This invention is directed to a method for producing a coating layer of a coating composition comprising two or more components. The two or more components are mixed post atomization. This invention is also directed to a gravity fed spray gun having a spray needle comprising two or more spray channels for producing such coating layer.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority from U.S. Provisional Application Serial No. 61/220310 (filed June 25, 2009), the disclosure of which is incorporated by reference herein for all purposes as if fully set forth.

FIELD OF INVENTION

The present invention is directed to a method for producing a coating layer with a coating composition. This invention is specifically directed to a method and a spray device for producing an atomized stream of a coating composition having multiple components.

BACKGROUND OF INVENTION

Coatings on automobiles or other objects typically comprise polymer networks formed by multiple reactive components of a coating composition. The coatings are typically applied onto a substrate such as automobile vehicle body or body parts using a spray device or other coating application techniques and then cured to form a coating layer having such polymer networks.

Currently, the multiple reactive components of the coating composition are typically mixed together to form a pot mix prior to spraying and placed in a cup-like reservoir or container that is attached to a spraying device such as a spray gun. Due to the reactive nature of the multiple reactive components, the pot mix will start to react as soon as they are mixed together causing continued increase in viscosity of the pot mix. Once the viscosity reaches a certain point, the pot mix becomes practically un-sprayable. The possibility that the spray gun itself may become clogged with crosslinked polymer materials is also disadvantageous. The time it takes for the viscosity to increase to such point where spraying becomes ineffective, generally a two-fold increase in viscosity, is referred to as "pot life".

One way to extend "pot life" is to add a greater amount of thinning solvent, also known as thinning agent, to the pot mix. However, thinning
agent, such as organic solvent, contributes to increased emissions of volatile organic compounds (VOC) and also increases curing time.

[05] Other attempts to extend "pot life" of a pot mix of a coating composition have focused on "chemical-based" solutions. For example, it has been suggested to include modifications of one or more of the reactive components or certain additives that would retard polymerization reaction of the multiple components in the pot mix. The modifications or additives must be such that the rate of curing is not adversely affected after the coating is applied to the surface of a substrate.

[06] Another approach is to mix one or more key components, such as a catalyst, together with other components of the coating composition immediately prior to spraying. One example is described in U.S. Patent No. 7,201,289 in that a catalyst solution is stored in a separate dispenser and being dispensed and mixed with a liquid coating formulation before the coating formulation is atomized.

[07] Yet another approach is to separately atomize two components, such as a catalyst and a resin, of a coating composition, and mix the two atomized components after spray. One such example is described in U.S. Patent No. 4,824,017. However, such approach requires atomization of two components separately by using separate pumps and injection means for each of the two components.

STATEMENT OF INVENTION

[08] This invention is directed to a spray gun for spraying a coating composition comprising a first component and a second component, said spray gun comprising:

(A) a spray gun body (1) comprising a carrier inlet (12), a first inlet (10) connected to a first connection path, and a second inlet (8) connected to a second connection path;

(B) a tubular nozzle casing (55) having a nozzle (13), said tubular nozzle casing being housed within said spray gun body; and

(C) a hollow spray needle (56) having a longitudinal channel within said hollow spray needle and a channel opening (13a") at an end of said hollow spray needle towards said nozzle; said hollow spray
needle is configured to slide in said tubular nozzle casing between a closed position and a spray position; wherein:
said first component and said second component are maintained separated in said spray gun;
said first connection path is connected to a spray passage defined by said tubular nozzle casing and said hollow spray needle for conveying said first component to said nozzle by gravity; and said second connection path is connected to said longitudinal channel for conveying said second component when said hollow spray needle is at said spray position.

[09] This invention is also directed to a method for producing a layer of a coating composition comprising a first component and a second component on a substrate, said method comprising the steps of:
i) providing a spray gun comprising:
(A) a spray gun body (1) comprising a carrier inlet (12), a first inlet (10) connected to a first connection path, and a second inlet (8) connected to a second connection path;
(B) a tubular nozzle casing (55) having a nozzle (13), said tubular nozzle casing being housed within said spray gun body; and
(C) a hollow spray needle (56) having a longitudinal channel within said hollow spray needle and a channel opening (13a") at an end of said hollow spray needle towards said nozzle; said hollow spray needle is configured to slide in said tubular nozzle casing between a closed position and a spray position; wherein:
said first component and said second component are maintained separated in said spray gun;
said first connection path is connected to a spray passage defined by said tubular nozzle casing and said hollow spray needle for conveying said first component to said nozzle by gravity; and
said second connection path is connected to said longitudinal
channel for conveying said second component when said
hollow spray needle is at said spray position;

ii) providing the first component of said coating composition to the
first inlet and the second component of said coating composition
to said second inlet;

iii) producing atomized said first component and atomized said
second component to form an atomized coating mixture by
supplying a pressurized carrier to said carrier outlet through said
carrier inlet and sliding said spray needle to said spray position;

and

iv) applying said atomized coating mixture over said substrate
forming said layer thereon.

BRIEF DESCRIPTION OF DRAWING

Figure 1 shows a schematic presentation of an example of a spray gun of this invention.

