COMMONWEALTH OF AUSTRALIA

Patents Act 1952

APPLICATION FOR A STANDARD PATENT

I/We BEECHAM GROUP P.L.C.

of Beecham House, Great West Road, Brentford, Middlesex TW8 9BD, England

hereby apply for the grant of a Standard Patent for an invention entitled:

"NOVEL COMPOUNDS"

which is described in the accompanying complete specification.

This application is made under the provisions of Section 51 of the Patents Act 1952 in respect of Australian Patent Application No.67121/87 made by Beecham Group P.L.C.

The address for service is care of DAVIES & COLLISON, Patent Attorneys, o 1 Little Collins Street, Melbourne, in the State of Victoria, Commonwealth of Australia.

DATED this 18th day of May, 1990

To: THE COMMISSIONER OF PATENTS

(a member of the firm of Davies & Collison for and on behalf of the Applicant)

Davies & Collison, Melbourne and Canberra

DIVISIONAL APPLICATION

10. 67 121 /87 Lodged 5 | 1 /87

AUSTRALIA

635024

Patc.us Act 1990

NOTICE OF ENTITLEMENT

I/We, Beecham Group p.l.c. the applicant in respect of Application No. 55147/90, state the following:-

Francis David KING and Karen Anne JOINER are the actual inventors in respect of the invention.

The Nominated person(s) is/are entitled to the grant of the patent because the Nominated person(s) would, on the grant of a patent for the invention, be entitled to have the patent assigned to him/her/them/it.

The Nominated person is/are the applicant(s)/patentee(s) of the original application/patent with respect to which the present application is a further complete application under S.39 of the Patents Act 1990.

Dated this 12th day of January, 1993

(A member of the firm of DAVIES COLLISON CAVE for and on behalf of the applicant)

AU9055147

(12) PATENT ABRIDGMENT (11) Document No. AU-B-55147/90

(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 635024

(54) Title NOVEL COMPOUNDS

International Patent Classification(s)

(51)⁵ C07D 209/08 C07D 403/12

(32)

C07D 451/14

(21) Application No.: 55147/90

(22) Application Date: 18.05.90

(30) Priority Data

(31) Number 8600262 8626632 Date 07.01.86 07.11.86

(33) Country

GB UNITED KINGDOM
GB UNITED KINGDOM

(43) Publication Date: 08.11.90

(44) Publication Date of Accepted Application: 11.03.93

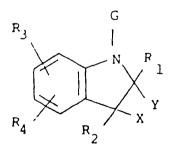
(62) Related to Division(s) : 67121/87

(71) Applicant(s)

BEECHAM GROUP P.L.C.

(72) Inventor(s)

FRANCIS DAVID KING; KAREN ANNE JOINER


(74) Attorney or Agent
DAVIES COLLISON CAVE, 1 Little Collins Street, MELBOURNE VIC 3000

(56) Prior Art Documents AU 58019/90 C07D 209/08

(57) Intermediates for compounds which are 5-HT-M-receptor antagonists (anti-emetic and/or gastric motility enhancing).

Claim

1. A compound of the formula (V):

wherein

G is CCQ_1 , where Q_1 is a leaving group selected from halogen, C_{2-4} alkoxy, phenoxy, activated hydrocarbyloxy, succinimidyloxy and imidazolyloxy;

X and Y are independently selected from hydrogen or C_{1-4} alkyl, or together are a bond;

 R_1 and R_2 are independently selected from hydrogen, C_{1-6}

(10) 635024

alkyl, C_{2-6} alkenyl- C_{1-4} alkyl, or together are C_{2-4} polymethylene; and

