MATERIALS AND METHODS FOR TREATMENT OF ALLERGIC DISEASES

Inventor: Shyam S Mohapatra, Tampa, FL (US)

Correspondence Address:
SALIWANCHIK LLOYD & SALIWANCHIK
A PROFESSIONAL ASSOCIATION
PO BOX 142950
GAINESVILLE, FL 32614-2950 (US)

Publication Classification

(51) Int. Cl.
A61K 48/00 (2006.01)
A61K 38/22 (2006.01)

(52) U.S. Cl. ... 514/12; 514/44

ABSTRACT

The present invention pertains to a method for treatment of allergic diseases by administering a natriuretic hormone peptide (NHP), or a nucleic acid sequence encoding NHP, to a patient in need thereof. In another aspect, the present invention concerns an expression vector comprising a nucleic acid sequence encoding NHP. In another aspect, the present invention concerns a host cell genetically modified with a nucleic acid sequence encoding NHP. In another aspect, the present invention concerns a pharmaceutical composition comprising NHP or a nucleic acid sequence encoding NHP and a pharmaceutically acceptable carrier. In another aspect, the present invention pertains to novel fragments of atrial natriuretic peptide (ANP) exhibiting bronchodilatory and anti-inflammatory activity, and isolated nucleic acid sequences encoding the fragments.
FIG. 1

pre-proNHP (151 aa)

proNHP (126 aa)

ANP

Urodiilatin (UD)

Seq.ID #6

Seq.ID #5
FIG. 3A

Sensitization
10 µg Ovalbumin

I.N. Gene Transfer
10 µg of DNA

Challenge
50 µg allergen I.N.

FIG. 3B

NHP₇₃-₁₀₂

β-actin

90 bp

296 bp

FIG. 3C
FIG. 3D

FIG. 3E
FIG. 4A

<table>
<thead>
<tr>
<th>Day</th>
<th>OVA i.n.</th>
<th>OVA i.n.</th>
<th>OVA i.n.</th>
<th>OVA i.n.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OVA i.p.
pNHP73-102/
pVAX
in.

FIG. 4B

% Penth

Days After Sensitization

FIG. 4B
FIG. 5A

FIG. 5B

FIG. 5C
FIG. 6A

FIG. 6B

FIG. 6C
FIG. 7A

FIG. 7B
MATERIALS AND METHODS FOR TREATMENT OF ALLERGIC DISEASES

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Application No. 60/319,529, filed Sep. 6, 2002, which is hereby incorporated by reference herein in its entirety, including any figures, tables, nucleic acid sequences, amino acid sequences, or drawings.

BACKGROUND OF THE INVENTION

[0002] Respiratory diseases, such as allergic rhinitis, asthma, and chronic obstructive pulmonary disorders (COPD) are often debilitating conditions with high prevalence, affecting more than 155 million people in the developed world. Asthma is one of the common chronic diseases and is rapidly increasing by 20% to 50% per decade, particularly in children. Currently, there are 53 million patients in the major pharmaceutical markets. Constriction of the airways is the hallmark of chronic conditions such as asthma and COPD, and inflammation is common to all respiratory diseases affecting either the upper or lower airways. Bronchodilators, which may possess limited anti-inflammatory activity, are considered the first line of therapy for asthma. Steroids are considered the gold standard as anti-inflammatory therapy, but they possess other significant adverse effects. Effective therapies other than steroids are under intense investigation.

[0003] A group of four peptide hormones, originating from the 126-amino-acid atrial natriuretic factor (ANF) prohormone, have been known for their vasodilator activity. These four peptide hormones, consisting of amino acids 1-30, 31-67, 79-98, and 99-126 of this prohormone, have been named long acting natriuretic peptide, vessel dilator, kalluriuretic peptide, and atrial natriuretic peptide (ANP), respectively for their most prominent effects (Angus R. M. et al., Clin Exp Allergy 1994, 24:784-788). The ANP sequence, particularly the C-terminal portion, is highly conserved among species (Seidman et al., Science, 1984, 226:1206-1209). It has been proposed to be useful for treatment of various cardiovascular, respiratory, cancerous and renal diseases (Vesely, D. L. Cardiovascular, 2001, 51:647-658).

[0005] The present inventor has demonstrated prolonged amelioration of symptoms associated with respiratory allergy and asthma by delivery of pDNA-encoding various natriuretic hormone peptides (NHPs), or by delivery of the peptides themselves, which exhibit bronchodilatory and/or anti-inflammatory activity.

BRIEF SUMMARY OF THE INVENTION

[0006] The present invention pertains to a method for treating respiratory allergies, such as allergic rhinitis and asthma, which may be caused by allergens and exacerbated by respiratory viral infections, pollutants, and smoke.

[0007] In one embodiment, the method of the present invention comprises administering a therapeutically effective amount of a natriuretic hormone peptide (referred to herein as NHP or NHP peptide) to a patient in need of such treatment. As used herein, NHP refers to atrial natriuretic factor (ANF) hormone, or a biologically active fragment or homolog thereof.

[0008] Specifically exemplified NHPs comprise an amino acid sequence selected from the group consisting of amino acids 1-30 of ANF (also known as “long acting natriuretic peptide” and referred to herein as NHPa_30 or SEQ ID NO:1), amino acids 31-67 of ANF (also known as “vessel dilator” and referred to herein as NHPa_67 or SEQ ID NO:2), amino acids 79-98 of ANF (also known as “kalluriuretic peptide” or referred to herein as NHPa_98 or SEQ ID NO:3), and amino acids 99-126 of ANF (also known as “atrial natriuretic peptide” or “ANP”, and referred to herein as NHPa_126 or SEQ ID NO:4), or biologically active fragments or homologs of any of the foregoing. Other exemplified NHPs comprise amino acids 73-102 of proANF (referred to herein as NHPb_102 or SEQ ID NO:5), or SEQ ID NO:6, or biologically active fragment(s) or homolog(s) of the foregoing. In one embodiment, the NHP administered to the patient does not consist of NHPa_126 (SEQ ID NO:4).

[0009] In another embodiment, the method of the present invention comprises administering an effective amount of at least one nucleic acid molecule encoding an NHP to a patient in need of such treatment. The present inventor has determined that introduction of a nucleic acid molecule encoding NHP is capable of inhibiting allergen-specific IgE synthesis for the treatment of allergic disease. The gene delivery method of the present invention permits long-term expression of NHP-encoding nucleic acid sequences in vivo, thereby conferring bronchoprotective effect and/or anti-inflammatory effect against respiratory allergies, such as asthma. In one embodiment, a therapeutically effective amount of at least one nucleic acid molecule encoding a peptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, and SEQ ID NO:6 or biologically active fragments or homologs of any of the foregoing, are administered to the patient.

[0010] In another aspect, the present invention concerns an isolated peptide comprising the amino acid sequence NHPa_98 (SEQ ID NO:5) or SEQ ID NO:6, or a biologically active fragment or homolog of the foregoing. In another aspect, the present invention concerns an isolated nucleic
acid molecule encoding the amino acid sequence of NHP_{73, 102} (SEQ ID NO:5) or encoding the amino acid sequence of SEQ ID NO:6, or a biologically active fragment or homolog thereof.

In another aspect, the present invention concerns an expression vector comprising a nucleic acid sequence encoding an NHP, and a promoter sequence that is operably linked to the NHP-encoding nucleic acid sequence. In one embodiment, the expression vector is a DNA plasmid or virus. In another aspect, the present invention concerns a pharmaceutical composition comprising a nucleic acid sequence encoding an NHP, and a pharmaceutically acceptable carrier.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and objects of the invention, reference should be made to the following detailed description, taken in connection with the accompanying drawings, in which:

FIG. 1 shows a diagram depicting the family of natriuretic hormone peptides (NHP). Translation of the atrial natriuretic factor gene results in a pre-prohormone from which the S^1 signal sequence is cleaved to yield the 126 amino acid prohormone (ANF). The prohormone is further cleaved by endopeptidases into several bioactive peptides, long-acting natriuretic peptide (LANP) (NHP_{73,102}; SEQ ID NO:1), vessel dialator (VD) (NHP_{51,97}; SEQ ID NO:2), kaliuretic peptide (KP) (NHP_{59,96}; SEQ ID NO:3), and atrial natriuretic peptide (ANP) (NHP_{99,126}; SEQ ID NO:4). Urodialatin (UD), a variant of ANP is also in circulation and has been implicated in asthma. The NHP construct used in these studies encodes NHP_{73,102} (SEQ ID NO:5) and SEQ ID NO:6, which are distinct from the above peptides but include a critical overlap region shared with UD and ANP.

FIGS. 2A and 2B show cloning and expression of NHP in human alveolar cells and effect on AHR of murine lung. **FIG. 2A** shows the successful cloning of the peptides of ANF in the pVAX expression vector. The gel electrophoresis of excised inserts corresponding to SEQ ID NO:13 (approximately 114 bp band) and to NHP_{73,102} (approximately 90 bp band) are shown. **FIG. 2B** shows expression of NHP_{73,102} in human type II alveolar epithelial cells, A549. A549 cells were either transfected with pNHP_{73,102}, SEQ ID NO:13 or pVAX vector control. Expression of ANP-like peptide was detected in cell supernatant and lysate from transfected cells alone but not pVAX control. *p<0.05; compared to pVAX control.

FIGS. 3A-3E show therapeutic effect of NHP_{73,102} on asthma in mice. **FIG. 3A** shows an experimental outline of immunization protocol using NHP_{73,102}. **FIG. 3B** shows expression of NHP_{73,102} in murine lung. Mice were administered intranasally (i.n.) either with pNHP_{73,102} or pVAX as described. Three days following the last DNA administration, NHP expression was checked from lung tissue by RT-PCR. Mice receiving NHP_{73,102} (lane 2) exhibited NHP expression, which was not present in control mice receiving empty pVAX plasmid (lane 1). **FIG. 3C** shows an estimation of the degree of sensitization following ova injection (FIG. 3A). Mice (n=4) were injected intraperitoneally (i.p.) either with ova and alum or phosphate buffer saline (PBS), and on day 21 their serum was analyzed for ova specific IgE. Mice receiving ova and alum exhibited higher titers (p<0.01) of ova specific IgE than the PBS control. The experiments were repeated twice and data from a representative experiment are shown. **FIGS. 3D-E** show the measurement of AHR to increasing concentrations of methacholine following NHP gene transfer on day 26. BALB/c mice (n=4) were sensitized with ovalbumin by i.p. immunization (10 μg/mouse) and 14 days later were treated with 10 μg/mouse of SEQ ID NO:13 or pNHP_{73,102} intranasally. The control group received the empty vector alone. Each mouse was intranasally administered three times on two days interval with 10 μg of plasmid DNA complexed with 50 μg of transfection reagent Lipofectamine (Life Technologies, Rockville, Md.). Animals were challenged with the same allergen (50 μg in PBS) three days after the last intranasal DNA delivery and 24 hours later their AHR was measured using the whole body plethysmograph (Buxco, Troy, N.Y.). A dose-dependent decrease of methacholine response is shown in **FIG. 3D, FIG. 3E**. **FIG. 3E** shows the effect of treatment with SEQ ID NO:13 and pNHP_{73,102} on allergen-induced airway hyper-responsiveness (AHR). The effect of treatment at the highest concentration (50 mg/ml) of methacholine challenge is shown (p<0.05).

