COMMONWEALTH OF AUSTRALIA

Patents Act 1952

APPLICATION FOR A STANDARD PATENT

I/We BEECHAM GROUP P.L.C.
of Beecham House, Great West Road, Brentford, Middlesex TW8 9BD, England
hereby apply for the grant of a Standard Patent for an invention entitled:

- .. "NOVEL COMPOUNDS"
which is described in the accompanying complete specification.
- This application is made under the provisions of Section 51 of - . the Patents Act 1952 in respect of Australian Patent Application ... No. 67121/87 made by Beecham Group P.L.C.

```
\bullet. -
- - -
\bullet\bullet@-
```

- .

The address for service is care of DAVIES \& COLLISON, Patent Attorneys, o 1 Little Collins Street, Melbourne, in the State of Victoria, Commonwealth of Australia.

DATED this 18th day of May, 1990

-. .
TO: THE COMMISSIONER OF PATENTS

(a member of the firm of Davies \& Collision for and on behalf of the Applicant)

Davies \& Collison, Melbourne and Canberra

[^0]
AUSTRALIA

Patc. ts Act 1990

NOTICE OF ENTITLEMENT

I/We, Beecham Group p.l.c. the applicant in respect of Application No. 55147/90, state the following:-

Francis David KING and Karen Anne JOINER are the actual inventors in respect of the invention.

The Nominated person(s) is/are entitled to the grant of the patent because the Nominated person(s) would, on the grant of a patent for the invention, be entitled to have the patent assigned to him/her/them/it.

The Nominated person is/are the applicant(s)/patentee(s) of the original application/patent with respect to which the present application is a further complete application under S. 39 of the Patents Act 1990.

Dated this 12th day of January, 1993

(A member of the firm of DAVIES COLLISON CAVE for and on behalf of the applicant)
(12) PATENT ABRIDGMENT (11) Document No. AU-B-55147/90
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 635024
(54) Title

NOVEL COMPOUNDS
International Patent Classification(s)
(51) ${ }^{5}$ C07D 209/08 C07D 403/12
(21) Application No. : 55147/90

C07D 451/14
(22) Application Date : 18.05.90
(30) Priority Data
(31) Number
(32) Date
(33) Country

8600262 8626632
07.01 .86

GB UNITED KINGDOM GB UNITED KINGDOM
(43) Publication Date : 08.11.90
(44) Publication Date of Accepted Application: 11.03.93
(62) Related to Division(s) : 67121/87
(71) Applicant(s) BEECHAM GROUP P.L.C.
(72) Inventor(s)

FRANCIS DAVID KING; KAREN ANNE JOINER
(74) Attorney or Agent DAVIES COLLISON CAVE , 1 Little Collins Street, MELBOURNE VIC 3000
(56) Prior Art Documents

AU 58019/90 C07D 209/08
(57) Intermediates for compounds which are 5-HT-M-receptor antagonists (anti-emetic and/or gastric motility enhancing).

Cla1m

1. A compound of the formula (V):

wherein
G is $C C Q_{1}$, where Q_{1} is a leaving group selected from halogen, C_{2-4} alkoxy, phenoxy, activated hydrocarbyloxy, succinimidyloxy and imidazolyloxy;
X and Y are independently selected from hydrogen or C_{1-4} alkyl, or together are a bond;
R_{1} and R_{2} are independently selected from hydrogen, C_{1-6}
alkyl, C_{2-6} alkenyl- C_{1-4} alkyl, or together are C_{2-4} polymethylene; and
R_{3} and R_{4} are independently selected from hydrogen; halogen; $\mathrm{CF}_{3} ; \mathrm{C}_{1-6}$ alkyl; C_{1-6} alkoxy; C_{1-6} alkylthio; C_{1-7} acyl; C_{1-7} acylamino; C_{1-6} alkylsulphonylamino; $\mathrm{N}-\left(\mathrm{C}_{1-6}\right.$ alkylsulphonyl)-$\mathrm{N}-\mathrm{C}_{1-4}$ alkylamino; C_{1-6} alkylsulphinyl; hydroxy; nitro; and amino, aminocarbonyl, aminosulphonyl, aminosulphonylamino or N -(aminosulphonyl)- C_{1-4} alkylamino optionally N -substituted by one or two group selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl C_{1-4} alkyl, phenyl or phenyl C_{1-4} alkyl groups or optionally N-disubstituted by C_{4-5} polymethylene, excluding the compound 1-(2,3-dihydro)-indolylcarbonyl chloride.