Figure 2 shows another schematic presentation of an example of a spray gun of this invention.

Figure 3 shows an example of an adaptor.

Figure 4 shows another example of an adaptor.

Figure 5 shows another example of an adaptor with connectors.

Figure 6 shows yet another example of an adaptor with connectors.

Figure 7 shows a frontal view of an example of a nozzle-air cap assembly. (A) Frontal view. (B) Details of the frontal view.

Figure 8 shows a cross section view of an example of the hollow spray needle. (A) The hollow spray needle at the spray position. (B) The hollow spray needle at the closed position.

DETAILED DESCRIPTION

The features and advantages of the present invention will be more readily understood, by those of ordinary skill in the art, from reading the following detailed description. It is to be appreciated that certain features of the invention, which are, for clarity, described above and below in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention that are, for
brevity, described in the context of a single embodiment, may also be
provided separately or in any sub-combination. In addition, references in the
singular may also include the plural (for example, "a" and "an" may refer to
one, or one or more) unless the context specifically states otherwise.

[19] The use of numerical values in the various ranges specified in this
application, unless expressly indicated otherwise, are stated as
approximations as though the minimum and maximum values within the
stated ranges were both proceeded by the word "about." In this manner,
slight variations above and below the stated ranges can be used to achieve
substantially the same results as values within the ranges. Also, the
disclosure of these ranges is intended as a continuous range including every
value between the minimum and maximum values.

[20] As used herein:

[21] "Two-pack coating composition", also known as 2K coating

composition, means a thermoset coating composition comprising two
components that are stored in separate containers, which are typically sealed
for increasing the shelf life of the components of the coating composition. The
components are mixed just prior to use to form a pot mix, which has a limited
pot life, typically from few minutes, such as 15 minutes to 45 minutes, to few
hours, such as 4 hours to 10 hours. The pot mix is applied as a layer of
desired thickness on a substrate surface, such as the body or body parts of a
vehicle. After application, the layer dries and cures to form a coating on the
substrate surface having desired coating properties, such as, desired gloss,
mar-resistance, resistance to environmental etching and resistance to
degradation by solvent. A typical two-pack coating composition can comprise
a crosslinkable component and a crosslinking component.

[22] "One-Pack coating composition", also known as 1K coating

composition, means a coating composition comprises multiple ingredients
mixed in one single package. A one-pack coating composition can form a
coating layer under certain conditions. One example of 1K coating
composition can comprise a blocked crosslinking agent that can be activated
under certain conditions. One example of the blocked crosslinking agent can
be a blocked isocyanate. Another example of 1K coating composition can be
an ultraviolet (UV) radiation curable coating composition.
The term "radiation", "irradiation" or "actinic radiation" means radiation that causes, in the presence of a photo initiator, polymerization of monomers that have polymerizable ethylenically unsaturated double bonds, such as acrylic or methacrylic double bonds. Sources of actinic radiation may be natural sunlight or artificial radiation sources. Examples of actinic radiation include, but not limited to, UV radiation that has radiation wavelength in a range of from 100 nm to 800 nm, UV-A radiation, which falls within the wavelength range of from 320 nanometers (nm) to 400 nm; UV-B radiation, which is radiation having a wavelength falling in the range of from 280 nm to 320 nm; UV-C radiation, which is radiation having a wavelength falling in the range of from 100 nm to 280 nm; and UV-V radiation, which is radiation having a wavelength falling in the range of from 400 nm to 800 nm. Other examples of radiation can include electron-beam, also known as e-beam. A coating curable by radiation, such as UV, can be referred to as a radiation coating or a UV coating. A UV coating can be typically a 1K coating. A UV curable coating can typically have a UV curable component comprising monomers that have polymerizable ethylenically unsaturated double bonds, such as acrylic or methacrylic double bonds; and one or more photo initiators or radiation activators. Typically, a 1K coating composition, for example a UV mono-cure coating composition, can be prepared to form a pot mix and stored in a sealed container. As long as said UV mono-cure coating composition is not exposed to UV radiation, said UV mono-cure coating composition can have indefinite pot life.

A coating that can be cured by one curing mechanism, such as by chemical crosslinking alone or by UV radiation alone, can be referred to as a mono-cure coating. A coating that can be cured by both chemical and radiation, such as by both chemical crosslinking and UV radiation, is referred to as a dual-cure coating.

In one example, a dual-cure coating composition contains a first component having both radiation curable groups, such as acrylic double bonds, and chemical crosslinkable groups, such as hydroxyl groups, in one container. A second component contains a corresponding crosslinking agent having crosslinking groups, such as isocyanate groups and is stored in a second container. Just prior to use, the first component and the second
component are mixed to form a pot mix. U.S. Patent No. 6,815,501, for example, discloses a dual-cure type UV curable coating composition comprising a radiation curable component having polymerizable ethylenically unsaturated double bonds and a crosslinkable component having hydroxyl functional groups that can be cured by a combination of UV radiation and crosslinking component having isocyanate crosslinking agents. The crosslinkable component of a dual-cure coating composition can have other crosslinkable functional groups described herein. The crosslinking component of a dual-cure coating composition can have other crosslinking functional groups described herein.

