
Such that the value of the respective chroma sample is equal 
to a second parameter multiplied by a respective recon 
structed luma sample corresponding to the respective 
chroma sample, plus the first parameter (360). In this 
example, the reconstructed luma sample corresponding to 
the respective chroma Sample is one of the reconstructed 
luma samples of the non-square luma block. 
0389. Furthermore, video decoder 30 may reconstruct, 
based in part on the predictive chroma block, a coding block 
(362). For example, video decoder 30 may add samples of 
the predictive chroma block to corresponding residual 
chroma samples of a CU to determine samples of a coding 
block of the CU. 
0390 FIG. 30 is a flowchart illustrating an example 
operation of video encoder 20, in accordance with a quan 
tization technique of this disclosure. In the example of FIG. 
30, video encoder 20 receives the video data (400). Further 
more, video encoder 20 may generate a residual block for a 
non-square TU of a CU such that each residual sample of the 
residual block indicates a difference between corresponding 
samples of a coding block of the CU and a predictive block 
of a PU of the CU (402). 
0391 Video encoder 20 may apply a transform to the 
residual block to generate a block of transform coefficients 
(404). For example, video encoder 20 may apply a DCT 
transform to the residual block. In addition, video encoder 
20 may modify the transform coefficients such that each 
respective transform coefficient of the block of transform 
coefficients is based on the respective dequantized transform 
coefficient multiplied by an approximation of V2 (406). For 
example, video encoder 20 may modify the transform coef 
ficients such that each respective transform coefficient is 
equal to an original value of the respective transform coef 
ficient multiplied by the approximation of V2. In this dis 
closure, an approximation of V2 may be a representation of 
V2 (e.g., a floating point representation of V2). In some 
examples, modifying the transform coefficients such that 
each respective transform coefficient is equal to an original 
value of the respective transform coefficient multiplied by 
the approximation of V2 may comprise performing one or 
more mathematical operations to determine values approxi 
mating transform coefficient multiplied by V2. 
0392. In some examples where the non-square TU has the 
size KXL, as part of applying the transform to the residual 
block, video encoder 20 may apply, to the residual block, a 
transform having size NxN, where log(N*N)-((log(K)+ 
log(L))>1)<1) and ((log(K)+log(L)) is odd. For 
instance, video encoder 20 may apply N-point 1-dimen 
sional DCT transforms to rows and columns of the residual 
block as shown in equation (18), above. 
0393. Furthermore, in the example of FIG. 30, after 
modifying the transform coefficients, video encoder 20 may 
apply a quantization process to the modified transform 
coefficients of the non-square prediction block of the CU 
(408). For instance, video encoder 20 may quantize the 
modified transform coefficients as described in equation 
(22), above. 
0394 Video encoder 20 may include, in a bitstream 
comprising an encoded representation of the video data, data 
based on the quantized transform coefficients (410). For 
example, video encoder 20 may generate syntax elements 
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indicating whether a quantized transform coefficient is non 
Zero, whether the quantized transform coefficient is greater 
than 1, whether the quantized transform coefficient is greater 
than 2, a sign of the quantized transform coefficient, and a 
remainder for the quantized transform coefficient. In this 
example, video encoder 20 may apply CABAC coding to 
one or more of these syntax elements and include the 
resulting values in the bitstream. 
0395. In some examples where the non-square TU has the 
size KXL, video encoder 20 may modify, based on the 
((log(K)+log(L)) being odd, the dequantized transform 
coefficients such that each respective dequantized transform 
coefficient of the dequantized transform coefficients is based 
on the respective dequantized transform coefficient multi 
plied by the approximation of V2. In such examples, when 
((log(K)+log(L)) is even, video encoder 20 does not 
modify the dequantized transform coefficients such that each 
respective dequantized transform coefficient of the dequan 
tized transform coefficients is based on the respective 
dequantized transform coefficient multiplied by the approxi 
mation of V2. 
0396 FIG. 31 is a flowchart illustrating an example 
operation of video decoder 30, in accordance with a quan 
tization technique of this disclosure. In the example of FIG. 
31, video decoder 30 may receive a bitstream that comprises 
an encoded representation of the video data (450). Further 
more, video decoder 30 may apply a dequantization process 
to transform coefficients of a non-square TU of a CU of the 
video data (452). For instance, video decoder 30 may 
dequantize (i.e., inverse quantize) the transform coefficients 
by applying equation (24), above. 
0397. After applying the dequantization process to the 
transform coefficients, video decoder 30 may modify the 
dequantized transform coefficients such that each respective 
dequantized transform coefficient of the dequantized trans 
form coefficients is based on the respective dequantized 
transform coefficient divided by an approximation of V2 
(454). For instance, video decoder 30 may determine each 
respective modified transform coefficient is equal to the 
transform coefficient divided an approximation of V2. In this 
disclosure, an approximation of V2 may be a representation 
of V2 (e.g., a floating point representation of V2). In some 
examples, modifying the transform coefficients such that 
each respective transform coefficient is equal to an original 
value of the respective transform coefficient multiplied by 
the approximation of V2 may comprise performing one or 
more mathematical operations to determine values approxi 
mating transform coefficient divided by V2. 
0398. Furthermore, video decoder 30 may apply an 
inverse transform to the modified dequantized transform 
coefficients to reconstruct a residual block (456). For 
example, video decoder 30 may apply equation (18) with a 
transpose of the transform matrix C (or its approximation 
represented in integer precision) to apply the inverse trans 
form to the modified dequantized transform coefficients. In 
Some examples where the non-square TU has the size KXL. 
as part of applying the transform to the residual block, video 
decoder 30 may apply, to the residual block, a transform 
having size NxN, where log(N*N)-((log(K)+log(L)) 
>1)<1) and ((log(K)+log(L)) is odd. Video decoder 30 
may reconstruct samples of a coding block by adding 
samples of a predictive block to corresponding samples of 
the residual block for the TU of the CU (458). 
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0399. In some examples where the non-square TU has the 
size KXL, video decoder 30 may modify, based on the 
((log(K)+log(L)) being odd, the dequantized transform 
coefficients such that each respective dequantized transform 
coefficient of the dequantized transform coefficients is based 
on the respective dequantized transform coefficient divided 
by the approximation of V2. In such examples, when (log. 
(K)+log(L)) is even, video decoder 30 does not modify the 
dequantized transform coefficients such that each respective 
dequantized transform coefficient of the dequantized trans 
form coefficients is based on the respective dequantized 
transform coefficient divided by the approximation of V2. 
0400 FIG. 32 is a flowchart illustrating an example 
operation of video encoder 20, in accordance with a tech 
nique of this disclosure that uses IC. In the example of FIG. 
32, video encoder 20 receives the video data (500). For 
example, video encoder 20 may receive the video data from 
video source 18 (FIG. 1), or elsewhere. Furthermore, video 
encoder 20 may use IC to generate a non-square predictive 
block of a current PU of a current CU of a current picture of 
the video data (502) 
0401 AS part of using IC to generate the non-square 
predictive block, video encoder 20 may determine, based on 
a vector of the current PU, a reference block in an reference 
picture (504). In some examples, the vector is a disparity 
vector and the reference picture is an inter-view reference 
picture. In some examples, the vector is a motion vector and 
the reference picture is a temporal motion vector. The 
reference block and the non-square predictive block may be 
the same size and shape. In some examples, to determine the 
reference block based on the vector of the current PU, video 
encoder 20 may determine a position in the reference picture 
of a top-left corner of the reference block by adding a 
horizontal component of the vector to an X coordinate of a 
top-left corner of the non-square predictive block and adding 
a vertical component of the vector to ay coordinate of the 
top-left corner of the non-square predictive block. In this 
example, if the indicated position of the top-left corner of the 
reference block does not indicate a position in the reference 
picture of an integer pixel, video encoder 20 may interpolate 
samples of the reference block to determine the reference 
block. 