COMPLETE SPECIFICATION
(Original)
FOR OFFICE USE

```
Class
Int. Class
```

Application Number:
Lodged:

```
Complete Specification Lodged:
Accepted:
Published:
```

```
- ..Priority:
. . Related Art:
O: :
••`
    \therefore.
        Name of Applicant: BEECHAM GROUP P.L.C.
```

 -••
 ...Address of Applicant: Beecham House, Great West Road,
 - :
 Brentford, middlesex TW8 9BD,
 England
 \(: \quad\) -
 Actual Inventor(s): Francis David KING
 Karen Anne JOINER
 \(\because\) 。
 Address for Service: DAVIES \& COLLISON, Patent Attorneys,
 \(\because\) :.. 1 Little Collins Street, Melbourne, 3000.
 Complete specification for the irvention entitled:
 "NOVEL COMPOUNDS"
 The following statement is a full description of this invention,
 including the best method of performing it known to us :-
 12

NOVEL COMPOUNDS

This invention relates to novel compounds useful as intermediates for the preparation of compounds having pharmaceutical properties.

GB 2100259A and 2125398A, and EP-A-158265 describe benzoates and benzamides having an azabicyclic side chain and possessing 5-HT antagonist activity.

In Australian Patent Application No.67i21/87 (from which the subject matter of the present invention has been divided), we describe a class of novel, structurally distinct compounds which have 5-HT M-receptor antagonist activity, anti-emetic activity and/or gastric motility enhancing activity. These compounds are represented by the formula (I) :

wherein

L is NH or O ;
X and Y are independently selected from hydrogen or C_{1-4} alkyl, or together are a bond;
R_{1} and R_{2} are independently selected from hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl- C_{1-4} alkyl, or together are C_{2-4} polymethylene;
$10 R_{3}$ and R_{4} are independently selected from hydrogen; halogen; $\mathrm{CF}_{3} ; \mathrm{C}_{1-6}$ alkyl; C_{1-6} alkoxy; C_{1-6} alkylthio; C_{1-7} acyl; C_{1-7} acylamino; C_{1-6} alkylsulphonylamino; $\mathrm{N}-\left(\mathrm{C}_{1-6}\right.$ alkylsulphonyl)-$\mathrm{N}-\mathrm{C}_{1-4}$ alkylamino; C_{1-6} alkylsulphinyl; hydroxy; nitro; and amino, aminocarbonyl, aminosulphonyl, aminosulphonylamino or N -(aminosulphonyl)- C_{1-4} alkylamino optionally N -substituted by one or two groups selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl C_{1-4} alkyl, phenyl or phenyl C_{1-4} alkyl groups or optionally N-disubstituted by C_{4-5} polymethylene;
20 Z is a group of formula (a), (b) or (c)

(c)

wherein n is 1 or 3; p is 1 or 2; q is 1 to $3 ; r$ is 1 to 3 ; and
R_{5} or R_{6} is C_{1-7} alkyl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl- C_{1-2}
wherein
G is $C O Q_{1}$, where Q_{1} is a leaving group selected from halogen, C_{2-4} alkoxy, phenoxy, activated hydrocarbyloxy, 20 succinimidyloxy and imidazolyloxy; and
$R_{1}, R_{2}, R_{3}, R_{4}, X$ and Y have the same designation as for compounds of the formula (I) defined previously;

25
with the proviso that 1-(2,3-dihydro)-indolylcarbonyl chloride is specifically excluded.