 R_3 and R_4 are independently selected from hydrogen; halogen; CF_3 ; C_{1-6} alkyl; C_{1-6} alkoxy; C_{1-6} alkylthio; C_{1-7} acyl; C_{1-7} acylamino; C_{1-6} alkylsulphonylamino; $N-(C_{1-6}$ alkylsulphonyl)- $N-C_{1-4}$ alkylamino; C_{1-6} alkylsulphinyl; hydroxy; nitro; and amino, aminocarbonyl, aminosulphonyl, aminosulphonylamino or $N-(aminosulphonyl)-C_{1-4}$ alkylamino optionally N-substituted by one or two group selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl C_{1-4} alkyl, phenyl or phenyl C_{1-4} alkyl groups or optionally N-disubstituted by C_{4-5} polymethylene, excluding the compound 1-(2,3-dihydro)-indolylcarbonyl chloride.

COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952

COMPLETE SPECIFICATION

(Original)

FOR OFFICE USE

Class

Int. Class

Application Number: Lodged:

.Priority:

Related Art:

• • • •

This document contains the incendments offered in the Super-Section S3 (2) by the Superveing Examiner on

and is correct too pairing

AND THE STATE OF T

Name of Applicant:

BEECHAM GROUP P.L.C.

• • •

...Address of Applicant:

Beecham House, Great West Road,

Brentford, middlesex TW8 9BD,

England

Actual Inventor(s):

Francis David KING Karen Anne JOINER

Address for Service:

DAVIES & COLLISON, Patent Attorneys,

1 Little Collins Street, Melbourne, 3000.

Complete specification for the invention entitled:

"NOVEL COMPOUNDS"

The following statement is a full description of this invention, including the best method of performing it known to us:

```
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
                         NOVEL COMPOUNDS
16
17
   This invention relates to novel compounds useful as
   intermediates for the preparation of compounds having
18
19
   pharmaceutical properties.
20
21
   GB 2100259A and 2125398A, and EP-A-158265 describe benzoates
22
   and benzamides having an azabicyclic side chain and
23
   possessing 5-HT antagonist activity.
24
25
   In Australian Patent Application No.67121/87 (from which the
   subject matter of the present invention has been divided),
26
   we describe a class of novel, structurally distinct
27
28
   compounds which have 5-HT M-receptor antagonist activity,
29
   anti-emetic activity and/or gastric motility enhancing
   activity. These compounds are represented by the formula
30
31
   (I):
32
33
34
35
                                                 (1)
36
37
38
```

wherein

L is NH or O;

X and Y are independently selected from hydrogen or C_{1-4} alkyl, or together are a bond;

5

 $\rm R_1$ and $\rm R_2$ are independently selected from hydrogen, $\rm C_{1-6}$ alkyl, $\rm C_{2-6}$ alkenyl-C_{1-4} alkyl, or together are C_{2-4} polymethylene;

- 10 R $_3$ and R $_4$ are independently selected from hydrogen; halogen; CF $_3$; C $_{1-6}$ alkyl; C $_{1-6}$ alkoxy; C $_{1-6}$ alkylthio; C $_{1-7}$ acyl; C $_{1-7}$ acylamino; C $_{1-6}$ alkylsulphonylamino; N-(C $_{1-6}$ alkylsulphonyl)-N-C $_{1-4}$ alkylamino; C $_{1-6}$ alkylsulphinyl; hydroxy; nitro; and amino, aminocarbonyl, aminosulphonyl, aminosulphonylamino or
- N-(aminosulphonyl)- C_{1-4} alkylamino optionally N-substituted by one or two groups selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl C_{1-4} alkyl, phenyl or phenyl C_{1-4} alkyl groups or optionally N-disubstituted by C_{4-5} polymethylene;

20

Z is a group of formula (a), (b) or (c)

$$(CH_2)_n NR_5$$
 (a)

$$-\frac{1}{(CH_2)} \prod_{p \in A} (CH_2)$$
 (b)

(c)

wherein n is 1 or 3; p is 1 or 2; q is 1 to 3; r is 1 to 3; and

 R_5 or R_6 is C_{1-7} alkyl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl- C_{1-2} alkyl or C_{2-7} alkenyl- C_{1-4} alkyl.