[26] "Low VOC coating composition" means a coating composition that includes less than 0.6 kilograms per liter (5 pounds per gallon), preferably less than 0.53 kilograms (4.4 pounds per gallon) of volatile organic component, such as certain organic solvents. The phrase "volatile organic component" is herein referred to as VOC. VOC level is determined under the procedure provided in ASTM D3960.

[27] "Crosslinkable component" includes a compound, oligomer, polymer or copolymer having functional crosslinkable groups positioned in each molecule of the compound, oligomer, the backbone of the polymer, pendant from the backbone of the polymer, terminally positioned on the backbone of the polymer, or a combination thereof. One of ordinary skill in the art would recognize that certain crosslinkable group combinations would be excluded from the crosslinkable component of the present invention, since, if present, these combinations would crosslink among themselves (self-crosslink), thereby destroying their ability to crosslink with the crosslinking groups in the crosslinking components defined below.

[28] Typical crosslinkable component can have on an average 2 to 25, preferably 2 to 15, more preferably 2 to 5, even more preferably 2 to 3, crosslinkable groups selected from hydroxyl, acetoacetoxy, carboxyl, primary amine, secondary amine, epoxy, anhydride, imino, ketimine, aldimine, or a combination thereof.

[29] The crosslinkable component can have protected crosslinkable groups. The "protected" crosslinkable groups are not immediately available for curing with crosslinking groups, but first must undergo a reaction to produce the
crosslinkable groups. Examples of suitable protected crosslinkable components having protected crosslinkable groups can include, for example, amide acetal, orthocarbonate, orthoacetate, orthoformate, spiroorthoester, orthosilicate, oxazolidine or combinations thereof.

The protected crosslinkable groups generally are not crosslinkable without an additional chemical transformation. The chemical transformation for these groups can be a deprotection reaction such as hydrolysis reaction that unprotects the group to form a crosslinkable group that can then be reacted with the crosslinking component to produce a crosslinked network.

Each one of these protected groups, upon the deprotection reaction, forms at least one crosslinkable group. For example, upon hydrolysis, an amide acetal can form an amide diol or one of two amino alcohols. As another example, the hydrolysis of an orthoacetate can form a hydroxyl group.

The crosslinkable component can contain compounds, oligomers and/or polymers that have crosslinkable functional groups that do not need to undergo a chemical reaction to produce the crosslinkable group. Such crosslinkable groups are known in the art and include, for example, hydroxyl, acetoacetoxy, thiol, carboxyl, primary amine, secondary amine, epoxy, anhydride, imino, ketimine, aldimine, silane, aspartate or a suitable combination thereof.

Suitable activators for deprotecting the protected crosslinkable component can include, for example, water, water and acid, organic acids or a combination thereof. In one embodiment, water or a combination of water and acid can be used as an activator to deprotect the crosslinkable component. For example, water or water with acid can be an activator for a coating described in PCT publication WO2005/092934, published on October 6, 2005, wherein water activates hydroxyl groups by hydrolyzing orthoformate groups that block the hydroxyl groups from reacting with crosslinking functional groups.

"Crosslinking component" is a component that includes a compound, oligomer, polymer or copolymer having crosslinking functional groups positioned in each molecule of the compound, oligomer, the backbone of the polymer, pendant from the backbone of the polymer, terminally positioned on the backbone of the polymer, or a combination thereof, wherein these
functional groups are capable of crosslinking with the crosslinkable functional
groups on the crosslinkable component (during the curing step) to produce a
coating in the form of crosslinked structures or networks. One of ordinary skill
in the art would recognize that certain crosslinking group/crosslinkable group
combinations would be excluded from the present invention, since they would
fail to crosslink and produce the film forming crosslinked structures or
networks.

34 Typical crosslinking component can be selected from a compound,
oligomer, polymer or copolymer having crosslinking functional groups
selected from the group consisting of isocyanate, amine, ketimine, melamine,
epox, polyacid, anhydride, and a combination thereof. It would be clear to
one of ordinary skill in the art that generally certain crosslinking groups from
crosslinking components crosslink with certain crosslinkable groups from the
crosslinkable components. Some of those paired combinations can include:

(1) ketimine crosslinking groups generally crosslink with acetoacetoxy, epoxy,
or anhydride crosslinkable groups; (2) isocyanate and melamine crosslinking
groups generally crosslink with hydroxyl, primary and secondary amine,
ketimine, or aldime crosslinkable groups; (3) epoxy crosslinking groups
generally crosslink with carboxyl, primary and secondary amine, ketimine, or
anhydride crosslinkable groups; (4) amine crosslinking groups generally
crosslink with acetoacetoxy crosslinkable groups; (5) polyacid crosslinking
groups generally crosslink with epoxy crosslinkable groups; and (6) anhydride
crosslinking groups generally crosslink with epoxy and ketimine crosslinkable
groups.

35 A coating composition can further comprise a catalyst, an initiator, an
activator, a curing agent, or a combination thereof. A coating composition can
also comprise a radiation activator if the coating composition is a radiation
curable coating composition, such as a UV curable coating composition.

