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s00 (57) Abstract: A video coding device includes processor(s) configured

to determine, for each of a plurality of bins of a value for a syntax ele-
ment of a current transform coefficient, contexts using respective cor-
responding bins of values for the syntax element of previously coded
transform coefficients. The processor(s) are contigured to determine a
context for an i™ bin of the value for the syntax element of the current
transform coefficient using a corresponding i™ bin of a value for the
syntax element of a previously coded transform coefticient. To use the
cotrresponding i bin of the value for the syntax element of the previ-
ously coded transform coefficient, the processor(s) are configured to
use only the i bin, and no other bins, of the value for the syntax ele-
ment of the previously coded transform coefficient. 'I' represents a non-
negative integer.
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CODING DATA USING AN ENHANCED CONTEXT-ADAPTIVE BINARY
ARITHMETIC CODING (CABAC) DESIGN

(8601} This application claims the benefit of U.S. Provisional Application No.
62/168,571, filed May 29, 2015, the entire contents of which are hereby incorporated by

reference.

TECHNICAL FIELD

[0062] This disclosure relates to video coding.

BACKGROUND

{8003} Drgital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video coding techniques, such as
those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T
1.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEV() standard presently under development, and extensions of such
standards. The video devices may transmit, receive, encode, decode, and/or store digital
video information more efficiently by implementing such video coding techniques.
(80604} Video coding techniques include spatial (intra~picture) prediction and/or
temporal (inter-picture} prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (e.g, a video frame or a portion
of a video frame) may be partitioned intc video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (1)
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring
blocks in the same picture or temporal prediction with respect to reference samples in
other reference pictures. Pictures may be referred to as frames, and reference pictures

may be referred to a reference frames.
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806035 Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mede and the residual
data. For further compression, the residual data may be transtormed from the pixel
domain to a transtform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more

compression,

SUMMARY

180806} This disclosure describes example technigues related to to an entropy coding
moditle in block-based hybrid video coding. These technigues may be applied to any
existing video codecs, such as HEVC (High Efficiency Video Coding) or these
techniques may be an efficient coding tool in any future video coding standards or other
proprietary or non-proprietary coding techniques. Various aspects are directed to
context modeling and context initialization enhancements for binary arithmetic coding
(BAC) based coding devices. Several techniques are described herein, and in
accordance with this disclosure, video coding devices may implement the techniques
separately or in various combinations.

18007} In one example, this disclosure is directed to a method for decoding video data,
the method including determining, for each of a plurality of bins of a value for a syntax
element of a current transform coefficient, contexts using respective corresponding bins
of values for the syntax element of one or more previously-decoded transform
coefficients, where determining the contexts comprises determining a context for an i
bin of the value for the syntax element of the current transform coefficient using a
corresponding i' bin of a value for the syntax element of a previously-decoded
transform coetficient, where 1 comprises a non-negative integer, and where using the
corresponding i bin of the value for the syntax element of the previously-decoded

transform coefficient comprises using only the i bin of the value for the syntax element
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of the previously-decoded transform coefficient and no other bins of the value for the
syntax element of the previously-decoded transform coefficient. The method may
further include context adaptive binary arithmetic coding (CABAC) decoding the i bin
of the value for the syntax element of the current transform coefficient using the
determined context.

[8008] In another example, this disclosure 1s directed to a method for decoding video
data, the method including determining, for each of a plurality of bins of a value for a
corresponding bins of values for the syntax element of one or more previously-encoded
transform coefficients, where determining the contexts comprises determining a context
for an i bin of the value for the syntax element of the current transform coefficient
using a corresponding i bin of a value for the syntax element of a previously-encoded
transform coefficient, where i comprises a non-negative integer, and where using the
corresponding i bin of the value for the syntax element of the previously-encoded
transform coefficient comprises using only the i bin of the value for the syntax element
of the previously-encoded transtorm coefficient and no other bins of the value for the
syntax element of the previously-encoded transtorm coefficient. The method may
further include CABAC encoding the i' bin of the value for the syntax element of the
current transform coefficient using the determined context.

(8009} In another example, this disclosure 1s directed to a device for coding video data,
the device including a memory configured to store video data, and one or more
processors. The one or more processors may be configured to determine, for each of a
plurality of bins of a value for a syntax element of a current transform coefficient,
contexts using respective corresponding bins of values for the syntax element of one or
more previcusly-coded transform coefficients, where to determine the contexts, the one
or more processors are configured to determine a context for an i™ bin of the value for
the syntax element of the current transform coefficient using a corresponding i™ bin of a
value for the syntax element of a previously-coded transtorm coefficient, where 1
comprises a non-negative integer, and where to use the corresponding i bin of the
value for the syntax element of the previously-coded transform coetticient, the one or
more processors are configured to use only the i¥ bin of the value for the syntax element
of the previcusly-coded transform coetticient and no other bins of the value for the

syntax element of the previously-coded transform coefficient. The processor(s) may be
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further configured to CABAC code the i'" bin of the value for the syntax element of the
current transform coetficient using the determined context.

18018} In another example, this disclosure 15 directed to a video coding apparatus. The
video coding apparatus may include means for determining, for each of a plurality of
bins of a value for a syntax element of a current transform coetficient, contexts using
respective corresponding bins of values for the syntax element of one or more
previously-coded transform coefficients, where the means for determining the contexts
comprises means for determining a context for an i bin of the value for the syntax
element of the current transform coefficient using a corresponding i bin of a value for
the syntax element of a previously-coded transform coefficient, where 1 comprises a
non-negative integer, and where the means for using the corresponding i™ bin of the
value for the syntax element of the previously-coded transform coefticient comprises
means for using only the i bin of the value for the syntax element of the previously-
coded transtorm coefficient and no other bins of the value for the syntax element of the
previously-coded transform coefficient. The video coding apparatus may further
include means for CABAC coding the i™ bin of the value for the syntax element of the
current transform coefficient using the determined context.

(8011} In another example, this disclosure is directed to a non-transitory computer-
readable storage medium encoded with instructions. The instructions, when executed,
may cause one ofr more processors of a video coding device to determine, foreach of a
plurality of bins of a value for a syntax element of a current transform coetficient,
contexts using respective corresponding bins of values for the syntax element of one or
more previously-coded transtorm coefficients, where to determine the contexts, the one
or more processors are configured to determine a context for an i™ bin of the value for
the syntax element of the current transform coefficient using a corresponding i'" bin of a
value for the syntax element of a previously-coded transform coetficient, where 1
comprises a non-negative integer, and where to use the corresponding i bin of the
value for the syntax element of the previously-coded transform coefficient, the one or
more processors are configured to use only the i™ bin of the value for the syntax element
of the previously-coded transform coefficient and no other bins of the value for the
syntax element of the previcusly-coded transform coefficient. The instructions, when
executed, may further cause the one or more processors of the video coding device to
CABAC code the i bin of the value for the syntax element of the current transform

coefficient using the determined context.
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(8612} In another example, this disclosure is directed to a method of decoding video
data. The method may include inttializing context information for a current slice of a
current picture by inheriting context information of a previously-decoded block of a
previcusly-decoded slice as initialized context information for the current slice of the
current picture, and decoding data of the current slice using the imnitialized context
information.

(8013} In another example, this disclosure is directed to a method of encoding video
data. The method may include initializing context information for a current slice of a
current picture by inheriting context information of a previously-encoded block of a
previously-encoded slice as initialized context information for the current slice of the
current picture, and encoding data of the current slice using the initialized context
information.

180814} In another example, this disclosure is directed to a device for coding video data,
the device including a memory configured to store video data, and one or more
processors. The one or more processors may be configured to initialize context
information for a current slice of a current picture by inheriting context information
after coding a previously-coded block of a previously-coded slice of the stored video
data as inmitialized context information for the current slice of the current picture, and to
code data of the current slice using the imtialized context information.

(8015} In another example, this disclosure is directed to a video coding apparatus. The
video coding apparatus may include means for initializing context information for a
current slice of a current picture by inheriting context information after coding a
previously-coded block of a previously-coded slice as initialized context information for
the current slice of the current picture, and means for coding data of the current slice
using the initialized context information.

{8816} In another example, this disclosure 1s directed to a non-transitory computer-
readable storage medium encoded with instructions. The instructions, when executed,
may cause one or more processors of a video coding device to imtialize context
information for a current slice of a current picture by inheriting context information
after coding a previously-coded block of a previcusly-coded slice as initialized context
information for the current slice of the current picture and to code data of the current
slice using the initialized context information.

(8617} In another example, this disclosure is directed to a method of processing video

data. The method may include identifying a coefficient group (CG) that includes a
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current fransform coefficient, the UG representing a subset of transform coefficients
within a transform unit. The method may further include determining a size of the CG
based on a transforru size associated with the transform unit.

{8018} In another example, this disclosure is directed to a device for coding video data,
the device including a memory configured to store video data, and one or more
processors. The one or more processors may be configured to identity a coefficient
group (CG) that includes a current transform coefficient of the video data, the CG
representing a subset of transform coefficients within a transform unit. The one or more
processors may be further configured to determine a size of the CG based on a
transform size associated with the transform unit.

(8019} In another example, this disclosure is directed to a non-transitory computer-
readable storage medium encoded with instructions. The tnstructions, when executed,
may cause one or more processors of a video coding device to identify a coefficient
group (CG) that includes a current transtorm coefficient of the video data, the CG
representing a subset of transform coefficients within a transform unit, and to determine
a size of the CG based on a transform size associated with the transform unit.

18028} In another example, this disclosure is directed to an apparatus for coding video
data. The apparatus may include means for identifying a coetlicient group (CG) that
includes a current transform coefhicient, the CG representing a subset of transform
coefficients within a transform unit. The apparatus may further include means for
determining a size of the CG based on a transform size associated with the transform
unit.

0021} In another example, this disclosure is directed to a non-transitory computer-
readable storage medium storing an encoded video bitstream. The bitstream, when
processed by a video decoding device, may cause one or more processors of the video
decoding device to identity a coefficient group (CG) that includes a current transform
coefficient of the video data, the CG representing a subset of transtform coefficients
within a transform unit, and to determine a size of the CG based on a transform size
associated with the transform unit.

(80622} In another example, this disclosure 1s directed to a non-transitory computer-
readable storage medium storing an encoded video bitstream. The bitstream, when
processed by a video decoding device, may cause one or more processors of the video
decoding device to inttialize context information for a current slice of a current picture

by inheriting context information after coding a previcusly-coded block of a previously-



WO 2016/196369 PCT/US2016/034828

~

coded slice as initialized context information for the current slice of the current picture
and to code data of the current slice using the initialized context information.

19023} In another example, this disclosure is directed to a non-transitory computer-
readable storage medium storing an encoded video bitstream. The bitstream, when
processed by a video decoding device, may cause one or more processors of the video
decoding device to determine, for each of a plurality of bins of a value for a syntax
element of a current transform coefficient, contexts using respective corresponding bing
of values for the syntax element of one or more previcusly-coded transform coeflicients,
where to determine the contexts, the one or more processors are configured to determine
a context for an ith bin of the value for the syntax element of the current transform
coefficient using a corresponding ith bin of a value for the syntax element of a
previously-coded transtorm coefficient, where 1 comprises a non-negative integer, and
where to use the corresponding ith bin of the value for the syntax element of the
previously~coded transform coetficient, the one or more processors are configured to
use only the ith bin of the value for the syntax element of the previously-coded
transform coefficient and no other bins of the value for the syntax element of the
previously-coded transtorm coefficient. The bitstream, when processed by a video
decoding device, may cause one or more processors of the video decoding device to
CABAC code the tth bin of the value for the syntax element of the current transform
coefficient using the determined context.

18024} The details of one or more aspects of the disclosure are set forth 1o the
accompanying drawings and the description below. Other features, objects, and
advantages of the techniques described in this disclosure will be apparent from the

description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

(80625} FIG. 1 1s a block diagram illustrating an example video encoding and decoding
system that may utilize technigues for coding data according to an enhanced context-
adaptive binary arithmetic coding {CABAC) design.

[8026] FIGS. 2A and 2B are conceptual diagrams illustrating range updating technigues
according to binary arithmetic coding (BAC).

(8027} FIG. 3 is a conceptual diagram that shows examples of BAC output depending

on the range.
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(8028} FIG. 4 ts a block diagram illustrating an example of a video encoder that may
implement techniques for coding data according to an enhanced CABAC design.
19028} FIG. 515 a block diagram of an example entropy encoding unit that may be
configured to perform CABAC in accordance with the techniques of this disclosure.
[8638] FIG. 6 is a block diagram illustrating an example of a video decoder that may
implement techniques for coding data according to an enhanced CABAC design.
[8031] FIG. 7 is a block diagram of an example entropy encoding unit that may be
configured to perform CABAC in accordance with the techniques of this disclosure.
[8032] FIG. 8 is a flowchart illustrating an example process for table-based binary
arithmetic coding.

18633} FIG. 9 1s a conceptual diagram that ilustrates a transform scheme based on a
residual quadtree structure.

18034} FIG. 10 depicts one example of a template that entropy decoding unit and/or
entropy encoding unit may use with respect to the context modeling techniques
described herein.

[8038] FIG. 11 1s a conceptual diagram illustrating an example coetticient scan based
on coefticient groups.

[8036] FIG. 12 1s a conceptual diagram illustrating an example of hin derivation.
[8637] FIG. 13 is a conceptual diagram llustrating a range of context indexes for
difterent positions within a TU, for different luma bins.

10038} FIG. 1415 a flowchart lhustrating an example process that a video coding
device, or various components thereot, may perform to implement one or more of the
context modeling techniques of this disclosure.

(8639} FIG. 15 1s a flowchart ilustrating an example process that a video coding
device, or various components thereof, may perform to implement one or more of the
inheritance-based context inttialization techniques of this disclosure.

18040} FIG. 16 is a flowchart tllustrating an example process that a video coding
device, ot various components thereof, may perform to implement one or more of
techniques of this disclosure as part of a video decoding process.

(8041} FIG 17 1s a flowchart dllustrating an example process that a video coding
device, or various components thereof, may perform to implement one or more

coefficient group (CG) size-determination techniques of this disclosure.
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DETAILED DESCRIPTION

18042} The technigques of this disclosure are generally related to entropy coding in
block-based hybrid video coding. These techniques may be applied to any existing
video codecs, such as HEV( (High Efficiency Video Coding) or these techniques may
be an efficient coding tool in any future video coding standards or other proprietary or
non-proprietary coding techniques. For purposes of example and explanation, the
techniques of this disclosure are generally described with respect to HEVC {or ITU-T
H.265) and/or ITU-T H.264.

18043} Video coding standards include ITU-T H 261, ISOAEC MPEG-1 Visual, ITU-T
H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/TEC MPEG-4 Visual and ITU-T
H.264 (also known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding
(SVC) and Multi-view Video Coding (MVC) extensions.

8844} In addition, a new video coding standard, namely High Efficiency Video Coding
(HEVC) or ITU-T H 265, including its range extension, multiview extension (MV-
HEVC) and scalable extension (SHVC), has recently been developed by the Joint
Collaboration Team on Video Coding (JCT-VC) as well as Joint Collaboration Team on
3D Video Coding Extension Development (JCT-3V) of ITU-T Video Coding Experts
Group (VCEG) and ISO/IEC Motion Picture Experts Group (MPEG). An HEVC draft
specification, referred to as HEVC WD hereinafter, 1s available from phenix.int-

evry fi/jct/doc_end user/documents/14 Vienna/wgl 1/ICTVC-N1003-v1 zip.

[8045] The techniques of this disclosure may overcome various problems associated
with CABAC coding. In particular, these techniques include an enhanced CABAC
design and a more efficient transform coefficient context modeling technique, which
may be used alone or together. In entropy coding, values for syntax elements are
represented in binary formation, and each bit {or “bin”} is coded using a particular
context. According to various aspects of this disclosure, context information for a set of
bins of a value for a syntax element may be determined using respective bins of
previously-coded values for the syntax element of previous transform coefficients.
Additional details are discussed below.

10046} FIG. 1 1s a block diagram illustrating an example video encoding and decoding
system 10 that may utilize techniques for coding data according to an enhanced CABAC
design. As shown in FIG. 1, system 10 includes a source device 12 that provides

encoded video data to be decoded at a later time by a destination device 14, In
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particular, source device 12 provides the video data to destination device 14 via a
computer-readable medium 16. Source device 12 and destination device 14 may
comprise any of a wide range of devices, including desktop computers, notebook (i.e.,
laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called
“smart” phones, so-called “smart” pads, televisions, cameras, display devices, digital
media plavers, video gaming consoles, video streaming device, or the like. In some
cases, source device 12 and destination device 14 may be equipped for wireless
commusnication.

[8047] Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any type
of medium or device capable of moving the encoded video data from source device 12
to destination device 14. In one example, computer-readable medium 16 may comprise
a communication medium to enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded video data may be
modulated according to a communication standard, such as a wireless communication
protocol, and transmitted to destination device 14. The communication medium may
comprise any wireless or wired communication medium, such as a radio frequency (RF)
spectrum or one or more physical transmission lines. The communication medium may
form part of a packet-based network, such as a local area network, a wide-area network,
or a global network such as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that may be useful to facilitate
communication from source device 12 to destination device 14

[8048] In some examples, encoded data may be output from output interface 22 to a
storage device. Similarly, encoded data may be accessed from the storage device by
input interface. The storage device may inclhude any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. Tn a further example, the storage device may
correspond to a file server or another intermediate storage device that may store the
encoded video generated by source device 12. Destination device 14 may access stored
video data from the storage device via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14, Example file servers include a web server (e.g.,

tor a website), an FTP server, network attached storage (NAS) devices, or a local disk
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drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
{e.g., a Wi-Fi connection}, a wired connection {e.g., DSL, cable modem, etc ), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from the storage device may be a
streaming transmission, a download transmission, or a combination thereof.

[8049] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, Internet streaming
video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital
video that is encoded onto a data storage medium, decoding of digutal video stored on a
data storage medium, or other applications. In some examples, system 10 may be
configured to support one-way or two-way video transmission to support applications
such as video streaming, video playback, video broadcasting, and/or video telephony.
(8050} In the example of FIG. 1, source device 12 includes video source 18, video
encoder 20, and output interface 22, Destination device 14 includes input interface 28,
video decoder 30, and display device 32. In accordance with this disclosure, video
encoder 20 of source device 12 may be configured to apply the techniques for coding
data according to an enhanced CABAC design. In other examples, a source device and
a destination device may include other components or arrangements. For example,
source device 12 may recetve video data from an external video source 18, such as an
external camera. Likewise, destination device 14 may interface with an external display
device, rather than including an integrated display device.

(8051} The illustrated system 10 of FIG. 1 1s merely one example. Techniques for
coding data according to an enhanced CABAC design may be performed by any digital
video encoding and/or decoding device. Although generally the techniques of this
disclosure are performed by a video encoding device, the techniques may also be
performed by a video encoder/decoder, typically referred to as a “CODEC.” Moreover,
the techniques of this disclosure may also be pertformed by a video preprocessor.
Source device 12 and destination device 14 are merely examples of such coding devices
in which source device 12 generates coded video data for transmission to destination
device 14. In some examples, devices 12, 14 may operate in a substantially symmetrical

manner such that each of devices 12, 14 include video encoding and decoding
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components. Hence, system 10 may support one-way of two-way video transmission
between video devices 12, 14, e g, for video streaming, video playback, video
broadcasting, or video telephony.

180852} Video source 18 of source device 12 may include a video capture device, such as
a video camers, a video archive containing previously captured video, and/or a video
teed interface to receive video from a video content provider. As a further alternative,
video source 18 may generate computer graphics-based data as the source video, or a
combination of live video, archived video, and computer-generated video. In some
cases, if video source 18 is a video camera, source device 12 and destination device 14
may form so-called camera phones or video phones. As mentioned above, however, the
techniques described in this disclosure may be applicable to video coding in general,
and may be applied to wireless and/or wired applications. Tn each case, the captured,
pre-captured, or computer-generated video may be encoded by video encoder 20. The
encoded video information may then be output by output interface 22 onto a computer-
readable medium 16,

[0053] Computer-readable mediurm 16 may include transient media, such as a wireless
broadcast or wired network transmission, or storage media {(that ts, non-transitory
storage media}, such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray
disc, or other computer-readable media. In some examples, a network server (not
shown) may receive encoded video data from source device 12 and provide the encoded
video data to destination device 14, e.g., via network transmission. Similarly, a
computing device of a medium production facility, such as a disc stamping facility, may
receive encoded video data from source device 12 and produce a disc containing the
encoded video data. Therefore, computer-readable medium 16 may be understood to
include one or more computer-readable media of various forms, in various examples.
10054} Input interface 28 of destination device 14 receives wnformation from computer-
readable medium 16. The information of computer-readable medium 16 may include
syntax information defined by video encoder 20, which is also used by video decoder
30, that includes syntax elements that describe characteristics and/or processing of
blocks and other coded units, e.g., GOPs. Display device 32 displays the decoded video
data to a user, and may comprise any of a variety of display devices such as a cathode
ray tube (CRT), a liquid crystal display (LCD), a plasma display, an organic light
emtiting diode (CLED) display, or another type of display device.
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(8035} Video encoder 20 and video decoder 30 may operate according to a video coding
standard, such as the High Efficiency Video Coding (HEVC) standard, also referred to
as ITU-T H.265. Alternatively, video encoder 20 and video decoder 30 may operate
according to other proprietary or industry standards, such as the ITU-T H.264 standard,
alternatively referred to as MPEG-4, Part 10, Advanced Video Coding (AVC), or
extensions of such standards. The techniques of this disclosure, however, are not
limited to any particular coding standard. Other examples of video coding standards
include MPEG-2 and ITU-T H.263. Although not shown in FIG. 1, in some aspects,
video encoder 20 and video decoder 30 may each be integrated with an audio encoder
and decoder, and may include appropriate MUX-DEMUX units, or other hardware and
software, to handle encoding of both audic and video in a common data stream or
separate data streams. H applicable, MUX-DEMUX units may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the user datagram protocol
(UDP).

88636} Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (2SPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techmques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using oune or more processors to perform the
technigues of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

(8057} In general, according to ITU-T H.265, a video frame or picture may be divided
into a sequence of treeblocks or largest coding units (LCU) that include both luma and
chroma samples. Syntax data within a bitstream may define a size for the LCU, which
15 a largest coding urut in terms of the number of pixels. A slice includes a number of
consecutive treeblocks in coding order. A video frame or picture may be partitioned into
one or more slices. Each treeblock may be split into coding units (CUs) according to a
guadtree. In general, a quadtree data structure includes one node per CU, with a root
node corresponding to the treeblock. It a CU 1s sphit into four sub-CUs, the node
corresponding to the CU includes four leaf nodes, each of which corresponds to one of

the sub-Cls.
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(8038} Each node of the quadtree data structure may provide syntax data for the
corresponding CU. For example, a node in the quadtree may include a sphit flag,
indicating whether the CU corresponding to the node 1s split into sub-CUs. Syntax
elements for a CU may be defined recursively, and may depend on whether the CU 13
split into sub~-CUs. I a CU 1s not split further, it is reforred as a leaf-CU. In this
disclosure, four sub-CUs of a leaf-CU will also be referred to as leat-CUs even if there
is no explicit splitting of the original leat-CU. For example, it a CU at 16x16 size 15 not
split further, the four 8x8 sub-CUs will also be referred to as leaf-CUs although the
16x16 CU was never split.

18639} A CU has a similar purpose as a macroblock of the H.264 standard, except that a
CU does not have a size distinction. For example, a treeblock may be split into four
child nodes (also referred to as sub-CUs), and each child node may 10 turn be a parent
node and be split into another four child nodes. A final, unsplit child node, referred to
as a leaf node of the quadtree, comprises a coding node, also referred to as a leaf-CU.
Syutax data associated with a coded bitstream may define a maximum number of times
a treeblock may be split, referred to as a maximum CU depth, and may also define a
minimum stze of the coding nodes. Accordingly, a bitstream may also define a smallest
coding unit (SCU}. This disclosure uses the term “block” to refer to any of a CU,
prediction unit (PU), or transform unit (TU), in the context of HEVC, or similar data
structures in the context of other standards (e g., macroblocks and sub-blocks thereof in
H.264/AVC).

18060} A CU includes a coding node and prediction units (PUs) and transform units
(TUs) associated with the coding node. A size of the CU corresponds to a size of the
coding node and is generally square in shape. The size of the CU may range from 3x8
pixels up to the size of the treeblock with a maximum size, e.g., 64x04 pixels or greater.
Each CU may contain one or more PUs and one or more TUs. Syntax data associated
with a CU may describe, for example, partitioning of the CU into one or more PUs.
Partitioning modes may differ between whether the CU 15 skip or direct mode encoded,
intra~-prediction mode encoded, or inter-prediction mode encoded. PUs may be
partitioned to be non-square in shape. Syntax data associated with a CU may also
describe, for example, partitioning of the CU into one or more TUs according to a
guadiree. ATU can be square or non-square {e.g., rectangular) in shape.

(8661} The HEVC standard allows for transformations according to TUs, which may be

different for different CUs. The TUs are typically sized based on the size of PUs within
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a given CU defined for a partitioned LCU, although this may not always be the case.
The TUs are typically the same size or smaller than the PUs. In some examples,
residual samples corresponding to a CU may be subdivided into smaller units using a
guadtree structure known as "residual quad tree” (RQT). The leaf nodes of the RQT
may be referred to as transform units (TUs). Pixel difference values associated with the
TUs may be transformed to produce transform coefficients, which may be quantized.
(8062} A leaf-CU may include one or more prediction units (PUs). In general, a PU
represents a spatial area corresponding to all or a portion of the corresponding CU, and
may mclude data for retrieving and/or generating a reference sample for the PU.
Moreover, a PU includes data related to prediction. For example, when the PU is intra-
mode encoded, data for the PU may be included in a residual quadtree (RQT), which
may include data describing an intra-prediction mode for a TU corresponding to the PU.
The RQT may also be referred to as a transform tree. In some examples, the intra-
prediction rmode may be signaled in the leaf-CU syntax, instead of the RQT. As another
example, when the PU is inter-mode encoded, the PU may include data defining motion
information, such as one or more motion vectors, for the PU. The data defining the
motion vector for a PU may describe, for example, a horizontal component of the
motion vector, a vertical component of the motion vector, a resolution for the motion
vector (e.g., one-quarter pixel precision or one-eighth pixel precision), a reference
picture to which the motion vector points, and/or a reference picture list (e.g., List 0,
List 1, or List C) for the motion vector,

18063} A leaf-CU having one or more PUs may also include one or more transform
units {TUs). The transform units may be specitfied using an RQT (also referred to as a
TU quadtree structure), as discussed above. For example, a split flag may indicate
whether a {eaf-CU is split into four transform units. Then, each transform unit may be
spht further into further sub-TUs. When a TU 15 not split further, it may be referred to
as a leaf-TU. Generally, for intra coding, all the leaf-TUs belonging to a leat-CU share
the same intra prediction mode. That 15, the same 1ntra~-prediction mode is generally
applied to calculate predicted values for all TUs of a leaf-CU. For intra coding, a video
encoder may calculate a residual value for each leaf-TU using the intra prediction mode,
as a difference between the portion of the CU corresponding to the TU and the original
block. A TU is not necessarily limited to the size of a PU. Thus, TUs may be larger or

smaller than a PU. For intra coding, a PU may be collocated with a corresponding leaf-
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TU for the same CU. In some examples, the maximum size of a leaf-TU may
correspond to the size of the corresponding leaf-CU.