This invention provides compounds of the formula (V):

10

$$\begin{array}{c|c}
R_3 & & G \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

15

wherein

G is COQ_1 , where Q_1 is a leaving group selected from halogen, C_{2-4} alkoxy, phenoxy, activated hydrocarbyloxy, succinimidyloxy and imidazolyloxy; and

 R_1 , R_2 , R_3 , R_4 , X and Y have the same designation as for compounds of the formula (I) defined previously;

with the proviso that 1-(2,3-dihydro)-indolylcarbonyl chloride is specifically excluded.

Examples of leaving groups Q_1 , displaceable by a nucleophile, include halogen such as chloro and bromo; C_{2-4} alkoxy, such as CH₃O and C_2 H₅O-; PhO-; activated hydrocarbyloxy, such as Cl₅C₆O- or Cl₃CO-; succinimidyloxy; and imidazolyloxy. Preferably Q_1 is halogen, most preferably chloro.


```
1
    Suitable values for X and Y include hydrogen, methyl,
3
    ethyl, n- and iso-propyl; or together are a bond.
4
5
    Often X and Y are both hydrogen.
6
7
    Suitable values for R<sub>1</sub> or R<sub>2</sub> include hydrogen, methyl,
    ethyl, n- and iso-propyl; prop-2-enyl, but-2-enyl,
8
9
    but-3-enyl, 1-methylenepropyl and 1-methylprop-2-yl in
10
    their E and Z forms where stereoisomerism exists; or R1
11
    and R2 together are as defined in formula (I). Often
12
    R<sub>1</sub> and R<sub>2</sub> are both hydrogen.
13
14
    Values for R3 and/or R4 include hydrogen, fluoro,
15
    chloro, bromo, CF3, methyl, ethyl, methoxy, ethoxy,
16
    methylthio, ethylthio, acetyl, propionyl, acetylamino,
17
    methylsulphonylamino, methylsulphinyl, hydroxy, nitro;
18
    and amino, aminocarbonyl, aminosulphonyl,
19
    aminosulphonylamino or N-(aminosulphonyl)-methylamino
20
    any of which may be optionally substituted by one or
21
    two methyl groups or by a cyclopentyl or cyclohexyl
22
23
24
25
26
27
28
29
30
31
32
33
34
35
 36
 37
 38
```

```
group or disubstituted by C4 or C5 polymethylene; R3 is
1
     often hydrogen and R4 is hydrogen or a 5-substituent,
2
     such as halo or methoxy.
3
4
     Preferably n is 2 or 3 and p, q and r are 1 or 2.
5
6
     Examples of R_5/R_6 when C_{1-7} alkyl include as groups of
7
8
     interest C_{1-3} alkyl such as methyl, ethyl and n- and
     iso-propyl. Within C_{4-7} alkyl, C_{4-7} alkyl are also of
9
10
     interest, especially those of the formula (CH2)uR9
11
     wherein u is 1 or 2 and Rg is a secondary or tertiary
12
    C_{3-6} alkyl group. Examples of C_{4-7} alkyl include n-,
13
     sec- and tert-butyl, n-pentyl, n-heptyl, and iso-butyl,
14
     3-methyloutyl, and tert-butylmethyl.
15
16
     Examples of R_5/R_6 when C_{3-8} cycloalkyl-C_{1-2} alkyl
17
     include in particular those wherein the cycloalkyl
18
    moiety is cyclohexyl or cyclopropyl. Examples of
19
     include cyclopropylmethyl, cyclobutylmethyl,
20
     cyclopentylmethyl, cyclohexylmethyl, cyclopropylethyl,
21
    cyclobutylethyl, cyclopentylethyl, cyclohexylethyl,
22
     tert-butylmethyl, iso-propylmethyl, iso-propylethyl and
23
     tert-butylethyl.
24
25
     R<sub>5</sub>/R<sub>6</sub> may in particular be cyclopropylmethyl,
26
     cyclohexylmethyl, iso-propylmethyl, tert-butylmethyl or
27
     iso-propylethyl, preferably tert-butylmethyl.
28
29
     Examples of R_5/R_6 when C_{2-7} alkenyl-C_{1-4} alkyl include
30
    prop-2-enyl, but-2-enyl, but-3-enyl, 1-methylenepropyl
31
     and 1-methyl-prop-2-enyl in 'beir E and Z forms when
32
     stereoisomerism exists.
33
34
    R<sub>5</sub>/R<sub>6</sub> is preferably methyl or ethyl, most preferably
35
    methyl.
36
37
```

```
Preferred compounds of the present invention may be
2
   selected from the following:
3
    1-(2,3-Dihydro)-indolyltrichloromethyl carbamate,
5
6
7
    1-(2,3-dihydro-3-methyl)indolyl-0-(1-
    succinimidyl)carbamate,
8
9
10
    1-(2,3-dihydro-5-fluoro)indoly1-0-(1-
11
    succinimidyl)carbamate,
12
    1-(2,3-dihydro-5-methoxy)indolyl trichloromethyl
13
1.4
    carbamate,
15
16
   1-(2, 3-dihydro) indolylcarbonyl chloride,
17
   1-(2,3-dihydro-3-ethyl)indolylcarbonyl chloride,
18
19
    1-(2,3-dihydro-5-nitro)indolyl-trichloromethyl
20
    carbamate,
21
22
   1-[1-(2,3-dihydro-6-nitro)indolylcarbonyl]-imidazole,
23
24 or
25
    1-(2,3-dihydro-3,3-dimethyl)indolylcarbonyl chloride.
26
27
28
29
30
31
32
33
34
35
36
```

