United States Patent

Tesfai et al.

SYSTEM AND METHOD FOR JOINT MAXIMAL RATIO COMBINING USING TIME-DOMAIN BASED SIGNAL PROCESSING

Inventors: Johannes Tesfai, Falls Church, VA (US); Chandra Vaidyanathan, Bethesda, MD (US); Gary L. Sugar, Rockville, MD (US)

Assignee: IPR Licensing, Inc., Wilmington, DE (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 912 days.

This patent is subject to a terminal disclaimer.

Filed: Dec. 23, 2003

Prior Publication Data

Related U.S. Application Data
Continuation of application No. 10/064,482, filed on Jul. 18, 2002, now Pat. No. 6,873,651.
Provisional application No. 60/380,139, filed on May 6, 2002, provisional application No. 60/361,055, filed on Mar. 1, 2002.

Int. Cl. H04B 7/02 (2006.01)
U.S. Cl. 375/267; 375/148; 375/219; 375/220; 375/229; 455/63.1; 455/114.2; 455/114.3; 455/501

Field of Classification Search

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
4,121,221 A 10/1978 Meadows

FOREIGN PATENT DOCUMENTS
WO 01/45300 6/2001

OTHER PUBLICATIONS

Primary Examiner—Mohammad H Ghayour
Assistant Examiner—Sophia Vlahos

ATTORNEY, AGENT, OR FIRM—Volpe and Koenig, P.C.

ABSTRACT

A spatial signal processing system and method are provided to optimize the received signal-to-noise ratio (SNR) at a first radio communication device based on the transmit filter at another radio communication device. Using an estimate of the channel derived from a signal received at one device from another device, an iterative process is provided to determine complex weights for one or more tapped delay-line transmit filters at each of two communication devices that optimize the received SNR.

32 Claims, 8 Drawing Sheets
<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Inventor(s)</th>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,400,780 B1</td>
<td>Rashid-Farrokh et al.</td>
<td>6/2002</td>
<td></td>
</tr>
<tr>
<td>6,442,214 B1</td>
<td>Boleskei et al.</td>
<td>8/2002</td>
<td></td>
</tr>
<tr>
<td>6,462,709 B1</td>
<td>Choi</td>
<td>10/2002</td>
<td></td>
</tr>
<tr>
<td>6,463,295 B1</td>
<td>Yun</td>
<td>10/2002</td>
<td></td>
</tr>
<tr>
<td>6,473,467 B1</td>
<td>Wallace et al.</td>
<td>10/2002</td>
<td></td>
</tr>
<tr>
<td>6,522,898 B1</td>
<td>Kohno et al.</td>
<td>2/2003</td>
<td></td>
</tr>
<tr>
<td>6,549,786 B2</td>
<td>Cheung</td>
<td>4/2003</td>
<td></td>
</tr>
<tr>
<td>6,570,929 B1</td>
<td>Eriksson</td>
<td>5/2003</td>
<td></td>
</tr>
<tr>
<td>6,584,161 B2</td>
<td>Hottinen</td>
<td>6/2003</td>
<td></td>
</tr>
<tr>
<td>6,625,162 B2</td>
<td>Miyano et al.</td>
<td>9/2003</td>
<td></td>
</tr>
<tr>
<td>6,636,568 B2</td>
<td>Kadous</td>
<td>10/2003</td>
<td></td>
</tr>
<tr>
<td>6,646,600 B2</td>
<td>Vail et al.</td>
<td>11/2003</td>
<td></td>
</tr>
<tr>
<td>6,684,064 B2</td>
<td>Kazakevich et al.</td>
<td>1/2004</td>
<td></td>
</tr>
<tr>
<td>6,687,492 B1</td>
<td>Sugar et al.</td>
<td>2/2004</td>
<td></td>
</tr>
<tr>
<td>6,728,294 B2</td>
<td>Kohno et al.</td>
<td>4/2004</td>
<td></td>
</tr>
<tr>
<td>6,729,517 B2</td>
<td>Sugar et al.</td>
<td>4/2004</td>
<td></td>
</tr>
<tr>
<td>6,792,033 B1</td>
<td>Manata et al.</td>
<td>9/2004</td>
<td></td>
</tr>
<tr>
<td>6,862,271 B2</td>
<td>Medvedev et al.</td>
<td>3/2005</td>
<td></td>
</tr>
<tr>
<td>6,873,606 B2</td>
<td>Agrawal et al.</td>
<td>3/2005</td>
<td></td>
</tr>
<tr>
<td>6,873,651 B2*</td>
<td>Testa et al.</td>
<td>3/2005</td>
<td></td>
</tr>
<tr>
<td>6,888,878 B7</td>
<td>Pysby et al.</td>
<td>5/2005</td>
<td></td>
</tr>
<tr>
<td>6,895,255 B1</td>
<td>Bridgall</td>
<td>5/2005</td>
<td></td>
</tr>
<tr>
<td>6,901,122 B2</td>
<td>Nadgouda et al.</td>
<td>5/2005</td>
<td></td>
</tr>
<tr>
<td>6,904,021 B2</td>
<td>Belcea</td>
<td>6/2005</td>
<td></td>
</tr>
<tr>
<td>6,940,912 B7</td>
<td>Menon et al.</td>
<td>9/2005</td>
<td></td>
</tr>
<tr>
<td>6,961,545 B2</td>
<td>Tehrani et al.</td>
<td>11/2005</td>
<td></td>
</tr>
<tr>
<td>6,963,742 B2*</td>
<td>Böros et al.</td>
<td>11/2005</td>
<td></td>
</tr>
<tr>
<td>6,970,682 B2</td>
<td>Crilly et al.</td>
<td>11/2005</td>
<td></td>
</tr>
<tr>
<td>6,980,600 B1</td>
<td>Ratnaraaj</td>
<td>12/2005</td>
<td></td>
</tr>
<tr>
<td>7,027,536 B1*</td>
<td>Al-Dhahir et al.</td>
<td>4/2006</td>
<td></td>
</tr>
<tr>
<td>7,031,368 B2</td>
<td>Manata et al.</td>
<td>4/2006</td>
<td></td>
</tr>
<tr>
<td>7,042,869 B2</td>
<td>Kasami et al.</td>
<td>5/2006</td>
<td></td>
</tr>
<tr>
<td>7,224,758 B1*</td>
<td>Bunster et al.</td>
<td>5/2007</td>
<td></td>
</tr>
<tr>
<td>7,277,409 B2</td>
<td>Thermond et al.</td>
<td>10/2007</td>
<td></td>
</tr>
<tr>
<td>7,340,279 B2</td>
<td>Chen et al.</td>
<td>3/2008</td>
<td></td>
</tr>
<tr>
<td>7,345,287 B2</td>
<td>Hammons et al.</td>
<td>3/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Edwards et al.</td>
<td>8/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Nam</td>
<td>8/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Shattil</td>
<td>8/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Raynes et al.</td>
<td>4/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Kasami et al.</td>
<td>5/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Kellar et al.</td>
<td>3/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Hornsby et al.</td>
<td>3/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Hendler</td>
<td>2/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Shattil</td>
<td>3/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Kitchner et al.</td>
<td>7/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Gore et al.</td>
<td>8/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Kimovitch</td>
<td>8/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Thomas et al.</td>
<td>8/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Wu et al.</td>
<td>9/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Awatar et al.</td>
<td>9/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Khatri</td>
<td>9/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Struhsaker et al.</td>
<td>9/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Struhsaker et al.</td>
<td>9/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Yoon et al.</td>
<td>10/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Crilly, Jr. et al.</td>
<td>10/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Crilly, Jr.</td>
<td>10/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Larsson</td>
<td>11/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Xu</td>
<td>11/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Onggosanusi et al.</td>
<td>12/2008</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Jahali et al.</td>
<td>1/2009</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Gerogliosas et al.</td>
<td>1/2009</td>
<td></td>
</tr>
<tr>
<td>7,501,027 A1</td>
<td>Boros et al.</td>
<td>2/2009</td>
<td></td>
</tr>
</tbody>
</table>
FOREIGN PATENT DOCUMENTS
WO 02/03568 1/2002
WO WO 02/03568 1/2002
WO WO 01/45300 6/2002

