wo 2012/174231 A1 | 00N OO O 000 A

(43) International Publication Date
20 December 2012 (20.12.2012)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2012/174231 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

International Patent Classification:
GO6T 9/00 (2006.01) GO6T 15/00 (2011.01)

International Application Number:
PCT/US2012/042442

International Filing Date:

14 June 2012 (14.06.2012)
Filing Language: English
Publication Language: English
Priority Data:
13/163,071 17 June 2011 (17.06.2011) Us

Applicant (for all designated States except US): AD-
VANCED MICRO DEVICES, INC. [US/US]; One AMD
Place, P.O. Box 3453, Sunnyvale, California 94088 (US).

Inventors; and

Inventors/Applicants (for US only): IOURCHA, Kon-
stantine [US/US]; 7186 Wooded Lake Dr., San Jose, Cali-
fornia 95120 (US). BROTHERS, John, W. [US/US];

(74

(8D

(84)

1257 Lakeside Dr. #1226, Sunnyvale, California 94085
(US).

Agent: KIVLIN, B. Noel; Meyertons, Hood, Kivlin,
Kowert & Goetzel, P.C., P.O. Box 398, Austin, Texas
78767-0398 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

[Continued on next page]

(54) Title: REAL TIME ON-CHIP TEXTURE DECOMPRESSION USING SHADER PROCESSORS

(57) Abstract: A processing unit, method, and medium for decompressing or

300

generating textures within a graphics processing unit (GPU). The textures are

compressed with a variable-rate compression scheme such as JPEG. The
compressed textures are retrieved from system memory and transferred to

Shader Controller
310

Shader Array
320

GPU.

Cache
L 340 |

Texture
Consuming
Shader
321

Texture Filter
330

Decompressing
Shader
322

Render Unit
350
Frame Buifer
360

Display Device
370

FIG. 3

local cache memory on the GPU without first being decompressed. A table is
utilized by the cache to locate individual blocks within the compressed tex-
ture. A decompressing shader processor receives compressed blocks and then
performs on-the-fly decompression of the blocks. The decompressed blocks
are then processed as usual by a texture consuming shader processor of the

wO 2012/174231 A1 T 00N T AR RE A0

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Published:

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, — before the expiration of the time limit for amending the

GW, ML, MR, NE, SN, TD, TG). claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

TITLE: REAL TIME ON-CHIP TEXTURE DECOMPRESSION USING SHADER
PROCESSORS

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] This disclosure relates generally to graphics processing, and in particular to a

processing unit, method, and medium of texture decompression.

Description of the Related Art

[0002] Computer graphics processing systems process large amounts of data, typically with a
graphics processing unit (GPU) performing a large percentage of the processing. A GPU is a
complex integrated circuit that is configured to perform, inter alia, graphics-processing tasks.
For example, a GPU may ecxecute graphics-processing tasks required by an end-user
application, such as a video-game application. The GPU may be a discrete device or may be
included in the same device as another processor, such as a central processing unit (CPU).
[0003] A GPU produces the pixels that make up an image from a higher level description of
its components in a process known as rendering. GPU's typically utilize a concept of continuous
rendering by the use of computing elements to process pixel, texture, and geometric data. The
computing elements may execute the functions of rasterizers, setup engines, color blenders,
hidden surface removal, and texture mapping. These computing elements are often referred to
as shaders, shader processors, shader arrays, shader pipes, shader pipe arrays, shader pipelines,
or a shader engine, "shader" being a term in computer graphics referring to a set of software
instructions or a program used by a graphics resource primarily to perform rendering effects.
“Shader” may also refer to an actual hardware component or processor used to execute software
instructions. A shader processor or program may read and render data and perform any type of
processing of the data. GPU’s equipped with a unified shader also simultancously support many
types of shader processing, from pixel, vertex, primitive, and generalized compute processing.
[0004] Much of the processing involved in generating complex graphics scenes involves
texture data. Textures may be any of various types of data, such as color, transparency, lookup
tables, or other data. In some embodiments, textures may be digitized images to be drawn onto
geometric shapes to add visual detail. A large amount of detail, through the use of textures, may

be mapped to the surface of a graphical model as the model is rendered to create a destination

1

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

image. The purpose of texture mapping is to provide a realistic appearance on the surface of
objects. Textures may specify many properties, including colors, surface properties like
specular reflection or fine surface details in the form of normal or bump maps. A texture could
also be image data, color or transparency data, roughness/smoothness data, reflectivity data, etc.
A ‘texel’ is a texture element in the same way a ‘pixel’ is a picture element. The terms ‘texel’
and ‘pixel’ may be used interchangeably within this specification.

[0005] In 3D computer graphics, surface detail on objects is commonly added through the use
of textures. For example, a 2D bitmap image of a brick wall may be applied, using texture
mapping, to a sct of polygons representing a 3D model of a building to give the 3D rendering of
that object the appearance that it is made of bricks. Providing realistic computer graphics
typically requires many high-quality, detailed textures. The use of textures can consume large
amounts of storage space and bandwidth, and consequently textures may be compressed to
reduce storage space and bandwidth utilization.

[0006] Texture compression has thus become a widely accepted feature of graphics hardware
in general and 3D graphics hardware in particular. The goal of texture compression is to reduce
storage and bandwidth costs on the graphics system while retaining as much of the quality of
the original texture as possible. The compression and decompression methods described herein
may be used to compress various types of texture information including image data, picture
data, transparency information, smoothness or roughness data, or any other similarly structured
data. As such, the term texture is used broadly herein to refer to the data being compressed or
decompressed as part of a GPU.

[0007] Fixed-rate compression schemes have traditionally been used to compress textures and
may generally suffer from several shortcomings as compared to variable-rate schemes. Unlike
fixed-rate compression, variable-rate compression is more flexible and may allow for
adjustments to quality as desired. For example, variable-rate compression may be set to achieve
lossless compression. In some cases, the use of variable-rate compression schemes may provide
better compression than traditional fixed-rate compression schemes. A variable-rate
compression scheme, such as Joint Photographic Experts Group (JPEG), is typically not used
for texture compression when on-the-fly decompression is desired due to the high complexity
and implementation cost. Therefore, there is a need in the art for methods and mechanisms to
enable low-cost on-the-fly decompression of variable-rate compressed textures.