FIGS. 4A and 4B show the long-term effect on AHR following prophylaxis by NHP_{73,102} gene transfer. **FIG. 4A** shows schematically the protocol of sensitization, treatment and antigen challenges and measurement of AHR. **FIG. 4B** shows measurement of Penh (%) at 50 mg/ml of methacholine. *p<0.05; compared to pVAX control. The experiment was repeated twice and data from a representative experiment are shown.

FIGS. 5A-5C show that administration of chitosan-pNHP nanoparticles exhibit a therapeutic effect for allergen-RSV induced asthma and reversal of asthma in mice. **FIG. 5A** shows an experimental outline of immunization protocol with allergen and RSV, treatment schedules, challenges and AHR measurements. **FIG. 5B** shows reversal of airway hyper-reactivity as evident from % Penh measurement following treatment with chitosan-pNHP_{73,102}. The other treatments included chitosan-pVAX (control), chitosan+pNHP_{73,102}, fluticasone, and fluticasone and salmeterol alone. **FIG. 5C** shows the reduction in inflammatory cells in the lung by treatment with pNHP_{73,102}. Mice treated as shown in **FIG. 5B** were subjected to bronchoalveolar lavage (BAL) following AHR. A BAL cell differential was performed and cytoplasmal BAL cells were stained and different cell types were quantified by three blinded investigators. The percentage of cells of macrophages, eosinophils, neutrophils and lymphocytes were determined.

FIGS. 6A-6C show that overexpression of NHP_{73, 102} leads to increased production of nitric oxide in human epithelial cells. A549 (FIG. 6A) and NHBE (FIG. 6B) cells were transfected with control vector or NHP_{73,102}. At the
indicated times after transfection, aliquots of the culture medium were assayed for nitrite (the NO reaction product). Fluorescence was read at 409 nm with excitation at 365 nm using a JASCO spectrophotometer. Data are means±SEM (n=3). FIG. 6C shows that NO production is due to the constitutive NOS. One aliquot of cells was incubated during the expression phase with 1 mM Nω-nitro-L-arginine methyl ester, an arginine analog that blocks eNOS production of NO (NHP⁺). The enhanced NO generation was inhibited by pretreatment of the cells with N-nitro-L-arginine methyl ester, which blocks eNOS activity.

[0019] FIGS. 7A and 7B show that pNHP73-102 exerts its anti-inflammatory activity in the lung by decreasing NFkB activation in epithelial cells. A549 (FIG. 7A) or NHBE (FIG. 7B) cells were co-transfected with pNHP73-102 or vector pVAX (pV) alone, NFkB plasmid carrying the luciferase reporter gene pNFkB-luc reporter plasmid (MERCURY PROFILING SYSTEM, CLONTECH), and pLacZ normalization control. NFkB was activated 24 hr after transfection by incubating cells with 20 ng/ml phorbol myristate acetate (PMA) (for A549 cells) or 10 ng/ml of TNF-α (for NHBE cells). Luciferase activity was detected using the DUAL LUCIFERASE REPORTER Assay kit (CLONTECH) and DYNEX MLX luminometer. Data (average of three readings±SEM) are expressed as fold change in luciferase activity in arbitrary units relative to vector control.

BRIEF DESCRIPTION OF THE SEQUENCES

[0020] SEQ ID NO:1 is the amino acid sequence of human "long acting natriuretic peptide" or NHP₃₋₁₀₂: RNPYMN AVSNADLMDF KNLDDHLEEK MPLMED. ¹
[0021] SEQ ID NO:2 is the amino acid sequence of human "vessel dilator" or NHP₃₋₁₀₂: EYVPPP QVLSEPNEEA GAALSPLPEV PPWTVGSD EA. ²
[0022] SEQ ID NO:3 is the amino acid sequence of human "kaliuretic peptide" or NHP₇₀₋₉₆: SSDRSAL LKSKLRLALT APR. ³
[0023] SEQ ID NO:4 is the amino acid sequence of human "atrial natriuretic peptide" (ANP) or NHP₉₋₁₂₆: LRRSSC FGRMRGIRGA QSGLGCSFR Y. ⁴
[0024] SEQ ID NO:5 is the amino acid sequence of cloned mouse pNHP₇₅₋₁₀₂: Gly₋³SPWDPDSRSALLKSKLRRLAGPRSLRKR. ⁵
[0025] SEQ ID NO:6 is the amino acid sequence of cloned mouse NHP fragment: VSNTRGLDKNLLDDHEEK-MPVEDVMPQSEQTE. ⁶
[0026] SEQ ID NO:7 is the amino acid sequence for the human preproANP (NCBI ACCESSION # NM_006172) wherein the underlined amino acids represent the signal sequence which is cleaved off to form the mature peptide.

[0027] SEQ ID NO:8 is a forward primer for the cDNA sequence encoding mouse prepro ANF protein:

5'-gac ggc aag ctt act atg ggc aag ccc tgg gac cc-3'.

[0028] SEQ ID NO:9 is a reverse primer for the cDNA sequence encoding mouse pre-proANF protein:

5'-acc ccc ctc gag tta tct tgt tag got cca-3'.

[0029] SEQ ID NO:10 is a forward primer for the cDNA sequence encoding mouse NHP fragment:

5'-aat cct aag ctt agt atg tgt tcc aac aca gat-3'.

[0030] SEQ ID NO:11 is a reverse primer for the cDNA sequence encoding mouse NHP fragment:

5'-gcc gaa ctc gag tta ctc agt tct ctc act cag ggc ctc cc-3'.

[0031] SEQ ID NO:12 is the nucleotide sequence encoding cloned mouse pNHP₇₅₋₁₀₂:

atg ggc aag ccc tgg gac ccc tgt aga tct gcc ctc tgt tga aag cca cta agt aag gct tct tcc ggg cag cct ccg aca cta cga aga tas.

[0032] SEQ ID NO:13 is the nucleotide sequence encoding cloned mouse pNHP fragment:

atg tgt tcc aac aca gat ctg aat ctg gat gct aac atg aac ctg cta gag cac ctg gag aag atg ccc gta gaa gat ggg gct aag atg cag aag act gag taa.

1 NSSEPSTIVUS FLLLLAPOOLL QOTTANRHMYN AVSNADLMDF KNLDDHLEEK
MPEDEEVVPP QVLSEPNEEA GAALSPLPEV PPWTVGSD EA QRDGALGROG
PWSSDRSAL LKSKLRLALT APRSLRRSSC FGRMRGIRGA QSGLGCSFR Y.
SEQ ID NO:14 is the mRNA nucleotide sequence encoding human ANP (NCBI Accession # NM_006172:

```
1 tgggccagg gacaagttg ccaagagagt ggaaccagag aggaaccagag ggaggagagc
gagccagagc tcagcttttt cagaggtcag gtaagcttttt ctoacaaccc
121 acctggtgtc ttoctttttt cccagtctttt cagaggtcag gtaagcttttt ctoacaaccc
181 agatcgaag ggctggct caagcagtg aacaagttc caaaatgttt ggcagattgt
241 gagagagag attgctgggt gactaaggt cactaagttg cctagccac ccgagccccc
301 cagcacccc cagagcaggt gggcaggggc gccccccccc ccccccccc ccccccccc
361 gtagctgttt tggagggct gactaaggt cactaagttg cctagccac ccgagccccc
421 tctgctcactca aaaaagcc cagctgacgg gactaaggt cactaagttg cctagccac ccgagccccc
481 ttagagct cagagcaggt gggcaggggc gccccccccc ccccccccc ccccccccc
541 caagctgttt tggagggct gactaaggt cactaagttg cctagccac ccgagccccc
601 cagcacccc cagagcaggt gggcaggggc gccccccccc ccccccccc ccccccccc
661 gaggtggtt cactaagttg cctagccac ccgagccccc ccccccccc ccccccccc
721 cagagcaggt gggcaggggc gccccccccc ccccccccc ccccccccc ccccccccc
781 cccccc cagagcaggt gggcaggggc gccccccccc ccccccccc ccccccccc
841 ttgggagggc gggagggagc ggcagctgttt tggagggct gactaaggt cactaagttg
```

[0034] SEQ ID NO:15 is the human gene for atrial natriuretic factor propeptide (coding sequence includes-join (570... 692, 815... 1141, 2235... 2240); sig. peptide=570... 644; mat. peptide=join (645... 692, 815... 1141, 2235... 2237), (NCBI ACCESSION NO: X01471; Greenberg, B. D. et al., Nature. 1984, 312(5995):656-658):

```
1 ggtcatttt ttgcaggggt tggaggggct cctagccac ccgagccccc ccccccccc ccccccccc
61 aggcctttt gggagggggc gggaggggct cctagccac ccgagccccc ccccccccc ccccccccc
121 tggaggggct gggaggggct cctagccac ccgagccccc ccccccccc ccccccccc ccccccccc
181 caagagagga cctagccac ccgagccccc ccccccccc ccccccccc ccccccccc ccccccccc
241 tctagccac ccgagccccc ccccccccc ccccccccc ccccccccc ccccccccc ccccccccc
301 cggaggggagc gggagggagc gggagggagc gggagggagc gggagggagc gggagggagc
361 gggagggagc gggagggagc gggagggagc gggagggagc gggagggagc gggagggagc
421 gggagggagc gggagggagc gggagggagc gggagggagc gggagggagc gggagggagc
481 caagagagga cctagccac ccgagccccc ccccccccc ccccccccc ccccccccc ccccccccc
541 gggagggagc gggagggagc gggagggagc gggagggagc gggagggagc gggagggagc
601 cctagccac ccgagccccc ccccccccc ccccccccc ccccccccc ccccccccc ccccccccc
661 caagagagga cctagccac ccgagccccc ccccccccc ccccccccc ccccccccc ccccccccc
721 gggagggagc gggagggagc gggagggagc gggagggagc gggagggagc gggagggagc
781 ccccccccc ccccccccc ccccccccc ccccccccc ccccccccc ccccccccc ccccccccc
841 gggagggagc gggagggagc gggagggagc gggagggagc gggagggagc gggagggagc
```

1021 cccccc ccccccccc ccccccccc ccccccccc ccccccccc ccccccccc ccccccccc
-continued