Examples of leaving groups Q_{1}, displaceable by a nucleophile, include halogen such as chloro and bromo; C_{2-4} alkoxy, such
 as $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-; \mathrm{PhO}-; ~ a c t i v a t e d ~ h y d r o c a r b y l o x y, ~ s u c h ~ a s ~$ $\mathrm{Cl}_{5} \mathrm{C}_{6} \mathrm{O}$ - or $\mathrm{Cl}_{3} \mathrm{CO}-$ succinimidyloxy; and imidazolyloxy. Preferably Q_{1} is halogen, most preferably chloro.

	1	
	2 3	Suitable values for X and Y include hydrogen, methyl, ethyl, \underline{n} - and iso-propyl; or together are a bond.
	4	
	5	Often X and Y are both hydrogen.
	6	
	7	Suitable values for R_{1} or R_{2} include hydroyen, methyl,
	8	ethyl, \underline{n} - and iso-propyl; prop-2-enyl, but-2-enyl,
	9	but-3-enyl, 1-methylenepropyl and l-methylprop-2-yl in
	10	their E and L forms where stereoisomerism exists; or R_{1}
$\bullet . .$	11	and R_{2} together are as defined in formula (I). Often
$\because \square^{\bullet 0}$	12	R_{1} and R_{2} are both hydrogen.
-	13	
	14	Values for R_{3} and/or R_{4} include hydrogen, fluoro,
	15	chloro, bromo, CF_{3}, methyl, ethyl, methoxy, ethoxy,
	16	methylthio, ethylthio, acetyl, propionyl, acetylamino,
	17	methylsulphońylamino, methylsulphinyl, hydroxy, nitro;
	18	and amino, aminocarbonyl, aminosulphonyl,
	19	aminosulphonylamino or N -(aminosulphonyl)-methylamino
	20	any of which may be optionally substituted by one or
-	21	two methyl groups or by a cyclopentyl or cyclohexyl
	22	
	23	
	24	
	25	
	26	
$\because \because \bullet$:	27	
	28	
	29	
	30	
	31	
	32	
	33	
	34	
	35	
	36	
	37	
	38	

group or disunstituted by C_{4} or C_{5} polymetnylene; K_{3} is often hydrogen and R_{4} is hyarogen or a 5 -substituent, such as halo or methoxy.

Preferably n is 2 or 3 and p, q and r are 1 or 2.

Examples of R_{5} / R_{6} when C_{1-7} alkyl include as groups of interest C_{1-3} alkyl such as methyl, ethyl and $\underline{n}-$ and iso-propyl. Within C_{1-7} alkyl, C_{4-7} alkyl are also of interest, especially those of the formula $\left(\mathrm{CH}_{2}\right) \mathrm{uR}_{9}$ wherein u is 1 or 2 and R_{g} is a seconary or tertiary C3-6 alkyl yroup. Examples of C_{4-7} alkyl include $\underline{n}-$, sec- and tert-butyl, \underline{n}-pentyl, \underline{n}-heptyl, ana iso-butyl, 3-methyldutyl, and tert-butylmethyl.

Examples of $\mathrm{K}_{5} / \mathrm{R}_{6}$ when C_{3-8} cycloalkyl- C_{1-2} alkyl include in particular those wherein the cycloalkyl moiety is cyclohexyl or cyclopropyl. Examples धan include cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, cyclopropylethyl, cyclobutylethyl, cyclopentylethyl, cyclohexylethyl, tert-butylmethyl, iso-propylmethyl, iso-propylethyl and tert-butylethyl.
R_{5} / R_{6} may in particular be cyclopropylmethyl, cyclohexylinethyl, iso-propylmethyl, tert-butylmethyl or iso-propylethyl, preferably tert-butylmethyl.