[0008] In view of the above, improved processing units, mecthods, and mediums for

performing real time decompression of compressed textures are desired.

2

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

SUMMARY OF EMBODIMENTS OF THE INVENTION
[0009] Various embodiments of processing units, methods and mediums for decompressing
texture data are contemplated. In one embodiment, a first shader of a plurality of shaders may
require a block of a texture to produce data used by a display device or in further processing.
The first shader may be configured to calculate a virtual address of the block within an
uncompressed version of the texture and convey the virtual address with a request for the block
to a cache memory device. In response to determining an uncompressed version of the block is
not stored in the cache, a second shader of the plurality of shaders may be initiated as a
decompressing shader and the virtual address of the uncompressed version of the block may be
passed to the decompressing shader. Also, in response to determining the uncompressed version
of the block is not in the cache, a cache line may be allocated for the requested block.
[0010] The second shader may be configured to receive the compressed version of the block
from the cache. The cache may be configured to utilize a table which maps a virtual address
space of an uncompressed version of the texture to an address space of a compressed version of
the texture. The cache and/or the second shader may be configured to determine the location
and size of the compressed version of the block from the table. The table may also contain
additional information, such as the value of the DC coefficient of a compressed version of each
block of the texture.
[0011] After receiving the compressed version of the block from the cache, the second shader
may be configured to decompress the compressed version of the block and then write a
decompressed version of the block to the cache. After the decompressed version of the block
has been written to the cache, the first shader may be configured to receive the decompressed
version of the block from the cache. The first shader may then be configured to process the
decompressed version of the block such that it may be applied to a rendered surface for display.
[0012] These and other features and advantages will become apparent to those of ordinary

skill in the art in view of the following detailed descriptions of the approaches presented herein.

BRIEF DESCRIPTION OF THE DRAWINGS
[0013] The above and further advantages of the systems, methods, and mechanisms may be
better understood by referring to the following description in conjunction with the
accompanying drawings, in which:

[0014] FIG. 1 illustrates one embodiment of a computer graphics system.

3

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

[0015] FIG. 2 is a block diagram of a GPU in accordance with one or more embodiments.
[0016] FIG. 3 illustrates a block diagram of one embodiment of a graphics processing
System.
[0017] FIG. 4A illustrates a block diagram of one embodiment of a data cache.
[0018] FIG. 4B is a block mapping table in accordance with one or more embodiments.
[0019] FIG. 5 illustrates one embodiment of a virtual address space for an 8x8 block of texels.
[0020] FIG. 6 is a block diagram of one embodiment of a portion of data.
[0021] FIG. 7 is a generalized flow diagram illustrating one embodiment of a method to

decompress a compressed block of a texture.

DETAILED DESCRIPTION
[0022] In the following description, numerous specific details are set forth to provide a
thorough understanding of the methods and mechanisms presented herein. However, one
having ordinary skill in the art should recognize that the various embodiments may be practiced
without these specific details. In some instances, well-known structures, components, signals,
computer program instructions, and techniques have not been shown in detail to avoid
obscuring the approaches described herein. It will be appreciated that for simplicity and clarity
of illustration, elements shown in the figures have not necessarily been drawn to scale. For
example, the dimensions of some of the clements may be exaggerated relative to other
elements.
[0023] This specification includes references to “one embodiment” or “an embodiment.” The
appearances of the phrases “in one embodiment” or “in an embodiment” do not necessarily
refer to the same embodiment. Particular features, structures, or characteristics may be
combined in any suitable manner consistent with this disclosure.
[0024] Terminology. The following paragraphs provide definitions and/or context for terms
found in this disclosure (including the appended claims):
[0025] “Comprising.” This term is open-ended. As used in the appended claims, this term
does not foreclose additional structure or steps. Consider a claim that recites: “A GPU
comprising a plurality of shaders” Such a claim does not foreclose the GPU from including
additional components (e.g., a texture unit, input/output circuitry, etc.).
[0026] “Configured To.” Various units, circuits, or other components may be described or
claimed as “configured to” perform a task or tasks. In such contexts, “configured to” is used to

connote structure by indicating that the units/circuits/components include structure (e.g.,

4

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

circuitry) that performs those task or tasks during operation. As such, the
unit/circuit/component can be said to be configured to perform the task even when the
specified unit/circuit/component is not currently operational (e.g., is not on). The
units/circuits/components used with the “configured to” language include hardware—for
example, circuits, memory storing program instructions executable to implement the operation,
etc. Reciting that a unit/circuit/component is “configured to” perform one or more tasks is
expressly intended not to invoke 35 U.S.C. § 114, sixth paragraph, for that
unit/circuit/component. Additionally, “configured to” can include generic structure (e.g.,
generic circuitry) that is manipulated by software and/or firmware (¢.g., an FPGA or a general-
purpose processor executing software) to operate in manner that is capable of performing the
task(s) at issue. “Configure to” may also include adapting a manufacturing process (e.g., a
semiconductor fabrication facility) to fabricate devices (e.g., integrated circuits) that are
adapted to implement or perform one or more tasks.

[0027] “First,” “Second,” ctc. As used herein, these terms are used as labels for nouns that
they precede, and do not imply any type of ordering (e.g., spatial, temporal, logical, etc.). For
example, in a processor having e¢ight processing elements or cores, the terms “first” and
“second” processing clements can be used to refer to any two of the eight processing clements.
In other words, the “first” and ‘“‘second” processing eclements are not limited to logical
processing elements 0 and 1.

[0028] Referring to FIG. 1, a block diagram of one embodiment of a computer graphics
system is shown. Computer graphics system 100 includes computing system 102 and display
device 114. Computing system 102 includes a graphics processing unit (GPU) 104 for
processing graphics data. In some embodiments, GPU 104 may reside on a graphics card within
computing system 102. GPU 104 may process graphics data to generate color and luminance
values for each pixel of a frame for display on display device 114. GPU 104 may include one or
more processing cores and/or an array of shaders to perform pixel manipulations.