1081 cttcgggggc agatgagaca ggtttgggc ccagagccga ccagagccga ctgggctgta acaagttccg
1141 ggttaagggg aactggggg gtaaagggg gaaagggg ggtgtggg gttgtggg gttgtggg gttgtggg
1201 cagaaaggg gcaatgagac aagctggtt ctgtgggc gctgtgggc gctgtgggc gctgtgggc gctgtgggc
1261 tggcagagcg cggagcatc ggtgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
1321 ttacaagatag ctgggctgta acaagttccg
cggggttcttt gcagagttcgc gtagcttgt ccacacagct cgttgcacacagct
gctgggctgta acaagttccg
gagagcatc ggtgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
1381 tggcagagcg cggagcatc ggtgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
1441 acagagtttc acagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc
gtagagctgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc
gtagagctgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc
gtagagctgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc
gagagcatc ggtgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
1501 agactacga gcattggg ggtttggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
1561 agctgggctgta acaagttccg
cggggttcttt gcagagttcgc gtagcttgt ccacacagct cgttgcacacagct
gctgggctgta acaagttccg
gagagcatc ggtgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
1621 tggcagagcg cggagcatc ggtgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
1681 gtagagctgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc
gagagcatc ggtgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
1741 cagagagctc gcattggg ggtttggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
1801 acagagctgc gcattggg ggtttggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
1861 gtagagctgc gcattggg ggtttggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
1921 gtagagctgc gcattggg ggtttggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
1981 gtagagctgc gcattggg ggtttggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
2041 cagagagctc gcattggg ggtttggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
2101 cagagagctc gcattggg ggtttggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
2161 acaactgtctcc ccagtacatt caaagctgtg cagagagcgt cagagagcgt cagagagcgt cagagagcgt
2221 cgctttcctt acaactgtctcc ccagtacatt caaagctgtg cagagagcgt cagagagcgt cagagagcgt
2281 acaactgtctcc ccagtacatt caaagctgtg cagagagcgt cagagagcgt cagagagcgt cagagagcgt
2341 cgctttcctt acaactgtctcc ccagtacatt caaagctgtg cagagagcgt cagagagcgt cagagagcgt
2401 cgctttcctt acaactgtctcc ccagtacatt caaagctgtg cagagagcgt cagagagcgt cagagagcgt
2461 cgctttcctt acaactgtctcc ccagtacatt caaagctgtg cagagagcgt cagagagcgt cagagagcgt
2521 acaactgtctcc ccagtacatt caaagctgtg cagagagcgt cagagagcgt cagagagcgt cagagagcgt
2581 ctgtttttt acaactgtctcc ccagtacatt caaagctgtg cagagagcgt cagagagcgt cagagagcgt

[0035] SEQ ID NO: 16 is the amino acid sequence for the mouse preproANP peptide 1
[0036] SEQ ID NO: 17 is the genetic sequence for the mouse preproANP peptide wherein the coding sequence starts at nucleic acid molecule position 81 and ends at nucleic acid molecule position 539.

1 caaaagctga gagagagaga gaaagaagcc agaaggggca gagaagagaa caaggtgcgaa
6 gtgggtgggc aggagatgaa aaggggag gcagagggag gcagagggag gcagagggag gcagagggag
121 tggcagagcg cggagcatc ggtgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
181 cacagatgaa aacagatgaa aacagatgaa aacagatgaa aacagatgaa aacagatgaa aacagatgaa
241 tggcagagcg cggagcatc ggtgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
301 gtagagctgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc gcagagttgc
361 tggcagagcg cggagcatc ggtgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
421 tggcagagcg cggagcatc ggtgtggg gttgtggg gttgtggg gttgtggg gttgtggg gttgtggg
DETAILED DISCLOSURE

[0037] The present invention pertains to a method for treating allergen-induced airway reactivity by administering a natriuretic hormone peptide (NHP), or a nucleic acid sequence encoding an NHP, to a patient in need thereof, thereby ameliorating airway hyper-reactivity and/or airway inflammation, which are characteristic of respiratory allergic disease, such as allergic rhinitis and asthma.

[0038] In specific embodiments, the peptides used in the subject invention comprise at least one amino acid sequence selected from the group consisting of NHP 8, 50, NHP 1, 97, NHP 5, 99, and NHP 102 (SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:5, respectively), SEQ ID NO:6, or a biologically active fragment or homolog thereof. In some embodiments, a combination of NHP or NHP-encoding nucleic acid sequences is utilized. In one embodiment, the peptide utilized does not consist of the amino acid sequence of NHP 99, 125 (SEQ ID NO:4). In other embodiments, the peptides used in the subject invention comprise at least one amino acid sequence selected from the group consisting of SEQ ID NO:7, SEQ ID NO:16, or biologically active fragments or homologs of any of the foregoing.

[0039] According to the gene therapy method of the present invention, the NHP-encoding nucleic acid sequence is preferably administered to the airways of the patient, e.g., nose, sinuses, throat and lung, for example, as nose drops, by nebulization, vaporization, or other methods known in the art. More preferably, the nucleic acid sequence encoding NHP is administered to the patient orally or intranasally, or otherwise intratracheally. For example, the nucleic acid sequence can be inhaled by the patient through the oral or intranasal routes, or injected directly into tracheal or bronchial tissue.

[0040] In specific embodiments, the nucleic acid sequences used in the subject invention encode at least one amino acid sequence selected from the group consisting of NHP 5, 98, NHP 99, 126, and NHP 102 (SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, and SEQ ID NO:5, respectively), SEQ ID NO:6, or a biologically active fragment or homolog of any of the foregoing. In other embodiments, the nucleic acid sequences used in the subject invention comprise at least one nucleotide sequence selected from the group consisting of SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, and SEQ ID NO:17, or a biologically active fragment or homolog of any of the foregoing.

[0041] Preferably, the nucleic acid sequence encoding the NHP is administered with a nucleic acid sequence that is operatively linked with the NHP-encoding nucleic acid sequence and operates as a regulatory sequence. For example, the regulatory sequence can be a promoter sequence that controls transcription and drives expression of the NHP-encoding nucleic acid sequence at the desired site, such as, or adjacent to, the patient’s respiratory epithelial cells. The promoter can be a constitutive or inducible promoter to allow selective transcription. The promoter can be a vertebrate or viral promoter. Optionally, enhancers may be used to obtain desired transcription levels. An enhancer is generally any non-translated nucleic acid sequence that works contiguous with the coding sequence (in cis) to change the basal transcription level dictated by the promoter.

[0042] The NHP-encoding nucleic acid sequences used in the methods, expression vectors, and pharmaceutical compositions of the present invention are preferably isolated. According to the present invention, an isolated nucleic acid molecule or nucleic acid sequence, is a nucleic acid molecule or sequence that has been removed from its natural milieu. As such, “isolated” does not necessarily reflect the extent to which the nucleic acid molecule has been purified. An isolated nucleic acid molecule or sequence useful in the present composition can include DNA, RNA, or any derivatives of either DNA or RNA. An isolated nucleic acid molecule or sequence can be double stranded (i.e., containing both a coding strand and a complementary strand) or single stranded.

[0043] A nucleic acid molecule can be isolated from a natural source, or it can be produced using recombinant DNA technology (e.g., polymerase chain reaction (PCR) amplification, cloning) or chemical synthesis. Nucleic acid molecules can be generated or modified using a variety of techniques including, but not limited to, classic mutagenesis techniques and recombinant DNA techniques, such as site-directed mutagenesis, chemical treatment of a nucleic acid molecule to induce mutations, restriction enzyme cleavage of a nucleic acid fragment, ligation of nucleic acid fragments, polymerase chain reaction (PCR) amplification and/or mutagenesis of selected regions of a nucleic acid sequence, synthesis of oligonucleotide mixtures and ligation of mixture groups to “build” a mixture of nucleic acid molecules, and combinations thereof.

[0044] Although the phrase “nucleic acid molecule” primarily refers to the physical nucleic acid molecule and the phrase “nucleic acid sequence” primarily refers to the sequence of nucleotides on the nucleic acid molecule, the
two phrases can be used interchangeably. As used herein, a “coding” nucleic acid sequence refers to a nucleic acid sequence that encodes at least a portion of a peptide or protein (e.g., a portion of an open reading frame), and can more particularly refer to a nucleic acid sequence encoding a peptide or protein which, when operatively linked to a transcription control sequence (e.g., a promoter sequence), can express the peptide or protein.

[0045] The term “operably-linked” is used herein to refer to an arrangement of flanking sequences wherein the flanking sequences so described are configured or assembled so as to perform their usual function. Thus, a flanking sequence operably-linked to a coding sequence may be capable of effecting the replication, transcription and/or translation of the coding sequence. For example, a coding sequence is operably linked to a promoter when the promoter is capable of directing transcription of that coding sequence. A flanking sequence need not be contiguous with the coding sequence, so long as it functions correctly. Thus, for example, intervening untranslatable yet transcribed sequences can be present between a promoter sequence and the coding sequence, and the promoter sequence can still be considered “operably-linked” to the coding sequence. Each nucleotide sequence coding for NHP will typically have its own operably-linked promoter sequence.

[0046] The nucleotide sequences encoding NHP used in the subject invention include “homologous” or “modified” nucleotide sequences. Modified nucleic acid sequences will be understood to mean any nucleotide sequence obtained by mutagenesis according to techniques well known to persons skilled in the art, and exhibiting modifications in relation to the normal sequences. For example, mutations in the regulatory and/or promoter sequences for the expression of a polypeptide that result in a modification of the level of expression of a polypeptide according to the invention provide for a “modified nucleotide sequence”. Likewise, substitutions, deletions, or additions of nucleic acid to the polynucleotides of the invention provide for “homologous” or “modified” nucleotide sequences. In various embodiments, “homologous” or “modified” nucleic acid sequences have substantially the same biological or serological activity as the native (naturally occurring) nitrutrepeptide. A “homologous” or “modified” nucleotide sequence will also be understood to mean a splice variant of the polynucleotides of the instant invention or any nucleotide sequence encoding a “modified polypeptide” as defined below.

[0047] A homologous nucleotide sequence, for the purposes of the present invention, encompasses a nucleotide sequence having a percentage identity with the bases of the nucleotide sequences of between at least (or at least about) 20.00% to 99.99% (inclusive). The aforementioned range of percent identity is to be taken as including, and written description and support for, any fractional percentage, in intervals of 0.01%, between 20.00% and 99.99%. These percentages are purely statistical and differences between two nucleic acid sequences can be distributed randomly and over the entire sequence length.

[0048] In various embodiments, homologous sequences exhibiting a percentage identity with the bases of the nucleotide sequences of the present invention can have 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent identity with the polynucleotide sequences of the instant invention. Homologous nucleotide and amino acid sequences include mammalian homologs of the human NHP sequences.

[0049] The NHP homologs include peptides containing, as a primary amino acid sequence, all or part of an exemplified NHP polypeptide sequence. The NHP homologs thus include NHP polypeptides having conservative substitutions, i.e., altered sequences in which functionally equivalent amino acid residues are substituted for residues within the sequence resulting in a peptide which is biologically active. For example, one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent alteration. In one aspect of the present invention, conservative substitutions for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs (see Table 1). Conservative substitutions also include substitutions by amino acids having chemically modified side chains which do not eliminate the biological activity of the resulting NHP homolog.