0402. Furthermore, in the example of FIG. 32, as part of 
using IC to generate the non-square predictive block, video 
encoder 20 may sub-sample a first set of reference samples 
to generate a first Sub-Sampled set of reference samples with 
a first sub-sampling ratio (506). In this example, a total 
number of reference samples in the first set of reference 
samples is not equal to 2" and a total number of reference 
samples in the first Sub-Sampled set of reference samples is 
equal to 2". Furthermore, in this example, the first set of 
reference samples comprises samples outside the non-square 
predictive block along a left side and a top side of the 
non-square predictive block, and m is an integer. 
0403. Additionally, as part of using IC to generate the 
non-square predictive block, video encoder 20 may Sub 
sample a second set of reference samples to generate a 
second Sub-sampled set of reference samples with a second 
sub-sampling ratio (508). The first sub-sampling ratio may 
be the same or different from the second Sub-sampling ratio. 
In this example, a total number of reference samples in the 
second set of reference samples is not equal to 2" and a total 
number of reference samples in the second sub-sampled set 
of reference samples is equal to 2". Furthermore, in this 
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example, the second set of reference samples comprises 
samples outside the reference block along a left side and a 
top side of the reference block. 
04.04. In actions (506) and (508), video encoder 20 may 
perform the Sub-sampling in various ways. For example, 
Video encoder 20 may perform the Sub-sampling using 
decimation. In examples where video encoder 20 performs 
the Sub-sampling using decimation, video encoder 20 may 
remove samples at regular intervals (e.g., every other 
sample) to reduce the number of samples without changing 
the values of the remaining samples. Thus, in this example, 
Video encoder 20 may perform at least one of decimating 
the first set of reference samples to generate the first sub 
sampled set of reference samples; and decimating the second 
set of reference samples to generate the second Sub-Sampled 
set of reference samples. 
0405. In another example, video encoder 20 may perform 
the Sub-Sampling using interpolation. In examples where 
Video encoder 20 performs the Sub-sampling using interpo 
lation, for respective pairs of adjacent samples, video 
encoder 20 may interpolate a value between the samples of 
a respective pair and may include the interpolated value in 
the Sub-sampled set of samples. Thus, in this example, video 
encoder 20 may perform at least one of performing inter 
polated sampling of the first set of reference samples to 
generate the first Sub-Sampled set of reference samples; and 
performing interpolated Sampling of the second set of ref 
erence samples to generate the second Sub-Sampled set of 
reference samples. 
0406. In another example, video encoder 20 may perform 
the Sub-Sampling using a Sub-Sampling method indicated by 
a syntax element in the bitstream. Thus, in this example, 
Video encoder 20 may include, in the bitstream, a syntax 
element indicating a sub-sampling method. In this example, 
Video encoder 20 may perform at least one of using the 
indicated Sub-Sampling method to Sub-sample the first set of 
reference samples to generate the first Sub-Sampled set of 
reference samples; and using the indicated Sub-sampling 
method to Sub-Sample the second set of reference samples to 
generate the second Sub-sampled set of reference samples. 
0407. In another example, video encoder 20 may deter 
mine, based on a size of the current PU, a Sub-sampling 
method. In this example, video encoder 20 may perform at 
least one of using the determined sub-sampling method to 
Sub-Sample the first set of reference samples to generate the 
first Sub-Sampled set of reference samples; and using the 
determined Sub-sampling method to Sub-sample the second 
set of reference samples to generate the second Sub-Sampled 
set of reference samples. 
0408. As part of using IC to generate the non-square 
predictive block, in action (510) of FIG. 32, video encoder 
20 may determine a first IC parameter based on the total 
number of reference samples in the first sub-sampled set of 
reference samples and the total number of reference samples 
in the second Sub-sampled set of reference samples, the first 
Sub-Sampled set of reference samples, and the second Sub 
sampled set of reference samples. For instance, video 
encoder 20 may determine the first IC parameter such that 
the first IC parameter is based on: 