- 7 -

```
1
   Compounds of the formula (V) may be prepared by reacting a
2
   compound of the formula (VI):
 3
                          H
 4
              R_3
 5
 6
 7
                                              (VI)
 8
 9
10
11
    with a compound of the formula (VII):
12
13
         RCOQ<sub>1</sub>
14
15
    wherein
16
17
    R is a leaving group which may be the same as Q_1 or
18
    different; and Q_1, R_1, R_2, R_3, R_4, X and Y are as
    hereinbefore defined.
19
20
21
    Compounds of the formula (V) are useful as intermediates in
22
    the preparation of compounds of the formula (I) as
23
    previously mentioned. As described in our co-pending patent
24
    application No.67121/87, compounds of the formula (I) may be
25
    prepared by reacting a compound of formula (V):
26
                          G
              R<sub>3</sub>
27
28
29
                                              (V)
30
31
32
    with a compound of formula (VI):
33
34
                         J-Z^1
35
                                         (VI)
36
37
38
    wherein
```

or hydrogen G is COQ_{1A} where Q_1 is a leaving group $\frac{Q_1}{Q_1}$ and, when G is COQ_1 , J is NH_2 , or OH or a reactive derivative thereof or, when G is hydrogen, J is a group containing an activated carbonyl group capable of forming a CO-L-linkage 4 with the compound of formula (V); Z^1 is Z as defined or wherein R_5/R_6 is replaced by a hydrogenolysable protecting 6 group; and the remaining variables are as hereinbefore 7 defined; and thereafter optionally converting any \mathbf{R}_3 and \mathbf{R}_4 group to another R3 and R4 group respectively, converting ${\mathtt Z}^{\mathtt l}$, when other than Z, to Z; converting X and Y to other X 10 and Y; and optionally forming a pharmaceutically acceptable 11 12 salt of the resultant compound of formula (I).

13

13

••• 14 Further details of reaction conditions are set forth in
•• 15 application No.67121/87 which is incorporated herein by
16 reference.

