71077:72 A2 IO OO O

o

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 October 2006 (12.10.2006)

7 3
PO |0 000000 000 O O

(10) International Publication Number

WO 2006/107772 A2

(51) International Patent Classification:
GOGF 17/00 (2006.01)

(21) International Application Number:
PCT/US2006/012037

(22) International Filing Date: 31 March 2006 (31.03.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/100,073 5 April 2005 (05.04.2005) US

(71) Applicant (for all designated States except US): WAL-
MART STORES, INC. [US/US]; 702 S.W. 8th Street,
Bentonville, Arkansas 72716 (US).

(72) Inventor: CORRELL, Harold Landorft, Jr.; 902 Kings
Drive, Bentonville, Arkansas 72712 (US).

(74) Agent: PROFFITT, James A.; Troutman Sanders LLP,
Bank of America Plaza, 600 Peachtree Street, NE, Suite
5200, Atlanta, Georgia 30308-2216 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, HI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHODS FOR FACILITATING A LINEAR GRID DATABASE WITH DATA ORGANIZATION

BY DIMENSION

- 106

COMMUNICATION DEVICE “B”

/'107

COMMUNICATION
DEVICE “A”

DATA STORAGE
INTERFACE
METADATA UNIT
-

PRESQL
PROCESSING
UNIT

POSTSQL
PROCESSING
UNIT

p—127

108

COMMUNICATION
DEVICE “C”

DISPATCHER

|

130

DATA MERGING
UNIT N_ 133

(57) Abstract: A system and methods for organizing and querying data within a linear grid management system. Data having
multiple dimensions is associated with physical locations, where a first dimension is associated with a node and a second dimension
& is associated with a data storage identifier of a memory storage device. The data may have a third dimension which provides a field
& forordering data within the memory storage device. Metadata may be used to map a logical table to data stored in the memory storage
device. The data query may be divided into multiple subqueries, wherein each subquery is related directly to one node associated
with a data storage identifier related to a memory storage device. A preSQL and postSQL process may be generated to access an
external database. A dispatcher may manage data subrequests and a node may generate a unique and efficient parsing process from

the received data subrequest.



WO 2006/107772 PCT/US2006/012037

SYSTEM AND METHODS FOR FACILITATING A LINEAR GRID DATABASE
WITH DATA ORGANIZATION BY DIMENSION

TECHNICAL FIELD

[001] The present invention relates, generally, to a linear grid database, and, more

particularly, to a linear grid database which organizes data by dimension.

BACKGROUND OF THE INVENTION

[002] Collecting, sorting, and reporting large volumes of data have become increasingly
important as valuable data continues to grow at significant rates. Originally, businesses and
government agencies hired individuals to manage large collections of data, which included
storing and indexing files in large record centers. As the cost of managing the physical files
increased, investing in a less expensive, more efficient mechanical solution became more

worthwhile.

[003] After the introduction of the computer, a number of advanced techniques emerged to
provide automated data management. Database models were developed allowing information
to be conceptualized, structured, and manipulated without hardware-specific dependency
limitations. Navigational, hierarchical, network and relational database models provided
rapid access to large amounts of data through the use of computer applications. Such
database models often use techniques such as data mining, data warehousing, and data marts
for effective data management. The relational database model has become the most prevalent
database model in use today, because it provides data independence from hardware and store
implementation, while providing an automatic navigation (or a high level, nonprocedural

language) for accessing data.

[004] Since the introduction of databases, the size of databases has grown from a few
megabytes of data for applications just a few years ago to several terabytes of data for today’s
applications, such as mailing lists, customer information for retail businesses, and the like.
As the amount of data increases, the cost of storage space and data management aiso
increases. Current database servers use a common technique of locating data by utilizing
index files. The index files cross-reference sub-sets of information with a physical location

of the data within the database. Even database servers based on hash algorithms must rely on



WO 2006/107772 PCT/US2006/012037

index files, particularly when the data is to be accessed by more than one element. When
creating a database table in a relational database, the designer must understand how the table
will be used and create appropriate indexes. Unfortunately, when the nature of the data
request does not match the indexing of the table, the index overhead is wasted and the search
for data becomes a costly sequential process. For larger database systems, index information
may become very large and ineffective. The index information cannot be compressed,
because it must be readily available for a data request. Consequently, larger systems require
a more novel means of handling and analyzing data, because of the reliance on index

information.

[005] Accordingly, there is a need in the art for a data management system for managing

large volumes of data that is not dependent on index information.

[006] There is also a need in the art for a data management system for managing large

volumes of data that reduces the amount of necessary disk space required to store such data.

[007] Additionally, there is a need in the art for a data management system for managing

large volumes of data that reduces the amount of cost necessary to manage such data.

SUMMARY OF THE INVENTION

[008] Generally described, the present invention comprises a system and methods for
organizing and querying data within a linear grid management system. Data having at least
two dimensions is associated with physical locations within the linear grid management
system, where a first dimension is associated with a node and a second dimension is
associated with a data storage identifier (e.g., file name) of a memory storage device. The
data may have a third dimension which provides a field for ordering data within the memory
storage device. More specifically described, the first dimension represents a particular store
(e.g., “where”), the second dimension represents a particular date or time (e.g., “when”), and
the third dimension represents a product (e.g., “what”). Metadata may be used to map a
logical table to the data stored in the memory storage device, where the metadata has at least
one data field attribute that describes a portion of the data. For example, the metadata may
comprise a first data field attribute that describes the first dimension of data, a second data
field attribute that describes the second dimension of data, and a third data field attribute that

describes the third dimension of data.



WO 2006/107772 PCT/US2006/012037

[009] A data query typically has at least one condition relating to the at least two
dimensions of data. Accordingly, the data query may be divided into multiple subqueries,
wherein each subquery is related directly to one node associated with at least one data storage
identifier related to at least one memory storage device. If the data query requires access to
an external database, a preSQL and postSQL process may be generated to filter internal data
subrequests and retrieve support column data. Upon receiving a data subrequest, a node may
generate a unique and efficient pérsing process that retrieves the data from the appropriate
memory storage devices. Subrequests may be managed by a dispatcher that determines when

to provide the subrequests to the appropriate nodes.

[0010] Other features and advantages of the present invention will become apparent upon
reading and understanding the present specification when taken in conjunction with the

appended drawings.

BRIEF DESCRIPTION OF DRAWINGS

[0011] Fig. 1 displays a block diagram representation of a linear grid management system in

accordance with some embodiments of the present invention.

[0012] Fig. 2 displays a block diagram representation of a computing environment which

may be utilized in accordance with some embodiments of the present invention.

[0013] Fig. 3 displays a block diagram representation of a linear grid management system
with common space for node communication in accordance with some embodiments of the

present invention.

[0014] Fig. 4 displays a block diagram representation of a node environment in accordance

with some embodiments of the present invention.

[0015] Fig. 5 displays a logic flow diagram representing a method of organizing data using a
linear grid management system in accordance with some embodiments of the present

invention.

[0016] Figs. 6A-6B, collectively known as Fig. 6, display a logic flow diagram representing a
method of querying data in a linear grid management system in accordance with some

embodiments of the present invention.



WO 2006/107772 PCT/US2006/012037

[0017] Fig. 7 displays a logic flow diagram representing a method of accessing an external
database with an external filter query in accordance with some embodiments of the present

invention.

[0018] Fig. 8 displays a logic flow diagram representing a method of accessing an external
database with an external support column query in accordance with some embodiments of the

present invention.

[0019] Fig. 9 displays a logic flow diagram representing a method of creating a parsing
process by a node in a linear grid management system in accordance with some embodiments

of the present invention.

[0020] Fig. 10 displays a logic flow diagram representing a method of executing a parsing
process by a node in a linear grid management system in accordance with some embodiments

of the present invention.

[0021] Fig. 11 displays a logic flow diagram representing a method of dispatching a data
query to a node in a linear grid management system in accordance with some embodiments of

the present invention.

[0022] Fig. 12 displays a logic flow diagram representing a method of processing a data
request by a node in a linear grid management system in accordance with some embodiments

of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0023] Referring now to the drawings, in which like numerals represent like components or
steps throughout the several views, Fig. 1 displays a block diagram representation of a linear
grid management system 100 in accordance with some embodiments of the present invention.
The linear grid management system 100 comprises a plurality of communication devices 106-
108 connected together via a communication network 103 (i.e., also referred to herein as a
“network 103”). One skilled in the art will recognize that the network 103 typically contains
the infrastructure and facilities appropriate to connect a group of two or more communication
devices 106-108 (including, without limitation, a plurality of computer systems in

communication with each other). The network 103 and communication devices 106-108 may



WO 2006/107772 PCT/US2006/012037

be configured in multiple network topologies including, but not limited to, star, bus, or ring
configurations. Also, the network 103 and communication devices 106-108 may be broadly
categorized as belonging to a particular architecture including, but not limited to, peer-to-peer
or client/server architectures. The network 103 may additionally be classified by the
geographical location of the communication devices 106-108 and the types thereof. For
example, if the network 103 connects a plurality of computer systems or servers located
proximate to each other, such as within a building, the network 103 is referred to as a local-
area network (LAN); if the computer systems are located farther apart, the network 103 is
generally referred to as a wide-area network (WAN), such as the Internet; if the computer
systems are located within a limited geographical area, such as a university campus or
military establishment, the network 103 is referred to as a campus-area network (CAN); if the
computer systems are connected together within a city or town, the network 103 is referred to
as a metropolitan-area network (MAN); and if the computer systems are connected together

within a user’s home, the network 103 is referred to as a home-area network (HAN).