180864] Moreover, TUs of leaf-CUs may also be associated with respective quadiree data
structures, referred to as residual guadtrees (RQTs). That is, a leaf-CU may include a
quadtree indicating how the leaf-CU is partitioned into TUs. The root node of'a TU
quadtree generally corresponds to a leaf-CU, while the root node of a CU quadtree
generally corresponds to a treeblock {or LCU). TUs of the RQT that are not split are
referred to as leaf-TUs. In general, this disclosure uses the terms CU and TU to refer to
leaf-CU and leaf-TU, respectively, unless noted otherwise.

8065} A video sequence typically includes a series of video frames or pictures. A
group of pictures {GOP) generally comprises a series of one or more of the video
pictures. A GOP may include syntax data in a header of the GOP, a header of one or
more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each slice of a picture may include slice syntax data that describes an encoding
mode for the respective slice. Video encoder 20 typically operates on video blocks
within individual video slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video biocks may have fixed or varying
sizes, and may differ in size according to a specified coding standard.

180666} As an example, prediction may be performed for PUs of various sizes.
Assuming that the size of a particular CU is 2Nx2N, intra-prediction may be performed
on PU sizes of ZNx2ZN or NxN, and inter-prediction may be performed on symmetric
PU sizes of ZNxZN, ZNxN, Nx2ZN, or NxIN. Asymmetric partitioning for inter-
prediction may also be performed for PU sizes of ZNxnlU, 2NxnD, nEx2N, and nRxZN.
In asymmetric partitioning, one direction of a CU is not partitioned, while the other
direction is partitioned into 25% and 75%. The portion of the CU corresponding to the
25% partition is indicated by an “u” followed by an indication of “Up”, “Down,” “Left,”
or “Right.” Thus, for example, “2NxnU” refers to a 2ZNx2N C1J that is partitioned
horizontally with a 2Nx0.5N PU on top and a 2Nx1.5N PU on bottom.

(8067} In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,
e.g., 16x106 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixelsin a
vertical direction (y = 16} and 16 pixels in a horizontal direction (x = 16). Likewise, an
NxN block generally has N pixels in a vertical direction and N pixels in a horizontal

direction, where N represents a nonnegative integer value. The pixels in a block may be
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arranged in rows and columns. Moreover, blocks need not necessarily have the same
nummber of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N

18068} Following intra-predictive or inter-predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data for the TUs of the CU. The PUs may
comprise syntax data describing a method or mode of generating predictive pixel data in
the spatial domain {(also referred to as the pixel domain} and the TUs may comprise
coefficients in the transform domain following application of a transform, e.g., a
discrete cosine transform (DCT), an integer transform, a wavelet transform, or a
conceptually similar transform to residual video data. The residual data may correspond
to pixel differences between pixels of the unencoded picture and prediction values
corresponding to the PUs. Video encoder 20 may form the TUs to 1nclude quantized
transform coefficients representative of the residual data for the CU. That is, video
encoder 20 may calculate the residual data (in the form of a residual block), transform
the residual block to produce a block of transform coefficients, and then quantize the
transform coefficients to form quantized transform coefticients. Video encoder 20 may
form a TU including the guantized transtorm coefficients, as well as other syntax
information {(e.g., splitting information for the TU).

[8669] As noted above, following any transforms to produce transform coefficients,
video encoder 20 may perform guantization of the transform coefficients. Quantization
generally refers to a process in which transtorm coefficients are quantized to possibly
reduce the amount of data used to represent the coefficients, providing further
compression. The quantization process may reduce the bit depth associated with some
or all of the coefficients. For example, an n-bit value may be rounded down to an m-bit
value during quantization, where # is greater than m.

18670} Following quantization, the video encoder may scan the transform coefficients,
producing a one-dimensional vector from the two-dimensional matrix including the
quantized transform coefficients. The scan may be designed to place higher energy (and
therefore lower frequency) coefficients at the front of the array and to place lower
energy (and therefore higher frequency) coetficients at the back of the array. In some
examples, video encoder 20 may utilize a predefined scan order to scan the quantized
transform coetficients to produce a serialized vector that can be entropy encoded. In
other examples, video encoder 20 may perform an adaptive scan. After scanning the

quantized transform coefficients to form a one-dimensional vector, video encoder 20
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may entropy encode the one-dimensional vector, e.g., according to the enhanced
context-adaptive binary arithmetic coding (CABAC) design described in this disclosure.
Video encoder 20 may also entropy encode syntax elements associated with the encoded
video data for use by video decoder 30 in decoding the video data.

18671} In general, video decoder 30 performs a substantially similar, albeit reciprocal,
process to that performed by video encoder 20 to decode encoded data. For example,
video decoder 30 inverse quantizes and inverse transforms coefficients of a received TU
to reproduce a residual block. Video decoder 30 uses a signaled prediction mode (intra-
or inter-prediction) to form a predicted block. Then video decoder 30 combines the
predicted block and the residual block (on a pixel-by-pixel basis) to reproduce the
original block. Additional processing may be performed, such as performing a
deblocking process to reduce visual artifacts along block boundaries. Furthermore,
video decoder 30 may decode syntax elements using CABAC in a manner substantially
similar to, atbeit reciprocal to, the CABAC encoding process of video encoder 20.
(88672} In accordance with the techniques of this disclosure, video encoder 20 and video
decoder 30 may be contigured to code data according to an enhanced CABAC design.
Certain techniques are discussed below, which may be applied individually or in any
combination. This disclosure may generally refer to video encoder 20 “signaling”
certain information to another device, such as video decoder 30. It should be
understood, however, that video encoder 20 may signal information by associating
certain syntax elements with various encoded portions of video data. That 15, video
encoder 20 may “signal” data by storing certain syntax elements to headers of various
encoded portions of video data. In some cases, such syntax elements may be encoded
and stored prior to being received and decoded by video decoder 30, Thus, the term
“signaling” may generally refer to the communication of syntax or other data for
decoding compressed video data, whether such communication occurs in real- or near-
real-time or over a span of time, such as might occur when storing syntax elements to a
medium at the time of encoding, which then may be retrieved by a decoding device at
any time after being stored to this medium.

[0073] The following paragraphs describe BAC and CABAC techniques in more detail.
BAC, in general, is a recursive interval-subdividing procedure. BAC is used to encode
bins in the CABAC process in the H264/AVC and H265/HEVC video coding
standards. The output of the BAC coder is a binary stream that represents a value or

pointer to a probability within a final coded probability interval. The probability
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interval ts specified by a range and a lower end value. Range is the extension of the
probability interval. “Low” is the lower bound of the coding interval.

100741 Application of arithmetic coding to video coding is described in D. Marpe, H.
Schwarz, and T. Wiegand “Context-Based Adaptive Binary Arithmetic Coding in the
H.264/AVC Video Compression Standard,” IEEE Trans. Circuits and Systems for
Video Technology, vol. 13, no. 7, July 2003, CABAC involves three main functions,
namely, binarization, context modeling, and arithmetic coding. Binarnization refers to
the function of mapping syntax elements to binary symbols (or “bins”). Binary symbols
may also be referred to as “bin strings.” Context modeling refers to the function of
estimating the probability of the various bins. Arithmetic coding refers to the
subsequent function of compressing the bins to bits, based on the estimated probability.
Various devices and/or modules thereof, such as a binary arithmetic coder, may perform
the function of arithmetic coding.

[8675] Several different binanization processes are used in HEVC, including unary (U),
truncated unary {(TU)}, kth-order Exp-Golomb (EGk), and fixed length (FL). Details of
various binarization processes are described in V. Sze and M. Budagavi, “High
throughput CABAC entropy coding in HEVC,” IEEE Transactions on Circuits and
Systems for Video Technology (TCSVT), vol. 22, no. 12, pp. 17781791, December
2012,

{8076} Each context (i.e., probability model) in CABAC is represented by a state and a
most probable symbol (MPS) value. Each state (o) implicitly represents a probability
{po) of a particular symbol {e.g., a bin) being the Least Probable Symbol (LPS). A
symbol can be an LPS or a Most Probable Symbol (MPS}. Symbols are binary, and as
such, the MPS and the LPS can be 0 or 1. The probability 1s estimated for the
corresponding context and used (mplicitly) to entropy code the symbol using the
arithmetic coder.

(8077} The process of BAC is handled by a state machine that changes its internal
values ‘range’ and ‘low’ depending on the context to code and the value of the bin being
coded. Depending on the state of a context (that is, its probability), the range s divided
into rangeMPS; {range of the most probable symbol in states) and rangel PS; (range of
the least probable symbol in states). In theory, the rangel PSS, value of a probability
statesis derived by a multiplication:

rangel PSs= range X pe |
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where ps 1s the probability to select the LPS. Of course, the probability of MPS 15 1-ps.
Equivalently, the rangeMPis1s equal to range minus rangel £S;. BAC iteratively
updates the range depending on the state of the context bin to code, the current range,
and the value of the bin being coded (i.e., is the bin equal to the LPS or the MPS).
[8678] Video encoder 20 may further send syntax data, such as block-based syntax data,
trame-based syntax data, and GOP-based syntax data, to video decoder 30, e.g ina
trame header, a block header, a slice header, or a GOP header. The GOP syntax data
may describe a number of frames in the respective GOP, and the frame syntax data may
indicate an encoding/prediction mode used to encode the corresponding frame.

(88679} Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder or decoder circuitry, as applicable, such as one or more
microprocessors, digital signal processors (IDSPs), application specific integrated
circuits {ASICs), field programmable gate arrays (FPGAs), discrete logic circuitry,
software, hardware, firmware or any combinations thereof. Each of video encoder 20
and video decoder 30 may be included in one or more encoders or decoders, either of
which may be integrated as part of a combined video encoder/decoder (CODEC). A
device including video encoder 20 and/or video decoder 30 may comprise an integrated
circuit, a microprocessor, and/or a wireless communication device, such as a cellular
telephone.

[6080] FIGS. 2A and 2B are conceptual diagrams illustrating range updating techniques
according to BAC. FIGS. 2A and 2B show examples of this process at bin #. In
example 100 of FIG. 2A, at bin n the range at bin 2 includes the RangeMPS and
Rangel.PS given by the probability of the LPS (ps) given a certain context state (o).
Example 100 shows the update of the range at bin n+1 wheu the value of bin n is equal
to the MPS. In this example, the low stays the same, but the value of the range at bin
nt+l1 is reduced to the value of RangeMPS at bin n. Example 102 of FIG. 2B shows the
update of the range at bin n+1 when the value of bin n is not equal to the MPS {i.e,
equal to the LPS). In this example, the low is moved to the lower range value of
RangelPS at bin n. In addition, the value of the range at bin n+1 1s reduced to the value
of RangelPS at bin n.

180681} In HEVC, the range 1s expressed with 9 bits and the low with 10 bits. Thereisa
renormalization process to maintain the range and low values at sufficient precision.
The renormalization occurs whenever the range is less than 256, Therefore, the range is

always equal or larger than 256 after renormalization. Depending on the values of range
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and low, the BAC outputs to the bitstream, a “0,” or a “1,” or updates an internal variable
{called BO: hits-outstanding) to keep for future outputs.
(0082} FIG. 3 15 a conceptual diagram that shows examples of BAC output depending
on the range. For example, a "1’ is output to the bitstream when the range and fow are
above a certain threshold (e.g., 512). A “07 1s output to the bitstream when the range
and low are below a certain threshold {e.g., 512). Nothing is cutput to the bitstream
when the range and lower are between certain thresholds. Instead, the BO value is
incremented and the next bin ts encoded.
[8083] In the CABAC context model of HEVC, there are 128 states. There are 64
possible LPS probabilities {denoted by state o) that can be from 0 to 63. Each MPS can
be zero or one. As such, the 128 states are 64 state probabilities times the 2 possible
values for MPS (0 or 1). Therefore, the probability models may be stored as 7-bit
entries. In each 7-bit entry, 6 bits may be allocated for representing the probability
state, and 1 bit may be allocated for the most probable symbol (MPS) in the applicable
context memory.
(6084} To reduce the computation of deriving LPS ranges (rangel P5,), resulis for all
cases are pre-calculated and stored as approximations in a look-up table in HEVC.
Theretore, the LPS range can be obtained without any multiplication by using a simple
table tookup. Avoiding multiplication can be iroportant for some devices or
applications, since this operation may cause significant latency in many hardware
architectures.
{8085} A 4-column pre-calculated LPS range table may be used instead of the
multiplication. The range is divided into four segments. The segment index can be
derived by the question (range>>6)&3. In effect, the segment index is derived by
shifting and dropping bits from the actual range. The following Table 1 shows the
possible ranges and their corresponding indexes.

TABLE 1 - Range Index
Range 256-319 320-383 384-447 448-511
{range>>6) & 3 0 1 2

(8]

[0086] The LPS range table has then 64 entries {one for each probability state) times 4
{one for each range index}. Each entry is the Range LPS, that is, the value of

multiplying the range times the LPS probability. An example of part of this table is
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shown in the following Table 2. Table 2 depicts probability states 9-12. In one
proposal for HEVC, the probability states may range from 0-63
TABLE 2 — RangelLP5S

Prob State (o) | Rangel.PS
index O Index Index 2 Index 3
9 S0 110 130 150
10 85 104 123 142
11 81 99 117 135
12 77 94 111 128

18087} In each segment (i.e., range value), the LPS range of each probability state o is
pre-defined. In other words, the LPS range of a probability states is quantized into four
values {i.e., one value for each range index). The specific LPS range used at a given
point depends on which segment the range belongs to. The number of possible LPS
ranges used in the table is a trade-off between the number of table columus (i.e, the
number of possible LPS range values} and the LPS range precision. Generally
speaking, more columns results in smaller quantization errors of LPS range values, but
also increases the need for more memory to store the table. Fewer columns increases
quantization errors, but also reduces the memory needed to store the table.

{8088} As described above, each LPS probability state has a corresponding probability.
In HEVC, 64 representative probability values p, €[0.01875, 0.5} are derived for the
LPS (least probable symbol} in accordance with Equation (1), below, whichisa

recursive equation.

(D

. 0.01875. 1/
with o = <T)1/ 63
el

18689} In the example above, both the chosen scaling tactor @ ~ 0.9492 and the
cardinality N = 64 of the set of probabilities represent a good compromise between the
accuracy of probability representation and the desire for fast adaptation. In some
examples, a value of ¢ closer to I may result in slow adaptation with higher accuracy
{(“steady-state behavior”™), while faster adaptation can be achieved for the non-stationary
case with decreasing values of o at the cost of reduced accuracy. The scaling factor o

may correspond to a window size that indicates a number of previcusly encoded bins
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which have significant influence to the current up-date. The probability of the MPS
{most probable symbol) is equal to 1 minus the probability of the LPS (least probable
symbol). Tn other words, the probability of the MPS can be represented by the formula
{1 - LPS), where ‘LPS’ represents the probability of the LPS. Therefore, the probability
range that can be represented by CABAC in HEVC is [0.01875, 0.98125 (=1-0.01875)1.
18090} CABAC 1s adaptive because the probability states of a context model used to
code bits {or “bins”} of a value for a syntax element are updated in order to follow the
signal statistics (i.e., the values of previously coded bins, e g., for the syniax element).
The update process is as follows. For a given probability state, the update depends on
the state index and the value of the encoded symbol identified either as an LPS or an
MPS. As aresult of the updating process, a new probability state is derived, which
includes a potentially modified LPS probability estimate and, if necessary, a modified
MPS value.

18651} Context switching roay occur after the coding of each bin. In the event of a bin
value equaling the MPS, a given state tndex is simply incremented by 1. This for all
states except when an MPS occurs at state index 62, where the LPS probability is
already at its mintmum {or equivalently, the maximum MPS probability is reached). In
this case, the state index remains fixed until an LPS is seen, or the last bin value is
encoded (a special end state is used for the special case of the last bin value). When an
LPS occurs, the state index is changed by decrementing the state index by a certain
amount, as shown in the equation below. This rule applies 1n general to each occurrence
of a LPS with the following exception. Assuming a LPS has been encoded at the state
with index o=0, which corresponds to the equi-probable case, the state index remains
fixed, but the MPS value will be toggled such that the value of the LPS and MPS will be
interchanged. In all other cases, no matter which symbol has been encoded, the MPS
value will not be altered. In general, a video coder may derive the new probability state
inn accordance with Equation (2}, below, which shows a relation between a given LPS
probability p,;; and its updated counterpart P,y .

_ (max{e « Pog, Pez) . If a MPS occurs )
Prew = {5 « Poig + (1 —a), if alPSoccurs

18092} To reduce the complexity, a video coder may implement CABAC such that all
transition rules can be realized by at most two tables each having a number of entries.
As one example, all transition rules may be realized by at most two tables that each have

128 entries of 7-bit unsigned integer values {(e.g., Tables 3 and 4, below). As another
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example, all transition rules may be realized by at most two tables that each have 63
entries of 6-bit unsigned integer values (e.g., Table 9-41 of HEVC). Given a state index
1, after updating, a video coder may define as the new state index TransIdsMPS[ 1 ]
when a MP§S values is coded, or TransldxLPS[i] when a LPS values is coded.
Table 3

TransidxMPS[ 128 | =
{

2,3,4,5,6,7, 8,9, 10,11, 12, 13, 14, 15, 16, 17,

18, 19,20, 21, 22, 23,24, 25,26, 27, 28, 29, 30, 31, 32, 33,

34,35,36,37, 38,39, 40, 41, 42, 43, 44, 45,46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73. 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98,99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,

114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 124, 125, 126, 127

o
.

Table 4
TransldxLPS[ 128 | =
(

13

1,0,0,1,2,3,4,5,4,5,8,9,8 9,10, 11,

12,13, 14, 15, 16, 17, 18, 19, 18, 19, 22, 23, 22, 23, 24, 25
26,27, 26,27, 30, 31, 30, 31, 32, 33, 32, 33, 36, 37, 36, 37
38,39, 38, 39, 42, 43, 42, 43, 44, 45, 44,45, 46, 47, 48, 49,
48,49, 50, 51, 52, 53, 52, 53, 54, 55, 54, 55, 56, 57, 58, 59
58,59, 60, 61, 60, 61, 60, 61, 62, 63, 64, 65, 64, 65, 66, 67
66, 67, 66, 67, 68, 69, 68, 69, 70, 71, 70, 71, 70, 71, 72, 73
72,73, 72,73, 74, 75, 74, 75, 74, 75, 76, 77,76, 77, 126, 127

2

~d
3

|

18093} In some examples, a video coder may determine state transitions with a single
table TransIdxLPS, which determines, for a given state index o, the new updated state
index TransldxLPS [o] in case an LPS has been cbserved. The MPS-driven transitions
can be obtained by a simple (saturated) increment of the state index by the fixed value

of 1, resulting in an updated state index min( o+1, 62).
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100694} As discussed above, context modeling provides accurate probability estimation,
which is a contributing factor for achieving higher coding efficiency. Accordingly,
context modeling is an adaptive process. Different context models can be used for
different bins, and the probability of the context models may be updated based on the
values of previously-coded bins. Bins with similar distributions often share the same
context model. The context model for each bin can be selected based on the type of
syntax element, bin position in syntax element (binldx), luma/chroma information,
neighboting information, etc.
18095} Before coding a given slice, the probability models are initialized based on one
or more pre~-defined values. For example, given an input quantization parameter
denoted by gp and the pre-defined value denocted by initVal, the 7-bit entry of the
probability model (denoted by state and MPS) could be derived 1n accordance with
Equations (3), below.

ap = Chp3(0, 51, gp);

slope = (initVal >>4)*5 - 45;

offset = ((initVal &15)<<3})-16;

initState= min{ max( 1, ({ (slope * qp ) >> 4 )+ offset } ), 126 );

MPS = (initState >= 064 };

state index = { {mpState? (initState - 64) : (63 - imtState)) <<1} + MPS;

)

8696} The derived state index implicitly includes the MPS information. More
specifically, when the state 1ndex is an even value, the MPS value 15 equal to 0.
Conversely, when the state index 1s an odd value, the MPS value isequal to 1. The
value of “initVal” 1s in a range of [0, 255] with 8-bit precision. The pre-defined value
“initVal” is slice-dependent. In other words, three sets of context initialization
parameters for the probability models are used, one each in |, P, and B slices,
respectively. In this way, a video encoding device configured to performn CABAC is
enabled to choose for these slice types between three initialization tables such that a
better fit to different coding scenarios and/or different types of video content can be
achieved.

(8097} According to HEVC, another tool could be applied to allow one P {or B) slice to
be initialized with B (or P) slices. For instance, the tool could be applied to allow one P
slice to be initialized with the set of context initialization parameters stored for B slices.
Conversely, the tool could be applied to allow one B slice to be initialized with the set

of context inttialization parameters stored for P slices. The related syntax elements are
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described in Table S below (which corresponds to Section 7.3 6.1 of HEV(C), and the

related semantics and decoding process are described below, after Table 5.

Table 5
slice_segment header( ) { Descriptor
first slice segment in pic flag ufl)
{ nal_unit type >= BLA W LP && uval unit type <=
RSV IRAP VCL2Z3)
no ouiput of prier pics flag w(l)
slice_pic_parameter_set id ue(v)

i dependent slice segments enabled flag)

dependent slice segment flag w(l)

slice_segment address w(v)

Y
5

if{ !dependent shice segment flag ) {

for( 1=0;1 <num_extra slice header bits; i++)

slice reserved flagli] w(l)
slice type ue{v}
i output_flag present flag)

pic_output flag w(l)
if{ separate colour plane flag == 1)

colour plane id wW2)

tf nal unit type '= IDR W RADL && nal unit type !'=
IDR N LP){

stice pic_order_cnt Ish u(v}

short term_ref pic set sps fiag u(l)

it 1short term ref pic set sps flag)

short term ref pic set{ num_short term ref pic sets )

else tf{ num_short term ref pic sets > 1)

short term ref pic set jdx u(v}

if{ long term ref pics present flag ) {

}

if{ sps_temporal mvp enabled flag)

slice temporal mvp enabled flag u(1)

3
f

if{ sample adaptive offset enabled flag ) {

slice sao_luma flag u(1)

slice_sao_chroma flag u(1)
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b
f

if slice type == P || slice type == B} {

pum_ref idx active override flag u(1)

if{ num_ref 1dx active override flag ) {

num_ref idx 10 active minusi ue(v)

if{ slice type == B}

num_ref idx Il active minusl ue(v)

1
3

if{ lists_modification present flag && NumPocTotalCurr> 1)

ref pic lists modification( )

if slice type == B)

mvd 11 zero flag w1}

f{ cabac init present flag )

cabac init flag w(l)

f{ slice_temporal mvp enabled flag) {

if{ slice type == B )

coliocated from 10 flag w1}

it{ ( collocated from 10 flag &&

num_ref 1dx 10 active minusi >0} ||

{ ?coﬂﬁf:ated_:_from___IO___ﬂag &&
num ref wdx 11 active minusi > 0))

collocated vef idx ue{v}

i

if{ { weighted pred flag && slice type == P) ||
{ weighted bipred flag && slice type == B })

pred weight table( )

five_minus_max_num_merge_cand ue(v)

S

byte alignment( )

¥
3

[8098] Semantics for the syntax elements of Table 5 may be defined as follows:

(88499} cabac init present flag equal to 1 specifies that cabac init flag ts present in
slice headers referring to the PPS. cabac init present flag equal to U specifies that
cabac 1nit flag is not present in slice headers referring to the PPS.

[0180] cabac init tlag specifies the method for determining the initialization table used
in the imitialization process for context variables, as defined in the decoding process
described below. When cabac init flag is not present, it is inferred to be equal to 0.
{8161} Descriptors:

18102} ae(v): context-adaptive arithmetic entropy-coded syntax element.
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[0103] b(8): byte having any pattern of bit string (8 bits).
[0164] {(n): fixed-pattern bit string using n bits written (from left to right} with the left
bit first.
{0185} se(v): signed integer O-th order Exp-Golomb-coded syntax element with the left
bit first.
[0106] u(n): unsigned integer using n bits. When n is "v" in the syntax table, the
number of bits varies in a manner dependent on the value of other syntax elements.
10167} ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the
left bit first.
[01038] Table 9-4 of HEVC lists the context tndex {ctxIdx) for which initialization s
needed for each of the three initialization types. Hach ctxIdx is specified in HEVC
Table 9-4 by variable corresponding initType vaniable. HEVC Table 9-4 also lists the
table number that includes each of the values of initValue needed for the initialization.
For P and B slice types, the derivation of initType depends on the value of the
cabac_init_flag syntax element. A video coder may derive the variable 1nitType using
operations described by the following pseudocode:
f{ slice _type == 1)
initType =0
initType = cabac_init flag 7 2 : 1
else

initType = cabac_init flag? 1:2
(8109} A video coding device, such as an HEVC-compliant video decoder, may update
the probability state for a context model at various stages. For a given probability state,
the update depends on the state index and the value of the encoded symbol identified
either as an LPS or an MPS. By iroplementing the updating process, the video coding
device derives a new probability state for the corresponding context model. The new
probability state may consist of a potentially-modified LPS probability estimate and, if
applicable, a modified MPS value. The derivation of the transition rules for the LPS
probability is based on the following relation between a given LPS probability p,;s and
the LPS probability’s updated counterpart puew:

_ (max{a = Porg, Pez), if a MPS occurs
W T a x pgg {1 — ), if a LPS occurs

p 4
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(8118} To reduce complexity, the video coding device may implement CABAC in such
a way that all transition rules can be realized using, at most, two tables, with each table
having 128 entries of 7-bit unsigned integer values. Given a state index “1,” the video
coding device may define the new state index after updating as TransIdxMPS[ i | when
an MPS value ts coded, or TransIdxLPS[i] when an LPS value is coded. A
TransIdxMPS table and a TransldxLPS table are illustrated below.

TransidxMPS] 128 | =

{

2,3.4,5,6,7.8 9 10, 11, 12,13, 14, 15, 16, 17,
18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34,35, 36,37, 38,39, 40, 41, 42, 43, 44, 45, 46, 47, 4%, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68,69, 70, 71, 72, 73, 74,75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 124, 125, 126, 127

3.
5o

3

TransldxLPS] 128 } =
(
1,0,0,1,2,3,4,5,4,5,8 9,8 9 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 18, 19,22, 23,22 23, 24, 25,
26,27, 26,27,30, 31, 30,31, 32, 33, 32, 33, 36, 37, 36, 37,
38, 39,38, 39,42, 43,42, 43, 44, 45, 44, 45, 46, 47 48, 49,
48, 49, 50, 51, 52, 53, 52, 53, 54, 55, 54, 55, 56, 57, 58, 59,
58, 59, 60, 61, 60, 61, 60, 61, 62, 63, 64, 65, 64, 65, 66, 67,
66, 67, 06, 67, 68, 69, 68, 69, 70, 71, 70, 71, 70, 71, 72, 73,
72,73,72,73,74,7S, 74,75, 74,75, 76,77, 76, 77, 126, 127
b

(8111} Anthmetic coding is based on recursive interval division. In conventional

3

~J

2

arithmetic coding, a range, with an initial value of 0 to 1, is divided into two
subintervals based on the probability of the bin. The encoded bits provide an offset that,
when converted to a binary fraction, provides a selection of one of the two subintervals.

