一种用于风力发电机的加成型灌封胶及其制造方法

一种用于风力发电机的加成型灌封胶及其制造方法，其特点是将乙烯基硅油 100 质量份、氧化三乙烯氢含量 50～200 质量份、阻燃剂 50～150 质量份、白炭黑 0～15 质量份、处理碳酸钙 0～150 质量份、ω-二甲基聚二甲基硅氧烷 10～30 质量份，在真空捏合机中于温度 120～170℃，真空度 0.06～0.099mpa 下，脱水共混 30～200 分钟获得基料。在常温下，取基料 100 质量份，加入 1～4 质量份含氢硅油，0～0.06 质量份抑制剂在搅拌机中搅拌 20～30 分钟获得 A 胶；取基料 100 质量份，1～6 质量份催化剂，0.6～2 质量份的增粘剂，在搅拌机中搅拌 20～30 分钟获得 B 胶。将 A、B 组分按质量比 5：1 混合均匀，室温固化后得到具有较高导热系数、阻燃性达 V-1 级，电性能优良，耐高低温冲击，耐盐雾，高温高湿后粘结性能依然良好的用于风力发电机的加成型灌封胶。
1. 一种用于风力发电机的加成型灌封胶，其特征在于该加成型灌封胶的原料组分按以下质量份计为:
 (1) A 组分
 基料 100 份
 含氢硅油 1 ～ 4 份
 多乙烯基聚硅氧烷 0 ～ 0.06 份
 (2) B 组分
 基料 100 份
 铂催化剂 1 ～ 6 份
 增粘剂 0.6 ～ 2 份
 其中基料为:
 乙烯基硅油 100 份
 三氧化二铝填料 50～200 份
 阻燃剂 50～150 份
 白炭黑 0～15 份
 处理碳酸钙 0～150 份
 α, ω-二甲基聚二甲基硅氧烷 10～30 份

 所述增粘剂为一种复合增粘剂，是结构式为

 或 CH₃ = CHSi(OCH₂CH₂OCH₃)₃ 或硼酸酯或钛络合物中的至少一种，
 其中，
 \[R_1 = -(CH₂)₂Si(OCH₂CH₂)₃ \text{ 或 } -(CH₂)₂Si(OCH₃)₃ \text{ 或 } -(CH₂)₂CO(CH₂)₃Si(OCH₃)₃ \]
 或 -CH₃:
 \[R_2 = -(CH₂)₂CH₂OCH₂CH₂ \text{ 或 } -(CH₂)₂Si(OCH₂CH₂)₃ \text{ 或 } -(CH₂)₂Si(OCH₃)₃ \text{ 或 } -CH₃; \]
 \[R_3 = -(CH₂)₂CH = CH₂ \text{ 或 } -(CH₂)₂Si(OCH₂CH₂)₃; \]
 \[R_4 = -(CH₂)₃Si(OCH₃)₃; \]
 多乙烯基聚硅氧烷、白炭黑和处理碳酸钙可以同时为 0 份。