36 A catalyst can initiate or promote the reaction between reactants, such
as crosslinkable functional groups of a crosslinkable component and
crosslinking functional groups of a crosslinking component of a coating
composition. The amount of the catalyst depends upon the reactivity of
functional groups. Generally, in the range of from about 0.001 percent to
about 5 percent, preferably in the range of from 0.01 percent to 2 percent,
more preferably in the range of from 0.02 percent to 1 percent, all in weight percent based on the total weight of the crosslinkable component solids, of the catalyst can be utilized. A wide variety of catalysts can be used, such as, tin compounds, including organotin compounds such as dibutyl tin dilaurate; or tertiary amines, such as, triethylenediamine. These catalysts can be used alone or in conjunction with carboxylic acids, such as, acetic acid. One example of commercially available catalysts is dibutyl tin dilaurate as Fascat® series sold by Arkema, Bristol, Pennsylvania, under respective trademark.

[37] An activator can activate one or more components of a coating composition. For example, water can be an activator for a coating described in PCT publication WO2005/092934, published on October 6, 2005, wherein water activates hydroxyl groups by hydrolyzing orthoformate groups that block the hydroxyl groups from reacting with crosslinking functional groups.

[38] An initiator can initiate one or more reactions. Examples can include photo initiators and/or sensitizers that cause photopolymerization or curing of a radiation curable coating composition, such as a UV curable coating composition upon radiation, such as UV irradiation. Many photo initiators are known to those skilled in the art and can be suitable for this invention. Examples of photo initiators can include, but not limited to, benzophenone, benzoin, benzoinmethyl ether, benzoin-n-butyl ether, benzoin-iso-butyl ether, propiophenone, acetophenone, methyphenylgloxylate, 1-hydroxycyclohexyl phenyl ketone, 2, 2-diethoxyacetophenone, ethylphenylpyloxylate, diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide, phosphine oxide, phenyl bis (2,4,6-trimethyl benzyol), phenantheraquinone, and a combination thereof. Other commercial photo initiator products, or a combination thereof, such as Darocure® 1173, Darocure® MBF, Darocure® TPO or Irgacure® 184, Irgacure® 4265, Irgacure® 819, Irgacure® 2022 or Irgacure® 2100 from Ciba Co., can also be suitable. Darocure® and Irgacure® are registered trademarks of Ciba Specialty Chemicals Corporation, New York.

[39] A radiation activator can be activated by radiation and then initiate or catalyze subsequent one or more reactions. One example can be photolatent catalyst available from Ciba Specialty Chemicals.

[40] A curing agent can react with other components of a coating composition to cure the coating composition into a coating. For example, a
crosslinking component, such as isocyanate, can be a curing agent for a coating comprising a crosslinkable hydroxyl component. On the other hand, a crosslinkable component can be a curing agent for a crosslinking component.

[41] In conventional coating practice, components of a two-pack coating composition are mixed immediately prior to spraying to form a pot mix which has a limited pot life, wherein said components can include a crosslinking component, a crosslinkable component, necessary catalysts, and other components necessary as determined by those skilled in the art. In addition to the limited pot life, many catalysts can change its activity in the pot mix. For example, some catalysts can be sensitive to the trace amount of water in the pot mix since water can cause hydrolysis and hence inactivation of the catalyst.

[42] To extend pot life, one prior approach is to mix the catalyst with other components of the coating composition immediately prior to spraying. One example is described in aforementioned U.S. Patent No. 7,201,289 in that a catalyst solution is stored in a separate dispenser and being dispensed and mixed with a liquid coating formulation before the coating formulation is atomized. However, this approach requires mixing the catalyst and the liquid coating composition prior to atomization.

[43] Another example of prior approach is described in U.S. Patent No. 4,824,017 in that a catalyst and a resin of a coating composition are separately atomized and mixed after atomization. However, such approach requires atomization of two components separately by using separate pumps and individual injection means for each of the two components. This approach also requires intensive adjustment and monitoring of the individual atomization and injection to ensure constant mixing ratio of the two components.

[44] This invention is directed to a spray gun for spraying a coating composition comprising a first component and a second component onto a substrate. The spray gun can comprise:

(A) a spray gun body (1) comprising a carrier inlet (12), a first inlet (10) connected to a first connection path, and a second inlet (8) connected to a second connection path;
(B) a tubular nozzle casing (55) having a nozzle (13), said tubular nozzle casing being housed within said spray gun body; and

(C) a hollow spray needle (56) having a longitudinal channel within said hollow spray needle and a channel opening (13a") at an end of said hollow spray needle towards said nozzle; said hollow spray needle is configured to slide in said tubular nozzle casing between a closed position and a spray position; wherein:
said first component and said second component are maintained separated in said spray gun;
said first connection path is connected to a spray passage defined by said tubular nozzle casing and said hollow spray needle for conveying said first component to said nozzle by gravity; and said second connection path is connected to said longitudinal channel for conveying said second component when said hollow spray needle is at said spray position.