The selected subinterval indicates the value of the decoded bin. After every decoded
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bin, the video decoder may update the range to equal the selected subinterval. In turn,
the video decoder may repeat the interval division process, to implement the interval
division as a recursive procedure. The range and offset have limited bit precision, and
thus, the video decoder may implement renormalization in instances where the range
falls below a certain (e.g., predetermined) value to prevent underflow. The video
decoder may perform renormalization after each bin is decoded.

8112} The video coding device may perform arithmetic coding based on probability
information that is obtained in a variety of ways. According to a “regular coding mode”
of artthmetic coding, the video coding device may use an estimated probability. In
cases of arithmetic coding according to the regular coding mode, the bin string is said to
be context coded. According to a “bypass mode” of arithmetic coding, the video coding
device may use an assumed equal probability of 0.5, In cases of arithmetic coding
according to the bypass mode, the bin string is said to be bypass coded. For bypass-
coded bins, the video coding device may divide the range into subintervals using a shift.
In contrast, the video coding device may use a lookup table to divide the range in the
case of context-coded bins. Arithmetic coding according to HEVC is the same as
arithmetic coding according to H.264/AVC. According to HEVC and H264/AVC, the
video coding device may employ table-based binary arithmetic coding, and the flow of
the regular coding mode for arithmetic coding is described in further detail in the
tollowing paragraphs with respect to the accompanying drawings.

(8113} Video encoder 20 and video decoder 30 {either or both of which are generically
referred to at various portions of this disclosure as a “video coder”) may be contigured
with techniques of this disclosure for context modeling of transform coefticient data.
Assuming that one transtform coefficient ts represented by 1ts magnitude and sign flag,
then the magnitude, after binarization, is denoted by a bin string with bin index from O
to M {M is a positive integer). Various CABAC enhancements of this disclosure are
described below with respect to video encoder 20, video decader 30, and/or one or more
components thereof. It will be appreciated that the vanous techniques of this disclosure
may be implemented individually or in any combination thereof, with each other and/or
any other techniques described herein.

18114} This disclosure recognizes that the various existing CABAC technigues as
discussed above may encounter certain problems. For example, the context modeling
methods in HEVC are specially designed for CTUs that are no larger than 64x64. When

larger CTUs (e.g., 128x128, 256x256, or even larger) are used, directly reusing current
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context modeling methods may be less efficient and/or result in parsing issues. As
another example, although the changes proposed JCTVC-HO0228 (which is discussed in
turther detail below with respect to FIG. 12) may potentially provide better coding
performance, the replacement of multiple-pass coding by a single-pass coding is
harmful for paralielization and the switch of different context model sets decreases the
throughput. As another example, the initialized probabilities derived from the pre-
define initialization values are slice-type dependent. However, the fixed initialized
probabilities for one slice type may not be adaptive based on the statistics of coded
information which restricts the coding performance of CABAC.

(8115} FIG. 4 is a block diagram illustrating an example of video encoder 20 that may
implement techniques for coding data according to an enhanced CABAC design. Video
encoder 20 may perform intra- and inter-coding of video blocks within video slices.
Intra-coding relies on spatial prediction to reduce or remove spatial redundancy in video
within a given video frame or picture. Inter-coding relies on temporal prediction to
reduce or remove temporal redundancy in video within adjacent frames or pictures of a
video sequence. Intra-mode (I mode) may refer to any of several spatial based coding
modes. Inter-modes, such as uni-directional prediction (P mode) or bi-prediction (B
mode), may refer to any of several temporal-based coding modes.

[8116] As shown in FIG 4, video encoder 20 receives a current video block within a
video frame to be encoded. In the example of FIG. 4, video encoder 20 includes mode
select unit 40, reference picture memory 04 (which may also be referred to as a decoded
picture buffer (DPB)), summer 50, transform processing unit 52, quantization unit 54,
and entropy encoding unit 56. Mode select unit 40, in turn, includes motion
compensation unit 44, motion estimation unit 42, intra~-prediction unit 46, and partition
unit 48. For video block reconstruction, video encoder 20 also includes inverse
quantization unit 38, inverse transform unit 60, and summer 62. A deblocking filter
{(not shown in FIG. 4} may also be included to filter block boundaries to remove
blockiness artifacts from reconstructed video. If desired, the deblocking filter would
typically filter the cutput of summer 62. Additional filters (in loop or post loop) may
also be used in addition to the deblocking filter. Such filters are not shown for brevity,
but if desired, may filter the output of summer 50 (as an in-loop filter).

18117} During the encoding process, video encoder 20 receives a video frame or slice to
be coded. The frame or slice may be divided into multiple video blocks. Motion

estimation unit 42 and motion compensation unit 44 perform inter-predictive encoding
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of the received video block relative to one or more blocks in one or more reference
trames to provide temporal prediction. Intra-prediction unit 46 may alternatively
perform intra-predictive encoding of the received video block relative to one or more
neighboring blocks in the same frame or slice as the block to be coded to provide spatial
prediction. Video encoder 20 may perform multiple coding passes, e.g., to select an
appropriate coding mode for each block of video data.

[0118] Moreover, partition unit 48 may partition blocks of video data into sub-blocks,
based on evaluation of previous partitioning schemes in previous coding passes. For
exarple, partition unit 48 may initially partition a frame or slice into LCUs, and
partition each of the LCUs into sub~-CUs based on rate-distortion analysis {e.g., rate-
distortion optimization). Mode select unit 40 may further produce a quadtree data
structure indicative of partitioning of an LCU into sub-CUs. Leaf-node CUs of the
guadtree may include one or more PUs and one or more TUs.

18119] Mode select unit 40 may select one of the prediction modes, intra or inter, e.g.,
based on error results, and provides the resulting predicted block to summer 50 to
generate residual data and to summer 62 to reconstruct the encoded block foruse as a
reference frame. Mode select unit 40 also provides syntax elements, such as motion
vectors, intra-mode indicators, partition information, and other such syntax information,
to entropy encoding unit 56,

[0120] Motion estimation unit 42 and motion compensation unit 44 may be highly
integrated, but are iHustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 42, is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for example, may indicate
the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference frame (or other coded unit) relative to
the current block being coded within the current frame (or other coded unit). A
predictive block is a block that is found to closely match the block to be coded, in terms
of pixel ditference, which may be determined by sum of absolute difference (SAD), sum
of square difference (8SI3), or other difference metrics. In some examples, video
encoder 20 may calculate values for sub-integer pixel positions of reference pictures
stored in reference picture memory 64, For example, video encoder 20 may interpolate
values of one-quarter pixel positions, one-eighth pixel positions, or other fractional

pixel positions of the reference picture. Therefore, motion estimation unit 42 may



WO 2016/196369 PCT/US2016/034828

perform a motion search relative to the full pixel positions and fractional pixel positions
and output a motion vector with fractional pixel precision.

(8121} Motion estimation unit 42 calculates a motion vector for a PU of a video block
inn an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
tirst reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in reference picture memory 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

(8122} Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation unit 42. Again, motion estimation unit 42 and motion compensation
unit 44 may be functionally integrated, in some examples. Upon receiving the motion
vector for the PU of the current video block, motion compensation unit 44 may locate
the predictive biock to which the motion vector points in one of the reference picture
lists. Summer 50 forms a residual video block by subtracting pixel values of the
predictive block from the pixel values of the current video block being coded, forming
pixel difference values, as discussed below. In general, motion estimation unit 42
performs motion estimation relative to luma components, and motion compensation unit
44 uses motion vectors calculated based on the luma components for both chroma
components and luma components. Mode select unit 40 may also generate syntax
elements associated with the video blocks and the video slice for use by video decoder
30 1n decoding the video blocks of the video shice.

(0123} Intra-prediction unit 46 may intra-predict a current block, as an alternative to
the inter-prediction performed by motion estimation unit 42 and motion compensation
unit 44, as described above. In particular, intra-prediction unit 46 may determine an
intra-prediction mode to use to encode a current block. In some examples, inira-
prediction unit 46 may encode a current block using various intra-prediction rodes,
e.g., during separate encoding passes, and intra-prediction unit 46 {or mode select unit
40, in some examples) may select an appropriate intra-prediction mode to use from the
tested modes.

[8124] For example, intra-prediction unit 46 may calculate rate-distortion values using a
rate~-distortion analysis for the vartous tested intra-prediction modes, and select the

intra-prediction mode having the best rate-distortion characteristics among the tested
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modes. Rate-distortion analysis generally determines an amount of distortion {or error)
between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bitrate (that is, a number of bits) used to
produce the encoded block. Intra-prediction unit 46 may calculate ratios from the
distortions and rates for the various encoded blocks to determine which intra-prediction
mode exhibits the best rate-distortion value for the block.

[0128] After selecting an intra-prediction mode for a block, intra-prediction unit 46 may
provide information indicative of the selected intra-prediction mode for the block to
entropy encoding unit 56, Entropy encoding unit 56 may encode the information
indicating the selected intra~-prediction mode. Video encoder 20 may wnclude in the
transmitted bitstream configuration data, which may include a plurality of intra-
prediction mode index tables and a plurality of modified intra-prediction mode index
tables {also referred to as codeword mapping tables), definitions of encoding contexts
for various blocks, and indications of a most probable intra-prediction mode, an intra-
prediction mode index table, and a modified intra~-prediction mode tndex table to use for
each of the contexts.

18126} Video encoder 20 forms a residual video block by subtracting the prediction data
from mode select unit 40 from the original video block being coded. Summer 50
represents the component or components that perform this subtraction operation.
Transform processing unit 52 applies a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform, to the residual block, producing a video
block comprising transform coefficient values. Wavelet transtorms, integer transforms,
sub-band transforms, discrete sine transforms (DSTs), or other types of transtorms

could be used instead of a DCT. In any case, transform processing unit 52 applies the
transform to the residual block, producing a block of transform coefficients. The
transform may convert the residual information from a pixel domain to a transform
domain, such as a frequency domain. Transform processing unit 52 may send the
resulting transform coefficients to quantization unit 54, Quantization unit 54 quantizes
the transform coefficients to further reduce bit rate. The quantization process may
reduce the bit depth associated with some or all of the coefficients. The degree of
quantization may be modified by adjusting a quantization parameter.

(8127} Following quantization, entropy encoding unit 56 entropy codes the quantized

N

and/or enhanced CABAC according to the techniques of this disclosure. In the case of
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context-based entropy coding, context may be based on neighboring blocks. Following
the entropy coding by entropy encoding unit 56, the encoded bitstream may be
transmitted to another device (e.g, video decoder 30) or archived for later transmussion
or retrieval.

[8128] Inverse quantization unit 58 and 1nverse transtorm unit 60 apply inverse
quantization and inverse transformation, respectively, to reconstruct the residual block
in the pixel domain. In particular, summer 62 adds the reconstructed residual block to
the motion compensated prediction block earlier produced by motion compensation unit
44 or intra-prediction unit 46 to produce a reconstructed video block for storage in
reference picture memory 4. The reconstructed video block mav be used by motion
estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a
block in a subsequent video frame.

18129} Various components of video encoder 20, such as entropy encoding unit 56, may
implement the enhanced CABAC techniques of this disclosure to perform context
modeling. According to various aspects of this disclosure, entropy encoding unit 56
may perform context modeling for the i-th bin of a transform coefficient using the
values of the i-th bins of one or more previousiy-encoded transform coeflicients. Said
another way, the context modeling of the i-th bin for a current transform coetticient is
dependent on the values of the corresponding 1-th bins of one or more transform
coefficients that entropy encoding unit 56 has already encoded. Context modeling of
the 1-th bin may exclude use of other bins of the values for the previousiy-encoded
transform coefficients, in order to allow context modeling for a plurality of bins of the
values tor the transform coefficients to be performed in paraliel.

{8130} By performing context modeling for a bin of a current transtorm coefficient
using the values of i-th bins of previcusly-encoded transform, entropy encoding unit 56
may implement the techniques of this disclosure to provide one or more potential
improvements over existing CABAC coders. As an example of such a benefit, entropy
encoding unit S6 may improve the paralielization of the context modeling operation by
implementing the technigues of this disclosure. More specifically, entropy encoding
unit SO may perform context modeling, in parallel, tor multiple bins of a transform
coefficient currently being encoded. For instance, if entropy encoding unit 56
determines that bin values corresponding to multiple bins are available from previously-

encoded transform coefficient(s), then entropy encoding unit 56 may at least partially
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parallelize the context modeling operations for the bins of the transform coefficient
being encoded currently.

18131} Entropy encoding unit 56 may perform the parallelized context modeling of this
disclosure in accordance with a multi-pass coding scheme. More specifically, a multi-
pass coding scheme refers to a coding technique by which entropy encoding unit 56
assigns separate threads to each particular bin (e.g ., thread 1 for the first bin, thread 2
tor the second bin, and so on). Thus, according to multi-pass coding, all bin0 instances
can be encoded in sequence, independently of the binl instances that are coded in
sequence, both of which are coded independently of the bin2 instances that are encoded
in sequence, eic. In some examples, entropy encoding unit 56 may perform the multi-
pass coding with respect to transform units of single block. Moreover, for bins that are
encoded according to the regular mode, entropy encoding unit 56 may pertform several
encoding passes. Each pass may pertain to a single corresponding bin of all transform
coefficients. In other words, during each pass, entropy encoding unit 56 does not utilize
information relating to the other passes. For tnstance, entropy encoding unit 56 may
encode the first bin (if needed) of all transtorm coefficients within one transform
unit/CG in a first pass. In this example, in a second pass, entropy encoding unit S6 may
encode the second bin of all transform coefficients within one transform unit/CG, if
needed, and so on.

(8132} In one example use case, entropy encoding unit 56 may perform context
modeling for bin0 of a currently-~coded transtorm coefficient using the value of bin0 of
the previously-coded neighboring transform coefficient, perform context modeling for
binl of a currently-coded transform coetficient using the value of binl of the
previously-coded neighboring transtorm coefficient, and so on. To allow paralielism as
discussed above, entropy encoding unit 56 may be contfigured so as to avoid using
different bins when performing context modeling of a particular bin. For example,
entropy encoding unit 56 may determine a context for entropy encoding a binl of a
current transform coefficient without using any bin0 values of the previously-coded
transform coefficients. In cases where a set of bins is entropy encoded in parallel, when
the respective bins needed for determining the bin contexis are available, entropy
encoding unit 56 may use the respective available bin values for the previously-coded
transform coetticient, entropy encoding unit 56 may perform the context modeling for
multiple bins of the currently-coded transform coefficient in parallel. In the use case

scenario described above, if'bin0 and binl are both available from the previously-coded
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neighbor transform coefficient, then entropy encoding unit 56 may parallelize the
context modeling of bin0 and bin! for the currently-coded transtorm coefficient. In this
manner, entropy encoding unit 56 may impleroent the techuiques of this disclosure to
perform CABAC within the tenets of multi-pass coding as described in HEVC, while
improving the context selection for bins of a current transform coefficient by enabling
and potentially exploiting paralielization of context modeling operations.

[8133] It will be appreciated that entropy encoding unit 56 can, but may not necessarily,
perform the entire context modeling of all such bins in parallel. More specifically,
entropy encoding unit 56 may perform some portions of the context modeling of
multiple bins concurrently. In this way, entropy encoding unit 56 may implement the
techniques of this disclosure to draw upon multicore processing technology and/or
multiple processors to improve the context modeling operations for a currently-coded
transform coefficient.

18134} By encoding corresponding bins of different transform coetticients with
parallelization enabled, entropy encoding unit 56 may provide one or more advantages
over existing multi-pass CABAC techniques. For instance, by coding the corresponding
bins (e.g., the respective bin0) of multiple transform coefficients in a single pass,
entropy encoding unit 56 may circumvent the need to store and retrieve a new context
model frequently at bin transitions. Instead, entropy encoding unit 56 may use a single
context model across a given pass, because the pass targets the corresponding bins {e.g.,
the respective bin0) across multiple transform coefficients. In this way, entropy
encoding unit 56 may implement the parallelized context selection technigues of this
disclosure to mitigate or potentially eliminate time delays and resource churn that arise
from frequent context-switching. In contrast, existing multi-pass coding would require
trequent context model save- and retrieve- operations, because of encoding binG, binl,
bin2, etc. for a first transform coetficient, and then encoding bind, binl, bin2, etc. for a
second transform coetficient, and so on.

18135} For instance, entropy encoding unit 56 may generate or otherwise access one or
more pre~defined templates to use for the i-th bin context modeling functionalities
described herein. One non-limiting example of a pre-defined template that entropy
encoding unit 56 may use for context modeling of an i-th bin of a currently-coded
transform coeflicient 1s illustrated in FIG. 10, A pre-defined template, such as template
140 of FIG. 10 defines a diagonal scan order for an 8x38 transform block, where ‘L

denotes the last significant scan position, ‘X’ denotes the current scan position, and “x;”
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denotes the neighbors covered by local template 140, With respect to x;, the value of “¢7
is in the range of zero through 4, and the range constraint is expressed as 1 € [0,4]. In
accordance with one or more aspects of this disclosure, entropy encoding unit 56 may
use the i-th bins of transform coefficients located in local template 140 for context
modeling of the corresponding i-th bin of a transform coefficient that is being encoded
currently. According to some implementations, entropy encoding unit 56 may use
multiple templates to perform the parallelized bin context modeling of this disclosure.
In one example, the template size and/or shape is dependent on one or more of the
following criteria: (1) the size of transform units; or (i1} modes; or (i11) the position of the
current fransform coefficients within the current transform unit or coefficient group
{(CG); or (iv) color component information, such as luma and/or chroma component
information.

18136} By using one or more pre-defined templates to traverse a previously-coded TU
for bin values, entropy encoding unit 56 may irmplement the techniques of this
disclosure to provide one or more enhancements over existing CABAC technology. For
instance, by using a TU traversal teraplate, such as local template 140 of FIG. 19,
entropy encoding unit 56 may circumvent the need to separately determine a traversal
scheme with respect to different coding passes. Thus, by implementing the template-
based parallelized context selection techniques of this disclosure, entropy encoding unit
56 may increase throughput with respect to bin coding, while maintaining coding
precision.

18137} According to another example implementation, entropy encoding unit 56 may
only apply the parallelized context modeling techniques of this disclosure to the first ‘K’
where ‘M’ denotes the upper bound of the available bin indexes, and where M starts
from 0. Entropy encoding unit 56 may encode the rematning (M+1-K) bins are coded
using another context modeling technique, or according to bypass made.

18138} According to another example iroplementation, entropy encoding unit 56 may
define the universe of previously-coded transform coefficients as the “IN” consecutive
transform coefficients in the encoding order within the current transform unit or CG
before the transform coefficient currently being encoded. Alternatively, entropy
encoding unit S6 may determine N to be a variable. In one example, entropy encoding
unit 56 may determine the value of N dependent on the relative position of the

currently-encoded transform coefficient in the current transtorm unit. In another
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example, entropy encoding unit 56 may determine the value of N dependent on the
transform unit size.

{9138} In another implementation, entropy encoding unit 56 may define the universe of
previcusly-encoded transform coetficients as those transform coefficients positioned at
the neighborhood of the current position within the current transform unit or CG. In one
example, the neighborhood of the current position is constrained to those positions
directly adjacent to the current position, or positions either directly adjacent to or
separated from the current posttion. In another example, the neighborhood may also
include these positions, but expand to include positions in one or more spatial
neighboring transform units.

{8148} In accordance with various aspects of this disclosure, entropy encoding unit 56
may define the context index of a bin as a function of values associated with one or
more previously-coded transtorm coefficients. For instance, entropy encoding unit 56
may use a function that yields the sum of all i-th bin values of the previously-coded
transform coefficients. More specifically, in this example, entropy encoding unit 56
may perform a summation of the values of the available i-th bin values of all previously-
encoded transform coefficients of the TU/CG. In turn, entropy encoding unit 56 may
use the resulting sum as the context index (Ctldx) during context modeling for the i-th
bin of the currently-coded transform coefficient. In another example, entropy encoding
unit 56 may define a cut-off value. In this example, when the output of the function
exceeds the pre-defined cut~off value, entropy encoding unit 56 may use the same
context with respect to the bin currently being coded. In some examples, entropy
encoding unit 56 may determine the cut-oft value 1s based on {or to be dependent upon)
the bin index/transform unit size/coding mode/the transform coefficient position within
one transform unit.

(8141} In some examples, entropy encoding unit 56 may encode the corresponding bins
coded in different passes such that these bins share the same context models. In one
exarmple, entropy encoding unit 56 may determine that the context index derivation
method, e.g the function to calculate the context index, for bins in different passes are
different. According to one example, entropy encoding unit 56 may determine that the
context index derivation method, e.g. the function to calculate the context index, for
bins in different passes may be the same.

(8142} According to some aspects of this disclosure, entropy encoding unit 56 may

keep the context index derivation rule unchanged for the same pass in different sizes of
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transform units. However, entropy encoding unit 56 may apply an offset to the context
index to perform context modeling for the currently-coded bin. For instance, entropy
encoding unit 56 may determine that two different transform sizes have two sets of
context models. In turn, entropy encoding unit 56 may define the offset as the number
of context models in one such set. For instance, 1if entropy encoding unit 56 determines
that the TU size is less than a square of predefined dimensions MxM, then entropy
encoding unit 56 may determine that each such TU (smaller than MxM) TU size has its
own respective set of context models. Conversely, entropy encoding unit 56 may
determine that all TUs with sizes equal to or larger than MxM share the same set of
context models.

(8143} In various use case scenarios, entropy encoding unit 56 may set the value of M
at 16. More specifically, in these examples, if entropy encoding unit 56 deterrnines that
the size of the currently-coded TU is less than a 16x16 square, then entropy encoding
unit 56 may determine that the currently-coded TU has is associated with a set of
context models that corresponds to the TU's particular size.  Conversely, if entropy
encoding unit determines that the currently-coded TU has a size that equal to or larger
than 16x16, then entropy encoding unit 56 may determine that the currently-coded TU
shares the same set of context models with all other TUs that have a size equal to or
greater than 16x16. In some exaruples, entropy encoding unit 56 may apply the TU
size-based context selection only to luma blocks.

10144} According to some examples, the Rice parameter used for coding the remaining
bins is dependent on transform size. Alternatively, or in addition, the Rice parameter
may be dependent on coding mode. In one example, instead of using Golomb-Rice
code for coetf abs level remaining, entropy encoding unit 56 may use other
binarization techniques. Alternatively, or in addition, more than one binarization
method may be applied for coding the coeff_abs level remaining syntax elernent. In
one example, the binarization method {(e.g., Rice parameter) used for coding

coeftf abs level remaining is dependent on coding modes. Alternatively, the
binarization method (e.g., Rice parameter} used for coding coeft abs level remaining
may be dependent on the relative position within one TU. Alternatively, the binarization
method (e.g, Rice parameter) used for coding coeftf abs level remaining may be
dependent on the distance from the first coded/decoded transform coefficient in scan

order. In some instances, the binarization method (e g., Rice parameter} used for coding
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coeff abs level remaining is dependent on coding group posttion relative to the
transform unit.

10145} According to some aspects of this disclosure, entropy encoding unit 56 may
determine the coetficient group (CG) size based on the transform size. In other words,
according to these aspects, the CG size 1s dependent on transform size. Alternatively, or
in addition, entropy encoding unit 56 may determine the CG size based on the coding
mode. In these examples, entropy encoding unit 56 may determine the CG size as being
dependent on one or both of the transform size and/or the coding mode. Alternatively,
or in addition, entropy encoding unit 56 may determine the CG size based on a
transform matrix.

8146} According to some aspects of this disclosure, entropy encoding unit 56 may also
apply the parallelized context modeling techniques can also to the blocks that are
encoded using transform bypass mode (also referred to as “transform skip mode”).
Transform bypass mode refers to a coding mode according to which video encoder 20
may skip the transtorm and quantization operations of encoding, to provide a lossless
coding output. Thus, according to certain aspects of this disclosure, entropy encoding
unit 56 may expand the parallelized context selection techniques to provide the potential
resulting advantages in instances of lossless coding.

18147} Example details of various transform coetficient context modeling techniques of
this disclosure are discussed below in further detail. One example of context modeling
in accordance with multi-pass coding s described below. According to this example,
entropy encoding unit 56 may apply the coding elements and coding order (multiple
pass coding, and CG-based) as laid out in HEVC. In addition, entropy encoding unit 56
may apply the binarization techniques while keeping the magnitudes of the transform
coefficients unchanged. However, entropy encoding unit 56 may modify the context
index and Rice parameter calculation method for coding maguoitudes of the transform
coefficients.

[8148] The context index calculation for bin0 (significant flag) may be dependent on
the following information: the number of non-zero coeffictents in the template (i.e.,
magnitudes of coefficients are larger than 0); the position of the current coefficient
within the current TU; the TU size for the luma component; and the color components.
With respect to the color component dependency, the luma and chroma are considered
separately. Additionally, in considering the TU size for the luma component, the

context index calculation is independent with TU size for luma. The TU size of the
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luma component may include three sets, namely, 4x4 TU, 88 TU, 16x16 and above
TUs.

[0149] For binl and bin2 (Grt than 1, Grt than 2), the context index calculation is
dependent on the following information: the number of absLevels in the template larger
than 1 (for binl) and larger than 2 (for bin2); the position of the current coetficient
within the current TU, and the color components. The Rice parameter derivation
process is dependent on bypass coding information, and on the value of the
sum_absolute levelMinus] syntax element.

10150} In one example, entropy encoding unit 56 may define the function
sum_template(k) to return the number of coefficients in a termplate, such that that the
magnitudes of the coefficients are larger than £ An example of the sum femplateck)
function 15 as follows:

sn_tnoe) - 35,4
with &, (x, k) _ {i le.l >k ’
) 0 x =

Additionally, tn this example, entropy encoding unit 56 may define a function fix, y, n,
7} to handle the position information and another function §, (u,v) to handle the

component information as follows:

, n x+y<t
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[8151] FIG. 10 depicts one example of a template (local template 140) that entropy
decoding unit 70 and/or entropy encoding unit 56 may use with respect to the context
modeling techniques described herein. The current transform coefficient is marked as
‘X’ and the five spatial neighbors are marked as “Xi” (with *1" representing an integer
from O through 4). If any one of the following conditions is satisfied, then entropy
encoding unit S6 may mark X, as unavailable and not used in the context index
derivation process:

» the position of X and current transform coefficient X are not located in the same

transform unit; or
» the position of X is located outside of the picture’s horizontal or vertical

boundaries; or
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¢ the transform coefficient X; has not yet been coded. In the case of multi-pass
coding, whenever the bins in the same coding pass are coded, the bins could be
used in the context index derivation process. Therefore, from a decoding

perspective, it is not necessary to fully decode one transform coefticient.

