US 20100287158A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2010/0287158 A1

Toledano et al.

43) Pub. Date: Nov. 11, 2010

(54)

(735)

(73)

@

(22)

(62)

INFORMATION ACCESS USING
ONTOLOGIES

Inventors: Zev Toledano, Jerusalem (IL); Jair
Jehuda, Mitspe Netofa (IL)

Correspondence Address:

FISH & RICHARDSON P.C.

P.0. BOX 1022

MINNEAPOLIS, MN 55440-1022 (US)

KINOR TECHNOLOGIES INC.,
Jerusalem (IL)

Assignee:

Appl. No.: 12/835,812

Filed: Jul. 14, 2010

Related U.S. Application Data

Division of application No. 10/565,400, filed on Jan.
20, 2006, now Pat. No. 7,761,480, filed as application
No. PCT/IL2004/000667 on Jul. 22, 2004.

(60) Provisional application No. 60/489,768, filed on Jul.

22, 2003.
Publication Classification

(51) Int.ClL

GO6F 15/16 (2006.01)

GO6F 17/30 (2006.01)

GO6F 21/00 (2006.01)
(52) US.CL ... 707/718; 709/206; 707/784; 707/769;

726/13;709/204, 707/E17.005; 707/E17.017

57 ABSTRACT

A method for data access includes defining an ontology for
application to a set of diverse data sources (58) comprising
data having predefined semantics, and associating with the
ontology one or more logical rules applicable to the semantics
of'the data in the data sources. Upon receiving a query from a
user regarding the data, a query plan is determined for
responding to the query by selecting one or more of the data
sources responsively to the ontology and by identifying an
operation to be applied to the data responsively to the appli-
cable logical rules. A response to the query is then generated
in accordance with the query plan.

20
/
% 98
5 S
ONTOLOGY SOURCE
BUILDER MODELER

54 54 102

5

QUERY

CLIENT CLIENT e
— -
] N qummy |
100 i
} \/] gg{% COMPILER/|

| PLANNER | |
| |

Patent Application Publication Nov. 11,2010 Sheet 1 of 13 US 2010/0287158 A1

28
q
MED
SCHOOL
e
=

D
LITA
 *
Ny
‘... RNy
-
(TT] 1§

"!

‘III'

1

<32

FIG.

GULELEI

e

|

34 P
Oooooooon
OOOO7T000

20
\
SYC

DRUG MFG

US 2010/0287158 A1l

Nov. 11,2010 Sheet2 of 13

Patent Application Publication

0¢

A%m Awm

YiLvd
Y

Tvid0d

AVMILYO

o

JAddViM | | JaddVaM

AVMILYD

%%%-E%@ :
09 gnm

74

0y

VZ "Ol3

(44

vivd
Y

VivQ
8¢

-
(8
AAddVIA
AVMILYD
TVIA0d
09 2%

US 2010/0287158 A1l

Nov. 11, 2010 Sheet 3 of 13

Patent Application Publication

JALY
-iIv)

F T T
—_—
T T

o e g ——— o —— - ——— o [

AL
AL

a¢

-@ ~ ONEVSSER INTDY S0~

gc
a 89
_— %U A IL—E%. R /
T NN ..m@mh A,v
||||||) — B A JMJ. .__\ 89
|
@..) | R
o 48
\“Vncw
29 » VA ’d
kit @\ | ~29
go” [T 05 RO
@ LIAWNI(\IN@
29 L 9
0¥ CARS IS |
19

Ol

AE Amm Avw A%

AONTHIND

(SsAyaav) ANVN

NOILVO0T) { ALVd

US 2010/0287158 A1l

Nov. 11,2010 Sheet 4 of 13

NOILOVSNWEL

¢ "ol
N-v

Patent Application Publication

US 2010/0287158 A1l

Nov. 11,2010 Sheet 5 of 13

cm\

Patent Application Publication

mombcm mogom mumbom
ﬁg §<= ﬁg

\\\\ \\\\\\\\\\\\\\\\\\\\\

(I

by

HATIA0N
J34008

qaqIng

AD0T0INO

ﬁ

86

9

96

¥ "Old

Fm———— B
JANNV1d _
/a0 e SO N |
= T
| |
Lm% LNATT) INTT)
ﬁ
201 7 7

Patent Application Publication

Nov. 11,2010 Sheet 6 of 13 US 2010/0287158 Al
FIG. 5A
110
RECEIVE CLIENT QUERY |
VIA PORTAL
1V 112
SELECT QUERY AGENT I
IDENTIFY RELEVANT SET 114
OF DATA SOURCES ~/
REMOVE SOURCES LACKING | 118
CLIENT ACCESS RIGHTS [~
120
COMPOSE AND OPTIMIZE QUERY PLAN | ,
é’ 122
SEND MESSAGES TO SOURCE WRAPPERS —~/
<124 <124
RECEIVE RECEIVE
DATA FROM o DATA FROM
SOURCE 1 SOURCE N
126 L 126
i S 9
STORE DATA . STORE DATA

&

TO STEP 130

Patent Application Publication Nov. 11,2010 Sheet 7 of 13 US 2010/0287158 A1

FIG. 5B

FROM STEP 126 FROM STEP 126

PLAN
COMPLETED?

132
<
CONTINUE
YES DATA COLLECTION

y 134
CACHE QUERY RESULTS |-

136
SEND RESULTS HANDLE |~ /

TO PORTAL

Patent Application Publication Nov. 11,2010 Sheet 8 of 13 US 2010/0287158 A1
FIG. 6
140
WRAPPER GETS REQUEST [/
FROM QUERY AGENT
142
CHECK :
REQUEST VALIDITY FALL
?
144; SUCCESS
MAP FROM 143
ONTOLOGICAL SQL TO RS

1462 l

MESSAGE TO QUERY

AGENT

MAP SQL DATA INPUT
FROM ONTOLOGICAL
TO DATA SOURCE FORM

148? \ll

RETRIEVE DATA FROM DATA SOURCE

150+, %
PERFORM PUSHDOWN PROCESSING

151 > ‘\’
NORMALIZE RESULTS

(VALUE MAPPING)

152> ‘L
STORE RESULTS IN STORAGE SERVICE

154~ j,

SEND MESSAGE TO QUERY
AGENT WITH
LOCATION OF RESULT

US 2010/0287158 A1l

Nov. 11, 2010 Sheet 9 of 13

Patent Application Publication

A INOORY-

@10S-19Na0dd-
-

817

LoNa0dd
SJ04_H1VS

A 1d(-

94177 ar-
YEINIAd
ISI1 SAINId

A VAR
ANVN-

Jo1ad-

a-

HOLINOA

__ISIT YOLINOW

P17

INNORYV-
. G~|
arqaios-rinaodd-
TIVS

okt AT STIVS

INNOJIV-

IN0DDY
LNNOAY
dIvVS
a
10naodd

CINOODOYV-))

INOORV-
ITvS
Jod-
HNVN-
120a0dd
L

g

(IN0DOY)
~ INDOWY
TIvS
CAJRE
TN

1D0008d |

L "9ld

FINDOJOY) A INNOJOV-
INNORY INNONY-
TIVS TIVS
DEd | ==>| DId-

JRVN ARVN- ~p81
10004d 100aodd
ﬂlmU Xaann

o1 IND0DOY- N

INNORY-

A~ (@ndin) @77

291 s | |

!

I

|
[@108-10n004d |
1

N 1d@- \

891 | YAINIYd !

|

q7IS- _

o _

i

|

AOId- “

THYN- i

91 a-
100008d /

S 091

US 2010/0287158 A1l

Nov. 11,2010 Sheet 10 of 13

Patent Application Publication

0cl

NV1d AHZND 2LVYadn /2S00

00¢ ™™

86T~ " JONYH)
JOrT0d ¥FA0DSIA
SOTYLAN
TONVRI044Ad ¥
5070401 HTA0DSI ——
961 1or10d ASTLATAQY
S 914

6T\

d04A0S dITA0DSIA

261/

d04N0S ASILIIAQY

06T~/

d04N0S MAN dVilM

US 2010/0287158 A1l

Nov. 11,2010 Sheet 11 of 13

Patent Application Publication

£127

V6 "Ol4

B3l

MNEY djog | {Ieddery ejetsusy <)xay | qoeg>
[A01) dUTEI}[HaTA 0[5
389,
_ 3A0TIaY _
:mgm: :OE -Q&—.—;: ' ({4 mwﬁﬁm .-nn_a: ' i mo.—.@ma _H_Q Eﬁm wﬂﬁm
. ‘_ NIV eaouIay _ Juowo)e}s TS paddejy ouIel]
L ov]
[Wz}
el soxapuisds B E
Amomxaynysis B
sSorejeoyxenshs E.m adf1 (D)
skoquirato)sis B 41 190poa] @sm
ER T @
saqiysAs . | qmu m
% sdnoiSonsds -5 Junowy (§)-
\ spuadopsds B.| | dep ony ares ()-8
\ suwInjoosk: £ V woarog ()-8 W
7 swum(oosds Ed1| g2 soyung (-6
& maﬁﬁmmmm% E 2o (D]
\ i
& saleg B0 g e— | O
\ sorredoadyp -1 T ﬁ:cmi@.m_
-« PUTBNosEqe B igETT:GTImSs)/ /- IoatasTbs (] o owa([L]

sp[a1y aseqejep 0} 5}0[s Tedtfofoyuo depy :¢ jo z dojg

doff Matj ortf

PIBZIj) uonjedeusn Jeddeljlsy

US 2010/0287158 A1l

Nov. 11,2010 Sheet 12 of 13

Patent Application Publication

g6 "Old

N

141

aAeg

§[e)I04 O], 9A®S

Tapel Xet)
Toped PRED
— I93eue){ suIped]| e soure
. :sap01 paddep

ﬁma

depy
._m._uﬁa_Usm 7 Xeur
TodeweJurpel] [I 912 soure(|
07] *SIoST Mﬁw

Cle > ﬁ)

cw.o.mf.mE@smmEEES& IoSeuey)15 O [BM0d @ jusuoduro)

[2]
o
@
0
=

Lz

Fuddewr a0y
sa130[03UQ

§0T)SOUTRI(

]

Junipny

uor)e.Ingyuo)

]

diog £3mdag a1y o[t
fgurtddewx ajoy :o[osuo) 931§ hodﬁm@i

Patent Application Publication Nov. 11,2010 Sheet 13 of 13

N\

>)

E X g;

=z \Ue =
S EERE

10

AGENT | /234

FIG.