[0024] The number of communication devices 106-108 within the linear grid management
system 100 may vary depending on the requirements of the linear grid management system
100. Although Fig. 1 illustrates three communication devices 106-108 connected to the
linear grid management system 100, those skilled in the art will appreciate that any number of
communication devices 106-108 may be connected to the linear grid management system 100
without departing from the scope of the present invention. The communication devices 106-
108 connect to the network 103 and, therefore, connect with each other communication
device 106-108. Each communication device 106-108, through use of a network interface
and other appropriate hardware and software components, connects to the network 103 for bi-
directional communication of signals and data therewith and, therefore, connects
communicatively to each other communication device 106-108 for the bi-directional

communication of signals and data therewith.

[0025] In one embodiment of the present invention, a communication device 106 comprises a
data storage interface 109, a metadata unit 121, a preSQL processing unit 124, a postSQL
processing unit 127, a dispatcher 130, a data merging unit 133, and a plurality of nodes
112A-112N connected with a plurality of data storage identifiers 115A-115N where each
identifies a memory storage device 118A-118N. While a communication device 106 may

comprise all of the aforementioned components, one skilled in the art will recognize that the



WO 2006/107772 PCT/US2006/012037

aforementioned components may reside on different communication devices 106-108 within

a distributed system.

[0026] For example and without limitation, Fig. 1 displays a first communication device 106
comprising the data storage interface 109, metadata unit 121, preSQL processing unit 124,
and postSQL processing unit 127. A second communication device 107 includes a plurality
of nodes 112A-112N each of which are connected with a plurality of data storage identifiers
115A-115N identifying multiple memory storage devices 118A-118N. A third

communication device 108 includes the dispatcher 130 and data merging unit 133.

[0027] In one embodiment of the present invention, the data storage interface 109 is adapted
to receive data for storage, receive data queries for data retrieval, and provide results received
from a data query. The data received by the data storage interface 109 for storage typically
has at least two dimensions. The two dimensions of data provide the linear grid management
system 100 with the necessary structure to generate a grid-base;d database system. A first
dimension of the data is associated with a node 112 of the communication device 107,
wherein the data is provided to the appropriate node 112 for storage. This node 112
corresponds to the value of the first dimension of the data. A second dimension of the data is
associated with a data storage identifier 115, wherein the data is stored by the appropriate
data storage identifier 115 that corresponds to the value of the second dimension of the data.
Each data storage identifier 115 is associated with a memory storage device 118 which stores
the received data and provides the stored data upon request from the data storage interface
109. When the data storage interface 109 receives the data for storage, the data storage
interface 109 sends the data to the node 112 that is associated with the first dimension of the
data. The appropriate node 112 then provides the data to the appropriate data storage '
identifier 115 associated with the second dimension of the data. The data storage identifier

115 then provides the data to the corresponding memory storage device 118 for storage.

[0028] When the data storage interface 109 receives a data query requesting data, the data
storage interface 109 processes the data query (described in more detail below with reference
to Fig. 3) and provides the processed data query to the dispatcher 130 for generating the
proper data requests to the appropriate nodes 112. Upon receiving the result set (e.g., the
merged results from each of the nodes 112) from the data merging unit 133 (described in
more detail below), the data storage interface 109 provides the retrieved data to the

requesting source (e.g., displays the results or provides the results to an external system that



WO 2006/107772 PCT/US2006/012037

made the initial request). One skilled in the art will recognize that such retrieved data may be

utilized to generate a report or data result table.

[0029] In one embodiment of the present invention, the data received by the data storage
interface 109 has the dimensions of “where,” “when,” and “what.” For example, the data of a
retail business may represent a product (the “what” dimension) purchased on a particular day
(the “when” dimension) at a particular store (the “where” dimension). To eliminate the use
of indexes within a database, the linear grid management system 100 may make physical
associations between the dimensions associated with the data and the location of the data
within the database. A node 112 within the linear grid management system 100 may be
associated with a particular store (the “where” dimension), while a data storage identifier 115
may be associated with a particular day (the “when” dimension). With the store and day, the
linear grid management system 100 may immediately identify the node 112 and data storage
identifier 115 containing the data, wherein the product (the “what” dimension) is part of the
data stored in the memory storage device 118 associated with the appropriate data storage
identifier 115. In particular, the product (the “what” dimension) may be used as the sorted
order of the data within the memory storage device 118, and, consequently, allows for
efficient searches of a specific item within the memory storage device 118. By eliminating
the use of indexes, the linear grid management system 100 may compress the data within the
memory storage devices 118 and, therefore, significantly reduce the amount of memory
required to house the data. This provides an advantage over current systems, because the
reduction in memory space required to store the data results in cost savings, over current

systems, for implementing the linear grid management system 100.

[0030] The metadata unit 121 contains hardware and/or software that maps a logical table to
the data stored in one or more of the memory storage devices 118. Instead of depending on
indexes as other database models require, the linear grid management system 100 may utilize
metadata to describe portions of data in the memory storage devices 118. The metadata unit
121 contains data field attributes to define a relationship between a logical table and the
physical data stored in the memory storage devices 118. Additionally, the metadata unit 121
may assign the logical table to a standard distribution file that associates the first dimension
of the data (e.g., “where”) to a physical node 112, where the first dimension of the data is
designated with a data field attribute identifying the first dimension of the data as a node. For

example, Table 1 displays metadata and a logical table illustrating the mapping between the



WO 2006/107772 PCT/US2006/012037

metadata and field data within the memory storage devices 118. In this example, the store
number (the “where” dimension) is designated as a node 112, the date (the “when”
dimension) is designated as a file name (e.g., data storage identifier 115), and the product
number (the “what” dimension) is designated as a combine index. One skilled in the art will
recognize that the metadata may comprise various data field attributes to adequately describe

the data stored in the database.

TABLE 1
Filename: metadata_customer
Contents: Custom table definitions
Keys: CHR = Character
Keys: UI = Un-packed Integer
Keys: UD = Un-packed Decimal
Keys: DT = Date

Length 5 = yyww (DT1)
Length 10 = mm/dd/yyyy (DT2)

Index types: N = Node hash
Index types: F = File name
Index types: I = Combine index

Physical type:  C = Compressed
Physical type: ~ F=Flat file

Physical type: M = Point of Sale Log
Physical type: S = System usage

Physical Name: Daily_Point_Of_Sale Physical Type: C

Column Number | Column Name [Type |Length |String |Field |Comments
l ! | | l |
N 1 STORE_NBR Ul 4 500 1
F 2 Year_Week DT 5 500 2 format
cyymm
I 3 Item_Number Ul 9 500 3
6 Report_Code CHR 1 500 4
7 Sell_Price UD 9 500 5
8 Wkly_Sales UD 10 500 6
9 Wkly_Qty Ul 5 500 7
10 Sat_Qty Ul 5 500 8
11 Sun_Qty Ul 5 500 9
12 Mon_Qty Ul 5 500 10
13 Tue_Qty Ul 5 500 11
14 Wed_Qty Ul 5 500 12
15 Thu_Qty Ul 5 500 13
16 Fri_Qty Ul 5 500 14




WO 2006/107772 PCT/US2006/012037

[0031] When the data storage interface 109 receives a data query requesting data, the data
storage interface 109 determines whether the data query requires accessing an external
database (e.g., external to the linear grid management system 100). If the data storage
interface 109 determines that accessing an external database is required, then the data storage
interface 109 provides the data query to the preSQL processing unit 124. The preSQL
processing unit 124 may create one or more external filter queries (e.g., queries designed to
narrow or focus the subsequent, internal queries of the nodes 112) from the submitted data
query, where the external filter queries are generated from references to the support tables
within the original data query and where the external filter queries are provided to the
external database. The preSQL processing unit 124 may also format and validate the result
set (e.g., the data set) received from the external database after processing the external filter
queries. From the result set, the preSQL processing unit 124 creates a subset of subqueries
for various nodes 112 of the linear grid management system 100. The preSQL processing
unit 124 then provides the subqueries to the specified nodes 112, such as through the
dispatcher 130. In one embodiment of the present invention, the preSQL processing unit 124
uses the result set received from the external database (after processing the generated external
filter queries) as a filter for searching the database of the linear grid management system 100.
More particularly, the preSQL processing unit 124 uses the result set as a list of matching
conditions for searching items in the linear grid management system 100. Accordingly, the
preSQL processing unit 124 may effectively narrow (e.g., filter) the necessary data queries
performed on the data within the present system, resulting in a more efficient data retrieval

process.

[0032] When the data storage interface 109 receives a data query requesting data, the data
storage interface 109 determines whether the data query requires accessing an external
database. If the data storage interface 109 determines that accessing an external database is
required, then the data storage interface 109 provides the data query to the postSQL
processing unit 127. The linear grid management system 100 does not require storing copies
of data and support tables from external databases 306 and, therefore, accesses the external
databases 306, when necessary, to obtain support tables for a submitted data query. The
postSQL processing unit 127 defines an external database table and prepares a load of data
for the external database table. The postSQL processing unit 127 then creates and submits an
external support column query to the external database. Upon receiving the result set from

the external database after processing the external support column query, the postSQL



WO 2006/107772 PCT/US2006/012037

processing unit 127 loads the received data (which defines the external tables) into the
created external database table. The postSQL processing unit 127 uses the result set received
from the external database to create at least one subquery for at least one node 112. Finally,
the postSQL processing unit 127 provides the subquery(ies) to the node(s) 112. In summary,
the postSQL processing unit 127 merges the data received from the nodes 112 with the
external tables acquired from accessing the external database with the external support

column query.

