
# B. REICHELT. SPRING MOTOR.

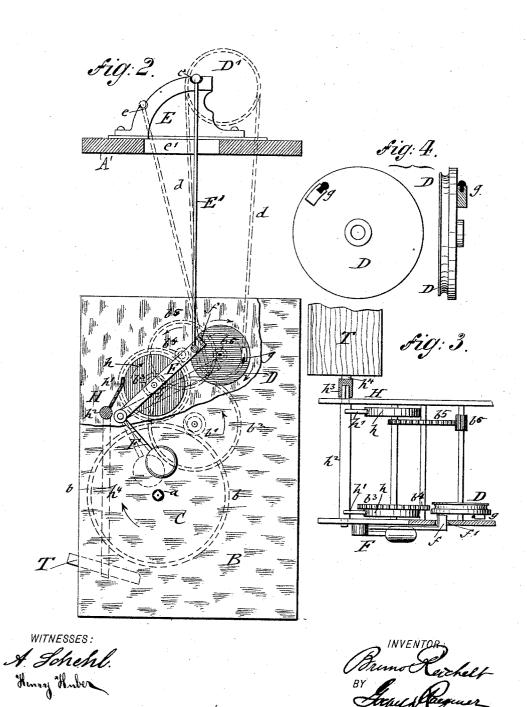
No. 449,384.

Patented Mar. 31, 1891.

### fig.1.



WITNESSES:


fol . W. Rosen baum.

Bruns Reschelf
By Gospel Regener
ATTORNEYS.

## B. REICHELT. SPRING MOTOR.

No. 449,384.

Patented Mar. 31, 1891.



THE NORRIS PETERS CO., PHOTO-LITHO, WASHINGTON, D. C.

#### United States Patent Office.

BRUNO REICHELT, OF SOUTH BEND, INDIANA.

#### SPRING-MOTOR.

SPECIFICATION forming part of Letters Patent No. 449,384, dated March 31, 1891.

Application filed December 29, 1890. Serial No. 376,054. (No model.)

To all whom it may concern:

Be it known that I, BRUNO REICHELT, of South Bend, in the county of St. Joseph and State of Indiana, a citizen of the United States, have invented certain new and useful Improvements in Spring-Motors for Sewing-Machines, of which the following is a specification.

This invention relates to an improved 10 spring-motor for sewing-machines or other light machinery, by which said machinery can be operated without the use of the foot by simply winding up the driving-spring of the motor, which can also be stopped or started 15 with great facility and its speed regulated as required; and the invention consists of a spring-motor for sewing-machines, which imparts motive power to a sewing or other light machine by a suitable belt-and-pulley trans-20 mission, and which is provided with a stopping and starting device operated from the table of the sewing-machine, and with brake devices operated by a treadle for regulating the speed of the motor, as will be fully described 25 hereinafter, and finally pointed out in the claims.

In the accompanying drawings, Figure 1 represents a perspective view of a sewing-machine with my improved spring-motor at-30 tached thereto. Fig. 2 is a sectional side view of the spring-motor, drawn on a larger scale and with parts broken away, so as to show its starting and stopping device and its speedregulating brake. Fig. 3 is a section of plan 35 of the starting and stopping device and the speed-regulating brake of the spring-motor, and Fig. 4 shows details of the elastic buffer of the starting and stopping device shown arranged in the motion-transmitting pulley.

Similar letters of reference indicate corresponding parts.

A in the drawings represents a sewing-machine or other light machine in which the treadle-motion operated by the foot is to be 45 replaced by a suitable spring-motor. The spring-motor is arranged in a casing B at the right-hand side of the sewing-machine, and comprises a spring-barrel C, having a drivingspring of suitable strength in the same, which 50 spring-barrel is provided with the usual wind-

ing-up arbor a and check parts. The springbarrel C transmits its power by a gear-wheel l

b to an intermediate train of gear-wheels b',  $b^2$ ,  $b^3$ ,  $b^4$ ,  $b^5$ , and  $b^6$ , (shown in dotted lines in Fig. 2) to a driving-pulley D, from which the 55 motion is transmitted by a belt d to a pulley D' on the main shaft of the sewing or other machine, as shown in Figs. 1 and  $\tilde{2}$ 

The mechanism so far described—namely, the spring-barrel and its transmitting gear- 60 wheels and pulleys—are well known, and form no part of my invention.

The new features of my invention are the devices by which the motor is started and stopped and the speed of the same regulated, 55 which is accomplished by a brake that is operated by a treadle suspended on pendent arms pivoted to the supporting-frame of the

sewing or other machine.