2N- 2N 

X Receig (i)-a-X Recreneg (i) 
i=0 i=0 
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In the equation above, 2N denotes the total number of 
reference samples in the first sub-sampled set of reference 
samples and the total number of reference samples in the 
second sub-sampled set of reference samples, Rec, (i) 
denotes an i-th reference sample in the first Sub-sampled set 
of reference samples, and Rec, (i) denotes an i-th 
reference sample in the second Sub-sampled set of reference 
samples. 
04.09. In some examples, video encoder 20 may deter 
mine a second IC parameter Such that the second IC param 
eter is based on: 

2N. 2. Recneigh (i). ReCreieigh (i) - 2. Recneigh (i) 

X Recreneg (i) 
i=0 

2N- (2N-1 

2N. 2, Recorati Recanti- 2, Recorato) 

0410. Furthermore, as part of using IC to generate the 
non-square predictive block, in action (512) of FIG. 32. 
Video encoder 20 may determine a sample of the non-square 
predictive block based on the first IC parameter. For 
instance, the sample may be at coordinates (i, j) relative to 
a top-left corner of the current picture and video encoder 20 
may determine the sample such that the sample is based on: 

In the equation above, b is the first IC parameter, a is a 
second IC parameter, r is the reference picture, dv, is a 
horizontal component of the vector (e.g., disparity vector, 
motion vector) of the current PU, and dv, is a vertical 
component of the vector of the current PU. 
0411. In the example of FIG. 32, video encoder 20 may 
generate residual data based on the non-square predictive 
block (514). For example, video encoder 20 may generate 
the residual data Such that samples of the residual data are 
equal to differences between samples of the non-square 
predictive block and samples of a coding block of the current 
CU. Additionally, video encoder 20 may output a bitstream 
that includes data based on the residual data (516). For 
example, video encoder 20 may output a bitstream that 
includes entropy encoded syntax elements (e.g., syntax 
elements indicating greater than 1, greater than 2, remainder, 
etc.) that indicate the residual data. 
0412 FIG. 33 is a flowchart illustrating an example 
operation of video decoder 30 for encoding video data, in 
accordance with a technique of this disclosure that uses IC. 
In the example of FIG. 32, video decoder 30 receives a 
bitstream that comprises an encoded representation of the 
video data (550). Furthermore, video decoder 30 uses IC to 
generate a non-square predictive block of a current PU of a 
current CU of a current picture of the video data (552). 
0413. As part of using IC to generate the non-square 
predictive block, video decoder 30 may determine, based on 
a vector of the current PU, a reference block in a reference 
picture (554). In some examples, the vector is a disparity 
vector and the reference picture is an inter-view reference 
picture. In some examples, the vector is a motion vector and 
the reference picture is a temporal motion vector. The 
reference block and the non-square predictive block being 
the same size and shape. To determine the reference block 
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based on the disparity vector of the current PU, video 
decoder 30 may determine a position in the reference picture 
of a top-left corner of the reference block by adding a 
horizontal component of the vector to an X coordinate of a 
top-left corner of the non-square predictive block and adding 
a vertical component of the vector to a y coordinate of the 
top-left corner of the non-square predictive block. In this 
example, if indicated position of the top-left corner of the 
reference block does not indicate a position in the reference 
picture of an integer pixel, video decoder 30 may interpolate 
samples of the reference block to determine the reference 
block. 

0414. Furthermore, as part of using IC to generate the 
non-square predictive block, video decoder 30 may sub 
sample a first set of reference samples to generate a first 
sub-sampled set of reference samples with a first sub 
sampling ratio (556). In this example, a total number of 
reference samples in the first set of reference samples is not 
equal to 2" and a total number of reference samples in the 
first sub-sampled set of reference samples is equal to 2". In 
this example, the first set of reference samples may comprise 
samples outside the non-square predictive block along a left 
side and a top side of the non-square predictive block, and 
m is an integer. 
0415. Additionally, as part of using IC to generate the 
non-square predictive block, video decoder 30 may sub 
sample a second set of reference samples to generate a 
second Sub-sampled set of reference samples with a second 
sub-sampling ratio (558). The first sub-sampling ratio may 
be the same or different from the second Sub-sampling ratio. 
In this example, a total number of reference samples in the 
second set of is not equal to 2" and a total number of 
reference samples in the second Sub-sampled set of refer 
ence samples is equal to 2". Furthermore, in this example, 
the second set of reference samples may comprise samples 
outside the reference block along a left side and a top side 
of the reference block. 

0416) In actions (556) and (558), video decoder 30 may 
perform the Sub-sampling in various ways. For example, 
Video decoder 30 may perform the Sub-sampling using 
decimation. In examples where video decoder 30 performs 
the Sub-sampling using decimation, video decoder 30 may 
remove samples at regular intervals (e.g., every other 
sample) to reduce the number of samples without changing 
the values of the remaining samples. Thus, in this example, 
video decoder 30 may perform at least one of: decimating 
the first set of reference samples to generate the first sub 
sampled set of reference samples; and decimating the second 
set of reference samples to generate the second Sub-Sampled 
set of reference samples. 
0417. In another example, video decoder 30 may perform 
the Sub-Sampling using interpolation. In examples where 
Video decoder 30 performs the Sub-sampling using interpo 
lation, for respective pairs of adjacent samples, video 
decoder 30 may interpolate a value between the samples of 
a respective pair and may include the interpolated value in 
the Sub-sampled set of samples. Thus, in this example, video 
decoder 30 may perform at least one of: performing inter 
polated sampling of the first set of reference samples to 
generate the first Sub-Sampled set of reference samples; and 
performing interpolated Sampling of the second set of ref 
erence samples to generate the second Sub-Sampled set of 
reference samples. 