17

The compounds of the present invention may be in the form of pharmaceutically acceptable salts. Acid addition salts may be formed conventionally, for example, by reaction of the base compound of the formula (V) with a pharmaceutically acceptable organic or inorganic acid.

23

24

2526

27

28

29

30

This invention also provides a pharmaceutical composition comprising a compound of the formula (V), or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier. The preparation of pharmaceutical compositions and nature of pharmaceutically acceptable carriers are well known in the art, and are described, for example, in application No.67121/87.

31

The following Examples illustrate the preparation of compounds of the formula (V):

37 O Sec. 77 O Sec. 77 O Sec. 77 O Sec. 77

Example 1

1-(2,3-Dihydro)-indolyltrichloromethyl carbamate (D1)

To 2,3-dihydroindole (5g) in dry dichloromethane (140ml) and triethylamine (5.85ml) at 0° was added dropwise trichloromethyl chloroformate (5ml) in dry dichloromethane (20ml). The reaction mixture was stirred at room temperature for 2h, then washed with water (5ml) and 5N hydrochloric acid solution (5ml). The organic phase was dried (Na₂SO₄), the solvent evaporated in vacuo and the residue purified by filtration through a short alumina column, eluting with dichloromethane to give the title compound (D1) (8.5g, 72%) as a buff solid m.p. $59-60^{\circ}$. 1 H-NMR (CDC1₃) 60MHz

δ 7.85-7.55 (m, 1H) 7.30-6.70 (m, 3H) 4.25-3.70 (m, 2H) 3.25-2.80 (m, 2H)

Example 2

2,3-Dihydro-3-methylindole

Н 36 (D2)

کے ر ..4 ΙU

, to **u7**

11

i 7

19

10

24 25

ر: کے

29 30 31

3 3 34

32

35

37 38

```
- 10 -
```

111

```
Following the procedure outlined by G.W. Gribble and
               J.H. Hoffman, Synthesis 859, 1977, ethyl indole (5g)
و ر ،
               was converted to the title compound (D2) (4.17g, 32%).
-
               ^{1}H NMR (CDCl<sub>3</sub>) 60MHz
υ5
                       7.30-6.30 (m, 4H)
Úο
                       3.80-2.80 (m, 4H)
07
                            1.30 (d, 3H)
80
09
1 Ü
               Example 3
11 •
               2,3-Dihydro-5-fluoroindole (D3)
17
18
19
                                                                    (D3)
               Following the procedure outlined in Example 2,
22
               5-fluoroindole (3g) was converted to the title compound
23
               (D3) (2.54g, 84%).
24
               1H-NMR (CDCl<sub>3</sub>) 60MHz
                      7.05-6.10 (m, 3H)
25
                       4.10-2.60 (m, 5H)
28
               Example 4
29
               2,3-Dihydro-5-chloroindole (D4)
30
31
32
33
34
35
36
37
                                                                   (D4)
```

```
Following the procedure outlined in Example 2,
 Ľ
               5-chloroindole (0.86g) was converted to the title
٠. ځ
               compound (D4) (0.84q, 97%).
: 4
               1H-NMR (CDCl3) 60MHz
ıŚ
                      7.30-6.65 (m, 2H)
116
                      6.60-6.25 (m, 1H)
U7
                      4.10-3.25 (m, 3H)
1185
                      3.20-2.70 (m, 2H)
.,9
10
              Example 5
               2,3-Dihydro-5-methoxyindole (D5)
                                              Н
17
10
19
200..
                                                                   (D5)
21•
               A solution of 5-methoxyindole (lg) in glacial acetic
22
23
               acid (20ml) was hydrogenated over platinum oxide
               (0.27g) at room temperature. After absorption of the
24
25
               theoretical amount of hydrogen (153ml), the catalyst
               was filtered off and the solvent evaporated in vacuo.
               The residue was basified with saturated potassium
27.....
               carbonate solution and extracted with diethyl ether.
2ბ
               The organic phase was dried (Na<sub>2</sub>SO<sub>4</sub>), the solvent
29
               evaporated in vacuo to give the title compound (D5)
30
               (0.43g, 42%).
31
               1H-NMR (CDC13) 60MHz
32
                      6.85-6.35 (m, 3H)
3.
34
                            3.65 (s, 3H)
```