OTHER PUBLICATIONS
Aziz et al., “Indoor Throughput and Range Improvements Using Standard Compliant AP Antenna Diversity in IEEE 802.11a and
US 7,573,945 B2

Page 4

Chit et al., “OFDM Receiver Design”, EE225C, Fall 2000, University of California, Berkeley.

Chit et al., “OFDM Receiver Design”, EE225C, Fall 2000, University of California, Berkeley.

* cited by examiner
FIG. 2

\[h_{ij}^u = (h_0^{ij}, h_1^{ij}, ..., h_{L-1}^{ij}) \]

Channel Response Vector

Channel Response Matrix

\[H_{ij} = \begin{bmatrix}
 h_0^{ij} & 0 & 0 & 0 \\
 h_1^{ij} & h_0^{ij} & 0 & 0 \\
 . & h_1^{ij} & h_0^{ij} & . \\
 . & . & h_1^{ij} & 0 \\
 h_{i-1}^{ij} & . & . & h_0^{ij} \\
 0 & h_{i-1}^{ij} & . & h_1^{ij} \\
 0 & 0 & h_{i-1}^{ij} & . \\
 . & 0 & 0 & . \\
 . & . & . & . \\
 0 & 0 & 0 & h_{i-1}^{ij}
\end{bmatrix} \]

\[\begin{bmatrix}
 h_0^{ij} & 0 & 0 & 0 \\
 0 & h_0^{ij} & 0 & 0 \\
 0 & 0 & h_0^{ij} & . \\
 . & . & . & 0 \\
 0 & 0 & 0 & h_{i-1}^{ij}
\end{bmatrix} \]
FIG. 3

Transmit Filter Matrix for Antenna

\[
\mathbf{W}_{t,Di} = \begin{bmatrix}
\mathbf{W}_{1,Di}^1 \\
\mathbf{W}_{2,Di}^2 \\
\vdots \\
\mathbf{W}_{N,Di}^N
\end{bmatrix}
\]

\[
\mathbf{W}_{t,Di}^i = \begin{bmatrix}
w_T^{i,Di,0} & 0 & 0 & 0 \\
w_T^{i,Di,1} & w_T^{i,Di,0} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
w_T^{i,Di,LTD1-1} & \cdots & \cdots & w_T^{i,Di,0} \\
0 & w_T^{i,Di,LTD1} & \cdots & w_T^{i,Di,0} \\
0 & 0 & w_T^{i,Di,LTD1-1} & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & w_T^{i,Di,LTD1-1}
\end{bmatrix}
\]

\[
\begin{bmatrix}
w_T^{i,Di} \\
0 \\
0 \\
0 \\
\end{bmatrix} = \begin{bmatrix}
w_T^{i,Di} \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]

Transmit Filter Super Vector for N Antennas of First Communication Device (D1)
\[i = I, \ldots, N \]

\[w_{T,D1,i} = \frac{1}{\sqrt{N}} \begin{bmatrix} 10 \ldots, 0, 10 \ldots, 0, 10 \ldots, 0 \end{bmatrix}^T \]

\[w_{R,D1,0} = W_{R,D1,0} e_0, W_{R,D1,0} = H^T W_{T,D2,0} \]

\[u_{I,D1,i} = \text{cmax} \left(W_{R,D1,0}^T W_{R,D1,0} \right) \frac{w_{I,D1,i}}{\sqrt{N} u_{I,D1,i}} ; \quad \text{EG} \]

\[W_{R,D1,1} = W_{R,D1,1} e_0, W_{R,D1,1} = H^T W_{T,D2,1} \]

\[u_{I,D1,1} = \text{NON-EG} \]

\[u_{I,D1,n} = \text{cmax} \left(W_{R,D1,n}^T W_{R,D1,n} \right) \frac{u_{I,D1,n}}{\sqrt{N} u_{I,D1,n}} ; \quad \text{EG} \]

\[W_{R,D1,n} = W_{R,D1,n} e_0, W_{R,D1,n} = H^T W_{T,D2,n} \]

\[u_{I,D1,n} = \text{NON-EG} \]

\[u_{I,D2,0} = \text{cmax} \left(W_{R,D2,0}^T W_{R,D2,0} \right) \frac{w_{I,D2,0}}{\sqrt{M} u_{I,D2,0}} ; \quad \text{EG} \]

\[W_{R,D2,0} = H W_{T,D2,0}, W_{R,D2,0} = W_{R,D2,0} e_0 \]

\[u_{I,D2,0} = \text{NON-EG} \]

\[u_{I,D2,1} = \text{cmax} \left(W_{R,D2,1}^T W_{R,D2,1} \right) \frac{w_{I,D2,1}}{\sqrt{M} u_{I,D2,1}} ; \quad \text{EG} \]

\[W_{R,D2,1} = H W_{T,D2,1}, W_{R,D2,1} = W_{R,D2,1} e_0 \]

\[u_{I,D2,1} = \text{NON-EG} \]

\[u_{I,D2,n} = \text{cmax} \left(W_{R,D2,n}^T W_{R,D2,n} \right) \frac{w_{I,D2,n}}{\sqrt{M} u_{I,D2,n}} ; \quad \text{EG} \]

