US008209683B2

a2z United States Patent (10) Patent No.: US 8,209,683 B2
Austen et al. (45) Date of Patent: Jun. 26, 2012
(54) SYSTEM AND METHOD FOR PROBING 7,376,948 B2* 5/2008 Armstrongetal. 718/1
HYPERVISOR TASKS IN AN 7,636,800 B2* 12/2009 Ben-Yehudaetal. ... 710/28
2004/0194096 Al 9/2004 Armstrong et al.
ASYNCHRONOUS ENVIRONMENT 2004/0215905 Al* 10/2004 Armstrong etal. 711/156
. 2006/0149995 Al 7/2006 Kondajeri et al.
(75) Inventors: Christopher H. Austen, Pflugerville, TX
(US); David A. Larson, Rochester, MN FOREIGN PATENT DOCUMENTS
(US); James A. Lindeman, Austin, TX CN 1811719 A 8/2006
(US); Gary L. Ruzek, Austin, TX (US) * cited by examiner
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) Primary Examiner — Jennifer To
(74) Attorney, Agent, or Firm — Yudell Isidore Ng Russell
(*) Notice: Subject to any disclaimer, the term of this PLLC
patent is extended or adjusted under 35
U.S.C. 154(b) by 1425 days.
(57) ABSTRACT
(21) Appl. No.: 11/736,027 A system, method, and computer-usable medium for probing
(22) Filed: Apr. 17, 2007 hypervisor tasks in an asynchronous environment. According
to an embodiment of the invention, the partition firmware
(65) Prior Publication Data sends a request for data to the hypervisor. When the hypervi-
sor receives the request for data, the hypervisor returns a
US 2008/0263288 Al Oct. 23, 2008 taskID that identifies the task allocated to handle the request.
Partition firmware records the taskID and a timestamp, which
(31) Int.CL indicates the time in which the hypervisor received the
GOGF 9/455 (2006.01) request. A timer is set to measure the amount of time elapsed
GO6F 11/00 (2006.01) since the task ID was received by a requesting partition firm-
(52) US.ClL .o 718/1; 714/1; 714/2 ware. If the hypervisor has not provided the partition firm-
(58) Field of Classification Search 718/1 ware with the requested data after a predetermined time
See application file for complete search history. period measured by the timer has elapsed, the partition firm-
ware inquires about the status of the task associated with the
(56) References Cited taskID. If the task is still running, the partition firmware

U.S. PATENT DOCUMENTS

5,220,674 A * 6/1993 Morganetal. 709/223
6,880,021 B2* 4/2005 Eastonetal. 710/5

SUCC

returns control of the partition to the operating system.

6 Claims, 3 Drawing Sheets

Has

hypervisor

essfullz initiated
task?

No

306
L—‘_‘ PFW issues a request
338 tothe hy)erv'gor
Dié,car't_:lf the task fordata
and perform error
andling VL

Hypervisor sends
taskiD code back

1 332
Hypervisor returns

data available?

Requested PFW pracesses
requested data

N
o (320

0 PFW the status
of the request

Increment timer to
keep track of the
elapsed time since
hypervisor received

request

re:

as timer’
ached threshold
27

Yes
[328

PFW issues a call
to hypervisor with

he taskiD

U.S. Patent Jun. 26, 2012 Sheet 1 of 3 US 8,209,683 B2

101 102 103 104 191

\

[PROCESSOR] [PROCESSOR] [PROCESSOR| | PROCESSOR| | MEMORY |
1

SYSTEM BUS lr \

el

MEMORY
108 ~ 110 106
CONTROLLER/
R BRIDGE
AbL /
160 110
\
LOCAL
MEMORY
161
\ 1)30 PCI BUS 1;6 1)36
LOCAL 133
MEMORY | K POLTO- 1) Mo PCILIO
= HOST =X Pl SLOT ADAPTER
o BRIOGE [., _A BRIDGE
\ 112~ PCIBUS— 110 PCI /O
SLOT ADAPTER
LOGAL Pl oarro |18 < <
MEMORY = HOST o) (VAR L LS W
BRIDGE § BRIDGE \ \
163 7 115 —7 119U 110 PCII/O
\ 110 114 PCl 118 PC| BUS 1 SLOT ADAPTER
LOCAL BUS BUS
MEMORY PeiBus [10] paio
126~J sLoT ADAPTER
H s e 730, 129 1‘}8
BRIDGE BRIDGE \ 5
— 13— 127U v || Paiiio
vdp PO qd PCIBUS | SLOT ADAPTER
/‘ BUS PCIBUS | 1 | GRAPHICS
144~ sLoT ADAPTER
100 PCI PCI-TO- < <
DATA PROCESSING L oSt o) 75, M9 N
SYSTEM BRIDGE § BRIDGE 5 \
7 141 7 145 10 = HARD DISK