<table>
<thead>
<tr>
<th>Class of Amino Acid</th>
<th>Examples of Amino Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonpolar</td>
<td>Ala, Val, Leu, Ile, Pro, Met, Phe, Trp</td>
</tr>
<tr>
<td>Uncharged</td>
<td>Gly, Ser, Thr, Cys, Tyr, Asn, Gln</td>
</tr>
<tr>
<td>Polar</td>
<td>Asp, Glu</td>
</tr>
<tr>
<td>Acidic</td>
<td>Lys, Arg, His</td>
</tr>
</tbody>
</table>

The methods, pharmaceutical compositions, and vectors of the present invention utilize biologically active fragments of nucleic acid sequences encoding the 126-amino acid atrial natriuretic factor (ANF) prohormone, such as nucleic acid sequences encoding NHP₁₋₃₀, NHP₃₁₋₆₇, NHP₇₀₋₉₈, NHP₉₉₋₁₂₆, and NHP₁₂₇₋₁₅₄. (SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, and SEQ ID NO:5, respectively), SEQ ID NO:6, and including biologically active fragments of the nucleic acid sequences encoding SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, and SEQ ID NO:6.

Representative fragments of the nucleotide sequences according to the invention will be understood to mean any polynucleotide fragment having at least 8 or 9 consecutive nucleotides, preferably at least 12 consecutive nucleotides, and still more preferably at least 15 or at least 20 consecutive nucleotides of the sequence from which it is derived. The upper limit for such fragments is one nucleotide less than the total number of nucleotides found in the full-length sequence (or, in certain embodiments, of the full length open reading frame (ORF) identified herein).

In other embodiments, fragments can comprise consecutive nucleotides of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, and up to one nucleotide less than the full length ANF prohormone. In some embodiments, fragments comprise biologically active fragments of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, or SEQ ID NO:6.

It is also well known in the art that restriction enzymes can be used to obtain biologically active fragments of the nucleic acid sequences, such as those encoding SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, and SEQ ID NO:6. For example, BsalI exonuclease can be conveniently used for time-controlled limited digestion of DNA (commonly referred to as "erase-a-base" procedures). See, for example, Maniatis et al. [1982] Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York; Wei et al. [1983] J Biol. Chem. 258:13006-13512.

The methods and pharmaceutical compositions of the present invention can utilize amino acid sequences that are biologically active fragments of the 126-amino acid atrial natriuretic factor (ANF) prohormone, such as NHP₁₋₃₀, NHP₃₁₋₆₇, NHP₇₀₋₉₈, NHP₉₉₋₁₂₆, and NHP₁₂₇₋₁₅₄ (SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, and SEQ ID NO:5, respectively), SEQ ID NO:6, and including biologically active fragments of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, and SEQ ID NO:6.

Representative fragments of the polypeptides according to the invention will be understood to mean any polypeptide fragment having at least 8 or 9 consecutive amino acids, preferably at least 12 amino acids, and still more preferably at least 15 or at least 20 consecutive amino acids of the polypeptide sequence from which it is derived. The upper limit for such fragments is one amino acid less than the total number of amino acids found in the full-length sequence.

In other embodiments, fragments of the polypeptides can comprise consecutive amino acids of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, and up to one amino acid less than the full-length ANF prohormone. Fragments of polypeptides can be any portion of the full-length ANF prohormone amino acid sequence (including human or non-human mammalian homologs of the ANF prohormone) that exhibit biological activity, e.g. a C-terminally or N-terminally truncated version of the ANF prohormone, or an intervening portion of the ANF prohormone. In some embodiments, fragments comprise biologically active fragments of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, and SEQ ID NO:6.

The present invention can be practiced using other biologically equivalent forms of ANF fragments or homologs thereof as can be appreciated by the sequence comparison below. Sequence similarities between mouse and human forms of ANP are shown where areas of conservation are clearly seen.
<table>
<thead>
<tr>
<th>NCBI BLAST Comparison of mouse (Query) to human (Sbjct) ANP a.a. sequences.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query: 120GPRSLRRSSCFGGRIDRIGAQSGLGCNSFRY</td>
</tr>
<tr>
<td>Sbjct: 121APRSLRRSSCFGGRIDRIGAQSGLGCNSFRY</td>
</tr>
</tbody>
</table>

[0060] The NHP of the invention can be prepared by well-known synthetic procedures. For example, the polypeptides can be prepared by the well-known Merrifield solid support method. See Merrifield (1963) J. Amer. Chem. Soc. 85:2149-2154 and Merrifield (1965) Science 150:178-185. This procedure, using many of the same chemical reactions and blocking groups of classical peptide synthesis, provides a growing peptide chain anchored by its carboxyl terminus to a solid support, usually cross-linked polystyrene or styrene-divinylbenzene copolymer. This method conveniently simplifies the number of procedural manipulations since removal of the excess reagents at each step is effected simply by washing of the polymer.

[0061] Alternatively, these peptides can be prepared by use of well-known molecular biology procedures. Polynucleotides, such as DNA sequences, encoding the NHP of the invention can be readily synthesized. Such polynucleotides are a further aspect of the present invention. These polynucleotides can be used to genetically engineer eukaryotic or prokaryotic cells, for example, bacteria cells, insect cells, algae cells, plant cells, mammalian cells, yeasts cells or fungi cells for synthesis of the peptides of the invention.

[0062] For purposes of the present invention, the biological activity attributable to the homologs and fragments of NHP and NHP-encoding nucleic acid sequences means the capability to prevent or alleviate symptoms associated with allergic disease, such as bronchoconstriction and inflammation. This biological activity can be mediated by one or more of the following mechanisms: increased production of intracellular Ca** concentration (e.g., in epithelial cells), increased production of nitric oxide (NO), and decreased activation of NFkB.

[0063] The methods of the subject invention also contemplate the administration of cells that have been genetically modified to produce NHP, or biologically active fragments thereof. Such genetically modified cells can be administered alone or in combinations with different types of cells. Thus, genetically modified cells of the invention can be co-administered with other cells, which can include genetically modified cells or non-genetically modified cells. Genetically modified cells may serve to support the survival and function of the co-administered cells, for example.

[0064] The term “genetic modification” as used herein refers to the stable or transient alteration of the genotype of a cell of the subject invention by intentional introduction of exogenous nucleic acids by any means known in the art (including for example, direct transmission of a polynucleotide sequence from a cell or virus particle, transmission of infective virus particles, and transmission by any known polynucleotide-bearing substance) resulting in a permanent or temporary alteration of genotype. The nucleic acids may be synthetic, or naturally derived, and may contain genes, portions of genes, or other useful polynucleotides in addition to those encoding NHP. A translation initiation codon can be inserted as necessary, making methionine the first amino acid in the sequence. The term “genetic modification” is not intended to include naturally occurring alterations such as that which occurs through natural viral activity, natural genetic recombination, or the like. The genetic modification may confer the ability to produce NHP, wherein the cell did not previously have the capability, or the modification may increase the amount of NHP produced by the cell, e.g., through increased expression.

[0065] Exogenous nucleic acids and/or vectors encoding NHP can be introduced into a cell by viral vectors (retrovirus, modified herpes virus, herpes virus, adenovirus, adeno-associated virus, lentivirus, and the like) or direct DNA transfection (lipofection, chitosan-nanoparticle mediated transfection, calcium phosphate transfection, DEAE-dextran, electroporation, and the like), microinjection, cationic lipid-mediated transfection, transduction, scrape loading, ballistic introduction and infection (see, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).

[0066] Preferably, the exogenous nucleic acid sequence encoding NHP is operably linked to a promoter sequence that permits expression of the nucleic acid sequence in a desired tissue within the patient. The promoters can be inducible or tissue specific as necessary.

[0067] The genetically modified cell may be chosen from eukaryotic or prokaryotic systems, for example bacterial cells (Gram negative or Gram positive), yeast cells, animal cells, plant cells, and/or insect cells using baculovirus vectors. In some embodiments, the genetically modified cell for expression of the nucleic acid sequences encoding NHP, are human or non-human mammalian cells.

[0068] According to the methods of the present invention, NHP or nucleic acid sequences encoding NHP can be administered to a patient in order to alleviate (e.g., reduce or eliminate) a variety of symptoms associated with allergic diseases, in various stages of pathological development, such as airway reactivity, airway inflammation, and airway remodeling. Treatment with NHP or nucleic acid sequences encoding NHP is intended to include prophylactic intervention to prevent onset of the symptoms associated with airway hyper-reactivity, airway inflammation, and airway remodeling. The nucleic acid sequences and pharmaceutical compositions of the invention can be co-administered (concurrently or consecutively) to a patient with other therapeutic agents useful for treating airway reactivity, airway inflammation, and airway remodeling.

[0069] Expression vectors for NHP are any which are known in the art that will cause expression of NHP-encoding
nucleic acid sequences in mammalian cells. Suitable promoters and other regulatory sequences can be selected as is desirable for a particular application. The promoters can be inducible or tissue specific as necessary. For example the cytomegalovirus (CMV) promoter (Boshart et al., Cell, 1985, 41:521-530) and SV40 promoter (Subramani et al., Mol. Cell. Biol., 1981, 1:854-864) have been found to be suitable, but others can be used as well. Optionally, the NHP-encoding nucleic acid sequences used in the subject invention include a sequence encoding a signal peptide upstream of the NHP-encoding sequence, thereby permitting secretion of the NHP from a host cell. Also, various promoters may be used to limit the expression of the peptide in specific cells or tissues, such as lung cells.

The pharmaceutical composition of the present invention can include a liposome component. According to the present invention, a liposome comprises a lipid composition that is capable of fusing with the plasma membrane of a cell, thereby allowing the liposome to deliver a nucleic acid molecule and/or a protein composition into a cell. Some preferred liposomes of the present invention include those liposomes commonly used in, for example, gene delivery methods known to those of skill in the art. Some preferred liposome delivery vehicles comprise multilamellar vesicle (MLV) lipids and extruded lipids, although the invention is not limited to such liposomes. Methods for preparation of MLV's are well known in the art. According to the present invention, "extruded lipids" are lipids which are prepared similarly to MLV lipids, but which are subsequently extruded through filters of decreasing size, as described in Templeton et al., Nature Biotechnol., 1997, 15:647-652, which is incorporated herein by reference in its entirety. Small unilamellar vesicle (SUV) lipids can also be used in the composition and method of the present invention. Other preferred liposome delivery vehicles comprise liposomes having a polycationic lipid composition (i.e., cationic liposomes). For example, cationic liposome compositions include, but are not limited to, any cationic liposome complexed with cholesterol, and without limitation, include DOTMA and cholesterol, DOTAP and cholesterol, DOTIM and cholesterol, and DDAB and cholesterol. Liposomes of the present invention can be any size, including from about 10 to 1000 nanometers (nm), or any size in between.