[0029] Computing system 102 may include a software program application 108, an
application programming interface (API) 110, and a driver 112, which may run on a CPU (not
shown). API 110 may adhere to an industry-standard specification, such as OpenGL or
DirectX. API 110 may communicate with driver 112. Driver 112 may translate standard code
received from API 110 into a native format of instructions understood by GPU 104. GPU 104

may then execute the instructions received from driver 112.

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

[0030] Textures may be transferred to GPU 104 from system memory (not shown) or another
storage device of computing system 102. In one embodiment, textures may be compressed
using JPEG compression. In other embodiments, other types of variable-rate compression may
be used to compress the textures. For the remainder of this specification, examples of JPEG
type encoding will be used to describe the various embodiments. However, this is for
illustrative purposes only, and other types of variable-rate compression may also be used with
the methods and mechanisms described herein.

[0031] Driver 112 may reformat compressed textures as part of a tiling process. This
reformatting may entail transcoding a JPEG-compressed texture into a hardware internal JPEG
format. In other embodiments, the JPEG-compressed texture may be transcoded into other
formats. The hardware internal JPEG format may contain additional information to facilitate the
decompression process. For example, the hardware internal JPEG format may include a table
with information on the location and sizes of the various blocks of the JPEG-compressed
texture. The table may also include information on the DC coefficients of cach 8x8 block of the
JPEG-compressed texture. The table may further include Huffman codes, quantization tables,
and other information to facilitate the decompression of the compressed texture. Driver 112
may also allocate a virtual address space for cach of the compressed textures utilized by
computing system 102. The size of each virtual address space may correspond to the size of the
uncompressed texture.

[0032] Computing system 102 will typically have various other devices/components not
shown in FIG. 1, such as a CPU, buses, memory, peripheral devices, ctc. For example,
computing system 102 may include an I/O interface which may be coupled to other devices,
such as a keyboard, printer, and mouse, in addition to display device 114. In some
embodiments, computing system 102 may include a plurality of GPU’s.

[0033] In another embodiment, a processor, such as GPU 104, may be defined in software.
The software instructions may be stored in a computer readable storage medium and when
executed on a computing device, may define the processor. In a further embodiment, processors
may comprise GPU’s, CPU’s, video processing units (VPU’s), coprocessors, and/or other types
of processors that are configured to process texture data. In various embodiments, the GPU and
CPU may be separate integrated circuit devices/packages. In various embodiments, the GPU
and CPU may be included in a single integrated circuit or package.

[0034] Referring to FIG. 2, a block diagram of one embodiment of a GPU 200 is shown. GPU

200 may be utilized to perform graphics-processing related tasks (e.g., using vertex shaders,

6

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

geometry shaders, pixel shaders, etc.) and general-computing tasks (e.g., mathematical
algorithms, physics simulations, etc.). In the example shown, GPU 200 includes shader
processor array 210, command processor 212, texture memory 220, and memory controller 222
which may be configured to support direct-memory access (DMA). It is noted that the
embodiment of GPU 200 depicted in FIG. 2 is for illustrative purposes only, and those skilled
in the art will appreciate numerous alternative embodiments are possible. All such alternative
embodiments are contemplated. Note also that GPU 200 may include many other components
not shown in FIG. 2.

[0035] In the embodiment shown, shader processor array 210 comprises multiple processing
units which may perform in parallel. Command processor 212 may issue commands and assign
processing tasks to individual shader processors of shader processor array 210. In some
embodiments, command processor 212 may include a dispatch processor (not shown)
configured to divide a received workload into threads and distribute the threads among
processing units of the shader processor array. Shader processor array 210 may be configured to
perform various types of functions, including processing texture data and performing rendering
algorithms to transform 3-dimensional texture objects into a 2-dimensional image. As noted
above, shader processor array 210 may include a plurality of shader processors, and the
plurality of shader processors may implement algorithms using a wide range of mathematical
and logical operations on vertices and other texture data.

[0036] In some embodiments, GPU 200 may be configured to utilize one or more on-chip
and/or off chip memories for temporarily storing data. While such memories may be referred to
herein as “caches”, it is noted that the use of such a term does not necessarily require any
particular organization, structure or policies for such memories. For example, while such
memories may utilize organizations and policies typically associated with central processing
unit (CPU) caches — such as set associative organizations and replacement policies, any desired
organization and/or storage policies may be utilized. In various embodiments, texture memory
220 is used for storing texture data. In such an embodiment, texture memory 220 may provide
faster access to certain texture data, such as texture data that is frequently used, than would be
possible if the texture data were only stored in system memory 226 or local memory 230.
System memory 226 may represent memory accessible by both GPU 200 and a central
processing unit (CPU, not shown), while local memory may represent memory which is directly
accessible by only GPU 200. In various embodiments, texture memory 220 may include

multiple levels in a hierarchical arrangement as is commonly known in the cache arts. The

7

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

number of such cache levels included in texture cache system 220 may vary from one
embodiment to the next. Texture memory 220 may be implemented using a variety of memory
technologies, such as static memory (e.g., SRAM), stacked-memory using dynamic memory
(c.g., DRAM), or otherwise. Texture memory 220 may also include caching logic. The caching
logic may be configured to cache data into texture memory 220 and to implement cache
management policies that consider the relative latency and/or bandwidth of cache system 220
versus system memory 226.

[0037] GPU 200 may also include memory controller 222. Memory controller 222 may be
coupled to system memory 226 and local memory 230. Memory controller 222 may access
data, such as compressed textures 228, in system memory 226. Compressed textures 228 may
include a plurality of textures which may be compressed with any of a variety of variable-rate
compression techniques, such as JPEG. Compressed textures 228, or portions of individual
textures within compressed textures 228, may be transferred to texture memory 220 and shader
processor array 210 of GPU 200 (via memory controller 222) without first being decompressed.
Host driver 240 may transfer commands and data to GPU 200 via system memory 226. Local
memory 230 may be utilized for storing vertex data and other data used by GPU 200, and GPU
200 may write frame data to local memory 230.