. Vv BUS
Flg, 1 150

U.S. Patent

Jun. 26, 2012 Sheet 2 of 3 US 8,209,683 B2
LOGICAL PARTITIONED PLATFORM
200
PARTITION PARTITION PARTITION PARTITION
203 205 207 209
0s 0s 0s 05
211\ 213\ 215) 217\
\ 20 \ 20 \ 206 \ 208
PARTITION PARTITION PARTITION PARTITION
FIRMWARE FIRMWARE FIRMWARE FIRMWARE
PARTITION MANAGEMENT FIRMWARE (HYPERVISOR) 210
PARTITIONED HARDWARE 230
237 234 235 238
\ \ \ \ 120) /O
ADAPTER | | ADAPTER
PROCESSOR| | PROCESSOR | |PROCESSOR| | PROCESSOR| 75— 75—
248 57250)
290 270 208
\ \ \ [/ 110
—— ADAPTER | | ADAPTER
i || sTorace || nvraM
10 0
ADAPTER | | ADAPTER
/o0 /262
memory || wemory |1 memory || memory (256) 258)
] ;] 10 /0
o 4 N e [PORPTER| | AAPTER
. ™ 264
Fig. 2 CONSOLE

=

U.S. Patent

Yes

Fig. 3

; f338

Discard the task
and perform error
andling

;336

PFW sets status
to "BUSY"

sl

334 Jes

No

f332

Hypervisor retums
to PFW the status
of the request

330

the partition

Jun. 26, 2012

Sheet 3 of 3

300

START

304

Has
hypervisor
successfully initiated
task?

No (306

PFW issues a request
to the hypervisor
for data

{ (308

Hypervisor sends
taskiD code back

to PFW
} (310
PFW records taskiD

and time stamp

314

have the authority
to ask about the
taskiD?

Requested

Yes
data available? '

Increment timer to
keep track of the
elapsed time since
hypervisor received
request

reached threshold

Yes
Y328

PFW issues a call

to hypervisor with
the taskiD

US 8,209,683 B2

Yes

(325

Reset timer

? f324

PFW returns control
to operating system

r—. ;318

PFW sets status to
"SUCCESS"

A (318

PFW processes
requested data

US 8,209,683 B2

1
SYSTEM AND METHOD FOR PROBING
HYPERVISOR TASKS IN AN
ASYNCHRONOUS ENVIRONMENT

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates in general to the field of data
processing systems, and in particular to an improved system
and method for managing processes in a data processing
system.

2. Description of the Related Art

Logical partitioned (LPAR) functionality within a data
processing system allows multiple copies of a single operat-
ing system (OS) or multiple heterogeneous operating systems
to be simultaneously run on a single data processing system
platform. A partition, within which an operating system
image runs, is assigned a non-overlapping subset of the plat-
form’s resources. These resources include one or more archi-
tecturally distinct processors with their interrupt management
area, regions of system memory, and input/output (I/O)
adapter bus slots. The partition’s resources are represented by
the platform’s firmware to the operating system image.

Each distinct operating system or operating system image
running within the platform is protected from each other
distinct operating system or operating system image such that
software errors in one logical partition cannot affect the cor-
rect operation of any of the other partitions. The protection is
provided by allocating a disjoint set of platform resources to
be directly managed by each operating system image and by
providing mechanisms for ensuring that a given operating
system image cannot control any resources that have not been
allocated to that given operating system image. Furthermore,
software errors in the control of an operating system’s allo-
cated resources are prevented from affecting the resources of
any other image. Thus, each operating system image (or each
different operating system) directly controls a distinct set of
allocable resources within the platform.