[0152] Alternatively, entropy encoding unit 56 may apply one or more other templates
that can inchude the information from a neighboring transform unit. In various
examples, the neighboring TU may be a spatial neighbor or a temporal neighbor.
According to one or more of the context modeling techniques described herein, the
context index calculations may be defined as described in the following paragraphs.
[0153] With respect to bin0, entropy encoding unit 56 may derive the context index as
follows:

c, = min{sum _template (0), 5) + f '(x, ¥, 6,2) +0, ( ¥ '(x, }!,6,5}, chx} +offset (cldx, widih)

¢, =¢, +offset (cldx, width)

where

offset(v, w} =

J/w ==470: (w ==8"7 NumberLumatxUneset - Numberl uma“tiOneset *23 v=0
l Numberiuma txOneset *3 v 0

[8134] In one example, based on the range of ¢o, one set of luma contexts may include a
number of context models that equals the value of NumberLumaCixQOneset. For
instance, the set of luma contexts may include 18 context models. With respect to
different transform sizes (with the transform width denoted by “w’) for coding luma
hinds, entropy encoding unit 56 may select a different set for each transform size. In
addition, chroma and luma contexts are separated to further improve the coding
performance. For YCbCr inputs, the three color components, i.e, Y, Cb and Cr are
represented with component index v equal to 0, 1, and 2, respectively.
[0155] In these examples, entropy encoding unit 56 may derive the context index for
binl as follows:
€, =1om (S@ﬂ% _template (1), 4) + N

¢, = ¢, +,{flx, v.53) clax)+ 5, {f{x. y.5,10), cldix)
Additionally, in these examples, entropy encoding unit 56 may derive the context index
for binZ as follows:

¢, =minf{sum _template (2), 4+ N
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¢, =¢C, + 0, ( f(x, y,Sﬁfi}? (:Zafx) -0, ( j’(x, ¥,5,1 O), c,!cix)
[8156] In one example, N is equal to 0. In another example, Nisequal to 1.
Alternatively, or in addition, when N is equal to 1, entropy encoding unit 56 may code
the first binl or bin2 with the context index ¢l or ¢2 equal to 6. In this example,
entropy encoding unit 56 may code the other instances of binls and bin2s according to
the equations above.
10187} In one example, entropy encoding unit 56 may encode binl and bin2 with the
same set of context models, but with different indices. Alternatively, binl and bin2 are
coded with two sets of context models and no dependency between them exists. For the
remaining bins, entropy encoding unit 56 may apply the design laid out in HEVC or the
design in JCTVC-HO228. In various examples, entropy encoding unit 56 may use
different constant values in building the various functions described above.
{0158} Additional aspects of this disclosure are directed to context initialization
enhancements. The context initialization enhancements of this disclosure may be
implemented independently of the parallelized context selection techniques described
above, or may be implemented in combination with any one or more of the parallelized
context selection techniques described above. One or more of the context initialization
techniques of this disclosure are directed to reusing context information from
previously-encoded information. For instance, entropy encoding unit 56 may inherit, or
otherwise derive, the context information for a slice by copying a status from a
previously-encoded slice, which may belong to the current picture or a previously-
encoded picture. In various examples in accordance with the inheritance-based context
initialization techniques of this disclosure, the term ‘status’ refers to a combination of
state information and a most probable symbol (MPS) value. In the following
description, the term ‘slice’ may be used interchangeably with the term ‘tile”
[8159] By inheriting the context initialization information from a previously-encoded
slice, entropy encoding unit 56 may implement the techniques of this disclosure to
provide enhanced accuracy as compared to existing CABAC context initialization
techniques. Fornstance, existing CABAC countext inttialization techniques rely on
obtaining context status information from a table. However, the table is formed using
static information. However, according to the inheritance-based context initialization
technigues of this disclosure, entropy encoding unit may draw context initialization

information from a previously-encoded slice that is of the same slice type and/or has the
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same quantization parameters (QPs) as the slice currently being encoded. In this way,
entropy encoding unit 56 may implement the techniques of this disclosure to improve
the accuracy of the context intialization information used for a current slice.

18160} According to some implementations, entropy encoding unit 56 may identity the
center LCU of a previously-encoded slice as the slice from which to inherit the context
initialization information. In various examples, entropy encoding unit 56 may inherit
context initialization for multiple shices of the current picture from multiple
corresponding previously-encoded slices. In one example, entropy encoding unit 56
may use the same block (namely, the center LCU) of the previously-encoded picture
from which to inherit the context initialization information for all of the multiple slices
encoded according to the context initialization techniques of this disciosure. In another
example, entropy encoding unit 56 may inherit the context initialization information for
each of the multiple slices from the respective center LCU from each of the
corresponding slices of the previously-encoded picture.

(8161} For instance, after encoding the center LCU of the previously-encoded picture,
entropy encoding unit 56 may store all of the status information with respect to slice
context initialization. In turn, entropy encoding unit 56 may access or read the copied
status information and use the status information for initializing the context for one or
more slices of the picture currently being encoded. By using the status information
from a previously-encoded picture to perforn context initialization for slices of a
current picture, entropy encoding unit 56 may reduce the reliance on a fixed table of
static information for the purpose of context initialization. For instance, after using the
fixed table to initialize context for slices of a first picture, as well as for any intra-coded
pictures, entropy encoding unit 56 may perform context initialization for inter-coded
pictures that are encoded subsequently. Entropy encoding unit 56 may implement the
inheritance-based context initialization techniques of this disclosure with respectto P
slices and/or B slices.

[8162] Additional example details for the context tmitialization techniques of this
disclosure are described below. Entropy encoding unit 56 may, additionally or
alternatively, be configured to perform techniques according to this disclosure for
context initialization, as discussed below. Eniropy encoding unit 56 may implement the
context initialization techniques of this disclosure to inherit the context information after
encoding one block located in a previously encoded picture as the initialized context

information for coding the current slice. Entropy encoding unit 56 may apply the
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inheritance-based context inttialization techniques to P and/or B slices. Additionally, the
position of the ‘one block’ referred to above is pre-defined and fixed for one whole
sequence. For instance, the largest coding unit size (LCU) is denoted by “INxN,” the
picture width is denoted by “W,” and the picture height is denoted by “H.” In this
example, the number of LCUs within one LCU row, denoted by “PicWidthinCthsY, is
equal to the output of a ceiling function, namely, Ceitl{ W = N }. Additionally, in this
example, the number of LCU rows, denoted by “PicHeightInCtbsY,” 1s equal to Ceill{ H
+ N ) where the ceiling function Ceil {x} represents the smallest integer greater than or
equal to x.

[8163] According to some examples, the position is defined as the central LCU of the
tirst slice in the previously coded picture. Supposing the numPLCUinSlice represent the
LCU vumber in the first slice, the position 15 defined as: TargetCUAddr =
numLCUinSlice/2.  In one example, the position is defined as: TargetCUAddr =
(PicWidthInCtbs Y™ PicHeightToCtbsY)/2 + PicWidthInCtbsY /2. Furthermore, when
TargetCUAddr is equal to or larger than (PicWidthinCths Y™ PicHeightInCtbsY), (e.g.,
PicHeightInCtbsY is equal to 1), TargetCUAddr is reset to (PicWidthInCtbsY®
PicHeightlnCtbsY - 1), which is corresponding to the fast LCU. In one example, the
position is defined as the last LCU of the previously coded picture, or the center LCU
within one frame (i.¢., PicWidthinCtbsY* PicHeightlnCtbsY/2), or the last LCU of the
center LCU row (i.¢., PicWidthinCtbsY™ (PicHeightInCtbsY/2) - 1), or the last LCU of
the k-th LCU row (e.g,, kis equal to 1). According to one example, the position is
defined as the last LCU of the first slice in the previously-encoded picture. According
to some implementations of the context initialization techniques of this disclosure,
(8164} In some examples, the position of the “one block’ 1s signaled in a parameter set,
such as a sequence parameter set {(SPS) or a picture parameter set (PPS). Parameter
sets, such as SPSs and/or PPSs, can be signaled out-of-band with respect to slices of the
current picture. In some examples, the position of the ‘one block’ can be signaled in a
slice header. A slice header may be signaled in-band with respect to a corresponding
slice. In these and other examples, the indication of the previousiy-encoded picture,
such as a reference picture index, a corresponding picture order count difference {or
delta POC), may be signaled in a parameter set or slice header.

[8165] In some examples, a ‘previcusly-coded picture’ is defined as a picture which is

encoded/decoded just (immediately) before the current picture. In some examples, a
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‘previously-coded picture’ ts defined as a picture which is the last picture encoded or
decoded before the current picture, such that a first slice in the previous picture has the
same slice type to the current slice. According to some exarmples, a ‘previously-coded
picture’ is defined as the picture which 1s the encoded/decoded picture before the current
picture and the first slice in the previous picture has the same initialized quantization
parameters to the current slice. According to some examples, a ‘previously-coded
picture’ 1s defined as a picture containing a previously coded slice which has the same
slice type, or both the same slice type and quantization parameter(s), ot both the same
slice type and temporal layer, as the current slice and/or the same initialized
quantization parameters. In some examples, a ‘previousty-coded picture’ is defined as a
picture that is present in a picture butfer (such as a coded picture buffer or a decoded
picture butfer), and may be used for the current picture as a reference picture.
According to these examples, as in HEVC based platform, the previous slice must
belong to a picture in a reference picture set (RPS), or a picture in one of the following
subsets of the RPS: RefPicSetStCurrBefore, RefPicSetSiCurrAtter, and
RetPicSetLtCurr.

18166} According to some implementations of the context initialization techniques of
this disclosure, if all of the pictures coded after one intra-coded picture in display order
do not have the same slice types and same initialized quantization parameters, then the
inheritance of context information may be disabled. In this case, the conventional
initialization method is applied, e.g., entropy encoding unit 56 may use the fixed table
from which to draw initialization status information. According to some
implementations, entropy encoding unit 56 may apply the inheritance-based context
initialization techniques of this disclosure to specific context models, and not to other
context models. In addition, or alternatively, the position of the ‘one block” may be
different tor different context models. It will be appreciated that the various
implementation options listed above may be implemented individually or in various
combinations, in accordance with the context inttialization techniques of this disclosure.
(8167} In some examples of the context initialization techniques of this disclosure, if
entropy encoding unit 56 determines that the cabac_init present flag is enabled, then
entropy encoding unit 56 may determine that a slice included in the ‘previcusly-encoded
picture’ should have the same type as the currently-encoded slice. Said another way, in
this example, if the cabac_init_present flag ts enabled, then the definition of a

previously-encoded picture is dependent on matching slice types. Additionally, from a
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decoding standpoint, the signaled cabac init flag is not taken into consideration
according to this implementation. In some instances, alternatively, entropy encoding
unit S6 may first modify the slice type of the current slice based on cabac_1mt flag and
a selection of the ‘previously-encoded picture’.

[8168] Additional example details for the context tnitialization techniques of this
disclosure are described below. According to some implementations, entropy encoding
unit S6 may not apply the inheritance-based context initialization techniques of this
disclosure with respect o Intra Random Access Pictures (IRAP). For instance, entropy
encoding 56 may not implement the inheritance-based context initialization techniques
with respect to any of the three types of IRAPs, namely, instantaneous decoding refresh
(IDR) pictures, clean random access {CRA) pictures, and broken link access (BLA)
pictures.

18169} In one example of the inheritance-based context initialization based on
previously coded information, entropy encoding unit 56 may encode one picture with
one slice. In this example, entropy encoding unit 56 may apply one or more of the
tollowing rules to derive the initialized states of context models. A first rule is that the
slice of the previously-encoded picture has a slice type that 1s the same as the slice type
for the currently-encoded slice. Alternatively, or in addition, the initialized slice
quantization parameter (QP) is the sarue as the slice QP used tor coding the currently-
encoded slice.

18178} According to some aspects of this disclosure, entropy encoding unit 56 may
inherit the context initialization information from the previocusly-encoded slice when
different QPs are used for the current slice and the predictor slice. In these examples,
entropy encoding unit 56 may apply a mapping process with respect to context states
before using the context initialization information for encoding the current slice. For
example, entropy encoding unit 56 may utilize one or roore the initialization functions
(e.g., an initialization function specified in HEVC) as well as the two QPs and context
to convert one state to another state. In some instances, entropy encoding unit 56 may
record state information (e.g., the states} after encoding one block with a pre-defined
address in the previously coded picture, and use the recorded state information as the
intialized state information for the currently-encoded slice.

[8171] In one example, ‘one block” represents a largest coding unit (LCU). For
instance, the LCU size {dimensionality) may be denoted by "NxN,” the picture width by

‘W.” and the picture height by ‘H.” The number of LCUs within one LCU row may be
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denoted by PicWinCtbsY, and is equal to the cutput of the ceiling function

Ceill W =N ). The number of LCU rows 1n the picture, denoted by PicHInCtbsY, is
equal to to the output of the cetling function Ceill{f H+ N ) Generically described, the
function Cetl (x) returns the smallest integer greater than or equal to x. Additionally,
the width of the picture, measured 10 units of LCUs, and the height of the picture,
measured in LCUs, are represented respectively by the PicWinCtbsY and PicHInCtbsY
values obtained using the ceiling functions described above. In one example, the
address of the LCU is defined according to the following equation:

Target CUAr = (PicWInCtbsY * PicHInCtbsY)/2 + PicWinCtbsY/2

(8172} Furthermore, when TargetCUAddr 15 equal to or larger than the value of
(PicWinCtbs Y™ PicHInCtbsY), entropy encoding unit 56 may reset TargetCUAddr is
reset to the value of (PicWiInCtbsY* PicHInCtbsY - 1). For instance, TargetCUAddr
may equal or exceed the above value 10 cases where PicHInCthsY 15 equal to 1.
Additionally, the value of (PicWiInCtbsY™ PicHInCibsY - 1} corresponds to the last
LCU in one picture.

18173} In some instances, furthermore, entropy encoding unit 56 may not apply the
rules-based context initialization techniques described above for the first one or more
pictures after a new intra-coded picture in display order. An example where entropy
encoding unit 56 may not apply the rules-based context initialization is where entropy
encoding unit 56 encounters a new slice type or a new QP {e.g., the new shice type or
new QP has appeared) for the first time. For instance, entropy encoding unit 56 may
mitigate or potentially avoid issues related to random access. An example of this
technique is shown in FIG. 9, in which the coding {(and thereby, decoding) order for
pictures with picture order count (POC) values from 28 to 35 1s as follows: 32, 28, .
30, 29, 31, 40, 36, 34, 33, 35

[8174] In terms of display order, the picture with a POC value equal to 40 is the first
picture that is decoded after the I-picture with a POC value equal to 32, Although the
picture with the POC value of 24 has the same QP as the picture with POC equal to 40,
and both share the same slice types, entropy encoding unit 56 may not predict the
picture with POC value equal to 40 using the coded information of the picture with POC
equal to 24. Similarly, entropy encoding unit 56 may not predict the picture with POC
equal to 33 using the coded information of the picture with POC equal to 31. However,

entropy encoding unit 56 may predict the picture with POC equal to 35 using the coded
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information of the picture with POC equal to 33, because both pictures are subseqguent
(in display order) to the I-picture.

10175} In instances where prediction from previously coded picture is disallowed,
disabled, or otherwise not available to entropy encoding unit 56, entropy encoding unit
56 may apply the context initialization techniques as defined in HEVC. As described
above, video encoder 20 of FIG. 4 represents an example of a video encoder that may be
configured to perform any of the various techniques of this disclosure for enhanced
CABAC, alone or in any combination. In some examples, video encoder 20 is
configured to select a coding mode for encoding a transform unit. In some examples,
video encoder 20 may include, be, or be part of a device that includes a camera
configured to capture at least a portion of the video data. In some examples, video
encoder 20 may include a memory device that is configured to receive the captured
video data from the camera.

[8176] FIG. S is a block diagram of an example entropy encoding unit 56 that may be
configured to perform CABAC in accordance with the techniques of this disclosure. A
syntax element 118 is input into the entropy encoding unit 56. If the syntax element is
already a binary-value syntax element {e.g., a flag or other syntax element that only has
a value of 0 and 1), the step of binarization may be skipped. If the syntax elementisa
non-binary valued syntax element (e.g., a syntax element that may have values other
than 1 or 0), the non-binary valued syntax element is binarized by binarizer 120.
Binarizer 120 performs a mapping of the non-binary valued syntax element into a
sequence of binary decisions. These binary decisions are often called “bins.” For
exarnple, for transform coefficient levels, the value of the level may be broken down
into successive bins, each bin indicating whether or not the absclute value of coetficient
level is greater than some value. For example, bin O {(sometimes called a significance
tlag) indicates if the absolute value of the transform coefficient fevel is greater than 0 or
not. Bin 1 indicates if the absolute value of the transform coefticient fevel is greater
than 1 or not, and so on. A unigue mapping may be developed for each non-binary
valued syntax element.

(8177} Each bin produced by binarizer 120 15 fed to the binary arithmetic coding side of
entropy encoding unit 56. That is, for a predetermined set of non-binary valued syntax
elements, each bin type (e.g., bin 0} is coded before the next bin type (e.g, bin 1).
Coding may be performed in either regular mode or bypass mode. In bypass mode,

bypass coding engine 126 performs arithmetic coding using a fixed probability model,
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for example, using Golomb-Rice or exponential Golomb coding. Bypass mode is
generally used for more predictable syntax elements.

19178} Coding in regular mode involves performing CABAC. Regular mode CABAC
is for coding bin values where the probability of a value of a bin 1s predictable given the
values of previousty-encoded bins. The probability of a bin being an LPS is determined
by context modeler 122. Context modeler 122 outputs the bin value and the probability
state tor the context model (e g, the probability state o, including the value of the LPS
and the probability of the LPS oceurring). The context model may be an initial context
model for a series of bins, or may be determined based on the coded values of
previously coded bins. As deseribed above, context modeler 122 may update the state
based on whether or not the received bin was the MPS or the LPS. After the context
model and probability state o 1s determined by context modeler 122, regular coding
engine 124 performs BAC on the bin value.

[8179] Context modeler 122 may implement the techniques of this disclosure to
perform context modeling in a parallelized manner. According o various aspects of this
disclosure, context modeler 122 may perform context modeling for the i-th bin of 2
transform coefticient using the values of the i-th bins of one or more previously-
encoded transform coefficients. In this way, the context modeling of the i-th bin for a
current transform coefficient is dependent on the values of the corresponding i-th bins of
one or more transform coefficients for which context modeler 122 has already selected
the context.

[0180] By performing context modeling for a bin of a current transform coefficient
using the values of i-th bins of previously-encoded transform, context modeler 122 may
implement the techniques of this disclosure to provide one or more potential
improvements over existing CABAC coding devices. As an example of such a benefit,
context modeler 122 may improve the parallelization of the context modeling operation
by implementing the techniques of this disclosure. For instance, context modeler 122
may perform context modeling, in parallel, for multiple bins of a transform coefficient
currently being encoded. As one example, it context modeler 122 determines that bin
values corresponding to multiple bins are available from previously-encoded transform
coefficient(s), then context modeler 122 may at least partially paralielize the context
modeling operations for the bins of the transform coefficient being encoded currently.
[0181] Context modeler 122 may perform the parallelized context modeling of this

disclosure in accordance with a multi-pass coding scheme. More specifically, a multi-
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pass coding scheme refers to a coding technique by which entropy encoding unit 56
assigns separate threads to each particular bin (e.g., thread 1 for the first bin, thread 2
for the second bin, and so on). Thus, according to multi-pass coding, all bin0 instances
can be enceded in sequence, independently of the binl instances that are coded in
sequence, both of which are coded independently of the bin2 instances that are encoded
in sequence, etc. In some examples, context modeler 122 may perform the multi-pass
coding with respect to transform units of single block. Moreover, for bins that are
encoded according to the regular mode, context modeler 122 may perform the context
selection in multiple passes. Each pass may pertain to a single corresponding bin of all
transform coefficients. In other words, during each pass, context modeler 122 does not
utilize information relating to the other passes. For instance, context modeler 122 may
select the context for the first bin of all transform coefficients within one transform
unit/CG in a first pass. In this example, in a second pass, context modeler 122 may
select the context for the second bin of all transform coefficients within one transform
unit/CG, if needed, and so on.

[0182] In one example use case, context modeler 122 may perform context modeling
for bin0 of a currently-coded transform coefficient using the value of bin0 of the
previously-coded neighboring transform coefficient, perform context modeling for binl
of a currently-coded transform coefficient using the value of binl of the previously-
coded neighboring transform coefficient, and so on. Using any bin values that are
available for the previously-coded transform coefficient, context modeler 122 may
perform the context modeling for multiple bins of the currently-coded transtorm
coefticient in parallel. In the use case scenario described above, if bin0 and binl are
both available from the previcusly-coded neighbor transform coefficient, then context
modeler 122 may parallelize the context modeling of bin0 and binl for the currently-
coded transform coefficient. In this manner, context modeler 122 may implement the
technigues of this disclosure to perform CABAC within the tenets of multi-pass coding
as described in HEVC, while improving the context selection for bius of a current
transform coefficient by enabling and potentially explotting parallelization of context
modeling operations.

10183} It will be appreciated that context modeler 122 can, but may not necessarily,
perform the entire context modeling of all such bins in parallel. More specifically,
context modeler 122 may perform some portions of the context modeling of nmultiple

bins concurrently. In this way, context modeler 122 may implement the techniques of



WO 2016/196369 PCT/US2016/034828

this disclosure to draw upon multicore processing technology and/or multiple processors
to improve the context modeling operations for a currently-coded transform coefficient.
{0184} By encoding corresponding bins of different transtorm coefficients in a single
pass, context modeler 122 may provide one or more advantages over existing multi-pass
CABAC techniques. Foriustance, by coding the corresponding bins (e.g., the
respective bin0) of multiple transform coefficients in a single pass, context modeler 122
may circumvent the need to store and retrieve a new context model frequently at bin
transitions. Instead, context modeler 122 may use a single context model across a given
pass, because the pass targets the corresponding bins {(e.g , the respective bin0) across
multiple transform coefficients. In this way, context modeler 122 may tmplement the
parallelized context selection technigues of this disclosure to mitigate or potentially
eliminate time delays and resource churn that arise from frequent context-switching. Tn
contrast, existing multi-pass coding would require frequent context model save- and
retrieve- operations, because of encoding binG, binl, bin2, etc. for a first transtorm

and so on.

{8185} For instance, context modeler 122 may generate or otherwise access one or more
pre-defined ternplates to use for the i-th bin context modeling functionalities described
herein. One non-limiting example of a pre-defined template that context modeler 122
may use for context modeling of an i-th bin of a currently-coded transform coefficient is
tlustrated in FIG. 10. A pre-defined teroplate, such as template 140 of FIG. 10 defines a
diagonal scan order for an 8x8 transform block, where ‘L’ denotes the last significant
scan position, ‘x’ denotes the current scan position, and “x;” denotes the neighbors
covered by local template 140, With respect to x;, the value of “t” ts in the range of zero
through 4, and the range constraint is expressed as 1 € {0,4]. In accordance with one or
more aspects of this disclosure, context modeler 122 may use the i-th bins of transform
coefficients located in local template 140 for context modeling of the corresponding i-th
bin of a transform coefficient that is being encoded currently. According to some
implementations, context modeler 122 may use multiple templates to perform the
parallelized bin context modeling of this disclosure. In one example, the template size
and/or shape is dependent on one or more of the following criteria; (1) the size of

transform units; (i1} modes; or (i1} the position of the current transform coetticients

N
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[6186] By using one or more pre-defined templates to traverse a previously-coded TU
tor bin values, context modeler 122 may implement the techniques of this disclosure to
provide one or more enhancements over existing CABAC technology. For instance, by
using a TU traversal template, such as local template 140 of FIG. 10, context modeler
122 may circumvent the need to separately determine a traversal scheme with respect to
different coding passes. Thus, by implementing the template-based paralielized context
selection techniques of this disclosure, context modeler 122 may increase throughput
with respect to bin coding, while maintaining coding precision.

(8187} According to another example implementation, context modeler 122 may only
apply the parallelized context modeling technigues of this disclosure to the first “K bins
of the currently-coded transform coefficient, where ‘K’ is smaller than M, and where
‘M’ denotes the upper bound of the available bin indexes. Context modeler 122 may
encode the remaining (M+1-K) bins are coded using another context modeling
technique, or according to bypass mode.

[0188] According to another example implementation, context modeler 122 may define
the universe of previously-coded transform coefficients as the "W consecutive transform
coefficients in the encoding order within the current transform unit or CG before the
transform coetticient currently being encoded. Alternatively, context modeler 122 may
determine N to be a variable. In one example, context modeler 122 may determine the
value of N dependent on the relative position of the currentiy-encoded transform
coefficient in the current transform unit. In another example, context modeler 122 may
determine the value of N dependent on the transform unit size.

{0189} In another implementation, context modeler 122 may define the universe of
previously-encoded transform coefficients as those transform coefficients positioned at
the neighborhood of the current position within the current transform unit or CG. In one
example, the neighborhood of the current position is constrained to those positions
directly adjacent to the current position, or positions either directly adjacent to or
separated from the current position. In another example, the neighborhood may also
include these positions, but expand to include positions in one or more spatial
neighboring transform units.

18196} In accordance with various aspects of this disclosure, context modeler 122 may
define the context index of a bin as a function of values associated with one or more
previously~-coded transform coefficients. For instance, context modeler 122 may use a

function that yields the sum of all i-th bin values of the previously-coded transtorm
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summation of the values of the available i-th bin values of all previously-encoded
transtform coefficients of the TU/CG. In turn, context modeler 122 may use the
resuiting sum as the context index {Ctldx) during context modeling for the i-th bin of
the currently-coded transtorm coefficient.

(8191} According to some aspects of this disclosure, context modeler 122 may keep the
context index derivation rule unchanged for the same pass in different sizes of transtorm
units. However, context modeler 122 may apply an offset to the context index to
perform context modeling for the currently-coded bin. For instance, context modeler
122 may determine that two different transform sizes have two sets of context models.
In turn, context modeler 122 may define the offset as the number of context models in
one such set. For instance, if context modeler 122 determines that the TU size is less
than a square of predefined dimensions MxM, then context modeler 122 may determine
that each such TU (smaller than MxM) TU size has its own respective set of context
models. Conversely, entropy encoding unit 56 may determine that all TUs with sizes
equal to or larger than MxM share the same set of context models.

18192} In various use case scenarios, context modeler 122 may set the value of M at 16,
More specifically, in these examples, if context modeler 122 determines that the size of
the currentiy-coded TU is less than a 16x16 square, then context modeler 122 may
determine that the currently-coded TU has is assoctated with a set of context models
that corresponds to the TU’s particular size.  Conversely, if entropy encoding unit
determines that the currently-coded TU has a size that equal to or larger than 16x16,
then context modeler 122 may determine that the currently-coded TU shares the same
set of context models with all other TUs that have a size equal to or greater than 16x16.
In some examples, context modeler 122 may apply the TU size-based context selection
only to tuma blocks.