[0038] Referring now to FIG. 3, a block diagram of one embodiment of a graphics processing
system is shown. Graphics processing system 300 may include shader controller 310, and
shader controller 310 may assign specific graphics processing tasks to individual shader
computing units within shader array 320. Shader controller 310 may perform pre-processing on
graphics-processing tasks and general-computing tasks, and issuc these tasks to shader array
320. Shader controller 310 may identify which processing elements of the shader array are
available to process new workloads, and shader controller 310 may send the new workloads to
the available processing elements of shader array 320. Shader controller 310 may keep track of
which workloads are being processed by the different processing elements of the shader array,
enabling a plurality of threads to execute in parallel.

[0039] Shader array 320 may include texture consuming shader 321 and decompressing
shader 322, which are representative of any number and type of shader processors which may
be included in shader array 320. In various embodiments, shader array 320 may include an
additional shader processor which may be configured to generate texture data procedurally.
Generally speaking, procedural texture generation refers to the process of generating a texture

algorithmically. In various embodiments this procedural generation of texture is performed

8

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

dynamically rather than in advance. Shader array 320 may be used for texture mapping and
producing image data for a display device, among other tasks. As part of performing these
operations, texture consuming shader 321 may issue a texture request to texture filter 330. The
texture request may be for one or more portions (¢.g., blocks, texels) of the texture. Texture
filter 330 may generate a virtual address for the requested texture, and convey the virtual
address with the request to cache 340. Cache 340 may store textures in the form of texel data
associated with pixels. Some of the textures may be compressed, and some of the textures may
be uncompressed.

[0040] After receiving the virtual address from texture filter 330, cache 340 may perform an
address check against all known virtual address ranges to determine if the requested texture is
stored in cache 340. If an uncompressed version of the requested texture is stored in cache 340,
cache 340 may return the uncompressed version of the texture to texture filter 330. If the
uncompressed version of the texture is not stored in cache 340, the attempted request may result
in a cache miss. In response to a cache miss, decompressing shader 322 may be initiated for the
purpose of decompressing a compressed version of the texture. In various embodiments, shader
array 320 may receive a request from cache 340, or otherwise, to initiate a decompressing
shader. Also in response to a cache miss, texture consuming shader 321 may pass the virtual
address of the texture to decompressing shader 322. Resources for the decompressing shader
program may be pre-allocated on decompressing shader 322 to decrease the shader start latency
and simplify resource management. The request may be routed to a particular shader processor
of shader array 320 based on the virtual address of the block being requested.

[0041] Cache 340 may be queried for a compressed version of the texture, and if the
compressed version of the texture is stored in cache 340, the compressed version of the texture
may be returned to decompressing shader 322. If the compressed version of the texture is not
stored in cache 340, the compressed version of the texture may be retrieved from system
memory or another location. Decompressing shader 322 may also receive additional tables,
textures, and/or constants to facilitate the decompression operation. Decompressing shader 322
may decompress some additional compressed data necessary to decompress the requested
texture. In the case of a JPEG-compressed texture, the texture may be transcoded from the
original code to a new encoding scheme, and the new encoding scheme may be designed to
make decompression more efficient. After decompressing shader 322 has received and
decompressed the compressed version of the texture, texture consuming shader 321 may utilize

the decompressed version of the texture for the appropriate rendering calculations. This process

9

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

may continue for a plurality of textures and/or portions of textures. In another embodiment, the
functions described as being performed by texture filter 330 may be performed by shader array
320, and shader array 320 may be coupled directly to cache 340.

[0042] Cache 340 may utilize a table to determine the address to which a given virtual
address maps for the compressed versions of textures stored in cache 340. In various
embodiments, the table (or portions thereof) may be stored in cache 340 or elsewhere. In one
embodiment, the table may map a virtual address to another address of the compressed version
of a texture. The address to which the virtual address is mapped may or may not itself be a
virtual address. Numerous options for the types of addressing schemes utilized are possible and
are contemplated. The table may store an offset for each block of the compressed version of the
texture, wherein the offset gives the location from the beginning of the compressed version of
the texture to the block. In various embodiments, the table may facilitate random access to the
blocks of one or more compressed textures. The cache logic of cache 340 may determine an
address of a given block in response to a request for the compressed version of the block. The
cache logic may use the table to determine an offset at which the desired block is stored within
a page or fetch unit of the cache. The plurality of shaders of shader array 320 may also use the
table to determine the offset of a requested block of a texture. In various embodiments, cache
340 may utilize a plurality of tables with mapping information on a plurality of textures.

[0043] After the texture data has been processed, shader array 320 may convey the image
data to render unit 350. Render unit 350 may assign a specific number value that defines a
unique color attribute for each pixel of an image frame. The number values may be passed to
frame buffer 360 where they may be stored for use at the appropriate time, such as when they
are rendered on display device 370.

[0044] On a subsequent operation, texture consuming shader 321 may be configured to
perform the functions of a decompressing shader, and decompressing shader 322 may be
configured to perform the functions of a texture consuming shader. Each shader processor of
shader array 320 may be configured to perform a varicty of functions depending on the
requirements of the current operation.

[0045] In various embodiments, load balancing may be utilized to assign decompression tasks
to underutilized shaders. Also, some space may be reserved in a number of compute units to
allow decompression shaders to be launched on a number of compute units. Furthermore,
multiple decompression requests may be packed into single instruction multiple data (SIMD)

vectors. The SIMD vectors may facilitate the decompression of multiple blocks in one vector.

10

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

In one embodiment, 16 blocks may be decompressed in one vector, with one block per four
lanes.

[0046] In various embodiments, graphics processing system 300 may cnable on-the-fly
procedural generation of texture data. One shader may generate on-the-fly texture data, and a
second shader may utilize the generated texture data for rendering operations. A decompressing
shader may access compressed data and another shader may be utilized to decompress
additional data, such as one or more tables. Some of the compressed data may be compressed
using a variety of compression techniques. In various embodiments, the decompressing shader
may request data from the cache, and in response to a cache miss, another shader may be
initiated to procedurally generate texture data.

[0047] Turning now to FIG. 4A, a block diagram of one embodiment of a data cache is
shown. Cache 410 may contain portions of textures 420 and 430, which are representative of
any number of portions of textures which may be stored in cache 410. Textures 420 and 430
may be compressed textures, while the plurality of textures stored in cache 410 may be a mix of
compressed and uncompressed textures. Texture 420 may include blocks 422 and 423, which
are representative of any number of blocks of texture 420. Texture 420 may also include table
421, which may map a virtual address space of texture 420 to an address space of compressed
texture 420. Texture 430 may be organized similarly to texture 420. In another embodiment,
table 421 may be stored separately from texture 420.