290

252

GATEWAY

GATEWAY

226
q

US 2010/0287158 A1l

224

US 2010/0287158 Al

INFORMATION ACCESS USING
ONTOLOGIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application No. 60/489,768 filed Jul. 22, 2003,
which is incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates generally to methods
and systems for providing access to information, and specifi-
cally to federated networks for providing integrated access to
multiple, diverse information sources.

BACKGROUND OF THE INVENTION

[0003] There is a recognized need for data access systems
and analytical tools that provide semantic interoperability
among different information sources in a given application
domain, both within a particular enterprise and across enter-
prise boundaries. Some tools that have been developed for
this purpose make use of ontologies. An ontology is a struc-
tured vocabulary that represents the schematic metadata of a
particular application domain. The ontology provides a uni-
fied, semantic model of the information in the domain,
including both the types of entities that the information may
include and relationships among the entities. The ontology
allows users to express query concepts and relationships in
high-level terms, which are then translated by appropriate
agents into lower-level database schemata and semantic
analyses.

[0004] One of the early tools of this sort was InfoSleuth™,
developed at MCC (Microelectronics and Computer Technol-
ogy Corporation, Austin, Tex.). InfoSleuth is described, for
example, in an article by Fowler et al., entitled “Agent-Based
Semantic Interoperability in InfoSleuth,” SIGMOD Record
28:1 (March, 1999), pp. 60-67, which is incorporated herein
by reference. InfoSleuth is an agent-based system, in which a
set, or community, of agents collaborate at a semantic level to
execute information gathering and analysis tasks. The under-
lying information sources can be diverse in both structure and
content. The agents, which are coded in Java™, communicate
at the semantic level over ontologies using a Knowledge
Query Manipulation Language (KQML). Agent types
defined by InfoSleuth include:

[0005] User agents, which provide a system interface
that enables the user to communicate with the system.

[0006] Broker agents, which match requests for services
or information with agents that can provide them.

[0007] An ontology agent, which serves the set of
ontologies supported by InfoSleuth and provides details
of the ontology on demand.

[0008] Resource agents, which translate queries and data
between the local forms in which they are stored and
their InfoSleuth foams.

[0009] Value mapping agents, which convert queries and
results between common acceptable forms and a canoni-
cal form defined by the ontology.

[0010] Multi-resource query agents, which handle the
decomposition and distribution of sub-queries to various
resource agents and then recompose the results.

[0011] Agents communicate and determine each other’s
capabilities using a shared ontological model of information

Nov. 11, 2010

management. The ontology provides the semantic framework
for information activities in the domain of interest to the user.
Semantic brokering allows agents to advertise their capabili-
ties and to identify potential collaborators based on their
advertised capabilities. The user may access the resources of
the agent community from any location, and need know noth-
ing about the physical location or structural characteristics of
any resource.

[0012] Another method for distributed query handling is
described by Wynblatt et al., in U.S. Patent Application Pub-
lication US 2002/0143755, whose disclosure is incorporated
herein by reference. According to this method, a traditional
database query is converted into network messages, which are
routed to those data sources that have relevant data. The
messages may be routed either directly or through designated
query nodes. The data sources then send reply messages
either directly to the originator of the query or via designated
join nodes. In some embodiments, the data sources may be
able to perform local join operations. The system collects the
reply messages, and the messages that meet the requirements
of'the query are sent back to the query originator for presen-
tation as a traditional database result.

[0013] Unicorn Solutions Inc. (New York, N.Y.) offers a
Semantic Information Management (SIM) System, which it
describes as a comprehensive platform for managing and
integrating enterprise information resources. The system
combines metadata repository, information modeling, hub-
and-spoke mapping, and automated data transformation
script generation capabilities. It is said to provide customers
with a seamless business view by relating disparate data for-
mats and interfaces to an information model that describes the
business, its component parts, and all relationships. The sys-
tem is described further in an article by Schreiber, entitled
“Semantic Information Management (SIM): Solving the
Enterprise Data Problem by Managing Data Based on its
Business Meaning” (2003), which is available at www.uni-
corn.com and is incorporated herein by reference.

[0014] Various aspects of the Unicorn system are described
in the patent literature. For example, U.S. Patent Application
Publication US 2003/0163597, to Hellman et al., describes a
method and system for collaborative ontology modeling, for
use in building up an ontology from individual ontology
efforts distributed over the Web. U.S. Patent Application Pub-
lication US 2004/0093344, to Berger et al., describes a
method for mapping data schemas into an ontology model.
U.S. Patent Application Publication US 2003/0101170, to
Edelstein et al., describes a data query system using a central
ontology model, in which a query processor generates a query
in a data schema query language corresponding to a specified
query expressed in an ontology query language. U.S. Patent
Application Publication US 2003/0163450, to Borenstein et
al., describes a method for providing a semantic registry for
Web services and other services, based on an ontology model.
The method is said to enable dynamic Web service integration
by overcoming problems of semantic inconsistency. The dis-
closures of all the above patent application publications are
incorporated herein by reference.

SUMMARY OF THE INVENTION

[0015] Embodiments ofthe present invention provide tools
for use in a distributed, federated system for data manage-
ment and access, based on a domain-specific ontology. In the
embodiments disclosed hereinbelow, the system comprises a
grid of agents and gateways, which communicate with one

US 2010/0287158 Al

another over a communication network by exchanging
semantic, ontology-based messages. The agents share a com-
mon, distributed platform, as well as a common directory of
the ontology, data sources and rules that apply in the federated
system. The gateways comprise wrappers, for interfacing
between data sources and the ontology, as well as portals,
through which users may address queries to the system. Upon
receiving a user query, the portal directs the query to one of
the agents, which develops a query plan based on the avail-
ability of necessary data and system resources for responding
to the query. After collecting the required information in
accordance with the query plan, the agent returns the query
response to the user portal.

[0016] Inembodiments of the present invention, the ontol-
ogy accommodates logical rules that are applicable to the
entities in the ontology, as well as to the attributes of and
relationships between the entities. In some embodiments, the
agent handling a query uses these rules in generating the
query plan. For example, the agent may use the rules to
determine which set of data fields, in which data sources, are
most likely to give complete and correct data in response to a
given query, and possibly also to validate the data that are
collected in executing the query plan. The agent may also use
the rules to determine the key according to which records
from different sources should be joined, and whether the join
should be performed by the agent or should be “pushed
down” to the gateway for execution in order to optimize
response or conserve system resources.

[0017] Insome embodiments of the present invention, the
ontological rules comprise access rules, indicating which
user roles are authorized to read information in a given data
source or set of sources. The access rules may pertain to
particular data sources, to particular entities in the sources, or
to particular attributes of a given type of entities. The access
rules are expressed in unified terms, which may be main-
tained by a community of owners in the form of a community
ontology that includes classes of roles, sources, clients, and
authentication methods. These features of the ontology are
thus useful in providing a unified model under which different
data owners in a federated system may determine the access
rules that are applicable to their data, such as which clients are
trusted under which circumstances. The use of abstracted
classes in the model, such as in a government database source,
also enables clients and users to determine the scope of
sources to be used without knowing each source specifically.

[0018] Typically, the access rules for each source are pub-
lished together with additional source metadata in a grid-wide
directory. Hence, the query agents can read the access rules
immediately, without the need for central management of
access authorizations. Since the access rules are already con-
tained in the directory, there is no need for the agents to
request authorization for each resource that is to be accessed
(unless specifically required by the source owner). Further-
more, the agents may use the access rules in developing query
plans so that the plan includes only those sources of informa-
tion that the requesting user is authorized to access.

[0019] Insome embodiments, access to each data source is
logged along with the credentials of the user requesting the
data. Thus, access policies are not only automatically
enforced, but they are also recorded in a manner that supports
automated auditing. Since the same mechanisms serve all
grid-based client services, the services provided by the grid
are automatically “regulated.”

Nov. 11, 2010

[0020] In some embodiments of the present invention, a
network utility gathers and updates information regarding the
topology and status of resources in the system. Based on this
information, the agents and gateways are able to discover and
integrate new sources of information as they become avail-
able, as well as to determine the level of computing and
communication loads on different agents and data sources.
Thus, in making and executing the query plans, agents may
use the topology and status information in order to optimize
response time and dynamically load-balance the resources of
the system.

[0021] In some embodiments, the grid functions as an
application-level virtual private network, which links and
provides services to the member sites and organizations. This
virtual private network is internally managed by distributed
functions of the grid, so that individual member sites need not
explicitly provision for or coordinate their own virtual private
networks with the other member sites. Thus, agents in the grid
may even balance the overall load among resources that
belong to different organizations within the federated system.
For this purpose, the grid directory may comprise entities and
attributes relating to performance of application-related
tasks, which are used by the agents in monitoring resource
performance and applying resource-use policies. Grid robust-
ness and agility are enhanced by the use of dynamic, grid-
generated query plans, as described above, and by the ability
to balance loads across the grid. Altered grid topology,
sources, and usage policies are automatically accommodated
by generating new plans and rebalancing loads. Other grid
conditions, such as fallen nodes, inaccessible sources, and
revoked certificates, may be handled in similar fashion.
[0022] Furthermore, the fact that elements of the grid
(agents and gateways) communicate with one another using a
set of known, semantic, application-level messages may be
used in securing communications among these elements
against intrusions and malicious traffic. Thus, in some
embodiments of the present invention, agents and/or gate-
ways apply a semantic filter to each packet that they receive
over the network and accept only packets that are compatible
with the system ontology. Packets that do not meet the
expected semantic criteria are discarded. Therefore, even if
one of the elements of the grid is attacked by malicious traffic,
the element will not permit the traffic to propagate into the
grid. Moreover, gateways can examine each data element in
the semantic payload of each packet to determine whether to
pass it on or nullify it.

[0023] Although embodiments of the present invention are
described herein with reference to information access and
query handling, the principles of the present invention may
similarly be applied to provision of other types of resources,
such as Web services, over a network based on a semantic
model.

[0024] There is therefore provided, in accordance with an
embodiment of the present invention, a method for data
access, including:

[0025] defining an ontology for application to a set of
diverse data sources including data having predefined seman-
tics;

[0026] associating with the ontology one or more logical
rules applicable to the semantics of the data in the data
sources;

[0027] receiving a query from a user regarding the data;
[0028] determining a query plan for responding to the
query by selecting one or more of the data sources respon-

US 2010/0287158 Al

sively to the ontology and by identifying an operation to be
applied to the data responsively to the applicable logical
rules; and

[0029] generating a response to the query in accordance
with the query plan.