May 25, 2017 

0418. In another example, video decoder 30 may perform 
the Sub-sampling using a sub-sampling method indicated by 
a syntax element in the bitstream. Thus, in this example, 
video decoder 30 may obtain, from the bitstream, a syntax 
element indicating a sub-sampling method. In this example, 
video decoder 30 may perform at least one of: using the 
indicated Sub-Sampling method to Sub-sample the first set of 
reference samples to generate the first Sub-Sampled set of 
reference samples; and using the indicated Sub-sampling 
method to Sub-Sample the second set of reference samples to 
generate the second Sub-sampled set of reference samples. 
0419. In another example, video decoder 30 may deter 
mine, based on a size of the current PU, a Sub-Sampling 
method. In this example, video decoder 30 may perform at 
least one of using the determined sub-sampling method to 
Sub-sample the first set of reference samples to generate the 
first Sub-sampled set of reference samples; and using the 
determined sub-sampling method to Sub-sample the second 
set of reference samples to generate the second Sub-sampled 
set of reference samples. 
0420) Furthermore, in action (560) of FIG. 33, video 
decoder 30 may determine a first IC parameter based on the 
total number of reference samples in the first sub-sampled 
set of reference samples and the total number of reference 
samples in the second Sub-Sampled set of reference samples, 
the first sub-sampled set of reference samples, and the 
second Sub-Sampled set of reference samples. For instance, 
video decoder 30 may determine the first IC parameter such 
that the first IC parameter is based on: 

2N- 2N 

X Receig (i)-a-X Recreneg (i) 
i=0 i=0 

In the equation above, 2N denotes the total number of 
reference samples in the first sub-sampled set of reference 
samples and the total number of reference samples in the 
second sub-sampled set of reference samples, Rec.(i) 
denotes an i-th reference sample in the first Sub-sampled set 
of reference samples, and Rec, ae,(i) denotes an i-th 
reference sample in the second Sub-sampled set of reference 
samples. 

0421. In some examples, video decoder 30 may deter 
mine a second IC parameter Such that the second IC param 
eter is based on: 

2N. 2. Recneigh (i) ReCreieigh (i) - 2. Receigh (i) 

X Recreneg (i) 
i=0 

2N- (2N-1 

2N. 2, Recorati Recreti- 2, Recent) 

0422. Additionally, in action (562) of FIG. 33, video 
decoder 30 may determine a sample of the non-square 
predictive block based on the first IC parameter. For 
instance, the sample may be at coordinates (i, j) relative to 
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a top-left corner of the current picture and video decoder 30 
may determine the sample such that the sample is based on: 

In the equation above, b is the first IC parameter, a is a 
second IC parameter, r is the reference picture, dv, is a 
horizontal component of a vector of the current PU, and dv, 
is a vertical component of the vector of the current PU. 
0423 Video decoder 30 may reconstruct, based on the 
non-square predictive block, a coding block of the current 
CU (564). For example, video decoder 30 may reconstruct 
samples of the coding block by adding samples of the 
non-square predictive block to corresponding samples of a 
residual block for a TU of the current CU. 
0424 FIG. 34 is a flowchart illustrating an example 
operation of video encoder 20 for encoding video data, in 
accordance with a technique of this disclosure that uses a 
flexible residual tree. In the example of FIG. 34, video 
encoder 20 may receive video data (600). Furthermore, 
video encoder 20 may partition a CU of the video data into 
TUs of the CU based on a tree structure (602). In some 
examples, video encoder 20 may determine, for each respec 
tive node of the tree structure, a value of a splitting indicator 
for the respective node. The splitting indicator for a respec 
tive node may indicate how many child nodes the respective 
node has. In some instances, video encoder 20 may signal, 
in the bitstream, a syntax element explicitly indicating the 
value of the splitting indicator of the respective node. In 
other instances, video decoder 30 may infer the value of the 
splitting indicator for the respective node (e.g., based on a 
depth of the node in the tree structure, values of splitting 
nodes of parent nodes, sizes and/or shapes of predictive 
blocks corresponding to the respective node, and so on). 
0425. As part of partitioning the CU into TUs of the CU 
based on the tree structure, video encoder 20 may determine 
that a node in the tree structure has exactly two child nodes 
in the tree structure (604). In this example, a root node of the 
tree structure corresponds to a coding block of the CU. Each 
respective non-root node of the tree structure corresponds to 
a respective block that is a partition of a block that corre 
sponds to a parent node of the respective non-root node. 
Leaf nodes of the tree structure correspond to the TUs of the 
CUS. 

0426 For example, video encoder 20 may determine, 
based on a total number of PUs of the CU, whether the tree 
structure is a binary tree or a quarter tree. In this example, 
based on the CU having two PUs, the node has exactly two 
child nodes in the tree structure. In other words, video 
encoder 20 may determine, based on the CU having exactly 
two PUs, that the node has exactly two child nodes in the 
tree Structure. 

0427. In some examples, video encoder 20 may deter 
mine, based on the CU having exactly two PUs, that the 
node has exactly two child nodes in the tree structure. 
0428. Furthermore, in the example of FIG. 34, for at least 
one of the TUs of the CU, video encoder 20 applies a 
transform to a residual block for the TU to generate a block 
of transform coefficients for the TU (606). For example, 
Video encoder 20 may apply a discrete cosine transform 
(DCT), discrete sine transform (DST), or another type of 
transform to the residual block for the TU to generate the 
block of transform coefficients. Additionally, video encoder 
20 may entropy encode syntax elements indicating the 
transform coefficients for the TU (608). For example, video 
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encoder 20 may generate syntax elements indicating 
whether a transform coefficient is non-zero, whether the 
transform coefficient is greater than 1, whether the transform 
coefficient is greater than 2, a sign of the transform coeffi 
cient, and a remainder for the transform coefficient. In this 
example, video encoder 20 may apply CABAC coding to 
one or more of these syntax elements. 
0429 FIG. 35 is a flowchart illustrating an example 
operation of video decoder 30 for decoding video data, in 
accordance with a technique of this disclosure that uses a 
flexible residual tree. In the example of FIG. 35, video 
decoder 30 may receive a bitstream that comprises an 
encoded representation of the video data (650). Additionally, 
video decoder 30 may determine a CU of the video data is 
partitioned into TUs of the CU based on a tree structure 
(652). In some examples, video decoder 30 may determine, 
for each respective node of the tree structure, a value of a 
splitting indicator for the respective node. The splitting 
indicator for a respective node may indicate how many child 
nodes the respective node has. In some instances, video 
decoder 30 may obtain from the bitstream a syntax element 
explicitly indicating the value of the splitting indicator of the 
respective node. In other instances, video decoder 30 may 
infer the value of the splitting indicator for the respective 
node (e.g., based on a depth of the node in the tree structure, 
values of splitting nodes of parent nodes, sizes and/or shapes 
of predictive blocks corresponding to the respective node, 
and so on). 
0430. As part of determining the CU is partitioned into 
the TUs of the CU based on the tree structure, video decoder 
30 may determine that a node in the tree structure has 
exactly two child nodes in the tree structure (654). In this 
example, a root node of the tree structure corresponds to a 
coding block of the CU. Each respective non-root node of 
the tree structure corresponds to a respective block that is a 
partition of a block that corresponds to a parent node of the 
respective non-root node. Leaf nodes of the tree structure 
correspond to the TUs of the CU. As described elsewhere in 
this disclosure, video decoder 30 may determine that a node 
in the tree structure has exactly two child nodes based on a 
number of PUs in the CU, based on a depth of the node in 
the tree structure, based on a signaled syntax element, or 
based on other data. 
0431. For example, video decoder 30 may determine, 
based on a total number of PUs of the CU, whether the tree 
structure is a binary tree or a quarter tree. In this example, 
based on the CU having two PUs, the node has exactly two 
child nodes in the tree structure. In other words, video 
decoder 30 may determine, based on the CU having exactly 
two PUs, that the node has exactly two child nodes in the 
tree Structure. 