With respect to hardware resources in a LPAR data pro-
cessing system, these resources are disjointly shared among
various partitions, themselves disjoint, each one appearing to
be a stand-alone computer. These resources may include, for
example, input/output (I/O) adapters, dual-inline memory
modules (DIMMSs), non-volatile random access memory
(NVRAM), and hard disk drives. Each partition within the
LPAR data processing system may be booted and shutdown
without having to power-cycle the whole system.

In a LPAR data processing system, the different partitions
include partition firmware, which is used in conjunction with
the operating systems in the partitions. As well-known in the
art, LPAR data processing systems also enable the partition
firmware to run threads simultaneously. The partition firm-
ware can perform tasks that often require extended execution
times without causing interrupt and OS timer problems.
When a task is requested by the OS, the firmware first runs a
small layer of partition firmware code. The partition firmware
code issues a call/event to a hypervisor to perform the
requested task. The hypervisor, which is also known as a
“virtual machine monitor”, enables multiple operating sys-
tems to run simultaneously on a data processing system by
acting as an arbitrator between the multiple partitions. After
the event has been requested, the partition firmware code
returns to the OS with a status of “BUSY”. The OS recognizes
the firmware has not finished collecting the requested data
because of the “BUSY” status and the OS queries the firm-
ware again.

20

25

30

35

40

45

50

55

60

65

2

The constant querying of the partition firmware is contin-
ued until the hypervisor has completed the asynchronous
event (also referred to herein as a “hypervisor task™). Once
complete, the hypervisor places the requested data into the
partition firmware’s memory region and returns control to the
partition firmware code for further data refinement.

Those with skill in the art will appreciate that often, the
hypervisor task that was supposed to be collecting data for the
OS fails in such a way that the hypervisor task is not capable
of responding to the partition firmware queries. The partition
firmware code constantly returns a “BUSY” status to the OS
while the OS constantly queries the partition firmware. The
constant queries result both in degraded performance of the
overall system and a hung process if the hypervisor task
responsible for servicing the request for data has stopped
operating.

As is well-known in the art, one solution to the constant
query problem is to implement a timer that expires after a
predetermined period of time. Once the timer expires, the OS
can fail any request that has not been fulfilled. However,
utilizing a timer introduces a difficulty in determining a cor-
rect period in which to set the timer. If the period is set at a
short time period, the OS can fail hypervisor tasks that are still
working to retrieve data, but have not completed retrieving
the data. If the timer period is set at a longer time period, the
OS can prevent new requests from initiating. Therefore, there
is a need for a system and method for probing hypervisor
tasks in an asynchronous environment in a data processing
system.

SUMMARY OF THE INVENTION

The present invention includes a system, method, and com-
puter-usable medium for probing hypervisor tasks in an asyn-
chronous environment. According to an embodiment of the
invention, a data processing system is implemented as a logi-
cal partitioned (LPAR) data processing system. The LPAR
data processing system includes multiple heterogeneous
operating systems or multiple instances of the same operating
system running simultaneously in multiple partitions. The
multiple partitions also include corresponding partition firm-
ware that provides functions that may be called by the oper-
ating systems. Also included in the data processing system is
a hypervisor for servicing requests from the partition firm-
ware.

The partition firmware sends a request for data to the
hypervisor. When the hypervisor receives the request for data,
the hypervisor returns a taskID that identifies the task allo-
cated to handle the request and a timestamp, which indicates
the time in which the hypervisor received the request. A timer
is set to measure the amount of time elapsed since the task ID
was received by a requesting partition firmware. If the hyper-
visor has not provided the partition firmware with the
requested data after a predetermined time period measured by
the timer has elapsed, the partition firmware inquires about
the status of the task associated with the taskID. If the task is
still running, the partition firmware returns control of the
partition to the operating system and the partition firmware
resets the timer. If the task is not running, the task is discarded
and the hypervisor performs error handling to discard the
task.

The above, as well as additional purposes, features, and
advantages of the present invention will become apparent in
the following detailed written description.