2. 按照权利要求 1 所述用于风力发电机的加成型灌封胶，其特征在于含氢硅油为含氢量在 0.25 ～ 0.8% 的含氢硅油。

3. 按照权利要求 1 所述用于风力发电机的加成型灌封胶，其特征在于铂催化剂为氯铂
酸的乙烯基硅氧烷聚合物或者用碳或三氧化二铝作载体的铂催化剂中的任一种。

4. 按照权利要求 1 所述用于风力发电机的加成型灌封胶, 其特征在于乙烯基硅油在温
度为 25℃时的粘度为 500mpa・s ~ 12000mpa・s。

5. 按照权利要求 1 所述用于风力发电机的加成型灌封胶, 其特征在于该阻燃剂为氢氧
化铝、氢氧化镁、硼酸锌和氢氧化铝锂中的至少一种。

6. 按照权利要求 1 ~ 5 之一所述用于风力发电机的加成型灌封胶的制备方法, 其特征
在于该方法包括以下步骤：

1) 基料的制备：

将乙烯基硅油 100 质量份、三氧化二铝填料 50 ~ 200 质量份、阻燃剂 50 ~ 150 质量份、
白炭黑 0 ~ 15 质量份、处理碳酸钙 0 ~ 150 质量份、a, o- 二甲基聚二甲基硅氧烷 10 ~
30 质量份，在真空捏合机中于 120 ~ 170℃，真空度 0.06 ~ 0.099mpa，脱水共混 30 ~ 200
分钟获得基料；

2) A、B 组分的制备：

(1) A 组分的制备：

在常温下，取基料 100 质量份，加入 1 ~ 4 质量份含氢硅油，0 ~ 0.06 质量份多乙烯基
聚硅氧烷，加入搅拌机中室温下搅拌 20 ~ 30 分钟，获得 A 组分；

(2) B 组分的制备：

将基料 100 份，1 ~ 6 质量份铂催化剂，0.6 ~ 2 质量份的增粘剂，加入搅拌机中搅拌
20 ~ 30 分钟，获得 B 组分；

3) 用于风力发电机的加成型灌封胶的制备：

在室温下，将 A、B 组分以质量比 5:1 混合均匀，获得用于风力发电机的加成型灌封胶。
说明书

一种用于风力发电机的加成型灌封胶及其制造方法

技术领域

[0001] 本发明涉及一种用于风力发电机的加成型灌封胶及其制造方法，属于高分子材料领域。

背景技术

[0002] 在众多新型可再生能源中，风能分布范围广泛，风力发电技术比较成熟而且成本相对较低，最具有大规模开发和商业化发展前景。因此风力发电在改善能源结构以及节能减排方面的作用受到了人们越来越多的关注，成为目前国际上可再生能源领域发展最快的清洁能源。能源和环境危机与国民经济可持续发展之间的矛盾，促进了风力发电产业的迅猛发展，风电在我国能源结构中的地位日益受到重视。我国有效的风力资源主要在东南沿海及其附近岛屿、新疆北部、内蒙古、甘肃北部、青藏高原北部、黑龙江、吉林东部、河北北部及辽东半岛等地。这些地区地理自然条件恶劣，因而对风力发电机组的要求也高。这就要求对直流电机的风力发电机起保护作用的灌封胶具有超强的耐候性、耐盐雾性能、耐高低温冲击、耐湿热湿冷。

[0003] 加成型硅橡胶在交联过程中，基础聚合物交联反应转化率高，不产生副产物，硫化尺寸稳定，线收缩率小，温度变化对固化后的加成型硅橡胶物性变化影响小。因而，在电子电器、新能源领域有着广泛应用前景。

[0004] 中国专利 CN 10575443C 公开了这一种高导热有机硅灌封胶，但并未提及该有机硅灌封胶的阻燃性能。CN200810162462.8 公开出了一种导热率达 0.4 W/m·K，阻燃等级 94V-0 的双组分加成型硅橡胶的液体灌封组合物及其制备，但并未提及双组分加成型硅橡胶的粘接性能，该双组分加成型硅橡胶液体组合物的固化温度在 100～180℃，实际应用比较困难。

发明内容

[0005] 本发明的目的是针对现有技术的不足而提供一种用于风力发电机的加成型灌封胶及其制造方法，其特点是该加成型灌封胶既有合适的导热性能又具有阻燃性能，有良好的流动性，室温固化，使用方便，具有优异的耐高低温冲击，耐湿热湿冷性能，粘结性能优良，用于直流电机的风力发电机定子灌封保护。