\[W_{R,D2,n} = H W_{T,D2,n}, W_{R,D2,n} = W_{R,D2,n} e_0 \]

\[u_{I,D2,n} = \text{NON-EG} \]
Fig. 6

Loss due to equal Tx power in ideal case SNR = 10 dB

Pr(loss > 0 dB)
FIG. 7

Loss due to equal Tx power in iterative case. SNR = 10 dB

AP-to-STA
STA-to-AP

p(loss > 0 dB)
1. SYSTEM AND METHOD FOR JOINT MAXIMAL RATIO COMBINING USING TIME-DOMAIN BASED SIGNAL PROCESSING

This application is a continuation of U.S. application Ser. No. 10/64,842 filed Jul. 18, 2002, pending, which in turn claims priority to U.S. Provisional Application No. 60/361,055, filed Mar. 1, 2002, and to U.S. Provisional Application No. 60/380,139, filed May 6, 2002. The entirety of each of these prior applications is incorporated herein by reference.

RELATED APPLICATIONS

This application is related to commonly assigned and co-pending U.S. Non-Provisional application Ser. No. 10/174,728 filed Jun. 19, 2002 and entitled “SYSTEM AND METHOD FOR ANTENNA DIVERSITY USING JOINT MAXIMAL RATIO COMBINING” and to commonly assigned and co-pending U.S. Non-Provisional application Ser. No. 10/174,689 filed Jun. 19, 2002, and entitled “SYSTEM AND METHOD FOR ANTENNA DIVERSITY USING EQUAL POWER GAIN JOINT MAXIMAL RATIO COMBINING.”

BACKGROUND OF INVENTION

The present invention is directed to a joint temporal and spatial antenna processing scheme useful in wireless communication applications, such as short-range wireless applications.

Antenna diversity schemes are well known techniques to improve the performance of radio frequency (RF) communication between two RF devices. Types of antenna diversity schemes include antenna selection diversity and maximal ratio combining. In an antenna selection diversity scheme, a radio communication device selects one of N (e.g., two) antennas for transmission to a particular communication device based on which of its N antennas best received a signal from that radio communication device. On the other hand, maximal ratio combining schemes involve scaling the signal to be transmitted with a complex antenna weight associated with a corresponding one of a plurality of antennas. A signal received by a plurality of antennas can also be weighted by a plurality of complex receive antenna weights. Selection of the antenna weights to optimize communication between two communication devices determines the performance of maximal ratio combining schemes.

A joint maximal ratio combining antenna processing technique is one in which a first communication device, having a plurality of antennas, weights a signal to be transmitted by its antennas to a second communication device also having a plurality of antennas. The second communication device weights and combines the received signals received by its antennas. The transmit weights and receive weights are determined to optimize the link margin, e.g., optimize the signal-to-noise ratio of signals received by one device from the other. Techniques related to joint maximal ratio combining, also called composite beamforming (CBF), are the subject matter of above-identified commonly assigned co-pending applications. These techniques significantly extend the range of communication between the two communication devices.

2. SUMMARY OF INVENTION

An approach is desired for a joint maximal ratio combining technique that requires relatively low complexity computations be performed in a communication device.

FIG. 1 is a block diagram of two communication devices performing time-domain based composite beamforming.

FIG. 2 is a diagram showing an exemplary channel matrix.

FIG. 3 is a diagram showing exemplary transmit filter vectors.

FIG. 4 is a flow diagram illustrating an iterative process for time-domain based composite beamforming between two communication devices.

FIG. 5 is a graphical diagram showing exemplary results of the time-domain based iterative process.

FIG. 6 is a graphical diagram showing performance loss for ideal channel conditions.

FIG. 7 is a graphical diagram showing performance loss for the iterative process.

FIG. 8 is a block diagram of a communication device suitable for implementing the time-domain composite beamforming signal processing.
US 7,573,945 B2

DETAILED DESCRIPTION

Referring first to FIG. 1, two radio communication devices 100 and 200 are shown that communicate with each other across a wireless transmission channel that can be defined by a channel matrix H (or H^H, where H denotes the transpose operator). When the signal-to-noise ratio (SNR) at the output of the receive filters of one device is optimized with respect to the transmit filters at the other device, the ideal transmit filter vector w_i is given by the eigenvector corresponding to the maximum eigenvalue e_{max} of $(H^H H)$, which is the principal eigenvector of $(H^H H)$, where H denotes the Hermitian operator. This ideal case assumes that the devices have direct knowledge of the channel, obtained from training sequences or from a separate signal containing channel information that is transmitted from one device to the other.

In the drawings, vectors are underlined (and italicized) and matrices are capitalized and bolded (and italicized), whereas in the text, these quantities are in most cases indicated as either a vector or a matrix.

Described below is a system and method to optimize the SNR at the output of the receive filters of one device (hereinafter referred to as the received SNR) with respect to tapped delay-line transmit filters at another device without direct knowledge of the channel between the devices. Using an estimate of the channel obtained from a signal received at one device from another device, an iterative process is provided that determines the transmit filters at the communication device at each iteration. The transmit filters at each device converge to a received SNR that is within 1-2 dB of the ideal case SNR in about 2 to 3 iterations for more than 90% of channel realizations.

With this background, communication device 100 includes, among other components, a transmit shaping filter 110, a plurality of transmit antenna filters 120(i) to 120(N) and N plurality of antennas 130(1) to 130(N). There is a transmit antenna filter 120(i) associated with a corresponding antenna 130(i), where i is the antenna index, for $i=1$ to N. Each transmit antenna filter 120(i) is, for example, a tapped delay-line filter having a number of taps. For each tap of the tapped delay-line filter, there is a complex weight having a magnitude component and a phase component. For example, a single tap delay-line filter has a single weight, and therefore a flat or constant magnitude and a flat or constant phase response across frequency. The characteristic of each transmit filter 120 is defined by a transmit filter sub-vector $w_{t,i}^{m}$ and the length of the transmit filter sub-vector corresponds to the number of taps of the transmit antenna filter 120(i). The entry in each sub-vector defines the corresponding tap weight for the delay-line filter. The transmit filter subvectors can be grouped together to form a transmit filter vector. The filter vector and sub-vectors will be described further hereinafter.