[0048] When a texture consuming shader requests a block of a texture from cache 410, and
the request results in a cache miss, cache 410 may allocate cache line 440 for the requested
block. Cache 410 may convey the address of the allocated cache line to a decompressing
shader. After the decompressing shader has decompressed the compressed block corresponding
to the requested block, the decompressing shader may be configured to write the decompressed
block to cache line 440. Alternatively, the decompressing shader may write the decompressed
block to various locations within cache 410. In response to the decompressing shader writing
the decompressed block to cache line 440, the texture consuming shader may be configured to
fetch the decompressed block from cache 410. The corresponding latency compensation queues
may need to be extended to accommodate the larger latency resulting from the on-the-fly
decompression of the compressed block.

[0049] After the decompressed version of the block has been written to cache line 440, cache
410 may store the compressed version of the block and the decompressed version of the block.

In various embodiments, cache 410 may execute a retention policy that discards one of the

11

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

versions of the block in response to determining both versions are stored in cache 410. In one
embodiment, the decompressed version of the block may be discarded after it has been fetched
by the texture consuming shader. In another embodiment, the compressed version of the block
may be discarded after the decompressed version of the block has been written to cache 410. In
a further embodiment, both the compressed and decompressed version of the block may be
maintained in cache 410 for an extended period of time.

[0050] In response to a request for an uncompressed version of a block of a texture, cache
410 may determine that the uncompressed version is not stored in cache 410. In various
embodiments, in response to such a determination, cache 410 may automatically secarch for the
compressed version of the block. If the compressed version of the block is stored in cache 410,
cache 410 may notify a shader or other processing unit and/or cache 410 may convey the
compressed version of the block to the shader or other processing unit.

[0051] In some embodiments, in response to a cache miss on a request for an uncompressed
block, a separate software thread may be started, and the thread may initiate a decompressing
shader. The texture consuming shader may convey the virtual address of the block to the
decompressing shader. In various embodiments, when the shader finishes the decompression
task, the decompressing shader may convey the uncompressed block(s) to the cache. In other
embodiments, when the decompressing shader finishes the decompression operation, the
decompressing shader may convey the shader output to the texture consuming shader.

[0052] Referring now to FIG. 4B, a block diagram of one embodiment of a block mapping
table is shown. Table 421 may store mapping information for the plurality of blocks of texture
420 (of FIG. 4A). In various embodiments, table 421 may be organized in a varicty of ways
with other types of information in addition to what is illustrated in FIG. 4B. For example, in
one embodiment, table 421 may include a DC coefficient value for each block of texture 420.
[0053] Table 421 may map the virtual address space of texture 420 to the physical address
space of compressed texture 420 (of FIG. 4A). A decompressing shader (not shown) may fetch
or otherwise receive one or more blocks of texture 420 from cache 410, and the decompressing
shader may determine the location and size of the compressed blocks from table 421. The size
of a compressed block may be determined by calculating the difference between the starting
physical addresses of two adjacent blocks. In other embodiments, additional data may be
provided to indicate size and/or location information for blocks. Further, the decompression
shader may obtain additional information from table 421, such as a DC coefficient value of

each block.

12

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

[0054] In some embodiments, the texture may be organized according to superblocks. A
superblock may be a set of 16 8x8 blocks, which is a tile of 32x32 pixels, for a total of 1024
pixels. The index table for the texture may include a table entry for each superblock, and each
table entry may give the address of the start of cach superblock. In one embodiment, this
address may be the location of the superblock within the texture. In another embodiment, this
address may be an offset from the start of the texture. Each entry may also include a 4-bit index
of the first 8x8 block belonging to the superblock. In some embodiments, superblocks may not
be aligned with 2 kilobit (Kb) boundaries of the cache. Fach entry may also include a 16-bit
mask. The 16-bit mask may include one bit per block indicating whether that block starts in the
next 2 Kb word.

[0055] In some embodiments, the decompressing shader may transform the virtual address of
the 8x8 block into the virtual address of a 32x32 superblock to calculate an entry number of the
index table for lookup purposes. The decompressing shader may lookup the entry of the index
table corresponding to the superblock. The index table may be processed by a shader in a
similar manner as other textures. The entries of the index table may be cached and processed.
[0056] From each index table entry, the shader may obtain the base address, which may be a
virtual address. The base address may be of the first fetch unit of the compressed superblock.
The shader may also obtain the offset of the fetch unit containing the requested block which
needs to be decompressed. The shader may also calculate if the block is compressed or not
based on the address of the block. Certain address ranges may correspond to virtual addresses
of uncompressed blocks, and other address ranges may correspond to physical addresses of
compressed blocks. The shader may be able to distinguish between the different address ranges.
[0057] Referring now to FIG. 5, a block diagram of one embodiment of a virtual address
space for an 8x8 block of texels is shown. Each texel may be mapped to a unique address
within virtual address space 570. Texel 1 may be mapped to address 501, texel 2 may be
mapped to address 502, and so on, for all 64 texels of 8x8 block 500. Block 500 may be a block
within a compressed texture, and virtual address space 570 may be allocated for block 500 of
the compressed texture. The texture may include a plurality of blocks in addition to block 500.
Virtual address space 570 may also include a unique address for each texel of the plurality of
blocks in the texture.

[0058] For purposes of illustration, it will be assumed that an uncompressed texel is a 32-bit
value (4 sets of 8-bit values). Other sizes of uncompressed texels may also be utilized with the

methods and mechanisms described herein. For example, an uncompressed texel with a 24-bit

13

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

value may be handled in a similar way. In various embodiments, a texture consuming shader
may generate requests for individual texels. First, the shader may compute the virtual address
of a texel. Then, the cache may be queried for the virtual address corresponding to the texel.
[0059] Turning now to FIG. 6, a block diagram of one embodiment of compressed data is
shown. Data portion 605 may be a unit of fetch of the compressed data, and the size of data
portion 605 may be based on the size of an uncompressed block. In one embodiment, a fetch
unit may be of size 2 Kb. In other embodiments, a fetch unit may be any of various sizes. A
plurality of compressed blocks may be packed into a fetch unit. In one embodiment, the
maximum number of blocks that may be packed into a fetch unit may be assumed to be 16. In
other embodiments, other numbers of blocks may be packed into a fetch unit. For one type of
cache access scheme, it may be assumed that the data of the blocks do not cross boundaries of
fetch units.