[45] As shown in Figure 1, the spray gun body (1) can have additional multiple parts, controls, such as carrier coupling (12) for coupling to a source of a carrier, such as compressed air; a carrier regulator assembly (25) for regulating and measuring flow rate and pressure of the carrier; a coating flow regulator (21) for regulating flow of the first component that is stored in a main reservoir (3), and other mechanisms necessary for proper operation of a spray gun known to those skilled in the art. Additional control or parts can include, such as a trigger (22) and a spray fan regulator (20) for regulating compressed carrier such as compressed air jetting out from a set of shaping air jets (24a) for forming desired spray shape, such as a fan-shape. Typically, multiple channels, connectors, connection paths and mechanical controls can be assembled within the spray gun body. The spray gun body can also provide further assembly or operation mechanisms for additional parts or controls, such as an air cap (24) that can form a spray nozzle-air cap assembly (2).

[46] The first inlet (10) can be constructed or configured onto the spray gun body through means known to those skilled in the art. The first inlet is connected to the nozzle for conveying a first component of the coating composition to the nozzle. The main reservoir (3) is not pressurized and the
first inlet can be typically positioned at the upper side of the spray gun body so the first component can be conveyed to the first inlet and further into the spray gun by gravity during normal spray operation, such as hand-held spraying. The spray gun can comprise a second reservoir (15) for conveying a second component to the second inlet by gravity. The second reservoir can be positioned separately from the main reservoir (3) (Fig. 1) or nested within the main reservoir (Fig. 2). The reservoirs can be attached to the spray gun body using an adaptor (103) (Fig. 3). The adaptor can be attached to the first inlet (10) and the second inlet (8). The adaptor can also be directly affixed to the spray gun body. One example of such an adaptor (104) is shown in Fig. 4. Connectors, such as connector (10a) and (8a) can be used to hold the adaptor in place (Fig. 5 and Fig. 6).

[47] The longitudinal channel of the hollow spray needle (56) can be sliding in the bi-directional arrow shown by the bi-directional arrow (50) and can be configured to disconnect from said second connection path when said spray needle is at said closed position. Typically, such configuration can be done by positioning an opening of the second connection path and an opening of the longitudinal channel in such a way that the two openings align together for the second component to pass through when the hollow spray needle is at the spray position and misalign when the hollow spray needle is at the closed position.

[48] The spray passage can be configured to connect constantly with the first connection path regardless of the position of the spray needle. The spray passage can also be configured to disconnect from said first connection path when the spray needle is at said closed position.

[49] In another example, the longitudinal channel is configured to disconnect from said second connection path and said spray passage is configured to disconnect from said first connection path when said spray needle is at said closed position.

[50] When assembled together, the nozzle and the air cap can form a nozzle-air cap assembly (2). A frontal view of an example of the nozzle-air cap assembly is shown in Fig. 7A. A detailed view of an example of the nozzle-air cap assembly is shown in Fig. 7B. When the hollow spray needle is at the spray position, the first component can be sprayed out through a space
(13b") defined by the nozzle wall and the hollow spray needle and the second component can be sprayed out from the channel opening (13a") of the hollow spray needle.

[51] In yet another example, the hollow spray needle can be connected to the second connection path for conveying the second component (51) to be sprayed out from the as a second stream (51a), while the first component (52) can be conveyed to the nozzle (13) and sprayed out as a first stream (52a) from the space (13b") (Fig. 7B and Fig. 8A). Compressed air can jet out as indicated by the arrow (53a). When is at the closed position, the hollow spray needle can seal off the space (13b") and the longitudinal channel can be sealed by a seal means (60) (Fig. 8B).

[52] The spray gun can comprise a first flow control means coupled to the first inlet for regulating flow of the first component. The spray gun can also comprise a second flow control means coupled the second inlet for regulating flow of the second component. Typically, the tubular nozzle casing or the spray needle can have a tapered opening at the nozzle. The hollow spray needle can be configured to seal the nozzle at the closed position.

[53] This invention is also directed to a method for producing a layer of a coating composition comprising a first component and a second component on a substrate. The method can comprise the steps of:

i) providing a spray gun comprising:

(A) a spray gun body (1) comprising a carrier inlet (12), a first inlet (10) connected to a first connection path, and a second inlet (8) connected to a second connection path;

(B) a tubular nozzle casing (55) having a nozzle (13), said tubular nozzle casing being housed within said spray gun body; and

(C) a hollow spray needle (56) having a longitudinal channel within said hollow spray needle and a channel opening (13a") at an end of said hollow spray needle towards said nozzle; said hollow spray needle is configured to slide in said tubular nozzle casing between a closed position and a spray position; wherein:

said first component and said second component are maintained separated in said spray gun;
said first connection path is connected to a spray passage defined by said tubular nozzle casing and said hollow spray needle for conveying said first component to said nozzle by gravity; and said second connection path is connected to said longitudinal channel for conveying said second component when said hollow spray needle is at said spray position;

ii) providing the first component of said coating composition to the first inlet and the second component of said coating composition to said second inlet;

iii) producing atomized said first component and atomized said second component to form an atomized coating mixture by supplying a pressurized carrier to said carrier outlet through said carrier inlet and sliding said spray needle to said spray position; and

iv) applying said atomized coating mixture over said substrate forming said layer thereon.

