(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 January 2002 (31.01.2002)

(10) International Publication Number
WO 02/07514 A2

(51) International Patent Classification*: A01N

(21) International Application Number: PCT/US01/23707

(22) International Filing Date: 26 July 2001 (26.07.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

(72) Inventors: JELSCH, Markku; c/o Licentia Ltd., Erottajankatu 19 B 5, FIN-00130 Helsinki (Fl). ALITALO, Kari; c/o Licentia Ltd., Erottajankatu 19 B 5, FIN-00130 Helsinki (Fl).

(81) Designated States (national): AU, CA, CN, JP, KR, NZ.

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published: — without international search report and to be republished upon receipt of that report

Published: For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: GLYCOSYLATED VEGF-B AND METHOD FOR INCREASING THE AMOUNT OF SOLUBLE VEGF-B

(57) Abstract: N-glycosylated VEGF-B proteins, nucleic molecule encoding these proteins, pharmaceutical compositions containing them and a method of increasing the amount of a soluble VEGF-B protein. The VEGF-B proteins are useful in stimulating and maintaining angiogenesis.
GLYCOSYLATED VEGF-B AND METHOD FOR INCREASING THE AMOUNT OF SOLUBLE VEGF-B

BACKGROUND OF THE INVENTION

This invention relates to the discovery that N-glycosylation of VEGF-B causes an increase in soluble proteins.

The two major components of the mammalian vascular system are endothelial cells and smooth muscle cells. The endothelial cells form the lining of the inner surface of all blood vessels and lymphatic vessels in the mammal. The formation of new blood vessels can occur by two different processes, vasculogenesis or angiogenesis (for a review see Risau, W., Nature 386:671-674 (1997)). Vasculogenesis is characterized by the in situ differentiation of endothelial cell precursors to mature endothelial cells and association of these cells to form vessels, such as occurs in the formation of the primary vascular plexus in the early embryo. In contrast, angiogenesis, the formation of blood vessels by growth and branching of pre-existing vessels, is important in later embryogenesis and is responsible for most of the blood vessel growth which occurs in the adult. Angiogenesis is a physiologically complex process involving proliferation of endothelial cells, degradation of extracellular matrix, branching of vessels and subsequent cell adhesion events. In the adult, angiogenesis is tightly controlled and limited under normal circumstances to the female reproductive system. However angiogenesis can be switched on in response to tissue damage. Also solid tumors are able to induce angiogenesis in surrounding tissue, thus sustaining tumor growth and facilitating the formation of metastases (Folkman, J., Nature Med. 1:27-31,
(1995)). The molecular mechanisms underlying the complex angiogenic processes are far from being understood.

Angiogenesis is also involved in a number of pathological conditions, where it plays a role or is involved directly in different sequelae of the disease. Some examples include neovascularization associated with various liver diseases, neovascular sequelae of diabetes, neovascular sequelae to hypertension, neovascularization in post-trauma, neovascularization due to head trauma, neovascularization in chronic liver infection (e.g. chronic hepatitis), neovascularization due to heat or cold trauma, dysfunction related to excess of hormone, creation of hemangiomas and restenosis following angioplasty. In arthritis, new capillaries invade the joint and destroy cartilage. In diabetes, new capillaries in the retina invade the vitreous humour, causing bleeding and blindness (Folkman, J. and Shing, Y., J. Biol. Chem. 267:10931-10934 (1992)). The role of angiogenic factors in these and other diseases has not yet been clearly established.

Because of the crucial role of angiogenesis in so many physiological and pathological processes, factors involved in the control of angiogenesis have been intensively investigated. A number of growth factors have been shown to be involved in the regulation of angiogenesis. These include fibroblast growth factors (FGFs), platelet-derived growth factors (PDGFs), transforming growth factor alpha (TGF), and hepatocyte growth factor (HGF). See for example Folkman et al, J. Biol. Chem., 267:10931-10934 (1992) for a review.

It has been suggested that a particular family of endothelial cell-specific growth factors known as the vascular endothelial growth factors (VEGFs) and their corresponding receptors are primarily responsible for stimulation of endothelial cell growth and differentiation, and for certain functions of the differentiated cells. These factors are members
of the PDGF/VEGF family, and appear to act primarily via endothelial receptor tyrosine kinases (RTKs). The PDGF/VEGF family of growth factors belongs to the cystine-knot superfamily of growth factors, which also includes the neurotrophins and 5 transforming growth factor-β.

Eight different proteins have been identified in the PDGF/VEGF family, namely two PDGFs (A and B), VEGF and five members that are closely related to VEGF. The five members closely related to VEGF are: VEGF-B, described in International Patent Application No. WO 96/26736 and in U.S. Patent Nos. 5,840,693 and 5,607,918 by Ludwig Institute for Cancer Research and The University of Helsinki; VEGF-C or VEGF2, described in Joukov et al., EMBO J. 15:290-298 (1996), Lee et al, Proc. Natl. Acad. Sci. USA 93:1988-1992 (1996), and U.S. Patents 5,932,540 and 5,935,540 by Human Genome Sciences, Inc; VEGF-D, described in International Patent Application No. PCT/US97/14696 (WO 98/07832), and Achen et al, Proc. Natl. Acad. Sci. USA 95:548-553 (1998); the placenta growth factor (PIGF), described in Maglione et al, Proc. Natl. Acad. Sci. USA 88:9267-9271 (1991); and VEGF3, described in International Patent Application No. PCT/US95/07283 (WO 96/39421) by Human Genome Sciences, Inc. Each VEGF family member has between 30% and 45% amino acid sequence identity with VEGF in their VEGF homology domain (VHD). This VEGF homology domain contains the eight conserved cysteine residues which form the cystine-knot motif. In their active, physiological state, the proteins are dimers. Functional characteristics of the VEGF family include varying degrees of mitogenicity for endothelial cells and related cell types, induction of vascular permeability and angiogenic and lymphangiogenic properties.

Vascular endothelial growth factor (VEGF) is a homodimeric glycoprotein that has been isolated from several sources. VEGF shows highly specific mitogenic activity for endothelial cells. VEGF has important regulatory functions in the formation of new

In addition, VEGF has strong chemoattractant activity towards monocytes, can induce the plasminogen activator and the plasminogen activator inhibitor in endothelial cells, and can also induce microvascular permeability. Because of the latter activity, it is sometimes referred to as vascular permeability factor (VPF). VEGF is also chemotactic for certain hematopoetic cells. Recent literature indicates that VEGF blocks maturation of dendritic cells and thereby reduces the effectiveness of the immune response to tumors (many tumors secrete VEGF) (Gabrilovich et al., Blood 92: 4150-4166, (1998); Gabrilovich et al., Clinical Cancer Research 5: 2963-2970, (1999)).

Vascular endothelial growth factor B (VEGF-B) has similar angiogenic and other properties to those of VEGF, but is distributed and expressed in tissues differently from VEGF. In particular, VEGF-B is very strongly expressed in heart, and only weakly in lung, whereas the reverse is the case for VEGF (Olofsson, B. et al, Proc. Natl. Acad. Sci. USA 93:2576-2581 (1996)). RT-PCR assays have demonstrated the presence of VEGF-B mRNA in melanoma, normal skin, and muscle. This suggests that VEGF and VEGF-B, despite the fact that they are co-expressed in many tissues, may have functional differences. A comparison of
the PDGF/VEGF family of growth factors reveals that the 167 amino acid isoform of VEGF-B is the only family member that is completely devoid of any glycosylation. Gene targeting studies have shown that VEGF-B deficiency results in mild cardiac phenotype, and impaired coronary vasculature (Bellomo et al, Circ. Res. 86:E29-35 (2000)).

VEGF-C was isolated from conditioned media of the PC-3 prostate adenocarcinoma cell line (CRL1435) by screening for the ability of the medium to induce tyrosine phosphorylation of the endothelial cell-specific receptor tyrosine kinase VEGFR-3 (Flt4), using cells transfected to express VEGFR-3. VEGF-C was purified using affinity chromatography with recombinant VEGFR-3, and was cloned from a PC-3 cDNA library. Its isolation and
characteristics are described in detail in Joukov et al., EMBO J., 15: 290-298, (1996).

VEGF-D was isolated from a human breast cDNA library, commercially available from Clontech, by screening with an expressed sequence tag obtained from a human cDNA library designated "Soares Breast 3NbHBst" as a hybridization probe (Achen et al, Proc. Natl. Acad. Sci. USA, 95: 548-553, (1998)). Its isolation and characteristics are described in detail in International Patent Application No. WO98/07832 and in U.S. Patent No. 6,235,713. These documents also describe the isolation of a biologically active fragment of VEGF-D which consists of VEGF-D amino acid residues 93 to 201. The VEGF-D gene is broadly expressed in the adult human, but is certainly not ubiquitously expressed. VEGF-D is strongly expressed in heart, lung and skeletal muscle. Intermediate levels of VEGF-D are expressed in spleen, ovary, small intestine and colon, and a lower expression occurs in kidney, pancreas, thymus, prostate and testis. No VEGF-D mRNA was detected in RNA from brain, placenta, liver or peripheral blood leukocytes.

PLGF was isolated from a term placenta cDNA library. Its isolation and characteristics are described in detail in Maglione et al., Proc. Natl. Acad. Sci. USA, 88: 9267-9271, (1991). Presently its biological function is not well understood.

VEGF3 was isolated from a cDNA library derived from colon tissue. VEGF3 is stated to have about 36% identity and 66% similarity to VEGF. The method of isolation of the gene encoding VEGF3 is unclear and no characterization of the biological activity is disclosed in International Patent Application No. PCT/US95/07283 (WO 96/39421).

Similarity between two proteins is determined by comparing the amino acid sequence and conserved amino acid substitutions of one of the proteins to the sequence of the second protein,
whereas identity is determined without including the conserved amino acid substitutions.

As noted above, the PDGF/VEGF family members act primarily by binding to receptor tyrosine kinases. In general, receptor tyrosine kinases are glycoproteins, which consist of an extracellular domain capable of binding a specific growth factor(s), a transmembrane domain, which is usually an alpha-helical portion of the protein, a juxtamembrane domain, which is where the receptor may be regulated by, e.g., protein phosphorylation, a tyrosine kinase domain, which is the enzymatic component of the receptor and a carboxy-terminal tail, which in many receptors is involved in recognition and binding of the substrates for the tyrosine kinase.

Five endothelial cell-specific receptor tyrosine kinases have been identified, belonging to two distinct subclasses: three vascular endothelial cell growth factor receptors, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), VEGFR-3 (Flt4), and the two receptors of the Tie family, Tie and Tie-2 (Tek). These receptors differ in their specificity and affinity. All of them have the intrinsic tyrosine kinase activity which is necessary for signal transduction.

The only receptor tyrosine kinases known to bind VEGFs are VEGFR-1, VEGFR-2 and VEGFR-3. VEGFR-1 and VEGFR-2 bind VEGF with high affinity, and VEGFR-1 also binds PlGF. VEGF-B binds to VEGFR-1 with high affinity, but not to VEGFR-2 or -3 (Olofsson et al, Proc. Natl. Acad. Sci. USA, 95:11709-11714 (1998)). VEGF-C has been shown to be the ligand for VEGFR-3, and it also activates VEGFR-2 (Joukov et al, The EMBO Journal 15:290-298 (1996)). VEGF-D binds to both VEGFR-2 and VEGFR-3 (Achen et al, Proc. Natl. Acad. Sci. USA 95:548-553 (1998)). A ligand for Tek/Tie-2 has been described in International Patent Application No. PCT/US95/12935 (WO 96/11269) by Regeneron Pharmaceuticals, Inc. The ligand for Tie has not yet been identified.
A novel 130-135 kDa VEGF isoform specific receptor also has been purified and cloned (Soker et al, Cell 92:735-745 (1998)). The VEGF receptor was found to specifically bind the VEGF165 isoform via the exon 7 encoded sequence, which shows weak affinity for heparin (Soker et al, Cell 92:735-745 (1998)). Surprisingly, the receptor was shown to be identical to human neuropilin-1 (NP-1), a receptor involved in early stage neuromorphogenesis. PlGF-2 also appears to interact with NP-1 (Migdal et al, J. Biol. Chem. 273:22272-22278 (1998)).

Although VEGFR-1 is mainly expressed in endothelial cells during development, it can also be found in hematopoietic precursor cells during early stages of embryogenesis (Fong et al, Nature 376:66-70 (1995)). In adults, monocytes and macrophages also express this receptor (Barleon et al, Blood 87:3336-3343 (1995)). In embryos, VEGFR-1 is expressed by most, if not all, vessels (Breier et al, Dev. Dyn. 204:228-239 (1995); Fong et al, Dev. Dyn. 207:1-10 (1996)).

Since the identification and characterization of VEGF, a number of important findings have focused attention on the activity of angiogenic factors and the elucidation of new factors. The early findings showed that angiogenesis is required for normal development and physiology. Processes such as embryogenesis, wound healing, and corpus luteum formation, all involve angiogenesis and angiogenic factors. During wound
healing, for example, VEGF mRNA levels increase suggesting a direct correlation between the expression of VEGF and the healing process. Also, a defect in VEGF regulation might be associated with wound healing disorders (Frank, S., et al, J. Biol. Chem. 2705:12607-12613 (1995)).

Another important finding involves the connection between angiogenesis and tumor development. Both tumor growth and metastasis are angiogenesis-dependent processes (Folkman, J. and Shing, Y., J. Biol. Chem. 267: 10931-10934 (1992)). For example, when tumor cells are introduced into an animal, the expression pattern of VEGF mRNA reveals expression at the highest level in cells at the periphery of necrotic, tumor growth areas. Numerous blood vessels were identified within these areas. The expression of VEGF in these areas suggests that hypoxemia, a state of deficient oxygenation, triggers expression and release of VEGF in the necrotic tumor. The expression of VEGF-B also has been directly correlated with tumor growth (see U.S. Patent No. 5,840,693). VEGF-B expression is especially up regulated in tumor-associated macrophages and also in ovarian epithelial tumors (Sowter et al, Lab Invest. 77:607-14, (1997)). VEGF-B mRNA can be detected in most tumor cell lines investigated, including adenocarcinoma, breast carcinoma, lymphoma, squamous cell carcinoma, melanoma, fibrosarcoma and Schwannoma (Salven et al, Am J Pathol. 153:103-8 (1998)).

It has been shown that members of the VEGF/PDGF family produce variant transcripts. VEGF has been shown to display different transcripts because of alternative splicing. The human VEGF gene has five different mRNA species (Neufeld et al, FASEB J. 13:9-22 (1999)), resulting in proteins differing in their molecular mass and biological properties (Carmeliet, P., Nat. Med. 6:389-395 (2000)). The hVEGF-A165 isoform is the predominant transcript in most human tissues, giving rise to a polypeptide with affinity to the neuropilin-1 receptor, besides the binding
to VEGFR1 and VEGFR2. The hVEGF_{121} and hVEGF_{189} isoforms are expressed in normal tissues at lower levels. The hVEGF_{206} isoform is mainly expressed in embryonic tissues (Houck et al, Mol Endocrinol. 5:1806-14 (1991)), while hVEGF_{145} can only be found in 5 tumor cell lines (Poltorak et al, J Biol Chem. 272:7151-8 (1997)). Moreover, VEGF is also regulated in an isoform-specific way under pathological conditions. In lung and colon carcinomas, hVEGF_{165} and hVEGF_{181} are up-regulated, whereas hVEGF_{189} is not changed, suggesting an isoform-specific role of VEGF in 10 malignancy (Cheung et al, Hum Pathol. 29:910-4 (1998)). An isoform specific VEGF targeting experiment with murine VEGF-B has shown that mVEGF_{164} and mVEGF_{188} are more important for postnatal growth and maintenance of normal function of cardiovascular system, while mVEGF_{120} initiates and promotes vasculogenesis 15 (Carmeliet et al, Nat Med. 5:495-502 (1999)).

The placenta growth factor (PlGF) has three different isoforms, which are expressed in a tissue and development specific way (Maglione et al, Oncogene 8:925-31 (1993); Cao et al, Biochem Biophys Res Commun. 235:493-8 (1997)).