18193} According to some aspects of this disclosure, context modeler 122 may
determine the coefficient group (CG) size based on the transform size. In other words,
according to these aspects, the CG size is dependent on transform size. Alternatively, or
in addition, context modeler 122 may determine the CG size based on the coding mode.
In these examples, context modeler 122 may determine the CG size as being dependent
on one or both of the transform size and/or the coding mode. Alternatively, or in

addition, context modeler 122 may determine the CG size based on a transform matrix.
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(8194} According to some aspects of this disciosure, context modeler 122 may also
apply the parallelized context modeling technigues can also to the blocks that are
encoded using transform bypass mode (also referred to as “transform skip mode”).
Transform bypass mode refers to a coding mode according to which video encoder 20
may skip the transtorm and quantization operations of encoding, to provide a lossless
coding output. Thus, according to certain aspects of this disclosure, context modeler
122 may expand the parallelized context selection techniques to provide the potential
resulting advantages in instances of lossless coding.

[0195] Returning to FIG. 4, in some cases, the entropy encoding unit 56 or another unit
of video encoder 20 may be configured to perform other coding functions, in addition to
entropy coding. For example, entropy encoding unit 56 may be contigured to determine
coded block pattern (CBP) values for CU’s and PU’s. Also, in some cases, entropy
encoding unit 56 may perform run length coding of coefficients. In addition, entropy
encoding unit 56, or other processing units, also may code other data, such as the values
of a quantization matrix.

[0196] As discussed above, inverse quantization unit 58 and inverse transform
processing unit 00 apply inverse quantization and inverse transformation, respectively,
to reconstruct the residual block in the pixel domain, e g, for later use as a reference
block. Motion compensation unit 44 may calculate a reference block by adding the
residual block to a predictive block of one of the frames of the reference picture
memory 64. Motion compensation unit 44 may also apply one or more interpolation
filters to the reconstructed residual block to calculate sub-integer pixel values for use in
motion estimation. Summer 62 adds the reconstructed residual block to the motion
compensated prediction block produced by motion compensation unit 44 to produce a
reconstructed video block for storage in reference picture memory 64. The
reconstructed video block may be used by motion estimation unit 42 and the motion
compensation unit 44 as a reference block to inter-code a block in a subsequent video
frame.

(8197} FIG. 6 1s a block diagram illustrating an example of video decoder 30 that may
implement techniques for coding data according to an enhanced CABAC design. In the
example of FIG. 3, video decoder 30 includes an entropy decoding unit 70, motion
compensation unit 72, intra prediction unit 74, inverse quantization unit 76, inverse
transformation unit 78, reference picture memory 82 and summer 80, Video decoder 30

may, in some examples, perform a decoding pass generally reciprocal to the encoding
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pass described with respect to video encoder 20 (FIG. 4). Motion compensation unit 72
may generate prediction data based on motion vectors recetved from entropy decoding
unit 70, while intra-prediction unit 74 may generate prediction data based on intra-
prediction mode indicators received from entropy decoding unit 70.

181598} During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy
decodes the bitstream to generate quantized coefficients, motion vectors ot intra-
prediction mode indicators, and other syntax elements. In some examples, entropy
decoding unit 70 may perform CABAC and/or enhanced CABAC according to the
techniques of this disclosure. Entropy decoding unit 70 forwards the motion vectors to
and other syntax elements to motion compensation unit 72. Video decoder 30 may
receive the syntax elements at the video slice level and/or the video block level.

[8199] When the video slice 13 coded as an intra-coded (1) slice, intra prediction unit 74
may generate prediction data for a video block of the current video slice based on a
signaled intra prediction mode and data from previously decoded blocks of the current
frame or picture. When the video frame ts coded as an inter-coded (i.e., B, P or GPB)
slice, motion compensation unit 72 produces predictive blocks for a video block of the
current video slice based on the motion vectors and other syntax elements received from
entropy decoding unit 70. The predictive blocks may be produced from one of the
reference pictures within one of the reference picture lists. Video decoder 30 may
construct the reference frame lists, List O and List 1, using default construction
techniques based on reference pictures stored in reference picture memory 82. Motion
compensation unit 72 determines prediction information for a video block of the current
video slice by parsing the motion vectors and other syntax elements, and uses the
prediction information to produce the predictive blocks for the current video block
being decoded. For example, motion compensation unit 72 uses some of the received
syntax elements to determine a prediction mode {(e.g., intra- or inter-prediction) used to
code the video blocks of the video slice, an inter-prediction slice type {e.g., B slice, P
slice, or GPB slice), construction information for one or more of the reference picture
lists for the slice, motion vectors for each inter-encoded video block of the slice, inter-
prediction status for each inter-coded video block of the slice, and other information to

decode the video blocks in the current video slice.
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[0230] Motion compensation unit 72 may also perform interpolation based on
interpolation filters. Motion compensation unit 72 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 72
may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0261] Inverse quantization unit 76 inverse quantizes, 1.¢., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
70. The inverse quantization process may include use of a quantization parameter QPy
calculated by video decoder 30 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied.

8202} Inverse transform unit 78 applies an inverse transform, e.g, an inverse DCT, an
inverse integer transforrs, or a conceptually similar inverse transform process, to the
(0203} After motion compensation unit 72 generates the predictive block for the current
video block based on the motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks from inverse transform
unit 78 with the corresponding predictive blocks generated by motion compensation
unit 72. Summer 80 represents the component or components that perform this
summation operation. If desired, a deblocking filter may also be applied to filter the
decoded blocks in order to remove blockiness artifacts. Other loop filters {either in the
coding loop or after the coding loop) may also be used to smooth pixel transitions, or
otherwise improve the video quality. The decoded video blocks in a given frame or
picture are then stored in reference picture memory 82, which stores reference pictures
used for subsequent motion corupensation. Reference picture mernory 82 also stores
decoded video for later presentation on a display device, such as display device 32 of
FIG. 1.

02034} Video decoder 30 of FIG. 6 represents an example of a video decoder that may
be configured to perform any of the various techniques of this disclosure for enhanced
CABAC, alone or in any combination. Hence, the techniques described above may be
performed by video encoder 20 (FIGS. 1 and 4) and/or video decoder 30 (FIGS. 1 and
5}, both of which may be generally referred to as a video coder. Likewtse, video coding

may refer to video encoding or video decoding, as applicable. Various components of
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video decoder 30, such as entropy decoding unit 70, may implement the enhanced
CABAC techniques of this disclosure to perform context modeling. According to
various aspects of this disclosure, entropy decoding unit 70 may perform context
modeling for the i-th bin of a transform coefticient using the values of the i-th bins of
one or more previously-decoded transform coefficients. Said another way, the context
modeling of the i-th bin for a current transform coefficient is dependent on the values of
the corresponding i-th bins of one or more transform coefficients that entropy decoding
unit 70 has already decoded.

02085 By performing context modeling for a bin of a current transtorm coefficient
using the values of i-th bins of previcusly-decoded transtform, entropy decoding unit 70
may implement the techniques of this disclosure to provide one or more potential
improvements over existing CABAC coders. As an example of such a benefit, entropy
decoding unit 70 may improve the paralielization of the context modeling operation by
implementing the techniques of this disclosure. More specifically, entropy decoding
unit 70 may perform context modeling, in parallel, for multiple bins of a transform
coefficient currently being decoded. For instance, if entropy decoding unit 70
determines that bin values corresponding to multiple bins are available from previously-
decoded transform coefficient(s), then entropy decoding unit 70 may at least partially
parallelize the context modeling operations for the bins of the transform coefficient
being decoded currently.

18206} Entropy decoding unit 70 may perform the parallelized context modeling of this
disclosure in accordance with a multi-pass coding scheme. More specifically, a multi-
pass coding scheme refers o a coding technique by which entropy decoding unit 70
asstgns separate threads to each particular bin (e g, thread 1 for the first bin, thread 2
tor the second bin, and so on). Thus, according to multi-pass coding, all bin0 instances
can be decoded in sequence, independently of the binl 1nstances that are decoded 1n
sequence, both of which are decoded independently of the bin2 instances that are
decoded in sequence, etc. In some examples, entropy decoding unit 70 may perform the
multi-pass coding with respect to transform units of single block. Muoreover, for bins
that are decoded according to the regular mode, entropy decoding unit 70 may perform
several decoding passes. Each pass may pertain to a single corresponding bin of ali
transform coetlicients. In other words, during each pass, entropy decoding unit 70 does
not utilize information relating to the other passes. For instance, entropy decoding unit

70 may decode the first bin (if needed) of all transform coefficients within one
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transform unit/CG in a first pass. In this example, in a second pass, entropy decoding
unit 70 may decode the second bin of all transtform coefficients within one transform
unit/CG, if needed, and so on.

18207} In one example use case, entropy decoding unit 70 may perform context
modeling for bin0 of a currently-coded transform coetlicient using the value of hin0 of
the previously-coded neighboring transform coefficient, perform context modeling for
binl of a currently-coded transtorm coefficient using the value of binl of the
previously-coded neighboring transform coefficient, and so on. Using any bin values
that are available for the previously-coded transform coefficient, entropy decoding unit
70 may perform the context modeling for multiple bins of the currently-coded transform
coefficient in parallel. In the use case scenario described above, if bin0 and binl are
both available from the previously-coded neighbor transform coetficient, then entropy
decoding unit 70 may paralielize the context modeling of bin0 and binl for the
currently-coded transform coefficient. In this manner, entropy decoding unit 70 may
implement the techniques of this disclosure to perform CABAC within the tenets of
multi-pass coding as described in HEVC, while improving the context selection tor bins
of a current transform coefficient by enabling and potentially exploiting parallelization
of context modeling operations.

18268} It will be appreciated that entropy decoding unit 70 can, but may not necessarily,
perform the entire context modeling of all such bins in parallel. More specifically,
entropy decoding unit 70 may perform some portions of the context modeling of
multiple bins concurrently. In this way, entropy decoding unit 70 may implement the
techniques of this disclosure to draw upon multicore processing technology and/or
multiple processors to improve the context modeling operations for a currently-coded
transform coefficient.

{9268} By decoding corresponding bins of different transtorm coefficients in a single
pass, entropy decoding unit 70 may provide one or more advantages over existing multi-
pass CABAC techniques. For instance, by decoding the corresponding bins {e.g., the
respective bin0) of multiple transform coefficients in a single pass, entropy decoding
unit 70 may circumvent the need to store and retrieve a new context model frequently at
bin transitions. Instead, entropy decoding unit 70 may use a single context model across
a given pass, because the pass targets the corresponding bins (e.g., the respective bin0)
across multiple transform coefficients. In this way, entropy decoding unit 70 may

implement the parallelized context selection techniques of this disclosure to mitigate or



WO 2016/196369 “l PCT/US2016/034828
potentially eliminate time delays and resource churn that arise from frequent context-
switching. In contrast, existing multi-pass coding would require frequent context model
save- and retrieve- operations, because of decoding bin0, binl, bin2, etc. for a first
transform coefticient, and then decoding bin0, binl, bin2, etc. for a second transform
coefficient, and so on.

{6218} For instance, entropy decoding unit 70 may generate or otherwise access one or
more pre-defined teraplates to use for the i-th bin context modeling functionalities
described herein. One non-limiting example of a pre-defined template that entropy
decoding unit 70 may use for context modeling of an i-th bin of a currently-coded
transform coefficient is illustrated in FIG. 10, A pre-defined template, such as template
140 of FIG. 10 defines a diagonal scan order for an 8x8 transform block, where ‘L
denotes the last significant scan position, ‘%’ denotes the current scan position, and “x”
denotes the neighbors covered by local template 140, With respect to x;, the value of “t”

15 in the range of zero through 4, and the range constraint 1s expressed as 1 € {0,4]. In

accordance with ong or more aspects of this disclosure, entropy decoding unit 70 may

use the i-th bins of transform coefficients located in local template 140 for context
modeling of the corresponding i-th bin of a transform coefficient that is being decoded
currently. According to some implementations, entropy decoding unit 70 may use
multiple teraplates to perform the parallelized bin context modeling of this disclosure.

In one example, the template size and/or shape is dependent on one or more of the

tollowing criteria: (1) the size of transform units; (ii) modes; or (3it) the position of the

current transform coefficients within the current transform unit or coefficient group

(CG).

(6211} By using one or more pre-defined templates to traverse a previously-coded TU

tor bin values, entropy decoding unit 70 may implement the techniques of this

disclosure to provide one or more enhancements over existing CABAC technology. For

instance, by using a TU traversal template, such as local template 140 of FIG. 10,

entropy decoding unit 70 may circurmvent the need to separately determine a traversal

scheme with respect to different coding passes. Thus, by implementing the template-
based parallelized context selection techniques of this disclosure, entropy decoding unit

70 may ncrease throughput with respect to bin coding, while maintaining coding

precision.

8212} According to another example implementation, entropy decoding unit 70 may

only apply the parallelized context modeling techniques of this disclosure to the first 'K’
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where ‘M’ denotes the upper bound of the available bin indexes. Entropy decoding unit
70 may decode the rernaining (M+1-K) bins are coded using another context modeling
technique, or according to bypass mode.

18213} According to another example iroplementation, entropy decoding unit 70 may
define the universe of previously-coded transtorm coefficients as the "IN’ consecutive
transform coefficients in the decoding order within the current transform unit or CG
before the transform coefficient currently being decoded. Alternatively, entropy
decoding unit 70 may determine N to be a variable. In one example, entropy decoding
unit 70 may determine the value of N dependent on the relative position of the
currently-decoded transform coefficient in the current transtorm unit. In another
example, entropy decoding unit 70 may determine the value of N such that N is
dependent on the transtorm unit size.

18214} In another implementation, entropy decoding unit 70 may define the universe of
previously~decoded transform coefficients as those transform coefficients positioned at
the neighborhood of the current position within the current transform unit or CG. In one
exampie, the neighborhood of the current position is constrained to those positions
directly adjacent to the current position, or positions either directly adjacent to or
separated from the current position. In another example, the neighborhood may also
include these positions, but expand to include positions in one or more spatial
neighboring transform units.

18215} In accordance with various aspects of this disclosure, entropy decoding unit 70
may define the context index of a bin as a function of values associated with one or
more previcusly-coded transform coetficients. For instance, entropy decoding unit 70
may use a function that yields the sum of all i-th bin values of the previcusly-coded
transform coefficients. More specifically, 1o this example, entropy decoding unit 70
may perform a summation of the values of the available i-th bin values of all previcusly-
decoded transtorra coefficients of the TU/CG. In turn, entropy decoding unit 70 may
use the resulting sum as the context index (Ctldx) during context modeling for the i-th
bin of the currently-coded transform coefticient. In another example, entropy decoding
unit 70 may define a cut-off value. In this example, when the output of the function
exceeds the pre-defined cut-off value, entropy decoding unit 70 may use the same
context with respect 1o the bin currently being coded. In some examples, entropy

decoding unit 70 may determine the cut-off value is based on (or to be dependent upon)
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the bin index/transform unit size/coding mode/the transform coefficient position within
one transform unit.

19216} In some examples, entropy decoding unit 70 may decode the corresponding bins
coded in different passes such that these bins share the same context models. In one
exarmple, entropy decoding unit 70 may determine that the context index derivation
method, e.g the function to calculate the context index, for bins in different passes are
different. According to one example, entropy decoding unit 70 may determine that the
context index derivation method, e.g. the function to calculate the context index, for
bins in different passes may be the same.

8217} According to some aspects of this disclosure, entropy decoding unit 70 may
keep the context index derivation rule unchanged for the same pass in different sizes of
transtform units. However, entropy decoding unit 70 may apply an offset to the context
index to perform context modeling for the currently-coded bin. For instance, entropy
decoding unit 70 may determine that two different transform sizes have two sets of
context models. In turn, entropy decoding unit 70 may define the offset as the number
of context models in one such set. For instance, if entropy decoding unit 70 determines
that the TU stze 1s less than a square of predefined dimensions MxM, then entropy
decoding unit 70 may determine that each such TU (smaller than MxM) TU size has its
own respective set of context models. Conversely, entropy decoding unit 70 may
determine that all TUs with sizes equal to or larger than MxM share the same set of
context models.

16218} In various use case scenarios, entropy decoding unit 70 may set the value of M
at 16. More specifically, in these examples, if entropy decoding unit 70 determines that
the size of the currently-coded TU is less than a 16x16 square, then entropy decoding
unit 70 may determine that the currently-coded TU has is associated with a set of
context models that corresponds to the TU’s particular size.  Conversely, if entropy
decoding unit 70 determines that the currently-decoded TU has a size that equal to or
larger than 16x 16, then entropy decoding unit 70 may determine that the currently-
coded TU shares the same set of context models with all other TUs that have a size
equal to or greater than 16x16. In some examples, entropy decoding unit 70 may apply
the TU size-based context selection only to luma blocks.

18219} According to some examples, the Rice parameter used for coding the remaining
bins is dependent on transform size. Alternatively, or in addition, the Rice parameter

may be dependent on coding mode. In one example, instead of using Golomb-Rice
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code for coetf abs level remaining, entropy decoding unit 70 mayv use other
binarization techniques. Alternatively, or in addition, more than one binarization
method may be applied for coding the coeff_abs level remaining syntax elernent. In
one example, the binarization method {(e.g., Rice parameter) used for coding
coeftf abs level remaining is dependent on coding modes.  Alternatively, the
binarization method (e.g., Rice parameter) used for coding coeff abs level remaining
may be dependent on the relative position within one TU. Alternatively, the binarization
method (e.g, Rice parameter) used for coding coeftf abs level remaining may be
dependent on the distance from the first coded/decoded transform coefficient in scan
order. In some instances, the binarization method (e g., Rice parameter} used for coding
coeff abs level remaining is dependent on coding group position relative to the
transform unit.
18228} According to some aspects of this disclosure, entropy decoding unit 70 may
determine the coefficient group (CG) size based on the transform size. In other words,
according to these aspects, the CG size is dependent on transform size. Alternatively, or
in addition, entropy decoding unit 70 may determine the CG size based on the coding
mode. In these examples, entropy decoding unit 70 may determine the CG size as being
dependent on one or both of the transform size and/or the coding mode. Alternatively,
or 1o addition, entropy decoding unit 70 may determine the CG size based on a
transform matrix.
18221} According to some aspects of this disclosure, entropy decoding unit 70 may also
apply the parallelized context modeling techniques to blocks that are encoded using
transform bypass mode (also referred to as “transform skip mode”™). Transform bypass
mode refers to a coding mode according to which video decoder 30 may skip the tnverse
transform and inverse quantization operations of decoding, to process a losslessly-
encoded portion of a video bitstream. Thus, according to certain aspects of this
disclosure, entropy decoding unit 70 may expand the parallelized context selection
technigques to provide the potential resulting advantages 1n instances where the received
encoded video bitstream is losslessly encoded.
06222} Example details of various transform coefficient context modeling technigues of
this disclosure are discussed below in further detail. One example of context modeling
in accordance with multi-pass coding 1s described below. According to this example,
entropy decoding unit 70 may apply the coding elements and coding order (multiple

pass coding, and CG-based) as laid out in HEVC. In addition, entropy decoding unit 70
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may apply the binarization techniques while keeping the magnitudes of the transform
coefficients unchanged However, entropy decoding unit 70 may modity the context
index and Rice parameter calculation method for coding maguoitudes of the transform
coefficients.

[8223] The context index calculation for bin0 (significant flag) is dependent on the
tollowing information: the number of non-zero coefticients in the template (i.e.,
magnitudes of coefficients are larger than 0); the position of the current coefficient
within the current TU; the TU size for the luma component; and the color components.
With respect to the color component dependency, the luma and chroma are considered
separately. Additionally, in considering the TU size for the luma component, the
context index calculation is independent with TU size for luma. The TU size of the
luma component may include three sets, namely, 4x4 TU, 8x8 TU, 16x16 and above
TUs.

18224} For binl and bin2 {Grt thao 1, Grt than 2), the context index calculation is
dependent on the following information: the number of absLevels in the template larger
than 1 (for binl) and larger than 2 (for bin2}); the position of the current coefficient
within the current TU, and the color components. The Rice parameter derivation
process is dependent on bypass coding information, and on the value of the

sum_absolute levelMinus! syntax element.

8225} In one example, entropy decoding unit 70 may define the function
sum_template(k) to return the number of coefficients in a template, such that that the
magnitudes of the coefficients are larger than & An example of the sum femplarte(k)
function is as follows:

sum__template(k} = 2 é, (xl. , k)

with S, (x, k) = JL i |X,. > lj >
: Uoox =x

Additionally, in this example, entropy decoding unit 70 may define a function fix, y, #,
¢ to handie the position information and another function &, {u, v} to handle the

component information as follows:

'

f (x?ly’ﬁ, f): ({. |
0 x+y=t
5/?/’: y = {
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10226} FIG. 10 depicts one example of a template (local template 140} that entropy
decoding unit 70 may use with respect to the context modeling techniques described
herein. The current transtform coefficient is marked as “X’ and the five spatial neighbors
are marked as ‘X;’ {(with ‘0 representing an integer from O through 4). If any one of the
following conditions s satisfied, then entropy decoding unit 70 may mark X; as
unavailable and not used in the context index derivation process:

» the position of X;and current transform coefficient X are not located in the same
transform unit; or

» the position of Xi i1s located outside of the picture’s horizontal or vertical
boundaries; or

» the transform coefficient X has not yet been coded yet. In the case of multi-pass
coding, whenever the bins in the same coding pass are coded, the bins could be
used in the context index dertvation process. Therefore, from a decoding

perspective, it 18 not necessary to fully decode one transform coefficient.

18227} Alternatively, entropy decoding unit 70 may apply one or more other templates

that can include the information from a neighboring transform unit. In various

exarnpiles, the neighboring TU may be a spatial neighbor or a temporal neighbor,

According to one or more of the context modeling techniques described herein, the

context index calculations may be defined as described n the following paragraphs.

16228} With respect to bin0, entropy decoding unit 70 may derive the context index as

follows:

¢, = mindsum_template (0), 5)-%— Fx, ve, 2} +3, ( Fx, y,é,ﬁ), cldx}+ offset {(cldx, widith))
¢, = ¢, +offset{cldx, width

where

offset (v, w) =

J' w ==470: (w ==87 NumberLuma( ixOneset - NumberLumaCitxOneset *2) v=0

]n NumberLumaCixOneset *3 =0

8229} In one example, based on the range of ¢, one set of luma contexts may include a

number of context models that equals the value of NumberL.umaCitxOuneset. For

instance, the set of luma contexts may include 18 context models. With respect to

different transform sizes (with the transform width denoted by “w’) for coding luma

bin0s, entropy decoding unit 70 may select a different set for each transform size. In

addition, chroma and luma contexts are separated to further improve the coding
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performance. For YCb{Cr inputs, the three color components, i.e., Y, Cb and Cr are
represented with component index v equal to 0, 1, and 2, respectively.
10236} In these examples, entropy decoding unit 70 may derive the context index for
binl as foliows:
C = min(sum_temp[az‘e (1), 4}+1 /

¢, = +0, (j(x, }’,5,3); ddx} +0, (f (x, v,51 O}, ddx)
Additionally, in these examples, entropy decoding unit 70 may derive the context index
for binZ as follows:

c, :mim(sum_iemplaw (2), 41+ N

c,=¢, +0, {f (x, }/,5,3), c[dx)+ J, ( f (x v,5,10} c]dx}
(0231} In one example, N is equal to 0. In another example, N is equal to 1.
Alternatively, or in addition, when N s equal to 1, entropy decoding unit 70 may code
the first binl or bin2 with the context index ¢l or ¢2 equal to 0. In this example,
entropy decoding unit 70 may code the other instances of binls and bin2s according to
the equations above.
[0232] In one example, entropy decoding unit 70 may decode binl and bin2 with the
same set of context models, but with different indices. Alternatively, bint and bin2 are
coded with two sets of context models and no dependency between them exists. For the
remaining bins, entropy decoding unit 70 may apply the design laid out in HEVC or the
design in JCTVC-HO228. In various examples, entropy decoding unit 70 may use
different constant values in building the various functions described above.
16233} Additional aspects of this disclosure are directed to context initialization
enhancements. The context initialization enhancements of this disclosure may be
implemented independently of the parallelized context selection techniques described
above, or may be implemented in combination with any one or more of the parallelized
context selection techniques described above. One or more of the context initialization
technigues of this disclosure are directed to reusing context information from
previously~-decoded information. For instance, entropy decoding unit 70 may inherit, or
otherwise derive, the context information for a slice by copying a status from a
previously-decoded slice, which may belong to the current picture or a previously-
decoded picture.
[8234] By inheriting the context initialization information from a previously-decoded

slice, entropy decoding unit 70 may implement the techniques of this disclosure to
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provide enhanced accuracy as compared to existing CABAC context initialization
techniques. For instance, existing CABAC context initialization techniques rely on
obtaining countext status information from a table. However, the table is formed using
static information. However, according to the inheritance-based context initialization
techniques of this disclosure, entropy decoding unit 70 may draw context tnitialization
information from a previously-decoded slice that is of the same slice type and/or has the
same quantization parameters ((3Ps) as the slice currently being decoded. In this way,
entropy decoding unit 70 may implement the techniques of this disclosure to improve
the accuracy of the context imitialization information used for a current slice.
(8235} According to some implementations, entropy decoding unit 70 may identify the
center LCU of a previously-decoded slice as the slice from which to inherit the context
initialization information.  In various examples, entropy decoding unit 70 may inherit
context initialization for multiple slices of the current picture from multiple
corresponding previousty-decoded slices. In one example, entropy decoding unit 70
may use the same block (namely, the center LCU) of the previously-decoded picture
trom which to inherit the context initialization information for all of the multiple slices
decoded according to the context initialization techniques of this disclosure. In another
example, entropy decoding unit 70 may inherit the context initialization information for
each of the multiple slices from the respective center LCU from each of the
corresponding slices of the previously-decoded picture.
18236} For instance, after decoding the center LCU of the previously-decoded picture,
entropy decoding unit 70 may store all of the status information with respect to slice
context initialization. In turn, entropy decoding unit 70 may access or read the copied
status information and use the status information for initializing the context for one or
more slices of the picture currently being decoded. By using the status information
tfrom a previously-decoded picture to perform context initialization for slices of a
current picture, entropy decoding unit 70 may reduce the reliance on a fixed table of
static information for the purpose of context initialization. For instance, after using the
fixed table to initialize context for slices of a first picture, as well as for any intra-coded
pictures, entropy decoding unit 70 may perform context initialization for inter-coded
pictures that are decoded subsequently. Entropy decoding unit 70 may implement the
inheritance-based context initialization techniques of this disclosure with respect to P

slices and/or B slices.
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16237} Additional example details for the context inttialization techniques of this
disclosure are described below. Entropy decoding unit 70 may, additionally or
alternatively, be configured to perform techniques according to this disclosure for
context initialization, as discussed below. Entropy decoding unit 70 may implement the
context initialization techuniques of this disclosure to inherit the context information after
encoding one block located in a previously-decoded picture as the initialized context
information for coding the current slice. Entropy decoding unit 70 may apply the
inheritance-based context initialization techniques to P and/or B slices. Additionally, the
position of the “one block’ referred to above 1s pre-defined and fixed for one whole
sequence. For instance, the largest coding unit size (LCU) is denoted by “NxN,” the
picture width 1s denoted by “W,” and the picture height is denoted by “H.” In this
example, the number of LCUs within one LCU row, denoted by “PicWidthInCtbsY, 1
equal to the output of a ceiling function, namely, Ceil{ W + N ). Additionally, in this
exarnpile, the number of LCU rows, denoted by “PicHeightInCtbsY,” is equal to Cetl{ H
-+ N ) where the ceiling function Ceil (x} represents the smallest integer greater than or
equal to x.