[0060] A block may be the smallest decodable unit of a compression format, such as JPEG.
For JPEG, the block is an 8x8 pixel tile (with 64 pixels). When a texture is compressed, and a
block of the texture requested by a shader needs to be decompressed, a cache line may be
allocated in the cache for the block. In one embodiment, the cache line size may be 2 Kb to
store an entire uncompressed block (32 bits * 64 = 2 Kb). In other embodiments, the cache line
size may be any of various sizes.

[0061] If a fetch unit contains an uncompressed block, then only one block may fit in the
fetch unit. For a fetch unit containing compressed blocks, the fetch unit may also include a 176-
bit header. The fetch unit may be assumed to have a capacity of 16 blocks. The header may
include 16 11-bit offset values to indicate the locations of the compressed blocks within the
fetch unit. The offsets reference the starting bit positions of the blocks. In other embodiments,
there may be a variable number of offset indicators in the header.

[0062] As shown in FIG. 6, data portion 605 may include header 610 and blocks 611-626.
Blocks 611-626 may be sixteen different blocks of a compressed texture. Header 610 may
include offsets 631-646. Each offset may be an 11-bit offset value corresponding to the location
of the corresponding block within data portion 605. In other embodiments, other bit-sizes of
offset values may be utilized. Offset 631 may represent the starting address of block 611, offset
632 may represent the starting address of block 612, and so on. In some embodiments, there
may be an additional offset indicating the last bit of the last block, to reduce unnecessary fetch

from the cache.

14

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

[0063] In some embodiments, compressed 8x8 blocks of the texture may be packed and cross
fetch unit boundaries. The corresponding information, showing that the block uses two fetch
units, may be stored in an index table, and a decompressing shader may generate two fetches
instead of one for blocks that cross fetch unit boundaries.

[0064] Turning now to FIG. 7, one embodiment of a method for decompressing a compressed
block of a texture is shown. For purposes of discussion, the steps in this embodiment are shown
in sequential order. It should be noted that in various embodiments of the method described
below, one or more of the elements described may be performed concurrently, in a different
order than shown, or may be omitted entirely. Other additional elements may also be performed
as desired.

[0065] The method 700 starts in block 705, and then in block 710, a first shader of a plurality
of shaders may determine the need for a block of a texture as part of the rendering operations
for an image. The first shader may be a texture consuming shader. Next, the first shader may
calculate the virtual address of the block (block 715). The first shader may have an
uncompressed view of the texture, corresponding to the uncompressed version of the texture,
and the virtual address may correspond to the location of the requested block within the
uncompressed view. After block 715, the first shader may request the block from the cache and
convey the virtual address with the request (block 720). Next, the cache may determine if an
uncompressed version of the block is stored in the cache (conditional block 725). If the
uncompressed version of the block is stored in the cache, the first shader may receive the
uncompressed version of the block from the cache and process the block (block 770).

[0066] If the uncompressed version of the block is not stored in the cache, a second shader of
the plurality of shaders may be initiated as a decompressing shader (block 730). The resources
for the decompressing shader may be pre-allocated on one or more shader processors to
decrease the shader start latency and simplify resource management. Also, the virtual address of
the requested block may be passed from the first shader to the second shader. Next, a cache line
may be allocated for the requested block (block 735). Then, the cache may determine if a
compressed version of the block is stored in the cache (conditional block 740). In various
embodiments, the cache may make this determination in response to a request by the second
shader for the compressed version of the block. In other embodiments, the cache may make this
determination automatically in response to determining the uncompressed version of the block

is not stored in the cache (conditional block 725).

15

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

[0067] If the compressed version of the block is stored in the cache (conditional block 740),
then the cache and/or second shader may determine the location and size of the compressed
version of the block from the table (block 750). If the compressed version of the block is not
stored in the cache (conditional block 740), then the compressed version of the block may be
fetched (e.g., from local or system memory) and stored in the cache (block 745). Fetching the
compressed version of the block from system memory may entail fetching the entire
compressed texture or some portion of the texture. The cache may be configured to utilize a
table which maps the virtual address space of an uncompressed version of the texture to an
address space of a compressed version of the texture. The cache and/or second shader may
determine the location and size of the compressed version of the block from the table (block
750). The table may also contain additional information, such as the value of the DC coefficient
of a compressed version of each block of the texture. After block 750, the compressed version
of the block may be conveyed to the second shader from the cache (block 755).

[0068] In another embodiment, if the compressed version of the block is not in the cache
(conditional block 740), steps 745, 750, and 755 may be replaced with alternate steps. In the
alternate steps, the compressed version of the block may be fetched from system memory and
provided directly to the second shader. These alternate steps may be more efficient than having
the second shader receive the compressed version of the block from the cache. In a further
embodiment, the compressed version of the block may be fetched from system memory and
provided directly to the second shader while also being written to the cache.

[0069] After the second shader receives the compressed version of the block (block 755), the
second shader may decompress the compressed version of the block (block 760). Next, the
second shader may write the decompressed version of the block to the cache (block 765). Then,
the first shader may receive the decompressed version of the block from the cache and process
the block as part of the rendering operations for the current image (block 770). After block 770,
the method may end in block 775. Method 700 may be repeated for a plurality of blocks from a
plurality of textures.

[0070] Although the features and elements are described in the example embodiments in
particular combinations, cach feature or element can be used alone without the other features
and elements of the example embodiments or in various combinations with or without other
features and elements. The present invention may be implemented in a computer program or
firmware tangibly embodied in a non-transitory computer-readable storage medium having

machine readable instructions for execution by a machine, a processor, and/or any general

16

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

purpose computer for use with or by any non-volatile memory device. The computer-readable
storage medium may contain program instructions which are operable to enable the functions,
methods, and operations described in this specification. Suitable processors include, by way of
example, both general and special purpose processors.