0432 For at least one of the TUs of the CU, video 
decoder 30 may apply a transform to a coefficient block for 
the TU to generate a residual block for the TU (656). For 
example, video decoder 30 may apply an inverse DCT, an 
inverse DST, or another type of transform to the coefficient 
block for the TU to generate the residual block for the TU. 
Additionally, video decoder 30 may reconstruct samples of 
a coding block by adding samples of a predictive block to 
corresponding samples of the residual block for the TU of 
the CU (658). 
0433 Certain aspects of this disclosure have been 
described with respect to extensions of the HEVC standard 
for purposes of illustration. However, the techniques 
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described in this disclosure may be useful for other video 
coding processes, including other standard or proprietary 
Video coding processes not yet developed. 
0434. A video coder, as described in this disclosure, may 
refer to a video encoder or a video decoder. Similarly, a 
Video coding unit may refer to a video encoder or a video 
decoder. Likewise, video coding may refer to video encod 
ing or video decoding, as applicable. 
0435. It is to be recognized that depending on the 
example, certain acts or events of any of the techniques 
described herein can be performed in a different sequence, 
may be added, merged, or left out altogether (e.g., not all 
described acts or events are necessary for the practice of the 
techniques). Moreover, in certain examples, acts or events 
may be performed concurrently, e.g., through multi-threaded 
processing, interrupt processing, or multiple processors, 
rather than sequentially. 
0436. In one or more examples, the functions described 
may be implemented in hardware, Software, firmware, or 
any combination thereof. If implemented in software, the 
functions may be stored on or transmitted over as one or 
more instructions or code on a computer-readable medium 
and executed by a hardware-based processing unit. Com 
puter-readable media may include computer-readable stor 
age media, which corresponds to a tangible medium such as 
data storage media, or communication media including any 
medium that facilitates transfer of a computer program from 
one place to another, e.g., according to a communication 
protocol. In this manner, computer-readable media generally 
may correspond to (1) tangible computer-readable storage 
media which is non-transitory or (2) a communication 
medium such as a signal or carrier wave. Data storage media 
may be any available media that can be accessed by one or 
more computers or one or more processors to retrieve 
instructions, code and/or data structures for implementation 
of the techniques described in this disclosure. A computer 
program product may include a computer-readable medium. 
0437. By way of example, and not limitation, such com 
puter-readable storage media can comprise RAM, ROM, 
EEPROM, CD-ROM or other optical disk storage, magnetic 
disk storage, or other magnetic storage devices, flash 
memory, or any other medium that can be used to store 
desired program code in the form of instructions or data 
structures and that can be accessed by a computer. Also, any 
connection is properly termed a computer-readable medium. 
For example, if instructions are transmitted from a website, 
server, or other remote source using a coaxial cable, fiber 
optic cable, twisted pair, digital subscriber line (DSL), or 
wireless technologies such as infrared, radio, and micro 
wave, then the coaxial cable, fiber optic cable, twisted pair, 
DSL, or wireless technologies Such as infrared, radio, and 
microwave are included in the definition of medium. It 
should be understood, however, that computer-readable stor 
age media and data storage media do not include connec 
tions, carrier waves, signals, or other transitory media, but 
are instead directed to non-transitory, tangible storage 
media. Disk and disc, as used herein, includes compact disc 
(CD), laser disc, optical disc, digital versatile disc (DVD). 
floppy disk and Blu-ray disc, where disks usually reproduce 
data magnetically, while discs reproduce data optically with 
lasers. Combinations of the above should also be included 
within the scope of computer-readable media. 
0438. Instructions may be executed by one or more 
processors, such as one or more digital signal processors 
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(DSPs), general purpose microprocessors, application spe 
cific integrated circuits (ASICs), field programmable logic 
arrays (FPGAs), or other equivalent integrated or discrete 
logic circuitry. Accordingly, the term “processor,” as used 
herein may refer to any of the foregoing structure or any 
other structure suitable for implementation of the techniques 
described herein. In addition, in Some aspects, the function 
ality described herein may be provided within dedicated 
hardware and/or software modules configured for encoding 
and decoding, or incorporated in a combined codec. Also, 
the techniques could be fully implemented in one or more 
circuits or logic elements. 
0439. The techniques of this disclosure may be imple 
mented in a wide variety of devices or apparatuses, includ 
ing a wireless handset, an integrated circuit (IC) or a set of 
ICs (e.g., a chip set). Various components, modules, or units 
are described in this disclosure to emphasize functional 
aspects of devices configured to perform the disclosed 
techniques, but do not necessarily require realization by 
different hardware units. Rather, as described above, various 
units may be combined in a codec hardware unit or provided 
by a collection of interoperative hardware units, including 
one or more processors as described above, in conjunction 
with suitable software and/or firmware. 
0440 Various examples have been described. These and 
other examples are within the scope of the following claims. 
What is claimed is: 
1. A method of decoding video data, the method com 

prising: 
receiving, by a video decoder, a bitstream that comprises 

an encoded representation of the video data; 
reconstructing, by the video decoder, a set of luma ref 

erence samples and a set of chroma reference samples, 
the set of luma reference samples comprising above 
luma samples neighboring a top side of a non-square 
block of a current picture of the video data and left 
luma samples neighboring a left side of the non-square 
luma block, the set of chroma reference samples com 
prising chroma samples neighboring the top side of a 
non-square chroma block of the current picture and 
chroma samples neighboring the left side of the non 
square chroma block; 

reconstructing, by the video decoder, luma samples of the 
non-square luma block; 