Similarly, for purposes of processing a received signal, the communication device 100 comprises a plurality of receive antenna filters 140(1) to 140(N) and a combiner/detector 150. There is a receive antenna filter 140(i) coupled to an associated antenna 130(i). Each receive antenna filter 140(i) is, for example, a tapped delay-line filter having a number of taps, and is essentially a matched filter. A combiner/equalizer 150 is coupled to the receive antenna filters 140(1) to 140(N). The characteristic of each receive filter 140(i) is defined by a receive filter sub-vector $w_{r,i}^{m}$ having a length corresponding to the number of taps of the receive antenna filters 140. The entry in each receive filter sub-vector $w_{r,i}^{m}$ defines the corresponding complex tap weight for the delay-line filter. There are computation elements or blocks represented by reference numeral 160 in communication device 100 that perform discrete signal computations with respect to the transmit antenna filters 120 and receive antenna filters 140 described hereinafter.

Communication device 200 includes components similar to those in communication device 100. Communication device includes M plurality of antennas 210(1) to 210(M), a plurality of receive antenna filters 220(1) to 220(M) and a combiner/equalizer 230. There is a receive antenna filter 220(j) (i.e., a matched filter) associated with a corresponding antenna 210(j), where j is the antenna index for $j=1$ to M. The characteristic of each receive filter 220(j) is defined by a receive filter sub-vector $w_{r,j}^{m}$. The receive filter subvectors can be grouped together to form a receive filter vector. On the transmit side, there is a transmit shaping filter 240 and a plurality of transmit antenna filters 250(1) to 250(M) each associated with a corresponding one of the antennas 210(1) to 210(M). The characteristic of each transmit antenna filter 250(j) is defined by a transmit filter sub-vector $w_{t,j}^{m}$. Like communication device 100, the receive antenna filters 220(j) and the transmit antenna filters 250(j) are, for example, tapped delay-line filters of a number of taps. The length of the receive filter sub-vectors $w_{r,j}^{m}$ correspond to the number of taps of the receive antenna filters 220(j), and the length of the transmit filter sub-vectors $w_{t,j}^{m}$ correspond to the number of taps of the transmit antenna filters 250(j).

Communication device 200 has computation elements or blocks represented by reference numeral 260 that perform discrete signal computations with respect to the transmit antenna filters 250(j) and receive antenna filters 220(j) described hereinafter. While FIG. 1 shows that communication devices 100 and 200 each have a plurality of antennas, it should be understood that one of them, for example, communication device 200, may have a single antenna (and therefore a single transmit antenna filter and a single receive antenna filter). In this case, only one of the two devices of the communication link adapts its transmit filter to optimize the receive SNR at the device with the single antenna. The device with multiple antennas will adapt its receive filter to optimize its receive SNR from the device with a single antenna.

The communication device block diagram shown in FIG. 1 is useful in a transceiver that processes signals of any wireless communication modulation standard or format. Likewise, the methods described herein are applicable to any wireless communication modulation standard or format. An example is a code division multiple access (CDMA) format using a single carrier. A more specific example is the single-carrier scheme of the IEEE 802.11b short-range wireless standard.

It should be understood to those of skill in the art that FIG. 1 is a simplification of a communication device architecture to highlight those components relevant to the composite beamforming techniques described herein. For example, FIG. 1 omits (for the sake of brevity) digital-to-analog converters and a radio frequency (RF) section between the antennas and the antenna filters. FIG. 8, described hereinafter, is an example of a more complete exemplary block diagram of a communication device. The components shown in FIG. 1 are elements that typically are included in a baseband section of a communication device and may be implemented by discrete elements or by field programmable gate arrays for digital signal processing integrated circuit implementations. The combiner/equalizer 150 (and 230) is meant to represent any suitable signal processing components used in a receiver. For example, in the case of a decision feedback equalizer (DFE), the combiner/equalizer block includes feedforward filters, a decision block and a feedback filter. In the case of a maximum likelihood sequence estimator (MLSE) receiver, there is a MLSE in the combiner/equalizer block 150 (and 230), and in
When communication device 100 transmits a signal to communication device 200, the communication channel between the N plurality of antennas 130(1) to 130(N) and the M plurality of antennas 210(1) to 210(M) is defined by a channel matrix H of appropriate dimension as is shown in FIG. 2, described hereinafter. Similarly, when communication device 200 transmits a signal to communication device 100, the communication channel between the M plurality of antennas 210(1) to 210(M) and the N plurality of antennas 130(1) to 130(N) is defined by a channel matrix H*.

Turning to FIG. 2, the channel matrix H is described in further detail. The channel response from an antenna i of communication device 100 to an antenna j of communication device 200 is defined by a channel response vector h and can be modeled as a tapped delay-line filter having a length or number of taps L. The channel response vector h can be written as shown in FIG. 2. The channel response vector can also be written as a convolution matrix H, where i is the index for the N plurality of antennas of communication device 100 and j is the index for the M plurality of antennas of communication device 200. The dimensions of the channel response matrix H are (L x M x N x N), where M is the length of the transmit filters of the first communication device 100.

Referring back to FIG. 1, the transmit antenna filters 120(i) in communication device 100 have a length (i.e., number of taps), and the transmit antenna filters 250(j) in communication device 200 have a length. The lengths of the transmit antenna filters 120(i) and 250(j) are not necessarily the same, and are chosen according to implementation/performance requirements. Obviously, the more taps a filter has, the greater performance it will have, at the expense of implementation cost and complexity. The length of the receive antenna filters 140(j) in communication device 100 depends on the length of the transmit antenna filters 250(j) and the length of the channel response vector h* suitable for modeling the channel response between the first and second communication devices. It can be shown that the length of the receive antenna filters 140(j) (when receiving a signal from communication device 200) is equal to the sum of the length of the transmit antenna filters 250(j) plus the length of the channel response vector h*. Similarly, the length of the receive antenna filters 220(j) (when receiving a signal from communication device 100) is equal to the sum of the length of the transmit antenna filters 120(j) plus the length of the channel response vector h*.

In step 410, the first communication device transmits a signal to the second communication device using an initial transmit filter vector $w_{T,D1,0} = [10, 0.10, 0.010, 0.0010, 0.00010]^T$ according to the notation shown, normalized by the factor 1/((N^2)^{1/2}) (1 divided by the square root of N), where N is the number of antennas of the first communication device. The purpose of this factor will be described hereinafter. The initial transmit filter vector has a unity value at the initial position in each sub-vector for each antenna. In step 410, the first communication device transmits a signal with the initial transmit filter vector to the second communication device. The second communication device receives the transmitted signal, and from the received signal, the second communication device estimates a vector corresponding to the product $W_{R,D2}^TW_{S,D2,0}w_{S,D2,0}$, where $w_{S,D2,0}$ is the vector $[10, 0.10, 0.010, 0.0010, 0.00010]^T$. From this quantity, the second communication device obtains the initial receive filter vector $w_{R,D2,0}$ and builds the receive filter matrix $W_{R,D2,0}$ with dimensions that, after further computations, will result in a transmit filter vector $w_{T,D2}$ that has the desired filter length.