Examples of $\mathrm{K}_{5} / \mathrm{K}_{6}$ when C_{2-7} alkenyl- C_{1-4} alkyl include prop-2-enyl, but-2-enyl, but-3-enyl, l-methylenepropyl and l-methyl-prop-2-enyl in '`eir E and Z forms when stereoisomerism exists.
R_{5} / R_{6} is preferably methyl or ethyl, most preferably methyl.

Preferred compounds of the present invention may be selected from the following:

1-(2,3-Dihydro)-indolyltrichloromethyl carbamate,

1-(2,3-dihydro-3-methyl)indolyl-0-(1-
succinimidyl)carbamate,

1-(2,3-dihydro-5-fluoro)indolyl-0-(1succinimidyl)carbamate,

1-(2,3-dihydro-5-methoxy)indolyl trichloromethyl carbamate,

1-(2,3-dihydro-3-ethyl)indolylcarbonyl chloride,

1-(2,3-dihydro-5-nitro)indolyl-trichloromethyl
carbamate,

1-[1-(2,3-dihydro-6-nitro)indolylcarbonyl]-imidazole, or

1-(2,3-dihydro-3,3-dimethyl)indolylcarbonyl chloride.
900517.c_sspe. 037. compounds. 1.6

		Compounds of the formula (V) may be prepared by reacting a
	3	
	4	H
	5	$\mathrm{R}_{3} \quad 1$
	6	
		1 - 1
	7	
	8	-
	9	$\mathrm{R}_{4} \mathrm{R}_{2}^{\prime}$
	10	
-••	11	with a compound of the formula (VII):
...0**	12	
....:	13	RCOQ_{1}
: $\cdot \bullet$	14	
	15	wherein
\therefore - •	16	
	17	R is a leaving group which may be the same as Q_{1} or
	18	different; and $Q_{1}, R_{1}, R_{2}, R_{3}, R_{4}, X$ and Y are
	19	hereinbefore defined.
	20	
$\because:$	21	Compounds of the formula (V) are useful as intermediates in
	22	the preparation of compounds of the formula (I) as
	23	previously mentioned. As described in our co-pending patent
	24	application No.67121/87, compounds of the formula (I) may be
	25	prepared by reacting a compound of formula (V):
	26	G
$\because \bullet \cdots:$	27	R_{3}
	28	$\sim \mathrm{N}$
	29	
	30	- (V)
	31	R_{4}
	32	2
	33	with a compound of formula (VI):
	34	
	35	$J-Z^{1} \quad$ (VI)
	36	
	37	
	38	wherein

or hydrogen
G is $C O Q_{1 A}$ where Q_{1} is a leaving group and, when G is $C O Q_{1}, J$ is NH_{2}, or OH or a reactive derivative thereof or, when G is hydrogen, J is a group containing an activated carbonyl group capable of forming a co-L-linkage with the compound of formula (V); Z^{1} is Z as defined or wherein R_{5} / R_{6} is replaced by a hydrogenolysable protecting group; and the remaining variables are as hereinbefore defined; and thereafter optionally converting any R_{3} and R_{4} group to another R_{3} and R_{4} group respectively, converting Z^{1}, when other than Z, to Z; converting X and Y to other X ant Y; and optionally forming a pharmaceutically acceptable salt of the resultant compound of formula (I).

Further details of reaction conditions are set forth in application No. $67121 / 87$ which is incorporated herein by reference.

The compounds of the present invention-may be in the form of pharmaceutically acceptable salts. Acid addition salts may be formed conventionally, for example, by reaction of the base compound nf the formula (V) with a pharmaceutically acceptable organic or inorganic acid.

