一种变速器制动机构，其特点是：两侧设爪形齿、外圆设凹形槽的滑套用键联配合在轴上，一侧设有可与滑套齿啮合的爪形齿的大齿轮间隙配合在轴上，端盖的内侧设有可与滑套齿啮合的爪形齿，在滑套与端盖之间设有压簧，固定在箱体上的拔叉的叉齿与滑套外圆的凹槽配合。该机构结构简单，操作省力，广泛适用于小型农用、运输机械，使其能操作方便，转向灵活。
1. 一种变速器制动机构，包括两侧装有端盖(3)的变速器箱体(1)，设在箱体(1)内的左右两套完全对称的穿过端盖(3)并支承在轴承(10、12)上的轴(13)和传入动力的齿轮(18)，设在两轴(13)中间的间隙圈(11)，其特征在于，箱体(1)内设有左右两套完全对称的以下装置：两侧设爪形离合器的爪形齿(19)、外圆设凹形槽的滑套(8)用键滑配合在轴(13)上，一侧设有可与滑套爪形齿(19)啮合的爪形齿(20)的齿轮(9)间隙套合在轴(13)上，端盖(3)内侧设有可与滑套齿(19)啮合的爪形齿(21)，在滑套(8)与端盖(3)之间设有压缩弹簧(6)，固定在箱体(1)上的拨叉(2)的叉齿(21)与滑套(8)外圆的凹形槽配合。

2. 根据权利要求1所述的变速器制动机构，其特征在于：滑套(8)与轴(13)之间的键采用花键。
说明书

变速器制动机构

本实用新型涉及一种变速器，特别是一种变速器制动机构。

目前，现有技术中的小型变速器的输出轴，往往没有制动机构；而大中型变速机构中变速器则一般都采用外部制动方式。这样，在小型特别是小型履带式农用机械和运输机械中如使用大中型变速器，安装比较困难，同时，无论使用以上哪种变速器，都会出现转弯困难，转弯半径无法控制等现象，致使机手操作相当困难，严重影响了机器的工作效率和质量。

本实用新型的目的在于提供一种采用内部制动方式的变速器制动机构，以适用于小型农用机械和运输机械，使其能安装、操作方便，转弯灵活。

本实用新型的目的是这样实现的：本变速器制动机构包括两侧装有端盖的变速器箱体，设在箱体内的左右两套完全对称的穿过端盖中心孔并同轴且支承在轴承10、12上的轴和传入动力的齿轮以及设在左右两根轴中间的间隙圈。其特点是，在箱体内设有左右两套完全对称的以下装置：两侧设有爪形离合器的爪形齿，外圆设有凹形槽的滑套用键最
右滑动。一侧设有可与滑套爪形齿啮合的爪形齿的大齿轮间隙套合在轴上，即大齿轮与轴采取运动配合，大齿轮能绕轴旋转。端盖的内侧设有可与滑套爪形齿啮合的爪形齿。在滑套与端盖内侧之间设有压缩弹簧，在弹簧力的作用下大齿轮的爪形齿与滑套的爪形齿一般处于啮合状态，从而带动轴旋转，使动力经轴输出，即变速器一般处于工作状态。固定安装在箱体上的拨叉的叉齿与滑套外圆上的凹形槽配合，即拨叉齿嵌入凹形槽中。拨叉能绕自身轴线旋转。

由于采用以上结构，较好地解决了变速器的内部制动方式，该变速器制动机构结构简单，便于安装，操作省力，能灵活轻松的实现变速器工作状态——空档状态——停止状态的转换，广泛地适用于各种小型履带式农用机械和运输机械，使其能操作方便，转弯灵活，从而提高机器的工作效率和质量。

下面结合附图和实施例对本实用新型作进一步详细说明。

图1是本实用新型变速器制动机构的主视图。

图2是图1的A-A剖视旋转图。

图1所示，本实用新型变速器制动机构包括现有技术的两侧各装有端盖3的箱体1，端盖和箱体1用螺丝7连接，在端盖3的外侧面用螺丝固定有小端盖5，在小端盖5里面设有轴封4以防漏油，箱体1内设有左右两套完全对称的轴13、轴承10、12、齿轮18，轴13为低速轴又为输出轴，它从端盖3的中心孔穿过并与孔同心且支承在轴承10和轴承12上，传入动力的齿轮18与大齿轮9啮合，左右两根轴13中间设有间隙圈
11，以防两根轴相互摩擦。在箱体1 内增设左右两套完全对称的以下的装置：两侧设有爪形离合器的爪形齿19。外圆设有凹形槽的滑套8用键最好采用花键滑配合在轴13 上，即套合在轴13 上，滑套8能在轴13 上左右滑动，爪形齿19 其倾斜角度不大于20度。一测设有可与滑套爪形齿 19 咬合的爪形齿20 的大齿轮9 间隙套合在轴13 上，即大齿轮9 与轴13 采取动配合，大齿轮9 能绕轴旋转。端盖3 的内侧端面上设有可与滑套爪形齿19 咬合的爪形齿21。在滑套8 与端盖3 内侧之间设有压缩弹簧6，在弹簧力的作用下大齿轮的爪形齿20 与滑套的爪形齿19一般处于啮合状态，从而使变速器一般处于工作状态。图2所示，固定安装在箱体1 上的拨叉2 的叉齿 22 与滑套8 外圆的凹形槽配合，即拨叉齿22 嵌入凹形槽中。拨叉轴23 套合在滑动轴承14 内，拨杆15 设在箱体外的拨叉2 的上部，在拨叉轴23 与滑动轴承14 和滑动轴承14 与外套之间的结合面分别装有密封用的“O”形圈16、17，拨叉2 能绕自身轴线旋转。

本实用新型的基本工作原理如下：动力通过齿轮18 传到大齿轮9，这样大齿轮9 随之旋转，假定此时滑套8 位于端盖3 与大齿轮9 的中间位置时，大齿轮绕轴的轴线旋转，由于大齿轮9 与轴13 为间隙配合，动力不能传入轴13，固轴不旋转，但此时如果有外力矩施于低速轴13 上，轴13 可自由旋转。此时即为空挡位置。当拨动拨叉2，使滑套8 向外侧移动，让端盖3 的爪形齿21与滑套8 的爪型齿19 相互啮合，由于端盖固定于箱体1 上，滑套8 便无法旋转，而滑套8 与轴13 通过花键连接，从而使轴13 也就不能旋转，此位置即为制动位置。
当卸去拨叉2的力，此时受压弹簧6在弹簧力的作用下将滑套8向箱体中央内推动，使已啮合的爪型齿脱开，而使大齿轮9与滑套8的爪型齿19相啮合。由于大齿轮9旋转，从而带动滑套8旋转，随之带动轴13旋转，使动力从轴3输出，此时即为工作位置。由于两个拨叉2可分别单独操作，从而使动力输出和制动的形式多样化，有效地执行各种所需的功能。