3.60-2.70 (m, 5H)

. 1 1

Example 6

2,3-Dihydro-3-ethylindole (D6)

(D6)

Following the procedure outlined in Example 2, 3-ethylindole (2.3g) (J.T. Fitzpatrick and R.D. Hiser, J. Org. Chem., 22, 1703-4, 1957) was converted to the title compound (D6) (1.3g, 56%).

1H-NMR (CDC13) 60MHz

0.9 (t, 3H)

Example 7

1-(2,3-Dihydro-3-methyl)indolyl-O-(1-succinimidyl)carbamate (D7)

٠,

UO

15

 $\cup 1$

97 08

U9

Ìυ

17

18 19

23 24

25

28

29 30

31

32

N.N-Disuccinimidyl carbonate (8.03g) and 2,3-dinydro-3-methylindole (D2) (4.17g) in dry toluene (150ml) was stirred at room temperature overnight. The solvent was evaporated in vacuo and the residue dissolved in dichloromethane, washed with 5N hydrochloric acid solution (10ml), saturated potassium bicarbonate (10ml) and brine (30ml). The organic phase was dried (Na₂SO₄), evaporated in vacuo and the residue purified by filtration through a short silica column, eluting with dichloromethane to give the title compound (D7) (6.85g, 80%).

1H-NMR (CDCl3) 60MHz

δ 7.85-6.80 (m, 4H)

4.60-4.00 (m, 1H)

3.95-3.10 (m, 2H)

2.75 (s, 4H)

1.30 (bd, 3H)

Example 8

7

ij

. 9 20

22

. 3 4 . 5

17 10 19

1

13 14

15

1-(2,3-Dihydro-5-fluoro)indolyl-O-(1-succinimidyl)carbamate (D8)

Following the procedure outlined in Example 7, reaction of N,N-disuccinimidyl carbonate (4.75g) with 2,3-dihydro-5-fluoroindole (D3) afforded the title compound (D8) (5g, 97%).

```
- 14 -
```

```
1H-NMR (CDC13) 60MHz
                      7.90-7.60 (m, 1H)
. 3
                      7.30-6.60 (m, 3H)
. .
                      4.40-4.00 (m, 2H)
ڌ∪
                      3.40-2.90 (m, 2H)
しり
                            2.85 (s, 4H)
Ú7
IJĠ
:)9
              Example 9
ΙU
               1-(2,3-Dihydro-5-methoxy)indolyl trichloromethyl
11
               carbamate (D9)
17
18
19
                                                                  (D9)
               Following the procedure outlined in Example 1,
               reaction of 2,3-dihydro-5-methoxyindole (D5) (0.43g)
               with trichloromethylchloroformate (0.35ml) afforded the
23
               title compound (D9) (0.52g, 58%).
24
               1H-NMR (CDC13) 60MHz
25
                      7.88-7.58 (m, 1H)
26 .
                      6.85-6.48 (m, 2H)
                      4.35-3.80 (m, 2H)
28
                            3.70 (s, 3H)
29
                      3.35-2.80 (m, 2H)
30
31
```

```
1
   Example 10
2
3
   1-(2,3-Dihydro)indolylcarbonyl chloride (D10)
4
                     COCI
5
6
7
                                 (D10)
8
9
   To phosgene [110ml (12.5% w/w solution in toluene)] in dry
10
   dichloromethane (150ml) at 0^{\circ} was added dropwise a solution
   of triethylamine (17ml) and freshly distilled 2,3-dihydro-
11
12
   indole (14.5g) in dry dichloromethane (100ml).
                                                     The reaction
13
   mixture was then stirred at 0° for 1h, and then poured into
14
   pentane (2.51), washed with 5N sulphuric acid solution
15
    (100ml) and brine (100ml). The organic phase was dried
16
    (Na<sub>2</sub>SO<sub>4</sub>), the solvent evaporated in vacuo and the residue
    triturated with 60/80 pet. ether to give the title compound
17
18
    (D10) (18.37g, 83%).
19
20
    Example 11
21
22
    1-(2,3-Dihydro-3-ethyl)indolylcarbonyl chloride (D11)
23
24
                        CCCI
25
26
27
                                              (DII)
28
                       Et
29
30
    Following the procedure outlined in Example 10, reaction of
    2,3-dihydro-3-ethylindole (D6) (1.25g) with phosgene [7.7ml
31
    (12.5% w/w solution in toluene)] afforded the title compound
32
33
    (D11) (1.6q, 90%).
34
```