This invention also provides pharmaceutical composition comprising a compound of the formula (V), or a pharmaceutically acceptable salt thereof, and a pharmaceuticalf acceptable carrier. The preparation of pharmaceutioal compositions and nature of pharmaceutically accepteable carriers are well known in the art, and are deseribed, for example, in opplieation No $67121 / 87$

The following Examples illustrate the preparation of compounds of the formula (V):

Example l

1-(2,3-Dinyaro)-1naolyltrichloromethyl cardamate (D1)

(D1)

To 2,3-dihydroindole (5g) in dry dichloromethane (140 ml) and triethylamine (5.85 ml) at 00 was added dropwise trichloromethyl chloroformate (5ml) in dry dichloromethane (20ml). The reaction mixture was stirred at room temperature for 2 h , then washed with water $(5 \mathrm{ml})$ and 5 N hydrochloric acid solution (5 ml). The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent evaporated in vacuo and the residue purified by filtration through a short alumina column, eluting with dichloromethane to give the title compound (Dl) (8.5g, 72\%) as a buff solid m.p. 59-60 .
$1_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) 60 \mathrm{MHz}$
δ 7.85-7.55 (m, 1H)
7.30-6.70 (m, 3H)
4.25-3.70 (m, 2H)
3.25-2.80 (m, 2H)

Example 2
2.3-Dihydro-3-methylindole (D2)

3
34
35
30
37
38
39

Following the procedure outlired by i. W. Gribble and J.H. Hoffinan, Synthesis 859, 1977, ethyl indole (59) was converted to the title compound (D2) (4.179, 228). $1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 60 \mathrm{MHz}$
$\delta \quad 7.30-6.30(\mathrm{~m}, 4 \mathrm{H})$
3.80-2.80 (m, 4H)
1.30 (d, 3H)

Example 3

2,3-Dihydro-5-fluoroindole (D3)

Following the procedure outlined in Example 2 ,
5-fluoroindole (3 g) was ccnverted to the title compound (D3) (2.549, 84\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 60 \mathrm{MHz}$
$\delta \quad 7.05-6.10(\mathrm{~m}, 3 \mathrm{H})$
4.10-2.60 (m, 5H)

Example 4

2,3-Dihydro-5-chloroindole (D4)

17
10
19
200 ．．．．。
$210^{\circ}{ }^{\circ} \bullet^{\circ}$ ：
22
$\angle 3 \therefore:^{\bullet}$ •
24
25

$\angle 70: \cdot 0$ ：
20
29
30
31
$3<$
3 •

34
35
－ 11 －
fullowing the procedure outlined in Example 2， 5 －chloroindole（ 0.86 g ）was converted to the title compound（D4）（0．84g，978）．
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 60 \mathrm{MHz}$
$\delta \quad 7.30-6.65(\mathrm{~m}, 2 \mathrm{H})$
6．60－6．25（m，1H）
4．10－3．25（m，3H）
3．20－2．70（m，2H）

Example 5

2，3－Dihydro－5－methoxyindole（D5）

A solution of 5－methoxyindole（lg）in glacial acetic acid（20ml）was hydrogenated over platinum oxide （ 0.27 g ）at room temperature．After absorption of the theoretical amo int of hydrogen（ 153 ml ），the catalyst was filtered off and the solvent evaporated in vacuo． The residue was basified with saturated potassium carbonate solution and extracted with diethyl ether． The organic phase was dried（ $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ），the solvent evaporated in vacuo to give the title compound（D5） （0．43g，42\％）．
$l_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) 60 \mathrm{MHz}$
δ 6．85－6．35（m，3H）
3.65 （ $\mathrm{s}, 3 \mathrm{H}$ ）

3．60－2．70（m，5H）

N, N-Dısuccinimidyl carbonate (8.03g) and 2, 3-dinydro-3methylindole (02) (4.17g) in dry toluene (150ml) was stirred at room temperature overnight. The solvent was evaporated in vacuo and the residue dissolved in dichloromethane, washed with 5 N hyarochloric acid solution (lOml), saturated potassium bicarbonate (10ml) and brine (30mi). The organic phase was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), evaporated in vacuo and the esidue purified by filtration through a short silica column, eluting with dichloromethane to give the title compound (D7) (6.859 , 80%) .
$l_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) 60 \mathrm{MHz}$
$\delta \quad 7.85-6.80(\mathrm{~m}, 4 \mathrm{H})$
4.60-4.00 (m, 1H)
3.95-3.10 (m, 2H)
2.75 (s, 4H)
1.30 (bd, 3H)