[0033] As discussed above, the data storage interface 109, through the dispatcher 130,
provides the submitted data query or created subqueries to the appropriate nodes 112 of the
linear gird management system 100. Each node 112 is configured with hardware and
software appropriate to perform tasks and provide capabilities and functionality as described
herein. Each node 112 is associated with a first dimension (e.g., the “where” dimension) of
the data stored within the memory storage devices 118. Accordingly, the nodes 112 provide
a physical location identified by the first dimension of the data. Each node 112 comprises at
least one data storage identifier 115, wherein each data storage identifier 115 corresponds to a
memory storage device 118. Each data storage identifier 115 is associated to the second
dimension (e.g., the “when” dimension) of the data, wherein the data storage identifier 115
provides a physical location identified by the second dimension of the data. As discussed in
more detail below, each node 112 receives a data query or subquery referencing the first
dimension of the data. Each node 112 creates one or more parsing processes that may be
executed independently from parsing processes occurring at other nodes 112. Each parsing
process may create a list of memory storage devices 118 to search based on the second
dimension (e.g., the “when” dimension) of the data. Then, each parsing process accesses the
appropriate memory storage devices 118 to uncompress, open and read the memory storage
devices 118 for relevant data. Each parsing process parses the data stored in each memory
storage device 118 to retrieve the appropriate data requested by the received data query or

subquery.

[0034] The memory storage device 118 stores data that has at least two dimensions. In one
embodiment of the present invention, the data within the memory storage device 118 is
ordered by a third dimension (e.g., the “what” dimension) of the data. The memory storage
device 118 may be a memory device capable of storing and retrieving data including, but not

limited to, volatile and/or non-volatile memory. The multi-dimensional data may be stored in

10



WO 2006/107772 PCT/US2006/012037

a variety of formats within memory storage device 118. For example, the memory storage
device 118 may include a flat file identified by a file name (e.g., the data storage identifier
115). The memory storage device 118 may receive the multi-dimensional data from the data
storage interface 109 through a particular node 112. The memory storage device 118 may
then store the multi-dimensional data and provide the multi-dimensional data to the data

storage interface 109, the node 112, or the dispatcher 130.

[0035] The dispatcher 130 receives a submitted data query or created subqueries from either
the data storage interface 109, the preSQL processing unit 124, or the postSQL processing
unit 127 and provides the submitted data query or created subqueries to the appropriate nodes
112 or external database. The dispatcher 130 also receives result sets from the appropriate
nodes 112 or the external database 306 and provides the received result sets to either a data
merging unit 133, the data storage interface 109, the preSQL processing unit 124, or the
postSQL processing unit 127. The dispatcher 130 may also determine whether a data query
has been submitted (e.g., from the data storage interface 109). In operation, the dispatcher
130 retrieves the data query from a common memory space and calculates the workload
capacity for each appropriate node 112 related to the data query. The dispatcher 130 then
creates a data subrequest(s) relating to an appropriate node 112 and provides the data
subrequest to the appropriate node 112, when the appropriate node’s 112 workload capacity
is within a predetermined ranged. As an example, the dispatcher 130 may dispatch the data
subrequest by creating a request file that contains a header followed by the data subrequest
text. Generally, one request file is created for each appropriate node 112 being used to fulfill
the data query and the request file may be placed in common memory (e.g., shared memory
between several of the components of the linear grid management system 100) for the
appropriate node 112 to retrieve. The dispatcher 130 and nodes 112 may utilize a special

lock file to synchronize requests, which is also maintained on the common memory.

[0036] The data merging unit 133 retrieves or receives the result sets from the nodes 112 or
external database 306 (after being accessed by the preSQL processing unit 124 or the
postSQL processing unit 127) and may merge all of the result sets into a single final results
set representing the originally submitted data query that was provided to the data storage
interface 109. Accordingly, the data merging unit 133 receives result sets from an external
database 306, the preSQL processing unit 124, the postSQL processing unit 127, or the

dispatcher 130. Further, the data merging unit 133 retrieves results sets from a common

11



WO 2006/107772 PCT/US2006/012037

memory space and merges all received and/or retrieved result sets. Also, the data merging
unit 133 validates the final results created through the merge and provides the final results set

to the data storage interface 109 for display or reporting.

[0037] One skilled in the art will recognize that portions of the linear grid management
system, discussed above, may be connected through any appropriate type of connection for
bi-directional communication of signals and/or media including, but not limited to, analog,
digital, wired and wireless communication channels. Such communication channels may
utilize, but not be limited to, copper wire, optical fiber, radio frequency, infrared, satellite, or

other facilities and media.

[0038] Fig. 2 displays a block diagram representation of a computing environment 200 which
may be utilized in accordance with some embodiments of the present invention.
Communication devices 106-108 of the linear grid management system 100 may include, but
are not limited to, personal computers, mainframe computers, servers, hand-held or laptop
devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable
consumer electronics, network PCs, minicomputers, mainframe computers, distributed
computing environments that include any of the above systems or devices, and the like. It
should be understood, however, that the features and aspects of the exemplary embodiment of
the present invention may be implemented by or into a variety of systems and system
configurations and any examples provided within this description are for illustrative purposes

only.

[0039] Fig. 2 and the following discussion provide a general overview of a platform onto
which an embodiment of the present invention, or portions thereof, may be integrated,
implemented and/or executed. Although reference has been made to instructions within a
software program being executed by a processing unit, those skilled in the art will understand
that at least some of the functions performed by the software may also be implemented by
using hardware components, state machines, or a combination of any of these techniques. In
addition, a software program which may implement an embodiment of the present invention
may also run as a stand-alone program or as a software module, routine, or function call,
operating in conjunction with an operating system, another program, system call, interrupt
routine, library routine, or the like. The term program module is used herein to refer to

software programs, routines, functions, macros, data, data structures, or any set of machine

12



WO 2006/107772 PCT/US2006/012037

readable instructions or object code, or software instructions that may be compiled into such,

and executed by a processing unit 212.

[0040] Turning now to the figure, computing device 210 (e.g., communication device 106)
may comprise various components including, but not limited to, a processing unit 212, a non-
volatile memory 214, a volatile memory 216, and a system bus 218 that couples the non-
volatile memory 214 and the volatile memory 216 to the processing unit 212. The non-
volatile memory 214 may include a variety of memory types including, but not limited to,
read only memory (ROM), electronically erasable read only memory (EEROM),
electronically erasable and programmable read only memory (EEPROM), electronically
programmable read only memory (EPROM), electronically alterable read only memory
(EAROM), FLASH memory, bubble memory, battery backed random access memory
(RAM), CDROM, digital versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magneto-optical storage devices, magnetic disk storage or other
magnetic storage devices, or any other medium which may be used to store the desired
information. The non-volatile memory 214 may provide storage for power-on and reset
routines (bootstrap routines) that are invoked upon applying power or resetting the computing
device 210. In some configurations the non-volatile memory 214 may provide the basic
input/output system (BIOS) routines that are utilized to perform the transfer of information

between elements within the various components of the computing device 210.

[0041] The volatile memory 216 may include, but is not limited to, a variety of memory
types and devices including, but not limited to, random access memory (RAM), dynamic
random access memory (DRAM), synchronous dynamic random access memory (SDRAM),
double data rate synchronous dynamic random access memory (DDR-SDRAM), bubble
memory, registers, or the like. The volatile memory 216 may provide temporary storage for
routines, modules, functions, macros, data, etc. that are being or may be executed by, or are

being accessed or modified by, the processing unit 212.

[0042] Alternatively, the non-volatile memory 214 and/or the volatile memory 216 may be a
remote storage facility accessible through a wired and/or wireless network system.
Additionally, the non-volatile memory 214 and/or the volatile memory 216 may be a memory
system comprising a multi-stage system of primary and secondary memory devices, as
described above. The primary memory device and secondary memory device may operate as

a cache for the other or the second memory device may serve as a backup to the primary

13



WO 2006/107772 PCT/US2006/012037

memory device. In yet another embodiment, the non-volatile memory 214 and/or the volatile
memory 216 may comprise a memory device configured as a simple database file or as a

searchable, relational database using a query language, such as SQL.

[0043] The computing device 210 may access one or more external display devices 230 such
as a CRT monitor, LCD panel, LED panel, electro-luminescent panel, or other display device,
for the purpose of providing information or computing results to a user. In some
embodiments, the external display device 230 may actually be incorporated into the product

. itself. For example, the computing device 210 may be a mobile device having a display
device 230. The processing unit 212 may interface to each display device 230 through a

video interface 220 coupled to the processing unit 210 over the system bus 218.

[0044] In operation, the computing device 210 sends output information to the display "230
and to one or more output devices 236 such as a speaker, modem, printer, ploiter, facsimile
machine, RF or infrared transmitter, computer or any other of a variety of devices that may be
controlled by the computing device 210. The processing unit 212 may interface to each
output device 236 through an output interface 226 coupled to the processing unit 212 over the
system bus 218.

[0045] The computing device 210 may receive input or commands from one or more input
devices 234 such as, but not limited to, a keyboard, pointing device, mouse, modem, RF or
infrared receiver, microphone, joystick, track ball, light pen, game pad, scanner, camera,
computer or the like. The processing unit 212 may interface to each input device 234 through

an input interface 224 coupled to the processing unit 212 over the system bus 218.

[0046] It will be appreciated that program modules implementing various embodiments of
the present invention may be stored in the non-volatile memory 214, the volatile memory
216, or in a remote memory storage device accessible through the output interface 226 and
the input interface 224. The program modules may include an operating system, application
programs, other program modules, and program data. The processing unit 212 may access
various portions of the program modules in response to the various instructions contained
therein, as well as under the direction of events occurring or being received over the input

interface 224.

[0047] The computing device 210 may provide data to and receive data from one or more

other storage devices 232, which may provide volatile or non-volatile memory for storage

14



WO 2006/107772 PCT/US2006/012037

and which may be accessed by computing device 210. The processing unit 212 may interface

to each storage device 232 through a storage interface 222 over the system bus 218.