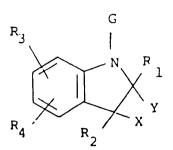
- 16 -

```
Example 12
2
3
   1-(2,3-Dihydro-5-nitro)indolyl-trichloromethyl
4
   carbamate (D12)
5
 6
                          - occ13
 7
 8
 9
10
                                               (D12)
11
12
    Following the procedure outlined in Example 1, reaction of
    2,3-dihydro-5-nitroindole (4.72g) with trichloromethyl-
13
14
    chloroformate (3.44ml) afforded the title compound (D12)
    (5.5q, 59%)
15
    ^{1}H-NMR (CDCl<sub>3</sub>) 60MHz
16
          8.80-7.10 (m, 3H)
17
18
          4.70-3.90 (m, 2H)
          3.50-2.95 (m, 2H)
19
20
21
    Example 13
22
23
    1-[1-(2,3-Dihydro-6-nitro)indolylcarbonyl]imidazole (D13)
24
25
26
27
28
29
                                                 (D13)
30
31
    2,3-Dihydro-6-nitroindole (3g) and 1,1'-carbonyldi-
32
    imidazole (2.96g) in dry toluene (75ml) was heated under
    reflux for 5h.
                      The reaction mixture was cooled and the
33
    solvent evaporated in vacuo. The residue was dissolved in
34
    dichloromethane (100ml) and washed with 5N hydrochloric acid
35
    solution (10ml) and water (20ml). The organic phase was
36
    dried (Na<sub>2</sub>SO<sub>4</sub>) and the solvent evaporated <u>in</u> <u>vacuo</u> to give
37
    the title compound (D13) (4.7g, 100%).
38
```

- 17 -

```
Example 14
1
2
3
    1-(2,3-Dihydro-3,3-dimethyl)indclylcarbonyl chloride (D14)
 4
                      COCI
 5
 6
 7
 8
                         CH 3
                   Hzc
                                               (D14)
 9
10
    Following the procedure outlined in Example 10, reaction of
11
    2,3-dihydro-3,3-dimethylindole (2.7g) with phospene [16.5ml
12
    (12.5% w/w solution in toluene)] afforded the title compound
    (D14) (3.5g, 91%).
13
14
15
    Example 15 - Synthesis of a compound of the Formula (I)
16
17
    endo-N-(9-Methyl-9-azabicyclo[3.3.1]non-3-yl)-2,3-
18
    dihydroindole-1-carboxamide (E1)
19
20
21
22
                         NH
23
24
25
                               (E1)
26
27
    To 1-(2,3-dihydro)-indolyltrichloromethyl carbamate (D1)
28
    (3.64g) in dry toluene (100ml) was added endo-3-amino-9-
29
    methyl-9-azabicyclo[3.3.1]nonane (2q) in dry toluene (20ml).
30
    The reaction mixture was heated under reflux for 24h, then
31
    the solvent evaporated in vacuo.
                                       The residue was extracted
32
    with dichloromethane (200ml) and washed with saturated
33
    potassium carbonate solution (2 x 20ml). The organic phase
34
    was dried (Na<sub>2</sub>SO<sub>4</sub>) concentrated and the residue purified by
    column chromatography on alumina, eluting with CHCl3 to
35
36
    give, after crystallisation from ethyl acetate, the title
    compound (E1) (2g, 52%) m.p. 176-8°.
37
```