[0071] Typically, a processor will receive instructions and data from a read only memory
(ROM), a RAM, and/or a storage device having stored software or firmware. Storage devices
suitable for embodying computer program instructions and data include all forms of non-
volatile memory, including by way of example semiconductor memory devices, read only
memoriecs (ROMs), magnetic media such as internal hard disks and removable disks, magneto-
optical media, and optical media such as CD-ROM disks and digital versatile disks (DVDs).
[0072] The above described embodiments may be designed in software using a hardware
description language (HDL) such as Verilog or VHDL. The HDL-design may model the
behavior of an electronic system, and the design may be synthesized and ultimately fabricated
into a hardware device. In addition, the HDL-design may be stored in a computer product and
loaded into a computer system prior to hardware manufacture.

[0073] Types of hardware components, processors, or machines which may be used by or in
conjunction with the present invention include Application Specific Integrated Circuits
(ASICs), Field Programmable Gate Arrays (FPGAs), microprocessors, or any integrated circuit.
Such processors may be manufactured by configuring a manufacturing process using the results
of processed hardware description language (HDL) instructions (such instructions capable of
being stored on a computer readable media). The results of such processing may be maskworks
that are then used in a semiconductor manufacturing process to manufacture a processor which
implements aspects of the methods and mechanisms described herein.

[0074] Software instructions, such as those used to implement image rendering calculations
and shader tasks, may be stored on a computer-readable storage medium. A computer-readable
storage medium may include any mechanism for storing information in a form (e.g., software,
processing application) readable by a machine (e.g., a computer). The computer-readable
storage medium may include, but is not limited to, magnetic or optical media (e.g., disk (fixed
or removable), tape, CD-ROM, DVD-ROM, CD-R, CD-RW, DVD-R, DVD-RW, or Blu-Ray),
RAM (e.g., synchronous dynamic RAM (SDRAM), double data rate (DDR, DDR2, DDR3,
etc.) SDRAM, low-power DDR (LPDDR2, etc.) SDRAM, Rambus DRAM (RDRAM), static
RAM (SRAM)), ROM, non-volatile memory (¢.g. Flash memory) accessible via a peripheral

17

10

WO 2012/174231 PCT/US2012/042442

interface such as the USB interface, micro-electro-mechanical systems (MEMS), and storage
media accessible via a communication medium such as a network and/or a wireless link.

[0075] Although several embodiments of approaches have been shown and described, it will
be apparent to those of ordinary skill in the art that a number of changes, modifications, or
alterations to the approaches as described may be made. Changes, modifications, and alterations
should therefore be seen as within the scope of the methods and mechanisms described herein.

It should also be emphasized that the above-described embodiments are only non-limiting

examples of implementations.

18

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

WHAT IS CLAIMED IS

1. An apparatus comprising:
a first shader; and
a second shader;
wherein said second shader is configured to decompress a variable rate compressed

texture block for use by the first shader.

2. The apparatus as recited in claim 1, wherein the second shader is configured to decompress
the variable rate compressed texture block in response to a request by the first shader for a

texture block that corresponds to the variable rate compressed texture block.

3. The apparatus as recited in claim 2, wherein the request by the first shader for the texture
block that corresponds to the variable rate compressed texture block is a request to a memory

for an uncompressed version of the variable rate compressed texture block.

4. The apparatus as recited in claim 3, wherein the second shader is configured to decompress
the variable rate compressed texture block in further response to a determination that the

uncompressed version of the variable rate compressed texture block is not in the memory.

5. The apparatus as recited in claim 3, wherein prior to decompressing the variable rate
compressed texture block, the second shader is configured to receive the variable rate

compressed texture block from the memory.

6. The apparatus of claim 1, wherein decompressing the variable rate compressed texture block

is performed by the second shader executing a decompression program.

7. The apparatus of claim 2, wherein said memory comprises an on-chip memory configured to

store data retrieved from an off-chip system memory.

8. The apparatus as recited in claim 2, further comprising a table which maps a virtual address
space of an uncompressed version of the variable rate compressed texture block to an address

space of the variable rate compressed texture block.

19

10

15

20

25

30

WO 2012/174231 PCT/US2012/042442

9.

10.

11.

12.

13.

14.

15.

The apparatus as recited in claim 8, wherein the first shader is further configured to:
calculate a virtual address of the uncompressed version of the texture block within an
uncompressed version of a corresponding texture, prior to requesting the texture
block from the memory; and
convey the virtual address of the uncompressed version of the texture block to the

memory with the request.

The apparatus as recited in claim 7, wherein in response to determining the uncompressed
version of the texture block is not in the on-chip memory, storage is allocated in the on-chip

memory for the uncompressed version of the texture block.

The apparatus as recited in claim 1, wherein the plurality of shaders comprises a shader

configured to generate texture data procedurally.

A method for decompressing texture data, the method comprising:
a first shader requesting a texture block; and
a second shader decompressing a variable rate compressed texture block for use by the

first shader.

The method as recited in claim 12, further comprising the second shader decompressing the
variable rate compressed texture block in response to a request by the first shader for an

uncompressed version of the variable rate texture block from a memory.

The method as recited in claim 13, further comprising the second shader decompressing the
variable rate compressed texture block in further response to a determination that the

uncompressed version of the variable rate compressed texture block is not in the memory.
The method as recited in claim 14, wherein prior to decompressing the variable rate

compressed texture block, the method comprises the second shader receiving the variable rate

compressed texture block from the memory.

20

WO 2012/174231 PCT/US2012/042442

16. The method of claim 12, further comprising decompressing the variable rate compressed

texture block by the second shader using a decompression program.

17. The method of claim 13, wherein said memory comprises an on-chip memory configured to

5 store data retrieved from an off-chip system memory.

18. A computer readable storage medium comprising program instructions to decompress texture
data, wherein when executed the program instructions are operable to:
enable a first shader to request a texture block; and
10 enable a second shader to decompress a variable rate compressed texture block for use by

the first shader.

19. The computer readable storage medium as recited in claim 18, wherein the program
instructions are further operable to enable the second shader to decompress the variable rate
15 compressed texture block in response to a request by the first shader for an uncompressed

version of the variable rate texture block from a memory.