[0030] Inadisclosed embodiment, the logical rules include
a validation rule, and the query plan includes validating the
data from at least one of the data sources responsively to the
validation rule.

[0031] Additionally or alternatively, the logical rules
include a mapping rule, such that data sources that match
these rules can be automatically mapped to the ontology
when the sources are primed and attached to the grid. Further
additionally or alternatively, the logical rules include a join-
ing rule, and the query plan includes selecting a key respon-
sively to the joining rule, and joining the data from two or
more of the data sources using the key. Typically, selecting the
key includes analyzing the data so as to select one or more
fields in the two or more of the data sources for use as the key
s0 as to provide a desired statistical probability that the data
will be joined correctly.

[0032] Yet further additionally or alternatively, the logical
rules include a transformation rule, and the query plan
includes transforming the data in at least one of the data
sources from a first value that is held in the at least one of the
data sources to a second value responsively to the transfor-
mation rule.

[0033] Still further additionally or alternatively, the logical
rules include a business logic rule, and the query plan includes
processing the data from at least one of the sources respon-
sively to the business logic rule.

[0034] The logical rules may also include an access rule,
and the query plan may include selecting at least one of the
data sources for use in generating the response responsively
to the access rule as applied to the user and client who sub-
mitted the query.

[0035] In some embodiments, defining the ontology
includes associating a respective wrapper with each of the
data sources, so as to transform the data from each of the data
sources from a native format to an ontological format deter-
mined by the ontology, and generating the response includes
applying the operation using the wrapper, and then reporting
the data from the wrapper to a hub that links the data sources
following application of the operation.

[0036] In one embodiment, the operation applied by the
wrapper includes joining the data from two or more of the
data sources.

[0037] Additionally or alternatively, the operation applied
by the wrapper includes mapping values of the data. For
example, mapping the values may include normalizing the
data from a native representation to an ontological represen-
tation.

[0038] Further additionally or alternatively, the query plan
includes a group of sub-queries, and generating the response
includes sending the sub-queries from an agent running on
the hub to respective wrappers of a plurality of the data
sources, and combining the data reported from the wrappers
in order to produce the response. Typically, sending the sub-
queries includes invoking two or more of the wrappers to
operate in parallel.

[0039] In a disclosed embodiment, associating the respec-
tive wrapper includes distributing an advertisement of each of
the data sources in accordance with the ontology, and deter-
mining the query plan includes discovering each of the data

Nov. 11, 2010

sources responsively to the advertisement, and building the
query plan based on the discovered data sources.

[0040] In an aspect of the invention, reporting the data
includes sending data packets over a network, the packets
including semantic content in a form determined by the ontol-
ogy, and upon receipt of the data packets at the hub, verifying
legitimacy of the packets responsively to the semantic content
and nullifying semantic elements that must be filtered.
[0041] Typically, reporting the data includes streaming the
data from the wrapper to a specified storage location. Alter-
natively, reporting the data includes moving the data in a
block operation from the wrapper to a specified storage loca-
tion.

[0042] In another aspect of the invention, determining the
query plan includes collecting information regarding a topol-
ogy and performance characteristics of the data sources, and
selecting, responsively to the information, the data sources to
be used in responding to the query.

[0043] There is also provided, in accordance with an
embodiment of the present invention, a method for providing
a user with access to a set of diverse information resources,
which are configured to provide information with predefined
semantics, the method including:

[0044] defining an ontology for application to the informa-
tion provided by the set of diverse information resources;
[0045] associating with the ontology one or more logical
rules applicable to the semantics of the information;

[0046] receiving a request from the user to access the infor-
mation;
[0047] determining a plan for responding to the request by

selecting one or more of the information resources respon-
sively to the ontology and by identifying an operation to be
applied to the information responsively to the applicable logi-
cal rules; and

[0048] generating a response to the request in accordance
with the plan.
[0049] In a disclosed embodiment, the request includes a

query for data held by the information resources.

[0050] Inanother embodiment, the request includes a sub-
scription request, and generating the response includes pro-
viding a succession of responses over a period of time respon-
sively to the subscription request.

[0051] In yet another embodiment, the information
resources are configured to provide Web services, and the
request specifies one or more of the Web services to be pro-
vided to the user.

[0052] In still another embodiment, the request specifies
data to be written to a data repository associated with one or
more of the information resources.

[0053] In a further embodiment, the request specifies a
transaction to be carried out and recorded by one or more of
the information resources.

[0054] Inan additional embodiment, the request specifies a
process to be carried out by one or more of the information
resources. Typically, the request specifies an event, and gen-
erating the response includes carrying out the specified pro-
cess responsively to an occurrence of the event.

[0055] There is additionally provided, in accordance with
an embodiment of the present invention, a method for data
access, including:

[0056] defining an ontology for application to a set of
diverse data sources including data;

[0057] defining data access rights with respect to the ontol-
ogy; and

US 2010/0287158 Al

[0058] controlling user access to the data responsively to
the ontology of the data and the access rights applicable
thereto.

[0059] In a disclosed embodiment, defining the ontology
includes specifying a user ontology, and defining the data
access rights includes assigning a classification to a user
according to the user ontology, and controlling the user access
includes comparing the classification to the access rights
applicable to the data. Typically, the diverse data sources are
distributed among a set of autonomous organizations includ-
ing at least first and second organizations, and assigning the
classification includes classifying the user according to an
organizational affiliation of'the user so as to control access by
users in the first organization to the data sources held by the
second organization.

[0060] Typically, controlling the user access includes
receiving a query from a user to access the data in the data
sources, determining a query plan for responding to the query
by selecting one or more of the data sources responsively to
the ontology such that the access rights permit the user to
access the data in the one or more of the data sources, and
generating a response to the query in accordance with the
query plan.

[0061] There is further provided, in accordance with an
embodiment of the present invention, a method for data
access, including:

[0062] defining a set of data resources providing access to
data;
[0063] collecting information regarding a topology and

performance characteristics of the data resources;

[0064] receiving a query from a user regarding the data;
[0065] determining a query plan responsively to the query
and to the information regarding the topology and perfor-
mance characteristics; and

[0066] generating a response to the query in accordance
with the query plan.

[0067] Typically, collecting the information includes mea-
suring respective load levels of two or more of the data
resources, and determining the query plan includes selecting
one of the data resources so as to balance the load levels.
[0068] In a disclosed embodiment, the data resources are
distributed among a set of autonomous organizations includ-
ing at least first and second organizations, wherein the user
submitting the query belongs to the first organization, and
wherein determining the query plan includes selecting,
responsively to the performance characteristics, one of the
data resources of the second organization for use in respond-
ing to the query.

[0069] There is moreover provided, in accordance with an
embodiment of the present invention, a method for exchange
of information, including:

[0070] establishing a virtual private network among a plu-
rality of nodes, including at least first and second nodes,
which are configured to communicate with one another over
an underlying public physical network;

[0071] defining a semantic communication model for con-
veying data packets among the nodes in the virtual private
network, responsively to an ontology of the information;
[0072] sending a data packet over the virtual private net-
work from the first node to the second node; and

[0073] filtering the data packet against the semantic com-
munication model at the second node, so as to verify that the
data packet is legitimate and nullify semantic elements that
must be filtered.

Nov. 11, 2010

[0074] Typically, defining the semantic communication
model includes defining a closed set of semantic messages
that may be carried by data packets in the virtual private
network.

[0075] Inoneembodiment, the nodes are distributed among
a set of autonomous organizations.

[0076] In a disclosed embodiment, the nodes include gate-
way nodes, which are configured to communicate with clients
and data sources using native data formats, and to translate the
native data formats to the semantic communication model for
communication over the virtual private network. Typically,
the nodes further includes hub nodes, and establishing the
virtual private network includes configuring the gateway
nodes to communicate with the hub nodes using the semantic
communication model.

[0077] There is furthermore provided, in accordance with
an embodiment of the present invention, apparatus for data
access, including a hub processor, which is adapted to receive
a definition of an ontology for application to a set of diverse
data sources including data having predefined semantics, and
to associate with the ontology one or more logical rules appli-
cable to the semantics of the data in the data sources, and
which is further adapted, upon receiving a query from a user
regarding the data, to determine a query plan for responding
to the query by selecting one or more of the data sources
responsively to the ontology and by identifying an operation
to be applied to the data responsively to the applicable logical
rules, and to generate response to the query in accordance
with the query plan.

[0078] There is also provided, in accordance with an
embodiment of the present invention, apparatus for providing
a user with access to a set of diverse information resources,
which are configured to provide information with predefined
semantics, the apparatus including a hub processor, which is
adapted to receive a definition of an ontology for application
to the information provided by the set of diverse information
resources and to associate with the ontology one or more
logical rules applicable to the semantics of the information,
and which is further adapted, upon receiving a request from
the user to access the information, to determine a plan for
responding to the request by selecting one or more of the
information resources responsively to the ontology and by
identifying an operation to be applied to the information
responsively to the applicable logical rules, and to generate a
response to the request in accordance with the plan.

[0079] There is additionally provided, in accordance with
an embodiment of the present invention, apparatus for data
access, including a hub processor, which is adapted to receive
a definition of an ontology for application to a set of diverse
data sources including data and a definition of data access
rights with respect to the ontology, and which is adapted to
control user access to the data responsively to the ontology of
the data and the access rights applicable thereto.

[0080] There is moreover provided, in accordance with an
embodiment of the present invention, apparatus for data
access, including a hub processor, which is adapted to receive
a definition of a set of data resources providing access to data,
and to collect information regarding a topology and perfor-
mance characteristics of the data resources, and which is
further adapted, upon receiving a query from a user regarding
the data, to determine a query plan responsively to the query
and to the information regarding the topology and perfor-
mance characteristics, and to generate a response to the query
in accordance with the query plan.

US 2010/0287158 Al

[0081] There is furthermore provided, in accordance with
an embodiment of the present invention, apparatus for
exchange of information, including a plurality of computing
nodes, which include at least first and second nodes, and
which are linked to communicate over a virtual private net-
work running over an underlying public physical network,
and which are configured to exchange data packets over the
virtual private network in accordance with a semantic com-
munication model, which is defined responsively to an ontol-
ogy of the information, wherein at least the second node is
adapted, upon receiving a data packet over the virtual private
network from the first node, to filter the data packet against
the semantic communication model so as to verify that the
data packet is legitimate.