[0048] The interfaces 220, 222, 224, 226, and 228 may include one or more of a variety of
interfaces, including but not limited to, cable modems, DSL, T1, T3, optical carrier (e.g., OC-
3), V series modems, an RS-232 serial port interface or other serial port interface, a parallel
port interface, a universal serial bus (USB), a general purpose interface bus (GPIB), an
optical interface such as infrared or IrDA, an RF or wireless interface such as Bluetooth, or

other interface.

[0049] Fig. 3 displays a block diagram representation of a linear grid management system
100 with common space 303 for node 112 communications in accordance with some
embodiments of the present invention. To facilitate multiple data subqueries and multiple
parsing processes, the linear grid management system 100 may use a common space memory
303 which is shared between the communication devices 106-108. The common space
memory 303 may be a memory device capable of storing and retrieving data including, but
not limited to, volatile and/or non-volatile memory. The common space memory 303 may
receive and provide data requests and/or subrequests, log data, and retrieved data (e. g,
retrieved result sets from a node 112 or external database 306). Accordingly, the common
space memory 303 may be connected to the database storage interface 109, preSQL
processing unit 124, postSQL processing unit 127, dispatcher 130, data merging unit 133,
nodes 112A-112N, and corresponding parsing processes 318A-318N.

[0050] The common space memory 303 may contain a data request unit 309, logging unit
312, and retrieved data unit 315. More specifically, the data request unit 309, logging unit
312, and retrieved data unit 315 may be a memory device similar to, but not limited to,
volatile and/or non-volatile memory. The data request unit 309 receives and provides data
requests and subrequests from or to the data storage interface 109, the dispatcher 130, the
preSQL processing unit 124, the postSQL processing unit 127, and/or the nodes 112. The
logging unit 312 receives and provides log data to and from the dispatcher 130, the data
storage interface 109, the preSQL processing unit 124, the postSQL processing unit 127,
and/or the parsing processes 318A-318N. The retrieved data unit 315 receives and provides
data results sets from and to the parsing processes 318A-318N via the nodes 112, the
dispatcher 130, the preSQL processing unit 124, the postSQL processing unit 127, and/or the
data merging unit 133. One skilled in the art will recognize that the data request unit 309, the

15



WO 2006/107772 PCT/US2006/012037

logging unit 312 and the retrieved data unit 315 may be separate memory devices or may be

predetermined portions of a single memory device, such as the common space memory 303.

[0051] As described for fully below with reference to Fig. 4, each node 112 may create at
least one parsing process 318 for accessing data stored in the appropriate memory storage
devices 118. The parsing process 318 may generate a list of memory devices 118 to query,
based on the received data request or subrequest. After generating the list, the parsing
process 318 accesses each memory storage device 118 in the generated list, which may
include uncompressing, opening, and reading each memory storage device 118. Once the
parsing process 318 has accessed each appropriate memory storage device 118, the parsing
process 318 parses the data stored in each memory storage device 118 based on the original
data request or subrequest provided to the node 112. Accordingly, multiple parsing processes
318A-318N may be created and processed simultaneously. Each parsing process 318 may
generate a results set from accessing the memory storage devices 118 and may provide the

results set to the retrieved data unit 315 of the common space memory 303.

[0052] In one embodiment of the present invention, the data storage interface 109 may
receive a data query requesting certain data from the linear grid management system 100.
The data storage interface 109 may parse and validate the data query (by, for example,
accessing the metadata unit 121), wherein the data storage interface 109 may determine
whether the received data query requires accessing an external database 306. If the data
storage interface 109 determines that the received data query requires accessing an external
database 306, the data storage interface 109 provides the data query to the preSQL processing
unit 124 and postSQL processing unit 127. After receiving the data query, the preSQL
processing unit 124 generates an external filter query, which is sent to the external database
306. The external database 306 provides a result set to the preSQL processing unit 124,
where the preSQL processing unit 124 uses the result set from the external database 306 as a
list of matching conditions for searching data via the nodes 112. Accordingly, subrequests
may be generated for each appropriate node 112 reflecting the list of matching conditions for
filtering purposes. The subrequests are provided to the dispatcher 130 (or, alternatively, to
the data request unit 309 of the common space memory 303), where the dispatcher 130
calculates the workload capacity of each node 112A-112N. The dispatcher 130 then submits
log data to the logging unit 312 and schedules the subrequests for execution by the nodes

112. If necessary, the dispatcher 130 also provides the subrequests to the data requesting unit

16



WO 2006/107772 PCT/US2006/012037

309 for storage. The appropriate nodes 112 may then receive the subrequests from the data
requesting unit 309 (or, alternatively, from the dispatcher 130). Based on the subrequest, the
node 112 may generate and execute at least one parsing process 318, which accesses data
stored in the appropriate memory storage devices 118. The parsing processes 318A-318N
then provides the result sets generated from accessing the memory storage devices 118 to the
retrieved data unit 316 and provides log data to the logging unit 312 to indicate that the result
set from the appropriate node 112 is available. After determining that the result set is
available by accessing the log data in the logging unit 312, the dispatcher 130 retrieves the
result set from the retrieved data unit 315 and provides the result set to the postSQL
processing unit 127 or the data merging unit 133. Alternatively, the data merging unit 133 or
the postSQL processing unit 127 determines that the result set is available by accessing the
log data in the logging unit312, and retrieves the result set from the retrieved data unit 315.
Next, the postSQL processing unit 127 generates an external support query and provides the
external support query to the external database 306 to retrieve the support column data, which
may be merged with the retrieved result set. Alternatively, the postSQL processing unit 127
may provide the retrieved result set and the retrieved support column data to the data merging
unit 133, which performs the merge between the results set and support column data. The
data merging unit 133 receives or retrieves all result sets stored in the retrieved data unit 315
and merges all of the result sets to produce a final result set that reflects all of the data
requested in the original data query provided to the data storage interface 109. The data
merging unit 133 then provides the final result set to the data storage interface 109 or other

requesting process for display or reporting.

[0053] Fig. 4 displays a block diagram representation of a node environment 403 in
accordance with some embodiments of the present invention. To properly facilitate multiple
data queries, each node 112 may reside in a node environment 403, wherein the node
environment 403 is capable of facilitating all of the necessary activity of the node 112. The
node environment 403 contains the node 112, node log manager 421, node result manager
424, node log unit 412, work control unit 415, and XML (extensible markup language)
request unit 418. Additionally, the specific node 112 may contain a node request manager

406 and a node master 409.

[0054] The node request manager 406 monitors the data request unit 309 of the common

space memory 303 for new data requests. When a new data request arrives in the data

17



WO 2006/107772 PCT/US2006/012037

request unit 309, the node request manager 406 retrieves the new data request from the data
request unit 309. Next, the node request manager 406 prepares the new data request for
processing and provides log data to the node log unit 412, indicating that a new data request
is ready for execution. Finally, the node request manager 406 provides the new data request

to the node master 409.

[0055] Generally, the node master 409 receives a new data request from the node request
manager 406. Upon receiving the new data request, the node master 409 generates a specific
and efficient parsing process 318 and provides a request to the work control unit 415 to
schedule execution of the parsing process 318. The node master 409 then dispatches the
parsing process 318 when instructed by the work control unit 415. At the node environment
403, the node master 409 operates similarly to the dispatcher 130 of the linear grid
management system 100 and, therefore, controls the work flow (e.g., requests for data) of the

corresponding node 112.

[0056] The node log unit 412 communicates connectively to the node master 409, parsing
process 318, and node log manager 421. More specifically, the node log unit 412 is operable
for receiving log data from the node master 409 and parsing process 318 and providing log
data to the node log manager 421. In one embodiment of the present invention, the node
master 409 provides the node log unit 412 with log data after scheduling a parsing process
318 with the work control unit 416. Also, the parsing process 318 provides log data to the
node log unit 412 upon providing a result set to the node result manager 424. In response to
receiving log data, the node log unit 412 provides the log data to the node log manager 421,

as described below.

[0057] The work control unit 415 communicates with both the node master 409 and parsing
process 318. The work control unit 415 also receives a request from the node master 409 to
execute a parsing process 318 and instructs the node master 409 that the parsing process 313
may be executed at a particular time. In other words, the work control unit 416 simulates a
work queue where scheduled requests for executing a parsing process are executed in a
particular order. The work control unit 415 may also be operable via the node master 409 for

initiating execution of the parsing process 318.

[0058] The XML request unit 418 communicates with the node master 409 and the parsing
process 318. An XML request is typically created by preSQL processing unit 124 after all

18



WO 2006/107772 PCT/US2006/012037

activity with external database 306 has been successfully completed. The XML request is
then dispatched to each node 112 by the dispatcher 130 via the dispatcher request unit 309.
The XML request may be received by the node request manager 406, where the node master
409 provides the XML request to the XML request unit 418 for processing. The XML
request unit 418 receives XML requests from the node master 409 that, when executed,
initiate execution of the parsing process 318. More specifically, the XML request unit 418
schedules the execution of the parsing process 318, which is then dispatched by the node
master 409. For example and not limitation, the node master 409 may be notified by the
work control unit 415 that a particular parsing process 318 may be executed. Accordingly,
the XML request unit 418 performs the received XML request by initiating execution of the
parsing process 318. The node master 409 may then provide an XML request to the XML
request unit 418 indicating that the parsing process 318 is being executed. One skilled in the
art will recognize that a script other than XML may be used within the scope of the invention
and, therefore, the present invention is not limited to an XML request unit 418 or XML script

as described above.