[0006] 本发明的目的由以下技术措施实现，其中所述原材料份数未特殊说明外，均为重量份数。

[0007] 用于风力发电机的加成型灌封胶的原料组成为：

1. A 组分：

- 基料：100 份
- 含氢硅油：1～4 份
- 抑制剂：0～0.06 份

2. B 组分：
说明书

[0013] 基料 100 份
[0014] 铂催化剂 1 ～ 6 份
[0015] 增粘剂 0.6 ～ 2 份
[0016] 其中基料为：
[0017] 乙烯基硅油 100 份
[0018] 三氧化二铝 50 ～ 200 份
[0019] 阻燃剂 50 ～ 150 份
[0020] 白炭黑 0 ～ 15 份
[0021] 处理碳酸钙 0 ～ 150 份
[0022] α，ω- 二甲基聚二甲基硅氧烷 10 ～ 30 份
[0023] 抑制剂、白炭黑和处理碳酸钙可以同时为 0 份。
[0024] 含氯化合物为含氯量在 0.25 ～ 0.8%。
[0025] 阻燃剂为氢氧化铝、氯化石蜡和氢氧化铝锂中的至少一种。
[0026] 抑制剂为 2- 甲基 -3- 丁炔基 -2 醇、3- 甲基 -1- 己炔基 -3- 醇、3,5- 二甲基 -1- 己炔基 -3- 醇、1- 乙炔基 -1- 环己醇、甲基三（甲基丁炔氧基）硅烷、乙烯基三（甲基丁炔氧基）硅烷和多乙烯基聚硅氧烷中至少一种。
[0027] 铂催化剂为氯铂酸的醇溶液、氯铂酸的乙烯基硅氧烷聚合物或者用碳或三氧化二铝作载体的铂催化剂中的任一种。
[0028] 乙烯基硅油在温度为 25°C 时的粘度为 500mpa ～ 12000mpa。