In step 420, the second communication device computes a principal eigenvector $v_{T,D2}$ which is the eigenvector corresponding to the maximum eigenvalue of the product of $W_{R,D2,0}^TW_{S,D2,0}$. The principal eigenvector $v_{T,D2}$ has a length of $M^*L\text{TD}2$. The principal eigenvector $v_{T,D2}$ is a super-vector, or vector of sub-vectors, where each sub-vector $w_{T,D2}$ has a length $L\text{TD}2$ and is used to derive the transmit antenna filter sub-vector $w_{T,D2}$ for a corresponding antenna of the second communication device.

Each transmit filter sub-vector $w_{T,D2}$ can take on one of two values as shown in FIG. 4. In one case, the transmit filter sub-vector $w_{T,D2}$ is equal to the corresponding sub-vector $v_{T,D2}$ of the principal eigenvector $v_{T,D2}$. This is called the non-equal gain case indicated “NON-EG” in FIG. 4. In another case, the transmit antenna sub-vector $w_{T,D2}$ is equal
to the corresponding sub-vector $u'_{r,D2,0}$ of the principal eigenvector $u_{r,D2,0}$ divided by the norm of that sub-vector $u'_{r,D2,0}$ and by $(M)^{1/2}$ (square root of M). This case is called the equal-gain case, indicated as “EG” in FIG. 4. This further computation equal-gain normalizes the magnitude of each filter sub-vector so that the power of the signal transmitted at each antenna using the transmit filter sub-vectors is equal. This equal gain constraint is advantageous because it has been found to yield performance very close to non-equal gain antenna processing (within 1-2 dB), but substantially reduces the power output requirements for each power amplifier associated with each antenna. The advantages of equal-gain composite beamforming are further described in the aforementioned co-pending application entitled “System and Method for Antenna Diversity Using Equal Gain Joint Maximal Ratio Combining.” The initial transmit filter subvectors used by the first communication device in step 410 can optionally be equal gain normalized, as indicated in FIG. 4 with the $(N)^{1/2}$ factor.

In step 420, the first communication device receives the signal transmitted by the second communication device using the transmit sub-vectors $W'_{r,D1,0}$ and estimates a vector corresponding to the product $W_{r,D1,0}W_{r,D1,0}^H$ to obtain the initial receive filter vector $W_{r,D1,0}$. At the next iteration in step 430, the first communication device performs a process similar to the one performed by the second communication device in step 420, to compute the principal eigenvector $u_{r,D1,0}$, and generate therefrom updated transmit filter sub-vectors for each antenna of the first communication device using either the equal gain computation or non-equal gain relationship. Steps 440 and 450 show that this process repeats and the transmit filter sub-vectors at the first and second communication devices converge to values that optimize the received SNR at each of them. The transmit filter subvectors computed at each iteration are stored. Even though the transmit filter sub-vectors will ultimately converge after several iterations, they can be continuously updated with each transmission between those communication devices beyond convergence. In addition, it may also be desirable to store the most recent or updated transmit filter sub-vectors in one communication device against and identifier of the particular destination communication device. In this way, when a subsequent communication session is initiated between those same communication devices, each device can retrieve the stored transmit filter sub-vectors for use in transmitting signals to the other device. Optimizing the transmit filters at the first and second communication device in this way significantly increases the range (i.e., distance) between the devices. This can be very advantageous in a wireless communication environments, such as short-range wireless applications. A wireless LAN is one example of a short-range wireless application. The computations referred to in the description of the iterative process 400 may be performed by the discrete signal computation blocks 160 and 260 (using digital signal processing techniques), respectively, in communication devices 100 and 200. For example, when communication device 100 or 200 receives a signal from the other device, there is a channel estimator computation block that estimates the composite channel transmit filter response of the transmitting communication device in order to determine the receive super matrix W_r. There is a computation block that forms the receive vector W_r and from that vector builds the receive convolution matrix $W_{r,D2,0}$ for each antenna. There are also one or more computation blocks that compute super matrix W_r, the Hermitian of the receive super matrix W_r, multiply it with the receive matrix W_r and compute the principal or principal eigenvector of the matrix product of that matrix multiplication. Computation blocks are also provided that normalize each sub-vector (divide by the norm of the principal eigenvectors and by the square-root of the number of antennas) for each antenna sub-vector. Moreover, the transmit antenna filters and receive antenna filters in each communication device may similarly be implemented by computational blocks.

FIGS. 5 to 7 show various performance metrics of the iterative scheme. FIG. 5 shows the loss in SNR of the iterative scheme of FIG. 4 relative to the case where the channel state is known at the transmitting device (hereinafter called the “ideal case”). The loss in SNR due to the iterative scheme is less than 2 dB for more than 90% of channel realizations.

FIG. 6 shows loss in SNR using the equal gain constraint in the ideal case relative to the non-equal gain ideal case. That is, both communication devices, when transmitting to the other device, constrain the power of the signal at each antenna to be equal. The loss in SNR for the equal gain case is less than 1 dB for more than 90% of channel realizations.

FIG. 7 shows the loss in SNR using the equal gain constraint in the iterative scheme of FIG. 4. The loss in SNR using equal gain is less than 1 dB for more than 90% of channel realizations.

FIG. 8 shows a more complete example block diagram of a communication device useful in accordance with the techniques described herein. The communication devices at both ends of the link, i.e., devices 100 and 200 may have any known suitable architecture to transmit, receive and process signals. An example of a communication device block diagram is shown in FIG. 8. The communication device comprises an RF section 310, a baseband section 320 and optionally a host 330. There are a plurality of antennas, e.g., four antennas 302, 304, 306, 308 coupled to the RF section 310 that are used for transmission and reception. The RF section 310 has a transmitter (Tx) 312 that upconverts baseband signals for transmission, and a receiver (Rx) 314 that downconverts received RF signals for baseband processing. In the context of the composite beamforming techniques described herein, the Tx 312 upconverts and supplies separately weighted signals to corresponding ones of each of the plurality of antennas via separate power amplifiers. Similarly, the Rx 314 downconverts and supplies received signals from each of the plurality of antennas to the baseband section 320. The baseband section 320 performs processing of baseband signals to recover the information from a received signal, and to convert information in preparation for transmission. The baseband section 320 may implement any of a variety of communication formats or standards, such as WLAN standards IEEE 802.11x, frequency hopping standards such as Bluetooth™, as well as other protocol standards, not necessarily used in a WLAN. In the case of frequency hopping systems, the antennas sub-vectors are computed and stored for each frequency in a frequency hopping sequence.