18238} According to some examples, the position is defined as the central LCU of the
first slice in the previously-decoded picture. Supposing the numLCUinSlice represent
the LCU number in the first slice, the position is defined as: TargetCUAddr =
numLCUinSlice/2. In one example, the position is defined as: TargetCUAddr =
(PicWidthinCths Y™ PicHeightInCibsY)/2 + PicWidthinCtbsY /2. Furthermore, when
TargetCUAddr 1s equal to or larger than (PicWidthInCtbsY™ PicHeightInCtbsY), {e.g.,
PicHeightIinCthsY 1s equal to 1}, TargetCUAddr s reset to (PicWidthinCtbsY*
PicHeightInCibsY - 1), which ts corresponding to the last LCU. In one example, the
position 1s defined as the last LCU of the previously coded picture, or the center LCU
within one frame (1.e., PicWidthinCtbs Y™ PicHeightInCthsY/2), or the last LCU of the
center LCU row (i.e., PicWidthInCibs Y™ (PicHeightinCtbsY/2) - 1}, or the last LCU of
the k-th LCU row {(e.g., kis equal to 1), According to one example, the position is
defined as the last LCU of the first slice in the previously-decoded picture.  According
to some implementations of the context initialization technigues of this disclosure,
different resolutions may have different definitions of the position of the coding block.
10239} In some examples, entropy decoding unit 70 may obtain the position of the ‘one
block” from in a parameter set, such as a sequence parameter set (SPS) or a picture

parameter set (PPS) that is signaled in the encoded video bitstream. Parameter sets,
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such as SPSs and/or PPSs, can be signaled out-of-band with respect to slices of the
current picture. In some examples, the position of the “one block’ can be signaled in a
slice header. A slice header may be signaled in-band with respect to a corresponding
slice. In these and other examples, the indication of the previousty-decoded picture,
such as a reference picture index, a corresponding picture order count difference (or
delta POC), may be signaled in a parameter set or slice header.

0240} In some examples, a ‘previcusly-coded picture’ is defined as a picture which is
decoded just (immediately} before the current picture. In some examples, a ‘previously-
coded picture’ 1s defined as a picture which is the last picture decoded before the current
picture, such that a first slice in the previous picture has the same slice type to the
current slice. According to some examples, a ‘previcusly-coded picture’ 1s defined as
the picture which is the decoded picture before the current picture and the first slice in
the previous picture has the same initialized quantization parameters to the current slice.
According to some examples, a ‘previousiy-coded picture’ 1s defined as a picture
containing a previously coded slice which has the same slice type, or both the same slice
type and quantization parameter(s), or both the same slice type and temporal layer, as
the current slice and/or the same initialized guantization parameters. In some examples,
a ‘previously-coded picture’ s defined as a picture that is present in a picture buffer
(such as a decoded picture butfer), and may be used for the current picture as a
reference picture. According to these examples, as in HEVC based platform, the
previous shice must belong to a picture in a reference picture set (RPS), or a picture in
one of the following subsets of the RPS: RetPicSetStCurrBefore, RefPicSetStCurrAtter,
and RetPicSetLtCurr.

6241} According to some implementations of the context initialization techniques of
this disclosure, if all of the pictures coded atter one intra-coded picture in display order
do not have the same slice types and same initialized quantization parameters, then the
inheritance of context information may be disabled. In this case, the conventional
initialization method is apphied, e.g., entropy decoding unit 70 may use the fixed table
from which to draw initialization status information. According to some
implementations, entropy decoding unit 70 may apply the inheritance-based context
initialization techniques of this disclosure to specific context models, and not to other

context models. In addition, or alternatively, the position of the “one block” may be

o
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implementation options listed above may be implemented individually or in various
combinations, in accordance with the context initialization techniques of this disclosure.
10242} In some examples of the context initialization techniques of this disclosure, if
entropy decoding unit 70 determines that the cabac_init present flag is enabled, then
entropy decoding unit 70 may determine that a slice included n the “previously-decoded
picture’ should have the same type as the currently-encoded slice. Said another way, in
this example, if the cabac_imit present flag is enabled, then the definition of a
previously-decoded picture is dependent on matching slice types. Additionally, from a
decoding standpoint, the signaled cabac init flag is not taken into consideration
according to this implementation. In some instances, alternatively, entropy decoding
unit 70 may first modify the shice type of the current slice based on cabac init flag and
a selection of the ‘previously-decoded picture’.

106243} Additional example details for the context initialization techniques of this
disclosure are described below. According to some implementations, entropy decoding
unit 70 may not apply the inheritance-based context initialization techniques of this
disclosure with respect to Intra Random Access Pictures (IRAP). For instance, entropy
decoding unit 70 may not implement the inheritance-based context initialization
techniques with respect to any of the three types of IRAPs, namely, instantancous
decoding refresh (IDR) pictures, clean random access (CRA) pictures, and broken link
access (BLA) pictures.

18244} In one example of the inheritance-based context initialization based on
previcusly coded information, entropy decoding unit 70 may decode one picture with
one slice. In this example, entropy decoding unit 70 may apply one or more of the
following rules to derive the initialized states of context models. A first rule is that the
slice of the previously-decoded picture has a slice type that is the same as the slice type
tor the currently-decoded shice. Alternatively, or in addition, the inttialized slice
quantization parameter (QP) is the same as the slice QP used for coding the currently-
decoded slice. In some instances, entropy decoding unit 70 may record state
information {e.g., the states} after decoding one block with a pre-defined address in the
previously-decoded picture, and use the recorded state information as the initialized
state information for the currently-decoded slice.

8245} In one example, ‘one block’ represents a largest coding unit {LCU). For
instance, the LCU size {dimensionality)} may be denoted by ‘NxN,’ the picture width by

‘W.” and the picture height by ‘H.” The number of LCUs within one LCU row may be
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denoted by PicWinCtbsY, and is equal to the output of the ceilling function

Ceill W + N} The number of LCU rows in the picture, denoted by PicHInCtbsY, is
equal to to the output of the cetling function Ceill{f H+ N ) Generically described, the
function Cetl (x) returns the smallest integer greater than or equal to x. Additionally,
the width of the picture, measured 10 units of LCUs, and the height of the picture,
measured in LCUs, are represented respectively by the PicWinCtbsY and PicHInCtbsY
values obtained using the ceiling functions described above. In one example, the
address of the LCU is defined according to the following equation:

Target CUAr = (PicWInCtbsY * PicHInCtbsY)/2 + PicWinCtbsY/2

0246} Furthermore, when TargetCUAddr 15 equal to or larger than the value of
(PicWinCtbsY* PicHInCthsY), entropy decoding unit 70 may reset TargetCUAddr s
reset to the value of (PicWiInCtbsY* PicHInCtbsY - 1). For instance, TargetCUAddr
may equal or exceed the above value 10 cases where PicHInCtbsY 15 equal to 1.
Additionally, the value of (PicWInCtbsY™ PicHInCibsY - 1} corresponds to the last
LCU in one picture.

18247} In some instances, furthermore, entropy decoding unit 70 may not apply the
rules-based context initialization techniques described above for the first one or more
pictures afier a new intra-coded picture in display order. An example where entropy
decoding unit 70 may not apply the rules-based context initialization is where entropy
decoding unit 70 encounters a new slice type or a new QP (e.g., the new slice type or
new QP has appeared) for the first time. For instance, entropy decoding unit 70 may
mitigate or potentially avoid issues related to random access. An example of this
technique is shown in FIG. 9, in which the decoding order for pictures with picture
order count (POC) values from 28 to 35 is as follows: 32, 28 30, 29, 31, 40, 36, 34,
33,35

08248} In terms of display order, the picture with a POC value equal to 40 1s the first
picture that is decoded after the I-picture with a POC value equal to 32, Although the
picture with the POC value of 24 has the same QP as the picture with POC equal to 40,
and both share the same slice types, entropy decoding unit 70 may not predict the
picture with POC value equal to 40 using the coded information of the picture with POC
equal to 24, Similarly, entropy decoding unit 70 may not reconstruct the picture with
POC equal 1o 33 using the information decoded with respect to the picture with POC

equal to 31, However, entropy decoding unit 70 may reconstruct the picture with POC
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equal to 35 using the coded information of the picture with POC equal to 33, because
both pictures are subsequent (in display order) to the I-picture.

19248} In instances where reconstruction using previously-decoded pictures 1s
disallowed, disabled, or otherwise not available to entropy decoding unit 70, entropy
decoding unit 70 may apply the context inttialization techniques as defined in HEVC.
As described above, video decoder 30 of FIG. 6 represents an example of a video
decoding device that is configured to perform any of the various techniques of this
disclosure for enhanced CABAC, alone or in any combination,

18250} FIG. 7 is a block diagram of an example entropy decoding unit 70 that may be
configured to perform CABAC in accordance with the techniques of this disclosure.
Entropy decoding unit 70 of FIG. 7 is one example implementation of entropy decoding
unit 70 of FIG. 6. In various examples, entropy decoding unit 70 performs CABAC in
an inverse manner as that of entropy decoding unit 70 described in FIG. 5. Coded bits
from bitstream 218 are input into entropy decoding unit 70. The coded bits are fed to
either context modeler 220 or bypass coding engine 222 based on whether or not they
were entropy coded using bypass mode or regular mode. If the coded bits were coded in
bypass mode, bypass decoding engine will use Golomb-Rice or exponential Golomb
decoding, for example, to retrieve the binary-valued syntax elements or bins of non-
binary syntax elements.

(6251} I the coded bits were coded in regular mode, context modeler 220 may
determine a probability model for the coded bits and regular decoding engine 224 may
decode the coded bits to produce bins of non-binary valued syntax elements (or the
syntax elements themselves if binary-valued). After the context model and probability
state ¢ is determined by context modeler 220, regular decoding engine 224 performs
BAC on the bin value.

19252} FIG. 515 a block diagram of an example entropy decoding unit 70 that roay be
configured to perform CABAC in accordance with the techniques of this disclosure. A
syntax element 118 is input into the entropy decoding unit 70, If the syntax element is
already a binary-value syntax element (e.g., a flag or other syntax element that only has
a value of 0 and 1), the step of binarization may be skipped. H the syntax element is a
non-binary valued syntax element (e.g,, a syntax element that may have values other
than I or 0), the non-binary valued syntax element is binarized by binanizer 120
Binarizer 120 performs a mapping of the non-binary valued syntax element into a

sequence of binary decisions. These binary decisions are often called “bins.” For
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example, for transform coefficient levels, the value of the level may be broken down
into successive bins, each bin indicating whether or not the absolute value of coefficient
level is greater than some value. For example, bin 0 (sometimes called a significance
flag) indicates if the absolute value of the transform coefficient fevel is greater than 0 or
not. Bin 1 indicates if the absolute value of the transform coefficient level 15 greater
than 1 or not, and so on. A unigue mapping may be developed for each non-binary
valued syntax element.

18253} Each bin produced by binarizer 120 is fed to the binary arithmetic coding side of
entropy encoding unit 56. That is, for a predetermined set of non-binary valued syntax
elements, each bin type (e.g., bin 0) is coded before the next bin type (e.g., bin 1}.
Coding may be performed in either regular mode or bypass mode. In bypass mode,
bypass coding engine 126 performs arithmetic coding using a fixed probability model,
for example, using Golomb-Rice or exponential Golomb coding. Bypass mode is
generally used for more predictable syntax elements.

02584} Coding in regular mode tnvolves performing CABAC. Regular mode CABAC
is for coding bin values where the probability of a value of a bin can be reconstructed
given the values of previcusly-decoded bins. The probability of a bin being an LPS 18
determined by context modeler 220, Context modeler 220 outputs the bin value and the
probability state for the context model (e.g., the probability state o, including the value
of the LPS and the probability of the LPS occurring). The context model may be an
initial context model for a series of bins, or may be determined based on the values of
previcusly reconstructed bins. As described above, context modeler 220 may update the
state based on whether or not the recetved bin was the MPS or the LPS. After the
context model and probability state o is determined by context modeler 220, regular
decoding engine 224performs BAC on the bin value.

19255} Context modeler 220 may implement the techniques of this disclosure to
perform context modeling in a parallelized manner. According to various aspects of this
disclosure, context modeler 220 may perform context modeling for the i-th binof a
transform coefficient using the values of the i-th bins of one or more previously-
decoded transform coefticients. In this way, the context modeling of the i-th bin for a
current transform coefficient 1s dependent on the values of the corresponding i-th bins of
one or more transform coefficients for which context modeler 220 has already selected

the context.
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0236} By performing context modeling for a bin of a current transform coefficient
using the values of i-th bins of previcusly-decoded transform, context modeler 220 may
implement the techniques of this disclosure to provide one or more potential
improvements over existing CABAC coding devices. As an example of such a benefit,
context modeler 220 may improve the parallelization of the context modeling operation
by implementing the techniques of this disclosure. For instance, context modeler 220
may perform context modeling, in parallel, for multiple bins of a transform coefficient
currently being decoded. As one example, if context modeler 220 determines that bin
values corresponding to multiple bins are available from previously-decoded transtorm
modeling operations for the bins of the transform coefficient being decoded currently.
19257} Context modeler 220 may perform the parallelized context modeling of this
disclosure in accordance with a multi-pass decoding scheme. More specifically, a
multi-pass decoding scheme refers to a decoding technique by which entropy decoding
unit 70 d assigns separate threads to each particular bin {e.g., thread 1 for the first bin,
thread 2 for the second bin, and so on). Thus, according to multi-pass coding, all bin0
instances can be decoded in sequence, independently of the binl instances that are
decoded in sequence, both of which are decoded independently of the bin2 instances
that are decoded in sequence, etc. In some examples, context modeler 220 may perform
the multi-pass decoding with respect to transform units of single block. Moreover, for
bins that are decoded according to the regular mode, context modeler 220 may perform
the context selection in multiple passes. Each pass may pertain to a single
corresponding bin of all transform coefficients. In other words, during each pass,
context modeler 220 does not utilize information relating to the other passes. For
instance, context modeler 220 may select the context for the first bin of all transform
coefficients within one transform unit/CG 1o a first pass. Tn this example, in a second
pass, context modeler 220 may select the context for the second bin of all transtorm
coefficients within one transform umit/CG, if needed, and so on.

[6258] In one example use case, context modeler 220 may perform context modeling
tor bin0 of a currently-coded transform coefficient using the value of bin0 of the
previcusly-coded neighboring transform coefficient, perform context modeling for binl
of a currently-coded transform coefficient using the value of bint of the previously-
coded neighboring transform coefficient, and so on. Using any bin values that are

avatlable for the previously-coded transform coefficient, context modeler 220 may
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perform the context modeling for multiple bins of the currently-coded transform
coefficient in parallel. In the use case scenario described above, if' bin0 and binl are
both available from the previously-coded neighbor transform coetficient, then context
modeler 220 may parallelize the context modeling of bin0 and binl for the currently-
coded transform coefficient. In this manner, context modeler 220 may implement the
techniques of this disclosure to perform CABAC within the tenets of multi-pass
decoding as described in HEVC, while improving the context selection for bins of a
current transform coefficient by enabling and potentially exploiting paralielization of
context modeling operations.

0259} It will be appreciated that context modeler 220 can, but may not necessarily,
perform the entire context modeling of all such bins in parallel. More specifically,
context modeler 220 may perform some portions of the context modeling of multiple
bins concurrently. In this way, context modeler 220 may implement the techniques of
this disclosure to draw upon multicore processing technology and/or multiple processors
to improve the context modeling operations for a currently-coded transform coefficient.
[0266] By decoding corresponding bins of different transtorm coefficients in a single
pass, context modeler 220 may provide one or more advantages over existing multi-pass
CABAC techniques. For instance, by decoding the corresponding bins (e.g., the
respective bin0) of multiple transform coefficients in a single pass, context modeler 220
may circumvent the need to store and retrieve a new context model frequently at bin
transitions. Instead, context modeler 220 may use a single context model across a given
pass, because the pass targets the corresponding bins (e.g., the respective bin0) across
multiple transform coefficients. In this way, context modeler 220 may implement the
parallelized context selection technigues of this disclosure to mitigate or potentially
eliminate time delays and resource churn that arise from frequent context-switching. In
contrast, existing multi-pass coding would require frequent context model save- and
retrieve- operations, because of decoding binQ, binl, bin2, etc. for a first transtorm
coefticient, and then decoding bin0, bini, bin2, etc. for a second transform coefficient,
and so on.

8261} For instance, context modeler 220 may generate or otherwise access one or more
pre-defined templates to use for the i-th bin context modeling functionalities described
herein. One non-limiting example of a pre-defined template that context modeler 220
may use for context modeling of an i-th bin of a currently-coded transform coefficient is

itlustrated in FIG. 10. A pre-defined template, such as template 140 of FIG. 10 defines a
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diagonal scan order for an 8x8 transform block, where “L denotes the last significant
scan position, ‘%’ denotes the current scan position, and “x;” denotes the neighbors
covered by local teraplate 140. With respect to xy, the value of “1” is in the range of zero
through 4, and the range constraint is expressed as i € {0,4]. In accordance with one or
more aspects of this disclosure, context modeler 220 may use the i-th bins of transform
coefficients located in local template 140 for context modeling of the corresponding i-th
bin of a transform coeflicient that is being decoded currently. According to some
implementations, context modeler 220 may use multiple templates to perform the
parallelized bin context modeling of this disclosure. In one example, the template size
and/or shape is dependent on one or more of the following criteria: (i) the size of
transform units; (i) modes; or (it1) the position of the current transform coefficients
within the current transform unit or coefficient group (CG).

16262} By using one or more pre-defined templates to traverse a previously-coded TU
for bin values, context modeler 220 may implement the techuiques of this disclosure to
provide one or more enhancements over existing CABAC technology. For instance, by
using a TU traversal template, such as local template 140 of FIG. 10, context modeler
220 may circumvent the need to separately determine a traversal scheme with respect to
different decoding passes. Thus, by implementing the template-based parallelized
context selection techniques of this disclosure, context modeler 220 mway increase
throughput with respect to bin decoding, while maintaining picture accuracy.

19263} According to another example implementation, context modeler 220 may only
apply the parallelized context modeling techniques of this disclosure to the first ‘K bins
of the currently-coded transform coetticient, where ‘K is smaller than M, and where
‘M’ denotes the upper bound of the available bin indexes. Context modeler 220 may
decode the remaining (M+1-K) bins are coded using another context modeling
technique, or according to bypass rmode.

18264} According to another example implementation, context modeler 220 may define
the universe of previously-coded transtform coefficients as the ‘N’ consecutive transform
transform coefficient currently being decoded. Alternatively, context modeler 220 may
determine N to be a variable. In one example, context modeler 220 may determine the
value of N dependent on the relative position of the currently-decoded transform

N

determine the value of N dependent on the transform unit size.
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0265} In another implementation, context modeler 220 may define the universe of
previously-decoded transtorm coefficients as those transtorm coefficients positioned at
the neighborhood of the current position within the current transform unit or CG. In one
example, the neighborhood of the current position is constrained to those positions
directly adjacent to the current position, or posttions either directly adjacent to or
separated from the current position. In another example, the neighborhood may alsc
include these positions, but expand to include positions in one or more spatial
neighboring transforn units.

18266} In accordance with various aspects of this disclosure, context modeler 220 may
define the context index of a bin as a function of values associated with one or more
previously-coded transform coefficients. For instance, context modeler 220 may use a
function that vields the sum of all i-th bin values of the previousiy-coded transtorm
coefficients. More specifically, in this example, context modeler 220 may perform a
summation of the values of the available 1-th bin values of all previcusly-decoded
transform coefficients of the TU/CG. In turn, context modeler 220 may use the
resulting sum as the context index (Ctldx) during context modeling for the i-th bin of
the currently-coded transform coefficient,

18267} According to some aspects of this disclosure, context modeler 220 may keep the
context index dertvation rule unchanged for the same pass 1n different sizes of transform
units. However, context modeler 220 may apply an offset to the context index to
perform context modehing for the currently-coded bin. For instance, context modeler
220 may determine that two different transform sizes have two sets of context models.
In turn, context modeler 220 may define the offset as the number of context models in
one such set. For instance, if context modeler 220 determines that the TU size 1s less
than a square of predefined dimensions MxM, then context modeler 220 may determine
that each such TU (smaller than MxM) TU size has its own respective set of context
models. Conversely, entropy decoding unit 70 may determine that all TUs with sizes
equal to or larger than MxM share the same set of context models.

[6268] In various use case scenarios, context modeler 220 may set the value of M at 16,
More specifically, in these examples, if context modeler 220 determines that the size of
the currentlv-coded TU 1s less than a 16x16 square, then context modeler 220 may
determine that the currently-coded TU has is associated with a set of context models
that corresponds to the TU’s particular size.  Conversely, if entropy decoding unit 70

determines that the currently-coded TU has a size that equal to or larger than 16x16,
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then context modeler 220 may determine that the currently-coded TU shares the same
set of context models with all other TUs that have a size equal to or greater than 16x16.
In some examples, context modeler 220 may apply the TU size-based context selection
only to luma blocks.

18269} According to some aspects of this disclosure, context modeler 220 may
determine the coefficient group (CG) size based on the transform size. In other words,
according to these aspects, the CG size 1s dependent on transform size. Alternatively, or
in addition, context modeler 220 may determine the CG size based on the coding mode.
In these examples, context modeler 220 may determine the CG size as being dependent
on one ot both of the transform size and/or the coding mode. Alternatively, orin
addition, context modeler 220 may determine the CG size based on a transform matrix.
18278} According to some aspects of this disclosure, context modeler 220 may also
apply the parallelized context modeling techniques can also to the blocks that are
decoded using transforro bypass mode (also referred to as “transform skip mode”).
Transtorm bypass mode refers to a coding mode according to which video decoder 30
may skip the inverse transform and inverse quantization operations of decoding, such as
in cases where bitstream 218 is losslessly encoded. Thus, according to certain aspects
of this disclosure, context modeler 220 may expand the parallelized context selection
technigques to provide the potential resulting advantages 1o instances where bitstream
218 is losslessly encoded.

(9271} FIG. 815 a flowchart illustrating an example process 150 for table-based binary
arithmetic coding. That is, FIG. 8 illustrates the binary arithmetic encoding process
including the updating process of probability estimation (in gray shaded boxes for steps
158 and 160} for a single bin value (binVal} using regular coding mode. In particular,
process 150 of FIG. 8 illustrates a binary arithmetic encoding process for a given bin
value binVal using the regular coding mode. The internal state of the arithmetic
encoding engine is characterized by two quantities: the current interval range R and the
base {(lower endpoint) £ of the current code interval, However, the precision needed to
store these registers in a CABAU engine (both in regular and bypass mode) can be
reduced up to 9 and 10 bits, respectively. Encoding of the given binary value binlaf
observed in a context with probability state index § and value of MPS (%2} is
performed in a sequence of four elementary steps as follows.

10272} Process 150 may begin at step 152, at which the video coding device subdivides

a current interval according to the given probability estimates. This interval subdivision
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process involves three elementary operations as shown at step 152 of process 150, First,
the current interval range K is approximated by a quantized value O(R) using an equi-
corresponding representative quantized range values (o, Q1, Q2, and Qs explicitly in the
CABAC engine, is only addressed by its quantizer index p, which can be efficiently
computed by a combination of a shift and bit-masking operation, L.e.

p=(R>»6)&3 (4.5)
[0273} Then, this index p and the probability state index & are used as entries in a 2-D
table TabRangelPS to determine the {approximate} LPS related subinterval range Rirs,
as shown in FIG. 8. Here, the table TabRangel PS contains all 64x4 pre-computed
product values for p, - @, for 0 < (8 > 1) < 63 and 0 < p < 3 in 8-bit precision.
Given the dual subinterval range for the MPS, the subinterval corresponding to the
given bin value dinl'al is chosen in decision block 94 of process 150, If Ainl'al 1s equal
to the MPS value (INO branch of decision block 154}, the video coding device may
choose the lower subinterval, so that £ 1s unchanged. Otherwise (YES branch of
decision block 154), the video coding device may select the upper subinterval with
range equal to Reps (156).
18274} At steps 158 and 160 process 90 the update of the probability states ts performed
as described in FTU-T H 264, § 1.2.2 2 (illustrated using gray shaded boxes). Step 162
consists of the renormalization of the registers 7 and R ("RenormE” box in FIG. 1),
Step 164 represents the end of process 150
16275} The 2-D table TabRangel PS is defined as follows:

TabRangelLPS[64][4] =

{
{128, 176, 208, 240},

{128, 167, 197, 227},
{128, 158, 187, 2161,
123, 150, 178, 205}
116, 142, 169, 195,
111, 135, 160, 185},
105, 128, 152, 1753,
100, 122, 144, 166},
95,116, 137, 1581,
90, 110, 130, 1501,
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19276} The decoding process is described in Section 9.3.4.3.2.2 of the HEVC
specification.

182771 FIG. 9 is a conceptual diagram that illustrates a transtorm scheme based on a
residual quadtree structure. To adapt the various characteristics of the residual blocks, a
transform coding structure using the residual quadtree (RQT) is applied in HEVC. The
residual quadtree structure is described below. Additional details are described and
available at www hhi fraunhofer de/fields-of-competence/image-
processing/researchgroups/ image-video-coding/heve-high-etficiency-video-
coding/transtorm-coding-using-the-residual-quadtree-rgt htmi

(8278} According to the residual quadtree structure tllustrated in FIG. 9, each picture is
divided into coding tree units {CTUs). The CTUs of the picture are coded (e g,

encoded and/or decoded) in raster scan order for a specific tile or slice. A CTU 1sa
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square block and represents the root of a guadtree or coding tree. The CTU size may
range from 88 t0 64+64, with the width and length being expressed in units of luma
saroples. The 64x64 dimensionality 18 commonly used by HEVC-compliant coding
devices. Each CTU can be further split into smaller square blocks called coding units
(CUs). After the CTU 13 split into CUs (sometimes recursively), each CU 1s further
divided into prediction units (PUs} and transform units (TUs). PUs and CUs also have a
square form factor. The partitioning of a CU into TUs 15 carried out recursively based
o a quadtree approach. Therefore, the residual signal of each CU i1s coded using a tree
structure, namely, the residual quadtree (RQT). The RQT allows TU sizes (expressed
as square dimensionalities in units of luma samples) from 4x4 up to 32x32.