Two isoforms of VEGF-B, generated by alternative splicing of mRNA, have been recognized (Grimmond et al, Genome Res. 6:124-131 (1996); Olofsson et al, J. Biol. Chem. 271:19310-19317 (1996); Townson et al, Biochem. Biophys. Res. Commun. 220:922-928 (1996)). They are a cell associated form of 167 amino acid residues (VEGF-B_{167}) and a secreted form of 186 amino acid residues (VEGF-B_{186}). The isoforms have an identical N-terminal domain of 115 amino acid residues, excluding the signal sequence. The common N-terminal domain is encoded by exons 1-5. Differential use of the remaining exons 6A, 6B and 7 gives rise 30 to the two splice isoforms. By the use of an alternative splice-acceptor site in exon 6, an insertion of 101 bp introduces a frame-shift and a stop of the coding region of VEGF-B_{167} cDNA. Thus, the two VEGF-B isoforms have differing C-terminal domains.
The different C-terminal domains of the two splice isoforms of VEGF-B affect their biochemical and cell biological properties. The C-terminal domain of VEGF-B$_{167}$ is structurally related to the corresponding region in VEGF, with several conserved cysteine residues and stretches of basic amino acid residues. Thus, this domain is highly hydrophilic and basic and, accordingly, VEGF-B$_{167}$ will remain cell-associated on secretion, unless the producing cells are treated with heparin or high salt concentrations. The cell-associated molecules binding VEGF-B$_{167}$ are likely to be cell surface or pericellular heparin sulfate proteoglycans. It is likely that the cell-association of this isoform occurs via its unique basic C-terminal region.

The C-terminal domain of VEGF-B$_{186}$ has no significant similarity with known amino acid sequences in the databases. The hydrophobic character of the C-terminal domain of VEGF-B$_{186}$ contrasts with the properties of the hydrophilic and basic C-terminal domain of VEGF-B$_{167}$. This is supported by the observation that VEGF-B$_{186}$ does not remain cell-associated on its secretion. Recent evidence indicates that this isoform is proteolytically processed, which regulates the biological properties of the protein (Olofsson et al, Proc. Natl. Acad. Sci. USA, 95:11709-11714 (1998)).

A further difference is found in the glycosylation of the VEGF-B isoforms. VEGF-B$_{167}$ is not glycosylated at all, whereas VEGF-B$_{186}$ is O-glycosylated but not N-glycosylated.

Both isoforms of VEGF-B also form heterodimers with VEGF, consistent with the conservation of the eight cysteine residues involved in inter- and intramolecular disulfide bonding of PDGF-like proteins. Furthermore, co-expression of VEGF-B and VEGF in many tissues suggests that VEGF-B-VEGF heterodimers occur naturally. Heterodimers of VEGF-B$_{167}$-VEGF remain cell-associated. In contrast, heterodimers of VEGF-B$_{186}$ and VEGF are freely secreted from cells in a culture medium. VEGF also forms
heterodimers with PlGF (DiSalvo, et al, J. Biol. Chem. 270:7717-7723 (1995)). The production of heterodimeric complexes between the members of this family of growth factors could provide a basis for a diverse array of angiogenic or regulatory molecules.

Since the secreted VEGF-B₁₆₇ remains cell-associated, it is intrinsically difficult to obtain significant amounts of soluble VEGF-B₁₆₇. Accordingly, there is a need to develop methods for increasing the amount of soluble VEGF-B₁₆₇.

10 SUMMARY OF THE INVENTION

This invention relates to a N-glycosylated VEGF-B and a method for increasing the amount of soluble VEGF-B proteins.

In a first aspect, the invention provides a purified and isolated nucleic acid molecule having a polynucleotide sequence selected from the group consisting of SEQ ID NO:1 (sequence encoding VEGF-B₁₆₇), SEQ ID NO:3 (sequence encoding VEGF-B₁₈₆) and SEQ ID NO:5 (sequence encoding VEGF-B₂₆₁₋₅) into which a nucleotide sequence encoding at least one putative N-glycosylation site has been inserted. The nucleic acid molecule having said polynucleotide sequence can be naked and/or in a vector or liposome. The putative N-glycosylation site is -NXT-, -NXS- or -NXC-, where N represents the amino acid asparagine, X may be any amino acid, and T, S and C represent the amino acids threonine, serine and cysteine, respectively. The nucleotide sequence which encodes the N-glycosylation site may thus comprise aay-nnn¹- (wgy/wcn)-nnn², with the proviso that -nnn¹- is not tga, tar or cnn, and -nnn²- is preferably not ccn, where w represents adenine or thymine/uracil, g represents guanine, y represents cytosine or thymine/uracil, c represents cytosine, n represents adenine, cytosine, guanine or thymine/uracil; t represents thymine/uracil, a represents adenine, and r represents guanine or adenine. (Rules for N-glycosylation are described at

The invention includes the nucleic acid molecules described above as well as fragments of those polynucleotides, and variants of those polynucleotides with sufficient similarity to the non-coding strand of those polynucleotides to hybridize thereto under stringent conditions and which can code for VEGF-B or a fragment or analog thereof which exhibits at least 90% sequence identity to SEQ ID NO:1, SEQ ID NO:3 or SEQ ID NO:5 and which binds to VEGFR-1. Thus, such polynucleotide fragments and variants having a nucleotide sequence encoding at least one putative N-glycosylation site inserted therein are intended as aspects of the invention. Exemplary stringent hybridization conditions are as follows: hybridization at 42°C in 5X SSC, 20 mM NaPO₄, pH 6.8, 50% formamide; and washing at 42°C in 0.2X SSC. Those skilled in the art understand that it is desirable to vary these conditions empirically based on the length and the GC nucleotide base content of the sequences to be hybridized, and that well accepted formulas for determining such variation exist. See for example Sambrook et al, "Molecular Cloning: A Laboratory Manual", Second Edition, pages 9.47-9.51, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory (1989).

Moreover, purified and isolated nucleic acid molecules having a polynucleotide sequence encoding other, non-human, mammalian VEGF-B forms and having a nucleotide sequence encoding at least one putative N-glycosylation site inserted therein are aspects of the invention, as are the polypeptides encoded thereby.

A second aspect of the invention involves the purification and isolation of a protein having an amino acid sequence selected from the group consisting of SEQ ID NO:2 (VEGF-B₁₆₇), SEQ ID NO:4 (VEGF-B₁₈₆) and SEQ ID NO:6 (VEGF-Bᵡ₁₋₅) and having at least one putative N-glycosylation site inserted therein. The purified and isolated protein preferably is produced by the expression of the
nucleic acid molecule of the invention. As noted above, the at least one putative N-glycosylation site is -NXT-, -NXS- or NXC, where N represents the amino acid asparagine, X may be any amino acid, and T, S and C represent the amino acids threonine, serine and cysteine, respectively. Preferably the N-glycosylation site is -NXT- or -NXS-, especially preferably -NXT-. It is also preferred that X and the amino acid following T or S not be proline.

As used herein, the term "VEGF-B" collectively refers to the known VEGF-B167 and VEGF-B186 polypeptide isoforms as well as to fragments or analogs thereof which exhibit at least 90% sequence identity to SEQ ID NO:1, SEQ ID NO:3 or SEQ ID NO:5 and which bind to VEGFR-1 and/or have the vasculogenesis stimulating activity of VEGF-B. The active substance preferably will include the amino acid sequence Pro-Xaa-Cys-Val-Xaa-Xaa-Xaa-Arg-Cys-Xaa-Gly-Cys-Cys (where Xaa may be any amino acid) which is characteristic of VEGF-B.

Polypeptides comprising conservative substitutions, insertions, or deletions, but which still retain the biological activity of VEGF-B are clearly to be understood to be within the scope of the invention. Persons skilled in the art will be well aware of methods which can readily be used to generate such polypeptides, for example the use of site-directed mutagenesis, or specific enzymatic cleavage and ligation. The skilled person will also be aware that peptidomimetic compounds or compounds in which one or more amino acid residues are replaced by a non-naturally occurring amino acid or an amino acid analog may retain the required aspects of the biological activity of VEGF-B. Such compounds can readily be made and tested by methods known in the art, and are also within the scope of the invention.

In addition, possible variant forms of the VEGF-B polypeptide which may result from alternative splicing, as are known to occur with VEGF and VEGF-B, and naturally-occurring allelic variants of the nucleic acid sequence encoding VEGF-B are
encompassed within the scope of the invention. Allelic variants are well known in the art, and represent alternative forms or a nucleic acid sequence which comprise substitution, deletion or addition of one or more nucleotides, but which do not result in any substantial functional alteration of the encoded polypeptide.

Such variant forms of VEGF-B can be prepared by targeting non-essential regions of the VEGF-B polypeptide for modification. These non-essential regions are expected to fall outside the strongly-conserved regions of the VEGF/PDGF family of growth factors. In particular, the growth factors of the VEGF family, including VEGF-B, are dimeric, and VEGF, VEGF-B, VEGF-C, VEGF-D, PlGF, PDGF-A and PDGF-B show complete conservation of eight cysteine residues in the N-terminal domains, i.e. the PDGF/VEGF-homology domains (Olofsson et al., Proc. Natl. Acad. Sci. USA, 15 1996 93 2576-2581; Joukov et al., EMBO J., 1996 15 290-298). These cysteines are thought to be involved in intra- and intermolecular disulfide bonding. In addition there are further strongly, but not completely, conserved cysteine residues in the C-terminal domains. Loops 1, 2 and 3 of each subunit, which are formed by intra-molecular disulfide bonding, are involved in binding to the receptors for the PDGF/VEGF family of growth factors (Andersson et al., Growth Factors, 1995 12 159-164).

Persons skilled in the art thus are well aware that in most cases these cysteine residues should be preserved in any proposed variant form, although there may be exceptions since receptor-binding VEGF-B analogs are known in which one or more of the cysteines is not conserved. Similarly, a skilled worker would be aware that the active sites present in loops 1, 2, and 3 also should be preserved. However, other regions of the molecule can be expected to be of lesser importance for biological function, and therefore offer suitable targets for modification. Modified polypeptides can readily be tested for their ability to show the biological activity of VEGF-B by routine activity assay procedures such as the endothelial cell proliferation assay.
Preferably where amino acid substitution is used, the substitution is conservative, i.e. an amino acid is replaced by one of similar size and with similar charge properties. As used herein, the term "conservative substitution" denotes the replacement of an amino acid residue by another, biologically similar residue, i.e., one that has similar properties. Examples of conservative substitutions include the substitution of one hydrophobic residue such as isoleucine, valine, leucine, alanine, cysteine, glycine, phenylalanine, proline, tryptophan, tyrosine, norleucine or methionine for another, or the substitution of one polar residue for another, such as the substitution of arginine for lysine, glutamic acid for aspartic acid, or glutamine for asparagine, and the like. Neutral hydrophilic amino acids which can be substituted for one another include asparagine, glutamine, serine and threonine. The term "conservative substitution" also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid. Exemplary conservative substitutions are set out in the following Table A:

Table A

<table>
<thead>
<tr>
<th>SIDE CHAIN CHARACTERISTIC</th>
<th>AMINO ACID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliphatic</td>
<td></td>
</tr>
<tr>
<td>Non-polar</td>
<td>G A P I L V</td>
</tr>
<tr>
<td>Polar - uncharged</td>
<td>C S T M N Q</td>
</tr>
<tr>
<td>Polar - charged</td>
<td>D E K R</td>
</tr>
<tr>
<td>Aromatic</td>
<td>H F W Y</td>
</tr>
<tr>
<td>Other</td>
<td>N Q D E</td>
</tr>
</tbody>
</table>

Alternatively, conservative amino acids can be grouped as described in Lehninger, [Biochemistry, Second Edition; Worth Publishers, Inc. NY:NY (1975), pp.71-77] as set out in the following Table B.
Table B

Conservative Substitutions II

<table>
<thead>
<tr>
<th>SIDE CHAIN</th>
<th>CHARACTERISTIC</th>
<th>AMINO ACID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-polar (hydrophobic)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Aliphatic:</td>
<td>A L I V P</td>
</tr>
<tr>
<td></td>
<td>B. Aromatic:</td>
<td>F W</td>
</tr>
<tr>
<td></td>
<td>C. Sulfur-containing:</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>D. Borderline:</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Uncharged-polar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Hydroxyl:</td>
<td>S T Y</td>
</tr>
<tr>
<td></td>
<td>B. Amides:</td>
<td>N Q</td>
</tr>
<tr>
<td></td>
<td>C. Sulphhydryl:</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>D. Borderline:</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Positively Charged (Basic):</td>
<td>K R H</td>
</tr>
<tr>
<td></td>
<td>Negatively Charged (Acidic):</td>
<td>D E</td>
</tr>
</tbody>
</table>

Exemplary conservative substitutions also are set out in the following Table C.
Table C

Conservative Substitutions III

<table>
<thead>
<tr>
<th>Original Residue</th>
<th>Exemplary Substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ala (A)</td>
<td>Val, Leu, Ile</td>
</tr>
<tr>
<td>Arg (R)</td>
<td>Lys, Gln, Asn</td>
</tr>
<tr>
<td>Asn (N)</td>
<td>Gln, His, Lys, Arg</td>
</tr>
<tr>
<td>Asp (D)</td>
<td>Glu</td>
</tr>
<tr>
<td>Cys (C)</td>
<td>Ser</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Gln (Q)</td>
<td>Asn</td>
</tr>
<tr>
<td>Glu (E)</td>
<td>Asp</td>
</tr>
<tr>
<td>His (H)</td>
<td>Asn, Gln, Lys, Arg</td>
</tr>
<tr>
<td>Ile (I)</td>
<td>Leu, Val, Met, Ala, Phe,</td>
</tr>
<tr>
<td>Leu (L)</td>
<td>Ile, Val, Met, Ala, Phe</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Lys (K)</td>
<td>Arg, Gln, Asn</td>
</tr>
<tr>
<td>Met (M)</td>
<td>Leu, Phe, Ile</td>
</tr>
<tr>
<td>Phe (F)</td>
<td>Leu, Val, Ile, Ala</td>
</tr>
<tr>
<td>Pro (P)</td>
<td>Gly</td>
</tr>
<tr>
<td>Ser (S)</td>
<td>Thr</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Thr (T)</td>
<td>Ser</td>
</tr>
<tr>
<td>Trp (W)</td>
<td>Tyr, Phe</td>
</tr>
<tr>
<td>Tyr (Y)</td>
<td>Trp, Phe, Thr, Ser</td>
</tr>
<tr>
<td>Val (V)</td>
<td>Ile, Leu, Met, Phe, Ala</td>
</tr>
</tbody>
</table>

25 If desired, the VEGF-B proteins of the invention can be modified, for instance, by amidation, carboxylation, or phosphorylation, or by the creation of acid addition salts, amides, esters, in particular C-terminal esters, and N-acyl derivatives of the peptides of the invention. The proteins also
can be modified to create peptide derivatives by forming covalent or noncovalent complexes with other moieties. Covalently-bound complexes can be prepared by linking the chemical moieties to functional groups on the side chains of amino acids comprising the peptides, or at the N- or C-terminus.

In particular, it is anticipated that the VEGF-B proteins can be conjugated to a reporter group, including, but not limited to a radiolabel, a fluorescent label, an enzyme (e.g., that catalyzes a colorimetric or fluorometric reaction), a substrate, a solid matrix, or a carrier (e.g., biotin or avidin). The polypeptide can be linked to an epitope tag, such as the FLAG® octapeptide (Sigma, St. Louis, MO) or histidine, to assist in affinity purification. Also the polypeptides according to the invention may be labeled with a detectable label. The polypeptide may be covalently or non-covalently coupled to a suitable supermagnetic, paramagnetic, electron dense, ecogenic or radioactive agent for imaging. For use in diagnostic assays, radioactive or non-radioactive labels may be used. Examples of radioactive labels include a radioactive atom or group, such as 125I or 32P. Examples of non-radioactive labels include enzymatic labels, such as horseradish peroxidase or fluorimetric labels, such as fluorescein-5-isothiocyanate (FITC). Labeling may be direct or indirect, covalent or non-covalent.