Sub-Sampling, by the video decoder, the set of luma 
reference samples such that a total number of the luma 
reference samples in the set of luma reference samples 
that neighbor a longer side of the non-square luma 
block is the same as the total number of luma reference 
samples of the set of luma reference samples that 
neighbor a shorter side of the non-square luma block; 

determining, by the video decoder, a first parameter Such 
that the first parameter is based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples: 

for each respective chroma sample of a predictive chroma 
block, determining, by the video decoder, a value of the 
respective chroma sample such that the value of the 
respective chroma sample is equal to a second param 
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eter multiplied by a respective reconstructed luma 
sample corresponding to the respective chroma sample, 
plus the first parameter, the reconstructed luma sample 
corresponding to the respective chroma sample being 
one of the reconstructed luma samples of the non 
square luma block; and 

reconstructing, by the video decoder, based in part on the 
predictive chroma block, a coding block. 

2. The method of claim 1, further comprising: 
determining, by the video decoder, the second parameter 

Such that the second parameter based on: 

IXx, y, -XX, Xy; 
IX. Xi Xi - XXi XXi 

3. The method of claim 1, wherein sub-sampling the set 
of luma reference samples comprises decimating, by the 
video decoder, the set of luma reference samples such that 
a total number of the set of luma reference samples that 
neighbor the longer side of the non-square luma block is the 
same as the total number of luma reference samples of the 
set of luma reference samples that neighbor the shorter side 
of the non-square luma block. 

4. The method of claim 1, wherein sub-sampling the set 
of luma reference samples comprises: Sub-sampling, by the 
video decoder, whichever of the left reference samples or the 
above reference samples corresponds to the longer of the left 
side of the non-square luma block and the top side of the 
non-square luma block, but not whichever of the left refer 
ence samples and the above reference samples corresponds 
to the shorter of the left side of the non-square luma block 
and the top side of the non-square luma block. 

5. The method of claim 1, wherein, after sub-sampling the 
set of luma reference samples, a total number of reference 
samples in the set of luma reference samples is equal to 2". 
where m is an integer dependent on at least one of a height 
or width of the non-square luma block. 

6. A method of encoding video data, the method com 
prising: 

receiving, by a video encoder, the video data; 
reconstructing, by the video encoder, a set of luma ref 

erence samples and a set of chroma reference samples, 
the set of luma reference samples comprising above 
luma samples neighboring a top side of a non-square 
luma block of a current picture of the video data and 
left luma samples neighboring a left side of the non 
square luma block, the set of chroma reference samples 
comprising chroma samples neighboring a top side of 
a non-square chroma block of the current picture and 
chroma samples neighboring a left side of the non 
square chroma block; 

reconstructing, by the video encoder, luma samples of the 
non-square luma block; 

Sub-Sampling, by the video encoder, the set of luma 
reference samples such that a total number of the luma 
reference samples in the set of luma reference samples 
that neighbor a longer side of the non-square luma 
block is the same as a total number of the luma 
reference samples of the set of luma reference samples 
that neighbor a shorter side of the non-square luma 
block; 
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determining, by the video encoder, a first parameter Such 
that the first parameter is based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples: 

for each respective chroma sample of a predictive chroma 
block, determining, by the video encoder, a value of the 
respective chroma sample such that the value of the 
respective chroma sample is equal to a second param 
eter multiplied by a respective reconstructed luma 
sample corresponding to the respective chroma sample, 
plus the first parameter, the reconstructed luma sample 
corresponding to the respective chroma sample being 
one of the reconstructed luma samples of the non 
square luma block; 

obtaining, by the video encoder, based on the predictive 
chroma block, residual data; and 

including, by the video encoder, in a bitstream comprising 
an encoded representation of the video data, data rep 
resenting the residual data. The method of claim 6, 
further comprising: 

determining, by the video encoder, the second parameter 
Such that the second parameter is based on: 

IXx, y - XX, Xy; 
IX. Xi Xi - XXi XXi 

8. The method of claim 6, wherein sub-sampling the set 
of luma reference samples comprises decimating, by the 
Video encoder, the set of luma reference samples such that 
a total number of the set of luma reference samples that 
neighbor the longer side of the non-square luma block is the 
same as the total number of luma reference samples of the 
set of luma reference samples that neighbor the shorter side 
of the non-square luma block. 

9. The method of claim 6, wherein sub-sampling the set 
of luma reference samples comprises: Sub-sampling, by the 
video encoder, whichever of the left reference samples or the 
above reference samples corresponds to the longer of the left 
side of the non-square luma block and the top side of the 
non-square luma block, but not whichever of the left refer 
ence samples and the above reference samples corresponds 
to the shorter of the left side of the non-square luma block 
and the top side of the non-square luma block. 

10. The method of claim 6, wherein, after sub-sampling 
the set of luma reference samples, a total number of refer 
ence samples in the set of luma reference samples is equal 
to 2", where m is an integer dependent on at least one of a 
height or width of the non-square luma block. 