BRIEF DESCRIPTION OF THE FIGURES

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,

US 8,209,683 B2

3

however, as well as a preferred mode of use, further purposes
and advantages thereof, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read in conjunction with the accompany-
ing figures, wherein:

FIG. 1 is a block diagram illustrating an exemplary data
processing system in which a preferred embodiment of the
present invention may be implemented;

FIG. 2 is ablock diagram of an exemplary logical system in
which a preferred embodiment of the present invention may
be implemented; and

FIG. 3 is a high-level logical flowchart depicting an exem-
plary method for probing hypervisor tasks in an asynchro-
nous environment according to an embodiment of the present
invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

The present invention includes a system and method for
probing tasks in an asynchronous environment. According to
an embodiment of the invention, a data processing system is
implemented as a logical partitioned (LPAR) data processing
system. The LPAR data processing system includes multiple
heterogeneous operating systems or multiple instances of the
same operating system (OS) running simultaneously in mul-
tiple partitions. The multiple partitions also include a corre-
sponding partition firmware that provides functions that may
be called by the operating systems. Also included in the data
processing system is a hypervisor for servicing requests from
each of the partition firmware.

The OS desires information from firmware. The OS issues
a request to the corresponding partition firmware. The parti-
tion firmware sends the request for data to the hypervisor.
When the hypervisor receives the request for data, the hyper-
visor returns a taskID that identifies the task allocated to
handle the request. Partition firmware records the taskID and
atimestamp, which indicates the time in which the hypervisor
received the request. A timer is set to measure the amount of
time elapsed since the hypervisor received the request. The
partition firmware returns control to the OS and indicates
“BUSY”. The OS will repeat the request to partition firm-
ware. If the hypervisor has not provided the partition firm-
ware with the requested data after a predetermined time
period measured by the timer has elapsed, the partition firm-
ware inquires about the status of the task associated with the
taskID. If the task is still running, the partition firmware
returns control of the partition to the operating system and
indicates “BUSY”. If the task is not running, the task is
discarded and the partition firmware performs error handling
to discard the task.

With reference now to the figures, and in particular with
reference to FIG. 1, a block diagram of a data processing
system in which an embodiment of the present invention may
be implemented is depicted. Data processing system 100 may
be a symmetric multiprocessor (SMP) system including a
collection of processors 101,102, 103, and 104 connected to
a system bus 106. For example, data processing system 100
may be an IBM eServer, a product of International Business
Machines Corporation in Armonk, N.Y., implemented as a
server within a network. Alternatively, a single processor
system may be employed. Also connected to system bus 106
is memory controller/cache 108, which provides an interface
to a collection of local memories 160-163. 1/O bus bridge 110
is connected to system bus 106 and provides an interface to
1/0bus 112. Memory controller/cache 108 and I/O bus bridge
110 may be integrated as depicted.

20

25

30

35

40

45

50

55

60

65

4

Data processing system 100 is a logical partitioned (LPAR)
data processing system. Thus, data processing system 100
may have multiple heterogeneous operating systems (or mul-
tiple instances of a single operating system) running simul-
taneously. Each of these multiple operating systems may have
any number of software programs executing within it. Data
processing system 100 is logically partitioned such that dif-
ferent PCI 1/O adapters 120-121, 128-129, 136, graphics
adapter 148, hard disk adapter 149, each of host processors
101-104, and each of local memories 160-163 is assigned to
one of the three partitions. For example, processor 101, local
memory 160, and 1/O adapters 120, 128, and 129 may be
assigned to a first logical partition; processors 102-103, local
memory 161, and PCI I/O adapters 121 and 136 may be
assigned to a second logical partition; and processor 104,
local memories 162-163, graphics adapter 148, and hard disk
adapter 149 may be assigned to a third logical partition.

Each operating system executing within data processing
system 100 is assigned to a different logical partition. Thus,
each operating system executing within data processing sys-
tem 100 may access only those I/O units that are within its
logical partition. For example, one instance of the Advanced
Interactive Executive (AIX) operating system may be execut-
ing within partition P1, a second instance (image) of the AIX
operating system may be executing with partition P2, and a
Windows XP® operating system may be operating within
logical partition P3. Windows XP® is a product and trade-
mark of Microsoft Corporation of Redmond, Wash. Those
with skill in the art will appreciate that the present invention
does not limit the number of partitions in data processing
system 100 to three, but may include any number of parti-
tions.