The method can further comprise the step of curing said layer of said coating composition at ambient temperatures, such as in a range of from 18°C to 35°C, or at elevated temperatures, such as in a range of from 35°C to 150°C. The layer can be cured for a time period in a range of from a few minutes, such as 5 to 10 minutes, to a few hours, such as 1 to 10 hours, or even to a few days, such as 1 to 2 days. The layer can also be cured by actinic radiation at ambient temperatures, such as in a range of from 18°C to 35°C, or at elevated temperatures, such as in a range of from 35°C to 150°C.

The pressurized carrier can be selected from compressed air, compressed gas, compressed gas mixture, or a combination thereof. Typically, a compressed air can be used.

The substrate can be wood, plastic, leather, paper, woven and nonwoven fabrics, metal, plaster, cementitious and asphaltic substrates, and substrates that have one or more existing layers of coating thereon. The substrate can be a vehicle, vehicle body or vehicle parts.

The coating composition can be selected from a lacquer coating composition, a chemical curable coating composition, a radiation curable coating composition, or a chemical and radiation dual-cure coating composition.
The coating composition can be a 1K coating composition or a 2K coating composition. The coating composition can also be a mono-cure such as a chemical curable coating composition or a radiation curable coating composition; or a dual-cure coating composition, such as a chemical and radiation dual-cure coating composition.

In one example, the second component can be selected from a catalyst, an initiator, an activator, a radiation activator, a curing agent, or a combination thereof.

In one example, the coating composition can be a UV coating composition wherein the first component comprises a UV curable component as described above and the second component comprises one or more photo initiators. In another example, the coating composition is a chemical curable coating composition wherein the first component comprises a crosslinkable component and a crosslinking component and the second component comprises a catalyst or a radiation activator such as a latent catalyst such as the photolatent catalyst. In yet another example, the first component comprises a crosslinkable component and the second component comprises a crosslinking component and a catalyst.

In yet another example, the coating composition is a dual-cure coating composition wherein the first component comprises a crosslinkable component, a crosslinking component and a UV curable component, and the second component comprises a catalyst and a photo initiator.

In yet another example, the first component comprises a crosslinkable component and the second component comprises a crosslinking component as a curing agent.

In yet another example, the first component comprises a radiation curable component and a crosslinkable component, and said second component comprises a crosslinking component.

In yet another example, the first component comprises a crosslinkable component, a crosslinking component and a radiation curable component, and said second component comprises a catalyst, a photo initiator, and optionally a radiation activator such as a photolatent catalyst.

In yet another example, the first component is a lacquer coating composition that comprises crosslinkable component. The second component
can comprise a crosslinking component or a combination of a crosslinking component and a catalyst. Typically, a lacquer coating composition can dry to form a coating layer and does not require a crosslinking component. Adding an additional crosslinking component can typically reduce curing time and improve coating properties. Conventional method is to mix the lacquer with a crosslinking component in the way similar to the 2k coating composition. However, such conventional method causes the coating mixture to have limited pot life similar to that of the 2k coating composition. An advantage of this invention is to have the ability to cure a lacquer composition while maintaining extended pot life since the crosslinking component can be mixed with the lacquer after atomization of the lacquer. The rate of curing can easily be varied by changing the ratio of the lacquer composition to the crosslinking component.

[66] In yet another example, the first component comprises protected crosslinkable groups and a crosslinking component. In one example, the protected crosslinkable groups are selected from the group consisting of amide acetal, orthocarbonate, orthoester, spiroorthoester, orthosilicate, oxazolidine and combinations thereof. In one example, the crosslinking component can comprise a compound, oligomer or polymer having crosslinking groups selected from the group consisting of isocyanate, amine, ketimine, melamine, epoxy, carboxylic acid, anhydride, and a combination thereof. Due to the presence of the protected crosslinkable functional groups, the crosslinkable and the crosslinking groups typically can not initiate crosslinking reaction. The protected crosslinkable groups can be activated by introducing water or water with acid. The water or the water with acid can be used as a second or a subsequent component using the spray gun.

[67] In yet another example, the first component can comprise the aforementioned protected crosslinkable component and the second component can comprise the aforementioned crosslinking component. The water or water in combination with an acid can be used as a subsequent component.

[68] In yet another example, the first component can comprise the aforementioned protected crosslinkable component and the second
component can comprise a combination of the crosslinking component, the water or water in combination with an acid.

[69] Another advantage of this invention can include the ability for controlling viscosity of a coating composition. The coating mixture can have a coating viscosity that is increasing upon time, while the first component and the second component can be at essentially constant individual viscosity. That means that the first component and the second component can be at an individual viscosity essentially constant at the beginning and the end of spray operation. This can be particularly useful for spraying coating compositions that viscosity increases very rapidly if all components are mixed together. By utilizing this invention, individual components of such coating compositions can be mixed after atomization. The viscosity of individual component can be essentially constant during spray operation. In one example, the first component comprises a crosslinkable component and a crosslinking component, and the second component comprises a catalyst. In another example, the first component comprises a crosslinkable component and the second component comprises a crosslinking component and a catalyst.

[70] The substrate can be wood, plastic, leather, paper, woven and nonwoven fabrics, metal, plaster, cementitious and asphaltic substrates, and substrates that have one or more existing layers of coating thereon. The substrate can be vehicle body or vehicle parts thereof.