The modified polypeptides can readily be tested for their ability to show the biological activity of VEGF-B by routine activity assay procedures such as the fibroblast proliferation assay.

It will be clearly understood that nucleic acids and polypeptides of the invention may be prepared by synthetic means or by recombinant means, or may be purified from natural sources. As used herein, the term "comprising" means "included but not limited to". The corresponding meaning applies to the word "comprises".
A third aspect of the invention provides vectors comprising the nucleic acid molecule of the first aspect of the invention, and host cells transformed or transfected with nucleic acids molecules or vectors of the invention. These may be eukaryotic or prokaryotic in origin. These cells are particularly suitable for expression of the polypeptide of the invention, and include insect cells such as Sf9 or HF cells, obtainable from the American Type Culture Collection, infected with a recombinant baculovirus, and the human embryo kidney cell line 293-EBNA transfected by a suitable expression plasmid. Preferred vectors of the invention are expression vectors in which a nucleic acid according to the invention is operatively connected to one or more appropriate promoters and/or other control sequences, such that appropriate host cells transformed or transfected with the vectors are capable of expressing the polypeptide of the invention. Other preferred vectors are those suitable for transfection of mammalian cells, or for gene therapy, such as adenoviral-, vaccinia- or retroviral-based vectors or liposomes. A variety of such vectors are known in the art.

The invention also provides a method of making a vector capable of expressing a polypeptide encoded by a nucleic acid according to the invention, comprising the steps of operatively connecting the nucleic acid molecule of the first aspect to one or more appropriate promoters and/or other control sequences, as described above.

The invention further provides a method of making a polypeptide according to the invention, comprising the steps of expressing a nucleic acid or vector of the invention in a host cell, and isolating the polypeptide from the host cell or from the host cell's growth medium.

The polypeptide according to the invention may be employed in combination with a suitable pharmaceutical carrier. The resulting compositions comprise an effective amount of
glycosylated VEGF-B or a pharmaceutically acceptable non-toxic salt thereof, and a pharmaceutically acceptable solid or liquid carrier or adjuvant. Examples of such a carrier or adjuvant include, but are not limited to, saline, buffered saline, Ringer’s solution, mineral oil, talc, corn starch, gelatin, lactose, sucrose, microcrystalline cellulose, kaolin, mannitol, dicalcium phosphate, sodium chloride, alginic acid, dextrose, water, glycerol, ethanol, thickeners, stabilizers, suspending agents and combinations thereof. Such compositions may be in the form of solutions, suspensions, tablets, capsules, creams, salves, elixirs, syrups, wafers, ointments or other conventional forms. The formulation to suit the mode of administration. Compositions can comprise a glycosylated VEGF-B and optionally further comprise one or more of PDGF-A, PDGF-B, VEGF, non-glycosylated VEGF-B, VEGF-C, VEGF-D, PlGF and/or heparin. Compositions comprising the glycosylated VEGF-B will contain from about 0.1% to 90% by weight of the active compound(s), and most generally from about 10% to 30%.

For intramuscular preparations, a sterile formulation, preferably a suitable soluble salt form of the glycosylated VEGF-B, such as hydrochloride salt, can be dissolved and administered in a pharmaceutical diluent such as pyrogen-free water (distilled), physiological saline or 5% glucose solution. A suitable insoluble form of the compound may be prepared and administered as a suspension in an aqueous base or a pharmaceutically acceptable oil base, e.g. an ester of a long chain fatty acid such as ethyl oleate.

In a further aspect, the invention provides a method for making a soluble VEGF-B_{167} from a host cell and a method for increasing an amount of a soluble VEGF-B_{167}, VEGF-B_{186} or VEGF-B_{Ex1-5} protein from a host cell. These methods comprise inserting at least one putative N-glycosylation site into a nucleotide sequence which codes for VEGF-B_{167}, VEGF-B_{186} or VEGF-B_{Ex1-5} protein;
transforming or transfecting said nucleotide sequence with the inserted N-glycosylation site into a host cell; culturing the transfected host cell in a growth medium such that said nucleotide sequence with inserted N-glycosylation site is expressed; and isolating the expressed polypeptide from the growth medium in which said host cell was cultured. These methods can further comprise exposing the cultured transfected host cell to heparin after said polypeptide is expressed.

10 BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in further detail hereinafter with reference to the accompanying drawings in which:

Fig. 1 is an alignment of the amino acid sequences of the VEGF homology domain (VHD) of VEGF-A and PlGF with VEGF-B;

Fig. 2 is a diagram of plasmid pSecTagA-hVEGF-B_{166}-H_{4}-NXT containing a nucleotide sequence encoding VEGF-B_{166} having an N-glycosylation site incorporated therein;

Fig. 3 is a diagram of plasmid pSecTagA-hVEGF-B_{167}-H_{4}-NXT containing a nucleotide sequence encoding VEGF-B_{167} having an N-glycosylation site incorporated therein;

Fig. 4 is a diagram of plasmid pSecTagA-hVEGF-B-Exon1-5-H_{4}-NXT containing a nucleotide sequence encoding exons 1-5 of VEGF-B having an N-glycosylation site incorporated therein;

Fig. 5 shows the expression of hVEGF-B_{167}, with and without the potential glycosylation site (NXT);

Fig. 6 shows the expression of hVEGF-B_{167} and hVEGF-B_{166} with and without the potential glycosylation site (NXT);

Fig. 7 shows the expression and receptor binding of hVEGF-B_{167} and hVEGF-B_{166} with and without the potential glycosylation site (NXT); and

Fig. 8 shows the expression and receptor binding of polypeptide encoded by exons 1-5 of hVEGF-B with and without the potential glycosylation site (NXT).
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Example 1: Introduction of the glycosylation site

As mentioned before, VEGF-B is a PDGF/VEGF family member that is completely devoid of any N-glycosylation. To analyze the effects of N-glycosylation on VEGF-B, a N-glycosylation site was introduced into VEGF-B. To determine the most appropriate site to introduce a mutation that would lead to N-glycosylation of VEGF-B, the amino acid sequences of the first 99 amino acids of VEGF-A, PlGF and VEGF-B, respectively, were aligned (see Fig. 1). The N-glycosylation sites of VEGF-A and PlGF at amino acids 65-67 are italicized in Fig. 1. Nucleotides encoding a putative N-glycosylation site (NXT) were inserted at the position corresponding to nucleotides 286-294 of hVEGF-B (SEQ ID NO:1). The replaced nucleotides normally found at positions 286-294 encode the amino acid residues QVR and these amino acid residues are bolded in Fig. 1.

Example 2: Preparation of Recombinant Vectors

Six mammalian expression vectors for both naturally occurring isoforms of VEGF-B (i.e., VEGF-B167 and VEGF-B186) and for an artificial splice variant (comprising exons 1 to 5 only) were constructed with and without the putative N-glycosylation site.

Using PCR, nucleotides coding for a histidine tag were added to the C-terminal end of a nucleotide sequence coding for hVEGF-B186. A nucleotide sequence coding for hVEGF-B186-H6 was then inserted into pSecTagA (Invitrogen, Carlsbad, California) using standard cloning procedures to construct pSecTagA-hVEGF-B186-H6. The full sequence of pSecTagA-hVEGF-B186-H6 is given in SEQ ID NO:7.
To construct pSecTagA-hVEGF-B₁₆₆-H₆-NXT, a PCR product of covering nucleotides 1-325 from Genebank Acc. No. U48801 was produced which introduced a N-glycosylation site at nucleotide positions 289-297 using the 3' primer: 5' - TCGTACCGGATCATGAGGATCTGCATGAGTTGAGGTTGTGCTGCCGATGGCCA-3' (SEQ ID NO:8). This PCR product was then cloned into a plasmid with full-length hVEGF-B₁₆₆ where it used to replace the corresponding sequence to produce hVEGF-B₁₆₆-NXT. A histidine tag was then added by cloning together the N-terminal portion of hVEGF-B₁₆₆-NXT with the C-terminal portion of hVEGF-B₁₆₆-H₆ using standard cloning procedures to produce hVEGF-B₁₆₆-H₆-NXT. The nucleotide sequence coding for hVEGF-B₁₆₆-H₆-NXT was then inserted into pSecTagA (Invitrogen) using standard cloning procedures to construct pSecTagA-hVEGF-B₁₆₆-H₆-NXT. The full sequence of pSecTagA-hVEGF-B₁₆₆-H₆-NXT is given in SEQ ID NO:9, and the plasmid is illustrated in Fig. 2.

To construct pSecTagA-hVEGF-B₁₆₇-H₆, a 349 bp PCR product was produced covering nucleotides 250-567 from Genebank Acc. No. U48801, nucleotides coding for the histidine tag, a stop codon and the NotI restriction site and terminal clamp nucleotides using the 5' primer: 5'-CCTGACGATGGCCTGGACTG-3' (SEQ ID NO:10) and the 3' primer: 5'-GAGCGGGCCGCTCAATGATGATGATGATGATGCCTCGAGCTTCCGACGCA-3' (SEQ ID NO:11) and hVEGF-B₁₆₇ as the template. The 349 bp PCR product was cut with KpnI and NotI and the KpnI-NotI fragment was inserted into pSecTagA-hVEGF-B₁₆₆-H₆ to replace the KpnI-NotI fragment removed from this vector using standard cloning procedures. The full sequence of pSecTagA-hVEGF-B₁₆₇-H₆ is given in SEQ ID NO:12.

Similarly, pSecTagA-hVEGF-B₁₆₇-H₆-NXT was constructed as above except the KpnI-NotI fragment was inserted into pSecTagA-hVEGF-B₁₆₆-H₆-NXT to replace the KpnI-NotI fragment removed from this vector. The full sequence of pSecTagA-hVEGF-B₁₆₇-H₆-NXT is given in SEQ ID NO:13, and the plasmid is illustrated in Fig. 3.
To construct pSecTagA-hVEGF-B_{ex1-5}-H$_6$, a 443 bp PCR product was obtained covering nucleotides 1-411 from Genebank Acc. No. U48801, nucleotides coding for the histidine tag, a stop codon, the NotI restriction site and terminal clamp nucleotides using the 5' primer: 5'-CACCATGAGCCCTCTGCTCC-3' (SEQ ID NO:14) and 3' primer: 5'-GAGCGGCCGCTCAGTGGTGATGATGATGATGATGCTGCTCCACAGCAGCAGCAGACGACTG-3' (SEQ ID NO:15) and hVEGF-B$_{186}$ as the template. The PCR product was cut with KpnI and NotI and the resulting 320 bp fragment was inserted into pSecTagA-hVEGF-B$_{186}$-H$_6$-NXT to replace the KpnI-NotI 10 removed from this vector using standard cloning procedures. The full sequence of pSecTagA-hVEGF-B$_{ex1-5}$-H$_6$ is given in SEQ ID NO:16.

To construct pSecTagA-hVEGF-B$_{ex1-5}$-H$_6$-NXT, the same procedures as above were used except the KpnI-NotI fragment was inserted into pSecTagA-hVEGF-B$_{186}$-H$_6$-NXT to replace the KpnI-NotI fragment 15 removed from this vector. The full sequence of pSecTagA-hVEGF-B$_{ex1-5}$-H$_6$-NXT is given in SEQ ID NO:17, and the plasmid is illustrated in Fig. 4.

The following Table D lists the expression vectors for the naturally occurring 186 and 167 amino acid isoforms of VEGF-B and 20 for the artificial splice variant (comprising exon 1 to 5 only), constructed with and without the potential glycosylation site (NXT).
Table D

<table>
<thead>
<tr>
<th>Construct Name</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>pSecTagA-hVEGF-B<sub>186</sub>-H<sub>6</sub> histidine-tagged VEGF-B<sub>186</sub></td>
</tr>
<tr>
<td></td>
<td>pSecTagA-hVEGF-B<sub>186</sub>-H<sub>6</sub>-NXT histidine-tagged and N-glycosylated VEGF-B<sub>186</sub></td>
</tr>
<tr>
<td>10</td>
<td>pSecTagA-hVEGF-B<sub>167</sub>-H<sub>6</sub> histidine-tagged VEGF-B<sub>167</sub></td>
</tr>
<tr>
<td></td>
<td>pSecTagA-hVEGF-B<sub>167</sub>-H<sub>6</sub>-NXT histidine-tagged and N-glycosylated VEGF-B<sub>167</sub></td>
</tr>
<tr>
<td>15</td>
<td>pSecTagA-hVEGF-B-Exon1-5-H<sub>6</sub> histidine-tagged VEGF-B Exons 1 to 5 only</td>
</tr>
<tr>
<td></td>
<td>pSecTagA-hVEGF-B-Exon1-5-H<sub>6</sub>-NXT histidine-tagged and N-glycosylated VEGF-B Exons 1 to 5 only</td>
</tr>
</tbody>
</table>

Example 3: Transfection and Expression of Recombinant Proteins

The six mammalian expression vectors of human VEGF-B described above along with expression vectors containing histidine-tagged VEGF (positive control), a histidine-tagged VHD of VEGF-C (negative control) and histidine-tagged hybrid 84-11 (positive control), respectively, were transfected into 293T cells using CaPO₄-mediated transfection according to procedures described in Sambrook, J. et al., Molecular Cloning, A Laboratory Manual, (Cold Spring Harbor Press, Cold Spring Harbor, NY), 16.33-16.36 (1989). 48 hours after transfection, the cells were metabolically labeled with S³⁵ methionine and S³⁵ cysteine (Promix, Amersham) for 12 to 24 hours. The conditioned supernatant was subjected to immunoprecipitation with an
antiserum specific to human VEGF-B (874) and a monoclonal antibody specific to pentahistidine (H5 mAb, Qiagen).

As seen in Figs. 5 through 8, the three constructs produced with the inserted putative N-glycosylation site are glycosylated.

As can be seen from Figs. 5-7, comparison of supernatants and lysates and using heparin to release cell bound proteins shows that VEGF-B_{167} is almost completely retained at the cell surface or within the cell. About a 50 fold increase of VEGF-B_{167} can be detected in the supernatant upon glycosylation (Fig. 5).

As shown in Figs. 6 and 7, VEGF-B_{167} is released into the supernatant by treatment with 100 μg/ml heparin two hours prior to harvest. It was also found that approximately two times more glycosylated VEGF-B_{167} can be detected in the supernatant of non-heparin treated 293T cells as compared to non-glycosylated VEGF-B_{167} treated with 200 μg/ml heparin for two hours prior to harvesting. In addition, there is about a three fold increase in the amount of the glycosylated VEGF-B_{167} detected in the supernatant by treatment with 200 μg/ml heparin two hours prior to harvest as compared to glycosylated VEGF-B_{167} without heparin treatment, and approximately a six fold increase in the amount of the glycosylated VEGF-B_{167} detected in the supernatant by treatment with 200 μg/ml heparin two hours prior to harvest as compared to the amount of non-glycosylated VEGF-B_{167} detected in the supernatant with the same heparin treatment.

Figs. 6 and 7 show that VEGF-B_{186} is also partially retained at the cell surface and within the cell. In contrast to VEGF-B_{167}, almost all of the VEGF-B_{186} is released into the supernatant upon glycosylation and heparin treatment (Figs. 6 and 7). There seems to be no significant difference in the amount of VEGF-B_{186} found in the supernatant between heparin-treated and untreated 293T cells. Thus the difference of VEGF-B_{186} and N-glycosylated VEGF-B_{186} protein levels in the supernatant (approximately three times more glycosylated VEGF-B_{186}) seems to be mainly due to
enhanced secretion and/or production and not due to the release of cell surface bound protein.

Fig. 8 shows that VEGF-B_{Exon1-5} is only efficiently released into the medium if it is N-glycosylated (over a 50 fold increase in soluble protein). This is unexpected since the signals retaining VEGF-B at the cell surface are thought to reside in the exon 6 and 7 encoded domains (Fig. 8). Treatment with heparin was not determined for this same reason.