[0059] The node log manager 421 is communicates with the node log unit 412 and the
logging unit 312 of the common space memory 303. More particularly, the node log
manager 421 receives log data from the node log unit 412 indicating that the node master 409
has scheduled a request with the work control unit 415. The node log manager 421 also
receives log data from the node log unit 412 indicating that the parsing process 318 has
finished execution. The node log manager 421 provides the log data to the logging unit 312
so that the dispatcher 130, the postSQL processing unit 127, the data storage interface 109, or
the data merging unit 133 may be notified when a subquery has been scheduled and/or

performed.

[0060] The node result manager 424 is connected with the parsing process 318 and retrieved
data unit 315. Further, the node result manager receives a data result set from the parsing
process 318 (where the data result set is generated from querying a memory storage device
118) and provides the received data result set to the retrieved data unit 316 of the common
space memory 303. In other words, the parsing process 318 provides the data result set to the
node result manager 424, which in turn provides the data result set to the retrieved data unit
315.

19



WO 2006/107772 PCT/US2006/012037

[0061] In operation, the node request manager 406 retrieves a new data request from the data
request unit 309 and provides log data to the log unit 412 indicating that a new data request
has been received. The node log unit 412 provides the log data to the node log manager 421,
which provides the log data to the logging unit 312 of the common space memory 303. The
node request manager 406 then provides the data request to the node master 409, which
generates a parsing process 318 related to the received data request. Next, the node master
409 schedules an execution of the parsing process 318 with the work control unit 415. When
the work control unit 415 determines that the parsing process 318 should be executed, the
work control unit 416 notifies the node master 409, which provides an XML request to the
XML request unit 418 instructing that the parsing process 318 should be executed. The XML
request unit 418 processes the XML request and, accordingly, begins execution of the parsing
process 318. Once the parsing process 318 generates a result set from querying the
appropriate memory storage devices 118, the parsing process 318 provides the result set to
the node result manager 424 and provides log data to the node log unit 412 indicating that a
result set has been generated. The node log unit 412 then provides the log data to the node
log manager 421, which provides the log data to the logging unit 312 of the common space
memory 303. Once the node result manager 424 receives the result set from the parsing
process 318, the node result manager 424 provides the result set to the retrieved data unit 315

of the common space memory 303.

[0062] Fig. 5 displays a logic flow diagram representing a method 500 of organizing data
using a linear grid management system 100 in accordance with some embodiments of the
present invention. The linear grid management system 100 provides a cost-efficient database
utilizing independent processes to solve a single query request. By using at least two
dimensions of the data, the linear grid management system 100 eliminates the need for index
files and, therefore, allows data to be substantially compressed. The storing and organizing
of data within the linear grid management system 100 implements a relationship between the
dimensions of the data and physical attributes of where the data is located within the

database.

[0063] The method 500 of organizing data using a linear grid management system 100 begins
at 503, where the data storage interface 109 receives data for storage having at least two
dimensions. The linear grid management system 100 uses two dimensions to organize and

store the data, but one skilled in the art will recognize that the data may have multiple

20



WO 2006/107772 PCT/US2006/012037

dimensions of data, wherein the linear grid management system 100 may select particular
dimensions of the data for organization and storage. At 506, a node 112, having a physical
location within a communication device 107, is associated with a first dimension of the data
(e.g., the “where” dimension). Next, at 512, a data storage identifier 115, which identifies a
memory storage device 118 with a physical location within a communication device 107, is
associated with a second dimension of the data (e.g., the “when” dimension). The data is
then stored 515 in a memory storage device 118 identified by the data storage identifier 115
and associated with the node 112. In another embodiment of the present invention, the data
may have a third dimension (e.g., the “what” dimension), wherein the data is stored within

the memory storage device 118 in a particular order defined by the third dimension.

[0064] Next, the metadata unit 121 maps 518 a logical table to the data in the memory
storage device 118, by using field attributes defined within the predetermined metadata.

Finally, the data storage interface 109 terminates operation in accordance with method 500.

[0065] Figs. 6A-6B, collectively known as Fig. 6, display a logic flow diagram representing a
method 600 of querying data in a linear grid management system 100 in accordance with
some embodiments of the present invention. Once data has been stored within the database
of the linear grid management system 100, data queries may be received from an external
source or generated locally. A data request within the linear grid management system 100
may be accomplished efficiently, because the conditions of the data request relate to the
dimensions (e.g., two or three selected dimensions) of the data, which is associated with
physical locations within the database. For example and not limitation, a data query
requesting data regarding a particular product at a particular store on a particular day results
in parsing the data at a particular memory storage device 118 identified by a particular data
storage identifier 115 (associated with the particular day) associated with a particular node

112 (associated with the particular store).

[0066] The method 600 of querying data in a linear grid management system 100 begins at
603, where the data storage interface 109 receives a data query having conditions relating to
at Jeast two dimensions of data. At 606, the data storage interface 109 determines whether
there is a need to access an external database 306. The data storage interface 109 makes such
a determination by examining the data query to evaluate whether the data query references
support tables of an external database 306. If at 606, the data storage interface 109

determines that there is a need to access an external database 306, then the method 600

21



WO 2006/107772 PCT/US2006/012037

proceeds to 609 where the data storage interface 109 creates an external filter query and
external column query. After the data storage interface 109 provides the external filter query
to the preSQL processing unit 124, the preSQL processing unit 124, at 612, accesses the
external database 306 by providing the external filter query to the external database 306.

[0067] At 615, the dispatcher 130 generates at least one data request from at least one node
112, wherein the data request is related to the provided data query (e.g., the data request
represents a subset of the data requested by the provided data query). The dispatcher 130
may directly provide the data request to the node 112, or may provide the data request to the
data request unit 309 of the common space memory 303. If the node 112 does not receive the
data request directly, then the node request manager 406 may retrieve the data request from
the data request unit 309 for processing. Next, at 618, a parsing process 318, generated by
the node master 409, retrieves data from memory‘ storage device 118 associated with the node
112. The result set received from the memory storage device 118 is then provided by the

node result manager 424 to the retrieved data unit 315 of the common space memory 303.

[0068] Next, at 621 the data storage interface 109 determines whether there is a need to
access the external database 306. If at 621 the data storage interface 109 determines that
there is a need to access the external database 306, then the postSQL processing unit 127 is
provided with the external support column query, where, at 624, the postSQL processing unit
127 accesses the external database 306 by providing the external database 306 with the

external support column query.

[0069] At 627, the data merging unit 133 merges the result sets received from the node 112
(via the retrieved data unit 315) and then, if necessary, merges the result with the result set
retrieved from the external database 306 (via the postSQL processing unit 127). Finally, the

data storage interface 109 terminates operation in accordance with method 600.

[0070] If, however, at 606 the data storage interface 109 determines that there is no need to
access an external database 306, then the method 600 proceeds to 615, described above.
Additionally, if at 621 the data storage interface 109 determines that there is no need to

access the external database 306, then the method proceeds to 627, described above.

[0071] Fig. 7 displays a logic flow diagram representing a method 700 of the routine 612 of
Fig. 6A for accessing an external database 306 with an external filter query in accordance

with some embodiments of the present invention. As described above with reference to Fig.

22



WO 2006/107772 PCT/US2006/012037

6A, the preSQL processing unit 124 accesses the external database 306 with the external
filter query.

[0072] The method 700 of accessing an external database 306 with an external filter query
begins at 703, where the preSQL processing unit 124 submits the external filter query to the
external database 306. Next, at 706 the preSQL processing unit 124 formats and validates the
result set received from the external database 306 in response to the external filter query. At
709, the preSQL processing unit 124 creates at least one subquery of at least one node 112
from the result set. The subquery is typically related to the result set received from the
external database 306. More particularly, the preSQL processing unit 124 utilizes the result
set to create a list of matching conditions to be applied to the subquery, thus filtering the
subsequent search of items in the linear grid management system 100. At 712, the preSQL
processing unit 124 provides the subquery to the node 112 for data retrieval. The subquery
may be provided directly to the node 112 by the preSQL processing unit 124, or may be
provided indirectly through the data storage interface 109 or by the dispatcher 130. In one
embodiment of the present invention, the preSQL processing unit 124 provides the subquery
to the dispatcher 130, which provides the subquery as a data request to the data request unit
309 of the common space memory 303. The preSQL processing unit 124 then terminates

operation in accordance to method 700.

[0073] Fig. 8 displays a logic flow diagram representing a method 800 of routine 624 of Fig.
6B for accessing an external database 306 with an external support column query in
accordance with some embodiments of the present invention. As described above with
reference to Fig. 6B, the postSQL processing unit 127 accesses the external database 306

with the external support column query.

[0074] The method 800 of accessing an external database 306 with an external support
column query begins at 803, where the postSQL processing unit 127 defines a temporary
external database table. At 806, the external database table is then prepared for a load, in
anticipation of the result set to be received from the external database 306. Then, at 809, the
postSQL processing unit 127 provides the external support column query to the external
database 306 for processing. At 812 the postSQL processing unit 127 receives a result set
from the external database 306 after processing the external support column query. In

another embodiment of the present invention, the result set received by the external database

23



WO 2006/107772 PCT/US2006/012037

306 may be stored in a remote table residing with the external database 306. Data may then

be retrieved by the linear grid management system 100 when necessary for processing.

[0075] Next, at 815 the postSQL processing unit 127 generates a subquery for a node 112,
where the subquery relates to the support column information provided in the result set. At
818 the postSQL processing unit 127 provides the subquery to the at least one node 112 for
data retrieval. The subquery may be provided directly to the node 112 by the postSQL
processing unit 127 or may be provided indirectly through either the data storage interface
109 or by the dispatcher 130. In one embodiment of the present invention, the postSQL
processing unit 127 provides the subquery to the dispatcher 130, which then provides the
subquery as a data request to the data request unit 309 of the common space memory 303.