[71] Although coating compositions with multiple coating components are specifically described here, this invention can also be used for a composition having multiple components that need to be mixed to form a mixed composition. With this invention, a first component of the composition can be atomized by a spray device and a second or a subsequent component of the composition can be siphoned into the atomized first component to form the mixed composition.

EXAMPLES

The present invention is further defined in the following Examples. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit
and scope thereof, can make various changes and modifications of the
invention to adapt it to various uses and conditions.

Coating Examples 1-3

DuPont ChromaClear® G2-7779STM, under respective registered or
unregistered trademarks, is mixed with an activator 7775S (both available
from E. I. duPont de Nemours and Company, Wilmington, USA) according to
manufacturer's directions to form a first coating mix, also referred to as a first
coating component. The first coating component is placed in the main storage
container (also referred to as a first storage container) of a gravity spray gun.

Various catalyst solutions are prepared according to Table 1. Each is
used as a second coating component and is placed in a second container of
the spray gun.

Mixing ratio of the first coating component/the second coating
component is controlled at about 13/1 by selecting a suitable size of a
connection tubing connecting the second container and the delivery outlet of
the delivery device.

The clearcoats prepared above are sprayed over Uniprime (ED-5000,
cold-rolled steel (04X12X032)B952 P60 DIW unpolish Ecoat POWERCRON
590 from ACT Laboratories, Hillsdale, Mich.) to a film thickness of 2.3 to 2.6
milis. The coatings are baked for 5 min or 10 min at 60°C as indicated.

Table 1. Coating Compositions.

<table>
<thead>
<tr>
<th></th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Component</td>
<td>ChromaClear® G2-7779STM mixed with activator 7775S</td>
<td>ChromaClear® G2-7779STM mixed with activator 7775S</td>
<td>ChromaClear® G2-7779STM mixed with activator 7775S</td>
</tr>
<tr>
<td>Second Component</td>
<td>0.125% DBTDL in ethyl acetate</td>
<td>0.125% DBTDL and 2% acetic acid in ethyl acetate</td>
<td>0.0625% DBTDL, and 0.5% acetic acid in ethyl acetate</td>
</tr>
</tbody>
</table>

DBTDL = dibutyltin dilaurate.
CLAIMS

What is claimed is:

1. A spray gun for spraying a coating composition comprising a first component and a second component, said spray gun comprising:
 (D) a spray gun body (1) comprising a carrier inlet (12), a first inlet (10) connected to a first connection path, and a second inlet (8) connected to a second connection path;
 (E) a tubular nozzle casing (55) having a nozzle (13), said tubular nozzle casing being housed within said spray gun body; and
 (F) a hollow spray needle (56) having a longitudinal channel within said hollow spray needle and a channel opening (13a”) at an end of said hollow spray needle towards said nozzle; said hollow spray needle is configured to slide in said tubular nozzle casing between a closed position and a spray position; wherein:
 said first component and said second component are maintained separated in said spray gun;
 said first connection path is connected to a spray passage defined by said tubular nozzle casing and said hollow spray needle for conveying said first component to said nozzle by gravity; and
 said second connection path is connected to said longitudinal channel for conveying said second component when said hollow spray needle is at said spray position.

2. The spray gun of claim 1, wherein said longitudinal channel is configured to disconnect from said second connection path when said spray needle is at said closed position.

3. The spray gun of claim 1, wherein said spray passage is configured to disconnect from said first connection path when said spray needle is at said closed position.

4. The spray gun of claim 1, wherein said longitudinal channel is configured to disconnect from said second connection path and said spray passage...
is configured to disconnect from said first connection path when said spray needle is at said closed position.

5. The spray gun of claim 1 further comprising a main reservoir (3) for conveying said first component to said first inlet by gravity.

6. The spray gun of claim 1 further comprising a second reservoir (15) for conveying said second component to said second inlet by gravity.

7. The spray gun of claim 1 further comprising a first flow control means coupled to said first inlet for regulating flow of the first component.

8. The spray gun of claim 1 further comprising a second flow control means coupled the second inlet for regulating flow of the second component.

9. The spray gun of claim 1, wherein said tubular nozzle casing or said spray needle has a tapered opening at the nozzle.

10. The spray gun of claim 1, wherein the hollow spray needle is configured to seal the nozzle at said closed position.

11. A method for producing a layer of a coating composition comprising a first component and a second component on a substrate, said method comprising the steps of:

 i) providing a spray gun comprising:

 (A) a spray gun body (1) comprising a carrier inlet (12), a first inlet (10) connected to a first connection path, and a second inlet (8) connected to a second connection path;

 (B) a tubular nozzle casing (55) having a nozzle (13), said tubular nozzle casing being housed within said spray gun body; and

 (C) a hollow spray needle (56) having a longitudinal channel within said hollow spray needle and a channel opening (13a") at an end of said hollow spray needle towards said
nozzle; said hollow spray needle is configured to slide in said tubular nozzle casing between a closed position and a spray position; wherein:
said first component and said second component are maintained separated in said spray gun;
said first connection path is connected to a spray passage defined by said tubular nozzle casing and said hollow spray needle for conveying said first component to said nozzle by gravity; and
said second connection path is connected to said longitudinal channel for conveying said second component when said hollow spray needle is at said spray position;
i) providing the first component of said coating composition to the first inlet and the second component of said coating composition to said second inlet;
ii) producing atomized said first component and atomized said second component to form an atomized coating mixture by supplying a pressurized carrier to said carrier outlet through said carrier inlet and sliding said spray needle to said spray position; and
iv) applying said atomized coating mixture over said substrate forming said layer thereon.