The intelligence to execute the computations for the composite beamforming techniques described herein may be implemented in a variety of ways. For example, a processor 322 in the baseband section 320 may execute instructions encoded on a processor readable memory 324 (RAM, ROM, EEPROM, etc.) that cause the processor 322 to perform the composite beamforming steps described herein. Alternatively, as suggested above, an application specific integrated circuit (ASIC) may be fabricated with the appropriate firmware e.g., field programmable gate arrays (FPGAs), configured to execute the computations described herein. This ASIC may be part of, or the entirety of, the baseband section 320. For example, the components shown in FIG. 1 as part of the communication devices may be implemented by FPGAs in the baseband section 320. Still another alternative is for the
beamforming computations to be performed by a host processor 332 (in the host 330) by executing instructions stored in (or encoded on) a processor readable memory 334. The RF section 310 may be embodied by one integrated circuit, and the baseband section 320 may be embodied by another integrated circuit. The communication device on each end of the communication link need not have the same device architecture or implementation.

To summarize, a method is provided for communicating signals between a first communication device and a second communication device using radio frequency (RF) communication techniques. At the first communication device there are steps of generating a transmit filter vector for processing a signal to be transmitted from the first communication device to the second communication device, the transmit filter vector comprised of a plurality of transmit filter sub-vectors defining one or more complex weights associated with a transmit tapped-delay line filter, each transmit filter sub-vector associated with a corresponding one of a plurality of antennas of the first communication device and having a length corresponding to the number taps of the associated transmit tapped-delay line filter; and applying the transmit filter vector to a signal to be transmitted from the first communication device to the second communication device.

At the second communication device there are steps of generating a receive filter matrix from a signal received by the one or more antennas of the second communication device from the first communication device, the receive filter matrix comprised of one or more sub-matrices each being a convolution matrix derived from a receive filter sub-vector, wherein each receive filter sub-vector defines one or more complex weights associated with a receive tapped-delay line filter for the one or more antennas of the second communication device; computing a principal eigenvector of a product of the receive filter matrix and a Hermitian of the receive filter matrix, the principal eigenvector comprised of a plurality of sub-vectors each having a length corresponding to the number of taps of the transmit tapped-delay line filter process of the first communication device; and updating from the plurality of sub-vectors of the principal eigenvector the plurality of transmit filter sub-vectors. This method may be implemented by instructions encoded on a medium, such as a processor readable medium, or by instructions implemented by one or more arrays of field programmable gates.

Further still, a semiconductor device is provided comprising a plurality of field programmable gates configured to implement: a plurality of transmit tapped delay-line filters, each associated with a corresponding one of a plurality of antennas; a plurality of receive tap delay-line filters, each associated with a corresponding one of the plurality of antennas; and one or more computation blocks that generate a transmit filter vector for processing a signal to be transmitted to another communication device, the transmit filter vector comprised of a plurality of transmit filter sub-vectors defining one or more complex weights associated with the transmit tapped-delay line filter, each transmit filter sub-vector associated with a corresponding one of the plurality of antennas and having a length corresponding to the number taps of the associated transmit tapped-delay line filter; apply the transmit filter vector to a signal to be transmitted from the other communication device; generate a receive filter matrix from a signal received by the plurality of antennas from the other communication device, the receive filter matrix comprised of a plurality of sub-matrices each being a convolution matrix derived from a receive filter sub-vector, wherein each receive filter sub-vector defines one or more complex weights associated with a receive tapped-delay line filter process for the each of the plurality of antennas; compute a principal eigenvector of a product of the receive filter matrix and a Hermitian of the receive filter matrix, the principal eigenvector comprised of a plurality of sub-vectors each having a length corresponding to the number of taps of the transmit tapped-delay line filter process; and update from the plurality of sub-vectors of the principal eigenvector the plurality of transmit filter sub-vectors. The semiconductor device may be, for example, a digital application specific integrated circuit implemented using field programmable gate arrays or digital logic implementations, such as CMOS digital logic.

The above description is intended by way of example only. The invention claimed is:

1. A method for communicating signals using radio frequency (RF) communication techniques, the method comprising:
 generating a receive filter matrix from a signal received by a plurality of antennas of a first communication device from a second communication device, the receive filter matrix comprised of a plurality of sub-matrices each being a convolution matrix derived from a receive filter sub-vector, wherein each receive filter sub-vector defines complex weights associated with a receive
tapped-delay line filter for a corresponding one of the plurality of antennas of the first communication device; computing a principal eigenvector of a product of the receive filter matrix and a Hermitian of the receive filter matrix, the principal eigenvector comprised of a plurality of sub-vectors each having a length corresponding to a number of taps of a transmit tapped-delay line filter associated with a corresponding one of the plurality of antennas of the first communication device; generating from the plurality of sub-vectors of the principal eigenvector a plurality of transmit filter sub-vectors that form a transmit filter vector, each transmit filter sub-vector associated with a corresponding one of the plurality of antennas of the first communication device and defining complex weights associated with the transmit tapped-delay line filter for a corresponding one of the plurality of antennas of the first communication device; and applying the transmit filter vector at the first communication device to a signal to be transmitted from the first communication device to the second communication device.

2. The method of claim 1, wherein the generating the plurality of transmit filter sub-vectors comprises equipping each transmit filter sub-vector to the corresponding sub-vector of the principal eigenvector.

3. The method of claim 1, wherein the generating the transmit filter vector further comprises normalizing each sub-vector of the transmit filter vector so that a total power emitted is divided equally among the plurality of antennas of the first communication device.

4. The method of claim 3, wherein the normalizing comprises computing the norm of each of the plurality of sub-vectors of the principal eigenvector and dividing each sub-vector of the principal eigenvector by the norm and by the square root of the number of plurality of antennas of the first communication device.

5. The method of claim 1, wherein the generating the receive filter matrix, the computing the principal eigenvector, and the generating the plurality of transmit filter sub-vectors are performed each time a signal is received at the first communication device from the second communication device to update the transmit filter vector and the applying the transmit filter vector is performed with the updated transmit filter vector when subsequently transmitting a signal to the second communication device.

6. A processor-readable medium, having encoded thereon instructions that, when executed by the processor, perform functions comprising:

generating a receive filter matrix from a signal received by a plurality of antennas of a first communication device from a second communication device, the receive filter matrix comprised of a plurality of sub-matrices each being a convolution matrix derived from a receive filter sub-vector, wherein each receive filter sub-vector defines complex weights associated with a receive tapped-delay line filter for a corresponding one of the plurality of antennas of the first communication device; computing a principal eigenvector of a product of the receive filter matrix and a Hermitian of the receive filter matrix, the principal eigenvector comprised of a plurality of sub-vectors each having a length corresponding to a number of taps of a transmit tapped-delay line filter associated with a corresponding one of the plurality of antennas of the first communication device; generating from the plurality of sub-vectors of the principal eigenvector a plurality of transmit filter sub-vectors that form a transmit filter vector, each transmit filter sub-vector associated with a corresponding one of the plurality of antennas of the first communication device and defining complex weights associated with the transmit tapped-delay line filter for a corresponding one of the plurality of antennas of the first communication device; and applying the transmit filter vector at the first communication device to a signal to be transmitted from the first communication device to the second communication device.