10 Example 4: VEGF receptor 1 binding of recombinant proteins

The ability of the recombinant VEGF-B to bind VEGF receptor 1 (VEGFR-1) was analyzed using soluble fusion proteins consisting of the extracellular domain of VEGFR-1 and the Fc portion of human IgG1 (VEGFR-1-Fc). Biosynthetically labeled conditioned medium derived from 293T cells transfected as above in Example 3 were immunoprecipitated with protein A sepharose (PAS) bound to the VEGFR-1-Ig. Beads were washed three times with PBS, the bound protein eluted and resolved by reducing SDS-PAGE (15%). The dried gels were exposed to phosphoimager plates for 12-24 hours. Additionally, the cell lysates were immunoprecipitated with H₅ mAb.

When significant amounts of VEGF-B were present in the supernatant, binding to VEGFR-1 could be observed. This was seen with VEGF-B₁₈₆-H₅ after treatment with 100 µg/ml heparin two hours prior to harvest, VEGF-B₁₈₆-NXT-H₅ and VEGF-B Exon 1-5-NXT-H₅ (Figs. 7 and 8).

Example 5: Stimulation of BaF3 VEGFR-01EC/EpoR Cell Survival

The effects of introducing the N-glycosylation site into VEGF-B can be assayed by measuring the ability of conditioned media from cells transfected with VEGF-B167 and VEGF-B167-NXT and/or VEGF-B186 and VEGF-B186-NXT to stimulate the survival of BaF3 VEGFR-01EC/EpoR cells. For the assay, BaF3 cells are used
that are stably transfected with a chimeric receptor consisting of the extracellular domain of VEGF receptor 1 and the intracellular domain of the erythropoietin receptor. For survival, these cells need either interleukin-3 or any growth factor capable of binding VEGFR-1, e.g., VEGF-A, VEGF-B or PlGF. Cells are plated to 96-well plates at a density of 20,000/well and grown in the presence of different amounts of medium conditioned by 293T cells that have been transfected with VEGF-B167 and VEGF-B167-NXT, VEGF-B186 and VEGF-B186-NXT, or both. Conditioned medium from 293T cells transfected with a mock (i.e., empty) vector may be used as a control. Prior to the assay, the conditioned medium should be cleared from potentially interfering proteins by immunoprecipitation using appropriate antibodies. For example, VEGF-A may be cleared from the conditioned medium prior to the assay using a mixture of monoclonal and polyclonal anti-hVEGF antibodies, commercially available from R&D Systems, Minneapolis, Minnesota. It is not necessary to preclear medium of PlGF as the amounts expressed by COS cells (if any) are negligible and its effects are not visible in the baseline noise. After 48 hours, an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide thiazole blue) colorimetric assay may be performed and data collected at 540 nm using a microtitreplate reader.

To create the BglII site in the coding sequence of human VEGFR-1 just before the transmembrane domain, basepairs 1998-2268 of VEGFR-1 were PCR amplified with primers 5'—CCTCAGTGTACACAGTGG-3', containing the endogenous BclI site, and 5'—CAGAGATCTATTAGACTTGTC-3', containing a BglII site, and the PCR fragment was cloned into the BclI-BglII sites of VEGFR-1 in pBlueScript SKII+ (Stratagene) vector. The transmembrane and intracellular domains of the human erythropoietin receptor were excised from EpoR x B+B/pcDNAI and subcloned into the resulting plasmid as a BglII/NotI fragment. The EpoR x B+B is a clone of
EpOr which has an internal BglII site added at the putative transmembrane (TM)/extracellular (EC) domain junction for the in-frame ligation of RTK extracellular domains. The vector backbone is pCDNA1-amp (~5.4 kb, the original 1.75 kb EpOr clone was subcloned into pCDNA1-amp using KpnI, the sequence was reported by the Lodish Laboratory, MIT). An ~1 kb fragment can be excised from this clone using BglII (5')-NotI (3') digest which contains the TM and cytoplasmic domain of EpOr.

The VEGFR-1/EpOr construct was finally subcloned into the pEF-BOS vector (Mizushima et al., Nucleic Acids Research, 18(17):5322 Sept. 11, 1990) as a KpnI/NotI fragment. The resulting plasmid was electroporated into BaP3 cells and stable cell pools were generated by selection with 250 micrograms/mL zeocin.

The foregoing description and examples have been set forth merely to illustrate the invention and are not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed broadly to include everything within the scope of the appended claims and equivalents thereof.
WHAT IS CLAIMED IS:

1. An isolated nucleic acid molecule comprising:
 a polynucleotide sequence selected from the group
 consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5 or a
 polynucleotide sequence which hybridizes under stringent
 conditions with at least one of the foregoing sequences;
 and
 a nucleotide sequence encoding at least one putative
 N-glycosylation site inserted therein.

2. An isolated polypeptide having an amino acid sequence
 selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4
 and SEQ ID NO:6 and having at least one putative N-glycosylation
 site inserted therein.

3. The isolated nucleic acid molecule of claim 1, wherein
 the at least one putative N-glycosylation site consists of a
 nucleotide sequence that encodes an amino acid sequence of NXT.

4. The isolated nucleic acid molecule of claim 1, wherein
 the at least one putative N-glycosylation site is inserted at
 nucleotides 286-294 of SEQ ID NO:1, SEQ ID NO:3 or SEQ ID NO:5.

5. An isolated polypeptide produced by expression of the
 nucleic acid molecule of claim 1.

6. An isolated polypeptide of claim 2 which binds a
 Vascular Endothelial Growth Factor Receptor-1.

7. A vector comprising a nucleic acid molecule of claim
 1.
8. A host cell transformed or transfected with a vector according to claim 7.

9. A pharmaceutical composition comprising an effective amount of a polypeptide of claim 2.

10. The pharmaceutical composition of claim 9, further comprising heparin.

11. A method of making a soluble VEGF-B167 from a host cell, comprising:
 inserting at least one putative N-glycosylation site into a nucleotide sequence of SEQ ID NO:1;
 transforming or transfecting said nucleotide sequence with inserted N-glycosylation site into a host cell;
 culturing the transfected host cell in a growth medium such that said nucleotide sequence with inserted N-
 glycosylation site is expressed; and
 isolating the expressed polypeptide from the growth medium in which said host cell was cultured.

12. The method of claim 11, further comprising exposing the cultured transfected host cell to heparin after said polypeptide is expressed.

13. The method of claim 11, wherein the at least one putative N-glycosylation site consists of a nucleotide sequence that encodes an amino acid sequence of NXT.

14. The method of claim 11, wherein the nucleotide sequence encoding the at least one putative N-glycosylation site is inserted at nucleotides 286-294 of SEQ ID NO:1.
15. A method of increasing an amount of a soluble VEGF-B_{167}, VEGF-B_{186} or VEGF-B_{281-5} polypeptide from a host cell, comprising:
inserting at least one putative N-glycosylation site into a nucleotide sequence selected from the group of nucleotides sequences of SEQ ID NO:1, SEQ ID NO:3 or SEQ ID NO:5;
transforming or transfecting said nucleotide sequence with inserted N-glycosylation site into a host cell;
culturing the transfected host cell in a growth medium such that said nucleotide sequence with inserted N-glycosylation site is expressed; and
isolating the expressed polypeptide from the growth medium in which said host cell was cultured.

16. The method of claim 15, further comprising exposing the cultured transfected host cell to heparin after said polypeptide is expressed.

17. The method of claim 15, wherein the at least one putative N-glycosylation site consists of a nucleotide sequence that encodes an amino acid sequence of NXT.

18. The method of claim 15, wherein the nucleotide sequence encoding the at least one putative N-glycosylation site is inserted at nucleotides 286-294 of SEQ ID NO:1, SEQ ID NO:3 or SEQ ID NO:5.
<table>
<thead>
<tr>
<th></th>
<th>hVEGF-A</th>
<th>hIGF</th>
<th>hVEGF-B</th>
<th>hVEGF-A</th>
<th>hIGF</th>
<th>hVEGF-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HEVVKFMV</td>
<td>EVVPFQE</td>
<td>QRKSVWIDV</td>
<td>PGDFVRGCD</td>
<td>GIGQH</td>
<td>ECVFRQG</td>
</tr>
<tr>
<td></td>
<td>YQSYCHPIE</td>
<td>WGSYCRAL</td>
<td>YATRACORE</td>
<td>NTEKTMQON</td>
<td>IREKPHOQ</td>
<td>GVERPHV</td>
</tr>
<tr>
<td></td>
<td>TLVDFQOEYP</td>
<td>RLNDVSEYP</td>
<td>VVPTLEVM</td>
<td>ETVAFQQLPS</td>
<td>YVETLFPSQV</td>
<td>YVETLFPSQV</td>
</tr>
<tr>
<td></td>
<td>DIELYIFKPS</td>
<td>SEVEMFSPS</td>
<td>VVPTLEVM</td>
<td>ETVAFQQLPS</td>
<td>YVETLFPSQV</td>
<td>YVETLFPSQV</td>
</tr>
<tr>
<td></td>
<td>CVPLMRCCGC</td>
<td>CVSLILCTGC</td>
<td>CVTVQRGCGC</td>
<td>CVTVQRGCGC</td>
<td>CVTVQRGCGC</td>
<td>CVTVQRGCGC</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1
supernatant; hVEGFR-1 (1→3 loop, S2, purified) lysate; H₅ mAb, Qiagen

Fig. 7

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td>Supernatant; hVEGFR-1 (1→3 loop, S2, purified)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>VEGF-4-H_6</td>
<td></td>
</tr>
<tr>
<td>VEGF-Bex1-5-H_6</td>
<td></td>
</tr>
<tr>
<td>VEGF-Bex1-5-H_NXXL</td>
<td></td>
</tr>
<tr>
<td>MOCK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supernatant; 874 (hVEGFR-B antisemum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF-4-H_6</td>
</tr>
<tr>
<td>VEGF-Bex1-5-H_6</td>
</tr>
<tr>
<td>VEGF-Bex1-5-H_NXXL</td>
</tr>
<tr>
<td>MOCK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lysate; H_5 mAb, Qiagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF-4-H_6</td>
</tr>
<tr>
<td>VEGF-Bex1-5-H_6</td>
</tr>
<tr>
<td>VEGF-Bex1-5-H_NXXL</td>
</tr>
<tr>
<td>MOCK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supernatant; H_5 mAb, Qiagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF-4-H_6</td>
</tr>
<tr>
<td>VEGF-Bex1-5-H_6</td>
</tr>
<tr>
<td>VEGF-Bex1-5-H_NXXL</td>
</tr>
<tr>
<td>MOCK</td>
</tr>
</tbody>
</table>

Fig. 8
SEQUENCE LISTING

<110> JELTSCH, Markku M
 ALITALO, Kari
 OLOFSSON, Birgitta
 ERIKSSON, Ulf

<120> GLYCOSYLATED VEGF-B AND METHOD FOR INCREASING THE
 AMOUNT OF SOLUBLE VEGF-B

<130> 1064-48929PV Markku JELTSCH et al

<140>

<160> 17

<170> PatentIn Ver. 2.0

<210> 1
<211> 567
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..<(567)

<220>
<221> mat_peptide
<222> (64)..<(564)
<400> 1
atg agc cct ctg ttc gcc gtc gtc ctc gcc ctc cag ctc 48
Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu
-20 -15 -10

gcc ccc gcc cag gcc cct gtc tcc cag cct gat gcc cct ggc cac cag 96
Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln
-5 -1 1 5 10

agg aaa gtg gtg tca tgg ata gat gtg tat act cgc gct acc tgc cag 144
Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln
15 20 25

ccc cgg gag gtg gtg ccc ttg act gtg gag ctc atg ggc acc gtg 192
Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val
.30 .35 .40

gcc aaa cag ctg gtg ccc agc tgc gtg act gtg cag cgc tgt ggt ggc 240
Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly
45 50 55

tgc tgc cct gac gat ggc ctg gag tgt gtg ccc act ggg cag cac caa 288
Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln
60 65 70 75

gtc cgg atg cag atc ctc atg atc cgg tac cgc agt cag ctc ggg 336
Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly
80 85 90
gag atg tcc ctg gaa gaa cac agc cag tgt gaa tgc aga cct aaa aaa 384
Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys
 95 100 105

aag gac agt gct gtg aag cca gac agc ccc agg ccc ctc tgc cca cgc 432
Lys Asp Ser Ala Val Lys Pro Asp Ser Pro Arg Pro Leu Cys Pro Arg
 110 115 120

tgc acc cag cac cac cgcc cct gac ccc cgg acc tgc cgcc tgc cgcc 480
Cys Thr Gln His His Gln Arg Pro Asp Pro Arg Thr Cys Arg Cys Arg
 125 130 135

tgc cga cgcc cgcc agc ttc ctc cgg tgc caa ggg cgg cgc tta gac ctc 528
Cys Arg Arg Arg Ser Phe Leu Arg Cys Gln Gly Arg Gly Leu Glu Leu
 140 145 150 155

aac cca gac acc tgt gcg cgg aag ctg cga agg tga 567
Asn Pro Asp Thr Cys Arg Cys Arg Lys Leu Arg Arg
 160 165

<210> 2
<211> 188
<212> PRT
<213> Homo sapiens

<400> 2
Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu
 1 5 10 15

Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln

3
Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln

Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val

Ala Lys Gln Leu Val Val Ser Cys Val Thr Val Gln Arg Cys Gly Gly

Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln

Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly

Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys

Lys Asp Ser Ala Val Lys Pro Asp Ser Pro Arg Pro Leu Cys Pro Arg

Cys Thr Gln His His Gln Arg Pro Asp Pro Arg Thr Cys Arg Cys Arg

Cys Arg Arg Arg Ser Phe Leu Arg Cys Gln Gly Arg Gly Leu Glu Leu

Asn Pro Asp Thr Cys Arg Cys Arg Lys Leu Arg Arg
<210> 3
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..<621)

<220>
<221> mat_peptide
<222> (64)..<621)

<400> 3
atg agc cct ctc cgc cgc ctc gtc gtc gtc gcc gca ctc ctc ctc cag ctc
48
Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Ala Leu Leu Gln Leu
-20
-15
-10

gcc ccc gcc cag gcc cct gtc tcc cag cct gat gcc cct gcc cac cag
96
Ala Pro Ala Glu Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Glu
-5
-1
1
5
10

agg aaa gtg tca tgg ata gat gtg tat act cgc gct acc tgc cag
144
Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln
15
20
25

ccc cgg gag gtg gtc gtc gcc ttc act gtc gag ctc atg ggc acc gtc
192
Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val
30 gcc aaa cag ctg gtg ccc agc tgc gtg act gtg cag cgc tgt ggt gcc
35 Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly
40
45 tgc tgc cct gac gat ggc ctg gag tgt gtg ccc act ggg cag cac caa
50 Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln
55
60 gtc cgg atg cag atc ctc atg atc cgg tac ccg agc agt cag ctg ggg
65 Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly
70
75
80 gag atg tcc ctg gaa gaa cac agc cag tgt gaa tgt aga cct aaa aaa
85 Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys
90
95
100
105
aag gac agt gct gtg aag cca gac agg gct gcc act ccc cac cac cgt
110 Lys Asp Ser Ala Val Lys Pro Asp Arg Ala Ala Thr Pro His His Arg
115
120
ccc cag ccc cgt tct gtt ccg ggc tgg gac tct gcc ccc gga gca ccc
125 Pro Gln Pro Arg Ser Val Pro Gly Trp Asp Ser Ala Pro Gly Ala Pro
130
135
tcc cca gct gac atc acc cat ccc act cca gcc cca ggc ccc tct gcc
140 Ser Pro Ala Asp Ile Thr His Pro Thr Pro Ala Pro Gly Pro Ser Ala
145
150
155
cac gct gca ccc agc acc acc agc gcc ctg acc ccc gga cct gcc gcc 576
His Ala Ala Pro Ser Thr Thr Ser Ala Leu Thr Pro Gly Pro Ala Ala
160 165 170

gcc gct gcc gac gcc gca gct tcc tcc gtt gcc aag ggc ggg gct tag 624
Ala Ala Ala Asp Ala Ala Ala Ser Ser Val Ala Lys Gly Gly Ala
175 180 185

<210> 4
<211> 207
<212> PRT
<213> Homo sapiens

<400> 4
Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu
-20 -15 -10

Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln
-5 -1 1 5 10

Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln
15 20 25

Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val
30 35 40

Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly
45 50 55

Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln
Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly
80 85 90

Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys
95 100 105

Lys Asp Ser Ala Val Lys Pro Asp Arg Ala Ala Thr Pro His His Arg
110 115 120

Pro Gln Pro Arg Ser Val Pro Gly Trp Asp Ser Ala Pro Gly Ala Pro
125 130 135

Ser Pro Ala Asp Ile Thr His Pro Thr Pro Ala Pro Gly Pro Ser Ala
140 145 150 155

His Ala Ala Pro Ser Thr Thr Ser Ala Leu Thr Pro Gly Pro Ala Ala
160 165 170

Ala Ala Ala Asp Ala Ala Ala Ser Ser Val Ala Lys Gly Gly Ala
175 180 185
<221> CDS

<222> (1),(40)

<220>
<221> mat_peptide
<222> (64),(40)

<400> 5
atg agc cct ctg ctc ggc ggc ctg ctg ctc ggc gca ctc ctg cag ctg 48
Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu
 -20 -15 -10

gcc ccc gcc cag gcc cct gtc tcc cag cct gat gcc cct gcc cac cag 96
Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln
 -5 -1 1 5 10

agg aaa gtt gtt tca tgg ata gat gtt tat act cgc gct acc tgc cag 144
Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln
 15 20 25

ccc cgg gag gtt gtt gct gtc act gtt gag ctc atg ggc acc gtt 192
Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val
 30 35 40

gcc aaa cag ctg gtt gcc agc tgt gtc act gtt cag cgc tgt gtt ggc 240
Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly
 45 50 55

tgc tgt cct gac gat ggc ctg gag tgt gtt ccc act ggg cag cac caa 288
Cys Cys Pro Asp Asp Leu Glu Cys Val Pro Thr Gly Gln His Gln
 60 65 70 75

9
gtc cgg atg cag atc ctc atg atc cgg tac ccg agc agt cag ctg ggg 336
Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly
80 85 90

gag atg tcc ctg gaa gaa cac agc cag tgt gaa tgc aga cct aaa aaa 384
Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys
95 100 105

aag gac agt gct gtg aag cca gac 408
Lys Asp Ser Ala Val Lys Pro Asp
110 115

<210> 6
<211> 136
<212> PRT
<213> Homo sapiens

<400> 6
Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu
-20 -15 -10

Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln
-5 -1 1 5 10

Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln
15 20 25

Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val
Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly

Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln

Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly

Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys

Lys Asp Ser Ala Val Lys Pro Asp

<210> 7
<211> 5614
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
 pSecTagA-VEGF-B167-H6

<400> 7
 gacggatcgg gagatccccc gatccccctat ggtcgactct cagtacaatc tgctctgttg 60

 ccgcataagcactat cttgtccctg cttgtgttgtt ggaggtcgct gatgtgtcgcg 120
cgagcaaat ttaagctaca acaaggcaag gcttgacgga caattgcata gagaatctgc 180
ttagggttag gcgttttggg ctggttcggc atgtaacggc cagatatagc cgtaaacatt 240
gattattgac tagttattaa tagtaatcga ttaacggggtc attagttcat agcccatata 300
tggagttccg cgtcacataa cttacggtaa atggccgcc ccgcttgacc cccaaacgcc 360
cccgcccatt gagctcaata atgaacgtatg ttcccatagt aacgccaata gggaccttcc 420
attgacgtca atgggtggaac tatttacggt aaactgcccc cttggcagta catcaagtgt 480
atcatatgcc aagtcggcc eactttgacg tcacacgggg taaatgccc gcctggcatt 540
atgccccagta catgacctta tggacctttc ctactttgga ctacatctac gtattaggtca 600
tgctattac catggttgatg cggttttggc agtacatcga tggggttggg tagcggggtt 660
actcaacggg atttccaaagt cttcaccceca ttgacgtcga tggggtttgg ttttggcacec 720
aaaaatcaacg ggacctttca aatgtctgta acaacctcgc cccattgacg caaatgggagc 780
gtagggctgt acggctgggag tcttatataa gcagagctct ctggctaact agaagaaccce 840
cctgctttactg gcttatgcga attaatcga ctcaacttag gcagacccca gcggctctagc 900
caggtgtgatg ggaatttgggc ttcaccatga gcccctgtgct ccggcgcctcg gctgctgcgg 960
cactccctgca gcttgccccc gcgaggccgc ctgctcccca gcgtgactgce cctggccacc 1020
agaggaaggt ggtgctatgg atagatgtgt atactcgcgc tacctgccag ccccgggagg 1080
tgggtgtgcc ctgacgttg gacgtcatgg gcaccgtgcc caaacagctg tgtccccagct 1140
gcgtgacctgt gcagcgtctgt ggtggtgctgt gccttgacga tggcctggag tgtgtgcaca 1200
cggggcagca ccaagtccgg atgcagatcc tcctgatccg gtacccggac agtcatgctg 1260
gggagatgct cctggaagaa cacagccagt gtgaatgcag acctaaaaa aaggacagtg 1320
cgtgtgagcc agacagcccc aggccccctct gccacgcgtg caccagcac caccagccgc 1380
cgtgcccccg gacgtgccgc tggcgcgtgc gacgcgcgag cttcctcgcgt tgccaaaggc 1440
ggggtttaga gcctcaaccca gacacgtcga ggtgcgggaa gctgcgaaggg ctcatactgc 1500
atcactattg agcggcgcgct cgagtctaga gggccgcgaac aaaaactcat ctcagaagag 1560
gatctgaata ggcgccgtcga ccacatcatt cacatcatt gatgttaaac cggctgtacta 1620
gccctgactg tgccctctag tgtccagcca tctgttggtt gcccctcccc cgtgccctcc 1680
ttgacccttg aaggtgccac tccccactgtc ctttcctaat aaaaagggc aattgcatcg 1740
cattgtctga gtaggtgcta ttctattctg ggggtggggg tggggcgagga cagcaagggg 1800
gaggttggg aagacaatag cagcctgtct ggggatgcgg tgggctctat ggtttctgag 1860
gcggaaaaag ccagctgggg ctctagggg tatcccccacg cgcctgtag ccgcgctta 1920
agggagggag gggtggtggtc tagggcgcggct gtagggcgctc tagggcgcgcac cactggcccc gcgcctagc 1980

ccgctccctt ctcgctcttt cctctctctt ccctgccgcaag tgcgctggttc tgccctgctcact 2040

gctaataact gggccatccc tttaaggttg cgatttagtg ctttaaggaa cctcgaccccc 2100

aaaaaacttg attagggtga tggccagcgt agtgggcccct ggcctgcgcgtc gacgctttttt 2160

cgccttttga ctggtggagtc caagttctttt aataggtggac tcttcttcca aactggaaacg 2220

acactcaacc ctatcttggct ctattttttttt gatttataag ggattttggg gatttccggcc 2280

tattgttaaa aaaaaagact gatatttaaca aaatatatacg cgaattaatt ctgtggaatg 2340

tgtgtcagtt agggggggtg aagtcctccc gagctccccagc aggcaagagt atgcataagca 2400

tgcatctcag tatgctcagc accaggtgtg gaaagttccc aggcctcccc ccagggcagaa 2460

gatgccaaag ctcgcatctc aattagcag ccacactagtt ccgcgccctcta aactgccccca 2520

tccgccccct aactcggcggc gcttcggcccc attctcgcggg ccatggctga ctaatctctct 2580

tttttttttgc agagggccag gcgcctctctg cctctgagct atctccagag tagtgaggag 2640

gcttttttttg aggctctagcc tttgcacaaa agctcgcggg agcctgtata tccatctctct 2700

gatctgacca gcacggttgtc acaattaatc atggtcatag tatataggca tagttataata 2760

cgacaaggtg aggaacttaa ccagttgcccag ggattcaggt ccgctgccgg tgtctcaccgc 2820
gcgcgaacct gcggggaggg tccgagttcttg gacggacgg ctcggggttct cccgggacactt 2880
gttgagacg gacttgcggtc ctcgggctcg gacgacgtg aaccttgttca tcagcggggtt 2940
caggaccag gtgggtccgg acaacacctt ggctctgggtg tgggtgcggg gcctgacagca 3000
gctgtacgcc gagggtgcgg aagcgtggtgc caacgaacttc cgggacgcct cccgggcggc 3060
cagacccag atcgccgcagc acgctgggggc gcggcagttc gcctgacgcgc aacggcgccgg 3120
caaactgtcg cacttccggtg ccagggacgc gaactgacac gttcactcag atttcagttc 3180
cacgccgccc ttttattgaa gttttggtttt cggatcgttt ttccgggccg cccgtggtat 3240
gactctccag cgccgggtac tcattgcgga ttctttgcce caaccaacact ccttttattgc 3300
agctttataat gtttacaaat aagcacaatgc cacaactttc tttacacaatg cagcattttttt 3360
ttcactgcct tttgattgttg gttttgttca actcactcaat gttatcattc atgtgtgtat 3420
acgcctgccg tttggttca atcatggtta actcgttttt actgttggan 3480
tttttcgg ctcaccaattt cacacaaacat aacagcggga agcataaagt gtaaagcctg 3540
ggggtctaa gggtgcgagc aactcacaatt aatgcgtgttg cgcctactgc ccgcttttcca 3600
gcggggaaac cttgctgtcgc agcgtcaatta atgaatcggtc caacgcgcggg ggagggccgg 3660
tttggtatt ggctgcttctt ccgctttctc gcctactgac ttgcctgttgct cgggtggtcc 3720
gcgcggcgc gcgcgttcag ctcactccaa gcgggttaata cggctttcaa cagaacacag 3780
ggataacgca ggaaagaaca tgtgagcava aggccagcava aaggccagaga acctgtaaaaa 3840

ggccgcgttg ctggcgttttt tcctaggtct ccgcccccccct gaacgcacatc acaaaaaatcg 3900

acgctcaagt cagagggtggc gaaaccgac aggactataaa agataacagg cgtttccccccc 3960

tggagaagctc ctttgagctgc ctctgtctcc gaccegtcgc cttaccggat acctgtcgcgc 4020

cttttctcct tccggaagct ccgctccttc tcaatgtcga cgcgtaggt acatctcgttc 4080

gggtgaggttc ggctgctccca agctgggtctg tgtgcacgaa ccccccgttcc agccgcagcc 4140

ctgccgttta tccggtacat atcgctttga gccaaccccgc gtaagacagc actttacgcc 4200

actggcagca gcccactggta acaggattag cagacgcagg tatgtaggcg gtcgtcagcaga 4260

gttttggaga tgggtgcctta actacgggta cactgaaggg acagtaatttg gtaactgctgc 4320

cttgcttgga ccagttacct tcggaaaaag atggttgtacg ctctgtccgc gcaaaaaaac 4380

cagccgtgtt agcggttggttt ttttttggtg caacgcagcagattaaggcga gaaaaagaag 4440

atctcaagaa gatcctttga tcttttctac ggggtctgac gtcagtgagc acaaaaaactc 4500

acgtaaggg atttgggtca tgagattatc aaaaaggtac ttcacctgga ttctttttaaa 4560

rttaaatgag atttttaaat caatctaaag tatatatagc taaacctggtt ctgacagtta 4620

ccaatgctta atcagtgagg cacctatctc aagagatcgtt atatggcttt cattacagt 4680
tgctgctgtg agatactac gatacggag ggtttaccat ctggccccag 4740

tgctgagatg atacgaggac acccaacgct acoggtctca gattttactag caataaacca 4800

gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct ccatccagtc 4860

tatataatgtgt tggcgggaagg ctagataag ttagtgcgca gttataatgt ttgcaaacgt 4920

tgttgccatt gtacaggca tcgtgtgtgc acgtcgtgcg tttgtgttagg cttccattcag 4980

tccgggttcc caacgcataa ggccagttac atgatcccccc atgttgtgca aaaaaagcgg 5040

tagctccttc ggctctcgcgag tcgtgtgtag aagtaaggg gcgcacggtgct ttcactctcx 5100

gttatatgca gcactgcata atttctttac tgtcgtgcca tcgtaagtag cttttttctgt 5160

gagctgggtag tacatacggc ataatccggc gcacactagc agaatattaa gatgtgctctc 5220

tgccccggcg tcatacggg ataatacgcg gccacctagc agaactttaa aagtgctctc 5280

cattggaaaa cgttcttgag ggccaatcaat cttcaagatgct ttagatggtgt 5340

tctcatgtaa cccactgtgg caccccaactg atttctacga tcttttactct cccacggtg 5400

tctgggtgta gcaaaaaacag gaaggccaaa tcgcggcaga aagggaaata aaggcaacag 5460

gaaatgtgga taactcatac cttctctttt tcataattat tgaagcattt atccaggtta 5520

tgtctctatc aggggataca ttattgatag tatttagaaa aataaagaa aaggggttcc 5580
5614

<210> 8
<211> 5614
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:

pSecTagA-VEGF-B167-H6-NXT

<400> 8

gacggatcgg gagatctccc gatcccccctat ggtcgactct cagttacactc tcgctctgatg 60

ccgcataagtt aagccagtttt atgctccccctg cttgtgtggtt gggaggtgctt ggtagttgctg 120

cagccaaat ttaagcttaca acaagggcaag gcttgacccg caaattgcag aagaatctgc 180

ttaggggttag gcggttttgcc atgcttcccg atgtacgsgc cagatatacg cgttgacatt 240

gatttggac tagttaattaa tagtcatcatttaa taagggggtgc attgtcatc agccacataa 300

tggagttccg cgttacatca atgcttccgtc atggccggcc tggctgaccc ccaaaccgcc 360

cccgcccccatt gacgtcaatata atgaotagt gtccccagttt aacgccaata gggactttccc 420

attagctca atgggtggac tatattaag gaaactgcacc cttggcagta catcaagtgt 480

atcatagcc aagtacgcc cctattgacg tcaatgacgg taaatggccc gcctggcagt 540
atgcccagta catgacctta tgggaccttc ctacttgcca gtacatctac gtattagtca 600
tcgctattac catggtgagt cggttttgcc agtacatcaa tggggtggtta agcgggttctg 660
actcaacggg attttcaagt ctccaccccca ttgagctcaa tggagttggt ttttgccacc 720
aaaatcaacg ggaaccttcca aaatgctgta acaactcgcgc cccattgacgc caaatggggcg 780
gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggcttaact agagaacccca 840
cgtcttactg gctttactgaa attaatacga ctcaacttag ggagacccca gctggctagt 900
cacctctgca gctggtcctgg gccacatgca gcccctctgtct ccgcgacctg ctgctgacgcg 960
cacctctgca gctgggcccc gcccaggggg ctgctcctgca gctgtagccc cctggccacc 1020
agagggaagt gggtgctatgg atagatgtgt atactcgccg tacctgccag cccgggaggc 1080
tgggtgggcc cttgactgtg gagctcatgg gcacccgctg caaaccactg gtgcccagct 1140
ggcggagtgt gcagcgcgctg gggtggctgt gcctgacgca tggcctggag tgtgtgcacc 1200
cggcccagca caacgctacc atgcagatcc tcagatcgcg ttccggagcg agtcagcgtgg 1260
gggagatgtc cctggaagaa cacaocccagt gtaatgcag acctaaaaaa aaggacagtg 1320
cctgtagcctg agacagcccc aggccocctct gcacagcgtg caccacgcac caccagcgc 1380
cgtaccacccg gacctgcgcgc tgcgcgctgca gcgcgcgcag cttcctccgt tgccaaagggc 1440
ggggctttaga gctcaaccca gacacctgca ggtgccggaa gctgcaaggg catcatcatc 1500
atcatcattg aggggccgct cgagttctgta ggggccgaaac aaaaaactcat ctcagaagag 1560
gatctgaata gggcgtcga ccatcatcat catcatcatt gagtttaaac ccgctgatca 1620
gctcgaactg tgccttctag ttgccagcca tctggtgtttt gccccctccc cgctgcttcc 1680
ttgaccctgg aaggtgccac tcccaactgct ctttctctaatt aataagggaa aattgcatcg 1740
cattgtctga gtggtgtca ttctattctg ggggtggggg tggggcagga cagcaagggg 1800
gaggattggg aagacaatag caggcagctgt ggggtgcttg gttctctctgag 1860
ggggaagaa ccagctgggg ctctaggggg tataccccacg cgcctgtgag cgccgcatta 1920
agccggcggg gttgtggttgt tacggcgacgt gtaggcgta caectgcacg cgccctagcg 1980
ccgcgctcct tcgggttttt cccctctttt ctcgccaagct tggcgggttt tccccgtccaa 2040
gcttaaacg ggggcatccc tttaggtttc cggatttagtg cttacgcca cctgaccccc 2100
aaaaaacttg attagggtta tgtttcacgt aatgggccat cgccotgtga gacggtttttt 2160
cgccctttgag cgttggagtc caagtcttctt aatagttggac tctgttcctaa aacttgaaca 2220
acactcaacc ctattcttctt gattttatag gatatagggg gattttcgcct 2280
tattgtttaa aaaaagagct gatattaaca aaatttaacg cgaatttaatt ctgtggaatg 2340
tgtgctagtt aggggtgtgga aagtcctcccag gctcccccgac aggccagaagt atgcaaaacga 2400