The postSQL processing unit 127 then terminates operation in accordance to method 800.

[0076] Fig. 9 displays a logic flow diagram representing a method 900 of creating a parsing
process 318 by a node 112 in a linear grid management system 100 in accordance with some
embodiments of the present invention. Once a node 112 receives a data request or query, the
node 112 generates a parsing process 318 to efficiently parse the appropriate data related to
the received data request. Accordingly, the nodes 112 of the linear grid management system
100 may generate and execute independent parsing processes 318 simultaneously, thus

providing effective and efficient parsing of data within the database.

[0077] The method 900 of creating a parsing process 318 by a node 112 in a linear grid
management system 100 begins at 903, where the node 112 receives a data request/query.
The node 112 may receive the data request directly from the dispatcher 130 or the data
storage interface 109, or may indirectly receive the data request from the data request unit
309 of the common space memory 303. In the latter case, the node request manager 406
monitors the data request unit 309 for new data requests. When the node request manager
406 receives or retrieves a new data request, it forwards the data request to the node master
409. At 906, the node 112, through the node master 409, creates an individual, efficient |
parsing process 318 to be used to retrieve data from the memory storage devices 118
associated with the node 112. Next at 909, the node master 409 initiates the execution of the
parsing process 318. At described above, the node master 409 may first schedule the
execution of the parsing process 318 with the work control unit 415, which notifies the node
master 409 when execution of the parsing process 318 may begin. Upon receiving the

notification from the work control unit 415, the node master 409 may provide an XML

24



WO 2006/107772 PCT/US2006/012037

request to the XML request unit 418 which initiates the parsing process 318. At 912, the
node 112 receives the result set (e.g., data) from the memory storage devices 118. The node
112 may receive the result set from the parsing process 318 from the node result manager
424, which provides the result set to the retrieved data unit 315 of the common space memory

303. Finally, the node 112 terminates operation in accordance to method 900.

[0078] Fig. 10 displays a logic flow diagram representing a method 1000 of routine 909 of
Fig. 9 for executing a parsing process 318 by a node 112 in a linear grid management system
100 in accordance with some embodiments of the present invention. Described above with
reference to Fig. 9, the node 112 executes the parsing process 318 to access the memory

storage devices 118.

[0079] The method 1000 of executing a parsing process 318 by a node 112 in a linear grid
management system 100 begins at 1003, where the node master 409 creates a list of memory
storage devices 118 appropriate for searching, based on a first dimension (e.g., the “where”
dimension) of the data referenced in the received data request. Next at 1006, the parsing
process 318 accesses each memory device 118 to retrieve data, wherein the parsing process
318 decompresses, opens, and reads the data within the listed memory storage units 118.
Then at 1009, the parsing process 318 parses the data stored in each listed memory storage

unit 118. Lastly, the node master 409 terminates operation in accordance to method 1000.

[0080] Fig. 11 displays a logic flow diagram representing a method 1100 of dispatching a
data query to a node 112 in a linear grid management system 100 in accordance with some
embodiments of the present invention. As described above, the dispatcher 130 may
coordinate data requests to each node 112 of the linear grid management system 100, wherein
all of the data requests to the nodes 112 represent (when merged together) the originally

submitted data query (although accessing an external database 306 may also be necessary).

[0081] The method 1100 of dispatching a data query to a node 112 in a linear grid
management system 100 begins at 1103, where the dispatcher 130 determines whether a data
request has been submitted. The dispatcher 130 may determine whether the data request has
been submitted by directly communicating with the data storage interface 109 or by indirectly
accessing the data request unit 309 of the common space memory 303. If the dispatcher 130
determines that no data request has been submitted, then the dispatcher 130 repeats the

determination 1103, as described above. Otherwise, if at 1103 the dispatcher 130 determines

25



WO 2006/107772 PCT/US2006/012037

that a data request has been submitted, then method 1100 proceeds to 1106 where the
dispatcher 130 retrieves the submitted data request. Again, the data request may be received
or retrieved from the data storage interface 109 or from the data request unit 309 of the
common space memory 303. Next, at 1109 the dispatcher 130 calculates the workload
capacity for each appropriate node 112. One skilled in the art will recognize that such a
calculation may be made by determining how many processes are being executed at each
node 112 and comparing the number to a predetermined maximum. Then, at 1112 the
dispatcher 130 creates a data subrequest of data for each appropriate node 112. At 1115 the
dispatcher 130 provides the subrequest to the appropriate node(s) 112, where the dispatcher
130 may provide the subrequest directly to the node 112 or may provide the subrequest to a
data request unit 309 of the common space memory 303. Finally, the dispatcher 130

terminates operation in accordance to method 1100.

[0082] Fig. 12 displays a logic flow diagram representing a method 1200 of processing a data
request by a node 112 in a linear grid management system 100 in accordance with some
embodiments of the present invention. Each node 112 may regulate its own workload and,
therefore, may determine when to process a data request provided by the dispatcher 130.

Accordingly, multiple nodes 112 may be processing data requests simultaneously.

[0083] The method 1200 of processing a data request by a node 112 in a linear grid
management system 100 begins at 1203, where the node request manager 406 determines
whether a data request has been submitted. The node request manager 406 makes this
determination when provided a data request from the dispatcher 130 or by polling the data
request unit 309 for new data requests. If the node request manager 406 determines that no
new data requcsté have been submitted, then the node request manager 406 proceeds to make
the same determination 1203. If, however, at 1203 the node request manager 406 determines
that a new data request has been submitted, then, at 1206, node request manager 406 retrieves
the submitted data request from the data request unit 309 in the common space memory 303.
The node request manager 406 may then log the receipt of the new data request with the node

log unit 412 and provide the new data request to the master node 409.

[0084] Next, at 1209 the master node 409 creates an efficient parsing process 318 related to
the received data request. Then, at 1212 the master node 409 schedules the parsing process
318 for execution with the work control unit 415. The work control unit 415 notifies the

master node 409 when the parsing process 318 may be executed. At 1215 the master node

26



WO 2006/107772 PCT/US2006/012037

409 executes the parsing process 318 by providing an XML request to the XML request unit
418. The XML request unit 418 processes the request to initiate the execution of the parsing
process 318. Upon execution of the parsing process 318, the parsing process 318 provides
the node log unit 412 with log data indicating that the parsing process 318 has completed.
Upon completion, the parsing process 318 provides the generated result set to the node result
manager 424. Finally, the parsing process 318 then terminates in accordance with method
1200.

[0085] Whereas the present invention has been described in detail it is understood that
variations and modifications can be effected within the spirit and scope of the invention, as
described herein before and as defined in the appended claims. The corresponding structures,
materials, acts, and equivalents of all mean-plus-function elements, if any, in the claims
below are intended to include any structure, material, or acts for performing the functions in

combination with other claimed elements as specifically claimed.

27



WO 2006/107772 PCT/US2006/012037

CLAIMS

‘What is claimed is:

1. A method for organizing data, comprising:

receiving data at a data storage interface, wherein the data has at least two
dimensions;

associating a node with a first dimension of the data, wherein the node is
associated with at least one data storage identifier;

associating the at least one data storage identifier with a second dimension of
the data; and

providing the data from the data storage interface to a memory storage device

identified by the data storage identifier associated with the node.

2. The method of claim 1 further comprising:
using metadata to map a logical table to the data stored in the memory storage
device, wherein the metadata comprises at least one data field attribute that describes a

portion of the data stored in the memory device.

3. The method of claim 2, wherein the metadata comprises:

a first data field attribute describing the first dimension of the data, wherein
the first data field attribute identifies the first dimension as the node; and

a second data field attribute describing the data storage identifier, wherein the

second data field attribute identifies the second dimension as the data storage identifier.

4, A method for querying organized data, comprising:
receiving a data query at a data query interface, wherein the data query
references at least two dimensions of data;
determining whether the data query requires accessing an external database;
if the data query requires accessing the external database, executing a first
sequence, comprising:
creating an external filter query and an external support column query;
accessing the external database with the external filter query;
requesting data from at least one node, wherein the at least one node is

associated with a first dimension of data referenced by the data query;

28



WO 2006/107772 PCT/US2006/012037

retrieving data from at least one memory storage device identified by

at least one data storage identifier associated with a second dimension of data referenced by

the data query;

accessing the external database with the external support column
query; and

merging data received from the at least one node and the external
database;

if the data query does not require accessing the external database, executing a
second sequence, comprising:
requesting data from at least one node, wherein the at least one node is
associated with a first dimension of data referenced by the data query;
retrieving data from at least one memory storage device identified by
at least one data storage identifier associated with a second dimension of data referenced by
the data query; and

merging data received from the at least one node.

5. The method of claim 4, wherein accessing the external database with the external
filter query comprises:

submitting the external filter query to the external database;

receiving a result set received from the external database;

formatting the result set;

creating at least one subquery for the at least one node, wherein the at least
one subquery corresponds to the result set; and

providing the at least one subquery to the at least one node.

6. The method of claim 4, wherein accessing the external database with the external
support column query comprises:

defining an external database table;

preparing the external database table for a data load;

submitting the external support column query to the external database;

receiving a result set from the external database, wherein the result set is
loaded into the external database table;

creating at least one subquery for the at least one node, wherein the at least

one subquery relates to the result set; and

29



WO 2006/107772 PCT/US2006/012037

providing the at least one subquery to the at least one node.

7. The method of claim 4, wherein the external filter query comprises a plurality of

external filter subqueries.

8. The method of claim 4, wherein the external support column query comprises a

plurality of external support column subqueries.