11. An apparatus for decoding video data, the apparatus 
comprising: 

one or more storage media configured to store the video 
data; and 

a video decoder configured to: 
receive a bitstream that comprises an encoded repre 

sentation of the video data; 
reconstruct a set of luma reference samples and a set of 
chroma reference samples, the set of luma reference 
samples comprising above luma samples neighbor 
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ing a top side of a non-square block of a current 
picture of the video data and left luma samples 
neighboring a left side of the non-square luma block, 
the set of chroma reference samples comprising 
chroma samples neighboring the top side of a non 
square chroma block of the current picture and 
chroma samples neighboring the left side of the 
non-square chroma block; 

reconstruct luma samples of the non-square luma 
block; 

Sub-sample the set of luma reference samples such that 
a total number of the luma reference samples in the 
set of luma reference samples that neighbor a longer 
side of the non-square luma block is the same as the 
total number of luma reference samples of the set of 
luma reference samples that neighbor a shorter side 
of the non-square luma block; 

determine a first parameter Such that the first parameter 
is based on: 

where I is a total number of reference samples in the set 
of the luma reference samples, X, is an i-th luma 
reference sample in the set of luma reference samples, 
and y, is an i-th chroma reference sample in the set of 
chroma reference samples; 
for each respective chroma sample of a predictive 
chroma block, determine a value of the respective 
chroma sample such that the value of the respective 
chroma sample is equal to a second parameter mul 
tiplied by a respective reconstructed luma sample 
corresponding to the respective chroma sample, plus 
the first parameter, the reconstructed luma sample 
corresponding to the respective chroma sample 
being one of the reconstructed luma samples of the 
non-square luma block; and 

reconstruct, based in part on the predictive chroma 
block, a coding block. 

12. The apparatus of claim 11, wherein the video decoder 
is further configured to: 

determine the second parameter Such that the second 
parameter is based on: 

IXx, y, -XX, Xy; 
iXXi Xi - XX XX; 

13. The apparatus of claim 11, wherein the video decoder 
is configured Such that, as part of Sub-Sampling the set of 
luma reference samples, the video decoder decimates, by the 
video decoder, the set of luma reference samples such that 
a total number of the set of luma reference samples that 
neighbor the longer side of the non-square luma block is the 
same as the total number of luma reference samples of the 
set of luma reference samples that neighbor the shorter side 
of the non-square luma block. 

14. The apparatus of claim 11, wherein the video decoder 
is configured Such that, as part of Sub-Sampling the set of 
luma reference samples, the video decoder Sub-Samples 
whichever of the left reference samples or the above refer 
ence samples corresponds to the longer of the left side of the 
non-square luma block and the top side of the non-square 
luma block, but not whichever of the left reference samples 
and the above reference samples corresponds to the shorter 
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of the left side of the non-square luma block and the top side 
of the non-square luma block. 

15. The apparatus of claim 11, wherein, after sub-sam 
pling the set of luma reference samples, a total number of 
reference samples in the set of luma reference samples is 
equal to 2", where m is an integer dependent on at least one 
of a height or width of the non-square luma block. 

16. An apparatus for encoding video data, the apparatus 
comprising: 

one or more storage media configured to store the video 
data; and 

a video encoder configured to: 
receive the video data; 

reconstruct a set of luma reference samples and a set of 
chroma reference samples, the set of luma reference 
samples comprising above luma samples neighbor 
ing a top side of a non-square luma block of a current 
picture of the video data and left luma samples 
neighboring a left side of the non-square luma block, 
the set of chroma reference samples comprising 
chroma Samples neighboring a top side of a non 
square chroma block of the current picture and 
chroma samples neighboring a left side of the non 
square chroma block; 

reconstruct luma samples of the non-square luma 
block; 

Sub-sample the set of luma reference samples such that 
a total number of the luma reference samples in the 
set of luma reference samples that neighbor a longer 
side of the non-square luma block is the same as a 
total number of the luma reference samples of the set 
of luma reference samples that neighbor a shorter 
side of the non-square luma block; 

determine a first parameter Such that the first parameter 
is based on: 

where I is a total number of reference samples in the set 
of the luma reference samples, X, is an i-th luma 
reference sample in the set of luma reference samples, 
and y, is an i-th chroma reference sample in the set of 
chroma reference samples; 
for each respective chroma sample of a predictive 
chroma block, determine a value of the respective 
chroma sample such that the value of the respective 
chroma sample is equal to a second parameter mul 
tiplied by a respective reconstructed luma sample 
corresponding to the respective chroma sample, plus 
the first parameter, the reconstructed luma sample 
corresponding to the respective chroma sample 
being one of the reconstructed luma samples of the 
non-square luma block; 

obtain, based on the predictive chroma block, residual 
data; and 

include, in a bitstream comprising an encoded repre 
sentation of the video data, data representing the 
residual data. 
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17. The apparatus of claim 16, wherein the video encoder 
is further configured to: 

determine the second parameter Such that the second 
parameter is based on: 

IXx, y - XX, Xy; 
IX. Xi Xi - XXi XX; 

18. The apparatus of claim 16, wherein the video encoder 
is configured Such that, as part of Sub-Sampling the set of 
luma reference samples, the video encoder decimates the set 
of luma reference samples such that a total number of the set 
of luma reference samples that neighbor the longer side of 
the non-square luma block is the same as the total number 
of luma reference samples of the set of luma reference 
samples that neighbor the shorter side of the non-square 
luma block. 

19. The apparatus of claim 16, wherein the video encoder 
is configured Such that, as part of Sub-Sampling the set of 
luma reference samples, the video encoder Sub-Samples 
whichever of the left reference samples or the above refer 
ence samples corresponds to the longer of the left side of the 
non-square luma block and the top side of the non-square 
luma block, but not whichever of the left reference samples 
and the above reference samples corresponds to the shorter 
of the left side of the non-square luma block and the top side 
of the non-square luma block. 

20. The apparatus of claim 16, wherein, after sub-sam 
pling the set of luma reference samples, a total number of 
reference samples in the set of luma reference samples is 
equal to 2', where m is an integer dependent on at least one 
of a height or width of the non-square luma block. 