Peripheral component interconnect (PCI) host bridges 130,
114, 122, and 140 are coupled to /O slots 170-176 to 1/O bus
112 via PCI buses 115, 118, 119, 123, 126, 127, 131, 133,
141, 144, and 145. The I/O slots 170-176 provide interfaces
for PCI1/O adapters 120,121, 128,129, 136, graphics adapter
148, and hard disk adapter 149. Hard disk adapter 149 couples
hard disk 150 to I/O bus 110.

Data processing system 100 may be implemented using
various commercially available computer systems. For
example, data processing system 100 may be implemented
using IBM eServer iSeries Model 840 system available from
International Business Machines Corporation. Such a system
may support logical partitioning while executing an AIX or
Linux operating system.

Those of ordinary skill in the art will appreciate that the
hardware depicted in FIG. 1 may vary. For example, other
peripheral devices, such as optical disk drives and the like,
also may be used in addition to or in place of the hardware
depicted. The depicted example is not meant to imply archi-
tectural limitations with respect to the present invention.

With reference now to FIG. 2, a block diagram of an exem-
plary logical partitioned platform is depicted in which the
present invention may be implemented. The hardware in logi-
cal partitioned platform 200 may be implemented with, for
example, data processing system 100 in FIG. 1. Logical par-
titioned platform 200 includes partitioned hardware 230,
operating systems (OS) 202, 204, 206, 208, and partition
management firmware, also referred to herein as hypervisor
210. OS 202, 204, 206, and 208 may be multiple copies of a
single operating system or multiple heterogeneous operating
systems simultaneously running on platform 200. These
OSes may be implemented utilizing AIX or Linux, which are
designed to interface with a hypervisor. OSes 202, 204, 206,
and 208 are located in partitions 203, 205, 207, and 209,
respectively.

US 8,209,683 B2

5

Additionally, these partitions 203, 205, 207, and 209 also
include partition firmware (PFW) 211, 213, 215, and 217,
respectively. Partition firmware 211, 213, 215, and/or 217
provides functions that may be called by the operation system
in the partition. When partitions 203, 205, 207, and 209 are
instantiated, a copy of the partition firmware is loaded into
each partition by the hypervisor’s partition manager. The
processors associated or assigned to the partitions are then
dispatched to the partition’s memory to execute the partition
firmware.

Partitioned hardware 230 includes a plurality of processors
232-238, a plurality of system memory units 240-246, a plu-
rality of input/output (/O) adapters 248-262, and a storage
unit 270. Partitioned hardware 230 also includes service pro-
cessor 290, which may be used to provide various services,
such as processing of errors in the partitions. Each of the
processors 232-238, memory units 240-246, NVRAM stor-
age 298, and I/O adapters 248-262 may be assigned to one of
multiple partitions within logical partitioned platform 200,
each of which corresponds to one of operating systems 202,
204, 206, and 208.

Partition management firmware (hypervisor) 210 performs
a number of functions and services for partitions 203, 205,
207, and 209 to create and enforce the partitioning of logical
partitioned platform 200. Hypervisor 210 is a firmware
implemented virtual machine identical to the underlying
hardware. Hypervisor software is available from Interna-
tional Business Machines Corporation. Firmware is “soft-
ware” stored in a memory chip that holds content without
electrical power, such as, for example, read-only memory
(ROM), programmable ROM (PROM), erasable program-
mable ROM (EPROM), electrically erasable programmable
ROM (EEPROM), and nonvolatile random access memory
(nonvolatile RAM). Thus, hypervisor 210 allows the simul-
taneous execution of independent OS images 202, 204, 206,
and 208 by virtualizing all the hardware resources of logical
partitioned platform 200.

Operations of the different partitions may be controlled
through a hardware management console, such as console
264. Console 264 is a separate data processing system from
which a system administrator may perform various functions
including reallocation of resources to different partitions.

FIG. 3 is a high-level logical flowchart depicting an exem-
plary method for probing tasks in an asynchronous environ-
ment in a data processing system according to a preferred
embodiment of the present invention. The process begins at
step 300 and continues to step 304, which illustrates a par-
ticular partition firmware (e.g., partition firmware 211, 213,
215, and 217 of FIG. 2) determining if hypervisor 210 has
successfully initiated a requested task. If so, the process con-
tinues to step 314, as discussed herein in more detail.