[0082] There is further provided, in accordance with an
embodiment of the present invention, a computer software
product, including a computer-readable medium in which
program instructions are stored, which instructions, when
read by a computer, cause the computer to receive a definition
of'an ontology for application to a set of diverse data sources
including data having predefined semantics, and to associate
with the ontology one or more logical rules applicable to the
semantics of the data in the data sources, and further cause the
computer, upon receiving a query from a user regarding the
data, to determine a query plan for responding to the query by
selecting one or more of the data sources responsively to the
ontology and by identifying an operation to be applied to the
data responsively to the applicable logical rules, and to gen-
erate a response to the query in accordance with the query
plan.

[0083] There is also provided, in accordance with an
embodiment of the present invention, a computer software
product, for providing a user with access to a set of diverse
information resources, which are configured to provide infor-
mation with predefined semantics, the product including a
computer-readable medium in which program instructions
are stored, which instructions, when read by a computer,
cause the computer to receive a definition of an ontology for
application to the information provided by the set of diverse
information resources and to associate with the ontology one
or more logical rules applicable to the semantics of the infor-
mation, and further cause the computer, upon receiving a
request from the user to access the information, to determine
a plan for responding to the request by selecting one or more
of'the information resources responsively to the ontology and
by identifying an operation to be applied to the information
responsively to the applicable logical rules, and to generate a
response to the request in accordance with the plan.

[0084] There is additionally provided, in accordance with
an embodiment of the present invention, a computer software
product, including a computer-readable medium in which
program instructions are stored, which instructions, when
read by a computer, cause the computer to receive a definition
of'an ontology for application to a set of diverse data sources
including data and a definition of data access rights with
respect to the ontology, and to control user access to the data
responsively to the ontology of the data and the access rights
applicable thereto.

[0085] There is further provided, in accordance with an
embodiment of the present invention, a computer software
product, including a computer-readable medium in which
program instructions are stored, which instructions, when
read by a computer, cause the computer to receive a definition
of a set of data resources providing access to data, and to

Nov. 11, 2010

collect information regarding a topology and performance
characteristics of the data resources, and further cause the
computer, upon receiving a query from a user regarding the
data, to determine a query plan responsively to the query and
to the information regarding the topology and performance
characteristics, and to generate a response to the query in
accordance with the query plan.

[0086] There is moreover provided, in accordance with an
embodiment of the present invention, a computer software
product, including a computer-readable medium in which
program instructions are stored, which instructions, when
read by a group of computing nodes that includes at least first
and second nodes, linked to communicate over a physical
public network, cause the computing nodes to communicate
in a virtual private network by exchanging data packets over
the public physical network in accordance with a semantic
communication model, which is defined responsively to an
ontology of the information, wherein the instructions cause at
least the second node, upon receiving a data packet over the
virtual private network from the first node, to filter the data
packet against the semantic communication model so as to
verify that the data packet is legitimate.

[0087] The present invention will be more fully understood
from the following detailed description of the embodiments
thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

[0088] FIG. 1 is a schematic, pictorial illustration of a fed-
erated data management system, in accordance with an
embodiment of the present invention;

[0089] FIGS. 2A and 2B are block diagrams that schemati-
cally show elements of an ontology-based data management
system, in accordance with an embodiment of the present
invention;

[0090] FIG. 3 is a graph that schematically illustrates an
exemplary ontology;

[0091] FIG. 4 is a block diagram that schematically illus-
trates elements of a data management system that are used in
query planning and response, in accordance with an embodi-
ment of the present invention;

[0092] FIGS. 5A and 5B are flow charts that schematically
illustrate a method for query planning and response; in accor-
dance with an embodiment of the present invention;

[0093] FIG. 6 is a flow chart that schematically illustrates a
method by which a data source wrapper responds to a request
made by a query agent, in accordance with an embodiment of
the present invention;

[0094] FIG. 7 is a block diagram that schematically illus-
trates elements of a query plan, in accordance with an
embodiment of the present invention;

[0095] FIG. 8 is a flow chart that schematically illustrates
background tasks carried out in a data management system, in
accordance with an embodiment of the present invention;
[0096] FIG. 9A is a schematic representation of a user
interface screen for use in mapping a database to an ontology,
in accordance with an embodiment of the present invention;
[0097] FIG. 9B is a schematic representation of a user
interface screen for use in mapping local users to community
roles, in accordance with an embodiment of the present inven-
tion; and

US 2010/0287158 Al

[0098] FIG. 10 is a block diagram that schematically illus-
trates elements of a virtual private network for a data access
application, in accordance with an embodiment of the present
invention.

DETAILED DESCRIPTION OF EMBODIMENTS

[0099] FIG.1 is a schematic, pictorial illustration of a fed-
erated system 20 for data management, in accordance with an
embodiment of the present invention. System 20 crosses
enterprise boundaries, in the sense that it involves multiple,
autonomous organizations in sharing data and data manage-
ment services. The example shown in FIG. 1 involves a “com-
munity” of health-care related organizations, including, for
example, a governmental health service 22, a private HMO
24, a hospital 26, a medical school 28, a local clinic 30 with
associated mobile emergency medical service 32, and a drug
manufacturer 34. These organizations have a mutual interest
in sharing certain information that is gathered and held by
each of the bodies in its own data repositories. The informa-
tion may relate to matters such as patient health records,
billing for services, activities of medical personnel, and so
forth. Sharing information can clearly enhance the effective-
ness with which each of the organizations in system 20 carries
out its functions.

[0100] On the other hand, the information to be shared
within system 20 is typically held in many different data
formats, at different locations within different organizations,
with their own information models, structures and represen-
tations. To further complicate the situation, different data-
bases frequently use different names to denote the same infor-
mation. For example, hospital 26 may lists the names of
persons using its services in a database field labeled
“patients,” while HMO 24 refers to the same names as “mem-
bers.” In addition, much of the information held by the orga-
nizations in system 20 is of a confidential nature. Therefore,
in sharing information with other parties, each organization
must ensure that access to information by other parties in the
system does not violate its own confidentiality policies.
Although these problems are illustrated here with respect to a
healthcare-related system, it will be appreciated that similar
problems arise in collaboration between organizations of
other sorts, such as business enterprises or government agen-
cies.

[0101] Embodiments of the present invention addresses the
needs and problems outlined above by linking the participat-
ing organizations to exchange information over an internal,
grid-managed virtual private network 42, with a semantic,
ontology-based foundation. Physically, network 42 may run
over existing, generic wide-area networks (WANs) 36, such
as the Internet, and local area networks (LANs) 38. Logically,
however, the users (clients) and data sources within system 20
are connected through secure, semantic links of virtual net-
work 42 to a backbone of hubs 40. Although these hub nodes
are shown in FIG. 1 as being logically located in WAN 36, in
practice the hubs may be at any suitable physical location,
either on the sites of participating organizations or at inde-
pendent locations linked to network 42. Implementation of
the features of system 20 and network 42 is described in detail
with reference to the figures that follow.

[0102] As described in detail hereinbelow, embodiments of
the present invention use several key inventive elements in
addressing the needs of system 20:

[0103] (a) federated communities managing their ontolo-
gies;

Nov. 11, 2010

[0104] (b) federated owners (“sites”) managing their cli-
ents and sources;
[0105] (c) a fluid agent-based architecture that supports a
growing set of semantic client services in a scalable and
robust manner; and
[0106] (d)a distributed grid platform of gateways and hubs
(referred to hereinbelow simply as the “grid”) that hosts the
agents and ontologies and spans any number of sites for any
number of communities in a secure, self-managed and self-
adapting manner (thus creating, in effect a “grid of grids™).
[0107] Indescribing embodiments the present invention, it
is helpful to distinguish between priming, background and
foreground tasks:
[0108] (a) Priming tasks are carried out by community and
site administrators when assembling, growing, and evolving
the grid. Examples of such tasks include wrapping and attach-
ing a new source, adding a new site, altering a usage policy.
[0109] (b) Foreground tasks are carried out by the grid to
respond to client requests during run-time, for example,
executing a client query or subscription.
[0110] (c) Background tasks are carried out by the grid to
maintain, self-adapt, and improve services. Examples of
background tasks include periodically checking source integ-
rity, producing auxiliary tables for more efficient joins,
dynamically indexing internal tables, and reconfiguring
agents to better address dynamic global requirements.
[0111] FIG. 2A is a block diagram that schematically illus-
trates the logical architecture of system 20, in accordance
with an embodiment of the present invention. Typically, the
elements of system 20 are implemented in the form of soft-
ware running on suitable computer workstations or servers.
This software may be downloaded to the computer in ques-
tion in electronic form, over a computer network, for
example, or it may alternatively be provided on tangible
media, such as optical, magnetic or electronic memory media.
Although the elements of system 20 are shown in FIG. 2, for
the sake of conceptual clarity, as separate functional blocks,
in practice two or more of these elements may run on a single
computer. Additionally or alternatively, the functions of a
given block may be distributed among multiple computers.
[0112] Sites participating in system 20 are linked to net-
work 42 by respective gateways 50. Gateways have two pos-
sible functions:
[0113] A portal 52 links clients 54 to network 42, for the
purpose of submitting queries and receiving replies.
[0114] A wrapper 56 interfaces between data sources 58
and network 42, by translating data and messages
between the native format of each data source and the
ontological format used on network 42.
[0115] Portal 52 also handles security functions relating to
the clients, such as user authentication and mapping to a
community role. Similarly, wrapper 56 handles security func-
tions relating to the data sources, such as representing an
authorized role with appropriate credentials. These functions
may be implemented as agents. As shown in the figure, a
given gateway node may perform one or more instances of
either or both of the portal and wrapper functions.
[0116] Query agents 60 run on hubs 40, wherein each hub
may run one or more of these agents. Agents 60 receive
queries from portals 52 and “compile” the queries into query
plans that identify potential sources of the data. The query
agents then carry out the plans by sending appropriate mes-
sages, referred to hereinbelow as sub-queries, to wrappers 56
requesting that they supply the required data from respective

US 2010/0287158 Al

sources 58. When execution of the query plan is completed,
agent 60 reports the results back to the requesting portal 52.
The query planning and execution process is described in
greater detail hereinbelow. Hubs 40 may also run agents of
other types, such as subscription agents, i.c., agents that listen
continuously for source, data, or grid-related events of a
specified type in system 20, and then report the results of
these events to a client. Further agent types are enumerated
below.

[0117] In planning and executing queries, the query agent
on hub 40 is assisted and supported by other hub utilities (not
shown in the figure), which may also be implemented as
agents. These utilities include the following:

[0118] Directory utilities maintain a registry (“direc-
tory”) of nodes, agents, sources, clients and authoriza-
tion certificates, and the capabilities, privileges, con-
figurations and status of each.