7. The medium of claim 6, wherein the instructions encoded on the medium for performing the function of generating the plurality of transmit filter sub-vectors comprise instructions for equipping the transmit filter sub-vector to the corresponding sub-vector of the principal eigenvector.

8. The medium of claim 6, wherein the instructions encoded on the medium for performing the function of generating the transmit filter sub-vectors further comprise instructions for normalizing each sub-vector of the transmit filter vector so that a total power emitted is divided equally among the plurality of antennas of the first communication device.

9. The medium of claim 8, wherein the instructions encoded on the medium for performing the function of normalizing comprise instructions that compute the norm of each of the plurality of sub-vectors of the principal eigenvector and divide each sub-vector of the principal eigenvector by the norm and by the square root of the number of plurality of antennas of the first communication device.

10. The medium of claim 9, and further comprising instructions encoded on the medium that repeat functions of generating the receive filter matrix, the computing the principal eigenvector, and generating the plurality of transmit filter sub-vectors, each time a signal is received at the first communication device from the second communication device to update the transmit filter vector and wherein the function of applying the transmit filter vector is performed with the updated transmit filter vector when subsequently transmitting a signal to the second communication device.

11. The medium of claim 10, wherein the instructions are implemented by one or more arrays of gates.

12. A baseband signal processing integrated circuit device comprising the one or more arrays of gates of claim 11.

13. A communication device comprising the baseband signal processing integrated circuit device of claim 12, and further comprising:
a transmitter coupled to the baseband signal processing integrated circuit and to be coupled to the plurality of antennas to up convert transmit signals generated by the baseband signal processing integrated circuit for transmission via respective ones of the plurality of antennas; and
a receiver coupled to the baseband signal processing integrated circuit and to be coupled to the plurality of antennas to down convert signals received by the plurality of antennas and to produce receive signals that are coupled to the baseband signal processing integrated circuit.

14. The medium of claim 6, wherein the instructions are processor readable instructions, that when executed by a processor, cause the processor to perform the generating the receive filter matrix, the computing the principal eigenvector, the generating the plurality of transmit filter sub-vectors, and the applying the transmit filter vector.

15. A semiconductor device comprising a plurality of gates configured to implement:
a plurality of transmit tapped delay-line filters, each associated with a corresponding one of a plurality of antennas;

a plurality of receive tapped delay-line filters, each associated with a corresponding one of the plurality of antennas;

one or more computation blocks that:
generate a receive filter matrix from a signal received by the plurality of antennas of a communication device from another communication device, the receive filter matrix comprised of a plurality of sub-matrices each being a convolution matrix derived from a receive filter sub-vector, wherein each receive filter sub-vector defines complex weights associated with a corresponding receive tapped-delay line filter;

compute a principal eigenvector of a product of the receive filter matrix and a Hermitian of the receive filter matrix, the principal eigenvector comprised of a plurality of sub-vectors each having a length corresponding to a number of taps of a corresponding transmit tapped-delay line filter;

generate from the plurality of sub-vectors of the principal eigenvector a plurality of transmit filter sub-vectors that form a transmit filter vector, each transmit filter sub-vector associated with a corresponding one of the plurality of antennas of the first communication device and defining complex weights associated with a corresponding transmit tapped-delay line filter; and

apply the transmit filter vector at the communication device to a signal to be transmitted to the other communication device.

16. The semiconductor device of claim 15, wherein the computation blocks generate the plurality of transmit sub-vectors by equating each transmit filter sub-vector to the corresponding sub-vector of the principal eigenvector.

17. The semiconductor device of claim 15, wherein the computation blocks generate the transmit filter sub-vectors by normalizing each sub-vector of the transmit filter vector so that a total power emitted is divided equally among the plurality of antennas of the communication device.

18. The semiconductor device of claim 17, wherein the computation blocks normalize each sub-vector of the transmit filter vector by computing the norm of each of the plurality of sub-vectors of the principal eigenvector and dividing each sub-vector of the principal eigenvector by the norm and by the square root of the number of plurality of antennas of the communication device.

19. The semiconductor device of claim 15, wherein the computation blocks repeat the computations that generate the receive filter matrix; that compute the principal eigenvector; and that generate the plurality of transmit filter sub-vectors each time a signal is received at the communication device from the other communication device to update the transmit filter vector, and wherein the computation that applies the transmit filter vector is performed with the updated transmit filter vector when subsequently transmitting a signal to the other communication device.

20. A radio communication device comprising the semiconductor device of claim 15, and further comprising:
a plurality of antennas;
a transmitter coupled to the plurality of antennas and to the semiconductor device to up convert transmit signals generated by the semiconductor device for transmission via respective ones of the plurality of antennas; and

a receiver coupled to the plurality of antennas and to the semiconductor device to down convert signals received by the plurality of antennas and produce receive signals that are coupled to the semiconductor device.

21. A method for communicating signals using radio frequency (RF) communication techniques, comprising:

processing with a transmit filter vector a signal to be transmitted from a first communication device via a plurality of antennas of the first communication device to a second communication device, the transmit filter vector comprised of a plurality of transmit filter sub-vectors defining one or more complex weights associated with a transmit tapped-delay line filter, each transmit filter sub-vector associated with a corresponding one of the plurality of antennas of the first communication device and having a length corresponding to the number taps of the associated transmit tapped-delay line filter; and

processing with a receive filter matrix a signal received from the second communication device at the plurality of antennas of the first communication device, wherein the receive filter matrix comprises a plurality of sub-matrices each being a convolution matrix derived from a receive filter sub-vector, wherein each receive filter sub-vector defines complex weights associated with a receive tapped-delay line filter for a corresponding one of the plurality of antennas of the first communication device; and

computing a principal eigenvector of a product of the receive filter matrix and a Hermitian of the receive filter matrix, the principal eigenvector comprised of a plurality of sub-vectors each having a length corresponding to the number of taps of the transmit tapped-delay line filter of the first communication device.

22. The method of claim 21, wherein when a signal is received at the plurality of antennas of the first communication device from the second communication device, further comprising:

updating the transmit filter sub-vectors with the plurality of sub-vectors of the principal eigenvector for use when transmitting a signal to the second communication device.