tgcatctcaaa ttagtctacga accagggtgg gaaagtcctcccag gctctcccccag cagggcagaa 2460

gtatgcaag catgcatctca aattagtctg caacaccatagt cccgcctccta aactccgcggccc 2520

tccgcctcct aactccgcggccc agtcccgcggc attctccgcactcctgcagcctccttatatatc 2580

ttatatatgtc agagggcgag gcccgccctctg cctctgagct attccagaag tagtgaggag 2640

gctctcctttgg aagggctaggg ttttcgaaaa agctcccgggg agtttgtata tccatatttcg 2700

gatctgtacta gcacgttgtag acaatattatg atcggcatatgtgtatcgtcagta tagtataata 2760

cgacagtgag aggaactaaa ccctggccaa gttgcaccagt gcctcctcggtg tgcctccggc 2820

gcgcgacgttg gcggagcggc tccaggctctg gaccgcggcc ctcggttgtcgc cccggacttt 2880

cgtggaggac gacttccggc gtgtgtgcgg ggacgcgcgtg acctgttcta tcagcgcgggt 2940

ccaggaccag gtgtgtcgggg gcaacacccct ggctgtgggtg tgggtgcggc gcctggacga 3000

gctgtaaccgc ggatgtggcgg aggtgcgttgc ccagaaccttc cggcgcgacctccgggcc 3060

catgaccggag atcgccgagcc agccggtgggg ccggcagtttc gcctgctcgcga accgctgccgg 3120

caaagtctgtgg ccaggagcag ggacgcagagc gcctgcgtgcag ttttcggatc 3180

cacccgcgcc ttcctagaaa ggttcgggttt cggatgcttt ttcggggcag ccggcctgctt 3240

gatcctcag cgcggggtact ctaagtctgga tttcctggcc caccccaacct tgtttatattgc 3300
agcttataat ggttacaaat aaagcaatg cactcacaat ttccacaata aagcatttctt 3360
ttcactgtca tctagtttgt gttttgtccaa actcatcaat gtatcttttc atgtctgtat 3420
aacgtgcacc tctagctaga gcttggtgta atcatggtca tagctgttttc ctttgtgaaa 3480
tgttattccg ctcacaattc cacaacaat aagagccgga agcataaagt gtaagcctg 3540
ggggtgccaa tgagtgagct aacctcacatt aattgcgttg cgctcaactgc ccccttttca 3600
gtctggaaac ctgctgtgcc agctgcatta atgaatcgcc caacgcgcgg ggagaggcgg 3660
cttgccgtaa gggcgcttatt ccgctttcctg ctcactgac ctgctgtgct cggctgttcg 3720
gctgctggcga cgggtatcag ctcactcaaa ggcggttaata cggttatcct cagaatcagg 3780
ggataacgca ggaagaaca tgtgacaaaa aggccagcaa aagggcaggga acgtaaaaaa 3840
gggccggttg cgctgcttttt tccataggtc ccccttccccct gacgagcact acaaaaatcg 3900
acgcctcaagt cagaggtggo gaaacccgac aggactataa agataaccagg cgggtttttcct 3960
tggaagctcc tctgctgccg cttctgttcc gacccgtcog cttacoggat acctgtccgc 4020
ttttctcct ctcggagccg ttggccttttct ctaatgctca cggctgtaggt atctcagtcc 4080
ggtgtgggtct ttcggcttaca aagctggggggt tgtgacagaa ccccccgtttc agccgacccg 4140
cctgccttta tcccagtaact atcgctttgga gtccaaacccg gtaagcagcg acctatgccc 4200
actggcagca gccactggta acaggattag cagagcggagc tatgtagggct ggtgctacaga 4260
gttcttgaga ggttgcccta actacggcagc aactagaaggg acagttttaaa ggtatgctgcc 4320
tctgctggaag ccagttacct tcggaaaag aagttggtagc tctttgatcgc gcacaacaaaca 4380
caccgctgggt aaggggtcgggt tttttttttgt caagccagcag aatcgagcgcagataaagaaacc 4440
atctcaagaa gatcctttgca ctcttttctcttg ccggtctgagc gctctgagggc acgaaacact 4500
acggttaagg atctttgcgtca tcggtatttc aaaaaaggtc ttcacactga tccttttttaaa 4560
ttattattga agtttttaaat caatcttaag cattatatgag taaactttgtg ctgacatgtta 4620
cctattccta atcagttgag cacctatctc aagcgatctgt ccatttcggtt catcactagtc 4680
tgctgtaccc cccgctggtgt agataactac gatacgggag ggctttaccat ctggccccag 4740
tgctgtcaatg atacccgccag acccaagctc accgggtcctca gattttatcag caataacccaa 4800
gccagcgcagg aagggccgagc gcgagaagttt ctctgcaacttttcaagctccagtc 4860
tataattggt gcgggggaag ctagagtaag tagttcggca gtttaatggt ttgctcaacgt 4920
tgccccatt gtactagggca tcggtggtctg acgtctgctcg tttggtatgg ctccattcag 4980
tcctggttcgg cagacgatca acagttgagc attatcccagc atgtttgtgca aaaaaagcgggt 5040
tagctcttcc ggctctcgcag tctggtcgag aagtaagttg gccgaggtgctc tatcactcat 5100
ggttatggca gcactgcata attctttaga tgcattaatc tgcgtaaagat gctttttcgt 5160

gactggttag tactcaacca agtcattctg aagaatagtgt atgcggggaac cggatgtgctc 5220

tgcctcgccg tcaatacggg ataataccgc gccacataagc agaactttaa aagtgcctcat 5280

cattggaaaa cggtctctcg ggccgaaact ctcaaggatc ttaccgcgtgt tgagatccag 5340

ttcgatgttaa cccactcgtg cacccaactg atcctcagca ctctttactt tcaccagcgt 5400

ttcggtttga gcaaaaaacag gaaggccaa naaggcacaaa aagggatataa gggcgacacg 5460

gaaatgttag atactcataa ctcttccttt tcataattat tgaagcattt atcaggttta 5520

tttcgctctag agccgataca tatttgaatc tattttagaa aataaaacaaa taggttgtcc 5580

ggccacattt cccgcacaaag tgcacactga cgtc 5614

<210> 9

<211> 5695

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:

pSecTagA-VEGF-B186-H6-NXT

<400> 9

gacggatcgg gagatctcgc gatcccccctat ggctgactct cagtacaactc tgtcttgatg 60
ccgcatagtt aagccagtat ctgctccctg cttgtgttgc ggaggtgcgt gagtagtgcc 120

cgagcaaat ttaagctaca acaaggaag gcttgaccga caatgtcatg agaanatctgc 180

ttagggttag gcggttttgcg ctgctctgcg atgtacgaggc cagatatagc cggtgacatt 240

gattattgac tagttattaa tagtaatccaa ttcaggggttc atttagtctat agcccatata 300

tggagttcgc tgttttacgta ttaaggtgaa atggccccgcct tggctgacgc ccnaacgtacc 360

ccgccccatt gcacgtcaata atgcagttag ttcccatag taaagccata aagggcttttc 420

attgagctca atgggtgac tatattaggt aaactgcccc cttggcaagta cttcatatgcgt 480

atcatatgcc aagtacgcc cctattgacc tcaatgacgg taaatggccc gcctggcatt 540

atgccccagta cagacccctt tgtggagtttgc ctatctggca gtactctctac gtattagtca 600

tcgctattac catggtgtag cgggttttgc agtacatccaa tggcctagtg aagcgggtttg 660

actacagggg atttccaaagtc tctacccccca ttgacgtoaa tgggagtgg ttttggcacc 720

aaaatcaacg ggacctttcct aatgtcggta acaacctcgc ccacgtgacc caaatgggccg 780

gtaggggtgt acgggtggag gcttcatattaa gcagagctct ctggctaatag agagaaccca 840

ctgtgttactg gcttattcgaa attaatacga ctcactttag gggacccaaa gctggctagt 900

ccagtgttgt ggaattcggc ttacctcatag gcctctcctg cccggccctg ctgcggcgccg 960
caacctgca gctggcccccc gcctggcccc ctgtctccca gcctgtaccc ccctgtcccc 1020

agaggaagt ggtgtcatgg atagatgtgt atactggcc tacctggcag ccccgaggag 1080
tggtgtgcc cttgcagtgt gacgctatgg gcacgctggc caaacaagctg gtgccagcgt 1140
gcgacgttc gcacgcctgt gttgcgtgct gcctgccagc tggccctggag tggggctcca 1200
cgggatgct cccgctagaa cacagccagt gtgaatgcag acctaaaaa aaggacagtg 1260
cgtggaagcc agacagggtc gcacctccc accaccgacc cccggcctgt tctgtcccgg 1380
gctgggactc tgccccccgga gcacchccct cagctgccat caccatatcc aacctccagcc 1440
caggccctcc tgcccccccgta gcaccagcga ccaccagcgc cctggacccc ggacctgcgg 1500
cgggctgtc gcagccggca gcttctcctc tggcaaggg gggggtcctt catcatcatc 1560

atcattgaat tctgcagaata tccagcacag tggggtgcgc tcgagtctag agggcagcag 1620
caaaaactca tcggagaaga ggatctgaaag agccgctccg accatcatca tcacatcatc 1680
tggttttaaa cccgcgtgacg agcccccaact gcggctctta gttgcagact atctggtgtt 1740
tgccccctcc gcgtccccct cttgcacgtg gaaggtgcga ctccctactgt ctttcctcctaa 1800
taaaatagg agaattggcat cgcattgtctg agtaggtgtc attctattct ggggggtggg 1860
gtagggacagg acagcaaggg ggaggattgg gaagacaata gcaggcatgc tggggatgag 1920
gtaggtcctta tgggtttcctga ggccgaaga accagctggg gctctagggg gtagccccac 1980
gccctgtgta gccgccccatt aagcgcggcg ggtggtggtgg ttaagccgag gtagaaggct 2040
acacttgcca gccccctagc gcggcgcctt ttgctttttc tcccttcccc tctgccacag 2100
tgccccggttt tcccegctca agctcttaaat cggccatccc cttagggggtt cggatattgt 2160
gtttaagggc acctgcagcc caaaaaactt gattagggtg atggttcagc tagtgggccca 2220
tgccctgttat agacggttttt tcgggtttttg acgggtggagt c cacgtccttt taatatgttga 2280
ttcttgcttc aacctggaac cacacctcaac cctatctcggt ctatattcttt tgtatttataa 2340
gggattttgg ggtatttgcg ctattgttta aaaaatgagc tgatataaca aaatatataac 2400
gggattattt cttggctcgt ctatgtgcgaa tgggtgtgg ggctccgcccc ggtctccagc 2460
cagggcagag tatgcacagc atggctctca attagtcagc aaccaggtgt ggaagtcacc 2520
cagggcccag acgccgaga agtgatcagc gcatgcagct caatagtcag gcaccatag 2580
tcccggcctt aactccgccc atccggcccc taacctcgcc cagttcggcc catttcgagc 2640
ccccaggtgg ttacttttttt tttttttttg cagggccgaa gcggccctctc gcctcttgagc 2700
ttttgggtgaa tggagttttcc gaggctcagc ctttttgcaaa aagctccggg 2760
gagctttgtat atccatctcc gagtcggctg cggcttcagc acagaattat cgacgctgtgctgcata 2820
gtatatcgcc atagtataaat aogacaaggt gaggaactaa accatggcaca agttgaccag 2880
tgcgcttcgcc gtgcctaccgc egccgcagcgc tggcgcacgct cgctagtttc ggacgcacccggtggttc cacccgggttggcttggcc cgggtgtgccg ggtgttgcag 2940
gctcgggttc tcccgggact tgcctggagga cagcttccgac ggtgttggtcc gggacgaacct 3000
gaacctgttcc atcagcgccgg tccaggacca ggggttgccg gacaacaccc cggcctggagtt 3060
gtgggtgagc ggcctggacag agctgtaagc cgagtttgcag ggaagttggtgc ccaagaacct 3120
cggcgaagcc tccgggcccgg ccatgaccca gctcggcctagg cgcctgtggg gcggggaggt 3180
cgccctgcgcgacccggccgc gcaactgcgt gcacctctgcgg ggcaggagac agaactgaca 3240
cgtgctacgga gatttctatt cccacgcccc tttcctatgaa aggttgggct tcggaatgcg 3300
ttcgggac gcggctggga tgcctctcaag gcgcggctgat ctctagcttc gcatttttcgct 3360
caccccaacc tttatatattt cagctttataa tggtttaaaa taaagcaata gcattcacaat 3420
ttcacaaat aagccatrttttt tttcaactgca tttcagttttt ggttttgttaa aacctcatcata 3480
tatatccat cattgctcgta taccgctgac ctctagcttag agtttgccgt aatcatgggtc 3540
atagctgtttt cctgttgtaa attgttatcc gcctcacaatt ccacacacaac tacgagccgg 3600
aagcataaag tgtaagctt ggggtgctta atgagtggac taactcacaat taaattgccg 3660
gcgcctcactg cccgctttcag ttcgagggaaa cctgtgcgtgc cagctgtgaatt taaatcgg 3720
ccaaacgcgg ggagagcgg gtttgctgat tgggcgtctt tcgcgtgctcct ggctcaagtga 3780
ctcgcgtggtcg ttggtgctt ggtctgcggc agcgggtatca gtcaccaagc agggcctaat 3840
acgggtatcc accgaatcag gggataacgc aggagaagac atgtgagcaaa aaggccagca 3900
aaaggccagg aacggtaaah aggccgcgttc gctggcggtttt ttcctataggg tcggccccc 3960
tgacgagcat caaaaaatc gacgctcaag tcagaggtgg cggaaaccgca caggactata 4020
aagataccag gcgtttcccc ctggagactc cctcgtgcgc ttcctcttgttc cggccgctgc 4080
gcttacgga taatctgctcg ccttttcccc ttcggaagcg tggtgcgttct ctcaatgctc 4140
acgtgtaggg tatctcagtt cggtgtagtt cgttccgttc aagctgctgtct ggctgcacga 4200
acccccgcgg cagcccgacc gctgctgcttt atccccgtac tattcttttg agtcgacaacc 4260
gggtaagacg gacattatgc cactggcagc agccacggtt aacaggatta gcagacgcag 4320
gtattgtaggc ggtgtcagct gtttcctggaa gttgtggcctt aacactggct acactagaag 4380
gacagtattt ggtatctgct gctctggtgaa gcccattacc ttgggaaaaa gattttgttag 4440
cctttgtatcc ggcaaacaaa ccacgcgtgg tagcgggtgtt tttttttgtt gcaagcagca 4500
ggttacgccc agaaaaagag gatctcaaga agatcctttg atttttttta cgggtctgtg 4560
cgctcagttg aacggaaact caagtttaagg gatttttgctg atggagatatat caaaaagagt 4620
cttcacctag atccttttaa attaaaaagt aagtttttaaa tcaatctaaa gatatatatga 4680
gtaaaccttgg tcctgacagt accaagtctt aatcagtgag gcacctatct cagcgatctg 4740
tctatttctg tcataccatag ttgcctgact ccccgctctg tagataacta cgatacggga 4800
gggtttacca tcggccccca gtgctgcaat gatacogcga gacccacgct cacggttccc 4860
agattttatca gcaataaaacc agccagccgg aaggcccgag cgacaaggtg gtctctgcaac 4920
ttttcccccc tcataccagt ctattaattg ttgcogggga gctagagtaa gtagttggcc 4980
agttatatgt ttgctgcaacg ttgttggcct tgcctacagg aatcgtatgggt gacgctggtc 5040
gtttgggatg gtctcattca gtcggttttc ccagcatca aggcaagtta catgatcccc 5100
catgtttgtgc aaaaaagcgg tttagtcctt cggtcttccag atcgttggcct gaagtaagtt 5160
ggctcgaggtg ttatacctca ttgttatgge agcactggcat aattcttctta ctgtcctgccc 5220
atccgtaaga tgctttttctg tgactttgga gtactcaacc aagtctttctt ggaataagctg 5280
tatgcggcga cccagttgct cttgccgcgc gtaataccg gataataccg ccacacatacg 5340
cagaacctta aagtgctccca tcattggaaa acggcttctc tggcggaaac tctcaaggat 5400
cctttatgt gcctgatctg ttcggatcag accaactgtc gcaccacaact gatctttcagc 5460
atcttttact ttccacagcct ttctggtctg agccaaaca aagagcctga atggcgcctaa 5520
aaaggaata agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta 5580