Example 8

1-(2,3-Dihydro-5-fluoro)indolyl-0-(1-succinimidyl)carbamate (D8)

Following the procedure outlined in Example 7, reaction of N, N-disuccinimidyl carbonate (4.75g) with 2,3-dihydro-5-fluoroindole (D3) afforded the title compound (D8) (5g, 97\%).
$1_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) 60 \mathrm{MHz}$
δ 7.90-7.60 (m, 1H)
7.30-6.60 (m, 3H)
4.40-4.00 (m, 2H)
3.40-2.90 (m, 2H)
$2.85(\mathrm{~s}, 4 \mathrm{H})$

Example 9

1-(2,3-Dihydro-5-methoxy)indolyl trichloromethyl carbamate (D9)

Following the procedure outlined in Example 1, reaction of 2,3 -dihydro-5-methoxyindole (D5) (0.43g) with trichloromethylchloroformate (0.35 ml) afforded the title compound (D9) (0.52g, 58\%).
$1_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) 60 \mathrm{MHz}$
$\delta \quad 7.88-7.58(\mathrm{~m}, ~ 1 \mathrm{H})$
6.85-6.48 (m, 2H)
4.35-3.80 (m, 2H)
$3.70(\mathrm{~s}, 3 \mathrm{H})$
3.35-2.80 (m, 2H)

31

Example 10

1-(2,3-Dihydro)indolylcarbonyl chloride (D10)

(Dl0)

To phosgene [110ml (12.5\% w / w solution in toluene)] in dry dichloromethane (150 ml) at 0° was added dropwise a solution of triethylamine (17ml) and freshly distilled 2,3-dihydroindole (14.5 g) in dry dichloromethane (100 ml). The reaction mixture was then stirred at 0° for 1 h , and then poured into pentane (2.51), washed with 5 N sulphuric acid solution (100ml) and brine (100ml). The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent evaporated $i n$ vacuo and the residue triturated with $60 / 80$ pet. ether to give the title compound (D10) (18.37g, 83\%).

Example 11

1-(2,3-Dihydro-3-ethyl)indolylcarbonyl chloride (D11)

(DII)

Following the procedure outlined in Example 10, reaction of 2,3-dihydro-3-ethylindole (D6) (1.25g) with phosgene [7.7ml ($12.5 \% \mathrm{w} / \mathrm{w}$ solution in toluene)] afforded the title compound (D11) (1.6g, 90\%).

```
Example 12
1-(2,3-Dihydro-5-nitro)indolyl-trichloromethyl
carbamate (D12)
```



``` (D12)
```

Following the procedure outlined in Example 1 , reaction of 2,3-dihydro-5-nitroindole (4.72g) with trichloromethylchloroformate (3.44 ml) afforded the title compound (D12) (5.5g, 59웅)
$1_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) 60 \mathrm{MHz}$
δ 8.80-7.10 (m, 3H)
4.70-3.90 (m, 2H)
3.50-2.95 (m, 2H)

Example 13

1-[1-(2,3-Dihydro-6-nitro)indolylcarbonyl]imidazole (D13)

(D13)
2,3-Dihydro-6-nitroindole (3g) and 1,1'-carbonyldi
imidazole (2.96g) in dry toluene (75ml) was heated under reflux for 5 h . The reaction mixture was cooled and the solvent evaporated in vacuo. The residue was dissolved in dichloromethane (100ml) and washed with 5 N hydrochloric acid solution (10ml) and water (20ml). The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated in vacuo to give the title compound (D13) (4.7g, 100\%).

Example 14

1-(2,3-Dihydro-3,3-dimethyl)indelylcarbonyl chloride (D14)

(D|4)
Following the procedure outlined in Example 10 , reaction of 2,3-dihydro-3,3-dimethylindole (2.7g) with phosgene [16.5ml ($12.5 \% \mathrm{w} / \mathrm{w}$ solution in toluene)] afforded the title compound (D14) (3.5g, 91\%).