9. The method of claim 4, wherein the method further comprises:
receiving the request for data by the at least one node; and
creating a parsing process to request data from the at least one memory device,

wherein the parsing process is created by the at least one node.

10.  The method of claim 9, wherein retrieving data from at least one memory storage
device comprises:

accessing the at least one memory device identified by the at least one data
storage identifier; and

receiving data from the at least one memory storage device.

11.  The method of claim 10, wherein accessing the at least one memory device
comprises:

creating a list of memory storage devices to search based on the second
dimension;

accessing each memory storage device in the list of memory storage devices,
wherein accessing each memory storage device comprises uncompressing, opening, and
reading data stored on the memory storage device; and

parsing data stored in each memory storage device.

12.  The method of claim 10, wherein the method further comprises:

merging data received from the at least on memory storage device.

13.  The method of claim 12, wherein the method further comprises:
aggregating received data; and

removing duplicative data within the received data.

30



WO 2006/107772 PCT/US2006/012037

14.  The method of claim 4, wherein requesting data from at least one node comprises:
submitting a data request to a dispatcher, wherein the dispatcher is operable

for:

determining whether a data request has been submitted;

retrieving the data request, if the dispatcher determines that a data
request has been submitted;

calculating a workload capacity for each of the at least one node
related to the data request;

creating at least one data subrequest, wherein the data subrequest
relates to only one node; and

providing the at least one data subrequest to the related node, if the

work capacity of the related node is below a predetermined amount.

15. The method of claim 14, wherein submitting a data request to a dispatcher comprises:
providing the data request to a shared memory storage unit, wherein the

dispatcher accesses the shared memory storage unit to retrieve the data request.

16. The method of claim 14, wherein the at least one data subrequest relates to a result set

obtained by accessing the external database with the external filter query.

17. A system for organizing data, comprising:

a data storage interface adapted to receive data having at least a first
dimension and a second dimension;

at least one node, wherein the at least one node is related to the first dimension
of the data; and

at least one memory storage device adapted to store the data, wherein the at
least one memory storage device is related to the second dimension of the data,

wherein the at least one node is adapted to access at least one memory storage

device.

18.  The system of claim 17, further comprising:

31



WO 2006/107772 PCT/US2006/012037

at least one data storage identifier adapted to identify the at least one memory
storage device, wherein the at least one data storage identifier is related to the second

dimension of the data.

19.  The system of claim 17, further comprising:
a metadata unit adapted to map the data stored in the at least one memory
storage device to a logical table, wherein the metadata unit has at least one data field attribute

that describes a portion of the data.

20. The system of claim 19, wherein the metadata unit has a first data field attribute
describing the first dimension of the data and a second data field attribute describing the

second dimension of the data.

21. The system of claim 20, wherein the first data field attribute describes the first

dimension of the data as a node.

22.  The system of claim 20, wherein the second data field attribute describes the second

dimension of the data as a data storage identifier.

23. A system for querying organized data comprising:

a data query interface adapted to receive a data query, wherein the data query
references at least a first dimension of data and a second dimension of data;

a preSQL processing unit adapted to create an external filter query for
accessing an external database;

a postSQL processing unit adapted to create an external support column query
for accessing the external database; and

at least one node identified by the first dimension of the data, adapted to
receive requests for the data and retrieve the data from at least one memory storage device

identified by the second dimension of the data.

24.  The system of claim 23, wherein the preSQL processing unit is further adapted to:
submit the external filter query to the external database;
format a result set received from the external database;

validate the result set;

32



WO 2006/107772 PCT/US2006/012037

create at least one subquery for the at least one node, wherein the at least one
subquery is related to the result set; and

provide the at least one subquery to the at least one node.

25.  The system of claim 23, wherein the postSQL processing unit is further adapted to:

define an external database table;

prepare a load of data for the external database table;

submit the external support column query to the external database;

receive a result set from the external database, wherein the result set is loaded
into the external database table;

create at least one subquery for the at least one node, wherein the at least one
subquery is related to the result set; and

provide the at least one subquery to the at least one node.

26.  The system of claim 23, wherein the at least one node is further adapted to create a

parsing process to request data from the at least one memory device.

217. The system of claim 26, wherein the at least one node is further adapted to:
execute the parsing process, wherein the parsing process accesses the at least
one memory device; and

receive data from the at least one memory storage device.

28.  The system of claim 27, wherein the parsing process is adapted to:

create a list of memory storage devices to search based on the second
dimension;

access each memory storage device in the list of memory storage devices,
wherein accessing each memory storage device includes uncompressing, opening, and
reading the data of the memory storage device; and

parse data stored in the memory storage device.

29.  The system of claim 28, wherein the data merging unit is further adapted to:

33



WO 2006/107772 PCT/US2006/012037

aggregate received data received from the at least one memory storage device
and the external database; and

remove duplicative data within the received data.

30.  The system of claim 28, wherein the dispatcher is further adapted to:

determine whether a data request has been submitted;

retrieve the data request;

calculate a workload capacity for each of the at least one node related to the
data request;

create at least one data subrequest, wherein each data subrequest relates to one
node; and

provide the at least one data subrequest to the at least one node.

31. The system of claim 30, wherein the at least one data subrequest relates to a result set

received from the external database with the external filter query.

32.  The system of claim 23, wherein the at least one memory storage device is identified

by at least one data storage identifier related to the second dimension of data.

33.  The system of claim 23, further comprising:

a dispatcher adapted to receive the data query from the data query interface,
generate at least one data subrequest for each the at least one node, and provide the at least
one data subrequest to the at least one node; and

a data merging unit adapted to merge data received from the at least on

memory storage device and the external database.

34. A computer-readable medium for organizing data having computer executable
instructions for performing steps comprising:

receiving data at a data storage interface, wherein the data has at least two
dimensions;

associating a node with a first dimension of the data, wherein the node is
associated with at least one data storage identifier;

associating the at least one data storage identifier with a second dimension of

the data; and

34



WO 2006/107772 PCT/US2006/012037

providing the data from the data storage interface to a memory storage device

identified by the data storage identifier associated with the node.

35.  The computer-readable medium of claim 34 further comprising:
using metadata to map a logical table to the data stored in the memory storage
device, wherein the metadata comprises at least one data field attribute that describes a

portion of the data stored in the memory device.

36.  The computer-readable medium of claim 35, wherein the metadata comprises:

a first data field attribute describing the first dimension of the data, wherein
the first data field attribute identifies the first dimension as the node; and

a second data field attribute describing the data storage identifier, wherein the

second data field attribute identifies the second dimension as the data storage identifier.

37. A computer-readable medium for querying organized data having computer
executable instructions for performing steps comprising:
receiving a data query at a data query interface, wherein the data query
references at least two dimensions of data;
determining whether the data query requires accessing an external database;
if the data query requires accessing the external database, executing a first
sequence, comprising:
creating an external filter query and an external support column query;
accessing the external database with the external filter query;
requesting data from at least one node, wherein the at least one node is
associated with a first dimension of data referenced by the data query;
retrieving data from at least one memory storage device identified by

at least one data storage identifier associated with a second dimension of data referenced by

the data query;

accessing the external database with the external support column
query; and

merging data received from the at least one node and the external
database;

if the data query does not require accessing the external database, executing a

second sequence, comprising:

35



WO 2006/107772 PCT/US2006/012037

requesting data from at least one node, wherein the at least one node is
associated with a first dimension of data referenced by the data query;

retrieving data from at least one memory storage device identified by
at least one data storage identifier associated with a second dimension of data referenced by
the data query; and

merging data received from the at least one node.

38.  The computer-readable medium of claim 37, wherein accessing the external database
with the external filter query comprises:

submitting the external filter query to the external database;

receiving a result set received from the external database;

formatting the result set;

creating at least one subquery for the at least one node, wherein the at least
one subquery corresponds to the result set; and

providing the at least one subquery to the at least one node.

39.  The computer-readable medium of claim 37, wherein accessing the external database
with the external support column query comprises:

defining an external database table;

preparing the external database table for a data load,;

submitting the external support column query to the external database;

receiving a result set from the external database, wherein the result set is
loaded into the external database table;

creating at least one subquery for the at least one node, wherein the at least
one subquery relates to the result set; and

providing the at least one subquery to the at least one node.

40.  The computer-readable medium of claim 37, wherein the external filter query

comprises a plurality of external filter subqueries.

41.  The computer-readable medium of claim 37, wherein the external support column

query comprises a plurality of external support column subqueries.

36



WO 2006/107772 PCT/US2006/012037

42.  The computer-readable medium of claim 37, wherein the computer executable
instructions further comprise:

receiving the request for data by the at least one node; and

creating a parsing process to request data from the at least one memory device,

wherein the parsing process is created by the at least one node.

43.  The computer-readable medium of claim 42, wherein retrieving data from at least one
memory storage device comprises:

accessing the at least one memory device identified by the at least one data
storage identifier; and

receiving data from the at least one memory storage device.

44.  The computer-readable medium of claim 43, wherein accessing the at least one
memory device comprises:

creating a list of memory storage devices to search based on the second
dimension;

accessing each memory storage device in the list of memory storage devices,
wherein accessing each memory storage device comprises uncompressing, opening, and
reading data stored on the memory storage device; and

parsing data stored in each memory storage device.

45.  The computer-readable medium of claim 43, wherein the computer executable
instructions further comprise:

merging data received from the at least on memory storage device.

46.  The computer-readable medium of claim 45, wherein the computer executable
instructions further comprise:
aggregating received data; and

removing duplicative data within the received data.