The starting and stopping device is com- 70 posed of an arc-shaped plate E, that is attached to the table of the sewing-machine above the spring-motor, said plate E being provided with notches or recesses e e for the upper end of a lever-rod E', which passes 75 through a slot e' of the table A', and which is pivoted at its lower end to the upper arm of an elbow-lever F, that is fulcrumed to the supporting-frame of the spring-motor. The lower arm of the elbow-lever F is weighted, 80 so that the lever-rod E' is firmly retained in the upper or lower notch or recess e of the arc-shaped plate E. The outer end of the upper arm of the elbow-lever F is provided with a laterally-bent  $\log f$ , that passes through 85 an arc-shaped slot f' of the supporting-plate of the spring-motor into the path of an elastic buffer g, that is attached to the transmitting-pulley D of the spring-motor.

When it is desired to stop the machine, the 90 lever-rod E' is placed into the upper notch of the plate E, as shown in full lines in Fig. 2, in which position the lug f is placed into the path of the buffer g on the driving-pulley, so that the latter, and thereby the spring-motor, 95 is stopped as soon as the buffer g comes in

contact with the lug f.

For starting the machine the lever-rod E' is placed by the operator into the lower notch of the plate E, as shown in dotted lines in 100

The lever rod E', in connection with the weighted elbow-lever F, permits the ready stopping or starting of the spring-motor by

simply placing the lever-rod E' into the upper or lower notch of the arc-shaped plate E, which is readily accomplished by the operator. The upper end of the lever-rod E' is 5 provided with a knob or handle for readily taking hold of the same in its adjustment on the plate E, whereby the adjustment of the same is facilitated.

The speed-regulating brake H is composed ro of two leather-covered disks h, which are applied to the shaft of the transmitting gearwheel  $b^3$ , operated by the spring-motor, and of two brake-arms h', which are applied to a shaft  $h^2$ , that turns in bearings of the supporting 15 frame or housing of the spring-motor, as shown in Figs. 2 and 3. One end of the shaft  $h^2$  is made of square cross-section shape and projected at the inner side of the inclosing casing, where it is connected with a socket  $h^3$ , 20 having a square recess at the upper end of a pendent rod  $h^4$ , to the lower end of which is applied a treadle T, the opposite end of which is attached to a second pendent rod  $h^4$ , that is pivoted to the supporting-frame of the sew-25 ing-machine, as shown in Fig. 1.

Whenever the operator desires to apply the brake and reduce thereby the speed of the machine, the treadle is moved by the feet toward the operator, by which motion the 30 brake-arms are applied to the brake-disks h'h', so that the motion of the motor is retarded or entirely stopped, according to the degree of friction exerted on the brake-disks. When the brake action is desired to be dis-35 continued, the treadle is released, so that it swings away from the operator into its normal position, by which motion the brake-arms are removed from the brake-disks, so that the frictional contact with the latter is inter-40 rupted. In the normal position of the treadle the same serves as a rest for the feet of the operator, it being only moved backward toward the same when the brake is to be applied and the speed of the motor and of the 45 machine driven thereby is to be diminished, which feature is especially useful for inexperienced operators, as it gives them a fuller

and better control over the machine.

Having thus described my invention, I claim as new and desire to secure by Letters Pat- 5c ent—

1. The combination, with a spring-motor and its transmitting train of gear-wheels, of a starting and stopping device composed of an arc-shaped plate having notches or re-55 cesses located on the table of the machine to be driven, a lever-rod adapted to engage one of said notches, a fulcrumed and weighted elbow-lever connected to the lower end of the lever-rod and provided at its upper end with 60 a lateral lug, and an elastic buffer located on the transmitting-pulley of the motor, said lug being adapted to be placed by the lever-rod in or out of the path of the buffer, so as to produce the stopping or starting of the mo-65 tor, substantially as set forth.

2. The combination, with a spring-motor and its transmitting train of gear-wheels, of brake-disks applied to the shaft of one of said gear-wheels, brake-arms adapted to be 70 placed in or out of contact with said disks, and a treadle supported on the pendent rods pivoted to the supporting-frame and connected with the shaft of the brake-arms, so as to apply or remove the same from the disks 75 by the forward or backward action of the treadle, substantially as set forth.

3. The combination, with a spring-motor and its transmitting gear-wheels, of brake-disks applied to the shafts of one of the trans-80 mitting gear-wheels, brake-arms applied to an oscillating shaft supported in the frame or housing of the spring-motor, pendent rods pivoted to the frame of the machine to be driven, one of said rods being attached to 85 the oscillating shaft of the brake-arms, and a treadle attached to the lower ends of the pendent rods, substantially as set forth.

In testimony that I claim the foregoing as

In testimony that I claim the foregoing as my invention I have signed my name in presence of two subscribing witnesses.

BRUNO REICHELT.

Witnesses: John Roth, C. H. Myers.