21. An apparatus for decoding video data, the apparatus 
comprising: 

means for receiving a bitstream that comprises an 
encoded representation of the video data; 

means for reconstructing a set of luma reference samples 
and a set of chroma reference samples, the set of luma 
reference samples comprising above luma samples 
neighboring a top side of a non-square block of a 
current picture of the video data and left luma samples 
neighboring a left side of the non-square luma block, 
the set of chroma reference samples comprising chroma 
samples neighboring the top side of a non-square 
chroma block of the current picture and chroma 
samples neighboring the left side of the non-square 
chroma block; 

means for reconstructing luma samples of the non-square 
luma block; 

means for Sub-Sampling the set of luma reference samples 
such that a total number of the luma reference samples 
in the set of luma reference samples that neighbor a 
longer side of the non-square luma block is the same as 
the total number of luma reference samples of the set of 
luma reference samples that neighbor a shorter side of 
the non-square luma block; 

means for determining a first parameter such that the first 
parameter is based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 

50 
May 25, 2017 

sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples: 
means for determining, for each respective chroma 

sample of a predictive chroma block, a value of the 
respective chroma sample such that the value of the 
respective chroma sample is equal to a second param 
eter multiplied by a respective reconstructed luma 
sample corresponding to the respective chroma sample, 
plus the first parameter, the reconstructed luma sample 
corresponding to the respective chroma sample being 
one of the reconstructed luma samples of the non 
square luma block; and 

means for reconstructing, based in part on the predictive 
chroma block, a coding block. 

22. An apparatus for encoding video data, the apparatus 
comprising: 
means for receiving the video data; 
means for reconstructing a set of luma reference samples 

and a set of chroma reference samples, the set of luma 
reference samples comprising above luma samples 
neighboring a top side of a non-square block of a 
current picture of the video data and left luma samples 
neighboring a left side of the non-square luma block, 
the set of chroma reference samples comprising chroma 
samples neighboring the top side of a non-square 
chroma block of the current picture and chroma 
samples neighboring the left side of the non-square 
chroma block; 

means for reconstructing luma samples of the non-square 
luma block; 

means for Sub-Sampling the set of luma reference samples 
such that a total number of the luma reference samples 
in the set of luma reference samples that neighbor a 
longer side of the non-square luma block is the same as 
the total number of luma reference samples of the set of 
luma reference samples that neighbor a shorter side of 
the non-square luma block; 

means for determining a first parameter Such that the first 
parameter is based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples: 
means for determining, for each respective chroma 

sample of a predictive chroma block, a value of the 
respective chroma sample such that the value of the 
respective chroma sample is equal to a second param 
eter multiplied by a respective reconstructed luma 
sample corresponding to the respective chroma sample, 
plus the first parameter, the reconstructed luma sample 
corresponding to the respective chroma sample being 
one of the reconstructed luma samples of the non 
square luma block; 

means for obtaining, based on the predictive chroma 
block, residual data; and 

means for including, in a bitstream comprising an 
encoded representation of the video data, data repre 
senting the residual data. 
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23. A computer-readable data storage medium having 
instructions stored thereon that, when executed, configure an 
apparatus for decoding video data to: 

receive a bitstream that comprises an encoded represen 
tation of the video data; 

reconstruct a set of luma reference samples and a set of 
chroma reference samples, the set of luma reference 
samples comprising above luma samples neighboring a 
top side of a non-square block of a current picture of the 
Video data and left luma samples neighboring a left side 
of the non-square luma block, the set of chroma refer 
ence samples comprising chroma samples neighboring 
the top side of a non-square chroma block of the current 
picture and chroma samples neighboring the left side of 
the non-square chroma block; 

reconstruct luma samples of the non-square luma block; 
Sub-Sample the set of luma reference samples Such that a 

total number of the luma reference samples in the set of 
luma reference samples that neighbor a longer side of 
the non-square luma block is the same as the total 
number of luma reference samples of the set of luma 
reference samples that neighbor a shorter side of the 
non-square luma block; 

determine a first parameter Such that the first parameter is 
based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples: 

for each respective chroma sample of a predictive chroma 
block, determine a value of the respective chroma 
sample such that the value of the respective chroma 
sample is equal to a second parameter multiplied by a 
respective reconstructed luma sample corresponding to 
the respective chroma sample, plus the first parameter, 
the reconstructed luma sample corresponding to the 
respective chroma sample being one of the recon 
structed luma samples of the non-square luma block; 
and 

reconstruct, based in part on the predictive chroma block, 
a coding block. 
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24. A computer-readable data storage medium having 
instructions stored thereon that, when executed, configure an 
apparatus for encoding video data to: 

receive the video data; 
reconstruct a set of luma reference samples and a set of 

chroma reference samples, the set of luma reference 
samples comprising above luma samples neighboring a 
top side of a non-square block of a current picture of the 
video data and left luma samples neighboring a left side 
of the non-square luma block, the set of chroma refer 
ence samples comprising chroma samples neighboring 
the top side of a non-square chroma block of the current 
picture and chroma samples neighboring the left side of 
the non-square chroma block; 

reconstruct luma samples of the non-square luma block; 
Sub-Sample the set of luma reference samples Such that a 

total number of the luma reference samples in the set of 
luma reference samples that neighbor a longer side of 
the non-square luma block is the same as the total 
number of luma reference samples of the set of luma 
reference samples that neighbor a shorter side of the 
non-square luma block; 

determine a first parameter Such that the first parameter is 
based on: 

where I is a total number of reference samples in the set of 
the luma reference samples, X, is an i-th luma reference 
sample in the set of luma reference samples, and y, is an i-th 
chroma reference sample in the set of chroma reference 
samples: 

for each respective chroma sample of a predictive chroma 
block, determine a value of the respective chroma 
sample such that the value of the respective chroma 
sample is equal to a second parameter multiplied by a 
respective reconstructed luma sample corresponding to 
the respective chroma sample, plus the first parameter, 
the reconstructed luma sample corresponding to the 
respective chroma sample being one of the recon 
structed luma samples of the non-square luma block; 

obtain, based on the predictive chroma block, residual 
data; and 

include, in a bitstream comprising an encoded represen 
tation of the video data, data representing the residual 
data. 