ttgaagcatt tatcaggttt attgtctcat gacgaggatac atatatgaat gtatatttaga 5640

aaataaaaca aataggggttc cgccgacatt tcccgaaaaa gttgccacctg acgtc 5695

<210> 10
<211> DNA
<212> Artificial Sequence

<220>
<223> Description of Artificial Sequence:

pSecTagA-VEGF-B186-H6

<400> 10
gacggatcgg gagatctccc gatccctcat ggtcgactct cagttacaatc tgcctctgatg 60
cggcatatgtt aagccagtat gtcctccccg cttgtggtgtt ggaggtcgt ctgaggtgctg 120
cgaagcaaat ttacgtcata acaaggcaag gcttgacgga caattgcatt gagaatctgc 180
ttaggttag gcgttttgcg ctgcttggcg atgtacgggc cagataatag cgtgtcagtttattg 240
gattttgac tagttattaa tagtaatcaa ttacggggtc attagttccat agcccaatat 300
tggagtctcg cgtaacattaa cttaacggtaa atggcccgcc ttgctgacg cgccaaagacc 360
cccggccccct gccgtcataa aatgacgtagt tcccatagtt aacggcacaata gggactttcc 420
attgacgctca atgggtggac tattacggt aaaaagtgcca cttggcagta catcaagttg 480
atcatagcc aagtaagccc cctattgaag tcaatgacgg taaaatggccc gcccggcatt 540
atgccccagta catgacetta tgggacttttc ctacttggca gtacatctac gtattagttca 600
tccctattac catgggtgtg cggtttttggc agtacatcca tgccgtggga tagcggttttg 660
actcagggg atttcaaggt ctcacccccca ttgacgtcaa tgggagtttg ttttggcacc 720
aaaatcaacg ggacctttcca aatatgctgta acaactccgc cccattgacg caaatgggagc 780
gtaggtgtgt acgggtggag gtctatataa gcagagctct ctggctaatc agagaaaaaca 840
cctgtcctgt gcttatcggaa attaatcagc ctcactatag ggagacccca gctgggtcagt 900
ccggtggtgt ggaattccggc tttaaccatga gccctctgct cggcgcgcttg ctgctcgccg 960
cactcctgca gctgacccccc gcaccagccc ctgctcccca gcctgatgcc cctggccacc 1020
agaggaaggt ggtgtcatgg atagatgtgt atactccgcc tcacctgccag cccccgggag 1080
tggtgggtcc ctggacttgtg gacgtcattg gcacggttggc caaaacagtct gtcggctcagt 1140
ggtgtgcc tttgactgtg gcacgcgttgt ggctgtgctct gcctgcagca tggcctggag tgtgtgccca 1200
tgggccccagca ccaagtcggg atgcagactc tcattgatcog gtacccgagc agtcagctgg 1260
ggagatgtgc cttggagaaga cacagcctag tgaatgcag acctaaaaa aaggacagtg 1320
ctgtgaagcc agacagggct gcacctcccc accacggtcc ccagcoccgt tctgtccccgg 1380
gctgggactc tgccccccgga gcacccctcc cagctgacat caccctaccc actccagccc 1440
cagccccctc tggccacgct gcaccacgca ccaccagcgc cctgaccccc ggacctgccg 1500
cgccgctgc cgaogcgccca gcttcctccg tttgcaaggg cgggggtcat cactcactc 1560
atcattgaaat tctgcaagata tccagcacaag tgggccccgcc tccagtaagct taggtcttag agggcccga 1620
caaaaactca ttcagacaga ggaattggaat agcggcctcg acacatcatca tcatcatcat 1680
tgattttaaa cccgctgtgct acgcttcagct gttcccccta cttgccagcct atctgtggtt 1740
tgccctcccc cccgctcttc cttgaccctg gaaggttcca cttccccctgt cctttcctaa 1800
taaaaagtagg aatattgcatc gcaattgtctg agtaggtgct ctattattct gggggggtggg 1860
gtgggcccagg acagcaaggg ggaggattgg gaagacacta gcagcactgc tgggatcggg 1920
gtgggctcta tgggttttgtg gcgcgaagca accagctggg gctctaggg gatcccccagc 1980
gccctctgta ccggcgcatt aagcgcggcg ggtgtggtgg ttacctgacag cgtgacccgt 2040
acacttgcca gcgcctcctgc gcggcctctc ttgggttttct tccctccccct cctgcccccg 2100
tccgctgttc ttccccggtca gcgcctaaat ccggggctcc ctttaggggtt ccgatttagt 2160
gctttaaggg acctgcaccc caaaaacctt gattaggggtg atcgtgtcagg tagtggcccc 2220
tggcctgtat agacgggtttt tgcgccctttg acgttgagct ccacgtctttt taatagtgga 2280
cttttgtcc aaactggaac aacactcaac cctatctcgg tctatttttt ttgattttaa 2340
ggatattgg gcatttgcgc ctattggtta aaaaaatgac gcatttaaca aaaaatttaac 2400
gccaattaat tctgtggaat gtgtgtcagt tagggtgtgg aaagtccccca ggctccccag 2460
caggcagaag tatacgaagc atgcattcga attagtcagc aaccaggtgt ggaagttccc 2520
caggctcccc agcaggcaga agtatgcaca gcatgcacct cattattcag cacaccatatg 2580
tccgcccct aactccgccc atccgcgcce taactcggcc cagtccgccc catttccgc 2640
ccccatggctg actaatatttt ttatatattg cagagcgcga ggcgcctctt gcctctgacg 2700
tatttcagaa gtagtgagga ggcttttttg gagccctagc cttttgcata aagctccgg 2760
gagcttgtat atccattttc ggatctgatc agcaagtgtt gacaattata catcggcata 2820
gtatatgggc atagtataat aacgacaaggt gaggaactaa aacatggcaca ggtgcaccag 2880
tgcggttccc gtgctcaccg cgccgacagt cggcggagcg gtgcgtctct ggaaggacccg 2940
gctgggttcc tccccgggact tctggtgagga cgaacctccg ggtgtggtcc gggagacagt 3000
gacccgttct ctcaggacca tctgggtgccg gacaacacc cggcctgtggg 3060
gttgggtgcc ggcctggcag cggctgtgcgc cgaggtggctg gagggtcggt ctacgaaactt 3120
cgcgacgcc tccgggcccgg ccatgcacga gatcggccag cagcgggtgg gggggaggtt 3180
cgcctgogc gaccggcgc gcaacctggt gcaacctcgtg gcggaggagc aggaactgaca 3240
cgtgctacga gatttctgatt ccacccgcgc ccctatgaa agttgggtgt tcggatcgtg 3300
ttccgggac gcggctgga tgactctcca gcggcgggat ctcatgtcgg agttcctcgc 3360
ccaccccaac ttgtttattg cagctttataa tggttacaa aaaaacacaa gcatcaca 3420
tttcacaat aagcatttttt ttctacgca ttctagttgt gtttttgtcca aactcataca 3480
tgtatctttt catctctgta tacgtctgac ctctagctag agctttggtgt aatcatggtc 3540
atagctgttt cctgttgaa atttttaacc gctcacaatt ccacacaaca tacagcgcgg 3600
aagcataaag ttgaaagcct ggggtgccta atgagtgac taactcacat taattgcgtt 3660
gctgctactg cccgctttcc agctgggaaa cctgtcgtgc cagctgcatt aatgaatcgg 3720
ccacgcoggc gggagagggc gtttgctatg tgggcgctct tccgcttccc cgcctcactga 3780
cctgctgccc tccgtcgtcc gcgtgcgagg agcggtatca gcgcacacta aaggcgtaat 3840
acggttatcc acagaacagg gggataacgc aggaaagac atgataggaa aaggcagaca 3900
aaagggcagg aacggtaaaa aggcgcggtt gcggcggttt tttctaggg gcggcccccc 3960
tgacagacat cacaaaaact gacgctcaag tcaaggtcgg cgaacccgca cagaacctata 4020
aagataccag gcgtttcccc ctggagcttc ctctgtgccc ttcctctgttac gacccctggc 4080
gcttacogga tacctgtoct cctttctccc ttgggaagcg ttgggctttt ctcaatgctc 4140

acgctgtagg tatctcagtt cgggttctgt ctgctgccct aagctgggct gtgtgcaacga 4200

acccccctgtt cagccogacc gttgoccttt atccggttaac tattgctttg agtccaaccc 4260

ggttaagacac gaccttcgct cactggcagc agccactggg taccaggtta gcaagagcgag 4320

gtatgtaggg ggtgtcagag atttcttgaa gttgttgacct aacctcgcttg acactagtaag 4380

gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttgggaaaaa gagggtgtag 4440

cctttgatcc ggcaaaaaaa ccacgctgg tagcgggtgt tttttgtttt gcagacgaga 4500

gattaagcgc agaaaaaaag gatctcaaga agatcttttg atctttttcta cgggggtctga 4560

cgctcagtg gccagaaact cagtttaagc gaittttggtc atgagattat caaaaaggt 4620

cctcaccttag atctttttatg aatatatatt aatatcattaa tcatactaaa gatatatatga 4680

gtaaatggg tctgacagtta accaatggctt aatcagttgq gcacctatct cagcgatctg 4740

tctatttcgt tcatccatat ttgctctgact cccggctggct tagataacta cgatacgggga 4800

ggggttacca tctggccccca gttgctgcaat gataccgcca gacccacgct caccggctcc 4860

agatttatcaca gcaataaaacc aggccagcegg aagggccgag cgcaagaagtg gtctgcaaac 4920

tttatcogcc tcacatccagtt cttaaatattg ttgcccgggaa gctagagtaa gtattcgcc 4980
agttaatagt ttgccagaaag ttggtgctat tgtacaggg acgtgttgctg cagctgctgct 5040

gttttgtatgc gtttcttaat cgtcgggtc acaacgcatag aggccagttag cattgatcccc 5100

cattttctgc aaaaagcggt tttagctcctt cggctctcctg acgtggtctg cataatgtcc 5160

ggcccggaggtg tgtattctca agcactgcat aattctcctta ctgctactgcc 5220

atccgtaaga tggctttctgc tgaactgttgat gtactcaacc aagacatcct gagaatagtt 5280

tatcggcgcga cccgagttgc cttgcgcccc gcgtacatacg gataataacgc ggcacatacg 5340

cagaacctta aatgtgctca tcattggaaaa acgtctcttg gggcgaaaaac tctcaaggat 5400

cctacggctg ttgaatccag cttcgttagta acccactcgt gcacccaact gatcttcagc 5460

atatatatcc tcaccgagct tttctgggtg agcaaaaaac ggagggcaca atgcgcagaa 5520

aaaaaggaatg aggccgacac ggaatatgggtg aataactcata cttctctcttt tttcaaatatat 5580

ctgagcttc tattgctctat gacggaatatc atatattgat gttttagaata 5640

ataaaaaacaa ataggggttc cgccacatt tccccgaaaaa ggtgccacgctg acgctc 5695

<210> 11
<211> 5458
<212> DNA
<213> Artificial Sequence
Description of Artificial Sequence:

pSecTagA-VEGF-BEx1-5-H6

gacggatcgg gagatctccc gatcctctatt ggtgactctc cagtaaactc tgctctgatg 60
cgcataagtt aagccagtt agtgccttctt cttgtgtgtt ggaggtgcgt gatgatgtgct 120
cgagcaaat ttaagcttga acaagggcag gcttgaccga caattgcatg aagaatctgc 180
ttagggttag gctgttttgcg ctgcttcgag atgtaggagc cagatatacg cgttgacatt 240
gattattgac tagttatata tagaatatca aattaggggtc attagtctat agcccatata 300
tggagttccg cgtacataaa cttacggtta atggcccgcc tggcgtgaccg cccacgcacc 360
ccgccccatgcagctcaata atgagtagtgc ttccccatagt aacgccaata gggacctttcc 420
atgagctcga atgggtggac tatattaacgt aaactgcoca cttgacatgt acaagtggt 480
atcatatgcc aagtacgccc cctattgacgg tcaatgacgg taatggccc gcctggcatt 540
atgccccagta catgacccata tgggacttcct atcattgcctct gctcactctt gtagattgca 600
tgcctattac catgggtgtag cggctcttggc agtacatcaa tggccgtgga tagccggtttg 660
aactcagggg atttccagtt ccctgcccca ttgagctcaaa tggaggttgg ttttggoacc 720
aaaatcaacg ggacttttccaa aatggtgata acacactcgcc cccattgacg caaatgacgc 780
gtagggctgt aacgtggggag tcctatatata gcagagctct ctggctaatc agagaaccca 840

cagcttactg gttatagaa attataacga ctcaacttag ggcacgcccc gctggcctagt 900

caggtgtgtt ggaaattggc ttcaccatga gcccctctgt gcccgcctgt cgtgtcgcgc 960

cactcctgca gctggcggcgg gcctgccgct gcgtctccca gccttgtcgc gcctggccacc 1020

agagaaaggt ggtgtcatag gtagatgtt atactcgccgc taccctggccag ccctggaggag 1080

tgggtgtgccc cttgactctgg gacgtcatgg gcacccggtgc caaactcgctg gtgcctccagct 1140

gcgtgactggt gcacgcgctgt ggtggtcgtct gcctggcagc tggctctggag tgtgtgcccc 1200

cctggccagca ccagcgcagg atgcaagacc tcaatgcagc gcctgcaggc agtcagcttg 1260

gggagatgtc cctggaaaga cacagccagt gtgaatgcaag accaaaaaa aagacagttc 1320

cgtggaagcc agaccatcat catcaacacc actgcagcgcgc cgctgagtcg tagagggcggc 1380

gaaacaaagc tcatctcagaa agagggatctg aatagcgccg tcgaccatca tcaatcctgtc 1440

cattgtggtt aaacccctgtg atcagcctcg actgtgctct etatgctgcc gcctctcgcttt 1500

gttgccecc cccgctgtcgg ttcctggacc ctggaaggtg ccactcccaag tgtctcttcg 1560

taaataggtt aaggagagtc atcgagcttt ctgaagtaggt gtcattctct tctgccccctg 1620

ggggtggggc aggacagcag ggaggagagt tgggaagaca atagcaggca tggggggggt 1680

gcgggtgggct ctatggctcc tgaggcgga catcagcagct gcggctctag gggttatcccc 1740
cagcgccct gtagcgccgc attaagcgcg gogggtgtgg tgtttacgcg cagctgacc 1800