[0119] Discovery utilities enable nodes and components
(such as portals, wrappers and agents) to automatically
discover, register, and link to other available nodes and
components.

[0120] Ontology utilities provide access to all the ontolo-
gies that are used in system 20, as well as a comprehen-
sive set of ontology-related services.

[0121] Messaging utilities support asynchronous mes-
sage queuing facilities for all agents on network 42
regardless of location (even if the agents change loca-
tion).

[0122] Matching utilities are applied by agents 60 in
determining which data sources 58 are authorized and
useful for responding to a specific client request.

[0123] Planning utilities compile abstract queries into
concrete query plans of sub-queries and other data man-
agement actions (such as joins, filters and sorts) on the
appropriate set of data sources. Details of this query
compilation process are described below with reference
to FIGS. 4, SA and 5SB.

[0124] Storage utilities provide persistent storage for
registries, messages, posted client requests, query plans,
cached results and other information used by agents 60.

[0125] Logging utilities provide distributed logging of
system functions and load levels. These utilities may be
used for management functions, such as monitoring,
auditing, diagnostics and debugging, as well as for opti-
mized dynamic query planning—compilation of query
plans based on availability and load levels of system
resources, as described hereinbelow.

[0126] Security utilities provide PKI (public key infra-
structure) and authentication facilities for components.

[0127] An agent manager facilitates the agent life-cycle,
for example, deploying authenticated agents on specific
nodes, as well as running and suspending the agents in
an orchestrated manner that enables grid reconfiguration
without disrupting grid services.

[0128] FIG. 2B is a block diagram that schematically illus-
trates further details of the architecture and implementation
of system 20. System 20 is shown to comprise multiple sites
61, each of which typically comprises multiple computers 62,
which may be interconnected by LAN 38 on the site. Each of
the functions of hub 40 or gateway 50 may run on a single
computer on any given site or on multiple computers. Typi-
cally, to enhance scalability, gateways 50 are “thin,” requiring
only limited computing resources, and most of the computing
power in system 20 is concentrated in the hubs. Query agents

Nov. 11, 2010

60 run on hubs 40, and other agents 64, 65 may run on the
hubs and gateways, as well, as noted above. For example,
agents 65 on gateways 50 may comprise portal and wrapper
agents. Local storage 63 is provided for use by the agents in
carrying out their functions. In this implementation, comput-
ers 62 are configured to operate as Java platforms. The utili-
ties described above are typically implemented in Java as
conventional Remote Method Invocation (RMI) services,
with additional HTTP tunneling when beneficial, such as to
accommodate site firewalls. Agents 60, 64, 65 communicate
via grid-wide messaging services 66.

[0129] Gateways 50 may serve any number of communi-
ties, but each hub 40 typically serves a specific community.
Each community defines the nature of client services to be
supported, possibly differentiating between different service
priorities. Each service and priority is handled by an appro-
priate set of service agents 60, 64, for example, query and
subscription agents, which communicate via messaging ser-
vices 66 with portal and wrapper agents as needed. Multiple
agents at different nodes can share in the handling of any
specific service and priority by subscribing to a shared mes-
sage queue 68 of pending requests. Similarly, portal agents 65
submitting multiple types of client service requests publish
the requests to message queues 68 designated for handling
each type of service request. Message queues are dynamically
maintained by the distributed grid platform to facilitate
changes in the current configuration of services and agents.
[0130] In this embodiment, each gateway 50 is configured
to connect to a specific set of hubs 40. Each community
maintains a list of hubs serving that community so that the
hubs can readily discover each other. A dynamic grid-wide
directory 67 maintains the current state of nodes (gateways
and hubs) and connectivity, as well as a registry of all sources,
clients, and agents accessible via these nodes. Agents and
other utilities ensure that the dynamic directory is kept up to
date as part of their background activities. As noted earlier, all
grid nodes and components are mutually authenticated, and
an internal virtual private network is maintained to produce a
secure grid substrate.

[0131] When one of clients 54 submits a service request to
one of portal agents 65 on its gateway 50, this request is
queued to all hub agents 60, 64 that have subscribed to such
requests. An agent picks up the request, produces a concrete
plan for executing it, and then executes it with the assistance
of other agents, such as the source wrapper agents 65 needed
to produce the results. In such a case, each wrapper agent
receives an appropriate sub-request via its queue. The results
of the sub-request are stored directly in storage 63 at a pre-
determined location. The servicing hub agent then collects
these partial results to produce final results in the same stor-
age location or any other storage location. A link to the final
results is then sent to the originating portal agent via its
message queue.

[0132] Asimplied by this description, the grid topology and
consistency is fluid enough to accommodate change without
disruption. Thus, for example, if a source becomes unavail-
able, its wrapper agent will update the directory. Thereafter,
all agents with ongoing tasks that use this source can either
produce a new plan of action without the source or return
results with an appropriate exception (assuming the source
plays a non-critical part in the current query plan). If a grid
node fails, agents running on that node can be restarted at
other nodes. A grid-wide replication service supports repli-

US 2010/0287158 Al

cated components, including replicated directories and mes-
sages, so that there is no single point of failure.

[0133] FIG. 3 is a graph that schematically shows an ontol-
ogy 70 that may be used in system 20, in accordance with an
embodiment of the present invention. This exemplary ontol-
ogy relates to the domain of securities transactions 72, but of
course, similar ontologies may be defined for other domains,
such as the healthcare domain illustrated in FIG. 1. Further-
more, in system 20, ontologies are used not only for organiz-
ing data held in sources 58, but also for holding meta-infor-
mation regarding the system itself, such as network nodes,
resources, users and policies, including access permissions
by users to different resources and records.

[0134] Ontology 70 typically contains a hierarchy of
classes, which provide a vocabulary for describing entities,
such as people and vehicles, and their attributes, such as age
and weight. (Ontology classes are commonly referred to as
“entities” or “frames,” and their attributes are referred to as
“slots.”) In the example shown in FIG. 3, the transaction
ontology comprises entities identified as trades 74 and traders
76, with subsidiary entities 80, 82, 84 that contain elements
and sub-elements of a trade (such as the share traded and the
time it was traded) and of a trader making the trade (such as
identifying details of the trader). Some entities, such as enti-
ties 80 and 82, contain further hierarchies of sub-entities,
while other entities, such as entities 84, are closed.

[0135] As in object-oriented programming, inheritance
may be used in ontology 70 to define multiple abstraction
layers. Thus, trader 76 inherits the ontology of person 80,
with sub-entities of name, birth date, social security number
(SSN), etc. Each individual instance of a given entity, such as
person 80, is a specific person or other object, with its own
(presumably unique) set of attribute values.

[0136] Ontology 70 also defines relationships, by associat-
ing semantic labels with relationships that may exist between
entities. For example, trader 76 makes trade 74, while trade 74
is traded by trader 76. Properties in the ontology define dif-
ferent aspects of the ontological slots and relationships, such
as the slot types and cardinality, value ranges and statistics,
and how one relationship is the inverse of another. Further
general aspects of ontologies, including how ontologies may
be created and their use in data management, are described in
the references cited in the Background of the Invention. To
permit data in sources 58 to be accessed via the ontological
model of network 42, wrappers 56 map the metadata of the
respective sources to corresponding entities and attributes of
the ontology. Automated methods for carrying out this map-
ping are describe hereinbelow.

[0137] Inembodiments of the present invention, the ontolo-
gies used in system 20 incorporate logical rules, which enable
the ontology to capture generalized domain knowledge that
can then be applied in query planning and execution. In an
object-oriented framework, the rules may be expressed as
methods associated with the object classes of the different
entities in the ontology. Exemplary types of rules may include
the following:

[0138] Validation rules, indicating properties that may
be validly associated with a given entity. For example, a
rule may state that persons listed as instances of traders
76 in the ontology must have ages between 18 and 75. If
values in a data source are out of range or do not conform
to a given statistical distribution, the validation rules in
the ontology will identify the deviant entries.

Nov. 11, 2010

[0139] Mapping rules, used to map source data structure
and content to a given ontology during system priming.
For example, a mapping rule may apply ontological
properties of a specific column of source data in order to
calculate the probability that the column of data actually
does belong to a given frame and slot. A wrapper wizard,
as described hereinbelow, or other gateway component
may then suggest this mapping to a system manager for
use in mapping the column to the ontology.

[0140] Joining rules, useful particularly in query plan-
ning and execution for purposes of joining data from
multiple sources. Query agents use such rules to deter-
mine the probability that two records, with a given slotor
set of slots serving as a joint key, do indeed belong to the
same entity and instance. For example, a joining rule
may state that if two person entities have the same social
security number and the same first four letters of their
last name, then they belong to the same person. Joining
rules enable query agents to automatically infer which
set of available slots should be used to join data from
several sources in order to achieve the required level of
uniqueness.

[0141] Transformation rules may be used to infer how
values that reflect a given representation, language, or
code scheme can be automatically transformed into
another (for example, inches to centimeters).

[0142] Business logic rules are used to capture reusable
domain-specific knowledge, such as the eligible age for
a driving license in a given jurisdiction.

[0143] Policy rules can be used to control access to the
ontology or to specific entities and attributes in the ontol-
ogy. Note that in a community of multiple, federated
organizations, each organization still sets its own access
policies. The common ontology, however, permits the
rules to be promulgated in a shared format and to cover
different types of content. For example, a policy rule
could impose a constraint that only users with given
roles in system 20 or belonging to a specific organization
or group in the system may access a given data source.
Such a rule might further permit such users to read a
specific set of slots in the data source only after they have
been biometrically authenticated, and after the client
computer that they are using has also been authenticated
and confirmed to be linked to network 42 by a suitable
private link. Whereas content is generally mapped to an
ontology that is domain-specific for the community in
question, access-related ontology may be generic to
multiple content types.

In the federated model exemplified by FIG. 1, management of
data resources, ontologies and associated rules is decentral-
ized. Participant organizations are able to set their own rules
in the context of a common, generic ontology, which is cen-
trally defined. Some of'the rules may be determined and input
to system 20 by system managers and/or users, while others
may be inferred automatically by services running in the
system. Some automated methods for rule generation are
described hereinbelow with reference to FIG. 8.

[0144] FIG. 4 is a block diagram that schematically illus-
trates elements of system 20 that are used in query planning,
in accordance with an embodiment of the present invention.
This figure focuses on certain functions of query agent 60 and
associated utilities. Other elements of the system, such as
gateways 50, which are not essential to an understanding of
query compilation, are omitted from the figure.