A liposome delivery vehicle of the present invention can be modified to target a particular site in a mammal, thereby targeting and making use of a nucleic acid molecule of the present invention at that site. Suitable modifications include manipulating the chemical formula of the lipid portion of the delivery vehicle. Manipulating the chemical formula of the lipid portion of the delivery vehicle can elicit the extracellular or intracellular targeting of the delivery vehicle. For example, a chemical can be added to the lipid formula of a liposome that alters the charge of the lipid bilayer of the liposome so that the liposome fuses with particular cells having particular charge characteristics. In one embodiment, other targeting mechanisms, such as targeting by addition of exogenous targeting molecules to a liposome (i.e., antibodies) may not be a necessary component of the liposome of the present invention, since effective immune activation at immunologically active organs can already be provided by the composition when the route of delivery is intravenous or intraperitoneal, without the aid of additional targeting mechanisms. However, in some embodiments, a liposome can be directed to a particular target cell or tissue by using a targeting agent, such as an antibody, soluble receptor or ligand, incorporated with the liposome, to target a particular cell or tissue to which the targeting molecule can bind. Targeting liposomes are described, for example, in Ho et al., Biochemistry, 1986, 25: 5500-6; Ho et al., J Biol Chem, 1987a, 262: 13797-84; Ho et al., J Biol Chem, 1987b, 262: 13793-8; and U.S. Pat. No. 4,957,735 to Huang et al., each of which is incorporated herein by reference in its entirety. In one embodiment, if avoidance of the efficient uptake of injected liposomes by reticuloendothelial system cells due to opsonization of liposomes by plasma proteins or other factors is desired, hydrophilic lipids, such as gangliosides (Allen et al., FEBS Lett, 1987, 223: 42-6) or polyethylene glycol (PEG)-derived lipids (Klibanov et al., FEBS Lett, 1990, 268: 235-7), can be incorporated into the bilayer of a conventional liposome to form the so-called sterically-stabilized or "stealth" liposomes (Woodle et al., Biochim Biophys Acta, 1992, 1113: 171-99). Variations of such liposomes are described, for example, in U.S. Pat. No. 5,705,187 to Unger et al., U.S. Pat. No. 5,820,873 to Choi et al., U.S. Pat. No. 5,817,856 to Tirosh et al.; U.S. Pat. No. 5,866,101 to Tagawa et al.; U.S. Pat. No. 5,043,164 to Huang et al., and U.S. Pat. No. 5,013,556 to Woodle et al., all of which are incorporated herein by reference in their entirety.

The NHP-encoding nucleic acid sequences of the present invention can be conjugated with chitosan. For example, DNA chitosan nanosheres can be generated, as described by Roy, K et al. (1999, Nat Med 5:387). Chitosan allows increased bioavailability of the NHP-encoding nucleic acid sequences because of protection from degradation by serum nucleases in the matrix and thus has great potential as a mucosal gene delivery system. Chitosan also has many beneficial effects, including anticoagulant activity, wound-healing properties, and immunostimulatory activity, and is capable of modulating immunity of the mucosa and bronchus-associated lymphoid tissue.

Mammalian species which benefit from the disclosed methods of treatment include, and are not limited to, apes, chimpanzees, orangutans, humans, monkeys, domesticated animals (e.g., pets) such as dogs, cats, guinea pigs, hamsters, Vietnamese pot-bellied pigs, rabbits, and ferrets; domesticated farm animals such as cows, buffalo, bison, horses, donkey, swine, sheep, and goats; exotic animals typically found in zoos, such as bear, lions, tigers, panthers, elephants, hippopotamus, rhinoceros, giraffes, antelopes, sloth, gazelles, zebras, wildebeests, prairie dogs, koala bears, kangaroo, opossums, raccoons, pandas, hyena, seals, sea lions, elephant seals, otters, porpoises, dolphins, and whales. The term "patient" is intended to include such human and non-human mammalian species. According to the method of the present invention, human or non-human mammalian NHP (or nucleic acid sequences encoding human or non-human mammalian NHP) can be administered to the patient. The NHP may be naturally occurring within the patient's species or a different mammalian species. The expression vectors used in the subject invention can comprise nucleic acid sequences encoding any human or non-human mammalian NHP.

In another aspect, the present invention concerns pharmaceutical compositions containing a therapeutically effective amount of NHP, or nucleic acid sequences encoding NHP, and a pharmaceutically acceptable carrier. Prefer-
ably, the NHP-encoding nucleic acid sequences are contained within an expression vector, such as plasmid DNA or virus. The pharmaceutical composition can be adapted for administration to the airways of the patient, e.g., nose, sinus, throat and lung, for example, as nose drops, as nasal drops, by nebulization as an inhalant, vaporization, or other methods known in the art. Administration can be continuous or at distinct intervals as can be determined by a person skilled in the art.

[0075] The pharmaceutical compositions of the subject invention can be formulated according to known methods for preparing pharmaceutically useful compositions. Furthermore, as used herein, the phrase “pharmaceutically acceptable carrier” means any of the standard pharmaceutically acceptable carriers. The pharmaceutically acceptable carrier can include diluents, adjuvants, and vehicles, as well as implant carriers, and inert, non-toxic solid or liquid fillers, diluents, or encapsulating material that does not react with the active ingredients of the invention. Examples include, but are not limited to, phosphate buffered saline, physiological saline, water, and emulsions, such as oil/water emulsions. The carrier can be a solvent or dispersing medium containing, for example, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. Formulations containing pharmaceutically acceptable carriers are described in a number of sources which are well known and readily available to those skilled in the art. For example, Remington’s Pharmaceutical Sciences (Martin E W [1995] Easton Pa., Mack Publishing Company, 19th ed.) describes formulations that can be used in connection with the subject invention. Formulations suitable for parenteral administration include, for example, aqueous sterile injection solutions, which may contain antioxidants, buffers, bacteriostats, and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and nonaqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the condition of the sterile liquid carrier, for example, water for injections, prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powder, granules, tablets, etc. It should be understood that in addition to the ingredients particularly mentioned above, the formulations of the subject invention can include other agents conventional in the art having regard to the type of formulation in question.

[0076] The NHP or nucleic acid sequences encoding NHP (and pharmaceutical compositions containing them) can be administered to a patient by any route that results in prevention or alleviation of symptoms associated with allergic disease, such as bronchoconstriction and/or inflammation. For example, the NHP or NHP-encoding nucleic acid molecule can be administered parenterally, intravenously (I.V.), intramuscularly (I.M.), subcutaneously (S.C.), intradermally (I.D.), orally, intranasally, etc. Examples of intranasal administration can be by means of a spray, drops, powder or gel and also described in U.S. Pat. No. 6,489,306, which is incorporated herein by reference in its entirety. One embodiment of the present invention is the administration of the invention as a nasal spray. Alternate embodiments include administration through any oral or mucosal routes, sublin-
gual administration and even eye drops. However, other means of drug administrations are well within the scope of the present invention.

[0077] The NHP or NHP-encoding nucleic acid molecule is administered and dosed in accordance with good medical practice, taking into account the clinical condition of the individual patient, the site and method of administration, scheduling of administration, patient age, sex, body weight, and other factors known to medical practitioners. The pharmaceutically “effective amount” for purposes herein is thus determined by such considerations as are known in the art. For example, an effect amount of NHP-encoding nucleic acid molecule is that amount necessary to provide a therapeutically effective amount of NHP, when expressed in vivo. The amount of NHP or NHP-encoding nucleic acid molecule must be effective to achieve improvement including but not limited to total prevention and to improved survival rate or more rapid recovery, or improvement or elimination of symptoms associated with allergen-induced airway hyperreactivity and other indicators as are selected as appropriate measures by those skilled in the art In accordance with the present invention, a suitable single dose size is a dose that is capable of preventing or alleviating (reducing or eliminating) a symptom in a patient when administered one or more times over a suitable time period. One of skill in the art can readily determine appropriate single dose sizes for systemic administration based on the size of a mammal and the route of administration.

[0079] The term “gene therapy”, as used herein, refers to the transfer of genetic material (e.g., DNA or RNA) of interest into a host to treat or prevent a genetic or acquired disease or condition phenotype. The genetic material of interest encodes a product (e.g. a protein, polypeptide, peptide, or functional RNA) whose production in vivo is desired. For example, the genetic material of interest can encode a hormone, receptor, enzyme, polypeptide or peptide of therapeutic value. For a review see, in general, the text “Gene Therapy” (Advances in Pharmacology 40, Academic Press, 1997).

[0080] Two basic approaches to gene therapy have evolved: (1) ex vivo and (2) in vivo gene therapy. In ex vivo gene therapy, cells are removed from a patient and, while
being cultured, are treated in vitro. Generally, a functional replacement gene is introduced into the cell via an appropriate gene delivery vehicle/method (transfection, transduction, homologous recombination, etc.) and an expression system as needed and then the modified cells are expanded in culture and returned to the host/patient. These genetically reimplanted cells have been shown to produce the transplanted gene product in situ.

In in vivo gene therapy, target cells are not removed from the subject, rather the gene to be transferred is introduced into the cells of the recipient organism in situ, that is within the recipient. Alternatively, if the host gene is defective, the gene is repaired in situ. These genetically altered cells have been shown to produce the transplanted gene product in situ.

The gene expression vector is capable of delivery/transfer of heterologous nucleic acid sequences into a host cell. The expression vector may include elements to control targeting, expression and transcription of the nucleic acid sequence in a cell selective manner as is known in the art. It should be noted that often the 5'UTR and/or 3'UTR of the gene may be replaced by the 5'UTR and/or 3'UTR of the expression vehicle.

The expression vector can include a promoter for controlling transcription of the heterologous material and can be either a constitutive or inducible promoter to allow selective transcription. The expression vector can also include a selection gene.

Introduction of nucleic acids by infection offers several advantages over the other listed methods. Higher efficiency can be obtained due to their infectious nature. Moreover, viruses are very specialized and typically infect and propagate in specific cell types. Thus, their natural specificity can be used to target the vectors to specific cell types in vivo or within a tissue or mixed culture of cells. Viral vectors can also be modified with specific receptors or ligands to alter target specificity through receptor mediated events.

A specific example of a DNA viral vector for introducing and expressing recombinant sequences is the adenovirus derived vector Adenov53 TK. This vector expresses a herpes virus thymidine kinase (TK) gene for either positive or negative selection and an expression cassette for desired recombinant sequences. This vector can be used to infect cells that have an adenovirus receptor which includes most cancers of epithelial origin as well as others. This vector as well as others that exhibit similar desired functions can be used to treat a mixed population of cells and can include, for example, an in vitro or ex vivo culture of cells, a tissue or a human subject.

Additional features can be added to the vector to ensure its safety and/or enhance its therapeutic efficacy. Such features include, for example, markers that can be used to negatively select against cells infected with the recombinant virus. An example of such a negative selection marker is the TK gene described above that confers sensitivity to the antibiotic ganciclovir. Negative selection is therefore a means by which infection can be controlled because it provides inducible suicide through the addition of antibiotic. Such protection ensures that if, for example, mutations arise that produce altered forms of the viral vector or recombinant sequence, cellular transformation will not occur. Features that limit expression to particular cell types can also be included. Such features include, for example, promoter and regulatory elements that are specific for the desired cell type.

In addition, recombinant viral vectors are useful for in vivo expression of a desired nucleic acid because they offer advantages such as lateral infection and targeting specificity. Lateral infection is inherent in the life cycle of, for example, retrovirus and is the process by which a single infected cell produces many progeny virions that bud off and infect neighboring cells. The result is that a large area becomes rapidly infected, most of which was not initially infected by the original viral particles. This is in contrast to vertical-type of infection in which the infectious agent spreads only through daughter progeny. Viral vectors can also be produced that are unable to spread laterally. This characteristic can be useful if the desired purpose is to introduce a specified gene into only a localized number of targeted cells.