Example 15 - Synthesis of a compound of the Formula (I)
endo-N-(9-Methyl-9-azabicyclo[3.3.1]non-3-yl)-2,3-
dihydroindole-1-carboxamide (E1)

To 1-(2,3-dihydro)-indolyltrichloromethyl carbamate (D1) (3.64 g) in dry toluene (100 ml) was added endo-3-amino-9-methyl-9-azabicyclo[3.3.1]nonane (2g) in dry toluene (20ml). The reaction mixture was heated under reflux for 24 h , then the solvent evaporated in vacuo. The residue was extracted with dichloromethane (200ml) and washed with saturated potassium carbonate solution (2 x 20 ml). The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ concentrated and the residue purified by column chromatography on alumina, eluting with CHCl_{3} to give, after crystallisation from ethyl acetate, the title compound (E1) ($2 \mathrm{~g}, ~ 52 \%$) m.p. $1.76-8^{\circ}$.
$1_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) 270 \mathrm{MHz}$

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A compound of the formula (V):

wherein

G is $C O Q_{1}$, where Q_{1} is a leaving group selected from halogen, C_{2-4} alkoxy, phenoxy, activated hydrocarbyloxy, succinimidyloxy and imidazolyloxy;
X and Y are independently selected from hydrogen or C_{1-4} alkyl, or together are a bond;
R_{1} and R_{2} are independently selected from hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl- C_{1-4} alkyl, or together are C_{2-4} pol.ymethylene; and
R_{3} and R_{4} are independently selected from hydrogen; halogen; $\mathrm{CF}_{3} ; \mathrm{C}_{1-6}$ alkyl; C_{1-6} alkoxy; C_{1-6} alkylthio; C_{1-7} acyl; C_{1-7} acylamino; C_{1-6} alkylsulphonylamino; $\mathrm{N}-\left(\mathrm{C}_{1-6}\right.$ alkylsulphonyl)-$\mathrm{N}-\mathrm{C}_{1-4}$ alkylamino; C_{1-6} alkylsulphinyl; hydroxy; nitro; and amino, aminocarbonyl, aminosulphonyl, aminosulphonylamino or N -(aminosulphonyl)- C_{1-4} alkylamino optionally N -substituted by one or two group selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{3-8} Cycloalkyl C_{1-4} alkyl, phenyl or phenyl C_{1-4} alkyl groups or optionally N-disubstituted by C_{4-5} polymethylene, excluding the compound 1-(2,3-dihydro)-indolylcarbonyl chloride.
2. A compound according to claim 1 wherein Q_{1} is selected from halogen, C_{1-4} alkoxy, activated hydrocarbyloxy,
 succinimidyloxy, and imidazolyloxy.

```
3. A compound according to claim 1 selected from:
1-(2,3-Dihydro)-indolyltrichloromethyl carbamate,
1-(2,3-dihydro-3-methyl)indolyl-0-(1-succinimidyl)-
carbamate,
1-(2,3-dihydro-5-fluoro)indolyl-0-(1-succinimidyl)-
carbamate,
1-(2,3-dihydro-5-methoxy)indolyl trichloromethyl carbamate,
1-(2,3-dihydro-3-ethyl)indolylcarbonyl chloride,
1-(2,3-dihydro-5-nitro)indolyl-trichloromethyl carbamate,
1-[1-(2,3-dihydro-6-nitro)indolylcarbonyl]-imidazole, or
1-(2,3-dihydro-3,3-dimethyl)indolylcarbonyl chloride.
4. A compound according to claim l substantially as
hereinbefore described with reference to any one of the
Examples.
DATED this l8th day of May, 1990
BEECHAM GROUP P.L.C.
By its Patent Attorneys:
DAVIES & COLLISON
```


[^0]: DIVISIONAL APPLICATION
 ${ }^{10067121 / 87 \text { lodged 5/1/87 }}$