[0029] 增粘剂的结构式为

式中 R₁ = -(CH₂)₂Si(OCH₂CH₃)₃

或 -(CH₂)₂Si(OCH₃)₃

或 -(CH₂)₂Si(OCH₂CH₃)₃ 或 -(CH₂)₂Si(OCH₃)₃ 或 CH₃；

式中 R₂ = -(CH₂)₂OCH₂CH₂CH₂

或 -(CH₂)₂Si(OCH₂CH₃)₃ 或 -(CH₂)₂Si(OCH₃)₃ 或 CH₃；

式中 R₃ = -CH₂CH₂

或 -(CH₂)₂Si(OCH₂CH₃)₃ 或 -(CH₂)₂Si(OCH₃)₃ 或 CH₂ = CHSi(OCH₂CH₂OCH₃) 或硼酸酯或钛络合物。

[0030] 用于风力发电机的加成型灌封胶的制造方法包括以下步骤：
[0031] 1. 基料的制备：
[0032] 将乙烯基硅油 100 质量份，三氧化二铝填料 50 ～ 200 质量份，阻燃剂 50 ～ 150 质量份，白炭黑 0 ～ 15 质量份，处理碳酸钙 0 ～ 150 质量份，α，ω- 二甲基聚二甲基硅氧烷 10 ～ 30 质量份，在真空捏合机中于 120 ～ 170°C，真空度 0.06 ～ 0.099mpa，脱水共混 30 ～
200 分钟获得基料；
[0033] 2. A、B 组分的制备；
[0034] （1）A 组分的制备：
[0035] 在常温下，取基料 100 质量份，加入 1 ～ 4 质量份含氢硅油，0 ～ 0.06 质量份抑制
剂，加入搅拌机中室温下搅拌 20 ～ 30 分钟，获得 A 组分；
[0036] （2）B 组分的制备：
[0037] 将基料 100 份，1 ～ 6 质量份铂催化剂，0.6 ～ 2 质量份的增粘剂，加入搅拌机中搅
拌 20 ～ 30 分钟，获得 B 组分；
[0038] 3. 用于风力发电机的加成型灌封胶的制备；
[0039] 在室温下，将 A、B 组分以质量比 5：1 混合均匀，获得用于风力发电机的加成型灌
封胶。
[0040] 性能测试；
[0041] （1）按 GB/T 531.1-2008 测试邵氏硬度；
[0042] （2）按 GB/T 528-2009 测试断裂伸长率和断裂强度；
[0043] （3）按标准 GB/T 2408-2008；按标准 GB/T 1408.1-2006 测试电子强度；
[0044] （4）按标准 GB/T 1410-2006 测试体积电阻率；
[0045] （5）按标准 GB/T1404-2006 测试介电常数；
[0046] （6）按 GB 11205-89 测试热导率；
[0047] （7）按标准 UL94-1985 测试阻燃等级；
[0048] （8）按标准 GB/T7124-2009 测试剪切强度；
[0049] （9）按标准 ASTM831 测试热膨胀系数；
[0050] （10）按标准 GB/T 2423.17-93，GB/T 2423.3-2006，GB/T 2423.1-2001 和 GB/
T2423.2-2001，对灌封胶哑铃试验样、剪切试验样分别进行处理后按各测试标准测试。
[0051] 其中 GB/T 2423.3-2006 中温度为 (85±3) ℃，湿度为 (85±5) RH%；根据标准 GB/
T2423.1-2001 和 GB/T 2423.2-2001 中要求以低温 72h，高温 2h 为一个循环周期。
[0052] 测试结果详见表 1 所示，结果表明，通过未按照本发明制的加成型热硫化橡胶与
按照本发明制的加成型灌封胶橡胶比较，本发明的加成型灌封胶，在室温下有较快固
化速度，且有一定导热率，阻燃性能达 V-1 以上，流动性好，粘结性优良，耐高低温冲击，耐
湿热湿冷良好，耐盐雾的优点，适合用于直流电机的风力发电机定子灌封保护。
[0053] 本发明具有以下优点：
[0054] 1. 基料中加入了适量的搭配好应粒的导热填料，使加成型灌封胶固化后具有良好
热导率，使得风力发电机在运行过程中产生的热量很快散去；加入阻燃剂使得加成型灌封
胶阻燃性能达到 V-1 级以上，避免高分子聚合物燃烧发生火灾情况；且流动性优异。
[0055] 2. 本发明的加成型灌封胶使用及制造方法简单，将 A 组分和 B 组分按混合比例混
合后，即可使用，不需要加热，室温固化。
[0056] 3. 通过在加成型灌封胶中直接添加复合增粘剂，使得加成型灌封胶在使用时不需
要使用底涂，本身对基材具有卓越的粘结性能，起到良好的保护作用。
[0057] 4. 耐候性能、耐盐雾性能卓越，高低温，高温湿湿后粘结良好，可广泛用于风力发
电机、电子电器、仪表行业的弹性和粘接、散热密封保护。
具体实施方式

[0058] 下面通过实施例对本发明具体描述，有必要在此指出的是以下实施例只用于对本发明进行进一步说明，不能理解为对本发明保护范围的限制，该领域的技术熟练人员可以根据本发明的内容作一些非本质的改进和调整。

[0059] 实施例 1:

[0060]将在温度 25℃下粘度为 5000mpa·s 的乙烯基硅油 100 质量份，三氧化二铝 200 质量份，氢氧化铝 100 质量份，α，ω-二甲基聚二甲基硅氧烷 20 质量份，白炭黑 15 质量份加入真空捏合机中。于温度 170℃，真空度 0.06mpa，脱水共混 30 分钟获得基料。将含氢量为 0.8%的含氢硅油 1 质量份，和 100 质量份基料搅拌混合 30 分钟，获得 A 组分；将氯铂酸的乙烯基硅氧烷聚合物 6 质量份，增粘剂硼酸酯 0.2 质量份，CH₃＝CHSi(OCH₂CH₂OCH₃)₂ 0.2 质量份，钛络合物 0.2 质量份与 100 质量份基料搅拌混合 30 分钟获得 B 组分；取 5 质量份 A 组分和 1 质量份 B 组分混合均匀后，室温固化后，获得用于风力发电机的加成型灌封胶，产品性能的测试结果详情见表 1 所示。