In another aspect, the present invention concerns an isolated peptide comprising the amino acid sequence NHP73-102, SEQ ID NO:5, or a biologically active fragment or homolog thereof. NHP73-102 is amino acids 73-102 of the 151-amino acid long human atrial natriuretic factor (ANF). In another aspect, the present invention concerns an isolated peptide comprising the amino acid sequence of SEQ ID NO:6, or a biologically active fragment or homolog thereof. SEQ ID NO:6 is a biologically active fragment of the human ANF. In another aspect, the present invention concerns an isolated nucleic acid molecule encoding the amino acid sequence of NHP73-102, SEQ ID NO:5, or a biologically active fragment or homolog thereof. In another aspect, the present invention concerns an isolated nucleic acid molecule (SEQ ID NO:13) encoding the amino acid sequence of SEQ ID NO:6, or a biologically active fragment or homolog thereof.

As used herein, the terms "peptide", "polypeptide", and "protein" refer to amino acid sequences of any length unless otherwise specified.

EXAMPLE 1

Expression of NHP in Human Type-II Alveolar A549 Cells and Murine Lung

A. Materials and Methods

Animals. Six-week old female BALB/c mice from Jackson Laboratory (Bar Harbor, Me.) were maintained in pathogen free conditions in accordance with animal research committee regulations.
Construction of NHP expression vector. Total RNA was isolated from murine heart using Trizol reagent (LIFE TECHNOLOGY, Gaithersburg, Md.) following the manufacturer’s protocol. The cDNA sequence for the 151 amino acid long pre-pro hormone ANF was amplified by RT-PCR. SEQ ID NO:13 was amplified using primers listed in SEQ ID NO:8 and SEQ ID NO:9. NHP3,102 was amplified using primers listed in SEQ ID NO:10 and SEQ ID NO:11. A transfection initiation codon was inserted in the forward primers (SEQ ID NO:8 and SEQ ID NO:10), so that the recombinant peptides had an additional amino acid, methionine, as the first amino acid apart from its known amino acid content. The PCR product was cloned into pVAX vector (INVITROGEN, Carlsbad, Calif.) at HindIII and Xhol sites. The cloned NHP3,102 sequence was verified by DNA sequencing and its expression was checked in A549 human epithelial cells.

Estimation of NHP by ELISA. The expression of NHP was measured by utilizing a commercial kit (SPL-BIO, France) according to the manufacturer’s instructions. The kit measures the rat NHP, which is homologous to the mouse NHP used in the present study.

NHP was amplified using PCR and the product was cloned into pVAX vector, as described. Either pNHP3,102 or empty plasmid vector pVAX were transfected to the human type-II alveolar cells (A549). To confirm the expression of NHP, cells and supernatants were collected 48 hours post-transfection and NHP concentrations were measured by ELISA. Cells transfected with pNHP produced NHP in both supernatant and cell extracts (FIG. 2A), whereas the cells transfected with pVAX did not. These results show that the NHP3,102 peptide was expressed and secreted into the culture medium from the A549 cells.

EXAMPLE 2

pNHP Delivered with Lipofectin Intranasally Attenuates Airway Reactivity in Ovalbumin-Sensitized Mice

Materials and Methods

Animals. Six-week old female BALB/c mice from Jackson laboratory (Bar Harbor, Me.) were maintained in pathogen free conditions in accordance with animal research committee regulations.

Allergen Sensitization, Intranasal Gene Transfer. BALB/c mice (n=6) were sensitized once with intraperitoneal (i.p.) injection of 10 μg ovalbumin (OVA) precipitated with 1 mg of alum on day 1. Mice were intranasally (i.n.) administered three times a day with either 25 μg/mouse pNHP3,102 or vector control (pVAX) (10 μg of lipofectamine in PBS) on days 15, 18 and 21, as shown in FIG. 3A.

RT-PCR analysis. Total RNA was isolated from murine lung and spleen tissue using Trizol reagent (LIFE TECHNOLOGY, Gaithersburg, Md.) and RT-PCR was performed utilizing ANF specific primers as described before (Kumar M. et al., Vaccine 1999; 18:558-567). The resultant PCR products were analyzed by electrophoresis on a 1.5% agarose gel and the products visualized by staining with ethidium bromide.

Measurement of Ova specific IgE. Ova specific IgE was measured to monitor the degree of sensitization. Microtiter plates were coated overnight at 4°C with 100 μl of OVA (5 μg/ml). Sera obtained at day 21 from sensitized and non-sensitized mice (n=4) were incubated to the antigen-coated wells and bound IgE was detected with biotinylated anti-mouse IgE (02112D; Pharmingen, Calif.). Biotin anti-mouse IgE (02122D) reacts specifically with the mouse IgE of Igå and Igå haplotypes and does not react with other IgG isotypes. Diluted streptavidin-peroxidase conjugate was added, the bound enzyme detected with TMB, and the absorbance read at 450 nm.

Pulmonary Function. Airway hyperreactivity was measured in animals three days after the last intranasal DNA delivery following 24 hours of challenge with the ovalbumin (50 μg/mouse using a whole body plethysmograph (BUXCO, Troy, N.Y.), as previously described (Matsuse, H. et al., J. Immunol., 2000, 164:6583-6592). Allergen-induced airway hyper-responsiveness (AHR) was measured on 10 days interval up to day 56. Mice were ova challenged 24 hours prior to each AHR measurement.

Statistical analysis. Pairs of groups were compared by the student’s t-test. Differences between groups were considered significant at p<0.05. Values for all measurements are expressed as the mean±SD.

B. Results

The effect of pNHP gene transfer was examined in an ovalbumin-sensitized BALB/c mouse model. RT-PCR was performed to confirm the expression of ANF in murine lung and spleen. ANF specific transcript was observed in the lung tissue of mice receiving pANF construct and not from the mice receiving the empty plasmid vector (FIG. 1B). No expression of ANF was observed from the spleen tissue (data not shown).

Ovalbumin-specific IgE was measured in the serum to determine the degree of sensitization achieved following ovalbumin injection. Mice that received ovalbumin with alum had significantly (p<0.01) higher ovalbumin-specific IgE titers than the control group of mice that received PBS (FIG. 3C).

AHR was measured in BALB/c mice, sensitized with ovalbumin and administered with pNHP3,102 or control vector plasmid prior to ovalbumin challenge. The control mice received empty vector. The experimental outline is shown in FIG. 3A. Mice administered pNHP showed significantly less AHR (p<0.05) than did controls to inhaled methacholine (FIG. 3D). Prophylactic treatment with either plasmid (SEQ ID NO:13) or pNHP3,102 showed a reduction in % Penh suggesting that both plasmid are capable of prophylactically attenuating AHR.

To determine the length of protection, following pNHP gene transfer mice were challenged at 10 d interval. The protection lasted for over a period of 25 days during which the AHR of pNHP treated mice was significantly lower (p<0.05) than the mice receiving control plasmid (FIGS. 4A and B). Although there was a decrease in the AHR on day 56, the differences between values were not significant.
EXAMPLE 3

Chitosan-pNHP Nanoparticles Administered Intranasally Decrease Airway Hyper-Reactivity and Inflammation

[0109] A. Materials and Methods

[0110] Animals. Female 6 to 8 week-old wild type BALB/c mice from Jackson Laboratory (Bar Harbor, Me.) were maintained in pathogen-free conditions at the University of South Florida College of Medicine vivarium. All procedures were reviewed and approved by the committees on animal research at the University of South Florida College of Medicine and VA Hospital.

[0111] Preparation of chitosan-pNHP nanoparticles. pNHP \(_{9,10}\) encoding DNA was cloned in the mammalian expression vector pVAX (INVITROGEN, San Diego, Calif.), and complexed with chitosan, as described previously (Huilk, G. et al., Clin Sci. 1990, 79:51-55; Angus, R. M. et al., Clin Exp Allergy. 1994, 24:784-788). Briefly, recombinant plasmid dissolved in 25 mM Na\(_2\)SO\(_4\) was heated for 10 min at 65°C. Chitosan (VANSON, Richmond, Wash.) was dissolved in 25 mM Na acetate, pH 5.4, to a final concentration of 0.02% and heated for 10 min at 55°C. After heating, chitosan and DNA were mixed, vortexed vigorously for 20-30 seconds, and stored at room temperature until use.

[0112] Reversal of established AHR. Mice were sensitized i.p. with 50 \(\mu\)g OVA/alum on day 1 followed by intranasal challenge with 50 \(\mu\)g of OVA on day 14. On days 21-23, mice were given 25 \(\mu\)g of pNHP/chitosan i.n. per mouse. Mice were further challenged i.n. with OVA (50 \(\mu\)g/mouse) on days 27 through 29 and AHR was measured on day 30. Mice were bled and sacrificed on day 31, and spleens and lungs were removed.

[0113] Examination of bronchoalveolar lavage fluid (BALF). Mice were sacrificed and lungs were lavaged with 1 ml of PBS introduced through the trachea. The BALF was centrifuged 10 min at 300xg and cells were resuspended with PBS and re-suspended. Aliquots of the cell suspension were applied to slides using a CYTOSPIN apparatus (SHANDON SOUTHERN), stained and examined microscopically. Cells were identified as monocytes, eosinophils, neutrophils, and lymphocytes by morphological characteristics. Two slides per mouse (n=4) were counted by three blinded investigators.

[0114] Statistical analysis. Pairs of groups were compared by the student's t-test. Differences between groups were considered significant at p<0.05. Values for all measurements are expressed as the means±SD.

[0115] B. Results

[0116] A combination of allergen exposure and respiratory syncytial virus induces chronic asthma phenotype in BAAL/c mice. To determine whether therapeutic administration of chitosan-pNHP can attenuate established asthma induced by allergen exposure and RSV infection, mice were first sensitized and challenged with OVA and then infected with RSV and subsequently given Chitosan-pNHP (CHIpp) therapy, as shown in the protocol of FIG. 5A. Airway hyper-reactivity (%Penh) was measured by whole body plethysmography (FIG. 5B). The results show a complete reversal to the basal level of AHR in the group of mice that were treated with CHIpp. To determine whether CHIpp therapy decreases established pulmonary inflammation, lungs of treated and then OVA-challenged mice were lavaged and BAL cells were examined. The number of eosinophils in the BAL fluid showed a significant reduction in the CHIpp-treated mice compared with the untreated control group, as shown in FIG. 5C.

EXAMPLE 4

pNHP Induces Production of Nitric Oxide by Activating Constitutive Nitric Oxide Synthase in Human in Lung Epithelial Cells

[0117] A. Materials and Methods

[0118] Cell lines and culture conditions. The human alveolar type II epithelial cell line A549 (ATCC) was cultured at 37°C in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum and 100 U/ml each of penicillin and streptomycin in an atmosphere of 5% CO\(_2\)/95% air. Cells were subcultured weekly and used between passages 9 and 22. Experiments were repeated with primary NHBE obtained from CLONETICS (Walkersville, Md.) from pooled donors. These cells were cultured in BEBM medium supplied by the vendor and supplemented with 10% fetal bovine serum and a mix of growth factors without antibiotics. Cells were grown at 37°C in 5% CO\(_2\)/95% and used between passages 3 and 9.