47.  The computer-readable medium of claim 37, wherein requesting data from at least
one node comprises:
submitting a data request to a dispatcher, wherein the dispatcher is operable

for:

37



WO 2006/107772 PCT/US2006/012037

determining whether a data request has been submitted;

retrieving the data request, if the dispatcher determines that a data
request has been submitted,;

calculating a workload capacity for each of the at least one node
related to the data request;

creating at least one data subrequest, wherein the data subrequest
relates to only one node; and

providing the at least one data subrequest to the related node, if the

work capacity of the related node is below a predetermined amount.

48.  The computer-readable medium of claim 47, wherein submitting a data request to a
dispatcher comprises:
providing the data request to a shared memory storage unit, wherein the

dispatcher accesses the shared memory storage unit to retrieve the data request.
49, The computer-readable medium of claim 47, wherein the at least one data subrequest

relates to a result set obtained by accessing the external database with the external filter

query.

38



PCT/US2006/012037

WO 2006/107772

[ "OId

1l —

€eL —\ 1INN
ONIDYIN VLV
ol —|
YIHOLVYdSIa
.0, 30IA3A
NOLLYDINNWINOD
g0, —
—N8lL V8l /N8l —vail
00l |\ Y X 'YX
A
A\IZm:H A‘\Izm:H
01 —/] eee ooe

“ —\a mDOZ /I <N_\ _\

«N» 3AON
NCLL —/

«d» ADIAFA NOILYOINANINOD

Z

LINN
ONISSTO0Hd
10SLSOd

Z

1INN
ONISS3004dd
10S3dd

Z

L1INN V1VAV1idN

AOV4HELNI
JOVHOLS ViVd

«v,» 30IN3A
NOILVOINNNWOD

©ov|\

1/13



PCT/US2006/012037

WO 2006/107772

¢ 9ld

WILSAS 391A3a
PN 391A30A LNdLNO 391A3A LNdNI IS AVIdSIa
gez —/ 9ez —/ yez —/ zez —/ oez —/
- 1 rr-——"-- —-——=——-- "7 -~~~ 2J ./~~~ ~—~—"7"""7"4d 777
|
|
!
| | 30vauILNI SOVAYTLNI 3OVAYILNI JOVLHILNI FOVANILNI
“ SWHOMLAN 1NdLNO 1NdNI JOVHOLS 03aIA
|
|
|
187z —/ ﬂ ozz —/ Aﬁ veze— 9 T zzz— 4 ocz— 9 T
|
|
| SNd N3LSAS
| g1z —/
|
|
“ AHOWAN AHOWIW LINN
i JLYTOA ULV TOA-NON ONISSIOONd
|
i
m o1z —/ piz — a2z~
{
g
orz—"

2/13



PCT/US2006/012037

WO 2006/107772

1INN
ONIDHIN V.Lvd

mmv|\

A

A 4

LINN
ONISS3O04dd
10S1S0d

3svavivd
IVNH3LXE

Lcl —/

90¢

1INN
ONISS3004dd
10S34d

.l\ A

A

vel

I\ A

h 4

A 4

€ O
v8le
[ 30VdS NOWINOD
J| b, SS300¥d
ONISYVd |
™
° LINNVIVa |,
o AaAILTY
NglE— @ 'd >
Y gre —/
N, SS3004d
ONISHVd
V »
LINN ONI9DOOT |«
NZH— W
z1e —/
.N, 3AON /
. ~al
1INN B
¢ 1S3NOAY Viva
veli— @ >
\ mom|\
» :—:_ MDOZ ||\
€0g

d3HO1vdSId

ocl

|.\ A

JOV4H31NI
JOV40L1S Vivda

60l

_/

3/13



PCT/US2006/012037

WO 2006/107772

v "OId

”

33VdS NOWNOD

)] 1INNVLvd

”

dandrdi3y

gre—/

ﬂli}:l-l--!ll
“
Vv8lLE . A
A\ ! A\
{
|
<, $S3008d | | | YIOVNYIN
| ©Nisuvd “ 1INS=34 IAON
L . “
K “
m I \|w_\.v. , \.lm_\v , \‘N:V _\Nvl/
|
| LINN LINN
! |1sano3y| |7081NOD tmm%%J p > M_wwwm_m_\n_
! TNX MHOM
|
“ A A
SN TR Ny ity
“ “ y y v wovl./
[ {
) |
L HIOVNYIN
(! < —>
| oy TSYECON 153N03 3AON
L
I |
1
L

» LINA ONIDOOT

zie —/

> 1INN

1S3N03Y vivd

60c —/

4/13



WO 2006/107772 PCT/US2006/012037

500
( START ) /_

‘ /— 503 /— 906

DATA STORAGE
INTERFACE RECEIVES
DATA HAVING AT LEAST g
TWO DIMENSIONS

A NODE IS ASSOCIATED
WITH A FIRST
DIMENSION OF DATA

. /—512

A DATA STORAGE
IDENTIFIER IS
ASSOCIATED WITH A
SECOND DIMENSION OF
DATA

i /—515

STORE DATA IN
MEMORY STORAGE
DEVICE IDENTIFIED BY
DATA STORAGE
IDENTIFIER AND
ASSOCIATED TO NODE

FIG. 5

i = 518
USE METADATA
RELATED TO DATATO
MAP A LOGICAL TABLE
TO THE DATAIN
MEMORY STORAGE
DEVICE

END

5/13



WO 2006/107772

( START )

A I 603

RECEIVE DATA QUERY
WITH AT LEAST TWO
DIMENSIONS AT DATA
STORAGE INTERFACE

606

NEED TO YES

PCT/US2006/012037

600
/__

ACCESS EXTERNAL
DATABASE?

J /—615

REQUEST DATA FROM

v [~ 899

CREATE EXTERNAL
FILTER QUERY AND
EXTERNAL SUPPORT
COLUMN QUERY

i /—612

AT LEAST ONE NODE

6/13

ACCESS EXTERNAL
DATABASE WITH
EXTERNAL FILTER
QUERY

FIG. 6A



WO 2006/107772 PCT/US2006/012037

/——618

RETRIEVE DATA FROM
AT LEAST ONE
MEMORY DEVICE
ASSOCIATED WITH
NODE(S)

621

NEED TO

NO YES
ACCESS EXTERNAL
DATABASE?
v = 627 v = 624

MERGING DATA ACCESS EXTERNAL

RECEIVED FROM DATABASE WITH

NODE(S) AND, IF < EXTERNAL
NECESSARY, FROM SUPPORT COLUMN

EXTERNAL DATABASE QUERY

END

FIG. 6B

m3



WO 2006/107772

START
(STEP 612,

FIG 6)

! I~ 703

SUBMIT EXTERNAL
FILTER QUERY TO
EXTERNAL DATABASE

. I~ 706

FORMAT AND VALIDATE
RESULT SET RECEIVED
FROM QUERYING
EXTERNAL DATABASE

y [

CREATE AT LEAST ONE
SUBQUERY

. /——712

PROVIDE SUBQUERY
TO A NODE FOR DATA
RETRIEVAL

END

8/13

PCT/US2006/012037

700
/_

FIG. 7



WO 2006/107772

START

PCT/US2006/012037

(STEP 624, 800
FIG 6) v
803 — 806
PREPARE LOAD FOR
%i'?EBE AESXET_EAR;'LAEL »| EXTERNAL DATABASE
TABLE
! — 809
SUBMIT EXTERNAL
SUPPORT COLUMN
QUERY TO EXTERNAL
DATABASE
Ll i
REFCFE(')\KAESUEES%&EET CREATE AT LEAST ONE
EXTERNAL DATABASE SUBQUERY
! —818
FIG 8 PROVIDE SUBQUERY
. TO A NODE FOR DATA
RETRIEVAL

END

9/13



WO 2006/107772 PCT/US2006/012037

900
( START ) /_

i = 903

RECEIVE QUERY FOR
DATA BY NODE

v /— 906

CREATE PARSING
PROCESS

= 909

EXECUTE PARSING
PROCESS TO
ACCESS MEMORY
STORAGE DEVICE

v 12

RECEIVE DATA FROM
MEMORY STORAGE
DEVICE

END

FIG. 9

10/13



WO 2006/107772

START
(STEP 909,

il I~ 1003

CREATE LIST OF
MEMORY STORAGE
DEVICES TO SEARCH,
BASED ON FIRST
DIMENSION OF DATA

A

7~ 1006

ACCESS EACH
MEMORY STORAGE
DEVICE, INCLUDING
UNCOMPRESSING,

OPENING, AND
READING MEMORY
STORAGE DEVICE

l I 1009

PARSE DATA STORED
IN EACH MEMORY
STORAGE DEVICE

END

11/13

PCT/US2006/012037

1000
/_

FIG. 10



WO 2006/107772 PCT/US2006/012037

START /1100
1103
HAS A DATA VES
REQUEST BEEN
SUBMITTED?
! — 1106
RETRIEVE SUBMITTED
DATA REQUEST
1112 — 1109
CREATE AT LEAST ONE CALCULATE
DATA SUBREQUEST |, WORKLOAD CAPACITY
FOR EACH < FOR EACH
APPROPRIATE NODE APPROPRIATE NODE
‘ 1115
PROVIDE AT LEAST
ONE DATA
 SUBREQUEST TO END
APPROPRIATE NODE

FIG. 11

12/13



WO 2006/107772 PCT/US2006/012037

START a 1200
1203
HAS A DATA YES
REQUEST BEEN
SUBMITTED?
‘ — 1206

RETRIEVE SUBMITTED
DATA REQUEST FROM

COMMON MEMORY

1212 ‘ — 1209
SCHEDULE PARSING CREATE PARSING
PROCESS FOR |« PROCESS
EXECUTION
! 1215

EXECUTE PARSING |
PROCESS TO RETRIEVE END
DATA

FIG. 12

13/13



	Abstract
	Bibliographic
	Description
	Claims
	Drawings