18279} FIG. 9 shows an example where a CU includes 10 TUs. The TUs are labeled
with the letters a to ), and each TU label 1s illustrated inside the corresponding block
partitioning. Each node of the RQT is a transform unit (T}, The individual TUs are
processed in depth-first tree traversal order. The result of depth-first tree traversal with
respect to FIG. 9 1s illustrated in FIG. 9 according to alphabetical order. More
specifically, FIG. 9 illustrates an example of a recursive Z-scan with depth-first
traversal. The quadtree approach illustrated in FIG. 9 enables the adaptation of the
transform to varying space-frequency characteristics of the residual signal.

[6288] In many examples, larger transform block sizes, which have larger spatial
support, provide better frequency resolution. However, smaller transform block sizes,
which have smaller spatial support, provide better spatial resolution. The trade-~oft
between the two (spatial and frequency resolutions), is selected by way of an encoder
mode decision. For example, the encoder mode decision may be based on a rate-
distortion (RD) optimization technique. The rate-distortion optimization technigue
calculates a weighted sum of coding bits and reconstruction distortion. For instance,
mode select unit 40 may base a mode selection decision on the rate~distortion cost for
each coding mode. In some examples, the rate-distortion cost for each available mode
may correlate to a specific RQT sphitting structure associated with each coding mode.
In an RD cost-based decision scheme, mode select unit may select the coding mode with
the lowest (or least) rate-distortion cost as the best available mode.

18281} Three parameters are defined in the RQT partitioning scheme. The parameters
are: the maximum depth of the tree, the mirimum allowed transform size and the
maximum allowed transform size. According to some aspects of HEVC, the minimum

and maximum transform sizes can vary within the range from 4x4 to 32x32 samples.
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The range from 4x4 to 32x32 samples corresponds to the supported block transforms
discussed above. The maximum allowed depth of the RQT restricts or constrains the
nurmber of TUs that the RQT partitioning scheme can vield. A maximum depth equal to
zero means that a CTU cannot be split any further if each included TU reaches the
maximum allowed transtorm size, e g, 32x32.

16282} All of the parameters discussed above interact (e.g., are used synergistically),
and influence the RQT structure. Described below is a use-case scenario in which the
root CTU size is 64x64, the maximum depth is equal to zero, and the maximum
transform size 1s equal to 32+32. In this case, the video coding device would need to
partition the CTU at least once. It the CTU 1s not partitioned, then the RQT would yield
a 64x64 TU, which is not permitted, per the third parameter. Video encoder 20 may
include the RQT parameters (jucluding but not himiuted to the maximum RQT depth and
the minimum and maximum transform size) in the bitstream, at the sequence parameter
set {SPS) level. Video encoder 20 may specity and signal different values for the RQT
depth with respect to intra~ and inter- coded CUs. In turn, video decoder 30 may
recover the RQT parameters from the received bitstream, and perform RQT partitioning
using the constraints specified in the signaled parameters.

0283} Video encoder 20 and/or video decoder 30 may apply the quadtree transform for
both Intra and Inter residual blocks. In many examples, video encoder 20 and/or video
decoder 30 may apply the DCT-H transform of the same size of the current residual
quadtree partition is apphied for a residual block. However, if the current residual
quadtree block is 4x4 and is generated by Intra prediction, video encoder 20 and/or
video decoder 30 may apply the 4x4 DST-VI transform described above. In HEVC,
larger size transforms, e.g., 64x64 transforms, are not adopted mainly due to their
limited benefits, and relatively high complexity for relatively smaller resolution videos.
10284] FIG 101s a conceptual diagram depicting an example template (local template
140} that a video coding device may use with respect to the context modeling
techniques described herein. The current transform coefficient 1s marked as ‘X and the
five spatial neighbors are marked as “Xi" (with ‘1’ representing an integer from 0
through 4). If any one of a set of conditions is satisfied, then the video coding devices
may mark X; as unavailable and not used in the context index derivation process. A
first condition in the set of conditions is that the position of X and current transform
coefficient X are not located in the same transform unit. A second condition in the set

of conditions is that the position of X is located cutside of the picture’s horizontal or
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vertical boundaries. A third condition in the set of conditions is that the transform
coefficient X has not been coded yet. In the case of multi-pass coding, whenever the
bins in the same coding pass are coded, the bins could be used 1n the context index
derivation process. Therefore, from a decoding perspective, it s not necessary to fully
decode one transform coefficient,

(6285} FIG. 11 1s a conceptual diagram illustrating an example coefficient scan based
on coefficient groups. Regardless the TU size, the residual of the transform unit 18
coded with non-overlapped coefficient groups (C(), each contains the coefficients of a
4x4 block of a TU. For example, a 32x32 TU has totally 64 CGs, and a 16x16 TU has
totally 16 CGs. The CGs inside a TU may be coded according to a certain pre-defined
scan order. When coding each CG, the coefficients inside the current CG are scanned
and coded according to a certain pre-defined scan order for 4x4 block. FIG 11
itlustrates the coefficient scan for an 8x8 TU containing 4 CGs.

[6286] The syntax element table 13 defined as follows:

7.3.8.11 Residual coding syntax
residual _coding( x0, v0, log2TrafoSize, cldx ) { Descriptor

if{ transform_skip evabled flag && lcu transquant bypass flag &&
{ log2TrafoSize == 2 })

transform_skip flag] x0 }| yO }f ¢ldx | ae{v)
fast sig coeff x prefix ae(v}
last sig coeff v prefix ae(v}

if{ last_sig coeff x prefix>3)

iast sig coeff x suffix ae(v}

last_sig coeff v suffix ae{v}

fastScanPos =16

lastSubBlock = (1 << (log2TrafoSize —2 )} * (1 << (
log2TrafoSize —2 3} — 1

do {

if{ lastScanPos == 0} {

fastScanPos = 16

lastSubBlock— —

i

lastScanPos— —

x8 = ScanOrder] log2TrafoSize — 2 [ scanldx 1] fastSubBlock }{ 0]

v8 = ScanOrder| log2TratoSize — 2 | scanldx }] tastSubBlock }[ 1]

xC = (x8 << 23+ ScanOrder| 2 |{ scanldx }{ lastScanPos ][ 0 |

yC ={yS << 2} + ScanOrder| 2 | scanldx ][ lastScanPos J{ 1]
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s while{ ( xC = LastSignificantCoeffX ) | | ( yC 1=
LastSignificantCoeftY } )

for(i = lastSubBlock; i >= 0;i——){

xS = Scan{rder] log2TrafoSize — 2 1 scanldx {1 {0 ]

yvS = ScanOrder] log2TrafoSize —2 [ scanldx {1 }{ 1 ]

inferSbDcSigCocettFlag = 0

f{ (1 <lastSubBlock )} && (1>0)){

coded sub block flagl xS yS 1 ae(v}
inferSbDcSigCoefiFlag = 1

3

for( n={i == lagtSubBlock } 7 lastScanPos — 1 : 15, n >= 0,0~ — )} {

xC = (x8 << 23+ ScanOrder| 2 [ scanldx [ n {0 ]

vC ={vyS << 2+ ScanOrder] 2 || scanidx [ n [ 1 ]

if{ coded sub block flag{ xS} vS] && (n>0 ||
linferSbDeSigCoeffFlag 3 ) {

sig_coeft flagl xC [ vC ] ae(v)

if{ sig coeft flagf xC il yC 1)

inferSbDcSigloeff¥Flag = 0

1
3

H

firstSigScanPos = 16

lastSigScanPos = —1

numGreater1Flag = 0

{asiGreateri ScanPos = —1

for{n=15n >= 0;n——){

xC = (xS << 2+ ScanOrder] 2 } scanldx {[n}{ 0]

yvC = { yS << 2+ ScanOrder] 2 ][ scanldx [ n 1]

if{ sig coeff flagf xC I yC 1) ¢

i numGreateriFlag <8 ) {

coeff_abs level greaterl Hlag|n | ae{v)

numGreater] Flag++

it{ coeff abs level greaterl flagf n} && lastGreateriScanPos

it ---’i }
{astGreateri ScanPos =n
]
f
if{ lastSigScanPos == —1}

lastSigScanPos = n

firstSigScanPos=n

}
j
signHidden = ( lastSigScanPos — firstSigScanPos > 3 &&
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f{ lastGreaterl ScanPos 1= —1)

coeff abs level greater? flagf lastGreater]ScanPos | ae(v}

for{ n=15n >= 0;n—— ) {

xC =(x8 << 2+ ScanOrder| 2 | scanldx [ n}{ O]

yC ={yS << 2+ ScanOrder] 2 }f scanldx {n [ 1]

{ sig coeff flagf xC [ yC ] &&

{ Isign data hiding enabled flag || IsignHidden || (o I=
firstSigScanPos ) ) }
coeft sign flag| n | ae{v)
A
]

numSigCoeft = 0

sumAbsLevel =0

for{n=15n >= 0;n——){

xC = (xS << 2+ ScanOrder] 2 } scanldx {[n}{ 0]

yC=(yS << 23+ ScanOrder] 2 }[ scanldx J{ n}{ 1]

if{ sig coeff flag] xCI[yC 1) ¢

baseLevel = | + coeff abs level greater! flagfn ]+
coetf abs level greaterZ flagf n}]

if{ baseLevel == ({numSigCoeff <§)}7
{ (n == lastGreater1ScanPos}?73:23:1 )}

coeff abs level remaining n | ae{v)

TransCoeffLevel[ xO [ vO Y clds [ xC }[ vC | =
{ coeff abs level remaining] n ]+ baseLevel ) * (1 -2*
coeff sign flagin])

if{ sign data hiding enabled flag && signHidden ) {

sumAbsLevel += (coeff abs level remaining] n 1+ baseLevel

)
if{ {(n == firstSigScanPos ) && ({sumAbsLevel %62 ) ==
1))
TransCoeffLevel[ xO H yO H cldx [ xC i vC | =
—TransCoeffLevel] x0 }[ v0 J[ cldx [ xC }[ yC ]
}
h
numSigCoeff++
)
Y
J
¥
H

10287} For each color component, video encoder 20 may first signal one flag to indicate
whether current TU has at least one non-zero coefficient. If there is at least one non-
zero coefficient in the current TU, then video encoder 20 may explicitly encode the
position of the last signiticant coefficient in the coefficient scan order in a TU with a

coordinate relative to the top-left corner of the transform urut. The vertical or horizontal
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component of the coordinate is represented by its prefix and suffix, where the prefix is
binarized with truncated rice (TR} and suffix is binarized with fixed length.

{0288} Semantics:

[0289] last sig coeff x prefix specifies the prefix of the column position of the last
significant coefficient in scanning order within a transform block. The values of
last_sig coeff x prefix shall be in the range of O to (logZTrafoSize << 1)— 1,
inclusive.

10290} last_sig_coeff y prefix specifies the prefix of the row position of the last
significant coefficient in scanning order within a transform block. The values of

last sig coeff v prefix shall be in the range of 0 to (log2TrafoSize << 1)1,
inclusive.

10291} last_sig coeff x_suffix specifies the suffix of the column position of the last
significant coefficient in scanning order within a transform block. The values of

(1 << ((last_sig coeff x prefix >> 1}3—1}))— 1, inclusive.

0292} The column position of the last significant coefticient in scanning order within a

transform block LastSigniticantCoeffX is derived as follows:

— Hlast sig coeft x suffix is not present, the following applies:

LastSignificantCoceffX = last_sig coeff x prefix
Otherwise (last_sig coeff x_suffix is present), the following applies:

LastSignificantCoeftX = (1 << {(last_sig cocft x prefix >> 1)—1))*
{2+ (last_sig_coeff x prefix & 1)) +last_sig coeff x suffix

10293} last_sig coeff y_suffix specifies the suffix of the row postiion of the last
significant coefficient in scanning order within a transform block. The values of

{1 << ((last_sig coeff v prefix >> 1}—1)})— 1, inclusive.

0294} The row position of the last significant coefficient in scanning order within a

transform block LastSignificantCoeftY is derived as follows:

— Hlast sig coeft v suffix is not present, the following applies:

— Otherwise (last_sig coeff vy suffix is present), the following applies:

LastSigntficantCoetfY = (1 << ((last_sig coeff v prefix >> 1})—-1)}*
{2+ (last_sig coeff v prefix & 1))+ last sig coeff v suffix
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[6295] When scanldx is equal to 2, the coordinates are swapped as follows:
{(LastSignificantCoeffX, LastSignificantCoeff Y )=Swap( LastSignificantCoeffX
LastSignificantCoeftY )

18296} With such a position coded and also the coefticient scanning order of the CGs,
one flag is turther signaled for CGs except the last CG (in scanning order) which
indicates whether it contains non-zero coefficients.

10297} Context modeling of CG flag. When coding whether one CG has non-zero
coefficients, t.e., the CG flag (coded sub block flag in the HEVC specification}, the
information of neighboring CGs are utilized to build the context. To be more specific,

the context selection for coding the CG flag is defined as follows:

(Right CG available && Flag of night CG is equal to 1) || (below CG available && Flag
of below CG 1s equal to 1}

[0298] Here, the right and below CG are the two neighboring CGs close to current CG.
For example, in FIG. 11, when encoding the top-left 4x4 block, video encoder 20 may
define the right CG as the top-right 4x4 block and the below CG is defined as the left-
below 4x4 block. Chroma and luma use different sets of context models, but with the
same rule to select one of them. Details of the derivation of context index increment
can be found in 9.3 4 2.4 of HEVC.

18299} Transform coefficient coding within one UG For those CGs that may contain
non-zero coetticients, video encoder 20 may further encode {(and video decoder 30 may
further decode) significant flags (significant flag), absolute values of coefficients

coeff abs level remaining) and sign information (coeff sign flag) for each coefficient
according to the pre-defined 4x4 coefficient scan order. The coding (e.g., encoding
and/or decoding) of transform coetticient levels is separated into multiple scan passes.
{03030} First pass of the first bin coding: In this pass, all the first bins {or the bin

index O, bin0) of transform coefficients at each position within one CG are coded except
that it could be derived that the specific transform coefficient is equal to 0. The variable
sigCtx depends on the current focation relative to the top-left postion of current TU, the
color component index cldx, the transform block size, and previously decoded bins of
the syntax element coded sub block flag Dufferent rules are applied depending on the
TU size. Example details of the selection of the context index increment are defined n

93425 of HEVC.
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(8361} Second pass of the second bin coding: The coding of

dependent on color component index, the current sub-block scan index, and the current
coefficient scan index within the current sub-block. Example details of the selection of
the context index increment are defined in 9.3.4.2.6 of HEVC.

183062} Third pass of the third bin coding: The coding of

to that used by coeff abs level greaterl flags. Example details of the selection of the
context index increment are defined in 93427 of HEVC. In order to improve
throughput, the second and third passes may not process all the coefficients in a CG.
The first eight coeff abs level greater]l flags in a CG are coded in regular mode. After
that, the values are left to be coded in bypass mode in the fifth pass by the syntax

coeff abs level remaining. Similarly, only the coeff abs level greater2 flags for the
first coefficient in a CG with magnitude larger than 1 1s coded. The rest of coefficients
with magnitude larger than 1 of the CG use coeft abs level remaining to code the
value. This method limits the number of regular bins for coefficient levelsto a
maximum of 9 per CG: 8 for the coeft abs level greaterl flags and 1 for

coeff abs level greater? flags

18303} Fourth pass of sign information: In some examples of HEVC, the sign of each
nonzero coefficient is coded in the fourth scan pass in bypass mode. For each CG, and
depending on a criterion, encoding the sign of the last nonzero coefficient (in reverse
scan order} is simply omitted when using sign data hidding (SDH). Instead, the sign
value 15 embedded in the parity of the sum of the levels of the CG using a predefined
convention: even corresponds to “+7 and odd to “-.” The criterion to use SDH is the
distance in scan order between the first and the last nonzero coefficients of the CG. If
this distance is equal or larger thao four (4), SDH is used. The value of four (4) was
chosen because it provides the largest gain on HEVC test sequences.

18304} Last pass of rematning bins: The remaining bins are coded in a further scan

pass. Let the baselevel of a coefficient be defined as:

baselevel = significant flag + coeff abs level greaterl flag+
coeft abs level greater? flag

10365} where a flag has a value of 0 or 1 and s inferred to be O if not present. Then, the

absolute value of the coefficient is defined as follows:
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absCoeffLevel = baselevel + coeff abs level remaining.

10366} The Rice parameter is set to O at the beginning of each CG and it 1s conditionally
updated depending on the previous value of the parameter and the current absolute level

as follows:

if absCoeffLevel > 3 x 2m, m= min(4,m + 1}.

10367} The syntax element coeft abs level remaining may be coded in bypass mode.
In addition, some examples of HEVC employ Golomb-Rice codes for small values and
switches to an Exp-Golomb code for larger values. The transition point between the
codes 1s typically when the unary code length equals 4. The parameter update process
allows the binarization to adapt to the coefficient statistics when large values are
observed n the distribution.

10308} Context modeling of inter pred idc. inter pred ide specifies whether list0,
list], or bi-prediction is used for the current prediction unit. The syntax element has up
to two bins, both of which are CABAC context coded. The binairzed bin string is

defined as follows:

jV alue of , Bin string Bin string
inter_pred_ide (nPbW + nPbH ) I= 12 | (nPbW +nPbH) = 12
0 00 00

i 01 0l

2 1 1

where nPbW and oPbH represent the current luma prediction block width and height,
respectively.

[8309] For each inter-coded slice, e.g., P shice or B slice, the context selection is based
ou the following rule:

(8310} If the sum ( nPbW + nPbH } is unequal to 12, the first bin is coded using four
contexts and the second bin is coded with one context. The context selection of the first
bin is according the current CU depth. In HEVC, CU depth is in the range of O to 3,
inclusive. The inclusive range of 0 through 3 can be expressed as [0,3].

18311} In JCTVC-HO228 (1. Nguven, D. Marpe, T. Wiegand, “Non-CE11: Proposed
Cleanup for Transform Coefficient Coding”, JCTVC-H0228, 8th Meeting: San José,
CA, USA, 1-10 February, 2012), one-scan pass coding was proposed. According to the

one-scan pass that was proposed, all information on a transform coetficient level is
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coded in a single step instead of multiple pass coding as in HEVC. For each scan
position, neighbors covered by a local template are evaluated, as done for bin® (the first
in the current design of HEVC. From this evaluation, context models and the Rice
parameter, which controls the adaptive binarization of the remaining absolute value, are
derived. To be more specific, the context models for the bin€, binl, bin2 and the Rice
parameters are all selected (binl and bin2 are also referred as coeff abs greater! flag
the local template.

18312} An example for the local template 140 is given tn FIG. 10 for an 8x8 transform
block with diagonal scan, where L denotes the last significant scan position, x denotes
the current scan position and x; with i € /0,4] denotes the neighbours covered by the
local template.

18313} sum_absolute level, which indicates the absolute surn of the neighbours, and
sum_absolute levelMinusi, which indicates the absolute sum of each level minus 1, are
used to derive context indices for bin®, binl, bin2, and to determine the Rice parameter
r.

sum_absolute  level = Z s |

sum__absolute levelMinusl = Z 0, (x . ) (5)

>0

y
x =0

i

w1
O

c‘fj (‘C} =

With
10314} For bin®, the resulting sum_ absolufe level from the local template evaluation 1s
directly mapped to a context model index with a cut-off value of 5. The same rule is
applied for the calculation of the context model index of bint and bin2 by using
sum_absolute levelMinus{ and a cut-oft value of 4. This derivation rule is summarized
in the following with ¢y represents the context model index for bing, ¢; the context
model index for bini, and ¢, the context model index for bin2.

c, = min{sum _absohite level, 5}

G = min(sum _absolute levelMinus, 4} +1 )

¢, =min{sum _absolute _levelMinusi, 4)+1

[0315] FIG. 12 is a conceptual diagram illustrating an example of bin derivation. The

derivation rule for bini and bin2 are the same. Next, for the luma component, an
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additional offset is calculated for bind, binl and bin2 of luma transform levels. The
additional context index (1.¢., oftset) depends on the location of the current scan
position. FIG 12 illustrates an example of this process. In particular, FIG. 12 shows
context index ranges for different regions within one TU (a) for luma bing, (b) for luma
binl and binZ (not the last coefficient in forward scan order).
(8316} In summary, the whole concept is summarized in the following formulas, where
x denotes the horizontal spatial location inside the transform block of the current scan
position, y denotes the vertical spatial location, and cldx denotes the current plane type
with O stands for luma. Additionally, the range of context index for different positions
are marked in FIG. 13
cy,=Cy + (x y,6,2) +0, ( f(x, }’,6,5}, ddﬁx}
¢ =c +3.Af (x, .53} c:[dx)+ o, ( f (.x, ¥.510), cld‘f}

e, =c, + 8, (f{x, v,53) cldx}+ 8, f{x, v.5,10) cldx) ’
([ o
f(x-“}/'z”,t);g‘i:? X: ')/\ i
With 0 vy
3 ir]){ Yoo (—)
S (o vi= <
And (k(u,l'} <§\0 L

(8317} As shown above, he formula for ¢; 1s the same as for ¢, In addition to the same
context model index for the binl and bin2, the same context model is used for the
coding of binl and bin2. Further, for the first scan position in coding order (i.¢. the last
signification scan position); a separate context model index is used for bind and binZ.
The first bin index (bin®) is inferred for the last significant scan position. This separate
context model is never selected again by the context model selection scheme and is

assigned as ¢;=0. The total number of context models is tabulated in the following table:

Ho228
Luma Chroma

bind i8 12

bini 16 6

bin2 0 0
Remaining 0 0

bins

Total 52
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[6318] The Rice parameter r is dertved as follows. For each scan position, the parameter
is set to 0. Then, the sum absolute levelMinusi is compared against a threshold set iz =
{3, 9, 27} Tn other words, the Rice parameter is O if the sum_absolute fevelMinusi falis
into the first interval, is 1 if sum absolute levelMinus{ falls into the second interval and
so on. The derivation of the Rice parameter v 1s summarized in the following:

(0 xelo3]

b xel49]
rix)= { 2 xel1021]
3 x>21 (8)

with  x =sum_abslohde levelMinust.
[8319] FIG. 13 is a conceptual diagram illustrating a range of context indexes for
different posttions within a TU, for different luma bins. In the example FIG. 13, the
block on the left illustrates the context index range for different regions within the TU
tor luma bin0. The block on the right illustrates the context index range for different
regions within the TU for luma bin! and bin2. The particular positions are calied out
using numbers within the luma bins of FIG. 13, and the different regions are
distinguished using shading,
(8320} In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. I implemented in software,
the functions may be stored on or transmitted over as one or more instructions or code
on a computer-readable medium and executed by a hardware-based processing unit,
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which 1s non-transitory or (2} a communication mediurm such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
One Of MOTe COmPpPUters Or One o MOore Processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.
(6321} FIG. 14 illustrates an example process 300 that a video coding device, or various

components thereof, may perform to implement one or more of the context modeling
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techniques of this disclosure. While process 300 may be performed by a variety of
devices, process 300 1s described herein with respect to video decoder 30, Process 300
may begin when video decoder 30 codes {e.g , decodes) a first TU (302). In turn, video
decoder 30 may begin a first pass of coding a second TU (304}, As such the first TU
represents a previously-coded block with respect to the second TU.

[0322] Video decoder 30 may use the i bin of the first TU to code all i bins of the
second TU within the first pass of coding (306). For instance, video decoder 30 may
use the bin0 of the first TU to select the context index for the respective i bin of all
transform coetticients of the second TU, during the first pass of a multi-pass decoding
process for the second TU. In this way, video decoder 30 may implement the context
meodeling techniques of this disclosure to improve parallelization, by using bins of a
previously-coded block to complete context selection for all i bin of all transform
coefficients of a TU currently being coded.

[8323] In this way, video decoder 30 represents an example of a video coding device
that includes a memory configured to store video data, and one or more processors. The
processor(s) may be configured to determine, for each of a plurality of bins of a value
for a syntax element of a current transform coefficient, contexts using respective
corresponding bins of values for the syntax element of one or more previously-coded
transform coethicients. To determine the contexts, the one or more processors are
configured to determine a context for an ith bin of the value for the syntax element of
the current transform coetlicient using a corresponding ith bin of a value for the syntax
element of a previously-coded transform coefficient, where ‘1" comprises a non-negative
integer, and where to use the corresponding ith bin of the value for the syntax element
of the previously-coded transform coefficient, the one or more processors are
configured to use only the ith bin of the value for the syntax element of the previously-
coded transform coetficient and no other bins of the value for the syntax element of the
previcusly-coded transform coefficient. The processor(s) are further configured to
CABAC code {e.g., CABAC decode) the ith bin of the value for the syntax element of
the current transform coefficient using the determined context.

[8324] In some examples, to determine the context for the ith bin of the value for the
syntax element of the current transform coefficient, the one or more processors are
configured to determine the context for the ith bin of the value for the syntax element of
the current transform coefficient using a template that identifies one or more

neighboring transform coefficients to be used for CABAC decoding the current
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transform coefficient. In some examples, the one or more processors are further
configured to determine at least one of a size or a shape of the template based on at least
one of a size of a transform unit that includes the current transtorm coefficient, a coding
mode associated with a coding unit that includes including the transform unit, a position
of the current transform coefficient in the transform unit that includes the current
transform coefficient, or a position of the current transform coefficient in a coefficient
group that includes the current transtorm coefficient. In some examples, the one or
more processors are further configured to determine at least one of a size or a shape of
the template based on color component information, the color component information
including one or both of luma component information or chroma component
information

[8325] In some examples, the current transform coefficient is included in a transform
unit, where some or all bins of the transform unit are CABAC encoded according to a
regular mode, and to CABAC code the ith bin of the value for the syntax element of the
current fransform coefficient, the one or more processors are configured to code the ith
bin of the value for the syntax element of the current transform coefficient during an ith
coding pass during which all corresponding ith bins of all transform coefficients of the
transform unit are CABAC coded. In some examples, to determine the context for the
ith bin of the value for the syntax element of the current transform coetficient, the one
or more processors are configured to determine a context index for the 1th bin of the
value for the syntax element of the current transform coetficient using a function of the
previcusly-coded transform coefficients. In some examples, the previously-coded
transform coetticients are positioned in a template. In some examples, to use the
function of the previousty-coded transform coefficients, the one or more processors are
contigured to use the function of a first “M’ previcusly-coded transform coetficients,
and where "M’ represents a non-negative value. In some examples, the function
comprises a summation function, and the corresponding ith bin of the value for the
syntax element of previously-coded transform coefficient 15 included 1n a plurality of
corresponding ith bins of values for syntax elements of a plurality of previously-coded
transform coefficients.