gcctaccttg ccagcgccct agcgcccgct cctttccttt tcttcttcct ctttctgcgc 1860

acgtcgcccg gtcttccccg tcaagctcta aatcggggca toccctttagg gtctcagttt 1920

agtgctttac ggcccttctga ccccaaaaaa cttgattagg gtgtatgttc acgtaagtgcc 1980

ccatgccct gatagacggt ttttgcctct ttgaacttgg agtccaccgtt ctttaaatgt 2040

ggactcttgt tccaaacctgg aacaacactc aacccctatct eeggcttatc ttttgattta 2100

ctagggatct ttgggattttt ggccctttagg tttaaaaaatg agctgtatttta acaaaaaatct 2160

aagcgaatt aattctgtgg aatgttgtgc agttaggggtg tggaaagttcc ccaggctccc 2220

cagcagccag aagtatgcac agcatgcact tcaatttagt acgcaacagg tggtgaaagt 2280

ccccaggctc cccagaccgg agaagtatgc aagcatgcac tctcaattatc tcagcaacca 2340

ctattccccg ccctactccg cccactcccc cccactcccc gcccagttccc gcccacttctc 2400

cgccccatgg ctagcttaatt tttttttattt atgcagaggc cgagggccgc tctgtctcttg 2460

agctattccaa gaagtagtga ggggcttttt ttggagccct aggctttttgc aaaaaacgcc 2520

cgggagcttg tatatacttt tctggatcttg atcagcagct gttgacaatt aatcatacgcc 2580

atagtattatg ggcatagtat aatacgacaa ggtgaggaac taaaccattg ccaagtgac 2640
tgactcgtg cgctcgggctc ttcgccgtgc ggacagcggta tcagctcact caaaggccgt 3600

aatcgggtta tcacaagaaat cagggatgaa cgacaggaag aacatgtgag caaaggccca 3660

gcaaaaggcc aggaacgcgta aaaagccgcg tttgtggtgcg ttttttccata ggcctcggcc 3720

cccgtacagc ctaaacaagaaa tctagagctgct aagctagagg tggcagaaacc gcacagggact 3780

ataaagatac cagccggtttc ccccgtgaag cttccccgctg cgcgtcctcg tccgacccct 3840

gcgccttacc ggatacctgt ccgcctttct ccccctgaga agcggtgggct tttctcaatg 3900

cctcagctgt aggtatatctg ggctggtgta ggctggtgcc tccagcgggg gcgtgtgtgca 3960

gcagctggac gttcagcccg accgctgccc gttatcgggt aactatcgttc ttagtccaa 4020

cgggttaag cagacttat cggccactggc agcagccact ggtacagaaa ttgaacagac 4080

gaggtatgta ggccgtgctga cagatctcttt gaagttggtgg cctaatctac ggtacactag 4140

aagaacagta tttggtatat cgcctctttct gcacagcgtc ttcctccgaa aaaggtttgg 4200

tagcttctga tcggcagcaac aaaccacgag tggtagcggt gtttttttttt tcggcagcag 4260

gcagattacg cgcaaaaaa aaggatctca agaagatctt ttgatctttt ctacggggtc 4320

tgacgctcac cggagcagaa actcaggtta cgggattttc gctagagatat taatcagag 4380

gatcttcacc tagatccttt taaatattaa atgaagtttt aaatcataact aagtttata 4440
tgagtaaact tggctctgaca gttaccaatg cttaatcagt gaggcaacctt tctcagcgat 4500
cgtcttatattt cgttcctccca tagttgcctgt actccccgctc gttgtagataa ctacgataacg 4560
 ggaggcttta ccctctgccc ccagtgctgct aatgataacg ccagaaccaca gctcaccggc 4620
tccagatatt tccagcaataa accagccagc cggaaaggcc gaggocgagaa gtggttcctgc 4680
 aacttttatcc gctccatcctc agtttatataa ttggtggcagg gaagctagag taagtagttc 4740
gcagttatc agtttgccgca acgtttgtgc cattgctaca gcagactgtg gcgtcaagctc 4800
gttggtttgt atggctccatc tccagctcgg gtcccaacgga tcaaggcggag ttacatgatc 4860
ccccatgttg tgcaaaaaag cggtagcttc ctgggtcctct ccagctgtg gcagaagtaa 4920
gttggccgca gtgttatcact ctatggttat gcagacactg cataattctc ttaactgtcat 4980
gccatcggta agatgttttt ctgtgaactgg tgagtaacctac accaagctcat tctggaataa 5040
gtgtatccgg cgacagagtt gcccttgccc ggctgcaata cgggataata ccgagccaca 5100
tacgagactt tttaaatgag tcactcttgga aaaaogttct tcggggcgaa aactctcaag 5160
gacacttttt actttcaccac gctttttctgg gtggacaaaa acaggaaggg aaaaatgcccc 5220
agcatcttttt actttcaccac gctttttctgg gtggacaaaa acaggaaggg aaaaatgcccc 5280
 aaaaaaggga ataagggcga caaggaatgt ttaataactc atactctctc tttttgcataa 5340
ttattgagac attttacagg gttattgtct catgagcgga tacataatatg aatgtatatta 5400
gaaaaataaa caaatagggg ttccgcgcac atttccccga aaagtgccac ctgacgtc 5458

<210> 12
<211> 5458
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:

pSecTagA-VEGF-BE1-5-H6-NXT

<400> 12
gacggatcgg gagatctccc gatccccctat ggtcgactct cagtacaatc tgccttgatg 60
cgcctagtt aagccagtat ctgctccctg cttgtgttgt ggaggtcgct gagtactgcg 120
cgagcacaat ttaagctaca acaaggcaag gcttgaccga caattgcagt aagaatctgc 180
ttagggttag gcggttttgcg ctgctttgcg atgtacgggc cagataatcg cggtgacatt 240
gattattgac tagttattaa tagtaatcga ttaaggggttc attagttcat agcccatata 300
tggagttccg cgttaatcata ttaacggttaa atggcccgcc tggctgaccg cccaagacc 360
cccccbctt gacgtaata atgaagttatg ttccccatagt aacgccata aagcacctttc 420
attgacgctga tgggtcttgac tatttacggt aaactgcaca cttggcagta catcaagttg 480
atcataatgcc aagtaagcccc cctattgacg tcaatgacgg taaatgcccc gccctggcatt 540

atgccagata catgaccota tgggactttc ctaacctggca gtacatctac gtattagtca 600
tcgct tatcct gctggtggtg gcggtttggc agttacatca a tgggctgga tagcgggtttg 660
actcaacgggg atttcaagtt ctccacccca tggagctcaa tggagttttg ttttggcacc 720
aaaatcaacg ggaaccttcca aatgtcctga acaacctcgc cccattgacgc caaatggaagc 780
gtggcggtgt acggtgggag gtctatatataa gcagagctct cttgctaact agagaacca 840
ctgctttactg gcttatogaa attaataacga ctcactatag ggagacccca gttggctgtag 900
ccagtgtgtgt ggaatggggt ttcaccatga gcctctctgt ccgccgctgt cttgcctggc 960
cactctgcga gctggcccc cccccaggcccc ctggccctca ggtgatggcc cctggccacc 1020
agaggaaggt gggtcatagg atagatggtg aatactcgcc tcaacctgcag cccggggagg 1080
tgggtttggcc cttgactgtg gacgtcatgg gcaccgtggc caaacagctg gttgccagct 1140
gcgtgactgt gcagcgttgt gggctgtgtg gcctgacgca tggccctggag tgtgtgcaca 1200
cctggccagca caacgtgcacc atgcagatcc tcatgatccg tttccgggac gcgtcagctgg 1260
gggagatgtgc cctggagaga cacagcaggt gttcaattgcag acctaaaaaa aaggaagatgtg 1320
cgtgcaagccc agacccatcat catcactcacc acggagccggc cgctgagtc ttagggcccc 1380
gaaacaaaaac tcatctcaga agagatctgt aatagcgcgcg tggacccatca ttcactctc 1440
cattgagttt aaacccggctg atcagcctcg acgttgcctt ctgattgcca gcctacttgtt 1500

gttgccct cccccgtgcc ttctttgacc ctggaaggtg ccaacttccac tgctttttccc 1560

taxtaaaatg aggaaattgc atcgcaattgt ctgagtaggt gtcatttctat tctggggggt 1620

aggggtggggc aggcacgcaaa gggggaggtg tgggaagaca atagcaggca tgctggggat 1680

gcgggtgggt ctatattctgc tggggcggaa agaaccagct ggggtctctag ggggtatccc 1740

cacgcccct ttgagccgccc ataatgcccgc gggtggttgtg tggatatggc cagctgtgcc 1800

gctacacctg ccagcccccct ccatggtggtc ctacgcttccctt tcttcctccc 1860

acgttcgccg gttttccccc ttcagctcta aacctggggca tcccttttagg gttccgattt 1920

agtgttttac ggcacccctga cccaaaaaaa ctggattagg gtgtaggttc acgtagtggtg 1980

ccatcgccct gatagaggttt ttttgcctct tgagctgttg agtccacgttt cttaaatagt 2040

agctctttgt tccaaacctg aaacacactc aaccctatct cggctatatc tttttattta 2100

taagggattt tggggattcg ggcctattgg tttttatttg agctgttttta acaaaaaattt 2160

aagcgaattt aatatgtggg aatgtgtggtc atgtagggtg tggaaagttcc ccagctccctc 2220

cacagggcag aagttgcaca agcatgcact ctcattttgtc agcaacccagtg tggtgaaagt 2280

cccagggctc ccaggcagggc agaagtagtgc aaagccatgctc tcataattag ctcaacacca 2340
tgctccctcc ccctaaacct cgccatcgcgc cccttaactcc gcgcagttcc gcgcattctc 2400
cgcctcaggg ctgaactaatt ttttttatatt atgcagaggg cgcgggccgc gcttgctcttg 2460
agctatccca gaaagtagtga ggaggttttt tttgagggcct agggcttttgga aaaaagctcc 2520
cggggcttgg tataatccatt ttcggatcttg atcgacacgt gttgacaatt aatcagcggc 2580
atagtatact gcgtataggtat aatagcacaa ggtgagggaa ctaaaccatgg ccaagggcgac 2640
cagtgccggtt cccggtcgctga ccggcgccga cgccgggcgga ggggtcgagtt gctggacggc 2700
cgggctcggg ttctccgggg acctccgtgga gcacgacttc gcgggtgtgag gctcgagggga 2760
ccggtacccgt gttcatcagcg cggccaggg aaggtgtgtgg cgggacacaa cctcgccctgg 2820
gtgtgggttg cccggccttgg acggaggtatga cggccagtggg tccggagtgg gttccacgaa 2880
cgtcggagcgt gcctccgggg gcggcatgac cggagatccgc gacagccggt ggggagggga 2940
gttgcccttg ccggaugcgggc cccggcaagtt gcgctcactcc gttggcaggag agcaggcagt 3000
acacgtgtcga cgagatttgc attccacccgc cgccctttctat gaaaagttgg gcttcggaat 3060
cgttttcggg gacgcgggct ggatgtatct ccagcgcggg gatctcactgc tggagtcttt 3120
cgccccacccc aacggtttttc ttggacctta taatggttac aaataaagcg atagcatcac 3180
aatattcaca aataaagcat tttttccact gcaattcagt tgggtttttg ccaaaactcat 3240
caatgtatct tatcatgtct gtataccgct gcacccctac tagagcttgg cgtaatcatg 3300
gtcatagctg ttctctgtgt gaaattgtta tcgctcaca attccacaca acatacgagc 3360
cggagcata aagttgaag cctgggtgag ctaatggtg agctataactca cattaattgc 3420
gttgcgtca ctgcctcggt ttcaagtcgg aaactctgtgc tgccagctgc attataatgc 3480
cggcccaacgc gcgggggagag gcgggtttgcg tattgggccgc ttctccgctt cctgcgtcag 3540
tgactgcttg cgctggggcg ttcggctcgg cgagcggta tcagctcact caaaggcgggt 3600
aatacgggtta tccacagaaat caggggataa cgcaggaag aacatgtgag caaaagccca 3660
gcagaaagggc aggaagcgtg aaaagggcgg gcgtgttggcg tttttccata ggctcgggcc 3720
ccctgagcag catcacaaaa atcgagcgtc aagtcagagg tggcgaacc ccgacaggact 3780
ataaagataac caggcgttttc cccctgggaag ctcctctctg cgctctctgtg ttccgaccct 3840
gcgccttacc ggatactgtg ccgcctttctt cccttgagga agcgtgggccg ttttcaatgc 3900
ctcagtgtct aggtatatct cctcgggtgaa ggtcggttgac tccaagctgg gcgtgtgtca 3960
cggacccccc gcctagccgg accgcttgcc cttatcgggt aactactgct tcggctcaca 4020
cgggtaaga cacgacttat cgccactggcc aagcgcaccct ggtacagga ttgacagagg 4080
gaggtatgta ggaggtgcta cagagttctt gaagtggtgg cctaactcag gctacactag 4140
aagcagagttttgctttggt acgtctgctt gtaggcagtt actttcgaggg aaagagttgg 4200

tagctcttga tccggaacax aagcaacgcct tgttgcgtgtg aagtttttgg tgtggcgca 4260

gcagattacgc cgcaaaaaa aagcagatcct ttgatctttt ctcaggggttc 4320

tgacgcctag tggcagcggaa actcaggtta aggatatgg gtcgtagat tgtacaaag 4380

gatcttcacc tagatccttt taaattaata atgaagttttt aatcaattct aaatatatata 4440

tgagtaacct tggcttgacac gttaaccaggt tattaacag tgggaccacta tctcagcgt 4500

cgtctatattt cgttcatacc tagttgcctg actcctcggttc gtagataaa ctcagatacg 4560

gagggcotta ccatctggoc ccagttgcgc aagtagatacg cgagacccac gcggccggtc 4620

tccagattta tcagcaataa accagccacg cggagggccc gacggcagaa tgtggctctgc 4680

aactttatcc gcctccatcc agtctattaa ttggtgcggg gaagctagag taagtagtcc 4740

gcagatatt agtttcgcga acggttgtgct cattgtcaca gcatctggtg tgtcactgctc 4800

gttctttttgt atggcttcat tcagctcggg ttcccaacga tcaggcgag ttcatagtac 4860

ccccatgtgg tgccaaaaag cggtagtcct cttggtcctct cgcagcagtt ctcagaagtaa 4920

gttggccgca gtgtatcac caatatggact cactgtcctct ttactgtcatg 4980

gccacccgta aggtgctttt ctggctttggtg tagtactca accaagctat tcgggaataa 5040

gttatgctcg cggcagcagtt gctcctgccc ggctgcaata cgggataata cgcgcccaca 5100
tagcagaact tttaaagtgc tcacatcattg aaaaagttct tcggggcgaa aactctcaag 5160

gatctttacg ctgttgagat ccagttcag ttaacccaact cgtgcaccca actgtcttct 5220

agcatctttt actttcacca gcgtttcttg gtgagcaaaa acaggaaggc aaatgcgcgc 5280

aaaaaaggga atagaagggga caggaatacg ttgaatactc atactcttc atttttcaata 5340

tatttgaagc attatcagg gttattgtct catgacggga tacatatttg aatgtatatta 5400

gaaaaataaa caaataggggg tccgcgcac atttcccgcga aaagtgccac ctgacgtc 5458

<210> 13
<211> 53
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR primer to introduce a N-glycosylation site at positions 289-297 of SEQ ID NO:3 (VEGF-B186)

<400> 13
tcggtaccgg atcatgagga ttgctcatgtg gacgttgtgct tcgccagttgg cca 53

<210> 14
<211> 21
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR 5' primer for amplification of nucleotides 250 to 567 from Genebank Acc. No. U48801

cctgacgatg gcctggagtgt

<400> 14 21

cctgacgatg gcctggagtgt

<210> 15
<211> 50
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR 3' primer for amplification of nucleotides 250 to 567 from Genebank Acc. No. U48801

gagcggccgctcaatgatgatgatgccttgccagcttcggcaca

<400> 15 50

gagcggccgctcaatgatgatgatgccttgccagcttcggcaca

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence
Description of Artificial Sequence: PCR 5' primer for amplification of nucleotides 1 to 411 from Genebank Acc. No. U48801

caccatgagc cctctgcctcc

Description of Artificial Sequence: PCR 3' primer for amplification of nucleotides 1 to 411 from Genebank Acc. No. U48801

gagcggccgc tcagttggtga tgatgatgtg ctgggttac agcactg