US 2010/0287158 Al

[0145] Agent 60 relies on a unified metadata model 90 in
compiling query plans. The metadata model includes an
ontology 92, as described above, and a source directory 94. A
semi-automated ontology builder 96 may be used to generate
and modify ontology 92, typically under control of a system
manager. The ontology builder then maps data structures in
sources 58 to the terms in the ontology. A source modeler 98
maps sources 58 themselves to source directory 94, based on
the ontology of sources in system 20. User access privileges
are similarly maintained in the source directory in ontological
terms.

[0146] Queries composed by clients 54 are submitted to a
query server 100. The queries may be composed using a
graphical user interface (GUI) 102, which enables users to
browse and query all authorized data in ontological terms. In
other words, the users are not limited to predetermined views
of the data in sources 58, as in conventional database man-
agement systems, but may rather choose any combination of
data and sources that they are authorized to access (based on
the policies contained in the system ontology, as described
above).

[0147] Query server 100 refers user queries to a query
compiler 104, which composes a query plan for responding to
each query. Query planning is described further hereinbelow
with reference to FIGS. 5A and 5B. Much like a program
compiler, which translates portable high level instructions
into native machine instructions, query compiler 104 exploits
ontology 92 and the database mappings and rules in source
directory 94 to translate portable client queries into a set of
sub-queries directed to specific sources 58 (via their respec-
tive wrappers). The client query is typically expressed in
abstracted ontological terms, with no foreknowledge regard-
ing the specific available sources and their structure. The
sub-queries generated by compiler 104, on the other hand,
comprise sequences of queries that can be submitted to spe-
cific sources to produce the required results.

[0148] Once the query plan has been compiled, server 100
addresses the query messages to the appropriate sources 58,
and thus builds the query response for client 54.

[0149] FIGS. 5A and 5B are a flow chart that schematically
illustrates a method for query planning and execution, in
accordance with an embodiment of the present invention. The
method is initiated when portal 52 receives a query submitted
by a user of client 54, at a query submission step 110. The
portal authenticates the client and/or user credentials, and
transforms the submitted query expressed in client terms (for
example, in a structured query language [SQL] format) into
an equivalent query expressed in ontological terms.

[0150] Portal 52 then selects a query agent 60 to carry out
the query, at an agent selection step 112. The choice of query
agent may take into account the resources available to the
agent, its current work load, and its qualifications to deal with
the given ontology of the query. Directory 67 (FIG. 2B), as
mentioned above, may be used to collect and maintain infor-
mation regarding changes in the topology and resource load
of'network 42. Thus, if the portal determines that one eligible
query agent is overloaded, the portal may refer the query to a
different agent. In the context of the federated system shown
in FIG. 1, a portal on the site of one member organization may
even address queries to agents resident on computers in other
sites, subject to applicable policy constraints. Portal 52 then
submits the ontological query, to the selected query agent.
[0151] Query compiler 104 parses and analyzes the query
and uses the matching utility mentioned above to produce a

Nov. 11, 2010

subset of data sources 58 (or equivalently, a subset of wrap-
pers 56) that are relevant to the query, at a data source iden-
tification step 114. Selection of the data sources depends on
the ontological terms of the query, the requested scope of the
data, the client and user credentials, and the source use poli-
cies. Specifically, for each candidate data source, the query
compiler checks the client and/or user identity against the
access policies that are included in the source ontology, as
listed in ontology 92, at an access checking step 118. Any
source for which the query compiler determines that the client
oruser does not have sufficient access rights is removed from
the query plan.

[0152] The query compiler next examines the query and the
matched subset of data sources in order to compile the onto-
logical query into an optimized query plan that best exploits
the available data sources, at a query compilation step 120.
Further aspects of query compilation and optimization are
described below with reference to a specific query example in
FIG. 7. As noted above, the query plan comprises sub-queries
addressed to one or more sources 58, and subsequent joins
that combine the normalized sub-query results to produce
final results. Query agent 60 also allocates storage resources,
via the above-mentioned storage utility, for collecting results
during each stage of the plan.

[0153] Query agent 60 then executes the plan, sending
appropriate sub-query messages to wrappers 56 of sources
selected in the plan, at a message distribution step 122. The
messages typically comprise handles to the storage resources
allocated for the responses. Wrapper invocations are initiated
in parallel whenever possible, as illustrated in the figure.
[0154] Wrappers 56 use the source mappings to translate
the ontological sub-queries into the appropriate native terms
of local data sources 58. Details of this process are shown
below in FIG. 6. The resulting native sub-queries may typi-
cally be executed by the local database management system
(DBMS) of the corresponding data source. Note, however,
that sources 58 need not be databases, but may alternatively
comprise other types of data (structured or unstructured),
services and other applications. The wrappers may also per-
form normalization of the sub-query results based on trans-
lation terms provided in the sub-query, as well as other post-
processing of returned values after the sub-query is executed.
Each wrapper writes its processed data to the appropriate
storage location, at a data reception step 124. Query agent 60
is notified, typically via the storage utility, using the storage
handles, when the results have been appropriately normalized
by the wrapper and stored, at a data storage step 126.

[0155] The query plan may call for joining, filtering, sort-
ing and additional actions to be carried out by the query agent
upon subsets of results at various stages. The query agent
keeps track of the wrapper notifications and uses DBMS
capabilities of the storage utility to carry out these actions
when the result subsets are ready. The query agent also
handles exceptions, such as when results are not obtained
within designated response times. The query plan may indi-
cate which results are critical to the query and which are not,
so that the query agent can respond accordingly. For example,
when a sub-query requesting non-critical results fails, the
results may simply be omitted from the query response. On
the other hand, critical results, if unavailable from the original
intended source, may be procured by agent 60 from another
source, based on the information in metadata sources 90.
[0156] Query agent 60 checks periodically to determine
whether the query plan has been completed, at a completion

US 2010/0287158 Al

checking step 130. As long as further results are still required
in order to complete the query plan, the query agent continues
to collect and process data from wrappers 56, at a continued
collection step 132. Upon completion of the query plan, the
query agent caches the results in an appropriate storage loca-
tion, at a caching step 134. The agent then provides portal 52
with a handle to the final results, at a handle passing step 136.
The portal transforms the cached results into client terms as
needed, and delivers the results in the form requested by the
client. All the above actions are typically logged by the log-
ging utility, along with the credentials of the user and client
that submitted the query, for auditing and accountability pur-
poses.

[0157] FIG. 6 is a flow chart that schematically illustrates
steps performed by wrapper 56 in responding to a sub-query
addressed to it by query agent 60, in accordance with an
embodiment of the present invention. This method is initiated
when the wrapper receives a request for data from the query
a gent, at a data request step 140. The wrapper checks the
validity of the request, at a validity checking step 142. A
request may be invalid, for example, if it lacks the proper
access authorization. If the request is found to be invalid (or if
any of the subsequent steps in the method fails), the wrapper
sends a failure message back to query agent 60, at a failure
step 143. Possible responses of the query agent to failed
sub-queries were described above.

[0158] As noted previously, the sub-query from agent 60 is
typically stated in the ontological terms that are used in net-
work 42: Wrapper 56 maps the sub-query from the ontologi-
cal “SQL” used by agent 60 to the native query format that is
understood by the data source 58 that wrapper 56 serves, at a
query mapping step 144. Although FIG. 6, for the sake of
convenience, refers to the native query format as a “data
source SQL,” the method shown in the figure is equally appli-
cable to other types of data sources—not necessarily data-
bases—and services that may be accessed in system 20. The
sub-query may also contain data input, which is again
expressed in the normalized, ontological units and format of
network 42. Wrapper 56 similarly maps the SQL data from
the ontological format to the native units and format of source
58, at a data mapping step 146. The wrapper then retrieves the
requested data from source 58, using the local, native DBMS
of the source, at a data retrieval step 148.

[0159] If required by the query plan, wrapper 56 may
locally perform a part of the data processing required by the
plan, at a pushdown step 150. This step may be carried out
using the processing capabilities of the local DBMS or using
processing capabilities built into the wrapper. The step may
include, for example, joining values from multiple tables held
in data source 58 or, additionally or alternatively, performing
arithmetic or string operations on data values. Some
examples are shown in FIG. 7. In addition, if necessary,
wrapper 56 normalizes the data read from the data source, i.e.,
maps the data values from native units to the units used in the
ontology, at a normalization step 151. Value mapping carried
out by the wrapper may also include translation of text from
one language to another.

[0160] After retrieving the data from source 58 and com-
pleting any required local processing, wrapper 56 normalizes
the results in the appropriate ontological terms. The wrapper
stores the results in the appropriate location using the above-
mentioned storage service, at a data storage step 152 (corre-
sponding to steps 124 and 126 in F1G. 5A). The wrapper then
uses the storage service to send a message to query agent 60

Nov. 11, 2010

indicating the location of the sub-query result, at a sub-query
completion step 154. Where appropriate, wrapper 56 may
stream data to agent 60, so that processing of the data can
proceed even before all the sub-query results have been gath-
ered. Alternatively, in other circumstances, the wrapper may
move the data to a storage location specified by the agent in a
block operation, such as a block move or block insert opera-
tion.

[0161] Although the scenario above relates to handling
SQL-type queries, in alternative embodiments of the present
invention, system 20 is configured to support a comprehen-
sive set of information services, such as data updates, sub-
scriptions, events, and backups. Each service is typically
carried out by an appropriate type of service agent. Requests
from clients 54 for services of these types are submitted by
portal 52 to the appropriate service agent, which collaborates
with other agents and invokes utilities as needed.

[0162] The following are a few examples of alternative
service types that may be supported by system 20:

[0163] A data writing service agent may use the same
matching and planning processes as were described
above to identify relevant sources 58 for update. Writing
privileges in this case, as maintained in ontology 92, are
typically more limited than reading privileges, so that
client writes are of narrow scope. Wrappers 56 transform
data updates expressed in ontological terms into the
local terms to be written to the data sources. To maintain
coherence, source writes are only written after all rel-
evant sources commit. The wrappers may provide two-
phase commit transaction support for sources that lack
transactional support. Portal 52 then notifies client 54 as
to whether or not the request was successfully com-
pleted.

[0164] A process service agent may receive standard
process definitions, which may be expressed, for
example, in Business Process Execution Language
(BPEL). The process definition may incorporate ele-
ments such as flow control, client notification/interac-
tion, and other services of system 20. These other ser-
vices (for example, queries, data write, and recursive
processes) are executed by invoking the appropriate ser-
vice agents.

[0165] A transactional process service agent may be
used to execute processes that require a two-phase com-
mit.