20. The computer readable storage medium as recited in claim 19, wherein the program
instructions are further operable to enable the second shader to decompress the variable rate
20 compressed texture block in further response to a determination that the uncompressed

version of the variable rate compressed texture block is not in the memory.

21

WO 2012/174231 PCT/US2012/042442

1/7

100

Computing System
102

Application
108

AP|
110

GPU | Driver
104 112

Display
Device
114

Y

FIG. 1

PCT/US2012/042442

WO 2012/174231

2/7

¢ Ol

0Z2
Aowepy
ainjxe

0gZ
Aiowsyy 1eoo

%4 —
Aeuy josseoold sopeys 1 > cce
J8[j0JUOD
Aowepy
X
Ziz - ~
J10S§800.14 puBUILWO?)

8ce
sainxe

poassasdiion

92c
Aowepy wopsAs

00¢
d9

A

A

ore
JOALICT 1SOH

WO 2012/174231

Shader Controller
310

Yy

Shader Array
320

Texture
Consuming
Shader
321

3/7

PCT/US2012/042442

300

Texture Filter

A

Decompressing
Shader
322

Display Device
370

> 330

Cache

A

Y

340

FIG. 3

WO 2012/174231 PCT/US2012/042442

FIG. 4B

4/7
Cache
440 410
H
Cache Line
420 430
§ §
Texture Texture . xox
/ S~
// T~ ~
K 421 422 423 T~o_
8 5 S S~
Table Block Block
FIG. 4A
Table
421
H
Virtual Physical
Address Address Block
0x000 0x100 422
0x800 0x200 423
0x2000 0x800

WO 2012/174231 PCT/US2012/042442

5/7

Virtual Address Space 570

Address 501

<" | Address 502
s/

L 7 {4 Address 503

«~ 7+ - JAddress 504

s 2/ 1 Address 505

S0 0 N Address 506

// // // // // // ,Address 507

S0, /,Address508

/ 7/ Ve Vd rd / /

A

AN
N
\

S

A

64} _

S ~ M Address 564
Block 500

FIG. 5

WO 2012/174231 PCT/US2012/042442
6/7
605
A
[)
610 611 612 626
N § § §
Header Block Block Block
/ TSl
! ™~
/ ~a -
! ~ o -
| 631 632 S~
S §
Offset Offset Offset

11-bit offset

FIG. 6

WO 2012/174231

7/7
Start

Determine the Need for a
Block of a Texture by a
First Shader
710

4

Calculate the Virtual
Address of the Block
715

y

Request the Block from the
Cache and Convey the
Virtual Address with the

Request
720

PCT/US2012/042442

Method

700
/-

End
775

A

Receive the Decompressed
Version from the Cache
and Process the Block by
the First Shader
770

4

-
>

Is the
Uncompressed
Version in the Cache?
725

Yes

Initiate a Second Shader as
a Decompressing Shader
730

Y

Allocate a Cache Line for
the Requested Block
735

Is the

Compressed Yes

Write the Decompressed
Version to the Cache by
the Second Shader
765

[

Decompress the
Compressed Version by
the Second Shader
760

A

Convey the Compressed
Version to the Second
Shader from the Cache
755

A

Determine the Location and
Size of the Compressed
Version of the Block from

the Table
750

-
o

Version in the Cache?
740

Fetch the Compressed
Version from Memory and
Store in the Cache
745

A

FIG. 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/042442

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6T9/00 GO6T15/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 6 959 110 B1 (DANSKIN JOHN M [US] ET 1-3,6,
AL) 25 October 2005 (2005-10-25) 11-13,
15-19
abstract

figures 1,2,4

column 2, line 5 - line 32

column 4, line 22 - column 5, line 3
X US 6 243 081 B1 (GORIS ANDREW C [US] ET 1-20
AL) 5 June 2001 (2001-06-05)

abstract

figures 1-3, 7

column 1, line 59 - column 3, line 12
column 4, line 58 - column 6, line 7
column 7, line 48 - line 61

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other

. e "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified)

considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

22 October 2012 31/10/2012

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, .
Fax: (+31-70) 340-3016 Kontopod1s, D

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/042442

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 6 452 602 B1 (MOREIN STEPHEN L [US])
17 September 2002 (2002-09-17)

abstract

figures 1,2

column 1, line 11 - Tine 53

column 6, line 52 - column 7, line 40

US 6 108 460 A (RICH HENRY H [US])

22 August 2000 (2000-08-22)

figures 2, 10

column 20, Tine 48 - column 23, line 18
AKENINE-MOLLER T ET AL: "Graphics
Processing Units for Handhelds",
PROCEEDINGS OF THE IEEE, IEEE. NEW YORK,
us,

vol. 96, no. 5, 1 May 2008 (2008-05-01),
pages 779-789, XP011207044,

ISSN: 0018-9219, DOI:
10.1109/JPROC.2008.917719

abstract

page 780, right-hand column, last
paragraph - page 781, right-hand column,
line 2

section V.B

figures 4,9

JEONG-HO WOO ET AL: "A 195 mW, 9.1
MVertices/s Fully Programmable 3-D
Graphics Processor for Low-Power Mobile
Devices",

IEEE JOURNAL OF SOLID-STATE CIRCUITS, IEEE
SERVICE CENTER, PISCATAWAY, NJ, USA,
vol. 43, no. 11,

1 November 2008 (2008-11-01), pages
2370-2380, XP011238698,

ISSN: 0018-9200, DOI:
10.1109/JSSC.2008.2004525

section III.A

figure 5

"6.3 Procedural Texturing"

In: Akenine-Moller T; Haines E; Hoffman N:
"Real-Time Rendering, 3rd edition",

31 July 2008 (2008-07-31), A K Peters,
XP002685684,

ISBN: 1568814240

pages 178-180,

the whole document

1-7,
10-20

1-7,
11-20

1-20

1-20

10

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2012/042442
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6959110 Bl 25-10-2005 NONE
US 6243081 Bl 05-06-2001 JP 3453088 B2 06-10-2003
JP 2000105839 A 11-04-2000
us 6243081 Bl 05-06-2001
US 6452602 Bl 17-09-2002 NONE
US 6108460 A 22-08-2000 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report
	Page 33 - wo-search-report