 1 H-NMR (CDC1₃) 270MHz


- 18 -

```
1
2
    δ
                  7.85 (d, 1H)
             7.25-7.05 (m, 2H)
3
4
             6.95-6.85 (m, 1H)
             4.45-4.25 (m, 2H)
5
6
             4.00-3.80 (t, 2H)
             3.25-3.05 (m, 4H)
7
8
             2.65-2.40 (m, 2H)
                   2.50 (s, 3H)
9
10
             2.15-1.85 (m, 3H)
             1.65-1.00 (m, 5H)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
```

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

A compound of the formula (V):

5

10

wherein

G is COQ_1 , where Q_1 is a leaving group selected from halogen, alkoxy, phenoxy, C_{2-4} activated hydrocarbyloxy,

15 succinimidyloxy and imidazolyloxy;

the

X and Y are independently selected from hydrogen or C_{1-4} alkyl, or together are a bond;

20

 R_1 and R_2 are independently selected from hydrogen, C_{1-6} C_{2-6} alkenyl- C_{1-4} alkyl, or together polymethylene; and

R3 and R4 are independently selected from hydrogen; halogen; 25 CF_3 ; C_{1-6} alkyl; C_{1-6} alkoxy; C_{1-6} alkylthio; C_{1-7} acyl; C_{1-7}

acylamino; C_{1-6} alkylsulphonylamino; $N-(C_{1-6}$ alkylsulphonyl)- $N-C_{1-4}$ alkylamino; C_{1-6} alkylsulphinyl; hydroxy; nitro; and amino, aminocarbonyl, aminosulphonyl, aminosulphonylamino or $N-(aminosulphonyl)-C_{1-4}$ alkylamino optionally N-substituted30 by one or two group selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl C_{1-4} alkyl, phenyl or phenyl C_{1-4} alkyl groups or optionally N-disubstituted by C_{4-5} polymethylene,

excluding chloride.

35

2. A compound according to claim 1 wherein Q_1 is selected alkoxy, activated hydrocarbyloxy, halogen, c_{1-4} succinimidyloxy, and imidazolyloxy.

compound 1-(2,3-dihydro)-indolylcarbonyl


```
A compound according to claim 1 selected from:
 1
    3.
 2
3
    1-(2,3-Dihydro)-indolyltrichloromethyl carbamate,
 4
 5
    1-(2,3-dihydro-3-methyl)indolyl-0-(1-succinimidyl)-
 6
    carbamate,
 7
 8
    1-(2,3-dihydro-5-fluoro)indolyl-0-(1-succinimidyl)-
    carbamate,
 9
10
11
    1-(2,3-dihydro-5-methoxy)indolyl trichloromethyl carbamate,
12
13
    1-(2,3-dihydro-3-ethyl)indolylcarbonyl chloride,
14
15
    1-(2,3-dihydro-5-nitro)indolyl-trichloromethyl carbamate,
16
17
    1-[1-(2,3-dihydro-6-nitro)indolylcarbonyl]-imidazole, or
18
19
    1-(2,3-dihydro-3,3-dimethyl)indolylcarbonyl chloride.
20
21
    4.
         A compound according to claim 1 substantially as
    hereinbefore described with reference to any one of the
22
23
    Examples.
24
25
   DATED this 18th day of May, 1990
26
   BEECHAM GROUP P.L.C.
27
   By its Patent Attorneys:
28
   DAVIES & COLLISON
29
30
31
32
33
34
35
36
37
38
```