[0119] Expression plasmids and transfection. The expression of plasmid encoding NHP, \(\gamma\)-trans, has been described previously (Kumar, M et al., J Allergy Clin Immunol., 2002, 110:879-82). For transfection of epithelial cells, cells at 60% confluence (log phase) were transfected 4 hr at 37°C with plasmid DNA (1 \(\mu\)g per 10\(^6\) cells) complexed with lipofectamine (GIBCOBRL Life Technologies). Complete medium was then added to the cultures and the cells were incubated at 37°C for 24 to 48 h to allow expression of the neurotransmitter peptides.

[0120] Assay for nitric oxide. The assay for nitric oxide (NO) is based on that of Misko et al. (Misko, T P et al., Anal Biochem., 1993, 214:11-6) and measures nitrite, the stable breakdown product of NO, which is reacted with dianisminophthalene to produce a fluorescent compound. A549 or NHBE cells were transfected with plasmid/lipofectamine complexes as described above. At specific time points, 100 \(\mu\)l samples of culture medium were removed and stored at -20°C. After all samples were taken, they were cleared by centrifugation and 10 \(\mu\)l of a freshly prepared solution of 0.02 mg/ml dianisminophthalene was added to each tube, shaken, and allowed to react for 10 min at room temperature. The reaction was stopped by addition of 30 \(\mu\)l of 0.5 M NaOH and the fluorescence of the samples was read using a quartz microcuvet (3 mm path length) in a JASCO spectrophotometer with excitation at 365 nm and emission at 409 nm. Nitrite standards were run in the same medium as the experimental samples to generate a standard curve which was used to calibrate the readings. As a positive control, one set of wells was incubated with 1 \(\mu\)M calcium ionophore, A23187 (SIGMA).

[0121] B. Results

[0122] NO is a bronchodilator and Ca\(^{++}\)-calmodulin binding activates the constitutive form of nitric oxide synthase
(cNOS) in epithelial cells (Howarth, P. H. et al., *Int Arch Allergy Immunol.*, 1995, 107:228-30). To determine whether the increased intracellular Ca**+** seen in NHP₇₃₋₁₀₂-transfected cells affects nitric oxide (NO) levels, aliquots of the medium were removed before the Ca**+** assay and mixed with diaminonaphthalene which reacts with nitrite (from the reaction of NO and water) to produce a fluorescent compound. NO generation was significantly higher in cells expressing NHP₇₃₋₁₀₂ (FIGS. 3A and B). To verify that NO production was due to the constitutive NOS, one aliquot of cells was incubated during the expression phase with 1 mM N_N-nitro-L-arginine methyl ester, an arginine analog that blocks eNOS production of NO. The enhanced NO generation was inhibited by pretreatment of the cells with N-nitro-L-arginine methyl ester, which blocks eNOS activity (FIG. 3C). Airway smooth muscle hypertrophy and hyperplasia are important determinants of airway remodeling and bronchial responsiveness in asthma. NHP₇₃₋₁₀₂ appears to act on epithelial cells to produce NO via constitutive NOS, which in turn controls bronchial hyperreactivity and proliferation of airway smooth muscle cells.

EXAMPLE 5

pNHP Induces Anti-Inflammatory Response in the Lung by Decreasing NFkB Activation of Epithelial Cells

[0123] A. Materials and Methods

[0124] Luciferase reporter assay for NFkB activation. A549 and NHBE cells were grown to about 60% confluence in 12-well culture plates and transfected using LIPOFECTAMINE 2000 (INVIROGEN, Carlsbad Calif.). Cells were transfected with a luciferase construct under the control of an NFkB-activatable promoter (MERCURY PROFILING SYSTEM, CLONTECH, Palo Alto Calif.) and placZ as a normalization control either with or without pANP. Relative amounts of plasmid DNA and lipofectamine reagent were optimized for NHBE cells and cells were transfected for 4 h in serum-free DMEM without antibiotics at 37° C. After transfection, DMEM with 10% FBS was added and cells were incubated for 24 to 48 h at 37° C. Cells were harvested at specific time points and lysates were assayed for luciferase activity using the DUAL LUCIFERASE Assay System (PROMEGA, Madison Wis.) read in an MLX microplate luminometer (DYNEX TECHNOLOGIES, Chantilly Va.). Transfection efficiencies were normalized by measuring β-galactosidase activity.

[0125] Statistical analysis. Experiments were repeated a minimum of three times and data are expressed as means±SEM. Pairs of groups were compared through the use of Student’s t tests. Differences between groups were considered significant at p≤0.05.

[0126] B. Results

[0127] To study the potential role of NHP in regulating inflammation, A549 cells were transfected with pNHP plasmid encoding amino acids 73-102 (pNHP₇₃₋₁₀₂) and the activation of NFkB, which controls a number of genes encoding proinflammatory molecules and is key to the inflammatory cascade and has been linked to inflammation, was examined (Ishii, Y. et al., *J Anat.*, 1989, 166:85-95; Boiteau, R. et al., *Am Rev Respir Dis.*, 1988, 137:A484). The results showed that cells cotransfected with pNHP significantly decreased luciferase activity compared to control plasmid suggesting that pNHP is capable of inhibiting PMA-induced NFkB activation in A549 cells and in NHBE cells, as shown in FIGS. 6A-6B. These results indicate that pNHP possesses potential anti-inflammatory activities, and that it may exert its bronchodilatory effect by stimulating the production of NO and its anti-inflammatory effect by deactivating NFkB, the central molecule controlling inflammation in asthmatic airways.

[0128] All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.

[0129] It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.
US 2006/0276382 A1

-continued

<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 2

Glu Val Val Pro Pro Gln Val Leu Ser Glu Pro Asn Glu Glu Ala Gly
 1 5 10 15

 Ala Ala Leu Ser Pro Leu Pro Glu Val Pro Pro Trp Thr Gly Glu Val
 20 25 30

 Ser Pro Ala Gln Arg
 35

<210> SEQ ID NO 3
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 3

Ser Ser Asp Arg Ser Ala Leu Leu Lys Ser Lys Leu Arg Ala Leu Leu
 1 5 10 15

Thr Ala Pro Arg
 20

<210> SEQ ID NO 4
<211> LENGTH: 28
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 4

Ser Leu Arg Arg Ser Ser Cys Phe Gly Gly Arg Met Asp Arg Ile Gly
 1 5 10 15

 Ala Gln Ser Gly Leu Gly Cys Asn Ser Phe Arg Tyr
 20 25

<210> SEQ ID NO 5
<211> LENGTH: 28
<212> TYPE: PRT
<213> ORGANISM: Mus musculus

<400> SEQUENCE: 5

Ser Pro Trp Asp Pro Ser Asp Arg Ser Ala Leu Leu Lys Ser Lys Leu
 1 5 10 15

Arg Ala Leu Leu Ala Gly Pro Arg Ser Leu Arg Arg
 20 25

<210> SEQ ID NO 6
<211> LENGTH: 37
<212> TYPE: PRT
<213> ORGANISM: Mus musculus

<400> SEQUENCE: 6

Val Ser Asn Thr Asp Leu Met Asp Phe Lys Asn Leu Leu Asp His Leu
 1 5 10 15

Glu Glu Lys Met Pro Val Glu Asp Glu Val Met Pro Pro Gln Ala Leu
 20 25 30

Ser Glu Gln Thr Glu
 35

<210> SEQ ID NO 7
<211> LENGTH: 151
<211> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE:

Met Ser Ser Phe Ser Thr Thr Thr Thr Val Ser Phe Leu Leu Leu Leu Ala
1 5 10 15
Phe Glu Leu Leu Gly Glu Thr Arg Ala Asn Pro Met Tyr Ala Ala Val
20 25 30
Ser Asn Ala Asp Leu Met Asp Phe Lys Asn Leu Leu Asp His Leu Glu
35 40 45
Glu Lys Met Pro Leu Glu Asp Glu Val Val Pro Glu Val Leu Ser
50 55 60
Glu Pro Asn Glu Glu Ala Gly Ala Ala Leu Ser Pro Leu Pro Glu Val
65 70 75 80
Pro Pro Trp Thr Gly Glu Val Ser Pro Ala Gin Arg Asp Gly Gly Ala
85 90 95
Leu Gly Arg Gly Pro Trp Asp Ser Ser Asp Arg Ser Ala Leu Leu Lys
100 105 110
Ser Lys Leu Arg Ala Leu Thr Ala Pro Arg Ser Leu Arg Arg Arg Ser
115 120 125
Ser Cys Phe Gly Gly Arg Met Asp Arg Ile Gly Ala Gln Ser Gly Leu
130 135 140
Gly Cys Asn Ser Phe Arg Tyr
145 150

<210> SEQ ID NO 8
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Mus musculus

<400> SEQUENCE:

gacggcaaga ttactatatgg cagccoctgg gaccc

<210> SEQ ID NO 9
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Mus musculus

<400> SEQUENCE:

acccocctcg agttattact ttctgtaggct ccg

<210> SEQ ID NO 10
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Mus musculus

<400> SEQUENCE:

aatcotaagc ttagattgtgt ctgcacaaca gat

<210> SEQ ID NO 11
<211> LENGTH: 41
<212> TYPE: DNA
<213> ORGANISM: Mus musculus

<400> SEQUENCE:

tgcqaoctcg agttactccag tctgctcact cagggcctgc g
<210> SEQ ID NO 12
<211> LENGTH: 93
<212> TYPE: DNA
<213> ORGANISM: Mus musculus

<400> SEQUENCE: 12
atggtctag ccctggagcg cttggcaacttg tctgctctct tgaagaacac acgtgaggtt 60
cggactgtg gcgcctggag cctacgacatg taa 93

<210> SEQ ID NO 13
<211> LENGTH: 117
<212> TYPE: DNA
<213> ORGANISM: Mus musculus

<400> SEQUENCE: 13
atggtctcc accagacaatg gatggatttc aagaacctgc tagaccaacct ggaggggaag 60
atcccggagt taccagggct atggcccacg cggccctgag ctgacgacc tgaattc 117

<210> SEQ ID NO 14
<211> LENGTH: 845
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 14
tgcgagggcg cacaagcttagg ccacagaggg ggaacccagag aagaacccagag gggagac 60
agacaacac ccacacggag cgcgcctgag ccagcctcctgc ttcacacacc 120
acggagtc tccatgtcttt aactggaattc cagcctcctgc ctgacgagcc aagttactcc 180
agttcactgy cgcgtgtccac ccgagacccgt atgtatgttc ccagcccttg 240
gagaaaaag aggttctcag ccctcctcctg ttcaggttct ctcctgtcct cggccatgcg 300
gagacagtcc ggcctgtgct ccagccctcagt ccagacacac ccagcccttg 360
agcaccgcc aggagagctc gggccgagt ggcctgctc cccggtcttgc ctgcctcctg 420
ttcgctcct gcacattgaa cgcggcggcg cccgctgctcg cccgctgcttc cccgctgctc 480
ttcagctctc tccgggtggcg cggagagacag cgcctgctcg cgcctgctcg cgcctgctc 540
agcctctcag agggggaag cggccagACA agcggagctc gggccgagcc gcggagagtg 600
tacgcagcag cttgggttc ggcctgcttc tctgctgac aggtagtagc 660
aggtttctct tgcacattg gaaggtggagt tggagactt ctcctgcttc cccggtctgct 720
acctgtaga atacgcatgt atctgtgact tccctgcacc cccggtctccgc ccgggtctgc 780
ttaagttgaga acctcagctgc taactggaag tgggtggaac gtgataaaaa ccggacccac 840
tcgcc 845