12. The method of claim 11 further comprising the step of curing said layer of said coating composition.

13. The method of claim 11, wherein the pressurized carrier is selected from compressed air, compressed gas, compressed gas mixture, or a combination thereof.

14. The method of claim 11, wherein said substrate is a vehicle, vehicle body, or vehicle body parts.

15. The method of claim 11, wherein said coating composition is selected from a lacquer coating composition, a chemical curable coating
composition, a radiation curable coating composition, or a chemical and radiation dual-cure coating composition.

16. The method of claim 11, wherein said first component comprises a crosslinkable and a crosslinking component and said second component comprises a catalyst or a latent catalyst.

17. The method of claim 11, wherein said first component comprises a radiation curable component and said second component comprises a photo initiator.

18. The method of claim 11, wherein said first component comprises a crosslinkable component, a crosslinking component and a radiation curable component, and said second component comprises a catalyst, an initiator, a radiation activator, or a combination thereof.

19. The method of claim 11, wherein said first component comprises a crosslinking component and said second component comprises a crosslinkable component.

20. The method of claim 11, wherein said first component comprises a radiation curable component and a crosslinkable component, and said second component comprises a crosslinking component.

21. The method of claim 11, wherein said first component comprises protected crosslinkable groups and a crosslinking component, and wherein said second component comprises water and optionally an acid.

22. The method of claim 11, wherein said first component comprises protected crosslinkable groups, and said second component comprises a crosslinking component, water, and optionally an acid.
23. The method of claim 11, wherein said second component is selected from a catalyst, an initiator, an activator, a radiation activator, a curing agent, or a combination thereof.

24. The method of claim 11, wherein said coating mixture has a coating viscosity that is increasing upon time and said first component and said second component are at essentially constant individual viscosity upon time.

25. A method for controlling viscosity of a coating composition comprising a first component and a second component, wherein said first component reacts with said second component causing increasing viscosity of said coating composition, said method comprising the steps of:
 i) providing a spray gun comprising:
 (A) a spray gun body (1) comprising a carrier inlet (12), a first inlet (10) connected to a first connection path, and a second inlet (8) connected to a second connection path;
 (B) a tubular nozzle casing (55) having a nozzle (13), said tubular nozzle casing being housed within said spray gun body; and
 (C) a hollow spray needle (56) having a longitudinal channel within said hollow spray needle and a channel opening (13a") at an end of said hollow spray needle towards said nozzle; said hollow spray needle is configured to slide in said tubular nozzle casing between a closed position and a spray position; wherein:
 said first component and said second component are maintained separated in said spray gun;
 said first connection path is connected to a spray passage defined by said tubular nozzle casing and said hollow spray needle for conveying said first component to said nozzle by gravity; and
 said second connection path is connected to said longitudinal channel for conveying said second component when said hollow spray needle is at said spray position;
ii) providing the first component of said coating composition to the first inlet and the second component of said coating composition to said second inlet;

iii) producing atomized said first component and atomized said second component to form an atomized coating mixture by supplying a pressurized carrier to said carrier outlet through said carrier inlet and sliding said spray needle to said spray position; and

iv) applying said atomized coating mixture over said substrate forming said layer thereon;

wherein said coating mixture has a coating viscosity that is increasing upon time and said first component and said second component are at essentially constant individual viscosity upon time.
INTERNATIONAL SEARCH REPORT

A CLASSIFICATION OF SUBJECT MATTER

INV. B05B1/30 B05B7/08 B29B7/74

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B05B B29B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication where appropriate, of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 3 066 874 A (BECKER RICHARD M) 4 December 1962 (1962-12-04) column 1, line 10 - line 44 column 2, line 30 - line 54; figure 1</td>
<td>1-4, 7-16, 24, 25</td>
</tr>
<tr>
<td>X</td>
<td>GB 842 959 A (ZIPPEL RICHARD; BERNDT ZIPPEL) 4 August 1960 (1960-08-04) page 1, line 10 - line 18; claim 1; figure 1</td>
<td>1-4, 7-16, 24, 25</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C See patent family annex

* Special categories of cited documents
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 Z document member of the same patent family

Date of the actual completion of the international search

15 September 2010

Date of mailing of the international search report

24/09/2010

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040 Fax (+31-70) 340-3016

Authorized officer

Eberwein, Michael
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 3066874 A</td>
<td>04-12-1962</td>
<td>GB 948378 A</td>
<td>05-02-1964</td>
</tr>
<tr>
<td>GB 842959 A</td>
<td>04-08-1960</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

Form: PCT/ISA/210 (patent family annex) (April 2005)