[0166] An event service agent may be used to handle

requests for data-dependent events that prompt the acti-
vation of a process. Data events can be viewed as queries
with constraints that produce non-empty results (i.e.,
when the query returns a result, the event has occurred).
A query agent may thus be invoked to produce cached
results that are examined to determine when the event
has occurred. Some of sources 58 may themselves have
active database capabilities, i.e., they may incorporate
their own event-driven triggers. In this case, the event
service agent may invoke the wrappers of these sources
to manage the triggers and thus detect and report on
events, so that it is in this case unnecessary to poll the
sources. Otherwise, the wrappers may poll their sources
at a frequency specified by the event service agent (sub-
ject to any throughput limits imposed by the source
itself). The event service agent examines the results
when they become available, such as when all wrappers
have responded via trigger or polling. The event service

US 2010/0287158 Al

agent invokes a process service agent to execute the
appropriate process when the event has occurred.

[0167] A subscription service agent handles requests
from clients 54 for continuous queries. Depending on
the query terms, the agent returns complete or incremen-
tal results to the client on a periodic or event-driven
basis. The subscription agent typically recruits query
agents and/or event service agents to provide the results.

[0168] A backup service agent may be invoked to record
a copy of the results of a specified query on a designated
hub or source. The results are maintained in ontological
terms, and can thus be restored on any source 58 in
source terms even if the source has evolved since the
copy was recorded. The recorded results are tagged with
the list of sources used to produce the results so that
source restoration can be limited to the results that carne
from a given source.

[0169] A history service agent may be used to produce
time-tagged copies of specified data. The copies may be
made periodically, or they may be event-driven. They
may be used for tracking and on-line analytical process-
ing (OLAP) trend analysis.

[0170] FIG. 7 is a block diagram that schematically illus-
trates elements of a query plan carried out in system 20, in
accordance with an embodiment of the present invention. For
the purposes of this example, a simple ontology 160 is
defined, comprising a sale entity 162 and a product entity 164.
The entities are related by a product-sold relationship, iden-
tifying the product or products sold in each sale. The sale
entity includes a number of attributes, including a unique
order ID, as well as the sale amount and the customer account
number. Each product entity includes a product ID (such as a
catalog number), product name and price. The hierarchy of
products in ontology 160 includes, in this example, two types
of product entities: a monitor entity 166 and a printer entity
168, which are defined by inheritance from product entity 164
but have their own specific attributes (such as size or resolu-
tion).

[0171] The data sources available for responding to queries
in this example include relational databases 170 and 172 and
structured documents 174, 176, 178. It can be seen in the
figure that the fields in the databases and documents have
already been mapped by wrappers (not shown in this figure)
to ontology 160. Thus, for example, a field that might have
appeared in sales database 172 as the “purchase order num-
ber” has been mapped to the ID slot of sale entity 162, while
another field labeled “catalog number” has been mapped to
the ID slot of product entity 164.

[0172] A query 180 is now submitted to system 20, asking
for a listing of products sold, by name and price, and the
amounts and account numbers of sales in which these prod-
ucts have been sold. Query compiler 104 (FIG. 4) examines
the contents of sources 170, 172, 174, 176, 178 to determine
where the necessary information can be procured and how the
information can be joined into a query response. The query
plan developed by the compiler includes the following steps,
which are typically formulated as sub-queries addressed to
the wrappers of the data sources, as described above:

[0173] 1. The wrapper of one or both of databases 170
and 172 generates an initial sub-query result 182 by
performing an outer join of sales account data from
customer database 170 and sales amount data from sales
database 172. The wrapper uses the unique sale ID as a
key. This outer join operation, as well as other operations

11

Nov. 11, 2010

described below, is thus “pushed down” to the local level
ofthe databases and their wrappers in order to reduce the
processing burden on hub 40 (FIG. 2) and to reduce the
amount of communication traffic that must be carried by
network 42.

[0174] 2. The wrapper next takes a union of monitor list
174 and printer list 176, and then joins the name and
price information from these lists into result 182 in order
to create a combined sub-query result 184. In this case,
the product ID is used as the key for joining the data. The
wrapper also performs a complementation operation on
the product names, i.e., it converts the names to lower-
case characters to prevent errors in subsequent process-
ing.

[0175] 3. The wrapper of sale documents 178 performs a
natural join over the documents in order to generate a
second sub-query result 186. This sub-query may be
performed in parallel with the sub-queries carried out in
the two preceding steps. Here, too, product names are
converted by the wrapper to lower case. The form of
result 186 is identical to that of result 184, except that the
account number field is null in this case. The query agent
may ignore records that are partial or incomplete, or it
may alternatively return these results with an indication
of the missing values, depending on user preferences
that accompany the query. In the present case, in order to
ensure that the response to query 180 is complete and
does not miss any product sales due to bad or missing
data in any of the data sources, the query compiler has
chosen to collect potentially duplicate results 184 and
186.

[0176] 4. Agent60takes aunion ofresults 184 and 186 in
order to generate a query response 188. The lower-case
form of the product names enables the agent to avoid
duplicating records due to anomalies in capitalization.

[0177] Selection of the keys to be used in joining data from
different sources is a function of compiler 104. The compiler
uses ontological rules in order to choose the optimal key to
use in each case, so as to increase the likelihood of obtaining
complete and unambiguous data.

[0178] For example, consider the case in which a query is
submitted regarding a group of persons, requiring that query
agent 60 provide contact data (such as address), personal data
(such as age), and a vehicle registration number for each
person. The data are assumed to be in different tables, and the
query requires that they be joined for an authorized client. If
all tables are contained in the same database, the source
metadata will typically identify foreign keys for joining them.
Otherwise, it is possible that the data are distributed among
several sources, wherein each source has a field that has been
mapped to the same distinct identifier, such as an employee
number, or the unique sale ID number noted in the example
above. In this case, the common identifying field or fields
provide a solid base for joining the tables. Source directory 94
(FIG. 4) typically provides compiler 104 with this meta-
information regarding possible keys. Assembly of this meta-
information is one of the background tasks that may be car-
ried out in system 20 in order to enhance accuracy of results
and efficiency of query handling in runtime.

[0179] Otherwise, if not all the sources have fields mapped
to distinct identifiers, compiler 104 may use rules contained
in ontology 92 to find a key. For example, the ontology might
reveal that a name and social security number can be trans-
formed into a distinct identifier. In this case, source fields

US 2010/0287158 Al

mapped to the name and social security number can be used to
join the relevant tables. Otherwise, compiler 104 may per-
form empirical tests to evaluate the statistical uniqueness of
using the available non-distinct fields in these sources as the
basis for joining. For example, the compiler may count the
number of people in the target population that actually have
the same name and age, and may then choose the most distinct
combination as the key for joining the tables.

[0180] Even when distinct keys are available, erroneous
data (such as misspelled names) and ambiguous formats
(such as different U.S. and European date formats) can dis-
rupt the joining process. Compiler 104 may use ontological
rules and empirical testing to determine the likelihood that
such cases exist. For example, the query agent may test for
similar names that have identical social security numbers and
home addresses. It may then construct an auxiliary join table
to automatically translate similar names and other personal
attributes into distinct person identifiers. Each entry in the
table may also list the evaluated probability that the relation-
ship it represents is valid. This auxiliary table can subse-
quently be used as the basis for joining data from the original
tables, and also gives a well-defined measure of probability
that the join was valid. Such join tables can be produced per
class of entities or for specific subsets of each class.

[0181] Thus, for example, there may be several sources of
person-related information, each with different column com-
binations that include different combinations or sub-combi-
nations of name, social security number, address and tele-
phone numbers. Using rules contained in the ontology,
information in these tables could be correlated to identify
which source records belong to which people. On this basis,
avirtual person ID could be generated for each person, and an
auxiliary table could be produced for each source containing
the most probable person ID for each record and the confi-
dence level of the person ID. Subsequent joins for person-
related information could then use the grid-generated virtual
IDs as long as the confidence levels exceed a threshold pro-
vided with the query.

[0182] FIG. 8 is a flow chart that schematically illustrates
other background processes carried out in system 20 in order
to generate information that can be used by compiler 104 in
query planning and optimization, in accordance with an
embodiment of the present invention. These functions are
carried out, inter alia, by wrappers 56, as well as by ontology
builder 96 and source modeler 98 and other services running
on hubs 40. Some other background activities, such as build-
ing and maintaining ontologies 92 and generating auxiliary
join tables, were already mentioned above.

[0183] New data sources may be added to system 20 on a
“plug-and-play” basis. For this purpose, a wrapper is first
created, in order to map the fields of the new source to the
appropriate ontology, at a wrapper creation step 190. This
step is typically carried out semi-automatically by a system
manager, using a wrapper “wizard” program, as described
below with reference to FIG. 9. Once the wrapper has been
defined, the wrapper advertises the new source by sending
appropriate messages over network 42, at a source advertise-
ment step 192. The discovery utility on hubs 40 receives these
messages, and informs source modeler 98. The source mod-
eler then registers the appropriate source information in
source directory 94, at a source discovery step 194.

[0184] Ontology builder 96 may also generate new ontol-
ogy versions. For this purpose, the ontology builder applies a
version management utility to automatically transform onto-

Nov. 11, 2010

logical expressions from one version to another. Similarly,
source mappings to one ontology version are automatically
upgraded in source directory 94 to new versions. Typically,
ontological evolution consists mainly of expansion of the
topology, with occasional renaming and merging of struc-
tures, so that forward and backward transformations between
versions are relatively simple.

[0185] From time to time, the organizations participating in
system 20 may choose to change use policies with respect to
data sources 58 and other resources that they make available
via network 42. Such policy changes are likewise advertised
by wrappers 56, at a policy advertisement step 196, and are
then discovered and recorded in source directory 94, at a
policy discovery step 198.

[0186] During the normal course of activities of system 20,
the above-mentioned logging utilities (which may run on both
hubs 40 and gateways 50) track changes in the topology of
network 42 and measure performance of various network
functions, at a monitoring step 200. The monitoring seman-
tics, like other functions of network 42, are based on a com-
mon, network-wide ontology, which defines entities such as
queries submitted and answered, data transfer quantities and
rates, duration of operations and timeouts. Activities are
logged at the nodes at which they occur, so that the logs
accumulate in a manner that does not disrupt messaging. Each
log records each activity along with an identification of the
request that generated it, so that a complete record of the
handling of any particular request can be reconstructed end-
to-end based on information held in the different logs. For the
purpose of such logging, a network-wide system clock may
be defined (despite the fact that the underlying physical net-
work is asynchronous) by periodic distribution of appropriate
timing messages, thus creating a “virtual time” that is uniform
for all logs in system 20. As noted earlier, query agents 60 use
the topology and performance data in order to perform load
balancing among resources of system 20, even across bound-
aries of participating organizations. Ontology-based use poli-
cies ensure that the resources of one member organization
will not be used by other organizations in the system beyond
the level permitted by organization policies.