<210> SEQ ID NO 15
<211> LENGTH: 2583
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 15
gagatcatttt gcgtgaaccg gatgctgcgc tgcacattttc ctcctgcac tctatctgg 60
agcccctgag cagctccaac caacaacaac ccgggaagct gcacacagcag aggcgccacc 120
tctttaaccc cgccctgtag ccacggtcag gcagagagat ccggtggactgggg 180
taacaagga ccctttttttt cttcctcacc accttgaag tggagccct ccggactccaa 240
-continued

tcagtaaga tgcggtcctt gcagctgagg gctcgggggg ctgctggggc tgcccacggc 300
agagagggag ctgccccagc gctgagcagt ctaacattaa aagggcatct cctgctggot 360
tctcactttg cagcttttac agctgaagtg acagaagtgg ggaggttcgtc tctctctcgc 420
gtctctgagg agctggagag ctatataaaa aaggtgcagc ggcctctgg gcagacggga 480
cagacgtgag ccacagaggg ggaaccagag aggaaacagca ggggagagag agacaggca 540
gcaagtgtgg atctctgccc gacggccagc tgaagccct tctccacacc accctcgtgat 600
tctctctctt atctggcact caagcctcag gcataactcc atgttacagt 660
cctgctccac gcgcacactg atyattcaca aggttagggc aggaaagcgg gtgcaagctt 720
gggcacggg gttttctcgat gctgctgtoac ctctcctgta tttctctcaca gctcaagctg 780
tttatctttt ctcctctctt ttcctctttt aagaatctgg ctgaccatttt ggggaagaas 840
gatcctcta gcacggaggt ctcgtgcccac aaactgctc gtacggcoga atgaagaaga 900
ggggtctgtc ttcaccccct ccotcctagct gctotcctgc acgggggagg atcgccagc 960
cacagaggt gcgtcctggcc tcgagggggc ccctgcggac ctgctctctc gatcctgccc 1020
cctaacaagc aagtcgagg gcctgctcag tcgccccctgg aagctgccga aagctgctg 1080
cctcgggagc agaagctgca gcattgtagc ccagccggga ctgctctgta aacagctcggc 1140
gtctagaggg aagtggtgtag gaaatggggat ggggtgcgga actctgaggg aacaccctcag 1200
cagagaaggg aacagctatc ccctcctcaag ttcctcogccac caacccgagc 1260
tgcacagtgg agtcgagcag atgcaactta tttctcattg cctctctcatgc gaaagaagtgc 1320
tttaaaaaaa aagggggggc ggtgccccgc gttctccccc ctctataccc aaggcttttg 1380
gaggccaggo acggtgactt gaggctaga gacggaacct atctggcoca acatgytgas 1440
acccagcctc taaaatta caaaaatta gctgggtggt tcggcgcgcc ctgtaaccttc 1500
agatcaatgg gagggtcagg cagggagact acctgaaacc ccaggccaga ggtgcaaggt 1560
agcagacato agccacacctg cagccagcctg aaggttagag cggacaggct ctctaaaaaa 1620
aaaaaaaaag gcacgggogc gttgtctcag cctgtcaatc cagcgctttg gggggaagag 1680
gcgctggtct cagaggcgca gtagtccgg acactctcctg tctacgccgt gaaaccctct 1740
cctactaata aatacaaaaa atacgacgg ctgtgtgcca ggcocctgta agctctatgt 1800
actcctggag gcgagctccag aagatgcgct gcacccggga ggggagtctt gcagttacga 1860
gacagcgcoc cactccacct cagctgggg gacagagcaac gtcctctctct caaaaaaaas 1920
aaaaaaagcccacggcag ctagctggcc gaaatataaa ttataatagc gcagttatat 1980
cttctgatgg ctgtcattgc cccctcagaa tggaaagatc ctgaagggct 2040
taaatgaat tatacttgag gatactacgg cttctatatt ctgcaagctg aggygctat 2100
caggtcgggg tgagggccggc tcgggacagt ctgctgcgtg caaacattca gcagagagtcc 2160
acactcaaac atgaatagct cttcttggag acagcagggt tcccacaacgc gatagctggctg 2220
tgtatctttt cgtctactgc agatcagccg cggagggagc acggaggtgc gggcctgagg 2280
acagacactc aagagctgct gcctcgggag gctotgccttg catttgctg atctgggttc 2340
ctgagagtg tgcgctccac aatcagacgt cgctctctctc tcacacactc tcacacactt 2400
tgactactgt agataaagtt gttgtggttc gctotcctcg cttccaccc cccctgctat 2460
aaatctntac agtacaagctac tccgctgtt ccagagtgtaa aacaagttca 2520
caccatggac agaaga caaa tocctg.cgitt gotgtgctitt citttcttctt goggaagagaa 2580
ttc 2583

<210> SEQ ID NO 16
<211> LENGTH: 152
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 16

Met Gly Ser Phe Ser Ile Thr Leu Gly Phe Phe Leu Val Leu Ala Phe
1 5 10 15
Trp Leu Pro Gly His Ile Gly Ala Ann Pro Val Tyr Ser Ala Val Ser
20 25 30
Asn Thr Asp Leu Met Asp Phe Lys Ann Leu Leu Asp His Leu Glu Glu
35 40 45
Lys Met Pro Val Glu Asp Glu Val Met Pro Pro Glu Ala Leu Ser Glu
50 55 60
Gln Thr Glu Glu Ala Gly Ala Leu Ser Leu Pro Glu Val Pro
65 70 75 80
Pro Trp Thr Gly Glu Val Ann Pro Pro Leu Arg Asp Gly Ser Ala Leu
85 90 95
Gly Arg Ser Pro Trp Asp Pro Ser Arg Ser Ala Leu Leu Lys Ser
100 105 110
Lys Leu Arg Ala Leu Leu Ala Gly Pro Arg Ser Leu Arg Arg Ser Ser
115 120 125
Cys Phe Gly Gly Arg Ile Asp Arg Ile Gly Ala Glu Ser Gly Leu Gly
130 135 140
Cys Ann Ser Phe Arg Tyr Arg Arg
145 150

<210> SEQ ID NO 17
<211> LENGTH: 878
<212> TYPE: DNA
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 17

caaaagctg gagaagaag gaaagaaac ccagtggca gagacgcaaa acatccgac 60
gttcggcg gcacgccgac atggtgctct tcgccatcag cctgggcttt ttcctgtctt 120
tggcccttgy gottccaggg cattattgag caatactgtg gtagtgctg cggcaccac 180
cagatctgct gatttaag acacttgctg accacotgga gggagagct gcggagtagg 240
atgaggtct gcocgccgag gocctagtga agaagactga gaaagcgagg gccacactta 300
gttcctcroc gcaggtgctcg cctggactg cggagctgaa cocaactctag agagaagcc 360
gttcgtctag gcgcggccct ctggacccc tggtatagt tggccctctg agaaacaaac 420
tgaggtctg gttgtcgctg cctggacaco tgaagactc cagctgtctc gggggtagga 480
tgagcagct tggagcccaag gtagggagt gctgcaaccg tttccgatc cgaagactac 540
agcagaaag gaaagagcaag cggattgacta cttggacaag cggagactac 600
tgcctgtgt cagccacattc gttcaacatt ccacttgccag tgggtgaaca cctggctgga 660
gttggcttc cctggcttca tctatacga tggacttata stgtgtattg gttgctgttg 720
ggggtcctgg cttccacact tctgcatatt agagtagact tooscccttt cagaaagcaag 780
1. A method of treating allergic disease comprising administering a natriuretic hormone peptide (NHP), or a nucleic acid sequence encoding NHP and an operably-linked promoter sequence, to a patient in need thereof.

2. The method of claim 1, wherein said administering comprises administering the NHP to the patient, and wherein the NHP comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:5 and SEQ ID NO:6, or a biologically active fragment or homolog of any of the foregoing.

3. The method of claim 1, wherein said administering comprises administering the nucleic acid sequence encoding NHP to the patient, and wherein the NHP comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 and SEQ ID NO:6, or a biologically active fragment or homolog of any of the foregoing.

4. The method of claim 1, wherein said administering is by a route selected from the group consisting of oral, intramuscular, parenteral, intravenous, and intranasal.

5. The method of claim 1, wherein the NHP or the nucleic acid sequence is administered with a pharmaceutically acceptable carrier.

6. The method of claim 1, wherein said administering comprises administering the nucleic acid sequence to the patient, and wherein the nucleic acid sequence is contained within an expression vector.

7. The method of claim 5, wherein the expression vector is a DNA plasmid or virus.

8. The method of claim 1, wherein said administering comprises administering the nucleic acid sequence to the patient, and wherein the nucleic acid sequence is administered with chitosan.

9. The method of claim 1, wherein the NHP or nucleic acid sequence causes a bronchodilatory effect in the patient.

10. The method of claim 1, wherein the NHP or nucleic acid sequence inhibits airway reactivity, airway inflammation, or airway remodeling in the patient.

11. The method of claim 1, wherein the patient is human.

12. The method of claim 1, wherein the patient is suffering from asthma.

13. A pharmaceutical composition comprising a natriuretic hormone peptide (NHP); or a nucleic acid sequence encoding NHP; and an operably linked promoter sequence; and a pharmaceutically acceptable carrier.

14. The pharmaceutical composition of claim 13, wherein said composition comprises said NHP, and wherein said NHP comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:5 and SEQ ID NO:6, or a biologically active fragment or homolog of any of the foregoing.

15. The pharmaceutical composition of claim 13, wherein said composition comprises said nucleic acid sequence encoding NHP and said operably linked promoter sequence, and wherein said NHP comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 and SEQ ID NO:6, or a biologically active fragment or homolog of any of the foregoing.

16-19. (canceled)

20. An expression vector comprising a nucleic acid sequence encoding a natriuretic hormone peptide (NHP) and an operably linked promoter sequence.

21. The expression vector of claim 20, wherein said NHP comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 and SEQ ID NO:6, or a biologically active fragment or homolog of any of the foregoing.

22. (canceled)

23. An isolated cell genetically modified with a nucleic acid sequence encoding a natriuretic hormone peptide (NHP) and an operably linked promoter.

24. The isolated cell of claim 23, wherein said NHP comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 and SEQ ID NO:6, or a biologically active fragment or homolog of any of the foregoing.

25. An isolated nucleic acid sequence encoding an amino acid sequence consisting essentially of SEQ ID NO:5 or SEQ ID NO:6, or encoding a biologically active fragment or homolog of SEQ ID NO:5 or SEQ ID NO:6.

26. An isolated peptide comprising an amino acid sequence consisting essentially of SEQ ID NO:5 or SEQ ID NO:6, or a biologically active fragment or homolog of SEQ ID NO:5 or SEQ ID NO:6.

* * * * *