It hypervisor 210 has not successfully initiated a requested
task, the process continues to step 306, which depicts the
partition firmware issuing a request to hypervisor 210 for
data. The process proceeds to step 308, which shows hyper-
visor 210 sending a taskID code back to the partition firm-
ware. The taskID code identifies a task assigned to service the
request for data. The process proceeds to step 310, which
illustrates the partition firmware recording the taskID code
and the time stamp of when the taskID code was received.

Step 314 illustrates partition firmware determining if the
requested data is available from hypervisor 210. If the
requested data is available, the partition firmware processes
the requested data, as illustrated in step 316. The partition
firmware then sets its own status to “SUCCESS” (step 318)
and returns control of the partition to the operating system
(e.g., operating systems 202, 204, 206, and 208), as depicted

20

25

30

35

40

45

50

55

60

65

6

in step 324. The process proceeds to step 325, which shows
the partition firmware resetting the timer for another query to
hypervisor 210 from the partition firmware. The process con-
tinues to step 326, which illustrates the partition firmware
determining if its own status is set to “BUSY. If the status is
not setto “BUSY?”, the process ends, as illustrated in step 326.
If the status is set to “BUSY” the process returns to step 304
and proceeds in an iterative fashion.

Returning to step 314, if the requested data is not available
from hypervisor 210, the process continues to step 320, which
illustrates the partition firmware incrementing a timer to keep
track of'the elapsed time since the taskID was received at the
partition firmware from hypervisor 210. The process contin-
ues to step 322, which shows the partition firmware determin-
ing if the timer has reached a predetermined timer threshold.
As well-known to those with skill in the art, the predeter-
mined threshold can be set to any appropriate value. For
example, in an embodiment of the present invention, the
predetermined timer threshold is set to 500 microseconds,
since the OS may query the partition firmware for data ful-
filling the original request within that time.

If the timer threshold has not been reached at step 322, the
process proceeds to step 336, which illustrates the partition
firmware setting the status of the task to “BUSY™. The pro-
cess then proceeds to step 324, which depicts the partition
firmware returning the control of the partition to the associ-
ated operating system.

If the timer threshold has been reached at step 322, the
process continues to step 328, which depicts the partition
firmware issuing a call to hypervisor 210 with the taskID of
the request. The process proceeds to step 330, which illus-
trates hypervisor 210 determining if the particular partition
actually has the authority to ask about the task with the par-
ticular taskID. If not, the process proceeds to step 338.

Ifthe particular partition has the authority to ask about the
task with the particular taskID at step 330, the process con-
tinues to step 332, which depicts hypervisor 210 returning the
status of the request to the partition firmware. If the task is still
running at step 334, as determined at step 334, the partition
firmware will set the status of the task to “BUSY”, as illus-
trated in steps 334 and 336. The process then continues to step
324. If the task is not still running at step 334, the process
continues to step 338, which shows hypervisor 210 discard-
ing the task and performing error handling. The process then
continues to step 324.

Step 324 illustrates the partition firmware returning control
of the partition to the operation system associated with the
partition firmware. For example, if partition firmware 217 is
sending requests for data to hypervisor 210, partition firm-
ware 217 would return control of the partition to operating
system 208. From step 324, the process proceeds to step 325,
which shows the partition firmware resetting the timer for
another query to hypervisor 210 from the partition firmware.
The process continues to step 326, which depicts the partition
firmware checking to see if the status of the data request is still
“BUSY”. If so, the process returns to step 300. If the status of
the data request is not “BUSY™ at step 326, the process ends
at step 327. Basically, if the status of the data request is not
“BUSY?” the partition firmware assumes that the request has
already been fulfilled or has been discarded, as shown in step
338.

As discussed, the present invention includes a system and
method for probing tasks in an asynchronous environment.
According to an embodiment of the present invention, a data
processing system is implemented as a logical partitioned
(LPAR) data processing system. The LPAR data processing
system includes multiple heterogeneous operating systems or

US 8,209,683 B2

7

multiple instances of the same operating system running
simultaneously in multiple partitions. The multiple partitions
also include a corresponding partition firmware that provides
functions that may be called by the operating systems. Also
included in the data processing system is a hypervisor for
servicing requests from the partition firmware.