[0187] FIG.9A is a schematic representation of a computer
screen 210, showing a user interface provided by a wrapper
wizard, in accordance with an embodiment of the present
invention. Source modeler 98 provides this wizard in order to
assist the system manager in the process of identifying the
source structures, defining source mappings, and registering
the source in directory 94. In the present example, the source
is a relational SQL database, which is automatically loaded
into modeler 98 along with the chosen ontology. The ontol-
ogy is then displayed in an ontology window 211, while
source metadata are displayed in a database window 212. The
system manager uses a mouse to associate metadata entries in
window 212 with corresponding slots in window 211, and to
operate controls 213 in order to confirm or remove the map-
pings. Once the mapping is completed, the new source is
advertised as described above.

[0188] Similar models may be used for wrapping data
resources of other types. For example, if the resource is a Web
service, the source Web service description language
(WSDL) model may be automatically loaded into the source
modeler, in place of the SQL metadata. Similarly, if the
resource is an XML, database, an XQuery server may be used
to identify available schemata for mapping by the source
modeler. For unstructured text, analytical tools such as those

US 2010/0287158 Al

offered by ClearForest (New York, N.Y.) can be used to add
XML tags to the text, which can then be indexed like an XML
database. Likewise, models of this type may be used for
mapping other elements of system 20 to the appropriate
ontologies.

[0189] FIG.9Bisa schematic representation of a computer
screen 214, showing a user interface provided for the purpose
of mapping users to ontological user classes, in accordance
with an embodiment of the present invention. The mapping
typically depends on the users’ organizational affiliation and
role within their respective organizations. Screen 214
includes an ontology window 215, in which user roles are
listed, and a user window 216, listing the names of users in the
organization in question. In this case, the system manager
uses a mouse and controls 213 to associate each user in
window 216 with the appropriate role in window 215. As
noted above, access policies in system 20 are set by each
organization and/or set globally with respect to the predefined
ontology of roles.

[0190] FIG. 10 is a block diagram that schematically illus-
trates elements of virtual private network 42, in accordance
with an embodiment of the present invention. This figure
exemplifies the semantic nature of communications over net-
work 42 and the benefits of such communications. As noted
earlier, although network 42 may physically run over public
networks, such as WAN 36, network 42 is logically separate
from other communications that are carried by WAN 36.
Separation of the virtual private network is maintained by
techniques such as tunneling and encryption. Network 42
connects clients 220, 250 and sources 224 via gateways 222,
226 and 252 to a backbone of agents 228, 230, 232 and 234.
Typically, the agents are logically connected in a full mesh
grid topology, as shown in the figure.

[0191] Clients 220 and 250 may communicate with
sources, such as source 224, only via the respective gateways
and the backbone agents. All communications between the
clients and the gateways are purely semantic in form, as are all
communications between agents. An exemplary data packet
240 contains a message queue header 246 and a semantic
payload 248. Header 246 comprises the logical addresses of
the application-level source and destination of the packet
(typically agents) and possibly other parameters. Payload 248
comprises a query, response or other system message. The
contents of both header 246 and payload 248 are selected
from a limited, predetermined set of possible semantic con-
tents, which must conform to the specified ontology of system
20. This ontology is known to all of the agents.

[0192] Therefore, upon receiving a packet over network 42,
the receiving agent can check the semantics of packet header
246 and payload 248 for conformance with the known ontol-
ogy. In other words, the agent filters the header and payload
against a limited set of known templates to which legitimate
traffic must conform. Packets with non-conforming seman-
tics are simply discarded, or filtered semantic elements are
nullified. (By contrast, in generic IP networks, although a
firewall or other intrusion protection device may check the
packet payload for signatures of known malicious traffic
types, the payload remains a “black box” of binary data,
which cannot readily be diagnosed as benign or malicious.)
Network 42 is thus substantially immune to malicious traffic
attacks. Typically, for greater data security and intrusion pre-
vention, header 246 and payload 248 are encrypted.

[0193] Inaworst-case scenario, a malicious user, operating
on client 250, for example, may “hack into” gateway 252, and

Nov. 11, 2010

may then bombard agent 230 with packets. Agent 230, how-
ever, will recognize that the packets do not have the proper
semantics and will discard them. Even if the malicious user is
successful in this manner in disrupting the performance of
agent 230, the resultant traffic will not propagate further into
network 42. Other clients, such as client 220, will still be able
to access data sources through the remaining agents in the
backbone grid.

[0194] Moreover, each client 220 and source 224 can deter-
mine which ontological elements it is willing to share and
what security checks should be applied to each element
before it is either sent or received. Since all shared informa-
tion must correspond to ontological elements to flow through
the grid, each owner is guaranteed that all incoming and
outgoing flows comply with well-defined standards, regard-
less of the nature of the service being provided. This model is
far less complex than the common alternative of screening
binary information, which may assume any form for any
number of clients and applications with no semantic basis.
[0195] As noted earlier, although the embodiments
described above relate mainly to providing access to data
sources, the principles of the present invention may similarly
be applied in controlling access to and supply of other infor-
mation resources, such as Web services, via a network. It will
thus be appreciated that these embodiments are cited by way
of example, and that the present invention is not limited to
what has been particularly shown and described hereinabove.
Rather, the scope of the present invention includes both com-
binations and subcombinations of the various features
described hereinabove, as well as variations and modifica-
tions thereof which would occur to persons skilled in the art
upon reading the foregoing description and which are not
disclosed in the prior art.

1-34. (canceled)

35. A method for exchange of information, comprising:

establishing a virtual private network among a plurality of

nodes, comprising at least first and second nodes, which
are configured to communicate with one another over an
underlying public physical network;
defining a semantic communication model for conveying
data packets among the nodes in the virtual private net-
work, responsively to an ontology of the information;

sending a data packet over the virtual private network from
the first node to the second node; and

filtering the data packet against the semantic communica-

tion model at the second node, so as to verify that the
data packet is legitimate.

36. The method according to claim 35, wherein defining
the semantic communication model comprises defining a
closed set of semantic messages that may be carried by data
packets in the virtual private network.

37. The method according to claim 35, wherein the nodes
are distributed among a set of autonomous organizations.

38. The method according to claim 35, wherein the nodes
comprise gateway nodes, which are configured to communi-
cate with clients and data sources using native data formats,
and to translate the native data formats to the semantic com-
munication model for communication over the virtual private
network.

39. The method according to claim 38, wherein the nodes
further comprises hub nodes, and wherein establishing the
virtual private network comprises configuring the gateway
nodes to communicate with the hub nodes using the semantic
communication model.

US 2010/0287158 Al

40-66. (canceled)

67. Apparatus for data access, comprising a hub processor,
which is adapted to receive a definition of an ontology for
application to a set of diverse data sources comprising data
and a definition of data access rights with respect to the
ontology, and which is adapted to control user access to the
data responsively to the ontology of the data and the access
rights applicable thereto.

68. The apparatus according to claim 67, wherein the ontol-
ogy comprises a user ontology, and wherein the hub processor
is adapted to define the data access rights by assigning a
classification to a user according to the user ontology, and to
compare the classification to the access rights applicable to
the data in order to control the user access.

69. The apparatus according to claim 67, wherein the
diverse data sources are distributed among a set of autono-
mous organizations comprising at least first and second orga-
nizations, and wherein the hub processor is adapted to clas-
sify a user according to an organizational affiliation of the
user so as to control access by users in the first organization to
the data sources held by the second organization.

70. The apparatus according to claim 67, wherein the hub
processor is adapted to receive a query from a user to access
the data in the data sources, to determine a query plan for
responding to the query by selecting one or more of the data
sources responsively to the ontology such that the access
rights permit the user to access the data in the one or more of
the data sources, and to generate a response to the query in
accordance with the query plan.

71-73. (canceled)

74. Apparatus for exchange of information, comprising a
plurality of computing nodes, which comprise at least first
and second nodes, and which are linked to communicate over
a virtual private network running over an underlying public
physical network, and which are configured to exchange data
packets over the virtual private network in accordance with a
semantic communication model, which is defined respon-
sively to an ontology of the information, wherein at least the
second node is adapted, upon receiving a data packet over the
virtual private network from the first node, to filter the data
packet against the semantic communication model so as to
verify that the data packet is legitimate.

75-117. (canceled)

118. The apparatus according to claim 67, wherein the hub
processor is adapted to associate with the ontology one or
more logical rules applicable to the semantics of the data in

Nov. 11, 2010

the data sources, and is further adapted, upon receiving a
query from a user regarding the data, to determine a query
plan for responding to the query by selecting one or more of
the data sources responsively to the ontology and by identi-
fying an operation to be applied to the data responsively to the
applicable logical rules, and to generate a response to the
query in accordance with the query plan.

119. The apparatus according to claim 67, wherein the hub
processor is adapted to collect information regarding a topol-
ogy and performance characteristics of the data sources, and
is further adapted, upon receiving a query from a user regard-
ing the data, to determine a query plan responsively to the
query and to the information regarding the topology and
performance characteristics, and to generate a response to the
query in accordance with the query plan.

120. The apparatus according to claim 74 and wherein the
plurality of computing nodes comprises a grid of at least one
agent and at least one gateway.

121. The apparatus according to claim 120 and wherein the
at least one gateway comprises at least one of at least one
wrapper and at least one portal.

122. The apparatus according to claim 121 and also com-
prising a security utility operative to provide public key infra-
structure (PKI) and authentication facilities for at least one of
the at least one agent, the at least one wrapper and at least one
portal.

123. The apparatus according to claim 120 and also com-
prising an agent manager operative to enable reconfiguration
of the grid without disrupting services of the grid.

124. The apparatus according to claim 120 and also com-
prising a network utility operative to gather and update infor-
mation regarding topology and status of resources associated
with the plurality of nodes.

125. The apparatus according to claim 120 and wherein the
grid is operative to provide distributed virtual private network
services to the plurality of nodes.

126. The apparatus according to claim 120 and wherein
said grid is operative to balance loads across said grid when
sensing at least one grid condition.

127. The apparatus according to claim 126 and wherein
said at least one grid condition is at least one of a fallen node,
an inaccessible source and a revoked certificate.

sk sk sk sk sk