23. The method of claim 22 further comprising:

computing the norm of each of a plurality of sub-vectors of the principal eigenvector and dividing each sub-vector of the principal eigenvector by the norm and by the square root of the number of plurality of antennas of the first communication device so that when the transmit filter vector is applied to a signal to be transmitted, a total power emitted is divided equally among the plurality of antennas of the first communication device.

24. A processor-readable medium, having encoded thereon instructions that, when executed by the processor, perform functions comprising:

processing with a transmit filter vector a signal to be transmitted from a first communication device via a plurality of antennas of the first communication device to a second communication device, the transmit filter vector comprised of a plurality of transmit filter sub-vectors defining one or more complex weights associated with a transmit tapped-delay line filter, each transmit filter sub-vector associated with a corresponding one of the plurality of antennas of the first communication device and having a length corresponding to the number taps of the associated transmit tapped-delay line filter;

processing with a receive filter matrix a signal received from the second communication device at the plurality of antennas of the first communication device, wherein the receive filter matrix comprises a plurality of sub-matrices each being a convolution matrix derived from a
receive filter sub-vector, wherein each receive filter sub-vector defines complex weights associated with a receive tapped-delay line filter for a corresponding one of the plurality of antennas of the first communication device; and

computing a principal eigenvector of a product of the receive filter matrix and a Hermitian of the receive filter matrix when a signal is received at the plurality of antennas of the first communication device from the second communication device, the principal eigenvector comprised of a plurality of sub-vectors each having a length corresponding to the number of taps of the transmit tapped-delay line filter of the first communication device.

25. The medium of claim 24, and further comprising instructions encoded on the medium to further perform a function of:

 updating the transmit filter sub-vectors with the plurality of sub-vectors of the principal eigenvector for use when transmitting a signal to the second communication device.

26. The medium of claim 25, wherein the instructions encoded on the medium for performing the function of computing a principal eigenvector further comprise instructions for computing the norm of each of a plurality of sub-vectors of the principal eigenvector and dividing each sub-vector of the principal eigenvector by the norm and by the square root of the number of plurality of antennas of the first communication device so that when the transmit filter vector is applied to a signal to be transmitted, a total power emitted is divided equally among the plurality of antennas of the first communication device.

27. The medium of claim 24, wherein the instructions are implemented by one or more arrays of gates.

28. A baseband signal processing integrated circuit device comprising the one or more arrays of gates of claim 27.

29. A communication device comprising the baseband signal processing device of claim 28, and further comprising:

 a transmitter coupled to the baseband signal processing integrated circuit and to be coupled to the plurality of antennas to up convert transmit signals generated by the baseband signal processing integrated circuit for transmission via respective ones of the plurality of antennas; and

 a receiver coupled to the baseband signal processing integrated circuit and to be coupled to the plurality of antennas to down convert signals received by the baseband signal processing integrated circuit for producing receive signals that are coupled to the baseband signal processing integrated circuit.

30. The medium of claim 24, wherein when the instructions are executed by a processor, cause the processor to perform the functions of:

 processing with the transmit filter vector the signal to be transmitted from the first communication device via the plurality of antennas of the first communication device to the second communication device, the transmit filter vector comprised of the plurality of transmit filter sub-vectors defining one or more complex weights associated with the transmit tapped-delay line filter, each transmit filter sub-vector associated with the corresponding one of the plurality of antennas of the first communication device and having the length corresponding to the number of taps of the associated transmit tapped-delay line filter; and

 processing with the receive filter matrix the signal received from the second communication device at the plurality of antennas of the first communication, wherein the receive filter matrix comprises the plurality of sub-matrices each being the convolution matrix derived from the receive filter sub-vector, wherein each receive filter sub-vector defines complex weights associated with the receive tapped-delay line filter for the corresponding one of the plurality of antennas of the first communication device.

31. A radio communication device comprising:

N plurality of antennas; a baseband signal processor that generates transmit signals and that recovers data from receive signals; and

a radio transceiver coupled to the baseband signal processor that up converts the transmit signals for transmission via the N plurality of antennas and down converts signals received by the N plurality of antennas to produce receive signals;

wherein the baseband signal processor:

processes with a transmit filter vector a signal to be transmitted from via the N plurality of antennas to another communication device, the transmit filter vector comprised of a plurality of transmit filter sub-vectors defining one or more complex weights associated with a transmit tapped-delay line filter, each transmit filter sub-vector associated with a corresponding one of the N plurality of antennas and having a length corresponding to the number of taps of the associated transmit tapped-delay line filter;

processes with a receive filter matrix a signal received at the N plurality of antennas from the other communication device, wherein the receive filter matrix comprises a plurality of sub-matrices each being a convolution matrix derived from a receive filter sub-vector, wherein each receive filter sub-vector defines complex weights associated with a receive tapped-delay line filter for a corresponding one of the N plurality of antennas; and computes a principal eigenvector of a product of the receive filter matrix and a Hermitian of the receive filter matrix, the principal eigenvector comprised of a plurality of sub-vectors each having a length corresponding to the number of taps of the transmit tapped-delay line filter of the radio communication device.

32. The radio communication device of claim 31, wherein the baseband signal processor updates the transmit filter sub-vectors with the plurality of sub-vectors of the principal eigenvector for use when transmitting a signal to the other communication device.
UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,573,945 B2
APPLICATION NO. : 10/707588
DATED : August 11, 2009
INVENTOR(S) : Tesfai et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 1580 days.

Signed and Sealed this
Seventh Day of September, 2010

[Signature]

David J. Kappos
Director of the United States Patent and Trademark Office
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

At item (56), U.S. PATENT DOCUMENTS, page 3, line 10, left column, after line beginning with “2004/0104839”, insert --2004/0013212 1/2004 Benesty et al.--.

At item (56), OTHER PUBLICATIONS, page 3, line 43, left column, after line beginning with “Measurements at 5 GHz”, delete “Irmer.” and insert therefor --Irmer,--.

At item (56), OTHER PUBLICATIONS, page 5, line 12, left column, after line beginning with “ITG Fokusprojekt”, after “Antennen” delete “lienau” and insert therefor --Imenau--.

At column 6, line 37, after the word “factor” delete “1/(N)½/2” and insert therefor --1/(N)½/2--.

At column 6, line 65, before the words “of the” delete “ujT,D2” and insert therefor --ujT,D2,0--.

At claim 8, column 12, line 22, before the word “plurality” delete “among-the” and insert therefor --among the--.

At claim 30, column 16, line 4, before the word “having” delete “arid” and insert therefor --and--.

Signed and Sealed this Fifteenth Day of March, 2011

David J. Kappos
Director of the United States Patent and Trademark Office