The partition firmware sends a request for data to the
hypervisor. When the hypervisor receives the request for data,
the hypervisor returns a taskID that identifies the task allo-
cated to handle the request. Partition firmware records the
taskID and the timestamp, which indicates the time in which
the hypervisor received the request. A timer is set by the
partition firmware to measure the amount of time elapsed
since the task ID was received by a requesting partition firm-
ware. If the hypervisor has not provided the partition firm-
ware with the requested data after a predetermined time
period measured by the timer has elapsed, the partition firm-
ware inquires about the status of the task associated with the
taskID. If the task is still running, the partition firmware
returns control of the partition to the operating system. If the
task is not running, the task is discarded and the hypervisor
performs error handling to discard the task.

It should be understood that at least some aspects of the
present invention may alternatively be implemented in a com-
puter-usable medium that contains a program product. Pro-
grams defining functions in the present invention can be
delivered to a data storage system or a computer system via a
variety of signal-bearing media, which include, without limi-
tation, non-writable storage media (e.g., CD-ROM), writable
storage media (e.g., hard disk drive, read/write CD-ROM,
optical media), system memory such as, but not limited to
Random Access Memory (RAM), and communication
media, such as computer and telephone networks, including
Ethernet, the Internet, wireless networks, and like network
systems. It should be understood, therefore, that such signal-
bearing media, when carrying or encoding computer-read-
able instructions that direct method functions in the present
invention, represent alternative embodiments of the present
invention. Further, it is understood that the present invention
may be implemented by a system having means in the form of
hardware, software, or a combination of software and hard-
ware as described herein or their equivalent.

While the present invention has been particularly shown
and described with reference to a preferred embodiment, it
will be understood by those skilled in the art that various
changes in form and detail may be made therein without
departing from the spirit and scope of the invention.

What is claimed is:

1. A computer-implementable method comprising:

sending a data request from a partition to a hypervisor

stored in a non-volatile memory device, wherein said
partition is one of a plurality of logical partitions within
a data processing system, wherein said hypervisor ini-
tiates a task to handle said data request;

15

20

25

30

35

40

45

8

in response to a predetermined period of time has elapsed
since the receipt of a time stamp from said hypervisor,
determining whether or not said data request has been
fulfilled,

in a determination that said data request has not been ful-

filled, querying said hypervisor to determine a status of
said data request;

if said task assigned to handle said data request is still

running, returning control to an operating system
executing within said partition to allow said hypervisor
to re-initiate said task; and

if said task assigned to handle said data request is not

running, discarding said task and performing error han-
dling by said hypervisor.
2. The method of claim 1, further comprising: if said task
assigned to handle said data request is still running, marking
a status of said task as “BUSY”.
3. The method of claim 1, further comprising: in a deter-
mination that said data request has been fulfilled, processing
data corresponding to said data request and marking a status
of said task as “SUCCESS”.
4. A computer-usable device embodying computer pro-
gram product for probing hypervisor tasks, said computer-
usable device comprising:
program code for sending a data request from a partition to
a hypervisor stored in a non-volatile memory device,
wherein said partition is one of a plurality of logical
partitions within a data processing system, wherein said
hypervisor initiates a task to handle said data request;

program code for, in response to a predetermined period of
time has elapsed since the receipt of a time stamp from
said hypervisor, determining whether or not said data
request has been fulfilled;

program code for, in a determination that said data request

has not been fulfilled, querying said hypervisor to deter-
mine a status of said data request;

program code for, if said task assigned to handle said data

request is still running, returning control to an operating
system executing within said partition to allow said
hypervisor to re-initiate said task; and

program code for, if said task assigned to handle said data

request is not running, discarding said task and perform-
ing error handling by said hypervisor.

5. The computer-usable device of claim 4, wherein said
computer-usable medium further comprises program code
for if said task assigned to handle said data request is still
running, marking a status of said task as “BUSY™.

6. The computer-usable device of claim 4, wherein said
computer-usable medium further comprises program code
for, in a determination that said data request has been fulfilled,
processing data corresponding to said data request; and mark-
ing a status of said task as “SUCCESS”.

#* #* #* #* #*