[0061] 实施例 2:

[0062]将在温度 25℃下粘度为 3000mpa·s 的乙烯基硅油 100 质量份，加入三氧化二铝 200 质量份，阻燃剂 50 质量份，α，ω-二甲基聚二甲基硅氧烷 30 质量份，白炭黑 5 质量份，处理碳酸钙 150 质量份加入真空捏合机中。于温度 120℃，真空度 0.099mpa，脱水共混 120 分钟获得基料。将含氢量为 0.8%的含氢硅油 3 质量份，甲基三（甲基丁炔氧基）硅烷 0.01 质量份，加入搅拌机中和 100 质量份基料搅拌混合 20 分钟，获得 A 组分；将氯铂酸的乙烯基硅氧烷聚合物 4 质量份，结构式为

![乙烯基硅氧烷聚合物结构式][1]

的增粘剂 1 质量份，钛络合物 1 质量份，与 100 质量份基料搅拌混合 30 分钟获得 B 组分；取 5 质量份 A 组分和 1 质量份 B 组分混合均匀后，获得用于风力发电机的加成型灌封胶，产品性能测试结果详见表 1 所示。

[0063] 实施例 3:

[0064]将在温度 25℃下粘度 1000mpa·s 的乙烯基硅油 100 质量份，加入三氧化二铝 150 质量份，阻燃剂 150 质量份，处理碳酸钙 100 质量份加入真空捏合机中，α，ω-二甲基聚二甲基硅氧烷 10 质量份，于温度 150℃，真空度 0.06mpa，脱水共混 30 分钟得到基料。将含氢量为 0.25%的含氢硅油 4 质量份，甲基三（甲基丁炔氧基）硅烷 0.06 质量份，加入搅拌机中和 100 质量份基料搅拌混合 30 分钟，得到 A 组分；将三氧化二铝作为载体的铂催化剂 2 质量份，结构式为

![铂催化剂结构式][2]

的增粘剂 0.5 质量份，硼酸酯 0.2 质量份，
钛结合物 0.1 质量份，加入搅拌机中与 100 份基料搅拌混合 20 分钟得 B 组分；取 5 质量份 A 组分和 1 质量份 B 组分混合均匀后，获得用于力发电机的加成型灌封胶，产品性能测试结果详见表 1 所示。

【0065】实施例 4：

将在温度 25℃下粘度为 5000mpa·s 的乙烯基硅油 100 质量份，加入三氧化二铝 50 质量份，阻燃剂 150 质量份，处理碳酸钙 150 质量份加入真空捏合机中，a，ω 二甲基聚二甲基硅氧烷 15 质量份，于温度 150℃，真空度 0.06mpa，脱水共混 30 分钟得到基料。将含氢量为 0.25%的含氢硅油 4 质量份，甲基三（甲基丁炔氧基）硅烷 0.06 质量份，加入搅拌机中和 100 质量份基料搅拌混合 30 分钟，得到 A 组分；将氯铂酸的醇溶液 2 质量份，结构式

\[
\begin{align*}
\text{C} & \text{＝} \text{O} \\
\text{Si} & \text{CH}_2\text{CH}_2\text{＝CH}_2 \\
\text{N} & \text{＝} \text{N} \\
\text{N} & \text{＝} \text{N} \\
\text{O} & \text{＝} \text{C} \\
\end{align*}
\]

的增粘剂 0.8 质量份，钛络合物 0.1 质量份，加入搅拌机中与 100 份基料搅拌混合 30 分钟得 B 组分；取 5 质量份 A 组分和 1 质量份 B 组分混合均匀后，获得用于力发电机的加成型灌封胶，产品性能测试结果详见表 1 所示。