18326} In some examples, to determine the context index for the ith bin of the value for
the syntax element of the current transform coefficient using the summation function,
the one or more processors are configured to define the context index for the ith bin of

the value for the syntax element of the current transform coefficient as a sum of all of
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the plurality of the corresponding ith bins of values for the syntax elements of the
plurality of the previously-coded transtorm coefficients. In some examples, the one or
more processors are further configured to clip a result of the summation function to
form a clipped sum that is within a pre-defined range. Said another way, the one or
more processors may perform a method that includes clipping the result of the
sununation function to form a clipped sum that is within a pre-defined range. In some
examples, to determine the context for the ith bin of the value for the syntax element of
the current transtorm coefficient, the one or more processors are configured to
determine a context index for the ith bin of the value for the syntax element of the
current transform coefficient and to add an offset to the determined context index. In
some examples, the one or more processors are further configured to determine the
offset based on a size of a transform umit that includes the current transtform coefficient.
18327} In some examples, the one or more processors are further configured to
determine whether the transform unit is within a threshold size and, if the transform unit
is within the threshold size, to determine that the transform unit is associated with a set
of context models that is common to all transform units that are within the threshold
size. In some examples, the threshold size is associated with a 16x16 dimensionality. In
some examples, the stored video data comprises encoded video data, the one or more
processors are further configured to decode at least a portion of the encoded video data
to form reconstructed video data, and video decoder 30 may include, be, or be part of a
device that includes a display device configured to display at least a portion of the
reconstructed video data. In some examples, the one or more processors are further
configured to encode at least a portion of the stored video data, and the previously-
coded transtorm coefficient comprises a previously-encoded transform coefficient.
[8328] FIG. 15 1s a flowchart illustrating an example process 320 that a video coding
device, or various components thereof, may perform to implerment one or more of the
inheritance-based context initialization techniques of this disclosure. While process 320
may be performed by a variety of devices, process 320 is described herein with respect
to video decoder 30, Process 320 may begin when video decoder 30 codes (e.g,,
decodes) a first picture (322). Thus, the first picture represents a previously-coded {e.g.,
previously-decoded) picture with respect to pictures that video decoder 30 may
reconstruct subsequently. In turn, video decoder 30 may identify a block of the first
from which to inherit context information for a current shice of a second picture (324).

As such, the second picture may represent a “current picture” in that video decoder 30 is
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currently decoding the second picture, and the current slice may represent a particular
slice of the second picture that video decoder 30 1s decoding.

10328} Video decoder 30 may initialize context information for the current slice using
the context information inherited from the first picture (326). For instance, video
decoder 30 may store one or more statuses of the inherited context information, and
retrieve the stored status{es) to initialize the context tor the current slice. In turn, video
decoder 30 may code the current slice using the initialized context information (328).
183306} In this way, video decoder 30 represents an example of a video coding device
that includes a memory configured to store video data, and one or more processors. The
processor(s) are configured to initialize context information for a current slice of a
current picture by inheriting context information after coding a previously-coded block
of a previously-coded slice of the stored video data as initialized context information for
the current slice of the current picture, and to code data of the current slice using the
initialized context information. In some examples the previously-coded block includes a
largest coding unit (1LCU} that is at a center position within the previously-coded slice
or at a center position within a previously-coded picture associated with the previously-
coded slice. In some examples, the current slice includes a uni-directional predicted
slice (P-slice), and the previously-coded slice includes a bi-directional predicted slice
(B-slice). In some examples, the current slice includes a bi-directional predicted slice
{B-slice), and the previously-coded slice includes a uni-directional predicted slice (P-
slice).

18331} In some examples, the current slice is included in a plurality of slices in the
current picture for which context information is inherited from the previously-coded
picture, and the processor(s}) are further configured to initialize respective context
information for all of the plurality of slices by inheriting the context information after
coding the LCU that 1s at the center position within the previously-coded shice. In some
examples, the processor(s) are further configured to determine whether the current slice
is inter-coded, and to inttialize the context information for the current shice of the
current picture, the processor(s) are configured to inherit the context information after
coding the previously-coded block as the initialized context information for the current
slice of the current picture based on a determination that the current slice is inter-coded.
18332} In some examples, the processor(s) are configured to determine whether the
previously-coded slice is inter-coded. In some examples, the processor(s) are further

configured to determine whether the current slice and the previcusly-coded block share
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same quantization parameters (QPs), and to initialize the context information for the
current slice of the current picture, the processor(s) are configured to inherit the context
information after coding the previousiy-coded block as the initialized context
information for the current slice of the current picture based on a determination that the
current slice and the previously-coded slice share the same QPs. In some examples, the
processor(s) are further configured to determine whether an Intra Random Access
Picture (IRAP) 1s positioned, in output order, between the current picture and a
previously-coded picture associated with the previously-coded slice.

[8333] In some examples, to initialize the context information for the current shice of
the current picture, the processor(s) are configured to inherit the context information of
the previously-coded block of the previcusly-coded picture as the initialized context
information for the current slice of the current picture based on a determination that no
IR AP is positioned between the current picture and the previously-coded picture in the
output order. In some examples, the processor(s) are further configured to define a
posttion of the previcusly-coded block according to the following equation:
TargetCUAddr = (PicWidthinCtbsY* PicHeightInCtbsY )/2 + PicWidthInCthsY /2,
where “PicWidthinCtbsY” denotes a number of largest coding units (1L.CUs) included in
a single row of the previously-coded block, and where “PicHeightInCtbsY” denotes a
total nurober of LCU rows included 1n the previously-coded block. In some examples,
the context information includes one or more context states associated with the current
slice.

18334} In some examples, the context information further includes values assoctated
with most probable state (MPS) information. In some examples, to initialize the context
information for the current slice by inheriting the context information after coding the
previously-coded block, the processor(s) are configured to initialize some but not all
contexis of the context information for the current slice by inheriting the context
information after coding the previously-coded block. In some examples, the previousiy-
coded slice includes one of (i) a slice in the current picture, where the previously-coded
slice 1s different from the current slice, or {ii} a slice in a previously-coded picture. In
some examples, the processor(s) are further configured to select the previously-coded
picture by identifying the previously-coded picture as a last picture, in output order
hefore the current picture, that shares same quantization parameters ((QPs) and slice
types as the current picture. In some examples, the stored video data includes encoded

video data, the processor{s}) are further configured to decode at least a portion of the
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encoded video data to form reconstructed video data, and the video coding device
turther includes a display device configured to display at least a portion of the
reconstructed video data.

18335} FIG. 16 1s a flowchart tlustrating an example process 330 that a video coding
device, ot various components thereof, may perform to implement one or more of
techniques of this disclosure as part of a video decoding process. While process 330
may be performed by a variety of devices, process 330 is described herein with respect
to video decoder 30. Process 330 may begin when video decoder 30 receives entropy
encoded data for a current block (332). Additionally, video decoder 30 may retrieve
entropy encoded data for transform coefficients of the current block (334).

[8336] In turn, video decoder 30 may entropy decede encoded data for the transform
coefficients of the current block (336). For instance, to entropy decode the transtorm
coefficients, video decoder 30 may use bins of previcusly-decoded transform
coefficients to determine context information for corresponding current bins of a current
78) may apply an inverse transform to the transform coefficients to form a residual
block (338). In turn, video decoder 30 may predict the current block to form a predicted
block (340). Video decoder 30 may combine the predicted block with residual block to
decode the current block (342).

18337} FIG. 17 1s a flowchart ilhustrating an example process 350 that a video coding
device, or various components thereof, may perform to implement one or more
coefficient group (CG) size-determination technigues of this disclosure. While process
320 may be performed by a variety of devices, process 350 is described herein with
respect to video decoder 30. Process 350 may begin when video decoder 30 identifies a
transform unit (TU} (352}, For instance, video decoder 30 may identify a current TU,
such as a TU that ts currently being decoded. Additionally, video decoder 30 may
identify a coefficient group that includes the current TU, where the coefficient group
represents a subset of the transform coetficients of the current TU (354). Video
decoder 30 may determine a size of the CG based on a combination of a transform size
associated with the transform unit and one or both of (i} a coding mode associated with
the transform unit, or (i1} a transform matrix associated with the transform unit (356).
[8338] In this way, video decoder 30 represents an example of a video coding device
that includes a memory device configured to store video data, and one or more

processors. The processor(s} are configured to identify a coefficient group (CG) that
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includes a current transform coefficient of the video data, the CG representing a subset
of transtorm coefficients within a transform unit and to determine a size of the CG
based on a transforro size associated with the transform unit. In some examples, the
processor(s) may determine the size of the CG based on a combination of the transtorm
size associated with the transtform unit and one or both of (1} a coding mode associated
with the transform unit, or (i1} a transform matrix associated with the transform unit. In
some examples, the stored video data comprises encoded video data, and the one or
more processors are configured to decode at least a portion of the encoded video data to
form decoded video data. In some examples, the stored video data comprises encoded
video data, and the one or more processors are configured to decode at least a portion of
the encoded video data to form decoded video data.

10338} In some examples, the transform unit comprises an encoded transform unit, and
where the coding mode associated with the transform unit comprises a coding mode
used for forming the encoded transform unit. In some examples, video decoder 30
includes, is, or is part of a device that comprises a display configured to display at least
a portion of the decoded video data. In some examples, the one or more processors are
further configured to determine, for each of a plurality of bins of a value for a syntax
element of the current transform coefficient, contexts using respective corresponding
bins of values for the syntax element of one or more previously-decoded transform
coefficients. In some examples, to determine the contexts, the one or more processors
are configured to determine a context for an i bin of the value for the syntax element of
the current transform coefficient using a corresponding i bin of a value for the syntax
element of a previously-decoded transtorm coefficient, where 1 comprises a non-
negative integer. In some examples, to use the corresponding i bin of the value for the
syntax element of the previously-decoded transform coefficient, the processor(s) use
only the i bin of the value for the syntax element of the previousty-decoded transform
coefficient and no other bins of the value for the syntax element of the previously-
decoded transtorm coefficient. In some such examples, the processors(s) may context
adaptive binary arithmetic coding (CABAC) decode the i bin of the value for the
syntax element of the current transform coetficient using the determined context. In
some examples, the CG comprises a square region of blocks, and the size of the CG ts
4x4, expressed in units of blocks.

(8348} In some examples, the coding mode comprises a CG-based coding mode. In

some examples, video decoder 30 includes, is, or is part of a device that includes one or
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more of. one or more integrated circuits; one or more digital signal processors (DSPs);
one or more field programmable gate arrays (FPGAs); a desktop computer; a laptop
computer; a tablet computer, a phone; a television; a camera; a display device; a digital
media player; a video game console; a video game device; a video streaming device; or
a wireless communication device,

(8341} By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not inchude connections, carrier waves, signals, or other transitory
media, but are instead directed to non-transitory, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD}, floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should alse
be included within the scope of computer-readable media.

8342} Instructions may he executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits {ASICs), field programmable gate arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[6343] The techniques of this disclosure may be implemented in a wide variety of

devices or apparatuses, including a wireless handset, an integrated circuit (1C) or a set of
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ICs {e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or tirmware.
8344} Various examples have been described. These and other examples are within the

scope of the following claims.
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WHAT s CLAIMED I5:

L. A method of decoding video data, the method comprising:

for each of a plurality of bins of a value for a syntax element of a current
transform coetficient, determining contexts using respective corresponding bins of
values for the syntax element of one or more previcusly-decoded transform coefficients,

wherein determining the contexts comprises determining a context for an i™ bin
of the value for the syntax element of the current transform coetficient using a
corresponding i bin of a value for the syntax element of a previously-decoded
transform coefficient, wherein 1 comprises a non-negative integer, and wherein using the
corresponding i bin of the value for the syntax element of the previously-decoded
transform coefficient comprises using only the i bin of the value for the syntax element
of the previcusly-decoded transform coefficient and no other bins of the value for the
syntax element of the previously-decoded transform coefficient; and

context adaptive binary arithmetic coding (CABAC) decoding the i bin of the
value for the syntax element of the current transform coetficient using the determined
context.
2. The method of claim 1, wherein determining the context for the i bin of the
value for the syntax element of the current transform coefficient comprises determining
the context for the i bin of the value for the syntax element of the current transform
coefficient using a template that identifies one or more neighboring transform
coefficients to be used for CABAC decoding the current transtorm coefficient.
3. The method of claim 2, further comprising determining at least one of a size or a
shape of the teraplate based on at least one of a size of a transform unit that includes the
current transform coefficient, a coding mode associated with a coding unit that includes
including the transform unit, a position of the current transtorm coefficient in the
transform unit that includes the current transform coefficient, or a position of the current
transform coefficient in a coefficient group that includes the current transform

coefficient.

4, The method of claim 1,

wherein the current transform coefficient is included in a transform unit,
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wherein some or all bins of the transform unit are CABAC encoded according to a
regular mode, and

wherein CABAC decoding the i bin of the value for the syntax element of the
current transform coefficient comprises decoding the i bin of the value for the syntax
element of the current transform coefficient during an i coding pass during which all
corresponding i bins of all transform coefficients of the transform unit are CABAC

decoded.

5. The method of claim 1, wherein determining the context for the i bin of the
value for the syntax element of the current transform coefficient comprises determining
a context index for the i bin of the value for the syntax element of the current

transform coefficient using a function of the previously-decoded transform coefficients.

6. The method of claim 5, wherein the previously-decoded transform coefficients

are positioned in a template.

7. The method of claim 5, wherein using the function of the previcusly-decoded
transform coetficients comprises using the function of a first "M’ previously-decoded

transform coetficients, and wherein ‘M’ represents a non-negative value.

8. The method of ¢laim 5,

wherein the function comprises a summation function, and

wherein the corresponding i bin of the value for the syntax element of previously-
decoded transform coefficient is included in a plurality of corresponding i bins of

values for syntax elements of a plurality of previcusly-decoded transform coefficients.

9. The method of claim 8, wherein determining the context index for the i bin of
the value for the syntax element of the current transform coefficient using the
summation function comprises defining the context index for the i bin of the value for
the syntax element of the current transform coefficient as a sum of all of the plurality of
the corresponding i® bins of values for the syntax elements of the plurality of the

previously-decoded transform coefticients.
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10. The method of claim 8, further comprising clipping a result of the summation

tunction to form a clipped sum that is within a pre-defined range.

11 The method of claim 1, wherein determining the context for the i™ bin of the
value for the syntax element of the current transform coefficient comprises:
determining a context index for the i bin of the value for the syntax element of the
current transform coefficient; and

adding an offset to the determined context index.

12, The method of claim 11, further comprising determining the offset based ona

size of a transform unit that includes the current transform coefficient.

13. The method of claim 12, further comprising:

determining whether the transform unit 13 within a threshold size; and

if the transform unit is within the threshold size, determining that the transform unit is
associated with a set of context models that is common to all transform units that are

within the threshold size.

14, The method of claim 13, wherein the threshold size 15 associated with a 16x16
dimensionality.
15. The method of claim 1, wherein the current transform coetficient is included in a

transform unit that 1s encoded according to a bypass mode.

16. A method of encoding video data, the method comprising:

for each of a plurality of bins of a value for a syntax element of a current
transform coefficient, determining contexts using respective corresponding bins of
values tor the syntax element of one or more previously-encoded transform coefficients,

wherein determining the contexts comprises determining a context for an i bin
of the value for the syntax element of the current transform coetficient using a
corresponding i bin of a value for the syntax element of a previously-encoded
transform coetficient, wherein 1 comprises a non-negative integer, and wherein using the
corresponding i bin of the value for the syntax element of the previously-encoded

transform coefficient comprises using only the i™ bin of the value for the syntax element
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of the previously-encoded transform coefficient and no other bins of the value for the
syntax element of the previously-encoded transform coefficient; and
CABAC encoding the i bin of the value for the syntax element of the current

transform coefficient using the determined context.

17. The method of claim 16, wherein determining the context for the i bin of the
value for the syntax element of the current transform coefficient comprises determining
the context for the i bin of the value for the syntax element of the current transform
coefficient using a template that identifies one or more neighboring transform

coefticients to be used for CABAC decoding the current transtform coefficient.

18, The method of claim 17, further comprising deternmuning at least one of a size or
a shape of the template based on at least one of a size of a transform unit that includes
the current transtorm coefficient, a coding mode associated with a coding unit that
includes including the transform unit, a position of the current transform coefficient in
the transform unit that includes the current transform coefficient, or a position of the
current transform coefficient in a coefficient group that includes the current transform

coefficient.

19. The method of claim 16,

wherein the current transtform coefficient 1s included in a transform unit,

wherein all bins of the transform unit are CABAC encoded according to a
regular mode, and

wherein CABAC encoding the i bin of the value for the syntax element of the
current transform coefficient comprises encoding the i™ bin of the value for the syntax
elernent of the current transform coefficient during an i coding pass during which all
corresponding i bins of all transform coefficients of the transform unit are CABAC

encoded.

20. The method of claim 16, wherein determining the context for the i bin of the
value for the syntax element of the current transform coefficient comprises determining

a context index for the i™ bin of the value for the syntax element of the current

N
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21, The method of claim 20, wherein the previously-encoded transform coefficients
are positioned in a template.
22. The method of claim 20, wherein using the function of the previously-encoded

transform coetficients comprises using the function of a first ‘M’ previously-encoded

transform coefficients, and wherein ‘M’ represents a non-negative value,

23. The method of claim 20,

wherein the function comprises a summation function, and

wherein the corresponding i bin of the value for the syntax element of
previously-encoded transform coefficient is included in a plurality of corresponding i
bins of values for syniax elements of a plurality of previously-encoded transform

coefficients.

24. The method of claim 23, wherein determining the context index for the i bin of
the value for the syntax element of the current transform coefficient using the
summation function comprises defining the context index for the i™ bin of the value for
the syntax element of the current transform coefficient as a sum of all of the plurality of
the corresponding i bins of values for the syntax elements of the plurality of the

previously-encoded transtorm coefficients.

25. The method of claim 16, wherein determining the context for the i bin of the
value for the syntax element of the current transform coefficient comprises:
determining a context index for the i bin of the value for the syntax element of the
current transform coefficient; and

adding an offset to the determined context index.

26, The method of claim 25, further comprising determining the offset based on a

size of a transform unit that includes the current transform coefficient.

27. The method of claim 26, further comprising;

determining whether the transform unit s within a threshold size; and
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if the transform unit 1s within the threshold size, determining that the transform

unit is associated with a set of context models that 1s common to all transform units that

are within the threshold size.

28

The method of claim 27, wherein the threshold size 1s associated with a 16x16

dimensionality.

29.

30.

A video coding device comprising:
a memory configured to store video data; and
one or more processors configured to:

determine, for each of a plurality of bins of a value for a syntax element
of a current transform coefficient, contexts using respective corresponding bins
of values for the syntax element of one or more previously-coded transform
coetticients,

wherein to determine the contexts, the one or more processors are
configured to determine a context for an i™ bin of the value for the syntax
element of the current transform coefficient using a corresponding i bin of a
value for the syntax element of a previously-coded transform coefficient,
wherein 1 comprises a non-negative integer, and wherein to use the
corresponding i bin of the value for the syntax element of the previcusly-coded
transform coefficient, the one or more processors are configured to use only the
i bin of the value for the syntax element of the previously-coded transform
coefficient and no other bins of the value for the syntax element of the
previously-coded transform coefficient; and

CABAC code the i™ bin of the value for the syntax element of the current

transform coetficient using the determined context.

The video coding device of claim 29, wherein to determine the context for the i

bin of the value for the syntax element of the current transform coetficient, the one or

more processors are configured to determine the context for the i™ bin of the value for

the syntax element of the current transform coefficient using a template that identifies

one or more neighboring transform coefficients to be used for CABAC decoding the

current transform coefficient.
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31, Thevideo coding device of claim 30, wherein the one or more processors are
turther configured to determine at least one of a size or a shape of the template based on
at least one of a size of a transform umt that includes the current transform coefficient, a
coding mode associated with a coding unit that inchudes including the transform unit, a
posttion of the current transform coetficient in the transform unit that includes the
current transform coefficient, or a position of the current transform coefficient in a

coefficient group that includes the current transform coefficient.

32, The video coding device of claim 30, wherein the one or more processors are
turther configured to determine at least one of a size or a shape of the template based on
color component information, the color compenent information including one or both of

luma component information or chroma component information

33 The video coding device of claim 29,

wherein the current transform coefficient is included in a transform unit,

wherein some or all bins of the transform unit are CABAC encoded according to
a regular mode, and

wherein to CABAC code the i bin of the value for the syntax element of the
current transform coefficient, the one or more processors are configured to code the it
bin of the value for the syntax element of the current transform coefficient during an i
coding pass during which all corresponding i bins of all transform coefficients of the

transform unit are CABAC coded.

34, Thevideo coding device of claim 29, wherein to determine the context for the i
bin of the value for the syntax element of the current transform coefficient, the one or

Y 7 < NGO cuoo f 0> i T + 3 » Cu 3 > f "})u‘h}‘ "-}) '-1 +Y
more processors are configured to determine a context index for the 1™ bin of the value
for the syntax element of the current transform coefficient using a function of the

previously-coded transform coetficients.

35. The video coding device of claim 34, wherein the previously-coded transform

coefficients are positioned in a template.

36, The video coding device of claim 34, wherein to use the function of the

previously-coded transform coefficients, the one or more processors are configured to
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use the function of a first "M’ previously-coded transform coeffictents, and wherein *M’

represents a non-negative value.

37.  The videc coding device of claim 34,

wherein the function comprises a summation function, and

wherein the corresponding i™ bin of the value for the syntax element of previousiy-
coded transform coefficient is included in a plurality of corresponding i™ bins of values

for syntax elements of a plurality of previcusly-coded transform coefficients.

38 The video coding device of claim 37, wherein to determine the context index for
the i bin of the value for the syntax element of the current transform coefficient using
the summation function, the one or more processors are configured to define the context
index for the i bin of the value for the syntax element of the current transform
coefficient as a sum of all of the plurality of the corresponding i™ bins of values for the

syntax elements of the plurality of the previously-coded transform coefticients.

35, The video coding device of claim 38, wherein the one or more processors are
further configured to clip a result of the summation function to form a clipped sum that

is within a pre-defined range.

40.  The video coding device of claim 29, wherein to determine the context for the i
bin of the value for the syntax element of the current transform coefficient, the one or
more processors are configured to:

determine a context index for the i bin of the value for the syntax element of the
current transform coefficient; and

add an offset to the determined context index.

41, The video coding device of claimn 40, wherein the one or more processors are
further configured to determine the offset based on a size of a transform untt that

includes the current transform coefficient.

42, The video coding device of claim 40, the one or more processors are further
configured to:

determine whether the transform unit is within a threshold size; and
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if the transtform unit 1s within the threshold size, determine that the transform unit is
associated with a set of context models that 1s common to all transform units that are

within the threshold size.

43, The video coding device of claim 42, wherein the threshold size is associated

with a 16x16 dimensionality.

44, The video coding device of claim 29,

wherein the stored video data comprises encoded video data,

wherein the one or more processors are further configured to decode at least a
portion of the encoded video data to form reconstructed video data, and

wherein the video coding device further comprises a display device configured

to display at least a portion of the reconstructed video data.

45, The video coding device of claim 29,

wherein the one or more processors are further configured to encode at least a portion of
the stored, and

wherein the previously-coded transform coefficient comprises a previously-encoded

transform coefficient.

46.  The video coding device of claim 4S5, further comprising a camera configured to

capture at least a portion of the video data.

47.  The video coding device of claim 29, wherein the current transform coefficient

is included in a transform unit that is coded according to a bypass mode.

48. A video coding apparatus comprising;
means for determining, for each of a plurality of bins of a value for a syntax
element of a current transform coefficient, contexts using respective corresponding bins
of values for the syntax element of one or more previously-coded transform coefficients,
wherein the means for determining the contexts comprises means for

determining a context for an i bin of the value for the syntax element of the current

transform coefficient using a corresponding i bin of a value for the syntax element of a

previously-coded transform coefficient, wherein 1 comprises a non-negative integer, and
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wherein the means for using the corresponding i bin of the value for the syntax
element of the previously-coded transform coefficient comprises means for using only
the i% bin of the value for the syntax element of the previously-coded transform
coefficient and no other bins of the value for the syntax element of the previously-coded
transform coefficient; and

means for CABAC coding the i" bin of the value for the syntax element of the

current transform coefficient using the determined context.

49 A non-transitory computer-readable storage medium encoded with instructions
that, when executed, cause one or more processors of a video coding device to:

determine, for each of a plurality of bins of a value for a syntax elementof a
current transform coeflicient, contexts using respective corresponding bins of values for
the syntax element of one or more previcusly-coded transform coetficients,

wherein to determine the contexts, the one or more processors are configured to
determine a context for an i bin of the value for the syntax element of the current
transform coefficient using a corresponding i bin of a value for the syntax element of a
previously-coded transtform coefficient, wherein i comprises a non-negative integer, and
wherein to use the corresponding i™ bin of the value for the syntax element of the
previously-coded transform coetficient, the one or more processors are configured to
use only the i bin of the value for the syntax element of the previously-coded transform
coefficient and no other bins of the value for the syntax element of the previously-coded
transform coetficient; and

CABAC code the i bin of the value for the syntax element of the current

transform coefficient using the determined context.
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Box No.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. I:' Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. IXI Claims Nos.: 79 22, 36

because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

see FURTHER INFORMATION sheet PCT/ISA/210

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

-

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. I:' As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

1-6, 8-11, 16-21, 23-25, 29-35, 37-40, 44-46, 48, 49

4. |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

m No protest accompanied the payment of additional search fees.
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This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-3, 5, 6, 8-11, 16-18, 20, 21, 23-25, 29-32, 34, 35,
37-40, 44-46, 48, 49

Templates of neighboring coefficients for context
derivation.

2. claims: 4, 19, 33

Parallel context derivation.

3. claims: 12-14, 26-28, 41-43

Context index offset based on TU size.

4. claims: 15, 47

Transform skip mode
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Continuation of Box II.2

Claims Nos.: 7, 22, 36

Claims 7, 22 and 36 define "using the function of a first 'M'
previously-decoded transform coefficients".

It is unclear from the above
expression whether to consider the first M coefficients in the current
sub-block, or in the current block, or in the current slice, etc., and in
which order (e.g. in coding order or in inverse scanning order).
Moreover, the description does not provide any basis for any of the above
interpretations (see paragraph [0325] which appears to contain the only
reference to "a first 'M' previously-decoded transform coefficients".
Therefore, Claims 7, 22 and 36 Tack support by the description (Article 6
PCT) to such an extent that no meaningful search can be carried out and
no meaningful opinion can be formulated for said claims.

The applicant's attention is drawn to the fact that claims relating to
inventions in respect of which no international search report has been
established need not be the subject of an international preliminary
examination (Rule 66.1(e) PCT). The applicant is advised that the EPO
policy when acting as an International Preliminary Examining Authority is
normally not to carry out a preliminary examination on matter which has
not been searched. This is the case irrespective of whether or not the
claims are amended following receipt of the search report or during any
Chapter II procedure. If the application proceeds into the regional phase
before the EPO, the applicant is reminded that a search may be carried
out during examination before the EPO (see EPO Guidelines C-1V, 7.2),
should the problems which led to the Article 17(2) declaration be
overcome.
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