【0066】比较例 1：

将在温度 25℃下粘度为 3000mpa·s 的乙烯基硅油 100 质量份，加入三氧化二铝 150 质量份，处理碳酸钙 100 质量份加入真空捏合机中，a，ω 二甲基聚二甲基硅氧烷 20 质量份于温度 150℃，真空度 0.099mpa，脱水共混 60 分钟获得基料。将含氢量为 0.5%的含氢硅油 4 质量份，2- 甲基 -3- 丁炔基 -2 醇 0.02 质量份，加入搅拌机中和 100 质量份基料搅拌混合 30 分钟，获得 A 组分。将氯铂酸的醇溶液 4 质量份，硼酸酯增粘剂 0.7 质量份加入搅拌机与 100 质量份基料搅拌混合 30 分钟获得 B 组分。取 5 质量份的 A 组分和 1 质量份 B 组分混合均匀后，在真空度 0.08mpa 脱泡 8 分钟，获得加成型灌封胶。

【0067】产品性能的测试结果详情见表 1 所示；

【0070】表 1

【0071】
<table>
<thead>
<tr>
<th>项目</th>
<th>项目</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>比较例 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>粘度，mPa</td>
<td>A 组分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9600</td>
<td>12000</td>
<td>7800</td>
<td>8500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>混合后</td>
<td>8000</td>
<td>9500</td>
<td>7400</td>
<td>7900</td>
</tr>
<tr>
<td></td>
<td>凝胶时间 min</td>
<td></td>
<td>120</td>
<td>60</td>
<td>70</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>拉伸强度，MPa</td>
<td>标准状态</td>
<td>2.6</td>
<td>2.4</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高低温冲击后 (10 个周期)</td>
<td>2.6</td>
<td>2.4</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高温高湿后 (1000h)</td>
<td>2.3</td>
<td>2.1</td>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>盐雾后 (24h)</td>
<td>2.4</td>
<td>2.2</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>断裂伸长率，%</td>
<td>标准状态</td>
<td>136</td>
<td>120</td>
<td>110</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高低温冲击后</td>
<td>130</td>
<td>116</td>
<td>107</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高温高湿后</td>
<td>150</td>
<td>132</td>
<td>124</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>盐雾后</td>
<td>130</td>
<td>112</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>剪切强度，MPa (碳钢)</td>
<td>标准状态</td>
<td>1.45</td>
<td>1.37</td>
<td>1.21</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高低温冲击后</td>
<td>1.47</td>
<td>1.35</td>
<td>1.19</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高温高湿后</td>
<td>1.2</td>
<td>1.2</td>
<td>1.15</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>盐雾后</td>
<td>1.46</td>
<td>1.3</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>硬度，Shore A</td>
<td>38</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>阻燃等级</td>
<td>V-0</td>
<td>V-1</td>
<td>V-0</td>
<td>V-0</td>
<td>/</td>
</tr>
</tbody>
</table>

根据测试结果，选用实施例 3 进行力学性能、电性能等测试，结果见表 2 所示。
<table>
<thead>
<tr>
<th>项目</th>
<th>结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>断裂伸长率，%</td>
<td>110</td>
</tr>
<tr>
<td>拉伸强度，MPa</td>
<td>2.2</td>
</tr>
<tr>
<td>硬度，Shore A</td>
<td>40</td>
</tr>
<tr>
<td>阻燃等级</td>
<td>V 0</td>
</tr>
<tr>
<td>剪切强度，MPa</td>
<td>1.21</td>
</tr>
<tr>
<td>体积电阻率，Ω·cm⁻¹</td>
<td>1.2×10^{15}</td>
</tr>
<tr>
<td>电气强度，KV/μm</td>
<td>21.1</td>
</tr>
<tr>
<td>介电常数</td>
<td>3.3</td>
</tr>
<tr>
<td>热膨胀系数</td>
<td>2.1×10^{-4}</td>
</tr>
</tbody>
</table>